18 research outputs found

    Anomaly Detection for Industrial Big Data

    Full text link
    As the Industrial Internet of Things (IIoT) grows, systems are increasingly being monitored by arrays of sensors returning time-series data at ever-increasing 'volume, velocity and variety' (i.e. Industrial Big Data). An obvious use for these data is real-time systems condition monitoring and prognostic time to failure analysis (remaining useful life, RUL). (e.g. See white papers by Senseye.io, and output of the NASA Prognostics Center of Excellence (PCoE).) However, as noted by Agrawal and Choudhary 'Our ability to collect "big data" has greatly surpassed our capability to analyze it, underscoring the emergence of the fourth paradigm of science, which is data-driven discovery.' In order to fully utilize the potential of Industrial Big Data we need data-driven techniques that operate at scales that process models cannot. Here we present a prototype technique for data-driven anomaly detection to operate at industrial scale. The method generalizes to application with almost any multivariate dataset based on independent ordinations of repeated (bootstrapped) partitions of the dataset and inspection of the joint distribution of ordinal distances.Comment: 9 pages; 11 figure

    A Big Data Analytical Framework for Intrusion Detection Based On Novel Elephant Herding Optimized Finite Dirichlet Mixture Models

    Get PDF
    For the purpose of identifying a wide variety of hostile activity in cyberspace, an Intrusion Detection System (IDS) is a crucial instrument. However, traditional IDSs have limitations in detecting zero-day attacks, which can lead to high false alarm rates. To address this issue, it is crucial to integrate the monitoring and analysis of network data with decision-making methods that can identify anomalous events accurately. By combining these approaches, organizations can develop more effective cybersecurity measures and better protect their networks from cyber threats. In this study, we proposed a novel called the Elephant Herding Optimized Finite Dirichlet Mixture Model (EHO-FDMM). This framework consists of three modules: capture and logging, pre-processing, and an innovative IDS method based on the EHO-FDMM. The NSL-KDD and UNSW-NB15 datasets are used to assess this framework's performance. The empirical findings show that selecting the optimum model that accurately fits the network data is aided by statistical analysis of the data. The EHO-FDMM-based intrusion detection method also offers a lower False Alarm Rate (FPR) and greater Detection Rate (DR) than the other three strong methods. The EHO-FDMM and exact interval of confidence bounds were used to create the suggested method's ability to detect even minute variations between legal and attack routes. These methods are based on correlations and proximity measurements, which are ineffective against contemporary assaults that imitate everyday actions

    Deep learning enhanced solar energy forecasting with AI-driven IoT

    Get PDF
    Short-term photovoltaic (PV) energy generation forecasting models are important, stabilizing the power integration between the PV and the smart grid for artificial intelligence- (AI-) driven internet of things (IoT) modeling of smart cities. With the recent development of AI and IoT technologies, it is possible for deep learning techniques to achieve more accurate energy generation forecasting results for the PV systems. Difficulties exist for the traditional PV energy generation forecasting method considering external feature variables, such as the seasonality. In this study, we propose a hybrid deep learning method that combines the clustering techniques, convolutional neural network (CNN), long short-term memory (LSTM), and attention mechanism with the wireless sensor network to overcome the existing difficulties of the PV energy generation forecasting problem. The overall proposed method is divided into three stages, namely, clustering, training, and forecasting. In the clustering stage, correlation analysis and self-organizing mapping are employed to select the highest relevant factors in historical data. In the training stage, a convolutional neural network, long short-term memory neural network, and attention mechanism are combined to construct a hybrid deep learning model to perform the forecasting task. In the testing stage, the most appropriate training model is selected based on the month of the testing data. The experimental results showed significantly higher prediction accuracy rates for all time intervals compared to existing methods, including traditional artificial neural networks, long short-term memory neural networks, and an algorithm combining long short-term memory neural network and attention mechanism

    FedVCP: A Federated-Learning-Based Cooperative Positioning Scheme for Social Internet of Vehicles

    Get PDF
    Intelligent vehicle applications, such as autonomous driving and collision avoidance, put forward a higher demand for precise positioning of vehicles. The current widely used global navigation satellite systems (GNSS) cannot meet the precision requirements of the submeter level. Due to the development of sensing techniques and vehicle-to-infrastructure (V2I) communications, some vehicles can interact with surrounding landmarks to achieve precise positioning. Existing work aims to realize the positioning correction of common vehicles by sharing the positioning data of sensor-rich vehicles. However, the privacy of trajectory data makes it difficult to collect and train data centrally. Moreover, uploading vehicle location data wastes network resources. To fill these gaps, this article proposes a vehicle cooperative positioning (CP) system based on federated learning (FedVCP), which makes full use of the potential of social Internet of Things (IoT) and collaborative edge computing (CEC) to provide high-precision positioning correction while ensuring user privacy. To the best of our knowledge, this article is the first attempt to solve the privacy of CP from a perspective of federated learning. In addition, we take the advantages of local cooperation through vehicle-to-vehicle (V2V) communications in data augmentation. For individual differences in vehicle positioning, we utilize transfer learning to eliminate the impact of such differences. Extensive experiments on real data demonstrate that our proposed model is superior to the baseline method in terms of effectiveness and convergence speed

    A Novel Echo State Network Autoencoder for Anomaly Detection in Industrial Iot Systems

    Get PDF
    The Industrial Internet of Things (IIoT) technology had a very strong impact on the realization of smart frameworks for detecting anomalous behaviors that could be potentially dangerous to a system. In this regard, most of the existing solutions involve the use of Artificial Intelligence (AI) models running on Edge devices, such as Intelligent Cyber Physical Systems (ICPS) typically equipped with sensing and actuating capabilities. However, the hardware restrictions of these devices make the implementation of an effective anomaly detection algorithm quite challenging. Considering an industrial scenario, where signals in the form of multivariate time-series should be analyzed to perform a diagnosis, Echo State Networks (ESNs) are a valid solution to bring the power of neural networks into low complexity models meeting the resource constraints. On the other hand, the use of such a technique has some limitations when applied in unsupervised contexts. In this paper, we propose a novel model that combines ESNs and autoencoders (ESN-AE) for the detection of anomalies in industrial systems. Unlike the ESN-AE models presented in the literature, our approach decouples the encoding and decoding steps and allows the optimization of both the processes while performing the dimensionality reduction. Experiments demonstrate that our solution outperforms other machine learning approaches and techniques we found in the literature resulting also in the best trade-off in terms of memory footprint and inference time

    A Few-Shot Learning-Based Siamese Capsule Network for Intrusion Detection with Imbalanced Training Data

    Get PDF
    Network intrusion detection remains one of the major challenges in cybersecurity. In recent years, many machine-learning-based methods have been designed to capture the dynamic and complex intrusion patterns to improve the performance of intrusion detection systems. However, two issues, including imbalanced training data and new unknown attacks, still hinder the development of a reliable network intrusion detection system. In this paper, we propose a novel few-shot learning-based Siamese capsule network to tackle the scarcity of abnormal network traffic training data and enhance the detection of unknown attacks. In specific, the well-designed deep learning network excels at capturing dynamic relationships across traffic features. In addition, an unsupervised subtype sampling scheme is seamlessly integrated with the Siamese network to improve the detection of network intrusion attacks under the circumstance of imbalanced training data. Experimental results have demonstrated that the metric learning framework is more suitable to extract subtle and distinctive features to identify both known and unknown attacks after the sampling scheme compared to other supervised learning methods. Compared to the state-of-the-art methods, our proposed method achieves superior performance to effectively detect both types of attacks

    An Anomaly Detection Approach to Determine Optimal Cutting Time in Cheese Formation

    Get PDF
    The production of cheese, a beloved culinary delight worldwide, faces challenges in maintaining consistent product quality and operational efficiency. One crucial stage in this process is determining the precise cutting time during curd formation, which significantly impacts the quality of the cheese. Misjudging this timing can lead to the production of inferior products, harming a company’s reputation and revenue. Conventional methods often fall short of accurately assessing variations in coagulation conditions due to the inherent potential for human error. To address this issue, we propose an anomaly-detection-based approach. In this approach, we treat the class representing curd formation as the anomaly to be identified. Our proposed solution involves utilizing a one-class, fully convolutional data description network, which we compared against several stateof-the-art methods to detect deviations from the standard coagulation patterns. Encouragingly, our results show F1 scores of up to 0.92, indicating the effectiveness of our approach

    CBAM: A Contextual Model for Network Anomaly Detection

    Get PDF
    Anomaly-based intrusion detection methods aim to combat the increasing rate of zero-day attacks, however, their success is currently restricted to the detection of high-volume attacks using aggregated traffic features. Recent evaluations show that the current anomaly-based network intrusion detection methods fail to reliably detect remote access attacks. These are smaller in volume and often only stand out when compared to their surroundings. Currently, anomaly methods try to detect access attack events mainly as point anomalies and neglect the context they appear in. We present and examine a contextual bidirectional anomaly model (CBAM) based on deep LSTM-networks that is specifically designed to detect such attacks as contextual network anomalies. The model efficiently learns short-term sequential patterns in network flows as conditional event probabilities. Access attacks frequently break these patterns when exploiting vulnerabilities, and can thus be detected as contextual anomalies. We evaluated CBAM on an assembly of three datasets that provide both representative network access attacks, real-life traffic over a long timespan, and traffic from a real-world red-team attack. We contend that this assembly is closer to a potential deployment environment than current NIDS benchmark datasets. We show that, by building a deep model, we are able to reduce the false positive rate to 0.16% while effectively detecting six out of seven access attacks, which is significantly lower than the operational range of other methods. We further demonstrate that short-term flow structures remain stable over long periods of time, making the CBAM robust against concept drift

    6G-Enabled Short-Term Forecasting for Large-Scale Traffic Flow in Massive IoT Based on Time-Aware Locality-Sensitive Hashing

    Get PDF
    With the advent of the Internet of Things (IoT) and the increasing popularity of the intelligent transportation system, a large number of sensing devices are installed on the road for monitoring traffic dynamics in real time. These sensors can collect streaming traffic data distributed across different traffic sites, which constitute the main source of big traffic data. Analyzing and mining such big traffic data in massive IoT can help traffic administrations to make scientific and reasonable traffic scheduling decisions, so as to avoid prospective traffic congestions in the future. However, the above traffic decision making often requires frequent and massive data transmissions between distributed sensors and centralized cloud computing centers, which calls for lightweight data integrations and accurate data analyses based on large-scale traffic data. In view of this challenge, a big data-driven and nonparametric model aided by 6G is proposed in this article to extract similar traffic patterns over time for accurate and efficient short-term traffic flow prediction in massive IoT, which is mainly based on time-aware locality-sensitive hashing (LSH). We design a wide range of experiments based on a real-world big traffic data set to validate the feasibility of our proposal. Experimental reports demonstrate that the prediction accuracy and efficiency of our proposal are increased by 32.6% and 97.3%, respectively, compared with the other two competitive approaches
    corecore