23 research outputs found

    Pooling or sampling: Collective dynamics for electrical flow estimation

    Get PDF
    The computation of electrical flows is a crucial primitive for many recently proposed optimization algorithms on weighted networks. While typically implemented as a centralized subroutine, the ability to perform this task in a fully decentralized way is implicit in a number of biological systems. Thus, a natural question is whether this task can provably be accomplished in an efficient way by a network of agents executing a simple protocol. We provide a positive answer, proposing two distributed approaches to electrical flow computation on a weighted network: a deterministic process mimicking Jacobi's iterative method for solving linear systems, and a randomized token diffusion process, based on revisiting a classical random walk process on a graph with an absorbing node. We show that both processes converge to a solution of Kirchhoff's node potential equations, derive bounds on their convergence rates in terms of the weights of the network, and analyze their time and message complexity

    Colias-Φ: an autonomous micro robot for artificial pheromone communication

    Get PDF
    Ants pheromone communication is an efficient mechanism which took inspiration from nature. It has been used in various artificial intelligence and multi robotics researches. This paper presents the development of an autonomous micro robot to be used in swarm robotic researches especially in pheromone based communication systems. The robot is an extended version of Colias micro robot with capability of decoding and following artificial pheromone trails. We utilize a low-cost experimental setup to implement pheromone-based scenarios using a flat LCD screen and a USB camera. The results of the performed experiments with group of robots demonstrated the feasibility of Colias-Φ to be used in pheromone based experiments

    Reactive localisation of an odour source by a learning mobile robot

    Get PDF
    The goal of this work was to enable a mobile robot to navigate autonomously towards a stationary odour source with the help of a sense of smell. Two electronic noses, each containing a set of gas sensors, mounted on top of a Koala mobile robot were used for detection of the odour. The sensing strategy used for data collection was investigated in order to reduce the influence of air turbulences on the sample handling process. Then a multi-layer artificial neural network was used to learn both the direction to the source and the required turning speed of the robot. An experimental validation was carried out to evaluate the performance of the complete system

    Experimental analysis of gas-sensitive Braitenberg vehicles

    Get PDF
    This article addresses the problem of localizing a static gas source in an indoor environment by a mobile robot. In contrast to previous works, the environment is not artificially ventilated to produce a strong unidirectional airflow. Here, the dominant transport mechanisms of gas molecules are turbulence and convection flow rather than diffusion, which results in a patchy, chaotically fluctuating gas distribution. Two Braitenberg-type strategies (positive and negative tropotaxis) based on the instantaneously measured spatial concentration gradient were investigated. Both strategies were shown to be of potential use for gas source localization. As a possible solution to the problem of gas source declaration (the task of determining with certainty that the gas source has been found), an indirect localization strategy based on exploration and concentration peak avoidance is suggested. Here, a gas source is located by exploiting the fact that local concentration maxima occur more frequently near the gas source compared to distant regions

    Magnetic Trails: A Novel Artificial Pheromone for Swarm Robotics in Outdoor Environments

    Full text link
    [EN] Swarm robotics finds inspiration in nature to model behaviors, such as the use of pheromone principles. Pheromones provide an indirect and decentralized communication scheme that have shown positive experimental results. Real implementations of pheromones have suffered from slow sensors and have been limited to controlled environments. This paper presents a novel technology to implement real pheromones for swarm robotics in outdoor environments by using magnetized ferrofluids. A ferrofluid solution, with its deposition and magnetization system, is detailed. The proposed substance does not possess harmful materials for the environment and can be safely handled by humans. Validation demonstrates that the substance represents successfully pheromone characteristics of locality, diffusion and evaporation on several surfaces in outdoor conditions. Additionally, the experiments show an improvement over the chemical representation of pheromones by using magnetic substances and existing magnetometer sensor technologies, which provide better response rates and recovery periods than MOX chemical sensors. The present work represents a step toward swarm robotics experimentation in uncontrolled outdoor environments. In addition, the presented pheromone technology may be use by the broad area of swarm robotics for robot exploration and navigation.We would like to warmly thank Cindy Calderon-Arce. This paper was achieved thanks to her support and advice. Special thanks also to Research and Outreach Vice-Rectory at Costa Rica Institute of Technology (VIE, ITCR), for their support of PROE project (code VIE 1440036).Brenes-Torres, JC.; Blanes Noguera, F.; Simó Ten, JE. (2022). Magnetic Trails: A Novel Artificial Pheromone for Swarm Robotics in Outdoor Environments. Computation. 10(6):1-16. https://doi.org/10.3390/computation1006009811610

    Pooling or Sampling: Collective Dynamics for Electrical Flow Estimation

    Get PDF
    The computation of electrical flows is a crucial primitive for many recently proposed optimization algorithms on weighted networks. While typically implemented as a centralized subroutine, the ability to perform this task in a fully decentralized way is implicit in a number of biological systems. Thus, a natural question is whether this task can provably be accomplished in an efficient way by a network of agents executing a simple protocol. We provide a positive answer, proposing two distributed approaches to electrical flow computation on a weighted network: a deterministic process mimicking Jacobi's iterative method for solving linear systems, and a randomized token diffusion process, based on revisiting a classical random walk process on a graph with an absorbing node. We show that both processes converge to a solution of Kirchhoff's node potential equations, derive bounds on their convergence rates in terms of the weights of the network, and analyze their time and message complexity

    Artificial Pheromone for Path Selection by a Foraging Swarm of Robots

    Get PDF
    Foraging robots involved in a search and retrieval task may create paths to navigate faster in their environment. In this context, a swarm of robots that has found several resources and created different paths may benefit strongly from path selection. Path selection enhances the foraging behavior by allowing the swarm to focus on the most profitable resource with the possibility for unused robots to stop participating in the path maintenance and to switch to another task. In order to achieve path selection, we implement virtual ants that lay artificial pheromone inside a network of robots. Virtual ants are local messages transmitted by robots; they travel along chains of robots and deposit artificial pheromone on the robots that are literally forming the chain and indicating the path. The concentration of artificial pheromone on the robots allows them to decide whether they are part of a selected path. We parameterize the mechanism with a mathematical model and provide an experimental validation using a swarm of 20 real robots. We show that our mechanism favors the selection of the closest resource is able to select a new path if a selected resource becomes unavailable and selects a newly detected and better resource when possible. As robots use very simple messages and behaviors, the system would be particularly well suited for swarms of microrobots with minimal abilitie

    Control de un convoy robótico mediante planificación de rutas y estrategias de orientación

    Get PDF
    This paper presents an overview about control methods implemented on robotic convoy systems or cooperative systems on mobile platforms which can be used for path planning, orientation, environment perception, route tracking and control systems in which involve the measurement, analysis, and interpretation of different variables for further implementation. A review was made of investigation articles on bibliographic indexes and databases about control methods used in convoy systems to evidence progress, trends and application methods.Este artículo presenta un estado del arte relacionado con métodos de control implementados en sistemas de convoy robóticos en plataformas móviles que pueden ser utilizados para la planificación de rutas o trayectorias, orientación, percepción de entornos y sistemas de control en el que se involucra la medición, análisis e interpretación de diversas variables y su posterior implementación. Se realizó una revisión de artículos de investigación en índices bibliográficos y bases de datos sobre métodos de control aplicados en sistemas de convoy para de esta forma evidenciar avances, tendencias y métodos de aplicación.
    corecore