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1 General introduction 
This document is aimed at surveying some promising existing Instruction Set (IS) synthesis approaches and 

at defining a preliminary proposal of an IS synthesis method for the purpose of the Automatic Architecture 

Synthesis and Application Mapping (ASAM) project. 

The main aim of the new IS synthesis method proposed in this report is to provide an automatic support for 

the design of Instruction Sets in customizable Application Specific Instruction Set Processors (ASIPs), such as 

provided by Silicon Hive technology. IS synthesis is one of the typical steps of the overall ASIP design-flow: 

it is preceded by the more abstract synthesis of the general computation, communication and storage 

architectures and it is followed by the generation of the final hardware and software ASIP platform before 

compilation. It involves complex multi-objectives optimization problems whose solution requires an 

exploration of many possible different alternatives. 

Most of the works present in literature focus on a specific case of the IS synthesis, being the Instruction Set 

Extension (ISE), that extends an existing (in most cases RISC-type) processor instruction set with extra 

multi-RISC-type instructions implemented in external acceleration hardware realized as an Application 

Specific Integrated Circuit (ASIC) or on Field Programmable Gate Array (FPGA). ISE has three main phases: 

the identification of promising instruction patterns for ISE, the selection of one or more of these promising 

patterns and the corresponding instruction hardware generation.   

Contrary to most of the works discussed in the existing literature, the ASAM IS synthesis has also to handle 

the generation of the initial (extensible) instruction set. Furthermore, contrary to most of the existing 

works, the ASAM ISEs are realized as internal custom functional units placed within the issue slots of the 

ASIP data path and not with FPGA accelerator or external ASIC parts. Moreover, ASIP considered in ASAM 

are complex highly parallel VLIW processors, and not simple sequential RISC-type processors. This imposes 

different constraints on the instruction identification and selection problems for customizable ASIP than 

those typically observed in the past research reported in the literature. As a consequence, a different new 

method is required for the ASIP IS synthesis. 

This document is organized as follows: the first part introduces the context of the problem of Instruction 

Set Synthesis and Extension and formulates the related requirements in the ASAM project; the second part 

analyzes and reviews the existing related literature on ISE and points out the advantages and limitations of 

the presented solutions from literature with respect to our aims in ASAM; the third part proposes an IS 

synthesis method accounting for the ASAM requirements and the final part concludes the document. 
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2 Context: ASIP and ASAM project 
Many of the modern embedded applications are complex, heterogeneous and demand for high resolving 

throughput or short reaction time, low energy consumption and other physical and economic 

characteristics.  For their adequate implementation, they require significantly high quality computing 

platforms to address the growing computational demand and ensure a low power consumption and area 

occupancy. The platform are often demanded to be highly flexible to enable adaptability, design re-use and 

to reduce the development and manufacturing costs. Finally, to adequately cope with their restrictive 

requirements and complexity their design has to be supported with well organized design flows, as well as 

effective and efficient design tools. 

2.1 The Application-Specific Instruction Set Processors (ASIP)  

An application-specific instruction set processor (ASIP) is a software-programmable processor whose 

architecture and instruction set can be optimized (at design time) to a specific application or application 

domain. The term ASIP exists since late 1980s and designate a processor that provides a high degree of 

flexibility and, due to its application-specific instructions, is substantially more efficient than a general 

purpose processor.  

In recent years, many researches and commercial experiences have revealed the numerous advantages of 

design reuse and (re)-configurability in design of systems involving ASIPs [1-8]. Due to the application-

specific architecture and instruction set tuning, configurable ASIPs can achieve performances and efficiency 

comparable to hardwired ASICs. The configurable ASIPs often include a minimum static Instruction Set 

Architecture (ISA) that can be extended by custom-defined instructions executed on a configurable 

hardware. The custom-defined instructions are inferred from the application in order to overcome eventual 

computational bottlenecks and are realized through a regular chip synthesis process.  

Re-targetable compilers, such as Coware Processor Designer, Expression, Mescal, ASIPMeister, Tensilica’s 

compiler or HiveCC, are used to schedule and map a high-level application specification onto the optimized 

configurable ASIP platform. The aim of re-targetable compilers is both to allow for architecture-

independent software designs and to ensure the efficiency of the architecture-design compilation; but 

many compilation optimizations depend on the input application specification, as for example the SIMD 

optimization that require an exploration of the possible intrinsic parallelism of the application and are 

usually achieved by adding pragmas to the application specification.   

Due to their high degree of flexibility, effectiveness and efficiency, configurable ASIPs represent an 

adequate computing platform technology for the implementation of the modern complex, heterogeneous 

and highly-demanding embedded applications.  

2.2 Open issues in Configurable ASIP  

Many problems related to the ASIP automatic design still represent hot research topics. The major general 

challenge is the hardware and software co-design tuned for a specific application. Due to its complexity 

the co-design process requires new better design methodologies and automatic tools, including methods 

and tools for application analysis, ASIP micro-architecture design exploration and construction, application 

code optimizations and compilation of the optimized code onto the custom generated hardware platform.  

The existing approaches for ASIP development can be generally sketched as in Figure 1.b (1): unlike in a 

standard compilation flow (Figure 1.a), an ASIP design flow includes a re-targetable compiler that takes as 
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input a source code and a description of the target

processors should at least generate by itself the best possible 

(Figure 1.c). 

Two main approaches exist to specify an ASIP 

approaches. The template-based approach uses dedicated parameterized architecture templates. In

approach, the architecture exploration and modification is very limited, mainly to the precise instruction 

and data formats, as well as selection and limited extension of operations. The main processor architecture 

remains unchanged. On the other han

used for example for Xtensa [9]  and Jazz 

description languages (ADL) [11-17]

some degree, and the architecture modification

limited by the features of a particular ADL and often time consuming. This approach is used for instance in 

Chess (used in Target technology for ASIP

The limitations of these two approaches are that the first one offers a low level a 

the achievable effectiveness and efficiency

extremely difficult to be explored without an automatic process

application analysis and restructuring tools, as well as, ASIP architecture and instruction

tools. 

For both these approaches, the definition of 

and error-prone task and should be handled by the compiler itself

Figure 1. (a) Standard compiler for a specific machine. (b)

machine description and compiles

generates by itself the best machine

In the effort of developing a compiler including the automatic generation of the target machine, 

researches [1,2,5,7-10,18,20-28] have 

extensions. This solution provides 

improved to a large extend, in an ADL approach

have to be automatized, in order to 

 Three very important aspects are: 

1) The data transfer and storage micro
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and a description of the target ASIP machine (Figure 1.b). Compiler for customizable 

generate by itself the best possible ASIP description  

proaches exist to specify an ASIP description: the template-based and language

based approach uses dedicated parameterized architecture templates. In

approach, the architecture exploration and modification is very limited, mainly to the precise instruction 

and data formats, as well as selection and limited extension of operations. The main processor architecture 

remains unchanged. On the other hand, the compiler and simulator generation is easy. This approach is 

and Jazz [10]. The language-based approach exploits specific architectural 

17]. In this approach the main processor architecture can be changed to 

some degree, and the architecture modification through changes in ADL specification is quite easy, but it is 

limited by the features of a particular ADL and often time consuming. This approach is used for instance in 

(used in Target technology for ASIP (re-)configuration) [18,19] , HiveLogic [20]

The limitations of these two approaches are that the first one offers a low level a customizability

efficiency, and the second one has very broad customization abilities

o be explored without an automatic process, supported with effective and efficient 

application analysis and restructuring tools, as well as, ASIP architecture and instruction

he definition of an optimized application-specific machine is a very complex

and should be handled by the compiler itself (Figure 1.c).  

. (a) Standard compiler for a specific machine. (b) Re-targetable compiler. It reads a 

compiles the code on it. (c) Compiler for customizable processors. It 

generates by itself the best machine for a given application. (1). 

a compiler including the automatic generation of the target machine, 

have recently focused on the automatic generation of instruction set 

 significant improvements in a template-based approach

in an ADL approach. Moreover, several more aspects of the ASIP configuration 

have to be automatized, in order to support automatic software and hardware optimized compilation

 

The data transfer and storage micro-architecture (DTSM) design of an ASIP. 

Page 8 of 67 

Compiler for customizable 

 for a given application 

based and language-based 

based approach uses dedicated parameterized architecture templates. In this 

approach, the architecture exploration and modification is very limited, mainly to the precise instruction 

and data formats, as well as selection and limited extension of operations. The main processor architecture 

d, the compiler and simulator generation is easy. This approach is 

based approach exploits specific architectural 

In this approach the main processor architecture can be changed to 

through changes in ADL specification is quite easy, but it is 

limited by the features of a particular ADL and often time consuming. This approach is used for instance in 

[20], and ASIPMeister [21].  

customizability that limits 

broad customization abilities 

, supported with effective and efficient 

application analysis and restructuring tools, as well as, ASIP architecture and instruction-set exploration 

machine is a very complex 

 

targetable compiler. It reads a 

the code on it. (c) Compiler for customizable processors. It 

a compiler including the automatic generation of the target machine, very many 

on the automatic generation of instruction set 

based approach, but can be 

aspects of the ASIP configuration 

optimized compilation. 
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2) The application code parallelization and customization of the ASIP architecture corresponding to 

the most promising parallel application version

3) The basic IS synthesis, before the

DTSM synthesis, that includes the communication structure and the memory hierarchy 

fundamental part of any processor design

inferred from the application analysis.

estimation from application analysis and optimization

structure limited to the usage of cache memories

embedded in portable systems. The authors of 

requirements, communication and memory struc

memories with a “pre-computed pre

instruction set synthesis and software and hardware code generation.

To achieve adequate application parallelization

application specification has to include technology specific Application Programmer Interfaces (API) and 

technology specific instructions, called 

a very hard task that is currently performed manually. 

the application code and the hardwar

flow is sketched in Figure 2.  

Many research works [34-44] exist on methods to map a high

fixed or partial configurable parallel architecture. 

locality and allow for a better parallelism

both software and DTSM to a specific 

comprehensive framework able to achieve optimized software/hardware application specific tuning.

One of the final ASIP configuration aspect

addressed for a single pipeline, while 

the target ASIP technology, a limitation 

pipelines are synchronized at the same time

Furthermore in the literature the problem 
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application code parallelization and customization of the ASIP architecture corresponding to 

the most promising parallel application version. 

synthesis, before the instruction set extension. 

that includes the communication structure and the memory hierarchy 

fundamental part of any processor design [29]. It has been largely studied in the literature. DTSM 

inferred from the application analysis. Balasa et al. [30], survey works inferring

from application analysis and optimization. [31,32] propose a method to explore 

structure limited to the usage of cache memories, that are too power consuming and costly to be 

The authors of [33] propose a method to automatically tune storage 

requirements, communication and memory structures to a specific predictable application. They use 

computed pre-fetching” that are cheaper than caches. This solution does not include 

instruction set synthesis and software and hardware code generation. 

parallelization, in both template-based and ADL

application specification has to include technology specific Application Programmer Interfaces (API) and 

instructions, called intrinsics [9] .This renders the parallel application code specification 

is currently performed manually. A possible solution is to automatically generate both 

the application code and the hardware platform by using application analysis. The 

 

Figure 2. HW/SW co-tuning. 

exist on methods to map a high-level specification of an application onto a

parallel architecture. They apply loop transformations 

parallelism exploration. Few works [33,46] use loop transformation

DTSM to a specific application by using loop transformations. 

comprehensive framework able to achieve optimized software/hardware application specific tuning.

ASIP configuration aspects is the IS synthesis. In the literature,

hile in an ADL ASIP specification more parallel pipelines

limitation on the single sequencer in a single ASIP still holds

pipelines are synchronized at the same time, even if they have different late

in the literature the problem of IS synthesis is usually treated as a partial 

Page 9 of 67 

application code parallelization and customization of the ASIP architecture corresponding to 

that includes the communication structure and the memory hierarchy exploration, is a 

rgely studied in the literature. DTSM can be 

inferring storage requirement 

propose a method to explore the hierarchy 

that are too power consuming and costly to be 

propose a method to automatically tune storage 

application. They use local 

This solution does not include 

based and ADL-based approach, the 

application specification has to include technology specific Application Programmer Interfaces (API) and 

application code specification 

A possible solution is to automatically generate both 

The proposed coarse design 

of an application onto a 

loop transformations [45] to enhance data 

use loop transformations to tune 

by using loop transformations. But there is a lack of a 

comprehensive framework able to achieve optimized software/hardware application specific tuning. 

, the problem is mostly 

allel pipelines can be used. In 

still holds. Thus, parallel 

even if they have different latencies (cf. Figure 22). 

is usually treated as a partial IS customization, 
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where a single large promising instruction set extension (ISE) is found to be implemented onto (in most 

cases) external specific hardware platforms (FPGA or ASIC). In the case of ADL-based ASIP customization 

approach as of HiveLogic, it is possible to achieve a higher efficiency with a full IS configuration.  In addition, 

the construction of the initial IS requires simple instructions to allow for re-use. Finally, if an ISE is needed 

to remove specific bottlenecks, it is realized as a custom internal ASIP instruction implemented inside the 

ASIP data path. 

For the ASIP architecture exploration and code generation, partitioning, scheduling, retiming and binding 

methods can be used similar to those presented in [47-57]. More information on (configurable) ASIPs, their 

design and its automation can be found in [1,2,5,7-10,18,20-28]. 

2.3 ASAM micro-architecture design flow 

In order to provide the missing automated framework for configurable ASIP design and optimization the 

ASAM project proposes an ASIP design method as presented in Figure 3.  

 

Figure 3. The overall micro-architectural synthesis 

The ASAM method goes through three optimization phases:  
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1) Phase 1, which optimizes the initial application specification and infers from it the maximum 

achievable parallelism level. This parallelism is only due to data and control dependences intrinsic 

to the application and does not depend on the used high level specification language. The 

parallelism exploration is mainly achieved through loop and straight code transformations as 

presented in deliverable D3.1. 

2) Phase 2, which takes as input a graph specification of the maximum parallel version of the 

application as computed in phase 1 and explores the possible ASIP hardware realizations. This 

exploration is performed at an abstract level and mostly focuses on the data transfer and storage 

micro-architecture. The exploration is performed by using loop transformations and abstract 

architectural model of the final ASIP platform.  

3) Phase 3, which takes as input a few Pareto solutions of the exploration problem of phase 2 and for 

each one of them selects the best possible instruction sets, generates the files specifying the 

optimized software and hardware ASIP platform, compiles and simulates the platform with the 

Silicon Hive tools. 

Phase 3 of this method is the context of the ASAM Instruction set synthesis problem presented in this 

deliverable.   

A more in depth and complete presentation of the ASAM method for automatic ASIP design and 

optimization is presented in deliverable D3.3. 
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3 Instruction Set Synthesis state of the art  

3.1 Overview on Instruction Set synthesis 

In general, the processor micro-architecture design can be sub-divided into the following two main parts: 

the data transfer and storage micro-architecture (DTSM) design and the Instruction Set design [29,58]. This 

document focuses on the instruction set design and information on the DTSM design can be found in 

(D3.3). 

 

The IS synthesis is one of the issues of the micro-architecture synthesis, and as such, it has to be performed 

using the issue decision model, being a partial and abstract quality model extracted from the model of the 

micro-architecture synthesis. It represents a complex optimization problem whose solutions have to satisfy 

the constraints and optimize the objectives of the issue decision model. The main general objectives of this 

issue are to achieve a high-performance and power efficiency, with a limited amount of hardware 

resources.  

 

To perform the IS customization, the original High Level Language application specification (e.g. in C or C++) 

is usually first converted into a graph-based representation, typically DFG, CDFG, HCDG or similar. This 

graph-based application representation is analyzed, parallelized, and if needed, scheduled and assigned. It 

can be generated with any of the many existing compilers [18,20,59-63] etc. 

3.1.1 Full and partial instruction set synthesis 

The instruction set customization can be performed as a construction of a whole new application-specific 

instruction set [19,64] or as modification of an existing one through adding a new instruction sub-set [64-

90]. In the first case, it is referred to as full customization, and in the second case as partial customization.  

In full customization, the CDFG is analyzed and partitioned in disjoint cuts that cover the graph and give the 

maximum advantage for throughput, workload balancing, power dissipation and resource requirements. In 

a full customization, an important objective is the hardware sharing, achieved by re-using the same 

hardware parts to jointly realize different simple instructions. Although a fully customized instruction set 

can be very effective, the cost and time of handcraft designing a whole new processor for each application 

is usually excessive. Consequently, most of the existing works focus on extension of an existing instruction 

set. 

In a partial instruction set customization, only the critical sub-graphs, responsible for performance 

bottlenecks, are usually extracted as potential custom instructions. Then they are adequately implemented 

as application-specific hardware accelerators to minimize execution time or maximize throughput, under 

hardware resources constraints. The hardware accelerators implementing the extra instructions are added 

to the existing processor/core and their customization involves both the hardware synthesis and the 

mapping of the application partially onto the newly synthesized hardware and partially onto the pre-

existing processor/core. As a consequence, the instruction set customization and application mapping is a 

special case of the HW/SW partitioning problem [47-52].  

Here a remark has to be made that such accelerators can also be exploited without any explicit changes to 

the instruction set architecture of a processor, for instance as discussed in [91,92]. 
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3.1.2 Complexity of instructions

Before considering the instruction set customization, several remarks have to be made on basic instruction 

types, and instruction execution in processors of different types. 

From the granularity viewpoint, the instructions can be sub

fine-grain instructions implement small groups of basic operat

grain instructions implement large blocks of basic opera

codecs, discrete filters or transforms). 

could represent a parallel implementation of a loop nest

Figure 4. Vector instruction. It executes a group of addition in one cycle. It could be the parallel 

implementation of a loop nest over an addition.

The fine-grain instructions can be reused in more applications

the coarse-grain, but the speed-up and 

higher.  

In general, the fine-grained approach is 

the coarse-grain approach is adapted to specialize processors 

of applications. Nevertheless, a high speed

represent the most frequently executed

Consequently, the type of instructions should 

careful analysis of the application or application class and related design requ

mixed fine-/coarse-grain approach is 

Moreover, the instruction type selection is related to 

processor and the more similar to the basic instructions 

processor. For instance, in scalar or superscalar

application-specific instruction integration 

synchronization that is usually realized in hardware as an handshake protocol

some other unrelated computations while waiting for the 

accelerator [95,96]. 

The VLIW processors have usually instructions with global synchronization points

extra instructions should also have the same 

latencies cause stalls in a VLIW pipelin

For more complex ISEs, with critical path delay substantially longer than the VLIW clock cycle, this problem 

can be resolved through a multi-cycle instantiation implementation involving several pipeline stages. 

problem does not exist for superscalar processors, where the hardware accelerator implementing an 
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Complexity of instructions and type of processors 

Before considering the instruction set customization, several remarks have to be made on basic instruction 

types, and instruction execution in processors of different types.  

viewpoint, the instructions can be sub-divided into: fine-grain and coarse

grain instructions implement small groups of basic operations (e.g. multiply accumulate). 

nt large blocks of basic operations, as whole (nested) loops or procedures (e.g. 

filters or transforms). Let consider the example in Figure 4 that is a vector instruction and 

could represent a parallel implementation of a loop nest. 

. Vector instruction. It executes a group of addition in one cycle. It could be the parallel 

implementation of a loop nest over an addition. 

grain instructions can be reused in more applications or independent part

up and the energy reduction of the coarse-grain instructions

grained approach is adapted to specialize processors for a large application

adapted to specialize processors to a particular single application or small class 

high speed-up and energy gain can be expected if the promising ISE

executed and critical operation patterns of a particular 

Consequently, the type of instructions should not be decided a priori, but it should 

careful analysis of the application or application class and related design requirements. In many cases, a 

grain approach is the most appropriate one [93,94].  

Moreover, the instruction type selection is related to the processors types. In general, the simpler is 

the basic instructions are the ISEs, the easier is the

r superscalar processors, independently of the instruction character, the 

specific instruction integration does not need complex analysis to guarantee

synchronization that is usually realized in hardware as an handshake protocol: the processor can 

some other unrelated computations while waiting for the completion application specific instruction 

ave usually instructions with global synchronization points

extra instructions should also have the same synchronization points. Instruction 

LIW pipeline and may degrade its performance.  

For more complex ISEs, with critical path delay substantially longer than the VLIW clock cycle, this problem 

cycle instantiation implementation involving several pipeline stages. 

problem does not exist for superscalar processors, where the hardware accelerator implementing an 
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ain and coarse-grain. The 

ions (e.g. multiply accumulate). The coarse-

tions, as whole (nested) loops or procedures (e.g. 

that is a vector instruction and 

 

. Vector instruction. It executes a group of addition in one cycle. It could be the parallel 

or independent parts of an application than 

grain instructions can be much 

large application class, while 

to a particular single application or small class 

up and energy gain can be expected if the promising ISEs 

and critical operation patterns of a particular application.  

not be decided a priori, but it should be decided after a 

irements. In many cases, a 

processors types. In general, the simpler is the 

the easier is their integration into the 

of the instruction character, the 

guarantee the instruction 

he processor can perform 

application specific instruction on the 

ave usually instructions with global synchronization points. In consequence, the 

nstruction having very different 

For more complex ISEs, with critical path delay substantially longer than the VLIW clock cycle, this problem 

cycle instantiation implementation involving several pipeline stages. This 

problem does not exist for superscalar processors, where the hardware accelerator implementing an 
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application-specific instruction can be used the same way as a regular functional unit of the superscalar. 

Unfortunately, super-scalar processors often use complex hardware to dynamically identify parallel 

processing opportunities, and in consequence, are less suitable for embedded applications. In contrary, 

VLIW processors exploit compilers for finding instructions for parallel execution, and consequently, have a 

much simpler hardware.  

3.1.3 Open issues in instruction set synthesis 

The major challenge of the instruction set customization is the lack of adequate design automation tools 

that enable an efficient automated application analysis and instruction set customization. In the current 

engineering practice, application profiling and analysis are quite well supported by compilers and other 

automatic tools, but instruction customization is often limited, and either performed manually or only 

partly automated for some specific configurable ASIP architectures (see e.g. [9][21][13][14][19][97]).  

In the next sections we discuss the main existing methods for ISE identification and selection and hardware 

instruction generation. 

3.2 Pattern Identification  

Custom instruction identification consists of analysis of a graph-based application representation to find 

some critical and repeating sub-graphs (operation patterns) that are good candidates to be converted into 

single custom instructions.  

The search for the candidate patterns (instructions) is an optimization problem. Thus the number of its 

possible solutions is limited by exploration constraints and the search of the optimal solutions is guided by 

quality metrics. The exploration method can be exhaustive or based on heuristics. In the following we give 

brief information on the exploration constraints, quality metrics and exploration methods used in the 

existing works on pattern identification. 

3.2.1 Exploration constraints   

The exploration constraints are summarized in Table 1 and are usually imposed by the type of architecture, 

under the consideration of the targeted implementation technology or guarantees of a proper scheduling 

(e.g. related to the number of inputs and outputs, patterns convexity, operation type, etc.). The aim of 

these constraints is to facilitate the identification of the most promising candidate patterns in the 

application graph and to support pruning of the set of possible patterns during the instruction 

identification, if the solution space is too large.  

Table 1. Usual constraints of the optimization problem of promising patterns identification 

Architecture type Proper Scheduling 

Extra instruction execution time in VLIW Nbr. of instruction I/O ports for data access 

scheduling 

Technology type Patterns convexity 

nbr. of instruction I/O ports for realization on an 

external FPGA 

Instruction granularity 

 Extra instruction with Internal states 
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3.2.2 Quality metrics 

The quality metrics express the effectiveness and efficiency of a pattern and are related to various 

characteristics of the hardware implementing the individuated instructions, as the execution time, 

power/energy consumption, used hardware resources, etc, but often describe the properties at a more 

abstract level. Their aim is to compare the quality of the considered solutions to each other and provide 

selection criteria for the most promising solutions. Table 2 summarizes some of the most commonly used 

quality metrics. 

The instruction identification methods proposed in [98-103] are aimed at maximizing the spatial reuse of 

patterns and are mainly based on statistics of pattern occurrences in the application graph. This often 

results in quite small and simple patterns that are often worthless to be realized onto external specific 

hardware because they do not guarantee a sufficient execution speedup. Several works show that larger 

and more complex patterns result in higher speedups (e.g. [104-106]) and different metrics have to be used 

to achieve them as for example in [6]. For higher speedups, not the spatial reuse of patterns, but rather 

their temporal reuse should be maximized. 

Table 2. Quality metrics of the identification problem. 

Objectives Methods Papers 

Minimized the spatial re-use (of 

small and simple patterns) 

Statistics of pattern occurrence in 

the CDFG 

[98-103] 

SpeedUp brought by the larger 

and complex ISE (maximize the 

temporal re-use) 

 [104-106] [6] 

Reduce the avarage execution 

time 

Identify the most frequently 

executed patters 

[105,107] 

Reduce the worst-case 

execution time (for hard-real 

time application) 

Identify the time consuming 

instructions on the critical path  

[104,108] 

Reduce the dynamic 

reconfiguration time for 

reconfigurable ASIP 

 [109-111] 

Reduce the extra cycle needed 

to share hardware between the 

processor and the extension 

 [112] 

 

To reduce the average execution time, the most frequently executed patterns should be identified, as e.g. 

patterns on the most frequently executed paths [105,107]. To reduce the worst-case execution time and 

satisfy hard real-time constraints, the patterns most frequently occur on the critical and near-critical paths 

are extracted [104,108]. In [108] the worst-case execution time is used as a metrics to guarantee 

satisfaction of the real-time constraints. In [109-111], the dynamic reconfiguration cost is accounted for, 
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and in [112] the extra clock cycles to move data between the register files and hardware units 

implementing the new instructions, as well as hardware sharing among the hardware units.  

3.2.3 Pattern Identification methods 

Some simple methods for instruction pattern identification are listed in Table 2. In addition to these 

methods, Table 3 gives summarizes some more complex ones, that are also the most frequently  used in 

the existing literature. 

Some other approaches [99,100,103,107] use specific heuristics to identify some promising patterns while 

discarding some less promising ones. The method proposed in [107] and several other methods find 

possible custom instruction candidates, while pruning the search space based on the input or output 

constraint violation by the candidate sub-graphs, operation type, convexity, etc.  

 

Table 3. Most used methods for instruction pattern identification. 

Methods Papers 

Using heuristics (ex. Constraints violation or 

dominated quality metrics) to discard less 

promising patterns 

[99,100,103,107] 

Growing patterns around a seed node while 

considering the quality metrics of the pattern. 

[94] and [106] 

Template matching and sub-graph isomorphism 

(find the most occurrent sub-graphs that macth 

pattern templates in an existing library of 

possible ISEs) 

[64,106] 

[4,6,69,70,74,78,82,84,86,88,89,93,98,100,103,106,112-

122] 

Template generation (ca be used as a front-end 

to the template matching to form the template 

library) 

[4,29,70,86,88,90,93,99,101,103,121,123] 

Exhaustive exploration [102] [124,125][107][6] 

 

The methods proposed in [94] and [106] incrementally grow patterns when observing performance gains 

and penalties related to the input or output constraint violation. A commonly used concept in the custom 

instruction identification is this of a template. Template is an operation pattern known or assumed to be a 

promising candidate for a custom instruction. Custom instruction identification can be performed as 

template matching or template generation. Template matching assumes the existence of a template library 

and consists of finding the number of occurrences in the application graph or the number of repetitive 

executions of particular existing templates from the template library (e.g. [64,106]). The most frequent 

templates are then implemented as custom instructions. This problem is similar to the sub-graph 

isomorphism problem [4, 6, 69, 70, 74, 78, 82, 84, 86, 88, 89, 93, 98, 100, 103, 106, 112-122], and it is 

known that the directed sub-graph isomorphism problem is NP-complete [126].  
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Template generation consists of creating new templates (e.g. [4, 29, 70, 86, 88, 90, 93, 99, 101, 103, 121, 

124]). Usually it starts with selection of a particular node or a larger pattern to be a seed, and gradually 

grows the seed through absorbing some neighboring nodes, when observing the influence of the pattern 

growth on its parameters included in the constraints and objectives of the pattern quality metrics that 

guide the search. The pattern optimizing the quality metrics is accepted as a new template. After 

constructing one or more new templates, the number of template occurrences in the application graph or 

the number of their repetitive executions is checked to prune the less frequent templates or to accept the 

most frequent once. Some approaches that combine the template matching with generation have also 

been proposed (e.g. [93,102]). In [127] it has been demonstrated that the number of different prevalent 

data-flow patterns in popular multimedia benchmarks is very limited (approximately 10 patterns). In 

[128,129] this has been experimentally proven for the second time. It has been demonstrated that a 

relatively small number of predefined templates, called morphable structures, is needed for a near-optimal 

instruction set customization for the relatively narrow multimedia application class, and a rapid custom 

instruction generation method is presented based on this fact. The same is proven for the third time in 

[130]. A similar idea of the custom instruction generation speedup through only considering the major 

blocks of CDFG is presented in [131].  

In general, the problem of custom instruction identification is of exponential complexity, because the set of 

possible new custom instructions grows exponentially with the number of the application graph nodes. In 

the past, exhaustive enumeration, several dynamic programming-based algorithms (e.g. [102]) and Integer 

Linear Programming algorithms (e.g. [124,125] ) have been proposed to solve the problem, but these 

approaches are not efficient for larger general problem instances [107]. Consequently, to efficiently solve 

this problem for large instances, only some easier to process specific application graphs and/or sub-graphs 

should be considered, or adequate heuristic algorithms have to be used. [6] proposes an exhaustive 

method (in the sense that the whole solution space is explored) that includes pruning techniques that 

largely reduce the exploration time and cost with the consequence that the optimal solutions are found in a 

reasonable time.   

3.2.4 The most often used simplifications for the identification problem  

Table 4. Used simplification in pattern identification problem. 

Simplifications Papers 

Acyclic graph All read papers 

Connected graph [102,106,108,132][133] 

The non-overlapping templates [107,133] 

Number of I/O output  (MAXMISO, valid sub-

graphs) 

[107,134][135][134,136][137]. 

 

The solution difficulty of the instruction identification problem depends on the kind of application graphs 

and sub-graphs (templates, operation patterns, instructions) considered. For this reason simplifications, 

such as summarized in Table 4, are used to handle the IS synthesis problem. In particular, since cyclic 

graphs cannot be easily sorted, acyclic graphs are considered in most cases. Although a cyclic graph can be 
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transformed into an acyclic one (e.g. through unrolling the cycles), this significantly increases the graph 

complexity.  

Also, only connected graphs are considered in most cases (e.g. [102,106,108,132][133] [109]), and 

disconnected graphs are processed in parts through processing their connected components, despite the 

fact that the direct consideration of the disconnected graphs makes possible a more effective parallelism 

exploitation (e.g. [70,104,106,133]).  

Moreover consideration of multi-output templates and overlapping templates during the custom 

instruction generation and selection is difficult [107,133]. During instruction generation the disjoint 

templates are usually considered, and the nodes absorbed into a template are immediately removed from 

the application graph. Although the overlapping templates consideration can potentially produce better 

results, their consideration drastically increases the problem difficulty, and additionally, the costs related to 

replication of the common nodes of the overlapping templates may sometimes exceed the performance 

gains due the overlapping template consideration.  

Regarding the number of outputs of a sub-graph (template, operation pattern, instruction) the following 

two types of sub-graphs can be distinguished: multiple inputs single output (MISO) and multiple inputs 

multiple outputs (MIMO). MISO sub-graphs of maximal size are called MAXMISO. 

The type of patterns or instructions considered directly relates to the instruction identification problem 

complexity. The exhaustive enumeration of MISO patterns is exponential, as it is strictly related to the sub-

graph enumeration problem which is known to be exponential [107,134]. However, the exhaustive 

enumeration of MAXMISO patterns is linear in the number of nodes [135], because the intersection of 

MAXMISO patterns is empty.  

Since the identification of MIMO instructions may result in more significant performance gains, some 

algorithms combine MAXMISO instructions per levels in order to obtain MIMO instructions, i.e. several 

MAXMISO instructions of the same level of a reduced graph are combined into one convex MIMO 

instruction. Works based on this idea are presented in [134,136] and a frame work for the automatic 

generation and selection of convex MIMO instructions in [137].  

In [70] the identification of convex MIMO instructions is presented through clustering of MAXMISO 

instructions to maximally exploit the MAXMISO-level parallelism. In this algorithm, the convexity is 

guaranteed by construction. Through extension of this algorithm, a heuristic linear complexity algorithm 

has been constructed for identification of convex MIMO instructions [134].  

Some other papers present sub-graph enumeration algorithms limited to only the so-called legal patterns 

which are the convex sub-graphs that satisfy some architectural constraints, as number of I/O operands, 

pipeline depth, and other constraints [109] [67,99,100,105]. While the number of all sub-graphs is 

exponential, the number of legal sub-graphs is polynomial [138].  

3.2.5 Detailed examples of pattern identification methods 

In this section we give some detailed examples of existing methods for instruction pattern identification. 

The idea is to give a more insight into the problem and its existing solutions. Most of the presented pattern 

identification methods are included in some longer frameworks for ASIP customization. We also briefly 

present the corresponding frameworks. 
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The DURASE system and its pattern identification 

The DURASE system is a framework to generate instruction extensions for application-specific 

reconfigurable processors. Its input consists of a C-written application description, a model of the target 

architecture and the basic instruction set to be extended. Its output consists of an FPGA-implemented 

processor extension and the instructions to access this extension. The analysis part involves a code 

optimization front-end based on the GECOS compiler and including polyhedral transformations for data 

parallelism [26]. 

 

Figure 5.The DURASE system. 

In this section, we discuss identification of computational patterns from [82], but the DURASE design 

process also involves selection of specific patterns that speed up application and will be presented in 
section 3.3.3. 

In the DURASE pattern identification the two following methods are used: a graph covering method using 

constraints programming (CP), to find some promising covers of the application graph with the identified 

patterns and to ensure the validity of identified patterns with respect to the architectural and technological 

constraints, and the graph matching, to identify patterns with the highest occurrence. The entry point is an 

acyclic graph that can be inferred by unrolling a cyclic graph.  

The pattern identification has three steps:  

1) During the first step, a CP-based covering of the initial graph identifies all possible computational 

patterns that respect three kinds of constraints: the convexity of the pattern, the number of I/Os of 



Public, with Confidential Appendices 

 

ASAM D3.2: Instruction Set Synthesis Page 21 of 67 

 

the individuated sub-graph (i.e. the number of incident or exiting edges of the sub-graph) and a 

coarse estimation of the implemented ISE delay.    

2) The second step of the identification, prunes the space of the identified patterns by considering 

only the non-isomorphic ones. 

3) The third step further prunes the space of identified patterns by preserving only the patterns that 

have a number of occurrences in the original application graph that is comparable to those of their 

single nodes.  

This algorithm identifies small and recurrent patterns that improve the pattern re-use but does not ensure 

finding the higher efficiency larger application-specific patterns. Its strength is in the formal definition and 

usage of architectural and technological constraints that help finding a number and kind of patterns 

ensuring a high coverage of the initial graph. 

Such an approach can be re-used in a full IS customization to determine an initial basic IS already tuned to 

the application. In this case, the pattern generation should also include a constraint on the availability of 

the individuated sub-graphs in a pre-existing technology-related library.     

ISA Customization based on LANCE-compiler and generating LISA-based ASIP 

descriptions 

The method [73] proposes a generic adaptable flow to design Application specific ISE either for full custom 

ISEs or for ISA adaptation.  

The ASIPs are usually composed of a base processor and several ISEs, that can be implemented as custom 

functional units on co-processors tightly coupled with the base-processor core. They consider an ASIP 

design flows based on reconfigurable/configurable processors that are extendable.  

They distinguish three phases in an ASIP design: 

1) The application profiling, that finds the bottlenecks and other hotspots of an application 

2) ISE identification that analyzes the DFG of the hotspots and combines together some arithmetic, 

logic and data-transfer operations into a single specific instruction.  

3) Verification and integration of ISEs into ASIP. This step consists in: 

a. Conversion of the DAG in a data-path 

b. Re-targeting ASIP compiler 

c. IS simulation & verification 

This method is intended to find larger, not-reusable, but optimized instruction set extensions to be 

implemented on an external co-processor. 

Figure 6 presents the proposed ISA customization flow. The input is a C-code that is transformed in an 

intermediate representation (three-address code IR). Then the ISE identification transforms this IR in a 

CDFG by using information from the micro-profiler and architectural constraints. Here there is the first loop 

of optimization. Finally the back-end takes the annotated/optimized CDFG and produces either partial 

extension for a configurable processor or a whole ADL design of an ASIP. In the back-end there is another 

optimization loop (DSE) to infer the ADL design.  

They have two methods for ISE identification. The first method is based on ILP; it iteratively adds new 

nodes (instructions) to an ISE and maximizes an objective function while respecting architectural 
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constraints. The second method uses HLS technique to pipeline the instructions of the hotspots on several 

ISEs and then it generates ADL through LISAtek. This method establishes a set of forbidden instructions, 

such as “processor state update”, “load”, “store”, etc., that can only run on the base-processor. In these 

two methods, it is possible to have architectural constraint, such as the number of I/O ports of the ISE (i.e. 

on the number of general purpose registers used for the communication between the basic processor and 

the ISEs) and the number of used HW resources and scratch-pad memories. 

The back-end of the ISA customization produces a transformed C and RTL (Verilog). The C can be integrated 

in Coware corXpert for ESL system-IP generation or in LISATek for ASIP design and ADL generation.  

In [76] another pattern identification method for custom instructions is presented. The main contribution 

of this work is twofold: it takes into account the bandwidth limitation, due to the limited number of the 

General Purpose Registers (GPRs) used in the communication between the core processor and the external 

custom ISE, and it considers the possibility to overcome this limitation by using Internal Registers (IRs). 

The proposed pattern identification method is exemplified in Figure 7. It accounts for three types of 

constraints and is executed in two steps. The used constraints are: data-flow related, i.e. the convexity and 

schedulability of the individuated pattern; constraints on area and latency of the possible custom 

instructions and the architectural constraints on the number of available GPRs.  

The two steps of the custom pattern identification use Integer Linear Programming (ILP) to locally optimize 

the two problems of first iteratively finding an optimal partitioning of the initial DFG representing the 

application hotspot to be speeded-up, and then maximize the number of communications using GRP; while 

still allowing for communications between the core processor and the extension based on IRs.  

 

Figure 6. ISA customization flow. 

The main concern (and architectural constraint) of this method is the limitation on the number of GPR for 

the communication between the basic processor and the ISEs. In the case when custom instructions do not 

need to be realized on external hardware support but can be realized as internal instructions (HIVElogic) 

this limitation is less important, because the communication can always happens through IRs. This method 

does not have an explicit phase of selection because the number of identified IS extensions is limited by 

construction in the searching algorithm. 



Public, with Confidential Appendices 

 

ASAM D3.2: Instruction Set Synthesis Page 23 of 67 

 

 

Figure 7. Custom Instruction identification for ISA customization in LANCE/LISA-based 

methodology. 

After the identification, the found partitioning goes through a phase of scheduling and register allocation 

before the actual hardware implementation. 

Enumer07 and newenumer and maximal valid sub-graph methodologies  

In [67,85], the authors  propose an improvement for the existing methods to extract ISEs by adding new 

pruning criteria. They classify the existing methods with respect to the method used to solve the 

identification problem: reducing the exploration space, heuristics or genetic, exhaustive branch-and-bound, 

single-output small blocks, clusterizing and connected graph. They improve the Enumer07 that is a pattern 

identification method that handles disconnected multi-output graphs. The problem statement is the 

following: find valid patterns in an input DFG so that: patterns are convex, they have a limited number of 

I/O and do not contain invalid operations. As the original one, the improved enumer07 has 3 steps: 

node_select, unite and split. In the improved enumer07 the used optimization criteria are improved and the 

identification is more efficient. Node_select starts from an empty pattern and iteratively selects a valid new 

node from the input DFG. Unite treats node that can be added to the constructed pattern and split treats 

node that cannot be added by splitting the input DFG in disconnected graphs. In this paper they propose 

new criteria to pruning the exploration space in select and unite. The first criterion is the violation of I/O 

constraints (if this violation cannot be solved by expanding the node) the corresponding branch of the 

graph is pruned. The second criterion is the single-output constraint to decide if a node is connected to the 

constructed pattern or not. 

Maximal valid sub-graph method 

The maximal valid sub-graph is a convex sub-graph that does not contain invalid nodes. A sub-graph is said 

to be convex, if all the paths connecting its nodes are contained in the sub-graph itself and the forbidden 

instructions are user-defined and usually include load, store, branch, jump, etc. Based on the definition of 

Maximal Valid Sub-graph (MVS), a fast method to enumerate (or identify) promising patterns is presented 

in [79]. 
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Figure 8. The Maximal Valid Sub-graph method. 

On the contrary of other methods generating patterns by merging neighbor nodes, this method solves the 

problem in a top-down manner. They propose a formally defined and correct by construction method. The 

method iteratively considers and eliminates from the graph the invalid nodes. During a given iteration of 

the successive eliminations, it enumerates all the possible maximal convex patterns. If these patterns do 

not contain invalid instructions, they are marked as identified instruction patterns.  On the base of this 

definition, we exemplify the method with respect to Figure 8. The graph G in the figure has three invalid 

nodes (1, 4 and 8). At the first iteration, node 4 is eliminated and a single convex sub-graph G1 still 

containing invalid instruction is created. From G1 and by eliminating node 8, two possible sub-graphs G21 

and G22 are inferred. Note that G21 is not connected but convex and does not contain invalid instruction, 

thus it is selected as promising instruction pattern. This method selects large patter and is appropriated for 

ISE on dedicated external hardware.   

Upak system 

In [88,89], the authors present a method to automatically generate an application specific reconfigurable 

HW accelerator. 

The ASIP design includes: the identification of frequent computational patterns, the selection of a sub-set 

of these patterns for which the mapping and scheduling reach the maximal coverage of the application 

graph. The flow is composed of three steps and is presented in Figure 9. 

During the first step, some promising computational patterns are identified form a hierarchical input 

application graph. This step is described later in this section. During the second step, the identified patterns 

are used to explore which patterns will be used in a particular scenario for application execution. This is 

done during the scheduling and pattern selection phase using specific methods built on the top of the 

constraint programming solver JaCoP. The input to this phase contains the identified patterns, the ASIP 

architecture model and the specific scheduling constraints (e.g., execution time limit or resource 

constraints). This is described in section 3.3.3. The output of the system is a set of the selected patterns and 
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a corresponding schedule for execution of the application using the selected patterns and processor 

instructions.  

 

Figure 9. Upak flow. 

The first step of the method generates a set of promising instruction patterns, by having all the nodes of 

the application graph as seeds. Subsequently, it is checked if the generated patterns are isomorphic to each 

other and then the patterns having a maximal coverage are selected (i.e. the patterns having the highest 

number of matches within the application graph are selected). Thus, for each generated pattern a graph 

matching algorithm is used. It checks if the type, the I/O structure and the neighborhood structure of two 

graphs match with each other. At the end of this iterative process, a Definitively Identified Pattern Set is 

selected.  

All the patterns in the DIPS are merged to form a unique HW cell. To merge the patterns, they first 

construct a compatibility graph, where the compatible operations (i.e. operations having the same type and 

structure) are mapped to the same node or edge. Then, they find the maximum weighted clique to realize 

the merged patterns. This clique is then scheduled with time or resources constraints, by using 2D 

rectangles that represent the time during which each node (instruction) is alive.  
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Figure 10. Two iterations of the pattern identification method in Upak. 

 

Maximal-clique-based methodology 

The paper [87] proposes a method to identify ISE by solving maximal clique problem and by serializing I/O 

of the custom functional unit. The proposed method clusterizes the nodes of the input CDFG in equivalence 

class. Then, it constructs a Cluster Graph and finds the maximal cliques (connected graphs) that are 

potential optimal ISEs. Finally it serializes I/O on the found ISEs and selects the ones having the maximal 

speed-up and smallest area. To limit the number of considered ISE, they define a set of forbidden 

instructions (load, store and jump) that cannot be executed on the extension.  
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Figure 11. The maximal clique method. 

They use a time model to define an objective function of the ISE identification. In fact, they characterize 

each node with two metrics (SW and HW) giving the number of cycles needed to execute the node in 

software or in hardware.  The objective function to be optimized is the overall sum of cycles needed to 

execute software instructions minus the overall sum to execute hardware instructions. 

3.3 Instruction Set Selection  

Custom instruction selection consists in selecting the most promising sub-set of custom instructions from 

the set of custom instructions constructed in the process of custom instruction identification or already 

existing in a given library. As the identification problem the selection is an optimizing process based on 

quality metrics and using some exploration methods. Next sub-sections describe the metrics and methods 

most frequently used in published research. 

3.3.1 Quality metrics 

The selection is realized using some quality metrics involving evaluation of an instruction sub-set in terms 

of performance, area, power consumption, etc. after its realization in hardware. These quality metrics are 

similar to those used for the instruction identification, but at this time the metrics should express the 

effectiveness and efficiency of an instruction set and not the quality of particular instructions. Table 5 

summarizes the most frequently used quality metrics. 

[139] presents an algorithm that aims at selection of a minimal set of instructions that maximizes the 

number of covered nodes in the application graph. An interesting observation of the experimental research 

of this work is that increasing the number of different instructions (patterns) used to solve the coverage 

problem, results in a significant increase of the number of nodes covered only up to a certain level, above 

which, usage of more templates does not substantially influence the number of nodes covered. 

Consequently, a reasonably small number of well-designed and adequately selected custom instructions 

can result in a significant performance gain.  
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Table 5. Most used quality metrics to solve the selection problem 

 Quality metrics for the selection problem 

Metric  Paper 

maximizes the number of covered nodes [139] 

minimizing the number of distinct instructions used [140] 

maximizing the number of pattern occurrences [91,141] 

maximizing the execution frequency [101,105,108][104] 

Accounting for the occurrence of specific nodes [93] 

Optimizing resource sharing [143,144] 

 

Other methods aim at minimizing the number of distinct used instructions [140], maximizing the number of 

pattern occurrences [91,141], the execution frequencies [101,105,108][104], the occurrence of specific 

nodes [93] or the resource sharing [143,144]. 

3.3.2 Exploration methods  

The instruction selection problem is a specific graph coverage problem that is known to be NP-hard [145]. 

Consequently, to solve this problem for large and complicated instances, some heuristic algorithms have to 

be used.  

Table 6. Most used methods for the exploration of the optimal Instruction Set selection. 

Methods of the selection problem 

Method Paper 

Linear programming [125,134,146] 

Branch-and-bound [112][147,148] 

Heuristics [149][99,119,132] 

Constraint programming [26,69,82] 

 

In the past, several exact LP-based algorithms have been proposed [125,134,146] for instruction selection 

and some branch-and-bound-based algorithms [112], as well as, some branch-and-bound-based algorithms 

for general covering problems [147,148] and some effective and efficient heuristic algorithms for similar 

coverage problems [149].  

Also, some other heuristic methods have been proposed for instruction selection (e.g. [99,119,132]). 

Especially the method discussed in [119], which is based on constraint programming and performing the 

final instruction selection during scheduling and mapping seems to be very promising. 
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Recently, new instruction set customization method, based on constraint programming and including an 

automatic tool-chain, was presented in [26,69,82]. This method is adapted to heterogeneous embedded 

multi-processor systems involving (re-)configurable embedded processors and reconfigurable hardware 

accelerators. 

3.3.3 Detailed examples of instruction set selection methods 

In this section we give some detailed example of existing methods for instruction set selection.  

The DURASE system and its selection method 

This sub-section gives information about the selection in the DURASE system previously presented in 3.2.5. 

This selection method presented in [69] uses constraint programming to model and solve instruction 

selection for processors that can be extended with a functionality mapped on reconfigurable cell fabric 

(FPGA). Starting from a hierarchical graph of the application, that captures data and control dependences, 

The DURASE system first performs a patterns identification phase, then it performs the patterns selection 

and instructions scheduling and mapping. As described in 3.2.5, the pattern identification is based on 

constraints programming: the search targets patterns that are not isomorphic and satisfy some 

architectural and technical constraints. The identified patterns are promising candidates for hardware 

realization. From the set of these patterns, the DURASE system selects those resulting on the best 

hardware performances when used in a unique application specific instruction set. To achieve this aim, the 

DURASE system solves concurrently the scheduling and the matching of the application graph onto a set of 

possible patterns candidates (also called matches) found during pattern identification. The method first 

constructs a matching (coverage) matrix between application nodes and matches. Then it solves a graph 

matching problem with resources and time constraints. 

 

Figure 12. Example of a nodes and identified patterns matching. 

Figure 12 gives an example of matching matrix between nodes and identified promising patterns. A point in 

the matrix indicates a possible matching between a promising patterns mi  and a node nj. A black point 

indicates a selected specific matching.  

To select the specific matches, the method uses an abstract model for scheduling and mapping as shown in 

Figure 13. The promising patterns mi   are represented as 2 dimensional rectangles whose height represents 

the number of used resources and whose width represents the time latency. The aim is to minimize the 

scheduling length under resource constraints. The rectangle heights and widths are the variables of a 

constraint programming problem defined over a finite domain.  
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Figure 13. Temporal and resource constraints model to select promising ISE. 

Some other details are added to enrich the scheduling and mapping model. These details are:  

1) The usage of both a single and multiple nodes matching model, the first one represents the 

mapping of tasks on the basic processor and the second one represents the mapping of tasks onto 

the parallel ISEs.  

2) The categorization of the rectangles according to the kind of task that they represent, e.g. a task on 

an extension has to take into account the time to transfer data in input and in output, these tasks 

are classified in category C. Category A of tasks includes the launching of tasks on ISEs and the 

control on the status of the processor. Category B indicates the launching, data transfer and 

computation execution on ISEs.   

 

Optimal sub-graph covering for VLIW processors 

In [72], the authors propose a method to optimize the IS selection in the case of VLIW processors. 

 

The instruction set selection is solved as a sub-graph covering problem minimizing the execution time of 

the realized task. Instead of solving the problem of minimizing the number of independent operators 

covering the operations in the DFG of the application (i.e. Minimum Number covering (MNC) problem), the 

authors solve the minimum length covering (MLC) problem, i.e. they minimize the length of critical path of 

the ISE.  The idea is that the MLC problem better targeted to multi-issue/VLIW processors. 

They solve the problem with an exact method using dynamic (recurrent) programming and prune the 

search space by applying several simplifications, such as:  

1) Divide and conquer (only consider Single Input Single Output sub-graph to be explored with 

dynamic programming, for the MIMO they enumerate all possible covering sub-graphs).  

2) Sorting and pruning, sub graphs covering more nodes of the critical path have a priority of 

selection and sub-graphs included in other (as fast) sub-graphs are pruned.  

3) They use lower bound for critical path (branch and bound) and they prune non-convex solutions. 
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Figure 14. Boolean matrix between nodes 

(1...16) and identified sub-graphs (a...g). 

 

Figure 15. The dynamic programming 

formulation. 

 

The analysis starts with a Boolean mapping matrix (Figure 14) and solves the coverage problem with the 

dynamic formulation given in Figure 15, which is equivalent to the Bellman-Ford algorithm that finds the 

length path “i->j” by recursively considering the length of the sub-paths “i->k” and “k->j”.   The considered 

sub-paths are those identified by the Boolean matrix and the path length is replaced by the path delay 

D[i,j]. 

For the CFU generation, the method produces a set of parameters to configure CFU template. 

Rapid design of area-efficient custom instructions for reconfigurable embedded 

processing 

The following is an example of a comprehensive method including pattern identification (generation) and 

selection.  

 In [74], the authors propose a rapid design space exploration framework for a first identification of a 

reduced set of profitable application specific instructions for a VLIW architecture that can be extended with 

an FPGA-based reconfigurable functional unit.  

The proposed method involves the following three steps: 

1) A phase of a pattern library construction Figure 16. This phase is a one-time effort aimed to 

provide a library of patterns that are frequent for a given application or application domain. It 

includes: 

a. A pattern enumeration step that is based on the application profiling and enumerates the 

most frequent patterns in the CDFG or a specific application of a group of GDFGs of 

applications in the same domain (Figure 16.a). 

b. A pattern grouping step that is based on the graph isomorphism: isomorphic sub-graphs 

are grouped together and they are classified according to their number of occurrences 

(frequency) in a pattern library (Figure 16.b). 

After the phase 1) of pattern library construction has been executed once, the phases 2) and 3) are 
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iteratively repeated for each specific application. 

 

Figure 16. Pattern library generation. 

2) The template Library selection phase (Figure 17) is aimed to select some of the patterns from the 

library constructed in phase 1) in order to have an optimal coverage of the application graph. This 

second phase includes: 

a. A template selection step (Figure 17.c) that takes as input the templates corresponding to 

the patterns in the library of phase 1). This step assigns a gain to each pattern. The gain 

considers only the speed-up that the assigned pattern brings to the execution time. Finally 

this step selects the templates with the highest gains and forms a library of templates. 

b. The selected library of templates is used by the next step: the pattern matching (Figure 

17.d). This step computes the matching between the templates selected in phase 2).a and 

some sub-graphs of the specific application. The matching is computed through a conflict 

graph in which the nodes represent the matches between sub-graphs and templates, and 

the edges represent a possible conflict between matches, i.e. two matches linked by an 

edge realize common instructions. The optimal matching (Figure 17.e) is that having the 

maximum number of independent matches (i.e. the largest sub-set of non-adjacent 

vertices). 

3) After finding the optimal matching, the method passes through a phase of hardware generation 

(Figure 17.f and Figure 17.g). This is done by clusterizing the nodes of the output graph of the 

matches selection into groups of instructions that can be realized on the same hardware resources. 

The individuated clusters are realized on parallel ISEs. The optimization criterion of the cluster 

generation and selection is the area occupancy of the selected clusters. 
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HMP-ASIPs: heterogeneous multi-pipeline application-specific instruction-set 

processors 

The authors of [71] distinguish two phases in ASIP design: IS design, and processor structure, RF, 

communication design. ASIPs usually adopt VLIW architectures and thus their architecture can be 

optimized at compilation time with an adequate exploration process. The authors use architectures with 

several parallel pipelines to achieve high performance systems. They can customize the architecture with 

respect to the number of pipelines, instructions realized by the pipes and the forwarding paths, i.e. direct 

links that forward the results from the previous instruction to the instruction that is currently executed in 

the EX stage of a pipeline, this reduces the data hazards. The authors are concerned with the improvement 

of forwarding paths when having parallel pipelines. 

The design starts from a c-code that is compiled on single-pipe architecture. Then a scheduling for a multi-

pipe architecture is computed by supposing that all the FW paths are possible, finally the FW path are 

reduced on the bases of the existing data-path. It is possible to re-order the instructions in the same pipe or 

among different pipes without changing the data dependencies. 

3.4 Instruction hardware (FU) construction and evaluation   

Although the recent Mimosys Clarity tool [150] automatically identifies hardware accelerators from C code 

and automates the HDL generation and implementation of an application on the PowerPC and accelerators 

in XILINX FPGAs, it only delivers a single set of accelerators and does not enable any broader design space 

exploration for finding different sets of accelerators that could meet various constraints, optimize different 

objectives and realize different tradeoffs among the objectives. It is just a step in a good direction. Another 

related tool, Synfora’s PICO Express FPGA synthesizes (hierarchical) coarse-grain application-specific 

accelerators (instructions) for implementation in Xilinx Virtex and Spartan FPGAs. It performs algorithmic 

synthesis of C algorithms into their corresponding optimized RTL code that is further synthesized into the 

actual FPGA hardware with the tools of Synplicity and Xilinx. It makes possible a specific design space 

exploration, creation of multiple implementations characterized with area and performance estimates, and 

trade-off analysis [151]. The recent development in the reconfigurable ASIP field, the integrated 

development environment (IDE) of Stretch, partially automates the instruction set extension and 

application mapping on the Stretch families of S5000 and S6000 processors based on Xtensa and having an 

embedded reconfigurable instruction set extension fabric (ISEF) within the processor. The developers of 

systems based on the Stretch processors profile their applications expressed in C/C++, using the Stretch 

profiler, identify the parts of application code that have to be accelerated in ISEF, and appropriately 

annotate the C/C++ application code. These parts are then implemented as new instructions that are 

executed in a single cycle. From the annotated code, the Stretch compiler produces both the ISEF 

configuration and optimized application code, and configures the ISEF automatically [138].  

3.5 Conclusion on the existing methodology for instruction set synthesis 

Despite all the previous effort, no acceptable solution exists to the problem of fully automatic application 

analysis, (re)configurable ASIP instruction set customization, customized ASIP platform construction, and 

mapping of applications on such a customized platform. Since this problem is of high scientific interest and 

practical relevance, it represents a very hot research topic, and numerous research results related to this 

topic have been published recently [1,9,10,21,23-27,91-94]. An adequate full automation of the above 

processes is necessary due to many factors, including the growing complexity and requirements of 

application, designer productivity gap and short time to market requirement, as well as NP-hard character 
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of the problems to be solved and complex tradeoffs to be resolved by the selection of an optimized custom 

instruction set from a usually huge set of candidate instructions and by the application mapping. As already 

mentioned, instruction set customization is usually performed when using a graph-based (e.g. DFG, CDFG, 

HCDG) representation of the application. Before starting the actual instruction set customization, various 

transformation and parallelization techniques are often applied to the graph-based application 

representation (e.g. [34-44]). Instruction set customization is usually performed in two steps, namely: 

custom instruction identification and custom instruction selection. In the literature related to (re-) 

configurable processors, instruction set customization is usually limited to instruction set extension, 

although in general, it should consider the elimination of less useful instructions and of a related hardware 

as well, of course, if this is at all possible. Furthermore, in the literature the custom instruction extending 

the initial instruction set are usually realized on external accelerators implemented on ASIC or FPGA. In 

consequence, one of the main requirements of their design is to minimize the communication between the 

basic processor and the accelerator, and particularly, the number of General Purpose Registers used for the 

communication between the basic processor and the external accelerating extension. In the case of the 

Silicon Hive VLIW ASIP technology used in the ASAM project, the custom instruction extensions are realized 

as internal instructions of the ASIP data-path being on the same chip and in the same issue slot as the basic 

instruction set. Even if the number of I/O of a custom instruction has to be taken into account, this 

problem is much less constraining than for the ISE identification and selection problems in the methods 

described in the literature. Moreover, it is not so much required, as in the case of external accelerators, to 

cluster all the found instruction extensions in a single MIMO complex instruction in order to reduce the 

number of external accelerators to be implemented. Indeed in Silicon Hive technology the instruction set 

extensions are treated, realized and used exactly as all the other instructions. With respect to the processor 

type, the ASAM project targets SIMD and MIMD VLIW ASIP processors, which often include vector 

instructions. For this reason, both the whole ASIP design and specifically the IS synthesis represent a much 

more complex task, and introduce new design challenges with respect to existing works that are mainly 

based on RISC extensible processors and only sometimes include some SIMD extensions. Another 

important challenge in the ASAM IS synthesis is the selection of the initial IS during which the exploration 

has to account for re-use. A further application specific IS extension step can resolve the remaining 

bottlenecks.  
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4 Instruction Set Synthesis for ASAM 
This chapter is presented in the confidential section entitled Appendix: Instruction Set Synthesis for ASAM 

on page 55. 
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5 Conclusion 
This document presented a survey of some promising existing Instruction Set (IS) synthesis approaches and 

defined an initial proposal of the ASAM IS synthesis method. 

One of the aims of the ASAM project is to provide an automatic framework for the IS synthesis that is one 

of the fundamental steps of an ASIP design-flow. 

Despite a large number of existing works on the IS extension and several works on the complete IS 

synthesis, no acceptable solution exists to the problem of automatic instruction set customization for 

complex customizable ASIPs, as those provided by Silicon Hive ASIP technology. 

Instruction set customization is usually performed in two steps, namely: custom instruction identification 

and custom instruction selection. In the literature, the instruction set customization is usually limited to the 

instruction set extension, although in general, it should consider the selection of an initial extensible IS and 

elimination of less useful instructions. Moreover, in the existing published methods the ISEs are mostly 

realized as external accelerators implemented on FPGA or ASICs. Consequently, one of the main 

requirements of their design is to minimize the communication between the basic processor and the 

external accelerating extension. Adequately accounting for the I/O constraints is here one of the major 

problems. If more ISEs are found they are usually merged in a single complex ISE to be realized on a single 

external accelerator. The considered processors are often simple RISCs extended with RISC-based ISEs or 

(rarely) with SIMD accelerators.  

In the case of the Silicon Hive VLIW ASIP technology used in the ASAM project, the custom instruction 

extensions are realized and used as all the other processor instructions. In consequence, although the 

constraints on the number of I/O of a custom instruction, as well as the number and kind of the selected 

instruction extensions have to be taken into account, they are much less constraining than in the case of 

the ISE identification and selection problems discussed in the literature. With respect to the processor type, 

the ASAM project targets SIMD and MIMD VLIW processors, which often include vector instructions. For 

this reason, both the whole ASIP design and, specifically, the IS synthesis represent a much more complex 

problem and introduce new design challenges comparing to existing works that are mainly focused on RISC 

extensible processors and only sometimes include SIMD extensions.  

Another important difference comparing to the existing works is that the ASAM IS synthesis aims at 

selecting also the initial extensible IS. Only if necessary, it extends this set with some additional instruction 

extensions to resolve eventual bottlenecks. Thus two main fundamental problems are presented here: the 

initial application-specific IS selection and the application-specific instruction pool extension.  

During the initial IS synthesis rather small re-usable instructions from the IS pool are used. For the 

instruction pool extension larger and more complex instructions are usually selected in order to increase 

the performance and efficiency brought by a particular instruction extension. Despite the mentioned 

substantial differences between the instruction set related methods presented in the literature and the 

methods needed for the VLIW ASIPs targeted in the ASAM project, when developing our new instruction 

set synthesis method for customizable VLIW ASIPs, we plan to re-use some parts of some existing efficient 

IS synthesis methods presented in the literature and adapt them to the case of the Silicon Hive technology.   
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