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ABSTRACT 
 

Extensible Microprocessor without Interlocked Pipeline Stages  

(eMIPS), the Reconfigurable Processor. (May 2007) 

Richard Neil Pittman, B.S., Texas A&M University 

Chair of Advisory Committee: Dr. Jyh-Charn Liu 
 
 
 
 In this thesis we propose to realize the performance benefits of application-

specific hardware optimizations in a general-purpose, multi-user system environment 

using a dynamically extensible microprocessor architecture. We have called our 

dynamically extensible microprocessor design the Extensible Microprocessor without 

Interlocked Pipeline Stages, or eMIPS. 

 The eMIPS architecture uses the interaction of  fixed and configurable logic 

available in modern Field Programmable Gate Array (FPGA). This interaction is used to 

address the limitations of current microprocessor architectures based solely on 

Application Specific Integrated Circuits (ASIC). These limitations include inflexibility, 

size, and application specific performance optimization. The eMIPS system allows 

multiple secure extensions to load dynamically and to plug into the stages of a pipelined 

central processing unit (CPU) data path, thereby extending the core instruction set of the 

microprocessor. Extensions can also be used to realize on-chip peripherals, and if area 

permits, even multiple cores. Extension instructions reduce dramatically the execution 

time of frequently executed instruction patterns. These new functionalities we have 



   iv 

developed can be exploited by patching the binaries of existing applications, without any 

changes to the compilers. 

 A FPGA based workstation prototype and a flexible simulation system 

implementating this design demonstrates speedups of 2x-3x on a set of applications that 

include video games, real-time programs and the SPEC2000 integer benchmarks. eMIPS 

is the first realized workstation based entirely on a dynamically extensible 

microprocessor that is safe for general purpose, multi-user applications. By exposing the 

individual stages of the data path, eMIPS allows optimizations not previously possible. 

This includes permitting safe and coherent accesses to memory from within an extension, 

optimizing multi-branched blocks, and throwing precise and restart able exceptions from 

within an extension. 

 This work describes a simplified implementation of an extensible microprocessor 

architecture based on the Microprocessor without Interlocked Pipeline Stages (MIPS) 

Reduced Instruction Set Computer (RISC) architecture. The concepts and methods 

contained within this thesis may be applied to other similar architectures. Given this 

simplified prototype we look forward to propose how this architecture will be expanded 

as it matures. 
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1 INTRODUCTION 

 

 Most contemporary microprocessors, e.g., MIPS, ARM and PowerPC, etc., are 

based on a RISC architecture, in which a fixed set of assembly instructions are defined 

based on the analysis of software benchmarks, costs and hardware technologies. The 

vast majority of those microprocessors are fabricated as Application Specific Integrated 

Circuits, or ASIC, for best performance in terms of speed and chip area. In an ASIC 

microprocessor the instruction set is optimized statistically, therefore the temporal and 

spatial locality of a particular software application cannot be considered individually. 

Adding co-processing units to a microprocessor is a common approach to remedy the 

limitations of an instruction set architecture, but this approach faces the same problem 

that the coprocessor architecture cannot be easily customized for each software 

application.  

 In this thesis we propose an Extensible MIPS architecture, or eMIPS, which 

allows an application designer to identify heavily executed software regions, or basic 

block patterns, so that extension instructions and their execution units can be synthesized 

based on optimized execution flows in those basic blocks. The fixed instruction areas 

can be implemented using the ASIC technology, but the extension instructions and their 

execution units are based on configurable logic, so that they can be configured before 

program run time to optimize the computations.  

________________________ 
This thesis follows the style of IEEE Transactions on Computers. 
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 Integrated architectures that support an ASIC processor interfaced with 

programmable fabrics are available in the embedded marketplace, e.g., the Xilinx Vertex 

IV and V FX series [ 49 ][ 58 ][ 51 ]. However, the general issue of using instruction 

extensions in a general-purpose, multi-user application environment is an open issue 

being addressed in this thesis. Additionally, those architectures do not allow the 

programmable logic to interact with the individual stages of the pipeline and therefore 

are only usable for larger-grain optimizations. Unlike the typical instruction compaction 

techniques which would be targeted for a particular architecture, in eMIPS we aim to 

identify the computing needs of basic block patterns and leverage the unused instruction 

space together with the necessary execution units to improve the overall performance. 

With relatively small additions of configurable logic to existing processor, the extension 

instruction architecture allows optimization of individual software applications at a fine 

granularity that cannot be achieved otherwise. 

 To validate our concepts, the partial reconfiguration feature supported by modern 

FPGAs (Virtex series from Xilinx Inc. [ 49 ][ 51 ][ 58 ][ 52 ] and the Stratix series from 

Altera [ 3 ]) is used for prototype implementation, and the interactive hardware-software 

development processes for eMIPS are realized using an integrated 

simulation/development environment called Giano [ 37 ][ 22 ]. The MIPS R4000 

processor is chosen as the Trusted Instruction Set Architecture, or TISA, to guarantee 

that at cold start the microprocessor has a secure and known instruction set and hardware 

state. The unused operation codes of the R4000 instruction set can be used for the 

extension instructions.[ 32 ] We designed the instruction decoder, data paths, and the 
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pipeline interlock mechanisms, and implemented them on an FPGA board to validate the 

eMIPS architecture. The field programmable logic fabrics are partitioned into areas for 

either dedicated functions, or extension logic. Through the partial reconfiguration 

technique, only the region that needs to be reconfigured is updated with its configuration 

file while the TISA operations and other extensions remain unchanged. The Xilinx 

ML401 Evaluation board has enough peripherals that we could create a complete eMIPS 

workstation and experiment with a multi-user application environment. 

 Real software programs are complied into their binary images, their basic block 

patterns identified and then encoded into Extension instructions to evaluate the 

performance gains. We used several software systems, ranging from an object oriented 

real-time operating system for embedded applications, video games, and the SPEC2000 

benchmarks. Experimental results show substantial performance gains for both large and 

small software systems, with overall application speedup factors of 2x-3x using a very 

small number of extension instructions per application. 

 The eMIPS system makes the following specific contributions. eMIPS is the first 

realized workstation based entirely on a dynamically extensible processor that is safe for 

general purpose, multi-user applications. By exposing the individual stages of the data 

path, eMIPS allows optimizations not previously possible. This includes permitting safe 

and coherent accesses to memory from within an extension, optimizing multi-branched 

blocks, and throwing precise and restart able exceptions from within an extension. 

 The remainder of this thesis is structured as follows. Section 2 gives an overview 

of all relevant background information including FPGA architecture and software 
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profiling. The eMIPS architecture is introduced, including software support, in Section 3. 

Section 4 lays out the challenges and implementation of the eMIPS prototype. The 

testing and verification processes are discussed in Section 5. Experimental results are 

reported in Section 6. In Section 7, future avenues available for exploration and 

development are discussed. Section 8 presents related work and Section 9 concludes the 

thesis. 
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2 BACKGROUND 

 

 The following section provides information supporting the motivation of this 

thesis and places the claims made within into perspective. Section 2.1 makes the 

argument that the design paradigms based solely on ASIC technology approach their 

limits and that eMIPS has the potential to provide continued growth in microprocessor 

design.  The selection of the MIPS instruction set and explanation of RISC pipelines is 

provided in Section 2.2. An overview of the FPGA technology features utilized in the 

eMIPS prototype is given in Section 2.3. Finally, Section 2.4 presents a summary of the 

software profiling on which the eMIPS architecture is based. 

 

2.1 SHORTCOMINGS OF MODERN ASICS 

 Most of the modern available microprocessors implement the Reduced 

Instruction Set Computer architecture, or RISC, which is based on fixed instruction sets. 

Many different types of RISC microprocessors populate the market based on these 

different sets of instructions including, MIPS, ARM and PowerPC to name some of the 

more popular. These microprocessors are realized in the form of application specific 

integrated circuits, or ASIC, made up of logic fixed at design time that cannot be altered 

after the chip fabrication process is complete. 

 When designing instruction sets, computer engineers attempt to capture all the 

instructions necessary to cover the largest space of potential applications, while keeping 
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in mind factors such as size, cost and power. This set of instructions form the blue print 

for the instruction set architecture, or ISA, to be implemented on the new microprocessor. 

Despite all efforts, the quest for the ‘optimal fixed instruction set architecture’ is an 

impossible one. The space of applications to which the designers apply general purpose 

microprocessors evolves constantly. In addition, the trends that govern this evolution 

shift periodically in response to changes in consumer lifestyles and demands. For 

example, the need to process more audio and video data has led to extensions for all of 

the available RISC architectures. Therefore, the selection of instructions for a ‘general 

purpose’ microprocessor designed to meet the demands of today’s market place may be 

ill equipped to handle the applications of future markets. 

 We can also argue that the quest for the ‘optimal general purpose’ 

microprocessor for today’s market does not make sense anymore, especially in the 

embedded market place. In the embedded market, system designers work within the 

strictest constraints of size, cost and power. The systems they design apply to a 

specialized and significantly reduced space of potential applications. In this context, a 

‘general purpose’ microprocessor is inefficient and under-utilized when the majority of 

applications never use a large subset of the capabilities it provides. For instance, many 

embedded systems rarely if ever use floating point operations but many ‘general 

purpose’ microprocessors include them. 

 For these applications, a popular solution is to use custom microprocessors with 

reduced instruction sets but with customized instructions added specifically for the 

intended application space. This requires redesigning the microprocessor architecture 
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and fabricating custom microprocessors for each of the desired application domains; still 

they suffer from the inflexibility previously discussed. Therefore, manufacturers cannot 

offset the cost in design and fabrication of the new custom chip if the market for the 

given application is not large enough. As demonstrated in this discussion, the problem of 

this inflexible ‘general purpose’ microprocessor architecture becomes a severe hindrance. 

What is needed in the embedded application space and potentially in all areas of 

microprocessor hardware design is a new technology that can provide for flexibility and 

customization, allowing the microprocessors to evolve with their target markets at all 

stages of their life cycles. 

 The classical microprocessors have grown exponentially in speed and complexity 

while maintaining relatively constrained costs, in a fashion characterized by Moore’s 

Law. Moore’s Law states that the complexity of modern integrated circuits, or IC, with 

respect to cost doubles every two years. One may observe this trend as the various 

microprocessor manufacturers; including Intel and AMD, vie for supremacy in the 

market by delivering increasingly faster and more complex microprocessors.  These new 

microprocessors include new features that augment their capabilities while maintaining 

fairly level costs over time. As manufacturers reach the limits of the physical constraints 

of the materials available in terms of speed, conductivity, size and reliability, they also 

reach the end of this level of growth under current microprocessor design paradigms. 

 The current trend in the quest for additional execution speed provides additional 

processing cores in the CPU and to parallelize the execution of as much of the software 

as possible. This paradigm has potential, but its effectiveness has been limited by the 



   8 

difficulties involved in parallelizing software that was written for sequential execution, 

resulting in cumbersome dependencies. These dependencies require changes in the 

software design paradigms if this approach means to reach its full potential. 

 The extensions of the eMIPS microprocessor depart from the current techniques 

for attaining microprocessor execution speedups and flexibility in that to fully realize 

their benefits, it does not require any changes in software design and it is hidden from 

developers at the software level. To utilize the extensions, only minimal changes are 

required at the assembly/binary level. Performing instruction compaction using 

extensions in eMIPS improves performance by up to three times in most cases when 

compared to systems of a similar architecture without extensions. 

 The software design techniques for multi-core systems must become more 

mature before applications can take full advantage of the large-grain parallelism they 

offer. When this happens, the eMIPS technology can be leveraged to realize even greater 

speedups by providing multiple customized processor cores executing in parallel. Each 

processor core may additionally execute the instruction blocks that it is best suited for. If 

the chip area devoted to the extensions is abundant we can use the eMIPS architecture to 

realize a more complex and more adaptable multiprocessing system by allowing 

extensions to include additional complete data paths, or some other custom processor 

design. These additional data paths can be loaded on-demand to increase overall 

throughput. In this way we can convert the eMIPS into a multi-core system when the 

system is under heavy computational demand. When the system is lightly loaded the 
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extension data paths are disabled to save energy or reconfigured to be used for more 

specialized purposes. 

 The eMIPS architecture also addresses the waste associated with including 

functions in systems where they are never used. The extensions of the eMIPS 

architecture do not load when the microprocessor powers up. The fixed logic system 

only includes the minimum functionality (system management, reconfiguration support, 

load, store, arithmetic and logical functions); the extensions provide any additional 

functions required by the applications running on the microprocessor. For instance, the 

floating point, the media or vector co-processors can be loaded only if and when 

software applications use them. When applications do not require these functions the 

extensions are not loaded, providing for potentially large power savings because the 

unused Extension slots may have their clocking resources and power disabled to reduce 

the power consumption. Area savings are also possible because not all extensions need 

to be present at all times, as is the case instead for an ASIC implementation. This waste 

reduction may increase by dynamically loading and unloading not only the co-processors 

but also the on-chip peripherals that are part of an embedded microcomputer. Rather 

than including all possible peripherals in the ASIC we can load them on an extensible 

microprocessor as extensions, again with power and area reductions. 

 The standard RISC architecture lacks the infrastructure to allow for the kind of 

flexibility and extensibility possible through the use of eMIPS. This new extensible 

instruction set computer architecture provides this infrastructure. The FPGA is 

partitioned into fixed and reconfigurable regions. The fixed logic region constitutes the 
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base functionality of the processor including security sensitive resources such as the 

system coprocessor and the systems used by the microprocessor to control its 

configuration. The extensions to the base processor make up the reconfigurable region of 

the FPGA. The architecture provides the flexibility and adaptability lacking in the RISC 

architecture. 

 

2.2 MIPS INSTRUCTION SET 

 The Microprocessor without Interlocked Pipeline Stages, or MIPS, instruction set 

[ 32 ][ 30 ] provides a good example of a modern Reduced Instruction Set Computer 

instruction set architecture, or RISC ISA, although it is but one of many. There are other 

RISC ISA available such as the ARM and PowerPC that arguably could be better than 

the MIPS ISA. Unfortunately, these ISA fall under proprietary controls that removes 

them from consideration in research projects such as this. The MIPS documentation for 

the MIPS R16000 is widely available and by residing in the public domain where most 

other instruction sets are proprietary, it makes MIPS an ideal choice for research in 

microprocessor architecture and design. The MIPS instruction set architecture like all 

fixed RISC architectures has experienced growth, modification and expansion in order to 

keep up with the changing needs of the microprocessor market. The architecture is 

currently in its ninth generation with the MIPS R16000 [ 32 ]. For this reason, the MIPS 

R4000 was chosen as the basis of the eMIPS processor. In order to consider a device a 

MIPS microprocessor, all the basic instructions must be implemented. Software 

compiled using this base instruction set must run on the eMIPS microprocessor and 
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existing compilers for high-level programming languages that target the R4000 should 

remain usable without change. 

 The MIPS architecture is pipelined to provide improved throughput at higher 

clock frequencies. One can increase the clocking frequency by breaking the instruction 

execution within the processor into stages that require less time to execute. Each stage of 

the pipeline works on different instructions at different times and then passes the 

instruction to the next stage to continue execution. After the pipeline is full, the 

microprocessor completes execution of one instruction per clock cycle just like the non-

pipelined version except at a much higher clock rate. This architecture results in a net 

increase in throughput despite the overhead that the architecture experiences with flow 

control, hazards and exceptions. The time to fill the pipeline is negligible.[ 30 ] 

 The classic implementation of the RISC pipeline architecture [ 30 ] includes five 

pipeline stages: Instruction Fetch (IF), Instruction Decode (ID), Instruction Execute (IE), 

Memory Access (MA) and Writeback (WB). The functions of these stages are as follows: 

• Instruction Fetch (IF) – Update the program counter, or PC, and fetch the 

instruction located in memory at the address stored in the PC. [ 30 ] 

• Instruction Decode (ID) – Using wired logic, decode the instruction passed from 

IF into control signals that control the remainder of the pipeline. Read any data 

required by the instruction from the general purpose register file. Test branch 

conditions and calculate the memory location of the next instruction to be 

executed if a branch is taken. [ 30 ] 
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• Instruction Execute (IE) – Using an Arithmetic Logic Unit, or ALU, and other 

special purpose logic perform operations on data based on the control signals 

passed from ID. [ 30 ] 

• Memory Access (MA) – In case of a load or store instruction, the output of IE is 

used as the memory location to be read from or written to. Otherwise, the output 

of IE is passed through. [ 30 ] 

• Writeback (WB) – In the event a register in the general purpose register file is 

modified by the instruction, the output of MA is written to the desired register. 

[ 30 ] 

 To realize greater throughput at higher frequency, some microprocessor 

implementations have utilized as many as eight pipeline stages. The deeper the pipeline 

is the greater the overhead in the event of a branch event, hazards and exceptions on 

execution. To further offset this overhead, microprocessor designers have developed a 

variety of features, including branch predictors and speculated execution. These features 

have highly complex implementations and exist beyond the scope of this project. For 

this reason, the architecture of the eMIPS microprocessor omits these features and has 

just the basic five pipeline stages. [ 30 ] 

 

2.3 FPGA ARCHITECTURE 

 The Field Programmable Gate Array, or FPGA, is a digital semiconductor device 

often used for prototyping. Developers use FPGA in prototyping for their ability to 

configure or program their electrical interconnects to realize an expansive space of 
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applications from glue logic to application coprocessors. As the name indicates, 

developers are free to apply modifications to the design implemented on the FPGA in 

the field, after deployment. Developers synthesize the configurations from a Hardware 

Description Language (HDL), like Verilog or Very High Speed Integrated Circuit 

Hardware Description Language (VHDL), for the targeted FPGA device. Eventually, the 

configuration file downloads to the chip through an interface such as Joint Test Action 

Group, or JTAG. This flexibility comes with a price. The configurable logic of the 

FPGA experiences significantly lower performance, currently clocking at frequencies up 

to 500 MHz, than the modern ASIC, currently clocking at frequencies over 3 

GHz.[ 49 ][ 51 ][ 58 ] Despite this limitation, FPGA technology has evolved to the point 

where developers can implement fixed logic microprocessors with performance levels 

competitive with their ASIC counterparts in the embedded market. These future 

microprocessors will have the advantage that they can be dynamically updated after 

deployment to meet new demands. This approach to microprocessor design leads to a 

new class of microprocessors termed the “dynamically extensible microprocessor”. 

 Some of the new ‘state of the art’ FPGA, which have come to market in recent 

years, have added features that further augment their flexibility and power. First, modern 

FPGA, such as the Virtex series from Xilinx Inc. [ 49 ][ 51 ][ 58 ] and the Stratix series 

from Altera Corp.[ 2 ][ 4 ], have included a feature called ‘dynamic partial 

reconfiguration’. FPGA that include this feature may have their configurations 

partitioned and later allow individual partitions within the design to continue operations 

while a new configuration downloads to another partition.[ 56 ][ 55 ][ 52 ][ 57 ] FPGA 
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configuration solutions allow for FPGA to be configured at runtime by other devices or 

by themselves. An example of one of these solutions is the System ACE Compact Flash 

solution. This is an IC chip set that provides five interfaces: JTAG to host workstation, 

JTAG to FPGA, external to a Compact Flash chip, and Control from either the 

microprocessor or the FPGA. Using these interfaces a system can configure one or 

multiple FPGA using the JTAG from a workstation or reading a configuration from the 

compact flash and streaming it to the FPGA on the JTAG chain.[ 54 ]  

 Using modern FPGAs it is possible to partition the FPGA into sections 

containing a standard fixed logic processor core with interconnects to blocks termed 

extensions.  These extensions contain customized instructions.  To use these extensions 

the processor core includes functionality that loads, modifies and enables these 

extensions while the fixed logic continues to function without interruption. In this way, 

the dynamically extensible processor, using a library of extensions from which it can 

draw, adapts to the changing application needs in the field. Using the configuration 

solution with hardware and software support allows for self extension of the system. By 

using these dynamically reconfigurable FPGA, an “extensible central processing unit” 

becomes possible. The eMIPS project described in this document argues that such a 

device is feasible today and proves this thesis by means of an example prototype 

implementation. 
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Fig. 1. Xilinx ML401 Evaluation Board with Virtex 4 LX25[ 51 ] 

 

 

 The FPGA selected for the development and experimentation of this project is 

the Xilinx Virtex IV product line. The Virtex series rates among the most powerful 

FPGA devices in the market in terms of density, feature set and speeds. These FPGA 

clock commonly at frequencies of 100 MHz but their specifications indicate they could 

operate at much higher frequencies. The specifications claim 500 MHz. These 

frequencies fall significantly short of modern ASIC frequencies approaching multiple 

gigahertzes but the FPGA continue to grow in speed with each new generation. The 
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Virtex IV FPGA comes in three distinguishable types denoted by LX, SX and FX. Each 

flavor includes a set of special features to allow developers to select an FPGA with the 

feature set that best fits their application domain. The Virtex IV LX targets logic design 

applications. For this reason, the Virtex IV LX provides the largest number of logical 

blocks for implementation. Given the floor planning requirements of partial 

reconfiguration, having more logic area to work with is preferred. Therefore, the 

implementation of the eMIPS processor targets the Xilinx ML401 Evaluation board with 

the Virtex LX25 shown in Fig. 1.[ 51 ][ 58 ][ 49 ][ 60 ] 

 

2.3.1 PARTIAL RECONFIGURATION OF XILINX FPGA 

 Xilinx has supported partial reconfiguration since its Virtex FPGA and that 

feature continues in the more modern Virtex IV and Spartan III. [ 56 ][ 55 ][ 52 ] Despite 

the continued support of this feature on their hardware, Xilinx continues to under-

emphasize this feature in the tool suite, the ISE Foundation. Xilinx recently released the 

latest release of the ISE, release 8.2i.[ 49 ] In the past, hardware designers performed the 

partial reconfiguration design flow using command line instructions to the tools in the 

ISE. Xilinx did not integrate the design flow into the graphical user interface, or GUI of 

the ISE Project Navigator. This results in a large amount of tedious repetitive steps one 

must perform to run the design flow. Project management and organization becomes 

crucial, a large set of files is required for each stage of the design flow. In the last year, 

Xilinx made a greater effort to provide tool support for partial reconfiguration and to 

make it more accessible to developers. A new tool that Xilinx has developed is called 
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Planahead and attempts to provide improved floor planning utilities and to integrate the 

partial reconfiguration design flow into a project structure managed by a GUI. Planahead 

currently has limited availability in an advanced access beta program. [ 56 ][ 55 ][ 52 ] 

 The smallest reconfigurable unit of the FPGA configuration fabric is called the 

‘frame’. When partitioning the FPGA into different independently reconfigurable and 

static regions the boundaries between these regions must coincide with the boundaries of 

these ‘frames’. Multiple frames may be grouped together into a single rectangular region. 

Regions cannot be smaller than a ‘frame’. In the Virtex and Virtex II architectures a 

frame constituted a column of logic cells called slices that spanned the height of the chip. 

In the Virtex IV, a column of sixteen slices makes up the ‘frame’. In this way, each 

column of the Virtex IV contains multiple frames. In the LX25, which has 192 rows of 

slices, each column contains twelve frames. This architecture provides the Virtex IV the 

advantage of allowing for rectangular regions in the form of tiles on the FPGA 

configuration fabric as opposed to strictly columns as in the previous 

architectures.[ 56 ][ 55 ][ 52 ] 

 Hardware designers must also consider the routing of signals crossing the 

boundaries of the various regions. Only the region containing the reconfigurable module 

changes when reconfiguration occurs. The remaining configuration fabric remains 

unchanged. Therefore any inconsistency from one configuration to the next will result in 

unpredictable results.  
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Fig. 2. Logical Connections of Signals Across Region Boundary [ 52 ] 

 

 

 One potential inconsistency can occur when a signal crosses the module 

boundaries. Consider for instance the case of a signal that crosses the boundary and in 

one configuration the signal routes through row four but the same signal is routed in row 

five in another configuration. When the system undergoes reconfiguration, the signal 

will not line up on the boundary where the reconfiguration occurred, therefore cutting 

the signal. To prevent this inconsistency we can restrict the routing of such signals to 

fixed locations along the region boundaries. This is done by passing the signals through 

a ‘bus macro’ or a hard pre-routed macro as seen in Fig. 2.  The bus macros are 

positioned on the module boundary and force the routing program to route the signal 

through a given location in each configuration. For the eMIPS processor, bus-macros are 
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placed between the interfaces of the fixed instruction set logic and the dynamic 

extensions. [ 56 ][ 55 ][ 52 ] 

 

 

 

Fig. 3. TBUF Based Bus Macro [ 56 ] 

 

 

 In the Virtex and Virtex II architectures Xilinx provided ‘bus macros’ based on 

tri-state buffers, or TBUF. Fig. 3 shows an example of a TBUF-based bus macro used to 

interface two modules, module B and module C. TBUFs are not included in the Virtex 

IV and Xilinx provided no alternative ‘bus macros’ when the device was released. 

Researchers intending to do partial reconfiguration created ‘bus macros’ of their own 
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during this time using the Xilinx FPGA Editor.[ 53 ] Most of these bus macros ended up 

being based on look-up tables, or LUT. Researchers and developers would use the FPGA 

Editor tool available in the Xilinx ISE to route and generate these hard macros. Fig. 4 

shows an example of a LUT-based bus macro.[ 56 ][ 55 ][ 52 ] 

 

 

 

Fig. 4. LUT Based Bus Macro [ 52 ] 
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 When Xilinx released Planahead in beta, they also released LUT based ‘bus 

macros’ for all their products including the partial reconfiguration feature. Planahead 

takes the required routing consistency a step further by recording the routing of all fixed 

logic that passes through reconfigurable regions in a routing database. Planahead 

incorporates these routing patterns in the place-and-route phase of compilation, so that 

the reconfigurable regions will maintain consistency. [ 56 ][ 52 ] 

 The partial reconfiguration design flow includes four phases as documented by 

Xilinx. These phases are Design Entry, Initial Budgeting, Active Module, and Final 

Assembly. Full details can be found in [ 52 ][ 55 ][ 56 ]. The following is a brief 

description of each phase: 

• Design Entry – This phase involves setting up the project by targeting the desired 

FPGA device, decide on design partitioning and performing some design 

planning. Before Planahead, this phase also included manually setting up the 

project directory structure. Planahead now handles this in project setup. In large 

projects including multiple engineers, this phase is usually carried out by the 

team lead. [ 52 ][ 55 ][ 56 ] 

• Initial Budgeting – In this phase the design engineers write the top level module 

and implementation constraint files. The constraint files include information such 

as pin assignments, area definitions, assignment of modules to areas and clocking 

constraints. The top level module defines the ports of the design and instantiates 
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all second level modules and defines their interfaces to each other and to the 

system ports. This top level should be minimal in its contents. There should be as 

little logic in this layer as possible and contain only the modules that will be 

implemented at this layer. Any top level logic that is present goes through place 

and route and this data is written to the routing database for future use. In most 

cases, a team lead also carries out this phase. [ 52 ][ 55 ][ 56 ] 

• Active Module – Design engineers execute this phase of the design flow for each 

module instantiated in the top level in parallel. The team lead assigns hardware 

designers to implement the different modules using the interface outlined in the 

top level written in the previous phase. In the case of reconfigurable modules, 

hardware designers implement two or more versions of this module. In some 

cases, designers write module level constraints into the implementation 

constraint file. The Planahead tool synthesizes each module independently of the 

rest of the design and performs place and route within the region designated for it 

while taking the contents of the routing database into account. [ 52 ][ 55 ][ 56 ] 

• Final Assembly – This is the final phase of the design flow. In this phase, the 

team lead collects the module implementation of each module from the hardware 

designers and uses Planahead to integrate them together. The team lead creates a 

floor plan of the system for each possible configuration or combination of 

modules. Using these floor plans Planahead completes any additional place and 

route required and generates configurations files for the desired default 
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configuration and other configuration files for the reconfigurable regions that 

change dynamically. [ 52 ][ 55 ][ 56 ] 

 We used these phases in the eMIPS project. Through Planahead the eMIPS 

processor was synthesized, floor planned, components placed, signals routed, and 

configuration files generated. 

 

2.3.2 SYSTEM ACE COMPACT FLASH SOLUTION 

 The System Advanced Configuration Environment, or System ACE [ 54 ], 

attempts to fill a niche for pre-engineered configuration solutions of multiple FPGA 

systems. The system applies to the eMIPS microprocessor’s need to control and modify 

its extensible microprocessor architecture. System ACE works through the interaction of 

four interfaces: JTAG to host workstation, JTAG to FPGA, compact flash and control 

from a microprocessor or FPGA. Using the host JTAG interface a configuration file can 

be downloaded manually to the system and used to configure one or multiple FPGA. 

This feature is excellent for debugging. It allows the developer to download test 

configurations and run code before including the new configuration in the system. When 

configuring the system from the host JTAG the System ACE reads the bits stream on the 

host interface and transfers it to the system JTAG chain it controls. After the 

configuration design completes and the system is ready for deployment, system 

controlled configuration can be performed via microcontroller or FPGA control. In the 

case of a single FPGA system, like the eMIPS microprocessor, the microprocessor 

interface can be integrated in the FPGA to allow it to control its own configuration. The 
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compact flash is a portable, permanent storage device that stores the configuration files 

and inserts into a reader integrated with the System ACE. Using the control interface the 

FPGA or microprocessor can initiate configuration of the system by selecting a 

configuration file stored in the compact flash that the System ACE drives on the system 

JTAG chain. The System ACE also provides an interface similar to Integrated Drive 

Electronics, or IDE, disk interface commonly found on workstations to allow the 

controller to read and write to the compact flash. [ 54 ] 
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Fig. 5. System ACE File Structure [ 54 ] 

 

 

 The System ACE controller interface provides a three bit configuration selection 

input to allow the controller to select one of eight potential configurations. Note that the 

compact flash can store more than eight configurations, as illustrated in Fig. 5. The 
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configurations are grouped into sets of no more than eight and placed in directories on 

the compact flash. In the root directory there exists a file called ‘xilinx.sys’. This file 

tells System ACE which directory containing configuration files should be considered 

‘active’. The controller can only use configuration files from the ‘active’ directory. The 

‘xilinx.sys’ file also assigns to each file the numerical designation zero through seven for 

the configuration selection. To change which set of configurations is considered active, 

one must change the assignment in the ‘xilinx.sys’ file. System software can do this 

dynamically using the IDE interface to the compact flash.[ 54 ] 

 

2.3.3 eMIPS AND THE FPGA 

 This implementation of the eMIPS microprocessor uses the dynamic partial 

reconfiguration feature of the Xilinx FPGA to implement the dynamic loading of 

extensions to the core microprocessor architecture. During the design phase, the core 

microprocessor architecture resides in the fixed logic region of the FPGA configuration. 

The configurable partition(s) constitute the area dedicated to the loading of extensions 

after the processor has begun operation. After design implementation completes, the 

process produces a binary file containing the default configuration. Later the process 

generates the binary configuration files used to alter the configuration of the extension 

slots.  The process uses the default configuration and the hardware description of the 

extension as a starting point. At power up, the default configuration contains the 

implementation of the core microprocessor architecture and the region allocated for the 

extensions is empty, or actually contains the minimum logic needed to prevent the 



   26 

synthesis tool from removing it during optimization. When the microprocessor starts an 

application that requires an extension, it loads the extension using a JTAG chain 

provided by the System ACE Compact Flash solution. 

 The System ACE Compact Flash solution provides the functionality needed for 

the Xilinx FPGA to control and change its configuration. The System ACE Compact 

Flash solution includes a JTAG configuration chain capable of dynamically configuring 

the extensions of the microprocessor. The microprocessor stores the default 

configuration and the extensions in the compact flash card interfaced to the System ACE 

chipset. At power up, the System ACE Compact Flash solution reads the default 

configuration from the compact flash card and streams it on the JTAG chain 

implementing it on the FPGA. The microprocessor running on the FPGA requests 

changes to the extension configurations by requesting the loading of a configuration 

from System ACE through the microprocessor control interface. In this event, System 

ACE reads the requested extension configuration from the compact flash card. Then like 

the default configuration at power up, System ACE streams the configuration on the 

JTAG chain. In the case of a partial reconfiguration, the signals on the JTAG chain only 

modify the region of the FPGA where the extension is located. The remainder of the 

FPGA continues to function normally. Consequently, the microprocessor may continue 

to execute instructions while the configuration process alters the extension configuration. 

In this way, the microprocessor powers up using the default configuration and modifies 

its own configuration using the partial extension configurations stored in the compact 

flash card. 
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2.4 PROFILING AND IDENTIFICATION OF BASIC BLOCKS 

 While CPU designers seek generality in their designs, all application programs 

spend most of their execution time in small sections of the code that make up the 

executable file image. This observation holds regardless of platform or application, from 

personal computers to embedded systems to entertainment consoles and devices. 

Analysis of software execution profiles revealed that in many cases the two to three most 

executed sequences of code in the applications program account for more than 80% of 

the total instruction execution count. Based on this observation, if we can somehow 

optimize the execution of these few select sequences we can attain an overall 

improvement of the performance of the entire application.[ 21 ] 

 These sequences are termed the “basic blocks” of the software application. 

Technically, a basic block is a sequence of instructions that ends in a (conditional) 

branch and is not branched-to anywhere but at the first instruction. In our work, the basic 

blocks are identified using the tools distributed with Microsoft Giano [ 37 ][ 22 ]. Giano 

has been used internally at Microsoft Corporation for system verification for some years 

now. The profiling tool outputs a database of basic block and basic block patterns that 

manifest in the (set of) application program(s). Roughly speaking, a basic block pattern 

is the set of all basic blocks that perform the same function but differ in their register 

assignments or in the embedded constants. Once the database is generated, it is updated 

by the simulator each time the profiled application is run. Each basic block is uniquely 

identified by a hash value; there are no duplicates in the database. Each entry also 
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contains counters for the static and dynamic repetition counts of the basic block. The 

static count indicates how many times the basic block is repeated in the application 

binary itself, or possibly across more than one binary, according to the user’s preference. 

The dynamic count is maintained by the execution simulator and counts the times the 

basic block has been actually executed during one or possibly more executions of the 

application. It is possible to obtain the distribution of dynamic counts against time by 

check pointing the database with a certain frequency. This can capture the behavior of 

programs that exhibit “phases” during their execution.[ 21 ] 

 In the practice, the basic block sequences are given to hardware design engineers 

as specifications. The hardware engineers create a hardware module that implements the 

semantics of that sequence in the most optimized way possible and in a manner that 

conforms to the extension interface of the microprocessor. Automatic generation of the 

extension appears feasible [ 61 ][ 25 ] but it is beyond the scope of this project and we 

will assume manual generation. The engineers create the design for the extension and 

generate the FPGA configuration file. The configuration file integrates into the 

application software package. When the application starts up on a platform that supports 

it the extension is loaded into a free extension slot, provided one is available. If the 

platform does not support extensions, or if the security settings of the platform disallow 

it or if the configuration file is damaged the extension instruction is ignored and the 

basic block sequence executes normally. The extension interfaces and configuration file 

generation are discussed in Section 4.2.3. 
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 The implementation of the extension, including its use in the application, is 

abstracted or hidden at the software level. No change to the higher level compiler is 

necessary. After the basic block is identified, implemented and encoded into an 

extension instruction, another tool independent of the compiler augments the executable 

image. The tool scans the assembly binary image for occurrences of the basic block 

pattern identified in the profile database. The tool encodes the new extension instruction 

to match the register assignments and constants, and inserts the new extension 

instruction immediately before the instance of the basic block pattern. In this way, the 

software developers are not aware of the hardware acceleration and need not be aware of 

it. [ 21 ] 

 

 

 

Fig. 6. A Basic Block Augmented with an Extension Instruction 
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 Fig. 6 shows the basic block that was found to be the most frequently executed 

during testing of the Giano profiling and simulation tool. This basic block was the 

dynamically most frequent one; it was not the statically most frequent. It was only 

through actual execution profiling that we found it to be the best candidate for 

optimization. Simple inspection of the binary code base pointed to a completely different 

basic block. The first instruction in Fig. 6 is the extension instruction, inserted before the 

basic block itself. The basic block is part of a software implementation of a 64-bit 

division. It shifts left by one the 128-bit number contained in the register quad t0-t1-a0-

a1, then makes a conditional branch depending on register t1 being greater than register 

a2. [ 21 ] 

 The extension instructions must conform (at least in part) to the instruction 

format restrictions of the ISA from which they are derived. In the case of the MIPS ISA, 

instructions consist of a 32-bit value including an op code, up to two operand registers 

and a destination register or data immediate. If this single instruction must replace a 

potentially long sequence of several instructions with as many as two operands per 

instruction, one destination and data, the question becomes how to encapsulate all that 

information into a 32 bit instruction. One way is to leverage the relationships that exist 

between operands, destinations and immediate values. For instance, if the register 

operand of one instruction is the same as the destination of a previous instruction it only 

needs to be encoded once. Scratch registers need not be encoded, for each instance in Fig. 
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6 we can skip the scratch register t3. Notice though that in the implementation of the 

extension care should be taken to maintain the same semantics as the original sequence 

and to write the new value to the register file even if nothing else uses it. 

 When registers differ, the relationships between register numbers can be built 

into the instruction decoding phase of the extension. For instance, if there are two 

registers used by different instructions in a sequence but the second is always one away 

from the first, the extension designers only require one of the register numbers to encode 

both of them. In Fig. 6 this is the case both for t0-t1 and for a0-a1-a2. It is up to the 

binary patching tools to verify that these constraints are met. Encoding of destination 

registers can be performed in the same way. In the case of immediate values, if the value 

is the same every time the block is executed, then this may be encoded directly into the 

extension. This is not the case in the example of Fig. 6 and the immediate field must be 

used, reducing the number of available slots for register numbers by one. [ 21 ] 

 Similar relationships can be identified amongst operand registers to reduce the 

number of bits (register numbers and the like) needed to encode the required data in the 

instruction format. If hardware designers cannot reduce the required register numbers to 

two operands and one destination they could violate the ISA rules and use any of the bits 

other-than the op code as they see fit. The only penalty is that a disassembler will not be 

able to provide any meaningful decoding of the extension instruction. Yet another 

possibility is to further break up the sequence into two or more extension instructions. 

More information, including the means to automatically identify patterns of instruction 

sequences and applying such patterns to modify executable binaries is presented in [ 21 ]. 
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 Using the eMIPS means of execution acceleration requires no change in software 

design or practice. Modifications are applied, after the software development process is 

complete, to the finished product. This is in sharp contrast to multi-core parallel systems 

that require parallelization of the software design at the highest levels to benefit from the 

hardware feature. Future business models for platform manufacturers that utilize these 

microprocessors include independent services to profile and augment application 

software binaries with an extension to fully utilize hardware acceleration. [ 21 ] 
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3 DYNAMICALLY EXTENSIBLE PROCESSORS 

 

 The eMIPS processor is a ‘dynamically extensible microprocessor’ because it is 

based on a new, extensible architecture. The architecture is extensible because it allows 

additional logic to interface and interact with the basic data path at all stages of the 

pipeline. The additional logic, which we term extensions, can be loaded on-chip 

dynamically during execution by the microprocessor itself. The architecture therefore 

possesses the unique ability to extend its own ISA at run-time. To explain this more in 

detail, we will first describe the ‘classical’ RISC CPU architecture in Section 3.1 and 

then show where the eMIPS microprocessor architecture departs from it in Section 3.2 

and Section 3.3. The overall functioning of a complete system based on an eMIPS 

microprocessor is then described in Section 3.4. 

 

3.1 THE ‘CLASSIC’ RISC CPU 

 Fig. 7 presents a block diagram of a ‘classic’ RISC CPU organization, including 

five pipeline stages, a general purpose register file, a memory interface that includes the 

interface to the peripherals and a system coprocessor. The five pipeline stages include 

Instruction Fetch (IF), Instruction Decode (ID), Instruction Execute (IE), Memory 

Access (MA) and Writeback (WB). The stages are as described in Section 2.2. 
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Fig. 7. Block Diagram of a Typical Pipelined CPU Architecture 

 

 

 It is important to note the inclusion in this organization of two Floating Point 

Units, or FPU, depicted as operating in parallel with the IE block. Execution of floating 

point arithmetic and other coprocessor operations require considerably longer execution 

times to complete than most integer operations performed by the Arithmetic Logic Unit, 

or ALU, inside of the IE block. These FPU operate on data in register files that are 

independent of the general purpose register file used by the rest of the CPU. 

Independence of the data in these units removes potential conflicts and dependencies, 
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and allows these functional units to execute in parallel with the rest of the CPU. Parallel 

execution limits the latency effects of these floating point operations to those tasks 

dependent on their outputs. The presence of two FPU in the diagram denotes the 

established practice of including multiple instances of functional units on a single CPU 

to achieve a higher rate of instruction throughput. Several other functional units 

available in modern high-performance microprocessors have been omitted from this 

diagram for simplicity. These functional units go beyond the scope of this project and 

have been omitted from the design.[ 30 ][ 32 ]  

 Fig. 7 depicts the FPU using different colors to signify that it differs from the 

other blocks in important ways. In the first place, unlike the other blocks in the diagram 

the CPU does not require these units to function correctly. Floating point operations 

could be performed in software, using the ALU, although at a significant execution time 

penalty. Many applications in embedded systems never use floating point operations and 

it is fairly common to omit these functional units from simpler microprocessors. The 

omission results in smaller chips, lower power and reduced costs for the embedded 

market. In the second place, system software has the capability of disabling access to 

these functional units when switching between software tasks and of restricting use of 

these units to particular tasks. When restricting access to the FPU the state of the FPU is 

preserved across context switches for the benefit of that particular task. This eliminates 

the swapping of the FPU register file in and out to memory and increases overall system 

performance. [ 30 ][ 32 ] 
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3.2 THE eMIPS ARCHITECTURE 

 Fig. 8 presents a block diagram of the eMIPS CPU organization. The pipeline 

stages, general purpose register file and memory interface match those depicted for the 

‘classic’ CPU and are depicted in lighter color in the diagram. These pipeline stages 

constitute the Trusted ISA or TISA, the core portion of the architecture that is required 

for initial operation and to provide a level of trust in the functioning of the CPU. These 

blocks cannot be removed or disabled and must be present at startup of the system. 

These blocks constitute the fixed partition of the architecture and include all resources 

that are of a security sensitive nature, such as the system coprocessor. The TISA also 

includes all the facilities for self-extension, including instructions for loading, unloading, 

disabling and controlling the unallocated blocks in the microprocessor. At a functional 

level the pipeline blocks operate similarly to the ‘classic’ CPU, except their 

interconnections with respect to each other and other blocks differs. Their 

implementations differ as well and this will be explained later. 

 In place of the FPU, Fig. 8 shows two sets of blocks labeled “Extensions”. These 

extensions distinguish the eMIPS architecture from the established RISC architecture 

from which it is derived. Through the extensions the eMIPS CPU overcomes two major 

shortcomings of the RISC architecture; inflexibility and inability to evolve with 

changing needs. Using the partial reconfiguration design flow described in Section 2.3.1, 

the processor is partitioned into fixed and reconfigurable regions. The TISA is included 

in the fixed region; the extensions are included in the reconfigurable regions and are 

interconnected with the TISA by means of the bus macros described in Section 2.3.1. By 
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implementing different extensions for the reconfigurable regions, it becomes possible to 

adapt the functionality of the CPU. The CPU may apply these adaptations after 

deployment, dynamically while the applications continue executing. 

 

 

 

Fig. 8. Block Diagram of the eMIPS Architecture 

 

 

 Examples of possible extensions include but are not limited to FPU, Digital 

Signal Processors, or DSP, encryption coprocessors, vector processors and the 
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application specific instructions of Section 2.4. Using application execution profiling, 

engineers identify the extension instructions and implement them as hardware modules 

synthesized for the target device. More than one extension instruction might be included 

in a single extension. A successful implementation of an extension instruction runs in 

fewer clock cycles than the original instruction sequence it replaces. If the instruction is 

executed a sufficient number of times, even a single clock cycle reduction in execution 

could significantly improve performance. 

 Let us compare an extension with the FPU available in the ‘classic’ architecture. 

In the first place, in the eMIPS context a FPU is indeed implemented as an extension. 

The second difference between the FPU and the extension is that the extension is not 

available as a CPU resource at power up, because extensions are only loaded and 

unloaded dynamically during execution by the TISA. A third difference is that the 

blocks of an extension overlap with ID, IE and MA whereas the FPU only overlap with 

IE. The extension blocks must overlap with ID in order to recognize their instructions. 

The extension may not require access to memory and therefore can extend into the MA 

block of the pipeline as well. In this way, if an extension instruction only requires two 

clock cycles to complete but does not access memory, no stall is necessary and it can 

pass its outputs to WB to update the necessary registers without creating any pipeline 

bubbles.  

 The diagram of Fig. 8 depicts only two extension blocks but more can be 

included, depending on space and other limitations imposed by the physical chip. If 
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Moore’s Law continues to hold we can project that tens and possibly even hundreds of 

extensions might be available in future chips. 

 

3.3 EXECUTION DATA PATHS: MIPS VS. eMIPS 

 In the case of the ‘classic’ RISC CPU architecture, the IF block fetches the 

instruction indicated by the current value of the program counter, or PC. That instruction 

passes to the ID block that decodes the instruction into the appropriate control signals for 

the remainder of the pipeline. If the ID does not recognize the instruction, the ID throws 

a Reserved Instruction, or RI, exception to the system coprocessor. The ID also 

calculates the next PC based on the current PC and the instruction being decoded. In the 

case of a non-branching instruction, the next PC is the current PC plus four. In the case 

of a branch, the ID tests the branch condition. If the branch condition is true, the next PC 

is the current PC plus an offset, otherwise it is the same as a standard instruction. In the 

case of a jump, the next PC is the current PC plus an offset or the content of a register. 

For all instructions, the ID fetches operand data from the general purpose register file. 

Using the control signals and data from the ID block, the remainder of the pipeline 

executes the decoded instruction. In the case of an operation instruction, the IE block 

modifies the operands fetched by ID using the operation indicated by the instruction 

decoding. In the case of a load or store instruction, the IE calculates the address to be 

loaded or written to and passes it to the MA block. Using the address calculated by the 

IE, the MA loads the contents of that address from memory or modifies it using data 

read from a register in ID. For operation instructions, the MA block passes the result of 
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IE directly to WB. Finally, if the instruction modifies a register, WB writes the new 

value of the register to the general purpose register file. 

 The eMIPS follows a similar execution path for instructions included in the TISA. 

For instructions not in the TISA, the processor departs from this execution path in the ID 

phase where the ID blocks of the extensions operate in parallel with the one in the TISA. 

After the IF block fetches the current instruction from memory, the instruction is sent in 

parallel to the ID blocks of the TISA and of each extension. Each ID of the extensions 

attempts to decode the instruction in parallel. If the TISA recognizes the instruction, the 

execution path is the same as the previous example of the ‘classic’ CPU. In the case that 

none of the ID blocks recognize the instruction, a RI exception will be throw to the 

system coprocessor like the ‘classic’ CPU model. 

 If one of the extensions recognizes the instruction, its ID requests to take over 

execution of the instruction. The arbitration logic sends a NOP to the TISA pipeline 

stages and to those of the other extensions. The arbitration logic also passes control of 

the read ports of the general purpose register file to the ID of the extension that 

recognized the instruction. The ID of the extension that recognized the instruction 

finishes decoding the instruction and passes the operand data from the register file and 

control signals to the IE block of the extension. In general, the instruction decoding may 

be implemented in logic but for a more flexible design a content addressable memory, or 

CAM, is preferred. The IE block of the extension may span the IE and MA block of the 

TISA, allowing it an additional clock cycle of execution time to complete the designated 

operation. When operations require additional clock cycles an IE of the extension sends 
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a signal to the hazard detection unit of the TISA to stall the processor until the extension 

has completed operations. The IE of the extension completes execution of its 

implemented instruction and passes the results to the WB block of the TISA. Other 

issues exist in arbitrating between the TISA and the extensions, as well as controlling 

this more complex data path. These issues will be identified and addressed in Section 4. 

 

3.4 THE eMIPS WORKSTATION 

 Fig. 9 illustrates the two ways in which a workstation based on the eMIPS 

microprocessor differs from a regular workstation. In the first place, at power up time 

the TISA is loaded in the FPGA if it is implemented as the default configuration. If it is 

implemented in fixed logic this step is not necessary. If the step is necessary, a secure 

component verifies the validity and integrity of the configuration file and loads it on the 

FPGA [ 9 ]. In the second place, when a user starts a program that uses an extension the 

Operating System, or OS, asks the TISA to verify and load the extension configuration 

file and enables it for that particular process. Other processes can later share the 

extension. For those extensions that are in fact peripherals the corresponding software 

entity is a device driver. A multi-core extension is loaded directly by the OS, 

automatically as appropriate. 
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Fig. 9. The eMIPS Workstation, Concept 

 

 

 When the execution comes to a basic block accelerated by an extension, the 

extension will execute its optimized extension instruction and skip the block that the 

instruction replaced. If for any reason the extension is not available the extension 

instruction is ignored and the software executes normally. To accomplish this evolution 

of the eMIPS microprocessor within a system some software support is required. Some 

of this software support was described in Section 2.4, namely the software profiling tools 

used to identify the basic blocks to be implemented as extensions. Additional changes to 

the OS software are required to control the loading of extensions and to activate them 

when they are available.  
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 The OS is notified of the extension requirements at application loading time, 

either explicitly by invoking some Application Program Interface (API), or implicitly by 

information contained in the executable file image. The OS keeps track of the extension 

information on a per-process and per-processor basis, as part of its protected state. Fig. 

10 depicts the additional state that is required for a dual-multiprocessor using the 

extensible processor of Fig. 8. Notice that it is necessary to keep track of which 

extension is loaded in which slot of each available processor, as is depicted in Fig. 10. 

This knowledge is necessary to load extensions from different application programs at 

the same time. 

 

 

 

Fig. 10. Required Additions to the OS-Managed Protected State, Processes and Processors 
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 The OS loader is the module responsible for providing the extension data to the 

OS, at application launch time. The loader can be used to help sharing extensions among 

applications. Every extension instruction is defined by the binary patching tool using op 

codes that all start at some value and progress in the same manner. This leads with 

certainty to collisions between op codes among independently developed extensions. 

What the loader can do instead is to modify the op codes in a newly loaded image such 

that they minimize the conflict with other previously loaded images. Fig. 10 shows the 

effects of this optimization. Because Process-A and Process-B use different op codes 

they could both be scheduled on Processor-1 without incurring any management trap, 

and Process-B can be scheduled on both processors. If we try to schedule Process-1 on 

Processor-2 we will instead incur a trap. 

 An extensible CPU has only a limited number of slots for currently-loaded 

extensions. The actual number could be as small as depicted in Fig. 8 or much larger, but 

it will always be finite. The OS is the arbiter that manages this limited resource on behalf 

of the application program(s), sharing it in an efficient manner. This management 

problem is similar to the problem of handling a FPU and the state left in it by multiple 

application programs. Well known algorithms can be applied here, with one crucial 

difference. In the FPU case execution cannot proceed unless the coprocessor is made 

available because there is state left in it and only the FPU is capable of executing the 

floating-point instructions. In the case of extensions, we are subject to neither of these 
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constraints. In the first place, the application state is held in the general purpose registers 

and not in a special unit, unless the extension provides extra register state, which is a 

special case similar to the floating-point case. Notice that the extension configuration file 

is not changeable and does not need to be preserved across context switches. Secondly, 

the code of the original basic block is still available; therefore the OS has the option of 

skipping the extension instructions and simply falling-through to the original code. This 

is the reason why we require the extensible microprocessor to leave it to software to 

decide whether to trap or not on an extension instruction. 

 Having the option to continue execution “without the coprocessor” opens the 

door to new and more elaborate software management algorithms, some ideas are as 

follows. The operating system could exclusively assign the resource to the application 

that is observed to make the most use of it or is selected by a human user; and/or disable 

all extensions on interrupts, assuming that interrupt service routines will not make use of 

them, or to guarantee predictable response times; and/or load as many extensions as 

there are available slots and fall-back to the non optimized basic blocks otherwise; 

and/or use a least-recently-used algorithm to handle what is effectively a cache of 

extension data. 

 Executable images that use extensions can potentially pose a security threat to 

the guest OS. A certification authority, such as the OS vendor must sign such images to 

attest to their safety. If the extension uses the technique described in Fig. 6 there is no 

security threat because the semantic of the extension instruction is the same as the block 
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of instructions it replaces. Nonetheless, certification is still required to prove that the 

extension configuration file does indeed match the intended semantics. 
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4 IMPLEMENTATION 

 

 One way to realize the eMIPS processor is to start from an existing data path 

implementation and to modify it as indicated in Section 3.3. Xilinx and other FPGA 

manufacturers provide examples of so called “soft-core” microprocessors, which are also 

easily retarget able to different devices. Unfortunately, implementing the 

interconnections between the individual pipeline stages of the eMIPS microprocessor 

data path and the extensions requires access to the inputs and outputs of each pipeline 

stage. Due to the proprietary nature of soft-core microprocessors used in FPGA system 

designs this is not readily available. For this reason, it becomes necessary to implement a 

full MIPS data path from scratch to provide these needed connections for the TISA. 

 The pipeline has five stages like the classic CPU and processor models 

previously discussed in Section 3.1. The pipeline stages include Instruction Fetch (IF), 

Instruction Decode (ID), Instruction Execution (IE), Memory Access (MA) and 

Writeback (WB). The descriptions of these pipeline stages have been outlined in Section 

2.2. 

 To realize a complete microprocessor capable of executing test applications the 

system requires some peripherals integrated on chip in addition to the data path. The 

minimum set of required peripherals includes the Universal Serial Synchronous 

Asynchronous Receiver Transmitter, or USART, the interrupt controller, timers, the 

Static Random Access Memory (SRAM) interface, the flash interface, the parallel 
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input/output interface, or PIO, and the block Random  Access Memory (RAM) interface. 

The data path accesses these peripherals through the memory interface. The 

microprocessor’s peripherals map to the memory locations in accordance to a memory 

map stored in the block RAM. The block RAM is a pre-initialized memory element 

internal to the FPGA that may be used to store data or implement other functions. In this 

case, the block RAM is interfaced to the microprocessor as a small internal memory that 

stores the memory map and the boot loader for the system. 

 

4.1 CHALLENGES 

 The implementation of the eMIPS microprocessor system prototype posed some 

nontrivial challenges that required consideration as work progressed. The solutions 

presented may be later improved upon in future works in this area. 

 

4.1.1 SCALING 

 Many area and complexity issues rise out of the need to scale up some of the 

components of the data path for the extensions to work efficiently. Since some 

extensions require more than the standard two operand registers allowed in the standard 

RISC architecture the register file must be scaled up to allow for additional read ports so 

that the extension may gather all its operand data in parallel and prevent the delay 

resulting from multiple register accesses. A similar problem exists for the write ports. 

Most extensions will modify more than one register in WB so additional write ports are 
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needed. In the prototype the register file had been scaled by four (eight read ports and 

four write ports) and had grown in size by a factor of six. This disproportionate increase 

in size versus port numbers is a direct consequence of the modular architecture of the 

FPGA. 

 The FPGA slices can be easily combined and cascaded to build larger 

components, but there is an overhead generated by the interconnected blocks. Consider 

building five to one multiplexers using only four to one multiplexers as the building 

blocks. It is necessary to route two inputs into one multiplexer and ground the others. 

The output of the multiplexer is input to a second multiplexer, along with the remaining 

inputs. In this way it takes two four to one multiplexers to realize a five to one 

multiplexer, three for an eight to one multiplexer and four for a twelve to one 

multiplexer. Additional logic is needed to control the switching of these multiplexers. It 

is plain to see how this poor scaling results in such growth. In addition to the register file 

read and write ports, the hazard detection and data-forwarding units must also be scaled 

to meet the increased data throughput and they create similar scaling issues. 

 This scaling issue must be managed properly, it is a constraint imposed by the 

FPGA technology and cannot be avoided. The parallelism of operand fetch and 

writeback can be scaled up or down as area allows in each implementation. As the 

parallelism changes, the overhead for gathering data and writeback varies inversely. 

Therefore, the eMIPS scaling is a two parameters optimization problem with respect to 

area and execution overhead. The original register file attempted to remove all execution 

overhead by providing sufficient ports for the potential extensions identified. However, 
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such a module required two thirds of the FPGA alone. Such an increase in area 

requirements for this module makes this approach impractical. 

 Instead, we accepted a small overhead by adding two read ports and one write 

ports dedicated to the extensions in addition to those utilized by the rest of pipeline. The 

overhead involved results from taking multiple clock cycles to gather more data than the 

number of ports will allow in parallel and then writing back data with the same 

limitation. In this way, we experience a maximum overhead of four clock cycles over the 

larger register file while less significantly increasing the area requirements. This 

acknowledgement of allowing for multiple register transactions also leaves us with a 

more scalable architecture that will be able to handle any size of operands and return 

data. 

 

4.1.2 AREA CHALLENGES 

 The limited physical resources available on the Virtex IV LX25 FPGA impose 

considerable constraints on the design and implementation of the eMIPS microprocessor. 

In the first place, the FPGA contains only 10,752 slices for realizing the logic of the 

design. [ 59 ][ 58 ] As the microprocessor grows in complexity additional logic is 

required to realize it. The minimum components to realize the eMIPS microprocessor 

include the baseline data path (including five pipeline stages, registers, exception handler 

and pipeline registers), memory interface (including memory mapped peripherals) and 

room for the Extensions. To realize a functional device, peripherals such as the SRAM 

memory interface, USART, Timers, and interrupt controller are required. An interface to 
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the System ACE chipset for reconfiguration is also required. These components in some 

cases are fairly complex requiring a large number of slices. The reconfigurable feature of 

the design further constrains use of the physical resources area-wise by requiring the use 

of bus macros, or pre-routed macros. Bus macros maintain the connections between 

fixed and reconfigurable logic by forcing all signals that cross the boundary to route a 

certain way in every configuration. These bus macros are fixed and cannot be optimized 

away, and their placement is important. For this reason, the bus macros have the 

potential to create considerable overhead in the design. 

 

 

  

Fig. 11. Input Coupling Bus Module 
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 To minimize the impact of the bus macros on the design and to reduce area 

overall, we strive in the implementation of each module to optimize each component as 

it is designed. Sometimes this requires revisiting a component to squeeze out a few more 

slices. A method, illustrated in Fig. 11, of feed-forward input-coupling/output-

decoupling helps reduce the bus macro overhead. Each component has input and outputs 

that must be routed to multiple other components. In an effort to minimize the number of 

signals that cross from one component to the next, the inputs of each component are 

coupled together into a bus-like module that collects all inputs to a component together 

and then passes them to the component. Inside this bus-like module, signals can be 

consolidated and optimized to reduce the number of signals that must be passed to the 

component. For instance, if you have two control signals from different sources that 

through a simple logical combination such as an AND gate, you can take that logic out 

of the functional unit and place it in the bus module. By moving this simple logic we 

reduce two signals that must cross the module boundary to one and other reductions are 

possible. In the case of a component that is reconfigurable this reduces the number of 

signals that must pass through a bus macro and thus reduces the number of bus macros 

required.  

 

4.1.3 PIPELINE ISSUES 

 For the eMIPS it is necessary to address issues that occur in all RISC 

architectures but that here take on additional requirements. These include pipeline 

control, exceptions, branches and hazards.[ 30 ] The pipeline control is assigned to the 
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ID of the extension that takes control of the pipeline and these controls propagate 

through the pipeline by the pipeline registers as in the standard RISC architecture. The 

eMIPS diverges from this by adding multiplexers ahead of the EX, MA, and WB stages. 

These are needed for path exit and reentry when an extension is used.  
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Fig. 12. Pipeline Arbitration Hardware 
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 The eMIPS suffers from the same hazards as the ‘classic CPU’ which are 

addressed as follows. To minimize the number of instructions in the pipeline that are 

fetched before a branch is tested, RISC processors perform all branch tests and jumps 

from the ID phase. This explains the strange behavior of branch instructions forcing the 

execution of the instruction that immediately follow the branch (delay slot) whether the 

branch is taken or not. A problem arises when data from EX is needed for ID. The data 

is not guaranteed to be ready in time for it be used in ID so the pipeline must be stalled 

until the end of EX and forwarded in MA. When the hazard detection unit detects this, it 

signals a stall to the pipeline. There are two ways to handle data hazards, forward the 

data and stall. The eMIPS processor utilizes both. If data for a register being written to is 

in MA or WB, the data is forwarded to ID or EX as appropriate. 

 The eMIPS pipeline is more complex than the standard RISC pipeline that most 

readers are familiar with. In addition to the standard issues of the RISC architecture the 

eMIPS adds the issue of arbitration between the TISA and the extensions. A pipeline 

arbiter, in Fig. 12, is used as the gateway to the pipeline. The details of this arbiter are 

given in Section 4.2.4. In general, the pipeline arbiter is configured using the registers of 

the exception handler. Registers previously unassigned in the MIPS architecture within 

the exception handler become enable, disable and priority controls for the arbiter. Using 

the configuration set in the exception handler the pipeline arbiter accepts 

acknowledgements regarding recognized instructions and grants control of the pipe line 

accordingly. 
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 In addition to these arbitration issues, the pipeline must include a way for the 

data control signals traveling down the extension path to return to the baseline path at 

some point to complete execution of the instruction by either performing a memory 

operation or writing back to the register file. The extension ID determines where the 

extension path reenters the TISA data path based on the instruction encoding. To reenter 

the baseline path at either MA or WB the extension uses a large multiplexer that outputs 

to the proper pipeline stage where it will reenter the pipeline, as seen in Fig. 13. These 

are two to one multiplexers, with the extension and the previous pipeline stage as inputs. 

 

 

 

Fig. 13. Data Path Reentry Hardware 

 

 



   56 

 In the case of the a simple extension, one that requires less than two clock cycles 

with no memory access, no change in the pipeline clocking pattern is required. The 

instruction can execute in step with the pipeline and reenter at the appropriate point. 

However, in the case of an extension requiring three or more clock cycles to complete 

the pipeline will have to stall until the execution is complete and the result is written 

back. Stalling the pipeline is necessary due to potential dependencies. Any performance 

penalties this creates could be alleviated by further complicating the pipeline controls. 

The hazard detection could check for dependencies and only stall if one exists. The 

pipeline could continue in parallel while the extension is executing and then the 

extension would only have to stall the pipeline long enough to insert the results to be 

written back to the register file if the a dependency has not already caused the pipeline to 

stall. This method however, involves considerably more complexity and in this case the 

commit of instructions would no longer be in order. 

 

4.1.4 EXCEPTION PROCESSING 

 eMIPS uses an exception handling coprocessor to control the state of the 

microprocessor and to store information about exceptions for later software processing. 

Replacing an arbitrary sequence of instructions with a single extension instruction can 

create exceptions (such as TLB misses) at a number of points during execution of the 

extension instruction. Consider the case of a load instruction that is the third instruction 

in the original sequence. Should the effective address of the load fail to translate an 

exception must be reported, according to the MIPS ISA, for a PC at the fourth address in 
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the sequence. The address that failed translation must also be made available to software. 

If any register was modified by the first or second instructions they must be written back 

to the register file. 

 In some cases it is possible to implement this type of extensions in a transactional 

style. All resources and address translations are gathered before the instruction starts and 

any failure is reported at the starting address. No write-backs are needed and this 

simplifies exception reporting. Once the instruction starts it is guaranteed to complete 

and to reach the Writeback stages without incidents. 

 In more complicated cases this scheme is not feasible, for instance if an effective 

address is the result of a preceding load instruction in the same sequence. In these cases 

the extension can maintain a virtual PC register that follows the progress of execution, 

mimicking the progress of the PC in the original sequence. The instruction will proceed 

to the Writeback regardless, using the partial results. When an exception is reported 

execution will restart from within the original basic block. This is the main reason why 

the preferred means of patching binaries for eMIPS is to insert the extension instruction, 

without damaging the original basic block. 

 

4.2 eMIPS SYSTEM COMPONENTS 

 This section provides detailed descriptions of the key components that make up 

the eMIPS microprocessor architecture. These include the eMIPS pipeline itself, the 

extensions, pipeline arbiter and memory map.  
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4.2.1 PIPELINE DATA PATH 

 The outputs of the IF block routes to the ID stage of the TISA, the ID stages of 

each extension slot and to a CAM. The input to the CAM is the op code field of the 

instruction; the output is a set of enable lines, one per extension slot. Each ID attempts to 

decode the instruction in parallel using combinatorial logic. The output of the IDs and of 

the CAM route to an arbitration module that determines which ID has recognized the 

instruction and who should control execution from that point on. The CAM output is 

used to arbitrate conflicts between the IDs. Additional logic from the system coprocessor 

can disable individual IDs.  

 The general purpose register file connects to the IDs through the arbitration 

module to allow the winning ID to gather operand data for executing the instruction. The 

number of read ports on the general purpose register file increases to cope with cases 

where the extension instruction requires more than two operands and reduce execution 

overhead. The top two read port outputs route to the TISA IE block and each port routes 

to each of the extension blocks. The remaining pipeline stages in the TISA remain as 

they would be for the classic CPU, except the connections at the EX-MA and MA-WB 

pipeline intersections are multiplexed with connections to the extensions. This allows 

execution in the extensions to re-enter the normal pipeline at any point. The data forward 

and hazard modules of the pipeline are scaled to incorporate connections to the extension 

slots. The write ports of the general purpose register file more than the standard one. 

This supports extensions that produce more than one result. 
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 The extensions have ports that interface to the IF, MA and WB stages of the 

TISA pipeline. These interfaces conform to a standard bus macro that must be applied to 

all extensions in order for them to be applicable to the microprocessor’s hardware. These 

interfaces include control signals from the arbitration unit derived from the outputs of 

the ID blocks and the status enable/disable bits of the extension control registers in the 

system coprocessor. The extensions use the interfaces to the other pipeline stages to pass 

data to those stages in order to reenter the TISA pipeline and continue normal execution. 

Extensions requiring more than two clock cycles to complete may stall the pipeline 

through the hazard detection unit. The status registers in the system coprocessor controls 

the clocks to the extensions to reduce power consumption from a disabled extension.  

 

4.2.2 BOOTLOADER 

 Like other systems the eMIPS prototype requires some initialization or setup 

before it can begin to execute application software. This is performed by a simple 

program that we have called the bootloader. The bootloader initializes the peripherals 

that are available and determines where to jump to begin operation. In our prototype 

system, after initializing the peripherals the bootloader checks the PIO for the status of a 

button. If the button is asserted, the bootloader attempts to download the application 

from the serial line and to write it to the SRAM. After download completes the 

bootloader jumps to the base address of the application it received to begin execution. If 

the button is not asserted, the bootloader jumps to the flash and begins executing there. 
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 The bootloader must run each time the system powers up after the default 

configuration is loaded and each time the system is reset. The bootloader is stored in side 

a block RAM inside the FPGA. A block RAM is memory module that is part of the 

FPGA configurable fabric can be used to implement small fast internal memories or 

memory related components such as FIFO and CAM. The block RAM is integrated in to 

memory controller at a known fixed location that corresponds to the reset vector of the 

eMIPS microprocessor. This ensures that the system is initialized each time it powers up 

or is reset. 

 

4.2.3 EXTENSIONS 

 The eMIPS extensions provide flexibility in microprocessor design of such a fine 

granularity that has not been previously presented. By integrating hardware modules 

directly into the pipeline stages the overhead for communication between specialized 

hardware and the data path is minimized and in some cases eliminated. This makes the 

performance gains made through the hardware optimization much more valuable. Also, 

since the extensions are reconfigurable, modules may be loaded and unloaded on 

demand when necessary to allow the capabilities of the system to evolve as needs 

change. The extensions address the area waste that originates from requiring 

microprocessors to include hardware features in designs just in case they are needed. 

The eMIPS microprocessor can omit them and add them later if-and-when they are 

indeed needed, thereby reducing size and power. 
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Fig. 14. eMIPS Extension Interfaces 

 

 

 The extensions have ports that interface to the IF, MA and WB stages of the 

TISA pipeline. These interfaces conform to a standard bus macro that must be applied to 

all extensions in order for them to be applicable to the microprocessor’s hardware. The 

interface described herein is implementation specific. Other interface may perform better 

under different circumstances. The following interfaces depicted in Fig. 14 were 

considered: 

• To/From IF – This interface is how the extension receives the instruction read 

from memory that must be decoded. The extension also takes the program 

counter, or PC, from this interface for calculating the next instruction to be 

fetched in the event the extension wins arbitration and executes the instruction. 
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The extension passes this new PC to the IF to fetch that instruction if it wins 

arbitration. 

• To/From Pipeline Arbiter – The interface allows the extension to request control 

of the pipeline when it thinks that the instruction fetched belongs to it. After 

arbitration is complete the pipeline arbiter uses this interface to grant or deny the 

extensions request for execution. 

• To/From Register File – The pipeline arbiter controls access on this interface by 

only allowing access to the register file to the extension that won the arbitration 

so it can gather operand data and writeback results. 

• To/From Exception Handler – The extension requires this interface for reporting 

exceptions so that they can be handled by software. This interface requires a port 

for reporting the virtual PC of the instructions being replaced in the case of 

instruction compacting extensions. This way the exception may be handled as it 

would be in the original block and reenter within that block without re-executing 

the entire extension. 

• To/From Data Forward and Hazard Detection – These are two different modules 

designed to handle the dependencies between consecutive sequential instructions 

that generate hazards in a pipeline environment. The interfaces include ports to 

report the operand and destination registers being used by the extensions and 

ports for retrieved data forwarded from later pipeline stages that have been 

modified but not yet written back to registers. This interface also includes signals 
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to the hazard detection unit to assert a stall to the pipeline if the extension 

requires additional time to complete its task. 

• To/From Memory Controller – This is an additional read/write port to memory 

similar to that used in the MA stage of the pipeline. Like in the original memory 

ports, access to memory would be managed by a Memory Management Unit, or 

MMU, to prevent illegal memory accesses. This interface can be thought of as 

optional if the implementation does not wish to support multiple memory fetches 

in extensions. Single memory fetches may be implemented by reentering the 

pipeline at MA by passing the address through the multiplexer with the 

appropriate control signals. 

• To MA – This interface allows the extension to reenter the TISA execution data 

path after it has completed its task. This interface resembles the outputs of the 

EX pipeline stage in the TISA, with the addition of control signals switching the 

multiplexer and allowing for the extension passing its signals to the MA pipeline 

stage. From here the extension may assert the signals to perform a memory 

operation or simply pass along the data to WB for writeback to the register file. 

• To WB – This interface allows the extension to reenter the TISA execution data 

path after it has completed its task. This interface resembles the outputs of the 

MA pipeline stage in the TISA, with the addition of control signals to switch the 

multiplexer to allow the extension to pass its signals to the WB pipeline stage. 

From here the extension may assert signals to writeback values to the register file. 
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• To/From Memory Bus – This is an additional port to the microprocessor’s 

peripheral memory bus that is used to interface the on-chip peripherals through 

the memory interface. This is another optional interface. If the eMIPS 

implementation allows for extensions to be on-chip peripherals, the extension 

may be connected using memory interface and allotted a partition in the memory 

map. This way the extension peripheral may be treated just like any other on-chip 

peripheral. 

 Other interfaces or variations may be adapted given the needs of the individual 

implementation. The architecture is modular in that anything may be developed as an 

extension but it must conform to the interface provided by the extensible microprocessor 

design that is meant to use it. For instance, this means that the datasheet of a 

hypothetical commercial microprocessor using the extensible microprocessor 

architecture should include the descriptions of its interfaces and their conventions. This 

information is required for the hardware designers who will derive the hardware 

modules. In addition to information about the interfaces, information about the how 

instructions decode and pipeline arbitration is important for instruction decoding in the 

extension. With the information from the data sheet, the task of creating a new extension 

can be broken down into the following steps: 

1. Implement the logic to execute the semantic of the desired function or basic 

block in the most optimal way possible. 

2. Implement the instruction decode per the data sheet. 
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3. Implement top level extension model with interfaces that conform to the 

conventions expressed in the data sheet. 

4. Integrate the logic and instruction decode inside the top level extension model 

with the interfaces to the pipeline. 

5. Open the desired development environment with the model of the targeted 

extensible microprocessor and associate the extension with the desired extension 

slot. When using Planahead from Xilinx on a partially reconfigurable 

implementation, open a project with the base extensible microprocessor 

assembled. The extension being implemented will have to be named to the same 

name as the extension slot for which it is being targeted in the top level module 

of the microprocessor so it can be associated with that slot. 

6. Execute the design flow for the targeted architecture. In the case of Planahead we 

execute the partial reconfiguration design flow for Xilinx FPGA using the dialog 

windows provided. 

7. Generate configuration files for the targeted extensible microprocessor. For the 

Xilinx FPGA we used in this implementation, after Planahead finishes the partial 

reconfiguration design flow, users have the option to generate base configuration 

files (*.bit) for the base configuration including the new extension or a partial 

configuration file that will configure only the region partitioned for the extension 

and leave the remainder of the FPGA as it is. The partial configuration file is the 

one that would be included with binary image of an accelerated program to be 

loaded to the targeted microprocessor’s architecture. 



   66 

8. If the microprocessor system includes the System ACE configuration solution to 

allow for the configurability of the FPGA, the configuration file (*.bit) will need 

to be converted to a System ACE configuration file (*.ace). 

 The extensions are meant to provide additional hardware support as needed to 

accelerate the performance of software applications, or to provide new features or on-

chip peripherals. Regardless of the intended purpose, all extension must include certain 

functionalities. All extensions must be able to recognize their own instructions and 

request control from the pipeline arbiter. The extension must be able to calculate the PC 

of the next instruction to be fetched if the instruction being decoded is for this extension 

and it wins arbitration. This calculation of the new PC will take into account the size of 

the basic block being replaced by the extension so that those instructions may be skipped 

and the microprocessor resume execution of non-extension instructions after the basic 

block. The extensions must also provide all the controls to allow the extensions data and 

controls to reenter the TISA pipeline data path to finish execution. 

 Other functionality described herein is recommended to deal with known issues 

that the extensible architecture can create. These features are not just possible ways of 

addressing the problems; it is the position of this thesis that they are the best methods 

known to date. We present the previous work in the area of reconfigurable processors 

and explain where we depart from them in Section 8. 
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4.2.4 PIPELINE ARBITER 

 The pipeline arbiter acts as the gateway to the controls of the remainder of the 

eMIPS pipeline. The functionality of the system coprocessor increases to let software 

configure the pipeline arbiter and manage the microprocessor’s extension slots. 

Additional register numbers, not previously allocated, in the system coprocessor or CP0 

are defined to control the state of the extensions. Bits in these registers may enable or 

disable a given extension slot, and define the behavior when an extension instruction is 

recognized by an extension that is currently disabled. Two alternatives are to treat the 

instruction as a NOP or to generate a RI exception. Some registers are defined to control 

access to the op code CAM, in ways similar to the MMU interface. Yet other registers 

are used to set the priority of the extension slots.  

 When an instruction is decoded the arbiter decides whether the TISA data path or 

the extensions will take control. The arbiter receives acknowledgements from the 

instruction decoders of the TISA data path and the extensions whether or not an 

instruction has been recognized. Using the op code CAM, different op codes are 

assigned to either the TISA or different extensions. An instruction is considered 

recognized if the extension acknowledges the instruction and the op code of the 

instruction is associated with that extension in the op code CAM. If only one instruction 

decoder recognizes the instruction the path that is associated with that decoder will 

normally take control, but there are some special cases that must be addressed. 

 If the instruction is only recognized by a disabled extension or if the op code 

CAM entry does not match, the arbiter must not allow that extension to take control and 
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prevent the TISA data path from throwing a RI exception. When this occurs the 

microprocessor must interpret the instruction as a NOP. In this case the arbiter uses 

control registers in the exception handler and the output of the op code CAM to verify 

which extensions are enabled and which are not for a given op code. It is also necessary 

to prevent generation of a false RI exception by TISA data path, and the arbiter is 

therefore the one responsible for throwing the exception when none of the extensions 

recognizes the instruction. 

 A similar solution is implemented in the case of multiple instruction decoders 

recognizing the same instruction. In this case the extension control registers assign a 

priority to each extension and to the TISA data path. By default, a daisy chain priority is 

assigned starting from the TISA data path. When conflicts do occur, the extension or the 

TISA data path with the highest priority wins control of the pipeline. In this way, if the 

extension has higher priority than the TISA, the extension may mask an instruction in 

the TISA. For instance, consider the case of multiplication. If an application requires a 

lot of multiplications to the point that developers want a more optimized multiplier than 

what is available in the TISA, an extension could be developed that includes a faster 

multiplier that perhaps uses a larger area. Similarly, this may also be accomplished by 

altering the entry in the op code CAM to only associate the op code with a particular 

extension.  However, this solution would result in a stall if the extension were already in 

use rather than fall back on the original multiply. 

 Finally, if none of the instruction decoders recognize the instruction, the pipeline 

arbiter should throw a RI exception, except when the application running on the 
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microprocessor uses an extension and for whatever reason that extension is not available 

in the microprocessor. There are two potential solutions for this in hardware and 

software. In software, the exception handling routine could check a table of extension op 

codes and if the op code matches one that is in use, ignore the exception. Otherwise, 

handle it normally. In hardware a similar look up table could be implemented and 

checked by the pipeline arbiter before throwing the exception. 

 

4.2.5 MEMORY MAP AND PERIPHERALS 

 Like most modern microprocessors, the eMIPS prototype includes a few 

hardware devices with the microprocessor on the same chip. These devices range from 

specialized hardware modules to communications interfaces and memory. Peripherals 

that might be useful in an eMIPS microprocessor include but are not limited to USART, 

SRAM controller, FLASH controller, timers, interrupt controller and others. The 

microprocessor interfaces to these devices through memory operations such as load and 

store. The devices are allocated to ranges of memory addresses within the 

microprocessors memory space using a memory controller or combinatorial logic. The 

description of these ranges and the function of each of the addresses are called the 

microprocessor system’s memory map. In most microprocessors, this memory map is 

largely static with limited configurability and only for external devices. 
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32'hfffdffff 

32'hfffd0000 
SRAM 

32'hfffcffff 

32'hfffc0000 
DDRAM 

32'hfffbffff 

32'hfffb0000 
FLASH 

32'hfffaffff 

32'hfffa0000 
INTERRUPT CONTROLLER 

32'hfff9ffff 

32'hfff90000 
USART 

32'hfff8ffff 

32'hfff80000 
TIMER 

32'hfff7ffff 

32'hfff70000 
WATCHDOG 

32'hfff6ffff 

32'hfff60000 
GPIO 

32'hfff5ffff 

32'hfff50000 
IDE 

32'hfff4ffff 

32'hfff40000 
LCD 

32'hfff3ffff 

32'hfff30000 
PS2 

32'hfff2ffff 

32'hfff20000 
VGA 

32'hfff1ffff 

32'hfff10000 
ETHERNET 

32'hfff0ffff 

32'hfff00000 
POWER MANAGEMENT 

32'hffefffff 

32'hffef0000 
AUDIO CODEC 

32'hffeeffff 

32'hffee0000 
BLOCK RAM (BOOTLOADER) 

Fig. 15. Example Memory Map for an eMIPS Microprocessor System 

 

 

 The strength of the extensible microprocessor architecture is its flexibility and 

ability to evolve. This feature continues in the design and implementation of the eMIPS 

memory map. The eMIPS memory map is partitioned into 64K ranges of addresses, as 
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depicted in Fig. 15, that may be used for interfacing devices. Since the eMIPS 

microprocessor is an extensible microprocessor, the number, type, and location of 

peripherals may not be known or could change. For this reason, the bootloader which is 

run at start up plays an important role in determining what peripherals are available and 

where they are. 

 Each peripheral designed for integration into the eMIPS memory map includes a 

read-only tag register to identify the purpose and functionality of the peripheral. The tag 

register is sixteen bits and is broken into two eight bit fields. One field is the peripheral 

identification and the other is the instance identification. The peripheral identification 

denotes the type of peripheral the device is and its function. Each type of peripheral is 

assigned a unique peripheral identification to allow software to determine what the 

device is and how to use it. With eight bits it is possible to uniquely identify 255 types of 

devices. The tag values used to identify peripherals in eMIPS are given in Fig. 16. The 

instance identification allows systems to interface multiple instances of the same device 

type. Each instance must have unique instance identification. In this way each device 

interfaced to the eMIPS memory map has a unique identifier and its purpose can be 

determined. 

 The eMIPS microprocessor is a 32-bit based processor and performs operations 

on 32-bit data. For this reason the sixteen bit tag register is coupled with a sixteen bit 

base register for memory controller peripherals. In these memory controller peripherals 

the base register gives the upper sixteen bits of the base address of the memory being 
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interfaced by the controller. The value of this register may be changed by software to 

configure the location of memory. 

 

 

Peripheral Type Tag 
  
Block RAM 0 
Pulse Width Modulation 1 
SRAM Controller 2 
DDRAM Controller 3 
FLASH Controller 4 
Interrupt Controller 5 
USART 6 
Timer 7 
Watchdog 8 
General Purpose IO 9 
System ACE 10 
LCD 11 
PS2 12 
VGA 13 
Ethernet 14 
Audio Codec 15 
Power Management 16 

Fig. 16. Peripheral Types and Associated Tags 

 

 

 This base-tag register is located at the base address of the memory map partition 

it is assigned. In this way, the bootloader may determine what peripherals are available 

and where they are by checking the base address of each 64k partition allocated for 

peripherals. The bootloader reads these address locations. If a recognizable tag is read 

from the least significant sixteen bits of the base-tag register, the bootloader can 
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initialize it and configure the OS accordingly to make this resource available. In most 

cases, the number of address locations required to control and interface to peripherals are 

small compared to the 64k address spaces allotted for them. For this reason, the eMIPS 

memory map allows for peripheral of similar type to be grouped into the same 64k 

partition. After the base-tag register is read and recognized, the number of addresses 

used by this peripheral is known because they conform to the interface assigned to this 

type. The bootloader after reading and configuring the peripheral at the base location, it 

skips the appropriate number of address locations utilized by this peripheral to check for 

a second one. If this address location contains a valid tag that matches the type of the 

previous, this will also be initialized and configure. The bootloader continues to skip the 

address spaces and checking tags until it finds an invalid tag or the end of 64k partition. 

 After the bootloader initializes the static peripherals in this way, a similar method 

can be used to initialize extension peripherals. Since peripherals may be implemented as 

extensions, the memory map must be dynamically maintainable. Also, the memory map 

partition it is assigned to and position in that partition should be configurable and 

protected after configuration. Since these extensions will not be used to execute 

instructions, the unused op codes may instead be used for special platform specific 

functions for this extension to configure its position in the memory map. After the 

extension peripheral is loaded by the OS, the extension is enabled using the exception 

handler registers that control the pipeline arbitration. Using these special instructions in 

privileged mode, the OS configures the peripheral extension to reside in an unoccupied 

location. When this is done, the extension is disabled in the exception handler and the 
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base location of the peripheral extension is assigned and checked. If the tag is recognized 

and matches the type expected, the OS will initialize and configure the extension 

peripheral like the bootloader initialized and configured the static peripherals. By only 

enabling the extension for execution long enough for configuration and disabling it after, 

we protect the configuration of the peripheral extension from tampering. This protection 

is strengthened if the constraint is made that these configuration instructions or the 

change of extension state may only be made from privileged mode. 
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5 TESTING AND VERIFICATION 

 

 The testing and verification process of the eMIPS system required extensive 

interactions between simulations and HDL coding of the microprocessor architecture, 

using purely software-based functional simulations and software-simulation integrated 

with FPGA prototypes and their debugging tools. Specifically, Mentor Graphics’ 

ModelSim 6 Xilinx edition [ 36 ] was used for HDL functional simulations, Microsoft 

Giano [ 37 ][ 22 ] was used for processor and HDL co-simulation and for profiling, 

Xilinx ISE tools were used for FPGA programming and Xilinx ChipScope Pro for FPGA 

debugging.[ 50 ] With Giano a user can create a complete computer system with typical 

resources such as processor, memory, busses, and peripherals for register-level 

functional simulation. Giano interfaces to ModelSim through the Verilog Programming 

Language Interface, or PLI, [ 46 ] so that the behaviors of microprocessors and FPGA 

chips can be simulated at the same time. 

 

 



   76 

 

Fig. 17. Atmel EB63 Evaluation Board [ 6 ] 

 

 

 Giano simulates a full microprocessor system, initially the Atmel EB63 

Evaluation Board depicted in Fig. 17. The simulation of this board provided the initial 

operating environment for the CPU. Both Microsoft Research and the Microprocessor 

Design course at Texas A&M University (CPSC 462) have used this platform for 

research and educational purposes for some time, since before 2004. Software for this 

board was already publicly available and easy to modify [ 29 ] and this well-known 
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platform therefore is a good baseline for comparisons. Later on in the project the CPU 

module and the software have been adapted and simulated in a configuration that more 

closely resembles the target ML401 board from Xilinx.[ 51 ] This configuration is 

shown in Fig. 18. 
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Fig. 18. Peripherals for the ML401 Board 

 

 

 In the test environment depicted in Fig. 19, two instances of the Giano simulation 

run in parallel. Both instances run a slightly modified model of the EB63 board or other 

desired platform. One instance (shown at right) runs with a verified functional model of 

a MIPS data path in place of the ARM core used in the real evaluation board. This 

instance records its execution history and sends it to the eMIPS ModelSim simulation. It 
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acts as an ‘Oracle’, providing the correct execution stream of the software application 

for comparison with the system being tested. The second instance (left) replaces the 

ARM core with an interface to the ModelSim hardware simulator (center).  

 

 

 

Fig. 19. Testing eMIPS with Giano 

 

 

 Inside of ModelSim, a Verilog implementation of the eMIPS data path being 

tested is running within a wrapper module providing a simulated clock. The data path 

simulation interacts with Giano through the Verilog PLI [ 46 ] using memory requests. 

The data path fetches instructions from the memory simulated in Giano and interacts 

with the peripherals according to the EB63 memory map. These peripherals are 
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simulated by Giano to better isolate errors in the data path itself. Each time the data path 

running in ModelSim commits an instruction it checks its internal state against the state 

reported by the ‘Oracle’ instance of Giano. This allows the Verilog implementation of 

the data path to verify if it is behaving correctly. When a discrepancy is found the 

simulation can stop immediately, and the history trace most likely contains all necessary 

data to find the cause of the error. In this configuration we can execute arbitrary long 

sequences of instructions, including the bootstrapping of an entire OS and the loading of 

an application program. 

 In addition to the EB63 Oracle environment, another environment was assembled 

for more exhaustive testing. This environment is called the TestGenerator environment 

and is shown in Fig. 20. This simulation includes the same ModelSim interface (labeled 

“FPGA” in the picture) and the simulated MIPS processor (“MipsOracle”) used in the 

previous setup except they are now present in the same Giano instance. They both 

connect to the same test pattern generator (“TestGenerator”) that acts as a memory bus 

interface to both simulated cores. The test pattern generator feeds the simulated cores 

with the same sequence of instructions and data, and captures the addresses and values 

of any data written to memory. As the Verilog implementation running in ModelSim 

commits instructions it compares its state to that of the ‘Oracle’ like in the previous 

example. The TestGenerator scans the entire core instruction set of the microprocessor 

(the TISA) and for each instruction generates a sufficient number of tests to guarantee 

coverage both with respect to the instruction encoding and with respect to the functional 

results given a set of test values in registers. 
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Fig. 20. The TestGenerator Environment 

 

 

 The data path can be verified using these two simulation environments. 

Application testing performed by the EB63 and ML401 environments provides 

confidence that the microprocessor executes the application software like the real MIPS 

microprocessor. The exhaustive functional tests performed by the Test Generator ensure 

that all corner cases operate within specification. 

 Setting up this test environment presented some interesting challenges. The 

eMIPS data path being tested in both these environments were implemented using a five 

stage pipeline. This architecture requires five clock cycles from IF to WB to complete 



   81 

execution of an individual instruction assuming no hazards. The MIPS model acting as 

the oracle however is a simple behavioral simulator that executes an entire instruction 

each clock cycle like a non-pipelined MIPS microprocessor. As a result, the timing of 

these two simulations can be out of synchrony and this makes the testing of timing 

related features such as interrupts difficult to test. As a result some modifications were 

made to the MIPS simulation and the PLI interface to synchronize the two environments. 

First, the PLI interface was changed to allow the eMIPS Verilog simulation running in 

ModelSim to signal to the board simulation in Giano that it had committed an instruction. 

Then the simulation in Giano of the EB63 was modified to only clock the board when it 

receives the signal that an instruction had been committed. In this way, the timing of the 

board relative to the eMIPS data path resembled that of the behavioral MIPS simulator 

running in parallel. The timing of both simulations was synchronized giving both 

simulations the same outputs from the timers and other timing related systems. Using 

this modification, the timer interrupts occur at the same points in execution allowing 

testing of those interrupts in simulation with no modification of the trusted MIPS model 

being used for reference. 

 As the data path is tested and verified for correctness, implementation of the on-

chip peripherals begins. These peripherals have the potential of becoming complex 

systems on their own. Unit testing must be performed on some of these peripherals using 

ModelSim. After the peripherals have been verified in simulation, debugging continues 

on the FPGAs using test benches based on the simulation. Xilinx ChipScope Pro [ 50 ], 

an on-chip debugging and verification tool, allows us to monitor the internal signals of 
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the FPGA for this purpose. Using ChipScope, integration testing follows unit testing as 

these peripherals become interconnected with the data path through the memory map. 

Eventually, a full system is assembled on the ML401 board using the same software 

binaries used in the ML401 simulation with Giano. 

 The process of taking the Verilog code from a behavioral simulation environment 

to the FPGA required some tweaking as well. The behavioral simulations in ModelSim 

and Giano were good for confirming the logic implemented by the code was indeed 

correct but these simulations do not take into account the transient characteristics of 

logic implemented on an FPGA. Due to how the synthesis tool implemented the logic in 

some cases, the path delay has been considerable so logic that worked in a simulation 

environment that experience little to no delay reveals timing errors and bugs in an FPGA. 

As these issues were discovered, we observed their characteristics using ChipScope to 

identify the timing bottlenecks and tweak the logic to correct for them or eliminate them. 

Then we would take these tweaked versions of the data path back to the simulation 

environment used to validate the original design to make sure the logic continues to hold 

with the new timing. 
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6 RESULTS 

 

 This first prototype implementation, while limited in its capabilities, has allowed 

us to explore the different aspects of this problem in detail. This experience has made it 

possible for us to propose innovative solutions to the issues and challenges this new 

microprocessor architecture presents. The following presents the results of our 

experiments with the new architecture. 

 Using the TestGenerator environment explained in Section 5, we verified the 

behavioral correctness of the eMIPS TISA data path across the span of the MIPS R4000 

instruction set. On a server utilizing a four core Intel processor, the test spanning the 

breadth of the instruction set required a little more than a day to complete. The 

simulation executes over a million instructions in the microprocessor during the course 

of the verification. 

 Using the profiling technique described in Section 2.4 we identified potential 

basic blocks from a range of applications and determined the effects of the optimization 

on execution timing performance. The results of these software profiles lend credence to 

the claims of this thesis. Fig. 21 shows the distribution of the top 100 basic blocks in the 

XQuake video game on the Xbox360 gaming platform. On the Y axis is the dynamic 

execution count of the individual basic blocks, numerically indexed on the X axis. Other 

profiling data demonstrate the same two basic traits shown in Fig. 21: the graphs drop 

exponentially and have a rather long tail. In the XQuake case for instance, there are more 
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than 12,500 basic blocks that are executed at least once, against a total population of 

more than 38,500 individual basic blocks. 

 

 

 

Fig. 21. Execution Counts of Individual Basic Blocks in XQuake, on the Xbox360 

 

 

 To demonstrate the potential speedups that optimizing these basic blocks would 

deliver extension instructions with the same semantics as the basic blocks are added to 

the simulation of the CPU. Then the profiled application program is run again, this time 

with the optimized instructions for the basic blocks inserted into the binary of the 

software at locations immediately preceding the basic blocks. When the CPU reaches 

these instructions, it executes the optimized instructions and skips the following block. 
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The idea is that these optimized instructions in the simulation will then become the basis 

for hardware extensions of the eMIPS microprocessor. As shown in Fig. 22, in the 

XQuake case this results in a three-fold improvement in the game’s frame rate. Similar 

results are obtained with the Doom video game, this time using eMIPS and system 

software from the Microsoft Invisible Computing, or MIC [ 29 ]. 

 

 

 

Fig. 22. Speedups from Extension Instructions 
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 Fig. 22 then shows the results from the execution of a series of over 40 tests 

programs that are part of the MIC system. Only one basic block was optimized in these 

tests, the same in all cases and shown in Fig. 6. This optimization is also applicable to 

the Doom case. The third column shows the speedup for the individual test that benefits 

the most from this optimization. The fourth column shows the cumulative speedup 

across all tests. 

 Column five and six in Fig. 22 report the speedups for two benchmarks from the 

SPEC2000 suite run on eMIPS with MIC. Porting of other benchmarks is in progress. 

Other experiments reported in the literature [ 15 ][ 16 ][ 61 ][ 10 ][ 62 ] similarly show 

that replacing basic block sequences with optimized instructions results in a speedup 

from factors of two to factors of five and in some cases over a factor of ten.  

 

 

Module Slices %Total LUTs %Total Clocks %Total 
       
Available on Chip 10752   21504   32   
Data Path 5392 50.15 9614 44.71 2 6.25 
Peripherals 2558 23.79 4714 21.92 4 12.50 
Base Total 7950 73.94 14328 66.63 6 18.75 
Extensions 983 9.14 1608 7.48 2 6.25 
Total 8933 83.08 15936 74.11 8 25.00 

Fig. 23. eMIPS on the Virtex IV XC4LX25 FPGA Device 

 

 

 It took slightly over 100 modules, and about 10k lines of HDL codes to 

implement eMIPS. Fig. 23 provides all the area figures for the key components. The 
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TISA data path requires a little more than a third of the area and on-chip peripherals one 

quarter of the area. A 64 bit signed/unsigned divisor is implemented as an extension, 

which takes 64 clock cycles per instruction at the cost about 10% of the area. 
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7 FUTURE OF eMIPS 

 

 The eMIPS extensible microprocessor is still in its infancy compared to other 

more advanced architectures but show great potential. Throughout this thesis we made 

references to various potential points of expansion of this microprocessor model. In this 

section, some of the strongest potential areas of expansion of the architecture are 

discussed in further detail. These ideas have not been implemented only due to the 

limited time at our disposal. 

 

7.1 CAM BASED DECODING 

 A more flexible implementation of the instruction decoding would include a 

CAM to hold the allowed op codes and control signals stored within. The CAM would 

be loaded with all the instructions supported by the TISA data path. Support for 

extension instruction is implemented by loading the extension into the FPGA and then 

writing a new entry into the CAM. The output of the CAM when presented with an 

instruction will indicate to the pipeline arbiter if the instruction is recognized and if so, 

whether the baseline data path or one of the extensions will carry out execution. This 

alternative instruction decoding and arbitration design is shown in Fig. 24. The same 

data and control signals are inputted to each of the execution blocks and only the one 

that is enabled by the pipeline arbiter executes. The baseline data path is given a NOP 

when it loses the arbitration like before.  
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Fig. 24. Instruction Decoding with a CAM 

 

 

 Use of a CAM solves the problem of the limited number of op codes available to 

the extensions and the resulting conflicts as illustrated in Section 3.4. The pipeline 

arbitration is simplified by this change because the CAM will output the path for which 

the instruction is assigned and then the pipeline must only check to see which if any of 

the eligible extensions are enabled. Then the pipeline arbiter must resolve conflicts if 
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any exist. This approach also eliminates the need for another lookup table of loaded 

extension op codes because this CAM can provide that function as well. Also, we 

eliminate the combinatorial logic required in both the TISA and the extensions required 

for instruction decoding and reducing area requirements. This approach is slightly more 

complex given that it combines functions of several components currently implemented. 

The major draw backs to this approach would be the latency of the CAM and the routing 

overhead to use the memory modules within the FPGA to implement them. The latency 

of the CAM can be up to two clock cycles to read from and then process the output. The 

routing overhead should be small but must be considered due to the floor planning 

requirements of partial reconfiguration. 

 

7.2 MULTIPLE INSTRUCTION DISPATCH 

 The eMIPS provides parallel execution paths within the same microprocessor 

used by difference classes of instructions: the base instruction set executed on the TISA 

and the extension instructions executed on their respective hardware modules. As an 

instruction is fetched and decoded, it is steered to the appropriate path. At each stage of 

the pipeline only a single path in the microprocessor is active as each instruction passed 

through. If you have an eMIPS implementation with sufficient density to contain a large 

number of extensions, the amount of idle time for some modules could be considerable. 

 Consider the situation of a TISA instruction and one or more extension 

instructions in a sequence. Normally we would allow them to be fetched and propagated 

sequentially. However, if each of these instructions use a different hardware module, it is 
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possible that these different instructions could be executed in parallel. A more advanced 

IF unit could fetch multiple instructions and dispatch as many as it could to parallel 

paths at the same time. This has potential to increase throughput by maximizing the 

hardware utilization. 

 A bottleneck or collision point does exist in this scenario when the parallel 

Extensions attempt to reenter the TISA pipeline to complete execution. For this, the 

hazard detection module must be expanded to arbitrate the instructions reentry, commit 

and completion. The hazard detection module most be able determine the original order 

of the instruction and work with data forwarding to maintain data dependencies and in-

order completion. The hazard detection unit must be able to individually stall and grant 

reentry to each parallel path individually. If there are no data dependencies and if in 

order completion is not required, the hazard detection module may allow the parallel 

paths to commit as they complete allowing faster modules to release and be reused 

without waiting on the preceding instruction that may be slow or stalled waiting for data. 

 Architecture of this type, while potentially higher in performance if realized, is 

more complex that even the original eMIPS. The exception handling in particular would 

pose a challenge to deal with all the issues involved in detection, reporting, and CPU 

state. 

 

7.3 MULTI-CORE eMIPS MICROPROCESSORS 

 In Section 2.1, we presented multi-core microprocessor designs as a competing 

design paradigm to our extensible microprocessor architecture. Microprocessors with 
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multiple cores attempt to increase throughput by exploiting parallelization of the 

software being executed. Unfortunately, this is not the natural way most software is 

written. Most high level programming languages are designed for sequential execution 

of the code and results in dependencies that make parallelization difficult. To fully 

realize the potential performance gains of a multi-core system, software development for 

such systems must be revisited. The extensible microprocessor architecture of eMIPS 

attempts to improve performance using optimized hardware after the software is 

implemented. In this way, no change is required at the software level and is invisible 

from the perspective of the software engineers. 

 Despite their current limitations, multi-core systems are growing in popularity 

and new programming languages and techniques exist that can better utilize their 

parallelization. As the trend continues, the extensible architecture of eMIPS and software 

parallelization will come into position to complement each other in an extensible multi-

core microprocessor. Given the flexibility extensions provide to the extensible 

microprocessor architecture, two flavors of extensible multi-core microprocessors may 

be considered. One is a multi-core processor using extension that includes multiple 

instances of the extensible microprocessor data path, each with its own extension slots. 

The other is a combination of static and dynamic processor data paths. The static data 

paths would resemble the TISA and interact like other multi-core systems. The dynamic 

data paths are implemented as extensions that may be loaded or disabled as the load on 

the microprocessor requires it to take on heavier loads or reduce power on lighter loads. 

These extension data paths may resemble the TISA or be custom data paths optimized 
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for a given application. Both flavors make it possible to realize parallel data paths 

optimized for different applications all running on the systems. To further optimize 

execution of high parallelized applications the OS may configure a sufficient number of 

available core slots with the optimized data paths. Then the OS would schedule the 

threads to run on the core that best fits the needs of that thread. 

 

7.4 FROM eMIPS TO eARM, ePOWERPC, ETC 

 The eMIPS prototype of the extensible microprocessor architecture implements 

the MIPS R4000 as its TISA. In Section 2.2, we presented our rational for selecting this 

ISA as the basis for our prototype. This decision was largely based on the availability of 

documentation on the MIPS ISA and the lack of proprietary restrictions on its use. In the 

embedded microprocessor market, microprocessors based on other ISAs are increasingly 

popular. The most popular of these ISAs include ARM and PowerPC. Both these ISAs 

are argued by many to be superior architectures to MIPS. For the extensible 

microprocessor to gain wider acceptance, it will require an implementation of the 

architecture using one or both of these popular ISAs.  

 In addition to other ISAs, there are other microprocessor features omitted from 

this eMIPS prototype in order to keep the implementation simple. Some of these features 

are highly complex in their implementation and were beyond the scope this thesis. To 

develop an eMIPS prototype more quickly, it was decided that omitting such features 

was best. Some features such as branch prediction and speculative execution have been 

shown to improve performance of established RISC microprocessor architectures. 
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Including these features in an extensible microprocessor and addressing the issues raised 

by these features in an extensible platform would provide new avenues for research. 
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8 RELATED WORK 

 

 The concept of using reconfigurable logic to improve application performance is 

certainly not new [ 19 ] but to date not enough progress has been made towards an actual 

implementation of this and related concepts in a complete, usable and safe multi-user 

system.  

 One difficult point is addressing the security risk posed by the potentially tamper 

able FPGA execution engine [ 28 ]. Bossuet et al. [ 9 ] looked at FPGA security in the 

sense of securing the reconfiguration configuration file and protecting the IP contained 

therein. This is a good contribution, but only solves one aspect of the problem. There are 

a number of FPGA-based “accelerator” products [ 43 ][ 38 ][ 47 ] that restrict the use of 

the accelerator to a single process. This conservative approach still fails to secure other 

users from a virus injected into the one process that uses the accelerator. Dales [ 17 ] 

simulates a system that can leverage the FPGA acceleration in a general purpose 

workstation environment, switching the device among many applications. The FPGA is 

interfaced as a co-processor; security issues are not really addressed. Many other 

projects have simulated similar systems [ 27 ][ 39 ][ 48 ][ 13 ][ 34 ], ours is the first 

attempt to actually build a FPGA-based extensible microprocessor and a workstation that 

is safe for general, multi-user application loads. 

 One way to classify the various designs is in the way they interface the 

configurable logic to the main processor. Some use a memory mapped interface or FIFO, 
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most likely over an I/O bus [ 43 ][ 38 ][ 47 ][ 58 ], some use separate co-processors and 

explicit communication [ 58 ][ 33 ][ 39 ][ 27 ][ 13 ][ 35 ][ 26 ] others implicitly 

communicate using hints in regular (branch) instructions [ 14 ]. In eMIPS the 

programmable logic plugs directly into the pipeline and is accessed by explicit, per-

application instructions. 

 Razdan and Smith [ 39 ] designed and simulated the PRISC system, the first 

system to use the idea of augmenting the pipeline of a MIPS processor with special 

instructions that are actually executed (on a per-process basis) in a reconfigurable logic 

array, the Programmable Function Unit, or PFU. They did not consider letting the PFU 

stall the pipeline, or access memory. They envisioned using the compiler to leverage the 

new, generic instructions but actually just patched binary objects in their experiments. 

The required system support was not addressed and PRISC was never physically 

realized. Garp [ 27 ] was also not realized; it improved on the PRISC design by 

considering system support, albeit in the expensive form of swapping the content of the 

entire logic array in and out to main memory at context switch time. The logic array was 

controlled using a clock counter to enable/disable its clock and to synchronize with the 

main processor’s instruction stream. This results in a heterogeneous multiprocessor of 

sorts that requires both sophisticated compiler support and parallel programming 

expertise. The security threat of a direct path to memory was not considered but it does 

permit (physically addressed!) load/store operations that most other designs cannot 

handle. Borgatti et al. [ 8 ] have recently realized a system similar to Garp, using a 

mixture of ASIC and embedded FPGAs. This system is reminiscent of the eMIPS if we 
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map the ASIC component to the TISA and the FPGA to the extension slots. Unlike 

eMIPS though, the interface between FPGA and data path is limited to stopping the 

clock to the ASIC module when the slower FPGA needs more time. There is no access 

to the register file, memory accesses are only to a local buffer, and there is no MMU and 

no consideration to multi-user safety. Borgatti’s work does study the practical problems 

that arise from integrating the slower and larger FPGAs into a 90 nm ASIC process, but 

the actual prototype chip only runs at about 100 MHz like our ML401 board. 

 Lysecky et al. [ 34 ] imagine a processor that is capable of auto-optimizing itself. 

Much like eMIPS, the Warp processor would optimize the frequently executed blocks of 

code by keeping frequency counts to detect the most frequently executed ones, 

automatically generate custom logic for their direct execution through micro-CAD on-

chip tools, and patch the binaries of the executing programs to execute faster. While 

certainly ambitious and rather impractical, this approach does not address issues that are 

important in a practical system, such as security, multiprogramming and virtual memory 

support. 

 Clark et al. [ 14 ] propose using a reconfigurable dataflow engine as a co-

processor that semi-transparently augments a regular RISC processor. This approach 

uses a hardware accelerator that identifies execution patterns based on execution tree 

compression and some compiler help. Using this pattern recognition, the accelerator 

controller configures the reconfigurable dataflow engine to realize the pattern in a fixed 

number of cycles rather than in the data path. This approach falls short of this work in 

three respects. In the first place, it requires considerable modification of the software 
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compiler to recognize the candidate code fragments and generate basic blocks that are 

recognizable by the runtime engine. The eMIPS does not require any change in the 

software tools and processes. In the second place, the dataflow engine has limited depth 

and applicability and this limits the performance benefits achievable with this approach. 

With eMIPS the pipelined can be stalled and all blocks are accessible, including memory 

accesses. In the third place, the approach was only tested using a modified SimpleScalar 

simulator [ 12 ] and did not result in a practically usable prototype. We intend for our 

prototype to be freely available to the research community for full evaluation and 

modification, thereby allowing the practical testing of this and other approaches. 

 Athanas and Silverman [ 7 ] did produce a prototype, the PRISM I. This 

approach also focuses attention on the compiler, specifically a C compiler that produces 

both software and hardware binaries targeted to the platform. According to [ 7 ] there are 

several limitations in the implementation that do not apply to this work. These include 

the inability of the PRISM I to support global variables in its hardware Extensions, exit 

conditions for for-loops must be determined in advance, not all of the C functions have 

been implemented and floating point operations are not supported. These limitations are 

now largely addressed by more recent systems that use a similar architecture and a 

similar software approach. For instance, Altera Corp. C2H compiler [ 33 ] targets an 

FPGA with a hard-core CPU and lets the user easily partition a C application in 

functions running on one or the other engine. The eMIPS processor provides 

transparency to users at the software level and uses a deeper coupling between custom 

logic and the data path. Any MIPS compiler can be used for the eMIPS, for any 
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programming language. Similar considerations apply to the many other C-to-gates flows 

[ 24 ] and, at least in part, to Anderson’s HThreads hybrid system [ 5 ]. 

 Sawitzki et al. [ 41 ] realized CoMPARE, a simple and cheap 8-bit extensible 

processor similar to Davidson’s RM [ 18 ]. The limitations of these practical systems 

illustrate very well the gap between simulation and reality in this field of research. 

 Chow et al. [ 48 ][ 13 ][ 31 ] introduce OneChip, motivating the need for a close 

coupling of the data path and reconfigurable logic. While the basic idea is similar to 

those explored in eMIPS, the three different implementations of OneChip differ each in 

its own way. OneChip-96 [ 48 ] is a small subset that does not provide reconfiguration 

other than at boot time; processor and Extensions are literally compiled together. 

Interestingly, one of the two examples provided is for a peripheral, a USART. OneChip-

98 [ 31 ] uses a dedicated path to memory like Garp and suffers from the same memory 

coherency and security problems. The instruction encoding is now fixed and based on 

the notion of copying data in and out of the FPGA array; similar to the PRISM I based 

systems. One Extension op code is reserved for FPGA use; four additional bits select the 

specific Extension. The actual implementation is very constrained and does not provide 

dynamic reconfiguration or memory coherence. There is no system software, or 

interrupts of any type. Two test programs demonstrate 10x-32x speedups. OneChip-01 

[ 13 ] does away with an actual implementation and is simulated using SimpleScalar. 

 The Xtensa architecture [ 40 ][ 44 ] has similarities with eMIPS and two 

important differences. In the first place, Xtensa processors are realized as ASIC based on 

the customer’s application requirements. They are statically extensible processors and 
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are therefore subject to the limitations previously illustrated for a classic RISC processor. 

In the second place, the suggested approach is to identify via profiling and simulation 

new additional instructions that are described (as GCC’s RTL patterns) to the automated 

compiler generation system. The new compiler is then used to recompile the application 

program. We favor instead leveraging the predictable nature of the compiler’s working, 

which manifests itself in repeated patterns of instructions (basic blocks). We optimize 

the basic blocks at the binary level, on a per application binary basis. This does not 

preclude leveraging the compiler but it does not mandate it, either. 

 In this paper we pessimistically assume that Extensions are manually generated 

and we consider automatic synthesis an orthogonal problem. Some complementary 

efforts are nonetheless worth mentioning.  

 Yehia [ 61 ] describes a semi-automated approach for realizing sequences of 

dependent instructions using combinatorial logic directly rather than some form of 

dataflow graph. These are then added to a superscalar processor and evaluated by 

simulation against a set of benchmarks. The rePLay tool [ 20 ] automatically generates 

the logic. The best result is a speedup of 40% over baseline in the Spec2000 benchmarks. 

This approach cannot handle load/store instructions, which limits the size of the blocks 

optimized. Faruque [ 1 ] looks at the problem of automatically recognizing patterns of 

instructions that can benefit the application performance if realized directly as ASIP 

instructions. Bracy et al. [ 10 ] look at the problem of generating mini-graphs, small 

coupling of instructions that can be tightly integrated into the micro-architecture of a 

super-scalar microprocessor. Mini-graphs are limited to two register inputs, one output, 
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one memory operation and one branch. Mini-graphs are automatically generated from 

application profiling. Over a large set of simulated benchmarks this approach leads to a 

peak gain of 40% over a baseline processor. Sun [ 45 ] attacks the problem of 

automatically generating a complete multiprocessor system, built out of ASIPs, that 

optimally executes a fixed set of applications. 

 Brisk et al. [ 11 ] describe a technique for collapsing multiple specialized 

instructions into a single data path, thereby reducing the area requirement by as much as 

83%. Hauck et al. with Chimaera [ 26 ] and Totem [ 25 ] look at the possibility of 

designing the reconfigurable logic array that is attached to the main processor in ways 

that are more amenable to realizing domain-specific operations, in a fully automated way. 

 Extensible processors are not to be confused with micro-programming, WLIW 

processors or regular co-processors. A micro-programmed processor uses a fixed set of 

components (ALUs, memory busses, registers etc) and interconnects them directly with 

the micro-instructions. The eMIPS can use arbitrary logic in its Extensions, down to a 

single AND gate. WLIW processors are a restricted form of micro-programming, in a 

way, and therefore dissimilar to the eMIPS approach. The co-processor approach differs 

because it is implemented in fixed logic, it requires compiler support, and cannot plug 

into the data path but operates entirely separately from it. 

 The eMIPS approach is evolutionary, not revolutionary and differs from attempts 

to fundamentally redefine the core execution engine. For instance, Goldstein et al. [ 23 ] 

designed and Schmit et al. implemented [ 42 ] PipeRench, a new reconfigurable 
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architecture that uses a (virtual) reconfigurable pipeline to accelerate computationally 

intensive kernels. 
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9 CONCLUSION 

 

 We propose to use a dynamically extensible microprocessor architecture to 

address the inflexibility, sub-optimality, lack of performance growth and waste of area 

and power of a traditional, fixed RISC architecture. We have designed and implemented 

a prototype of the proposed architecture, the eMIPS microprocessor. eMIPS augments a 

core MIPS data path with dynamically loaded extensions that can plug into the 

individual stages of the pipeline. We have realized both a flexible simulation system and 

an FPGA implementation of eMIPS. We have demonstrated the use of extensions to 

transparently improve the performance of a set of applications by identifying candidate 

patterns of instructions (basic blocks), realizing an equivalent extension directly in fixed 

logic and automatically patching the binaries of the applications to use the extension 

instructions.  

 Despite the limitations of the first prototype we have shown that the approach is 

indeed flexible. The core data path only needs to implement the set of instructions that 

provides for self-extension and to manage the security sensitive resources. Anything else 

can be an extension, including multiplication and division, floating point and other co-

processor based instruction sets, on-chip peripherals and eventually even multiple cores. 

For closed systems, a microprocessor can be fully optimized to include only the 

resources actually needed by the applications. This includes the instruction set, 

peripherals and area that are required and nothing else. Further extensions can still be 
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added later when/if the application requirements change, even after deployment in the 

field. A number of applications demonstrate speedups of 2x-3x simply by optimizing the 

top-three basic block patterns. Our tests have used video games, real-time programs, and 

the SPEC2000 integer benchmarks. This proves that a dynamically extensible 

microprocessor can easily outperform a traditional one that implements the same ISA. 

 Indications point to the available on-chip area as the limiting factor for this 

approach, not the clock. The basic data path can be implemented in as little as 50% of 

the resources of a Xilinx XC4LX25 device, leaving the majority of the device free for 

the extensions. An extension can take as little as 10% of the area and still provide a 

factor of 2x-3x speedup in a video game and in an embedded OS test set. On the 

negative side, the set of on-chip peripherals required to realize a complete eMIPS 

Workstation using the Xilinx ML401 development board is rather large. Even the 

minimal usable set requires 25% of the area resources, leaving only 25% of the chip for 

all other extensions. In this area we can conceivably place one additional core, but 

certainly not the “tens or hundreds” that have been speculated elsewhere. 
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