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FedVCP: A Federated-Learning-Based Cooperative
Positioning Scheme for Social Internet of Vehicles

Xiangjie Kong , Senior Member, IEEE, Haoran Gao , Guojiang Shen , Gaohui Duan,

and Sajal K. Das , Fellow, IEEE

Abstract— Intelligent vehicle applications, such as autonomous
driving and collision avoidance, put forward a higher demand
for precise positioning of vehicles. The current widely used
global navigation satellite systems (GNSS) cannot meet the
precision requirements of the submeter level. Due to the devel-
opment of sensing techniques and vehicle-to-infrastructure (V2I)
communications, some vehicles can interact with surrounding
landmarks to achieve precise positioning. Existing work aims
to realize the positioning correction of common vehicles by
sharing the positioning data of sensor-rich vehicles. However,
the privacy of trajectory data makes it difficult to collect
and train data centrally. Moreover, uploading vehicle location
data wastes network resources. To fill these gaps, this article
proposes a vehicle cooperative positioning (CP) system based
on federated learning (FedVCP), which makes full use of the
potential of social Internet of Things (IoT) and collaborative edge
computing (CEC) to provide high-precision positioning correction
while ensuring user privacy. To the best of our knowledge, this
article is the first attempt to solve the privacy of CP from
a perspective of federated learning. In addition, we take the
advantages of local cooperation through vehicle-to-vehicle (V2V)
communications in data augmentation. For individual differences
in vehicle positioning, we utilize transfer learning to eliminate the
impact of such differences. Extensive experiments on real data
demonstrate that our proposed model is superior to the baseline
method in terms of effectiveness and convergence speed.

Index Terms— Collaborative edge computing (CEC), coopera-
tive positioning (CP), federated learning, Internet of Vehicles.

I. INTRODUCTION

RECENT years have witnessed a proliferation of social
Internet-of-Things (IoT) techniques in supporting appli-

cations for smart cities. An intent-based traffic control sys-
tem by investigating deep reinforcement learning (DRL) for
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5G-envisioned IoCVs [1], which can dynamically orchestrate
edge computing and content caching to improve the profits
of the mobile network operator (MNO). This work is very
forward-looking in combining 5G and artificial intelligence on
the Internet of Vehicles. However, smart city, as an integrated
system, relies largely on the interactions among edge users.
Therefore, a new paradigm in existing edge computing is
collaborative edge computing (CEC). Vehicle, is a basic and
important class of edge computing device [2], attracts increas-
ing attention in the fields of edge computing [1], [3]–[6]. The
real-time precise positioning of vehicles enables various down-
stream applications, such as autonomous driving, collision
avoidance, and lane-level positioning.

The most widely used positioning system in vehicle driving
is global navigation satellite systems (GNSS), where edge
devices receive broadcasts from multiple satellites and cal-
culate the position of the vehicle. However, the positioning
accuracy of GNSS in urban canyons ranges between 30
and 50 m [7] due to many factors, such as atmospheric
conditions, systematic errors, and multipath. To improve the
positioning accuracy, some works have studied sensor-rich
vehicles (SRVs), which aim to incorporate more information
perceived by extra sensors (e.g., radio frequency identification
(RFID) [8], LiDAR [9], camera [10], and dead reckoning).
Using collaborations of SRVs to improve location accuracy
is promising because human mobility is a widespread social
activity in cities. However, high-cost implementations of SRVs
hinder its wide applications in CEC since only partial cars
provide high-precision positioning data.

In order to solve the problem of vehicle positioning accuracy
at a lower cost, many works have been proposed. Three
main approaches are identified in the literature. The first
is the cooperation-based methods, which aims to build the
cooperation between vehicles and infrastructure or fused infor-
mation, including cooperative positioning (CP) and vehicular
cooperative positioning (VCP), as shown in Fig. 1. The second
is edge computing-based methods. Li et al. [11] proposed
RoadSide Equipment (RSE)-assisted lane-level positioning
method, which utilizes commonly available received signal
strength (RSS) data to improve GPS accuracy. Song et al.
[12] proposed a CP framework that employs SRVs data
and improves system security and robustness by building
a blockchain. The latest advances have been achieved by
embedding vehicle CP modules in the pipeline of deep feature
learning to improve the accuracy of positioning. Li et al. [13]
proposed a GPS error sharing framework based on vehicular
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Fig. 1. CP scenario in VANET. The blue cars are CoVs. The red cars are
equipped with high-precision sensors.

blockchain networks, and a deep neural network (DNN) is
built to predict errors. Wang et al. [4] integrated imitation
learning with vehicular edge computing for the first time,
to the best of our knowledge, which is promising for online
scheduling and computing. Hu et al. [14] presented a real-
time positioning method for extended Kalman filter (EKF) and
backpropagation neural network (BPNN). Though it seems
reasonable to exploit edge computing and deep learning to
enhance the accuracy of vehicle positioning, these existing
methods still cannot cope with three levels of challenges
effectively as follows.

1) In the accuracy level, most CP studies are incapable of
addressing the positioning accuracy requirements of cru-
cial intelligent transportation system (ITS) applications.
For example, collision avoidance [15] and lane-level
navigation need submeter accuracy. Therefore, more
fine-grained location positioning methods are urgently
needed.

2) At the user level, the privacy of vehicle GPS location
data should be considered. Users tend to refuse to upload
private location data, which makes centralized deep
learning model training unfeasible.

3) In the application level, the SRV-based methods require
high implementation cost, which is unpractical in the
existing urban environment. It would be impractical
to install enough sensors in all vehicles. For methods
that use deep learning models, the uploading of vehicle
location data inevitably takes up plenty of network
bandwidth.

To address the above limitations, we propose a vehicle CP
system based on federated learning (FedVCP). Our frame-
work consists of three key components: 1) in the accuracy
level, by maintaining a correlation model in a mobile edge
computing node (MECN), the position error correction model
is continuously updated iteratively to measure GPS error
throughout the city; 2) in the user level, the federated learning
method is adopted to protect the user privacy; users only need
to upload the gradients used for model updates corresponding
to the private data and download the latest model; and 3) in the
application level, a federated learning algorithm is deployed in
the GPS edge device rather than vehicle hardware upgrading.
Moreover, we also try to make full use of the advantages
of VCP to increase the accuracy of positioning through
local vehicle-to-vehicle (V2V) communication. When using

this method, more training data will be generated and more
terminals can be involved in the training, and the convergence
speed of the model will be accelerated. The main contributions
of this article are as follows.

1) A vehicular cooperative position correction system based
on federated learning is proposed. We design a DNN
model in accordance with the system. This system fully
utilizes the potential of CEC while protecting user data
privacy, and the convergence speed and accuracy of the
model have also been improved. To the best of our
knowledge, this article is the first attempt to solve the
privacy of CP from the perspective of federated learning.

2) We have explored the ability of VCP in local GPS error
correction, maximized the role of SRVs, and let some
common vehicles (CoVs) participate in data generation
and model training tasks. This approach not only allows
the system to operate normally with fewer SRVs but also
represents the robustness of the system. For GPS errors
caused by individual differences, a transfer learning
method is applied.

3) Extensive experiments on real data demonstrate that
our proposed method performs better in accuracy and
convergence rate than the baseline method. In addition,
we test the performance of the model in scenarios with
different SRV ratios, and the results show that the model
has favorable robustness.

The remainder of the article is organized as follows.
The related work is described in Section II. In Section III,
we introduce the problem to be solved and the overall frame-
work. Details of the model implementation are presented in
Section IV. The performance study is discussed in Section V,
and the conclusion is drawn in Section VI.

II. RELATED WORK

In this section, we review the existing research progress in
vehicle positioning, federated learning, and transfer learning.

A. Vehicle Positioning
The development of ITS has spawned many promising

IoT applications [16]–[22], such as navigation services, safe
driving assistance, and autonomous driving technology. Accu-
rate positioning information is a fundamental piece for these
ITS applications. However, the positioning accuracy of the
current GPS is not enough to meet the requirements of the
above applications. Therefore, more accurate vehicle position-
ing technologies have attracted extensive attention. At present,
the methods of enhancing vehicle positioning accuracy can be
divided into three types: non-CP methods, CP-based methods,
and error model sharing methods.

1) CP and Non-CP Methods: Differential GPS (DGPS)
[23] and real-time kinematic (RTK) [24] are the best known
in traditional CP. In DGPS, area-level errors caused by the
atmosphere and ionosphere are broadcast to each user’s GPS
receiver to eliminate errors. However, DGPS cannot eliminate
the error caused by the multipath effect. RTK can provide
centimeter-level positioning accuracy when more than four
satellites are visible, but it is not suitable for vehicle posi-
tioning due to vehicle dynamics and GPS signal blockage.
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Traditional CP does not perform well in the complex urban
environment. Thus, another method starts from the vehicle
itself and make full use of abundant vehicle-mounted sensors
to improve positioning accuracy. Ghallabi et al. [9] proposed a
map-based localization using a multi-layer LiDAR to realize
accurate self-vehicle localization. Sun et al. [25] used dead
reckoning to solve location problem in non-GPS highway traf-
fic environment. However, these sensors will not be available
in all vehicles due to hardware costs.

2) Vehicular CP: Most modern CP systems are defined
in vehicular ad-hoc network (VANET) [26], and these sys-
tems achieve precise positioning through V2V and vehicle-to-
infrastructure (V2I) communications [such as dedicated short
range communication (DSRC)]. In this article, we refer to
such positioning methods as VCPs. When the GPS errors are
expected to be reduced, VCP will try to use radio ranging
technology to obtain its position relative to the accurately
positioned vehicle or infrastructure. Familiar ranging methods
are the time of arrival (TOA) [27], time difference of arrival
(TDOA), RSS [28], round trip time (RTT), and angle of arrival
(AOA). Alam and Dempster [15] review the VCP efforts and
analyze their shortcomings; due to bandwidth and latency
limitations, many methods are not feasible. Doppler-based
range rating [29] seems can be viable in vehicular, but it has
no ability to ranging from vehicles in the same direction.

3) Positioning With Machine Learning: In recent years,
machine learning algorithms have been attempted to be applied
to location tasks. The machine learning model learns the
deep underlying relationship between position, state, and error
from a global perspective, and the final model will bene-
fit all users. Comparisons of the effects of basic machine
learning algorithms and ensemble learning methods on indoor
positioning tasks are introduced in [30]. Baek et al. [31]
trained a multilayer perceptron (MLP) on past vehicle GPS
trajectories to predict the current vehicle position. They find
that even a single hidden layer was enough to complete
the error estimate task. Li et al. [13] utilized DNN, edge
computing, and blockchain to establish a GPS error evolution
sharing framework. Machine learning algorithms perform well
in error correction tasks, and our work follows these excellent
characteristics. However, DNN-based methods do not solve
the problems of privacy and network resource waste.

B. Federated Learning
Data exist in the form of isolated islands in most industries

while most machine learning architectures require collected
data. Federated learning, as a new machine learning frame-
work, can solve the above problem while protecting data
security and privacy. The original federated learning was
presented in a series of works by Google [32]. Their initial idea
was to train machine learning models and prevent data leakage
when the data sets are distributed across multiple devices.
Following this, Yang et al. [33] systematically introduced
the definitions, architectures, and applications of federated
learning framework.

Three categories of federated learning architectures are
listed: horizontal federated learning, vertical federated learn-
ing, and federated transfer learning. Horizontal federated
learning is applicable when data sets share the same feature

space but have different samples. Vertical federated learning is
applicable when two data sets share the same sample ID space
but have different feature spaces. Federated transfer learning
focuses on situations where two sets of data are not only
different in the sample but also in feature space.

At present, the main research of federal learning focuses
on privacy [34], security [35], and efficiency [36]. Federated
learning is naturally close to edge computing, and the combi-
nation of federated learning and CEC is promising. In the
vehicle positioning scene [37], federated learning provides
fundamental privacy protection. It fits with our work.

C. Transfer Learning

Transfer learning aims to apply the knowledge learned
from one domain’s data to another domain with different data
distributions and feature spaces. At present, transfer learning
has made great progress in computer vision [38], [39] and
reinforcement learning [40]. Yosinski et al. [41] quantified the
transferability of features from each layer of a convolutional
neural networks (CNN). “fine-tuning” and “frozen” are now
widely used transfer learning methods. As for vehicle position
correction, transfer learning can also improve positioning
accuracy for each vehicle [13]. We adopt the idea of transfer
learning in our work.

III. PRELIMINARIES

In this section, we first briefly state the vehicle positioning
problem and then introduce the overall framework of FedVCP.

A. Problem Statement
1) Vehicle Positioning: In the urban traffic scene, we simply

classify vehicles into CoVs Vc = {vi }i=1,...,N and SRVs Vs =
{v j}i=1,...,M . For the kth vehicle vk at time t , no matter what
set it comes from, objectively has a true geographic location
Pkt = [Pkt

e Pkt
n ]. Pkt

e and Pkt
n correspond to the eastern

and northern coordinates in Universal Transverse Mercartor
(UTM) for this location, respectively. However, Pkt is avail-
able only when vk ∈ Vs . In addition, GPS location Pgps is
available to all vehicles. Thus, the problem to be solved is how
to use {Pgps} and {Pkt |vk ∈ Vs} to approximate {Pkt |vk ∈ Vc}.

2) Error Prediction: Pgps is not accurate, which is mixed
with errors. We refer to the errors caused by satellites,
atmosphere, and multipath effect as regional errors Er =
[Er

e Er
n]. We train a model Fr (a neural network) to predict

regional errors. In other words, we input Pgps into Fr and
expect the output to be Er . The error generated by the GPS
receiver only affects the positioning of a single vehicle, which
is called individual error Ei . Similarly, we expect that a model
Fi can output Ei with the vehicle state information sk as input.

B. Framework Overview

In order to solve the three problems faced by vehicle posi-
tioning: regional error correction, user trajectory data privacy,
and individual positioning error, FedVCP uses the positioning
correction model, horizontal federated learning framework,
and the application of transfer learning three modules to
correspond to the above problems, respectively. The overall
process of the FedVCP framework is shown in Fig. 2.
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Fig. 2. Architecture of FedVCP. Local models are maintained in vehicle
intelligent terminals (VITs), while MECN maintains the global model. Using
private data, the local model uploads the gradient of the loss. The global
model aggregates gradient information to update itself and the local model.
In addition, the transfer learning process is carried out locally.

The MLP model is suitable for learning and correcting
regional positioning errors due to its easy-to-implement char-
acteristics and powerful feature extraction capabilities. Feder-
ated learning avoids the steps of user data collection to protect
user privacy and can lead to results close to those of centralized
model training. The use of transfer learning makes the model
more customized. In addition, we consider the advantages of
CP based on ranging and communication in solving local
positioning and apply it to our framework.

IV. METHODOLOGIES

This section focuses on the methods in our study, including
error analysis, error prediction model, model training, data
augmentation, and the solution of individual error.

A. GPS Error Analysis

Generally, GPS errors are divided into systematic errors
and random errors. The systematic errors mainly come from
the satellite orbit and clock error, ionospheric delay and tro-
pospheric delay, and receiver clock and positioning error. The
random error mainly includes error caused by multipath effect
and receiver noise [13]. Among the above errors, we refer
to the errors caused by satellites, the atmosphere, and the
multipath effect as regional errors Er . The characteristic of
regional errors is that the errors within the same region at
similar time points are almost the same. We call the error
generated by GPS receiver individual error Ei . In this article,
we take no account of solving random errors.

The positioning error E can be decomposed into

E = Er + Ei + Eβ (1)

Fig. 3. MLP for error prediction.

where Er and Ei are the regional errors and individual
differences. Eβ refers to the random error.

For vehicles u and v that are in the same area at a similar
time, their relative error ��Euv� is derived

��Euv� = �Pu − Pv� − �P̂u − P̂v�
≤ �(Pu − Pv )− (P̂u − P̂v )�
≤ �Eu − Ev�
≤ ∥∥(

Er
u + Ei

u + Eβ
u

)− (
Er

v + Ei
v + Eβ

v

)∥∥
≤ ∥∥Er

u − Er
v

∥∥+ ∥∥Ei
u − Ei

v

∥∥+ ∥∥Eβ
u − Eβ

v

∥∥ (2)

where Er
u , Er

v , Ei
u , and Ei

v are regional errors and individual
differences of GPS positioning of vehicles u and v, respec-
tively. P denotes the real position, and P̂ stands for positioning
given by GPS. As described above, Er

u ≈ Er
v . Besides, Eβ

u and
Eβ

v are random errors, and their value is relatively small. Thus,
the relative error depends on individual differences

��Euv� ≤
∥∥Ei

u − Ei
v

∥∥. (3)

B. MLP for Regional Positioning Error Prediction

In urban traffic scenarios full of landmarks nearby, SRVs
can interact with the infrastructure through sensor ranging
and other methods to obtain accurate GPS errors. However,
CoVs fail to find errors. Moreover, the service range of the
assisted positioning of the infrastructure cannot cover every
location in the city, so it is difficult to promote the direct use
of V2I assisted positioning. In addition, it can be concluded
from the above analysis that the regional error represents the
largest component of GPS errors, which means that only part
of the error information in the area needs to be obtained to
approximate the error of the entire area. The error prediction
method for the entire city will be a huge nonlinear function.

Therefore, we hope that the error prediction model can
simulate complex nonlinear mapping, and due to the time-
varying nature of GPS errors, the model must have the
ability to learn online. MLP meets the requirement of the
error prediction model. When the assistant positioning is not
available, SRVs and CoVs use the error prediction model
to estimate the current GPS errors and correct their own
positioning. All subsequent improvements in this article take
MLP as the basic model of error prediction. Fig. 3 shows the
details of the MLP error prediction model.

1) Input Layer: The GPS error prediction model takes east
coordinate Pe and north coordinate Pn as the model input. The
input vector of the model is expressed as [Pe Pn].
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2) Hidden Layers: The hidden layer of the model is the
full connection layer, with rectified linear unit (ReLU) as the
activation function.

3) Output Layers: Corresponding to the input of the model,
the error of the east coordinate Ee and the error of the north
coordinate En of the model are regarded as the output, and
the output vector is expressed as [Ee En].

We take uk and vk as the input and output of the kth
hidden layer of the model, σ(x) = max(0, x) as the activation
function, and W k and bk as the weight matrix and bias term
of this layer, respectively. Then, the calculation process of this
layer is given as follows:

vk = W k × uk + bk

uk+1 = σ(vk). (4)

C. Training Error Model With Horizontal Federated Learning
Although the cloud-based centralized training model can

achieve acceptable results in GPS error correction tasks, this
method faces two problems: 1) as private data, GPS trajectory
data are almost impossible to collect and 2) even if some users
agree to upload their data, it will consume a lot of network
bandwidth. In this article, we propose a training method for
an error prediction model based on federated learning, without
uploading user data, so that the above problems can be solved.

Model training based on horizontal federated learning is
different from traditional machine learning model training.
It allocates training tasks to local terminals and MECNs. The
local terminal is mainly responsible for the update of the
local model parameters, the calculation of the loss value, and
the gradient of the model weights. MECNs collect locally
uploaded gradient information and use aggregation algorithms
to fuse all gradients to update the global model. Then, MECNs
deliver the new model weights to the local terminal. These
processes will be repeated continuously until the model con-
verges.

At the initial stage of the training, the weights of the global
model are assigned to random values. The global model then
sends the weights to the local, which updates the local model.

1) Local Procedure: Each local terminal inputs the local
private data into the local model to predict the error, and the
loss value is calculated by the mean square error (MSE) loss
function the following equation:

J (θ, x, y) = 1

2n

n∑
i=1

(ŷ − yi)
2 (5)

θ = {W, b}. (6)

Then, the weight gradient of the last hidden layer is calculated
as follows:

∂ J

∂W L
= ∂ J

∂vL

∂vL

∂W L
= (ŷ − y)(uL)T � σ �(vL ) (7)

and
∂ J

∂bL
= ∂ J

∂vL

∂vL

∂bL
= (ŷ − y)� σ �(vL ) (8)

where � means the Hadamard product. By the chain rule, it is
easy to get the partial of J with respect to v l

∂ J

∂v l
= ∂ J

∂vL

∂vL

∂vL−1
. . .

∂v l+1

∂v l
. (9)

Fig. 4. Interactive iteration method of local model and global model in
horizontal federated learning.

Algorithm 1 Gradient Aggregation Algorithm of Global
Model

Input: The parameter set of the global model � =
{π1, π2, · · · , π K }, the gradients set G = {∇π1,∇π2, ·,∇πφ},
the learning rate η.

Output: The latest global model parameter set �̂ =
{π̂1, π̂2, · · · , π̂ K }
1: init �̂← �
2: init G ← {0}K×1

# Calculate the average value of the gradient
3: for i ≤ φ do
4: G ← G +∇πi

5: end for
6: G ← G/φ

# Updating the global model
7: for each π̂ j ∈ �̂, each ∇π j ∈ ∇� do
8: π̂ j ← π̂ j − η∇π j

9: end for
10: return �̂

The gradient of each parameter in the MLP can be easily
derived as follows:

∂ J

∂W l
= ∂ J

∂v l

∂v l

∂W l
= ∂ J

∂v l
(ul)T (10)

∂ J

∂bl
= ∂ J

∂v l

∂v l

∂bl
= ∂ J

∂v l
. (11)

Finally, the gradients of all parameters are recorded as ∇π =
{∇π1,∇π2, . . . ,∇π K }, and K represents the number of para-
meters of the model. The same process will be repeated
m times. The average value ∇πavg is calculated from the
gradients obtained as the gradient of the upload.

2) Global Procedure: The global model collects gradi-
ents for model weight update from each local model. For
each iteration of the global model, φ local models provide
updated gradients for reference, that is, the gradients set
G = {∇π1,∇π2, . . . ,∇πφ}. Each ∇πi is a list of length K .
After that, the global model uses an aggregation algorithm
to integrate all the gradient information to update itself. The
iterative update process is shown in Fig. 4.

In this article, we directly use the average value of the
gradients as the gradient of the global model. The global model
will be updated in a manner similar to stochastic gradient
descent (SGD). The aggregation and model update process
is shown in Algorithm 1. After the global model is trained for
S rounds, the parameters are sent to the local model. The local
model parameters are updated, and the next iteration starts.
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Fig. 5. FedVCP-TL model architecture.

D. Augmenting Data in a CP Way

Considering that, in current urban traffic scenarios,
the amount of data provided by SRV may not be enough to
make GPS error detection model training quickly converge,
this article proposes a data augmentation idea based on ranging
CP. In this way, CoVs no longer serve as pure model users;
they also participate in data generation and model training.

When a CoV approaches an SRV, the SRV measures the
relative position of the two vehicles and sends the relative
position information and its own precise positioning informa-
tion to the CoV. Subsequently, CoV approximates accurate
positioning based on the abovementioned information. There-
fore, CoVs are equivalent to possessing local training data and
can have local models and participate in model training.

It is worth noting that, for CoV, too little data may be
generated within a certain period of time. In this case, this
part of the data should be abandoned and not participate in
this round of training.

E. Handling Individual Errors With Transfer Learning

Among the components of GPS positioning errors, in addi-
tion to regional errors, there are individual errors. This type of
error may be caused by various factors, such as receiver errors,
vehicle location, or vehicle status. We use the idea of transfer
learning to propose a model optimization for individual errors,
called FedVCP-TL, as shown in Fig. 5.

In FedVCP-TL, first, the regional error prediction model is
used to obtain the regional error; second, a new hidden layer
is added to learn individual errors; finally, the vector of the
regional error and vehicle state characteristics are concatenated
as input, and the accurate error is used as the label.

In particular, since an individual error has no obvious area
and time-varying characteristics, the training of an individual
error prediction model does not need to be performed in real
time. In this case, it is necessary to store the predicted value
of the area error and the state of the vehicle, as well as the
accurate error.

V. PERFORMANCE STUDY

In this section, we introduce the source of experimental data
and the simulation of data and show the settings of the compar-
ative experiment. The results of simulation experiments prove

Fig. 6. Visualization of raw data. (a) Road network. (b) Road network with
trajectories.

TABLE I

IMPORTANT FIELDS IN DATA SET AND DESCRIPTIONS

the effectiveness of our proposed method and its robustness in
different scenarios.

A. Introduction to Data Set

The data set used in this article comes from the trajec-
tory data of older drivers on the Didi express car platform
in the second ring area of Chengdu in October 2016 of
65 km2. The collection interval of trajectory points is 2–4 s.
The track points have been tied to the road, ensuring that
the data can correspond to the actual road information. The
driver and order information is encrypted, desensitized, and
anonymized. The data source is Didi Chuxing GAIA Initiative
(https://gaia.didichuxing.com). We selected 100 vehicles’ data
from the trajectory data from 00:00 to 24:00 on October 1.
The important fields in the data set and their descriptions are
shown in Table I. We visualized the trajectory data and the
road network corresponding to the data, as shown in Fig. 6.

For the latitude and longitude coordinates in the data set,
we first convert them to the WGS84 coordinate system and
then use UTM grid system to convert the latitude and longitude
coordinates into east–north coordinates in meters. In order to
simulate the regional characteristics of GPS error, we divided
the studied urban area into 64 squares with sides of approx-
imately 1 km. In our simulation experiment, we randomly
generated regional errors, individual errors, and random errors
from the Gaussian distribution the following equation:

f (x, y) = 1

2πσ1σ2

√
1−ρ2

e
− 1

2(1−ρ2 )

[
(x−μ1 )2

σ2
1
−2ρ

x−μ1
σ1
· y−μ2

σ2
+ (y−μ2 )2

σ2
2

]

(12)

where ρ = 0 and σ1 = σ2 = 1. The range of these three errors
is 10, 0.5, and 0.1 m.
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TABLE II

COMPARISON OF LOSS OF VARIOUS GPS ERROR PREDICTION MODELS
WITH DIFFERENT SRV RATIOS

B. Experimental Setup

In order to verify the effectiveness of our proposed method,
a comparative experiment of DNN, FedVCP, FedVCP*, and
FedVCP-TL is carried out. Specifically, (*) means that the
strategy of data augmentation is used. For DNN and FedVCP,
the same training set is used, while FedVCP* uses a data aug-
mentation strategy, so the scale of the data set will be larger.
FedVCP-TL is an extension of FedVCP*, adding training steps
in the terminal.

The explanation here is that, in order to simplify the
simulation of the data enhancement part based on vehicle col-
laboration, we treat vehicles in the same area as collaboration.
Particularly, the actual cooperation will not span this far, but
the number of vehicles used in the experiment is small, and
the number of vehicles close to each other is also small, so we
appropriately increased the scope of cooperation to obtain
more reasonable results.

To simulate different urban traffic environments, we set
up six sets of controlled experiments according to different
proportions of SRVs, and their proportions of SRVs are 5%,
10%, 15%, 20%, 25%, and 30%.

For the comparison index of the experiment, we used the
common regression model evaluation index MSE and mean
absolute error (MAE)

MSE = 1

n

n∑
i=1

(ŷi − yi)
2 (13)

MAE = 1

n

n∑
i=1

|ŷi − yi |. (14)

C. Precision Analysis

Accuracy serves as a vitally important indicator in the
GPS error prediction model. In this article, we use the loss
values of both MAE and MSE to measure the accuracy of the
model. According to the above experimental settings, the final
accuracies of the model on the test set are obtained. The final
results of the participating models are shown in Table II. It can
be clearly seen that the performance of FedVCP and FedVCP*
is very close to that of DNN, and even the accuracy of FedVCP
is slightly improved compared to DNN. This indicates that the
ability of the model obtained by federal learning is close to

Fig. 7. Loss value curve during model training. This figure is the result
when SRVs accounted for 20%.

that of the model trained by traditional methods in the task of
urban GPS positioning error prediction.

It can be observed that the performance of FedVCP* is
slightly worse than the expectation. FedVCP* loses to FedVCP
in 10%, 15%, and 25% of SRVs. We speculate that the
condition that the local model training data of some vehicles
are too few leads to overfitting of local model training. Then,
the aggregation strategy of the global model does not take this
problem into account and treats every local model equally.

In the FedVCP-TL experiment, positioning errors caused
by vehicle states (such as velocity, acceleration, and direction)
are rarely considered because it is difficult for us to know the
specific causes of individual positioning errors and simulate
such errors. Our experiment only considers the errors that
are caused by the positioning receiver. The performance of
FedVCP-TL, which uses transfer learning, performs better
than FedVCP* when the proportion of SRVs is relatively
higher. It indicates that FedVCP-TL has learned individual
errors.

In general, the model FedVCP trained using the federated
learning method can reach or exceed the DNN model trained
in the cloud with the data being fully collected. FedVCP-TL,
which adopts the transfer learning strategy, accomplishes its
task of learning individual errors well when the collaboration
scenario is good. Although FedVCP* using a data augmen-
tation strategy is not perfect in accuracy, it is still within an
acceptable range.

D. Convergence Rate Analysis

In addition to accuracy, the convergence speed is also an
important indicator for GPS error prediction models. In the
urban environment, the regional error of GPS is constantly
changing, and the convergence speed of the model must be fast
to cope with the rapidly changing GPS error. It is obvious that
the GPS error prediction model will operate in real time. In this
experiment, we do not consider the factors of upload speed and
hardware performance but judge the speed of convergence by
comparing the change of the loss value of each epoch. Each
iteration of the model during training means that the model
learns from all the training data and is updated once.

As can be seen from Fig. 7, DNN reaches convergence
after training for about 30 epochs, while FedVCP completes
the convergence of the model in 10 epochs. Not surprisingly,
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Fig. 8. Changes of MAE during training under different SRVs proportions. (a) 5%. (b) 10%. (c) 15%. (d) 20%. (e) 25%. (f) 30%.

Fig. 9. Changes of MSE during training under different SRVs proportions. (a) 5%. (b) 10%. (c) 15%. (d) 20%. (e) 25%. (f) 30%.

FedVCP* failed to significantly surpass FedVCP in accuracy,
but it surpasses FedVCP in convergence speed. The experiment
shows that, under the condition of 100 vehicles participating
in model training, on the one hand, the convergence speed
of the model training method based on federated learning is
much faster than that of centralized training. On the other
hand, our proposed data augmentation strategy based on
vehicle cooperation also played a role in accelerating model
convergence.

In a real urban scene, the number of vehicles will be even
larger, the regional error of GPS positioning will be more
complicated, and the positioning data generated by vehicles
can also be large. If the traditional model training method is

used, the model training may be slow and consume a large
amount of network bandwidth in data transmission. FedVCP
performs backpropagation in the local model to calculate the
gradient used for updating. This design is parallel from a
global perspective and reduces the computation of the server
and the overhead of data transmission. We speculate that the
model will converge faster when more vehicles participate in
model training.

E. Robustness Analysis

In order to verify the robustness of our proposed method
in different urban traffic scenarios, we designed six groups of
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contrast experiments, covering the case where the proportion
of SRVs ranges from 5% to 30%.

The experimental results are shown in Figs. 8 and 9.
The MAE and MSE curves corresponding to DNN are very
sensitive to the proportion change of SRVs. The smaller
the proportion of SRVs, the slower the convergence rate of
DNN is. It can be found that, regardless of the proportion
of SRVs, the convergence speed of FedVCP and FedVCP*
based on federated learning is much faster than that of DNN.
Moreover, the convergence rate of the model trained by the
federated learning method is not obviously affected by the
environmental change. The performance of the model obtained
by federated learning is comparable to that of the centralized
training model, which shows the effectiveness of federated
learning in GPS error prediction tasks. In different traffic
scenarios, although the convergence speed will be slightly
affected, the final loss of FedVCP and FecVCP* will both
converge to an acceptable range, which shows the robustness
of the model.

VI. CONCLUSION

In this article, we propose a novel vehicle CP framework
named FedVCP. To the best of our knowledge, it is the first
time that federated learning has been applied to vehicle CP.
The implementation of federated learning solves the problem
of data privacy and also stimulated the potential of cooperative
edge computing. In addition, we use a data augmentation
strategy based on cooperation to accelerate the convergence
of the error prediction model. Then, we introduce the idea of
transfer learning to further improve the positioning accuracy.
Although our method performs well in simulation experiments,
the real urban traffic environment is more complicated, and
the effectiveness and robustness of the method need further
discussion. In addition, how to use vehicle status information,
such as speed, acceleration, and direction, more effectively is
also a problem to be solved.
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