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Abstract

The computation of electrical flows is a crucial primitive for many recently proposed optimization
algorithms on weighted networks. While typically implemented as a centralized subroutine, the
ability to perform this task in a fully decentralized way is implicit in a number of biological systems.
Thus, a natural question is whether this task can provably be accomplished in an efficient way by a
network of agents executing a simple protocol.

We provide a positive answer, proposing two distributed approaches to electrical flow computation
on a weighted network: a deterministic process mimicking Jacobi’s iterative method for solving linear
systems, and a randomized token diffusion process, based on revisiting a classical random walk process
on a graph with an absorbing node. We show that both processes converge to a solution of Kirchhoff’s
node potential equations, derive bounds on their convergence rates in terms of the weights of the
network, and analyze their time and message complexity.

1 Introduction
The computation of currents and voltages in a resistive electrical network, besides being an interesting
problem on its own, is a crucial primitive in many recently proposed optimization algorithms on weighted
networks. Examples include the fast computation of maximum flows [5, 13], network sparsification [23],
and the generation of random spanning trees [11].

Solving the electrical flow problem requires solving a system of linear equations, whose variables are
the electrical voltages, or “potentials”, at the nodes of the network (equivalently, the currents traversing its
edges). Performing this task can be computationally nontrivial, and is typically achieved in a centralized
fashion.

At the same time, the ability to perform this task in a fully decentralized way is implicit in a number
of biological systems by virtue of the electronic-hydraulic analogy [12], including the P. polycephalum
slime mold [25, 3, 24] and ant colonies [16]. These organisms have been showed to implicitly solve
the electrical flow problem in the process of forming food-transportation networks. Such capability of
biological systems naturally raises the following questions, which motivate our paper:

(Q1) Can this task be collectively accomplished by the network itself, if every node is an agent that
follows an elementary protocol, and each agent can only interact with its immediate neighbours,
otherwise possessing no knowledge of the underlying topology?

(Q2) In case of a positive answer to Q1, what is the involved computational effort for the network, in
terms of convergence time and communication overhead?

We address the two aforementioned questions by providing analytical bounds which are of interest
for many bio-inspired multi-agent systems in swarm robotics and sensor networks (e.g. [20, 10]).
∗This work is partly supported by the EU FET project MULTIPLEX no. 317532 and by the National Science Foundation

under Grants No. CCF 1540685 and CCF 1655215.
†This work has been partly done while the author was a fellow of the Simons Institute for the Theory of Computing.
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1.1 Our contribution
We propose two complementary, fully decentralized approaches to electrical flow computation on a
weighted network. In particular, Towards question (Q1), we make the following contributions:

1. We consider a deterministic distributed process, based on Jacobi’s iterative method for solving
linear systems. This process converges to a solution of Kirchhoff’s node potential equations. We
bound the convergence rate of this process in terms of a graph-theoretic parameter of the network
– graph conductance.

2. Driven by a natural probabilistic interpretation of the aforementioned process, we further con-
sider a randomized token diffusion process, implementing Monte Carlo sampling via independent
random walks. This process also converges to a solution of Kirchhoff’s node potential equations,
but differently from the deterministic algorithm, randomized token diffusion does not involve any
arithmetics on real numbers: each agent/node simply maintains a counter of the number of ran-
dom walks currently visiting it, from which a simple unbiased estimator of the node’s potential
can be derived. We derive a bound on the convergence rate of this process in terms of another
graph-theoretic parameter – edge expansion.

With respect to question (Q2), while the strong connection between electrical flows and random
walks has been known for a while and has been extensively investigated in the past [7, 26], any effec-
tive exploitation of electrical flow computation crucially requires explicit and plausible bounds on the
efficiency and accuracy of the algorithm(s) under consideration. In this respect, besides establishing the
correctness of the two algorithmic approaches above, our core contribution is to derive detailed bounds
on their time and communication complexities in terms of fundamental combinatorial properties of the
network.

Finally, our results highlight the algorithmic potential of classical models of opinion formation, as
discussed in more detail in the next section.

1.2 Related work
We briefly review contributions that are most closely related to the spirit of this work.

Computing electrical flows. The problem of computing voltages and currents of a given resistive
network, that is, the question of solving Kirchhoff’s equations, is a classical example of solving a linear
equation system with a Laplacian constraint matrix [29]. While Jacobi’s method is a well-known approach
to the solution of a class of linear systems that subsumes Laplacian systems, its complexity analysis in
the literature (for example, in [21, 28]) is generic, and does not exploit the additional matrix structure
that is inherent in Laplacian systems. In our setting, existing results on the convergence of Jacobi’s
method could be leveraged to prove convergence to a correct solution, but they would fail to provide
explicit bounds on convergence rate.

Electrical flows and random walks. Relations between electrical quantities and statistical properties
of random walks have been known for a long time, and are nicely discussed, for example, in Doyle and
Snell [7], Lovasz [15], and Levin, Peres and Wilmer [14]. In particular, in their monograph, Doyle and
Snell point out the interpretation of the electrical current along an edge as the expected number of net
traversals of the edge by a random walker that is injected at the source node and absorbed at the sink
node of the flow. While our randomized token diffusion algorithm refers to the same underlying process,
it crucially differs from the former in the interpretation of electrical current, as it links the electric
potential of a node to the expected number of random walks currently visting the node (see Section 4).

This connection has been also explored by Chandra et al. [4], who characterized the cover time of the
random walk in terms of the maximal effective resistance of the network, as well as by Tetali [26], who
characterized the hitting time of the random walk in terms of the effective resistance between source and
sink. Tetali [26] also proved that the expected number of visits to a node by a random walker injected
at the source and absorbed at the sink is related to the electrical potential of the node in a simple
way. In principle, like the one discussed by Doyle and Snell, this characterization could be used as the
basis for another random walk-based approach to the estimation of electric potentials, with essentially
the same complexity as the method we propose. Still, this is a static characterization that, by itself,
does not provide an iterative algorithm or error bound. On the contrary, our interpretation results in
an estimator, which depends solely on the number of tokens at each node and is thus entirely local, as
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opposed to previous methods, which entail tracking an event that depends on global properties of the
network (such as the hitting time of a specific node or the absorption at the sink). Hence, we believe our
proposed randomized diffusion process is more suitable to accommodate dynamic changes in the weights
of the network when coupled with other processes, such as the Physarum dynamics [3, 16].

Electrical flows and complex systems. Understanding how electrical flows are computed in a
decentralized fashion can help explain the emergent behavior of certain social and biological systems.
For example, foraging behaviors of the P. polycephalum slime mold [25, 3, 24] and of ant colonies [16]
can both be formulated in terms of current-reinforced random walks, see Ma et al. [16]. In this respect,
our results can be seen as a step towards a more thorough understanding of these complex biological
processes, at the microscopic scale. Moreover, the simple processes we propose shed new light on the
computational properties of models of opinion dynamics in social networks [6, 1, 19]. In particular, the
classical model of opinion formation proposed by DeGroot [6] essentially corresponds to the decentralized
version of Jacobi’s iterative method presented in this paper.1 This is a hint that opinion dynamics are
extremely versatile processes, whose algorithmic potential is not completely understood.

Distributed optimization. Since the electrical flow is one of minimum energy, the decentralized com-
putation of electrical flows can be seen as an instance of distributed optimization, akin to the problems
considered within the multiagent framework introduced by [27] and of potential interest for the class
of distributed constraint optimization problems considered, for example, in [18]. Although for other
distributed problems it has been suggested that Laplacian-based approaches are not the most computa-
tionally effective [8], as we have mentioned in the previous paragraph current-reinforced random walks
are considered a feasible model, at least for certain biological systems [16, 9]. In this paper, we lever-
aged the specific structure of electrical flows to prove the effectiveness of our decentralized solutions. In
particular, the dependency of convergence rates on the size of the network is polynomial, which cannot
be claimed for other more generic approaches to distributed optimization.

Finally, in the rather different context of social choice and agents with preferences (as opposed to
our perspective motivated by natural processes for network optimization), [22] investigate mechanisms
for social choice on social networks as a weighted form of classical preference aggregation. One of the
update processes they consider is loosely related to our Jacobi process.

1.3 Outline
The rest of this paper is organized as follows. In Section 2 we discuss some preliminaries about electrical
networks and flows and set up the necessary notation and terminology. In Section 3 we describe and
analyze the deterministic distributed algorithm based on Jacobi’s method for the solution of Kirchhoff’s
equations. In Section 4 we propose and analyze our randomized token-diffusion method for the estimation
of the electric potentials. We conclude by summarizing our findings in Section 5.

2 Preliminaries on electrical networks and notation
We consider a graph G = (V, E , w), with node set V, edge set E , and positive edge weights (we)e∈E
representing electrical conductances. We also denote the weight of an edge by wuv if u, v ∈ V are the
endpoints of the edge; if no edge corresponds to the pair (u, v), wuv = 0. We use n and m to denote
the number of nodes and edges, respectively, of the graph. Without loss of generality we assume that
V = {1, 2, . . . , n}.

The (weighted) adjacency matrix of G is the matrix A ∈ Rn×n whose (u, v)-entry is equal to wuv
if {u, v} ∈ E , and to 0 otherwise. The volume (or generalized degree) of a node v is the total weight
of the edges incident to it, and is denoted by vol(v). The generalized degree matrix D ∈ Rn×n is the
diagonal matrix with Duu = vol(u). The matrix P def

= D−1A is the transition matrix of G; we denote its
eigenvalues (which are all real) by ρ1 ≥ . . . ≥ ρn. We use volmin and volmax to denote the smallest and
largest volume, respectively, of the nodes of G.

We adhere to standard linear algebra notation, and we reserve boldface type for vectors. We denote
by χi the i-th standard basis vector, that is, a vector whose entries are 0 except for the i-th entry which
is 1. With 0 and 1 we denote vectors with entries all equal to 0 and 1, respectively.

1The only difference is the presence of two “special” agents (the source and the sink), whose behaviours slightly differ
from the others, in that they exchange information with the exterior in the form of a current flow.
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In the next sections, we make use of the following fact.

Fact 1. The transition matrix P def
= D−1A is similar to the symmetric matrix N def

= D−1/2AD−1/2 via
conjugation by the matrix D−1/2. In particular, we have

P t = (D−1A)t = (D−
1
2ND

1
2 )t = D−

1
2N tD

1
2 .

Moreover, thanks to the fact that N is symmetric, N has n orthonormal eigenvectors x1, . . . ,xn, which
correspond to the eigenvectors y1, . . . ,yn of P via the similarity transformation xi = D1/2yi for each i.
Observe also that both xi and yi, for each i, are associated to the same eigenvalue ρi of P .

The Laplacian matrix of G is the n × n matrix L
def
= D − A. We denote by Λ1 ≤ . . . ≤ Λn the

eigenvalues of L. We often use the facts that Λ1 = 0 and that L · 1 = 0.
In our setting, one node of the graph acts as the source, and one as the sink of the electrical flow.

Kirchhoff’s equations for a network G are then neatly expressed by the linear system

Lp = b,

where p is the unknown vector of electric potentials, and b ∈ Rn is a vector such that bsource = 1,
bsink = −1, and bu = 0 if u /∈ {source, sink}. The electrical flow is easily obtained from the vector p: the
electrical flow along an edge {u, v}, in the direction from u to v, equals wuv · (pu − pv).

For a given weighted graph with a source and a sink, the electrical flow is uniquely defined. We
remark however that Kirchhoff’s equations have infinite solutions, since electric potentials are defined
up to any constant offset: if Lp = b, then L(p+ c1) = b for any constant c (since L1 = 0.) We call the
(unique) solution p such that psink = 0 the grounded solution to Kirchhoff’s equations.

The graph conductance (or bottleneck ratio) of graph G is the constant

φ(G)
def
= min

S⊂V : vol(S)≤vol(V)/2

w(S,V \ S)

vol(S)
,

where vol(S) denotes the total volume of the nodes in S, and w(S,V \S) denotes the total weight of the
edges crossing the cut (S,V \ S). The edge expansion of G is the constant

θ(G)
def
= min

S⊂V : |S|≤n/2

w(S,V \ S)

|S|
.

The graph conductance is a number between 0 and 1, while the edge expansion is a number between 0
and volmin.

3 Jacobi’s method
The potentials p are a solution of the linear system

Lp = b. (1)

A classic parallel iterative algorithm for solving such a system is Jacobi’s method [21, 28], which goes as
follows. System (1) can be rewritten as Dp−Ap = b, which is equivalent to

p = D−1 (Ap + b) .

The idea underlying Jacobi’s method is to introduce the related linear recurrence system

p̃ (t+ 1) = D−1 (Ap̃ (t) + b) .

For any node u ∈ V, (3) becomes

p̃u(t+ 1) =
bu +

∑
v∼u wuvp̃v(t)∑
v∼u wuv

, (2)

where the sums range on all neighbors v of u. Note that the denominator in (2) equals vol(u).
Indeed, from (3) we know that p̃ is a fixed point of (2) whenever Lp̃ = b. This suggests running the

following message-passing algorithm at every node u ∈ V (Algorithm 1).
Algorithm 1 does not specify an initial value for p̃: any initial value can be used. There is also

no explicit termination condition. Terminating the algorithm sooner or later has only an effect on the
numerical error, as explained in the next subsection.
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Parameter: u ∈ V
1 while true do

// Step 1: Send potentials
2 for every neighbor v of u do
3 send p̃u to v
4 end

// Step 2: Receive potentials
5 for every neighbor v of u do
6 receive p̃v from v
7 end

// Step 3: Update potentials
8 p̃u = 1

vol(u) (bu +
∑
v∼u wuvp̃v)

9 end
Algorithm 1: Jacobi’s method for solving Lp = b.

3.1 Correctness and rate of convergence
To study the convergence of Algorithm 1, fix any solution p of (1), and define the error at step t as

e (t)
def
= p− p̃ (t) = e⊥ (t) + α(t) · 1,

where e⊥ (t) is the projection of p− p̃ (t) on the subspace orthogonal to 1, i.e.,

e⊥ (t) =

(
I − 1

n
11>

)
e (t) ,

while α(t) · 1 is the component of p− p̃ (t) parallel to 1, i.e.,

α(t) · 1 =
1

n
11>e (t) .

The reason we decompose e (t) as in (3.1) is that p is defined in (1) up to translation along 1, since 1
is in the kernel of L: any vector p+β ·1 satisfies L (p + β · 1) = b as well. Therefore, one has converged
to a solution of (1) as soon as p̃ = p + β · 1 for any β, which implies that in (3.1) we do not care about
the value of α, we only care about e⊥ (t) having a small norm. This becomes clear by plugging the
decomposition (3.1) in (3):

p− e⊥ (t+ 1)− α(t+ 1) · 1 def
= p̃ (t+ 1)

= D−1 (Ap̃ (t) + b)

= D−1 (A (p− e⊥ (t)− α(t) · 1) + b)

(a)
= p− Pe⊥ (t)− α(t) · 1, (3)

where in (a) we used that for any transition matrix P def
= D−1A it holds P1 = 1 and (3). From (3) it

follows that e⊥(t+ 1) = Pe⊥(t)− (α(t+ 1)− α(t))1.
By projecting, it also follows that

e⊥(t+ 1) =

(
I − 1

n
11>

)
Pe⊥(t)

=

(
I − 1

n
11>

)
P

(
I − 1

n
11>

)
Pe⊥(t− 1)

(a)
=

(
I − 1

n
11>

)(
P − 1

n
11>

)
Pe⊥(t− 1)

(b)
=

(
I − 1

n
11>

)
P 2e⊥(t− 1),

where in (a) we used again that P1 = 1 and in (b) we used that
(
I − 1

n11
>) 1

n11
> = 0. By repeating

steps (a) and (b) above we can unroll the previous equation and get

e⊥(t) =

(
I − 1

n
11>

)
P te⊥(0). (4)
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Recall Fact 1, which implies that x1 = ‖D1/21‖−1D1/21, and that we can write

N = ‖D 1
21‖−2D 1

21(D
1
21)> +

n∑
i=2

ρixix
>
i .

Combining the previous observations with (4), we get

‖e⊥ (t)‖ =

∥∥∥∥(I − 1

n
11>

)
P te⊥(0)

∥∥∥∥
=

∥∥∥∥(I − 1

n
11>

)
D−

1
2N tD

1
2 e⊥(0)

∥∥∥∥
(a)
=

∥∥∥∥∥
(
I − 1

n
11>

)
D−

1
2

(
n∑
i=2

ρtixix
>
i

)
D

1
2 e⊥(0)

∥∥∥∥∥
(b)

≤
∥∥∥∥(I − 1

n
11>

)∥∥∥∥∥∥∥D− 1
2

∥∥∥∥∥∥∥∥
n∑
i=2

ρtixix
>
i

∥∥∥∥∥∥∥∥D 1
2

∥∥∥ ‖e⊥(0)‖

(c)

≤
√

volmax

volmin
ρt∗ ‖e⊥(0)‖ , (5)

where in (a) we used the fact that
(
I − 1

n11
>)D−1/2x1 = 0, in (b) we used the submultiplicativity of

the norm and in (c) we used that ‖D−1/2‖ ≤ (volmin)−1/2, that ‖D1/2‖ ≤ (volmax)1/2 and where by
definition ρ∗ = maxi 6=1 |ρi| = max(|ρ2| , |ρn|).

3.2 Time and message complexity
In summary, the arguments in the previous subsection prove the following.

Theorem 3.1. After t rounds, the orthogonal component of the error of the solution p̃(t) produced by
Algorithm 1 is reduced by a factor

‖e⊥(t)‖
‖e⊥(0)‖

≤
(

volmax

volmin

)1/2

ρt∗, (6)

where ρ∗ is the second largest absolute value of an eigenvalue of P . The message complexity per round
is O(m).

Proof. The first claim follows by (5). For the second part of the claim, note that at any round of
Algorithm 1, each node sends its estimated potential value to each of its neighbors. Therefore, the
number of exchanged messages is O(m) per round.

Observe that in typical applications we have ρ∗ = ρ2. This is the case, for example, when one
considers the lazy variant of a transition matrix in order to avoid pathological cases [14, Section 1.3].
The condition ρ∗ = ρ2 implies, in particular, that (6) in Theorem 3.1 can be bounded in terms of the
graph conductance of the network,2 since for any graph G, ρ2(G) ≤ 1− φ(G)2/2 [14, Theorem 13.14].

4 A token diffusion method
Following a well-known analogy between electrical flows and random walks [7, 26, 4, 14], in this section
we propose a random walk-based approach to approximate electric potentials. The process is described
by Algorithm 2. In each round, the algorithm starts K new, mutually independent random walks at the
source node. Each random walker (or token) moves one step during each round of the algorithm, until
it reaches the sink node, where it is absorbed. The independent parameter K controls the accuracy of
the process.

Let Z(t)
K (u) denote the number of tokens at vertex u at the end of round t, when K new independent

random walks are started at the source. Our estimator of the potential at node u at time t will be

V
(t)
K (u)

def
=

Z
(t)
K (u)

K · vol(u)
.

2We remark that here the term conductance refers to the graph-theoretic notion also known as bottleneck ratio [14], and
shall not be confused with the notion of electrical conductance in the theory of electrical networks [7].
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Parameters: u ∈ V, K ∈ N
// Step 1: Send tokens

1 for every token T on u and every neighbour v of u do
2 with prob ∝ wuv do
3 send T to v
4 Z(u) = Z(u)− 1

5 end
// Step 2: Receive tokens

6 for every token T received do
7 Z(u) = Z(u) + 1
8 end
// Step 3: Replenish source, deplete sink

9 if u = source then
10 Z(u) = Z(u) +K // inject K new tokens at u
11 end
12 if u = sink then
13 Z(u) = 0 // absorb all tokens at u
14 end

Algorithm 2: Random walk algoritm.

Input: u ∈ V, K ∈ N
1 Return Z(u)

Kvol(u)

Algorithm 3: Estimator.

We next show that in expectation, our estimator evolves following a recurrence that, though not identical,
is very close to (2).

Lemma 4.1. Consider Algorithm 2 with K = 1. Define inductively p(t) ∈ RV by

p(0)u = 0, for all u ∈ V,

p(t+1)
u =

{
1

vol(u)

(∑
v∼u wuvp

(t)
v + bu

)
if u 6= sink,

0 if u = sink.
(7)

Then, for every time t = 0, 1, 2, . . . and for every u ∈ V we have:

E
[
V

(t)
1 (u)

]
= p(t)u .

Proof. The claim is proved by induction. It clearly holds when t = 0, since at that time there are no
tokens and thus V (t)

1 = 0 = p(0). For t ≥ 1, and for every u ∈ V \ {sink}:

E
[
Z

(t+1)
1 (u) | Z(t)

1

]
=
∑
vvu

Z
(t)
1 (v)wvu
vol(v)

+ bu

=
∑
vvu

wvuV
(t)
1 (v) + bu,

where we used V (t)
1 (v) = Z

(t)
1 (v)/vol(v). Dividing both sides by vol(u), we obtain:

E
[
Z

(t+1)
1 (u) | Z(t)

1

]
vol(u)

=
1

vol(u)

(∑
vvu

wvuV
(t)
1 (v) + bu

)
.

By recalling that V (t+1)
1 (u) = Z

(t+1)
1 (u)/vol(u) and by the law of iterated expectations we obtain:

E
[
V

(t+1)
1 (u)

]
=

{
1

vol(u)

(∑
vvu wvuE

[
V

(t)
1 (v)

]
+ bu

)
if u 6= sink,

0 if u = sink.
(8)

7



Recurrence (8) has the very same form as (7). In particular, from the inductive hypothesis E
[
V

(t)
1

]
= p(t)

we obtain E
[
V

(t+1)
1

]
= p(t+1). This completes the proof.

The following corollary justifies our estimator in Algorithm 3, when K > 1:

Corollary 4.2. Let

V
(t)
K (u)

def
=

Z
(t)
K (u)

Kvol(u)
,

for every t = 0, 1, 2, . . . and u ∈ V. Then:

E
[
V

(t)
K (u)

]
= p(t)u .

Proof. First of all observe that, obviously:

E
[
Z

(t)
K (u)

]
= KE

[
Z

(t)
1 (u)

]
.

As a consequence:
E
[
Z

(t)
K (u)

]
vol(u)

= K
E
[
Z

(t)
1 (u)

]
vol(u)

= Kp(t)u ,

from Lemma 4.1. This proves the claim.

Note that the definition of p(t) in Lemma 4.1 is akin to that of p̃(t) in Equation 2. One might thus
reasonably expect that, like p̃(t), p(t) also converges to a solution of Kirchhoff’s equations. Nevertheless,
the two definitions are different and establishing this requires a separate proof, which we give in Section
4.1.

That result will justify the interpretation of p(t), and hence of the vector V
(t)
K , as an iterative ap-

proximation of the correct Kirchhoff potentials. Note that there are two sources of inaccuracy in this
estimation. One is intrinsic to the iterative process, i.e., the rate with which p(t) converges to a solution
of Kirchhoff’s equations; this will be the subject of Section 4.2. The second source of error is stochastic
and reflects the accuracy of the estimator itself; it will be discussed in Section 4.3, where we show that for
a large enough K, the estimator yields an accurate approximation of the potential with high probability,
and not only in expectation.

4.1 Correctness of the token diffusion method
We can reexpress the system (7) as {

p(0) = 0,

p(t+1) = P p(t) +D−1b,
(9)

where P is obtained from P
def
= D−1A by zeroing out all entries on the row and column corresponding to

the sink node. Likewise, b is obtained from b by zeroing out the entry corresponding to the sink node.
We next prove that the spectral radius of P is strictly between 0 and 1. Using this fact, we prove that
the token diffusion method converges to a feasible potential vector.

Lemma 4.3. The spectral radius of P , ρ, satisfies 0 < ρ < 1. More precisely, ρ = 1 −
∑n
i=1 vi ·

Pi,sink/ ‖v‖1, where v is the left Perron eigenvector of P .

Proof. First of all, observe that P is diagonalizable: if we let A be the matrix obtained from A by zeroing
out the entries on the row and column corresponding to the sink node, then P = D−1A, and thus P is
similar to the symmetric real matrix N = D−1/2AD−1/2.

Moreover, P is nonnegative and the Perron-Frobenius theorem for nonnegative matrices (for example,
see [17, Section 8.3]) guarantees the existence of a nonnegative row vector v such that vP = ρv. Without
loss of generality, assume that ‖v‖1 = 1.

Now observe that

ρ =
∣∣ρ∣∣ =

∥∥ρv∥∥
1

= ‖vP‖1 =

n∑
i=1

n∑
j=1

viP ij .
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Let εij
def
= Pij − P ij ≥ 0 be the nonnegative “gaps” between P and P . Then we can continue,

ρ =

n∑
i=1

n∑
j=1

viP ij =
∑
i

∑
j

vi(P ij + εij − εij)

=
∑
i

∑
j

viPij −
∑
i

∑
j

viεij = ‖vP‖1 −
∑
i

vi
∑
j

εij

= 1− v · γ, (10)

where γ is the vector of row gaps, i.e., γi
def
=
∑
j εij , and for the last equality we also used the fact that

every row of P sums to 1. Note that, for i 6= sink, γi is the same as Pi,sink, that is, the probability that
a token at node i reaches the sink in one step.

We claim that the spectral radius is strictly positive. To see that, observe that, similarly to Fact 1,
P is similar to N and thus shares the same eigenvalues. If the spectral radius ρ were zero, N would be
a null matrix, i.e., a matrix whose entries are all zeros (this follows by looking at the diagonalized form
of N). Since P is similar to N , P would be a null matrix as well, which is clearly not the case for any
nonempty graph.

Observe also that 0 = v · 0 = vPχsink = ρv · χsink = ρvsink and therefore vsink = 0. To show that
ρ < 1, assume by contradiction that ρ = 1. Then, vsink = 0 and (10) implies

∑
i 6=sink viγi =

∑
i viγi = 0,

i.e., vi = 0 whenever γi 6= 0; in particular, vi = 0 for each node i adjacent to the sink. Continuing
this argument would yield that vi = 0 for each i adjacent to a node adjacent to the sink, (since the ith
entry of vP equals ρvi), and so on. Since the original graph is connected, this contradicts the fact that
v 6= 0.

In the proof of next theorem, we make use of the following fact, which is analogous to Fact 1.

Fact 2. The matrix P is similar to the matrix N obtained from N by zeroing out its last column and
row. In particular, P t = D−

1
2N tD

1
2 , and N has n orthonormal eigenvectors x1, . . . ,xn which correspond

to the eigenvalues ρ
1
≥ . . . ≥ ρ

n
of P .

Theorem 4.4. The iterates of (7) converge to a feasible solution of the linear system (1). The rate of
convergence is proportional to ρ.

Proof. Since ρ < 1, the matrix I − P is invertible, and its inverse can be expressed as

(I − P )−1 =

∞∑
k=0

P k.

If we recursively expand the updates p(t+1) = Pp(t) +D−1b, we get, for any t ≥ 1,

p(t) = P tp(0) +

t−1∑
k=0

P kD−1b =

(
t−1∑
k=0

P k

)
D−1b, (11)

where we used that in (9) p(0) = 0. As t→∞, this yields

p(∞) def
= lim

t→∞
p(t) = (I − P )−1D−1b, (12)

which shows that in the limit, the iterates satisfy the linear system (I − P )p(∞) = D−1b, or, recalling
that P def

= D−1A,
(D −A)p(∞) = b. (13)

To conclude that p(∞) also satisfies the original system (1), notice the following. The two matrices
L = D − A and D − A, as well as the two vectors b and b, differ only in the row corresponding to the
sink node, and the difference of the sink-th rows of the two matrices is given by the row vector

χ>sink((D −A)− L) = 1>(A−A) = 1>(D −A),

where in the last equality we used 1>(D −A) = 0>. Therefore, using (13),

9



χ>sink(D −A)p(∞) − χ>sink(D −A)p(∞)

= 1>(D −A)p(∞) = 1>b = 1 = χ>sink(b− b),

which, after rearranging terms, together with (13) implies that

0 = χ>sink((D −A)p(∞) − b) = χ>sink((D −A)p(∞) − b).

This proves that (D −A)p(∞) = Lp(∞) = b.
The second part of the theorem follows from Fact 2, (11) and (12), which yield

‖p(t) − p(∞)‖ =

∥∥∥∥∥
( ∞∑
k=t

P k

)
D−1b

∥∥∥∥∥ ≤
∞∑
k=t

∥∥∥P kD−1b∥∥∥
(a)

≤
√

volmax

volmin

∑∞
k=t ρ

k

vol(source)
=

√
volmax

volmin

ρt

(1− ρ)

1

vol(source)
,

where in (a) we performed a calculation analogous to (5).

4.2 Convergence rate of token diffusion
In Section 4.1 we showed that the token diffusion system converges to one of the solutions of Kirchhoff’s
equations. Moreover, its rate of convergence is dictated by the spectral radius of the transition matrix
P = D−1A (Theorem 4.4), which is similar to the original transition matrix P , except for the fact that
all entries of the row and column corresponding to the sink are equal to 0 in P .

For simplicity of exposition, in the remainder we simply remove the row and column of P correspond-
ing to the sink. Assume without loss of generality that the sink corresponds to the n-th row/column
index. Given an n × n matrix M , consider the (n − 1) × (n − 1) matrix gr(M), obtained from M by
grounding the n-th index, that is, removing the n-th row and n-th column. The next fact shows that
this operation does not affect the spectral radius of P .

Proposition 4.5. Assume M is an n×n matrix where each entry of the n-th row and of the n-th column
is zero. Then:

1. for every eigenpair ((x1, . . . , xn−1), µ) of gr(M) there is an eigenpair ((x1, . . . , xn−1, 0), µ) of M ;

2. (χn, 0) is an eigenpair of M ;

3. the spectral radius of M and gr(M) is the same.

Proof. Point (1) follows from the assumption that the n-th column of M is identically zero and thus the
i-th entry of M(x1, . . . , xn−1, 0) is equal to the i-th entry of gr(M)(x1, . . . , xn−1) for any i < n. Point
(2) follows from Mχn = 0. Point (3) is a direct consequence of the first two.

Since P satisfies the hypothesis of Proposition 4.5, we can equivalently study the spectral radius of
gr(P ) (= gr(P )). To simplify (and with a slight abuse of) notation, in the remainder of this section we
write M for gr(M).

Additional notation. We denote by G the graph obtained from G by removing the sink node and its
incident edges. We denote by L the Laplacian matrix of G, so that L = D−A, with A and D respectively
the adjacency and degree matrices of G. We also define L def

= D − A. Note that (A)ij = (A)ij for each
i, j < n. On the other hand L is not a proper graph Laplacian, since (D)ii 6= (D)ii for some i < n.3
However, L can be viewed as a perturbed Laplacian, since D = D+∆, where ∆ = diag(w1,n, . . . , wn−1,n).

The rate of convergence of the token diffusion process is dictated by ρ, the dominant eigenvalue

of the matrix P
def
= D−1A = D−1A. Thanks to Fact 2, we can equivalently study the matrix N =

D−1/2AD−1/2, which shares the same spectrum as P , or, equivalently, the matrix L = I − N =
D−1/2LD−1/2 = D−1/2(L+∆)D−1/2. Again, the matrix L can be interpreted as a perturbed normalized
Laplacian. The eigenvalue ρ of N corresponds to an eigenvalue λ = 1− ρ of L.

3Precisely, this happens whenever i ∼ n in the original graph G.
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In this section we provide a lower bound on λ. Let x denote the (unit norm) eigenvector of L
corresponding to λ and let y = D−1/2x. Since L is symmetric, we have by definition:

λ = x>Lx = x>D−1/2LD−1/2x =

x>D−1/2(L+ ∆)D−1/2x = y>(L+ ∆)y,
(14)

Proposition 4.6. The following holds:

1

volmax
≤ ‖y‖2 ≤ 1

volmin
.

Proof. We have:

‖y‖2 = ‖D−1/2x‖2 =

n−1∑
i=1

x2
i

vol(i)
.

The claim then follows immediately since ‖x‖2 = 1.

In the remainder, we decompose y as y = u + z, with u and z the components of y respectively
parallel and orthogonal to the vector 1. The next fact highlights a general property of the perturbed
Laplacian matrix that affords a simplification of (14).

Proposition 4.7. For any y ∈ Rn−1, it holds y>Ly = z>Lz, where z = y − ((1>y)/(1>1)) · 1 is the
component of y orthogonal to 1.

Proof. If u def
= y − z, note that u is parallel to 1, so

y>Ly = (u + z)>L(u + z)

= u>Lu + u>Lz + z>Lu + z>Lz

(a)
= z>Lz,

where (a) follows since u is in the kernel of L by construction.

We can now give a lower bound on λ, in terms of y and z.

Lemma 4.8. The following holds:
λ ≥ y>∆y + λ2‖z‖2, (15)

where λ2 is the second smallest eigenvalue of L, the Laplacian of the graph G.

Proof. From (14) and Proposition 4.7, we have

λ = y>(L+ ∆)y = y>∆y + z>Lz = y>∆y +
z>Lz

‖z‖2
‖z‖2

≥ y>∆y + ‖z‖2 min
w⊥1

‖w‖=1

w>Lw = y>∆y + λ2‖z‖2,

where the inequality follows by recalling that z ⊥ 1 by definition, and by observing that the second term
of the sum is the Rayleigh quotient associated to L, multiplied by ‖z2‖.

We can now prove the main result of this section.

Theorem 4.9. The following holds:

λ ≥ λ2
2volmax(n− 1)

∑
i

win

win + λ2
.

Proof. Since u is the component of y parallel to 1, we have u2
i = u2/(n−1) for some u ∈ R. Given u, we

compute the vector z that minimizes the right-hand side of (15). Let f(z) = (u+ z)>∆(u+ z) +λ2‖z‖2,
where u is regarded as a constant. We have:

∂f

∂zi
= 2win(ui + zi) + 2λ2zi,

11



∂2f

∂zi∂zj
= 0, i 6= j,

∂2f

∂z2i
= 2win + 2λ2.

Since win, λ2 > 0 (the latter following since λ2 is the second eigenvalue of a Laplacian matrix), the
determinant of the Hessian matrix is positive, hence f(z) has a global minimum that is the critical point.
If we set the i-th first-order partial derivative to 0 we obtain zi = −winui/(win + λ2). Substituting back
into f(z) yields:

f(z) =
∑
i

win

(
ui −

winui

win + λ2

)2

+ λ2
∑
i

(
winui

win + λ2

)2

= λ
2

2

∑
i

winu
2
i

(win + λ2)2
+ λ2

∑
i

(
winui

win + λ2

)2

=
λ2u

2

n− 1

∑
i

win

win + λ2
(16)

Next, recall that ‖u‖2 + ‖z‖2 ≥ 1/volmax from Proposition 4.6. We consider two cases. If ‖z‖2 ≥
1/(2volmax), then we have:

λ ≥ λ2
2volmax

.

Otherwise, u2 ≥ 1/(2volmax), and (16) immediately gives

λ ≥ λ2
2volmax(n− 1)

∑
i

win

win + λ2
.

To conclude the proof, note that the latter bound is always the worse case, since win/(win+λ2) ≤ 1.

4.3 Stochastic accuracy of the estimator

In this subsection, we study how closely the estimator V (t)
K (u) approximates its expected value, the

potential p(t)u . In a nutshell, we show the following: i) the largerK (the independent parameter controlling
the number of tokens injected per round), the higher the accuracy; ii) all the rest being equal, the higher
the potential, the higher the accuracy.

Notation. Starting at t = 0, we index tokens in increasing order of their release dates. In more detail,
any token released in the (i + 1)-th round has an index in the interval {iK + 1, . . . , (i + 1)K}, with
i = 0, 1, . . ., while the relative order of tokens released in the same round is irrelevant and arbitrary. The
main result of this subsection is the following.

Theorem 4.10. For any given K, 0 < ε, δ < 1, for every t and for every u, such that p(t)u ≥ 3
ε2Kvol(u) ln 2

δ ,

Algorithms 2 and 3 together provide an (ε, δ)-approximation of p(t)u .4

Remark 1. Given the statistical and node-wise nature of the counter estimator, there is a “resolution”
limit for the minimum value of a potential that can be estimated with desired accuracy and confidence
levels for a specific value of K. This is a consequence of the law of large numbers (applied in the form of a
Chernoff bound in our case). A similar issue would arise if we used a different estimator, e.g., one based
on Tetali and Snell’s approach. On the other hand, accuracy and confidence can be improved by increasing
K. This leads to an equivalent way of expressing Theorem 4.10 in which, given the minimum potential
value we want to estimate with given accuracy and confidence levels, we can compute the minimum K that
achieves the desired performance. More formally, an (ε, δ)-approximation of the potentials p(t)u greater
than p(t)? can be achieved by setting K ≥ 3

ε2p
(t)
? vol(u)

ln 2
δ .

4A random variable X gives an (ε, δ)-approximation of a non-negative quantity Y if P (|X − Y | > εY ) ≤ δ.
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Proof of Theorem 4.10. Let X(t)
j (u) = 1 if the j-th token is at node u at time t, X(t)

j (u) = 0 otherwise.
From Corollary 4.2 we have:

K vol(u) p(t)u = E
[
Z

(t)
K (u)

]
= E

 Kt∑
j=1

X
(t)
j (u)

.
The X(t)(u)’s are independent Bernoulli variables and the expectation of their sum is Kvol(u)p

(t)
u .

Hence, a simple application of the multiplicative Chernoff bound yields

Pr
[∣∣∣Z(t)

K −Kvol(u)p(t)(u)
∣∣∣ > εKvol(u)p(t)(u)

]
≤

≤ 2e−
ε2

3 Kvol(u)p(t)(u) ≤ δ,

whenever p(t)u ≥ 3
ε2Kvol(u) ln 2

δ . Finally, note that∣∣∣Z(t)
K −Kvol(u)p(t)u

∣∣∣ ≤ εKvol(u)p(t)u ⇐⇒
∣∣∣V (t)
K (u)− p(t)u

∣∣∣ ≤ εp(t)u .

directly from definitions. This completes the proof.

4.4 Time and message complexity
The arguments from previous sections lead to the following conclusions about the token diffusion process.

Theorem 4.11. The expected value of the estimator vector V
(t)
K constructed by Algorithms 2 and 3

converges to the grounded solution p of the Kirchhoff equations at a rate

O((1− λ)t) = O

1− λ2
2n volmax

∑
u∈V,u6=n

wun

wun + λ2

t . (17)

Proof. By Corollary 4.2, the expected value of the estimator vector at time t is given by the vector p(t).
From the analysis in Section 4.1, we know that the rate of convergence of p(t) to p is dictated by 1− λ,
the spectral radius of the matrix P . The result thus follows from Theorem 4.9.

Note that the right hand side in (17) is decreasing with λ2. Thus, any lower bound on λ2 yields an
upper bound on the right hand side in (17). By recalling that λ2 is the second smallest eigenvalue of the
graph G, this allows to connect the error term in (17) to the edge expansion of G, since for any graph G
it is known [2, Theorem 2.2] that

λ2(G) ≥ volmax − (vol2max − θ(G)2)1/2.

Thus, the higher the edge expansion of G, the higher λ2, and the faster the convergence of the token
diffusion process.

We finally derive a bound on the expected message complexity of Algorithm 2.

Proposition 4.12. As t→∞, the expected message complexity per round of Algorithm 2 is O(K n volmax·
E), where E def

= p>Lp is the energy of the electrical flow.

Proof. The expected message complexity per round is given by the expected number of tokens moved by
the diffusion algorithm in one step. In the regime t→∞, p(t) approaches the Kirchhoff potentials p. By
Corollary 4.2, the expected number of tokens at a node u ∈ V approaches E

[
Z

(∞)
K (u)

]
= K vol(u) p

(∞)
u =

K vol(u) pu, thus the expected total number of tokens is∑
u∈V

E
[
Z

(∞)
K (u)

]
= K

∑
u

vol(u)pu ≤ Knvolmaxpsource,

where the inequality follows from the fact that 0 = psink ≤ pu ≤ psource. Observing that psource =
psource − psink = p>b = p>Lp = E concludes the proof.
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5 Beyond potentials: An outlook
Our results show that the effectiveness of decentralized, simple processes for electrical flow computation
can be quantitatively analyzed, which is a step forward in the microscopic-level analysis of social, bi-
ological and artificial systems that can be described in terms of time-varying resistive networks or as
current-reinforced random walks.

On the other hand, while opinion dynamics were originally proposed as elementary models of infor-
mation exchange and manipulation in social networks, our results highlight their potential as versatile
and powerful primitives for collective computing. We believe this is a perspective that deserves further
investigation.
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