
Missouri University of Science and Technology Missouri University of Science and Technology 

Scholars' Mine Scholars' Mine 

Computer Science Faculty Research & Creative 
Works Computer Science 

01 Jan 2022 

A Novel Echo State Network Autoencoder for Anomaly Detection A Novel Echo State Network Autoencoder for Anomaly Detection 

in Industrial Iot Systems in Industrial Iot Systems 

Fabrizio De Vita 

Giorgio Nocera 

Dario Bruneo 

Sajal K. Das 
Missouri University of Science and Technology, sdas@mst.edu 

Follow this and additional works at: https://scholarsmine.mst.edu/comsci_facwork 

 Part of the Computer Sciences Commons 

Recommended Citation Recommended Citation 
F. De Vita et al., "A Novel Echo State Network Autoencoder for Anomaly Detection in Industrial Iot 
Systems," IEEE Transactions on Industrial Informatics, Institute of Electrical and Electronics Engineers, 
Jan 2022. 
The definitive version is available at https://doi.org/10.1109/TII.2022.3224981 

This Article - Journal is brought to you for free and open access by Scholars' Mine. It has been accepted for 
inclusion in Computer Science Faculty Research & Creative Works by an authorized administrator of Scholars' 
Mine. This work is protected by U. S. Copyright Law. Unauthorized use including reproduction for redistribution 
requires the permission of the copyright holder. For more information, please contact scholarsmine@mst.edu. 

http://www.mst.edu/
http://www.mst.edu/
https://scholarsmine.mst.edu/
https://scholarsmine.mst.edu/comsci_facwork
https://scholarsmine.mst.edu/comsci_facwork
https://scholarsmine.mst.edu/comsci
https://scholarsmine.mst.edu/comsci_facwork?utm_source=scholarsmine.mst.edu%2Fcomsci_facwork%2F1238&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/142?utm_source=scholarsmine.mst.edu%2Fcomsci_facwork%2F1238&utm_medium=PDF&utm_campaign=PDFCoverPages
https://doi.org/10.1109/TII.2022.3224981
mailto:scholarsmine@mst.edu


A Novel Echo State Network Autoencoder for
Anomaly Detection in Industrial IoT Systems

Fabrizio De Vita†, Giorgio Nocera†, Dario Bruneo†, Sajal K. Das‡

†Department of Engineering, University of Messina, Italy, {fdevita, dbruneo}@unime.it, giorgio.nocera@studenti.unime.it
‡Department of Computer Science, Missouri University of Science and Technology, USA, sdas@mst.edu

Abstract—The Industrial Internet of Things (IIoT) technology
had a very strong impact on the realization of smart frameworks
for detecting anomalous behaviors that could be potentially
dangerous to a system. In this regard, most of the existing
solutions involve the use of Artificial Intelligence (AI) models
running on Edge devices, such as Intelligent Cyber Physical
Systems (ICPS) typically equipped with sensing and actuating
capabilities. However, the hardware restrictions of these devices
make the implementation of an effective anomaly detection
algorithm quite challenging. Considering an industrial scenario,
where signals in the form of multivariate time-series should be
analyzed to perform a diagnosis, Echo State Networks (ESNs)
are a valid solution to bring the power of neural networks into
low complexity models meeting the resource constraints. On the
other hand, the use of such a technique has some limitations when
applied in unsupervised contexts. In this paper, we propose a
novel model that combines ESNs and autoencoders (ESN-AE) for
the detection of anomalies in industrial systems. Unlike the ESN-
AE models presented in the literature, our approach decouples
the encoding and decoding steps and allows the optimization of
both the processes while performing the dimensionality reduction.
Experiments demonstrate that our solution outperforms other
machine learning approaches and techniques we found in the
literature resulting also in the best trade-off in terms of memory
footprint and inference time.

Index Terms—Industry 4.0, ESN, anomaly detection, edge
computing, intelligent CPS

I. INTRODUCTION

With the advent of Industry 4.0 paradigm, the realization of
effective diagnosis systems is becoming extremely important
to detect in advance abnormal conditions that can lead to
unwanted behaviors, or even more severe consequences, such
as complete breakdowns [1]. In the recent period, anomaly
detection became a very popular approach to understand the
health of a system and avoid potentially dangerous events that
could affect its normal operation [2]. However, most of the
challenges that emerge when trying to elaborate a diagnosis
for an industrial plant find their roots in the complexity of these
systems, where signals (typically in the form of multivariate
time series) have to be properly analyzed. Moreover, if we
consider that the events where a system exhibits an anomalous
behavior can be rare, this makes even more challenging to
perform an accurate diagnosis [3].

Until recently, Cloud computing has been a central com-
ponent in the realization of anomaly detection frameworks
by providing the infrastructure, the storage, and the high
computing power necessary to run complex algorithms. On the

other hand, if we consider an industrial scenario application, it
poses requirements in terms of real-time/low latency response
times, data privacy, and stable Internet connections, that make
the use of this paradigm ineffective. To this end, modern
solutions involve the Edge computing paradigm to move the
computational resources close to where data is generated, thus
improving the security, application latencies, and resources
utilization [4].

Undoubtedly, the Industrial Internet of Things (IIoT)
widespreading had a very strong impact on the Industry 4.0
scenario by pushing towards the realization of smart Edge
frameworks capable of detecting anomalous conditions. To-
gether with the Artificial Intelligence (AI), these technologies
are two of the most important building blocks for the im-
plementation of Intelligent Cyber Physical Systems (ICPS); in
such a context, machine learning brings reasoning and learning
capabilities through the exploitation of the sensing/actuating
features of these devices. However, if on the one hand AI
introduces new smart applications that can support the human
operator, on the other, the hardware limitations of Edge
devices make very complex the effective execution of onerous
algorithms (e.g., neural networks) [5].

The majority of anomaly detection solutions today involves
Deep Neural Network (DNN) architectures to accomplish this
task, but they usually produce a large number of parameters
which make them unsuitable to run on constrained devices.
Such a condition, becomes even more evident when working
with multivariate time series data, where resource demanding
techniques such as Long Short Term Memories (LSTMs) are
typically adopted to catch the temporal dynamics of a system.
In order to mitigate this problem, Reservoir Computing (RC)
is a framework where a state transition container (called
reservoir) remains fixed during the training phase and has the
task to capture complex input dynamics [6]. Echo State Net-
works (ESNs) [7] are families of neural networks belonging
to RC which exploit the power of Recurrent Neural Networks
(RNNs), while keeping the number of model trainable pa-
rameters low. As a consequence, these architectures exhibit
a reduction of the memory footprint, model complexity and
training/inference times, thus meeting the hardware require-
ments of a constrained Edge device. However, the use of such
a technique has some limitations when applied in unsupervised
settings.

Starting from the vanilla ESN Autoencoder (ESN-AE) ar-

This article has been accepted for publication in IEEE Transactions on Industrial Informatics. This is the author's version which has not been fully edited and 

content may change prior to final publication. Citation information: DOI 10.1109/TII.2022.3224981

© 2022 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: Missouri University of Science and Technology. Downloaded on February 22,2023 at 15:09:05 UTC from IEEE Xplore.  Restrictions apply. 



chitecture [8], in this paper we propose a novel model which
decouples the encoder and decoder networks and introduces a
trainable layer to project input points in a new latent space.
Using this network, we implemented an anomaly detection
algorithm on a real scale replica industrial testbed and com-
pared the performance of the proposed ESN-AE with some
machine/deep learning techniques and other approaches we
found in the literature. Experimental results demonstrate the
effectiveness of the proposed technique and its feasibility for
an industrial scenario.

The paper contributions can be summarized as follows. i)
We propose a novel ESN-AE architecture which addresses
some of the typical problems that emerge when working with
the vanilla version of this model. To the best of our knowledge
this is the first time a topology like this one is presented for
an ESN-AE. ii) We develop an anomaly detection application
to assess the working conditions of a real industrial testbed.
iii) We present an extensive experimental results section where
we compare several models in terms of predictive performance
and memory occupation.

The rest of the paper is organized as follows. Section II
reviews the related works. Section III provides a descrip-
tion about ESNs. Section IV presents the proposed ESN-
AE architecture for the anomaly detection. Section V reports
the anomaly detection algorithm for the assessment of an
industrial plant working conditions. Section VI summarizes the
experimental results obtained from testing and comparing the
proposed technique with others found in the literature. Finally,
Section VII concludes the paper providing also future research
directions.

II. RELATED WORKS

Modern industrial plants tend to be large systems where
many components cooperate and interact for the execution of
several tasks. In such a context, anomaly detection rapidly
became a key element, supporting the human operator to locate
the fault and activate a maintenance process [9]. Hardware
based methods that exploit Physical Unclonable Functions
(PUF) can be considered another viable solution for the
detection of threats in industrial scenarios. This has been
widely proved in [10] where authors investigate several AI
approaches to improve the performance and privacy in e-
Cash schemes. In the following, we summarize existing works
found in the literature highlighting their differences from our
approach.

When working in the area of time series anomaly detection,
traditional RNNs exhibit the vanishing gradient problem that
limits the learning sequences having long term dependencies.
To overcome this drawback, new solutions involve the use of
LSTM networks and its variants such as Gated Recurrent Units
(GRUs) have been proposed. For example, in [11] is described
an improved LSTM based anomaly detection scheme in rail
transit devices. A LSTM and a Gaussian process model are
used in [12] to detect outliers in IIoT by utilizing the predictive
error. In [13] a Variational LSTM (VLSTM) model is adopted
for intelligent anomaly detection in industrial systems. An

enhanced Bi-directional LSTM version integrating Genera-
tive Adversarial Networks and Attention Mechanism (AMBi-
GAN) is used in [14] to detect anomalies in industrial data by
combining discrimination and reconstruction losses. Although
the good results achieved in these works, LSTMs tend to be
resource demanding and produce a large number of parameters
which could make them unaffordable for an Edge device. In
this paper we address these problems, proposing the use of an
ESN-AE as a recurrent model that exploits its sparse structure
to reduce the amount of parameters and network complexity.

The use of ESN-AEs as an anomaly detection method is not
new in the literature. In [15] and [16] authors demonstrated
the effectiveness of this technique for feature extraction and
classification tasks. In [17] is presented a Multi Objective Par-
ticle Swarm Optimization Multi-Layered Echo State Network
Autoencoder (MOPSO-MLESNAE) model as a method to
perform anomaly detection. However, the architecture suffers
from a strong unbalance between the encoding and decoding
phase due to the impossibility to train the reservoir weights.
In [18] authors propose a solution to mitigate this effect by
introducing a training algorithm which iteratively replaces the
encoding weights with the decoding ones. Although different,
these solutions share the problem of not being able to perform
dimensionality reduction; in this work, we were able to address
it by introducing a trainable layer which enables the generation
of an optimized latent representation while performing the
dimensionality reduction. In [19] is described a model con-
necting the features extracted from several reservoirs that are
passed to the output. The architecture contains encoder blocks
that wrap two different types of dimensionality reduction
algorithms such as: Principal Component Analysis (PCA)
or Extreme Learning Machine Autoencoder (ELM-AE). A
substantial difference with our approach is that our architecture
is already an autoencoder (i.e., it does not require encoder
blocks) which converts into a network with a lower number
of layers. Such a choice derives also from our will to run the
ESN-AE at the Edge where device hardware resources can be
quite limited. Moreover, the model in [19] is not presented as
an anomaly detection technique, but as a solution to visualize
multiscale dynamics in time series.

The works described in [20] and [21] combine ESNs with
a Sparse Autoencoder (SAE) and a Convolutional Autoen-
coder (CAE), respectively, for temporal feature extraction and
anomaly detection; in both cases, we can observe two disjoint
systems whose building blocks do not interact during the
learning phase, a problem that could affect the quality of the
prediction. In this sense, the proposed ESN-AE architecture
performs the feature extraction and detection tasks using a
single model and thanks to the use of a code layer immediately
after the encoding reservoir it is able to optimize the predic-
tion, the encoding, and decoding processes at the same time
during the training procedure, with a consequent improvement
of the performance while maintaining a reduced number of
parameters.

This article has been accepted for publication in IEEE Transactions on Industrial Informatics. This is the author's version which has not been fully edited and 

content may change prior to final publication. Citation information: DOI 10.1109/TII.2022.3224981

© 2022 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: Missouri University of Science and Technology. Downloaded on February 22,2023 at 15:09:05 UTC from IEEE Xplore.  Restrictions apply. 



III. ECHO STATE NETWORKS

For a better reading and understanding we report in Table
I the main notation used in the paper.

TABLE I: Notation used in the paper.

Paper symbols
K ESN input units
L ESN output units
M Code layer units
N Reservoir units
T Input sequence length
α Reservoir connectivity
Win ESN input weights
Wres ESN reservoir weights
Wback ESN feedback weights
Wout ESN output weights
WE Encoder weights
WD Decoder weights
WE

res Encoding reservoir weights
WD

res Decoding reservoir weights
WCin

Code layer input weights
WCout Code layer output weights
bE Encoder bias
bD Decoder bias
u Input vector
û Reconstructed input vector
x State vector
x̂ Reconstructed state vector
z Encoded latent vector
y Output vector
L Autoencoder reconstruction error

Originally introduced in [7], ESNs belong to the RC frame-
work and are typically adopted to process and analyze time
series data. Architecturally speaking, an ESN is a RNN char-
acterized by a sparse, randomly connected recurrent structure
(the reservoir) consisting of non trainable weights, and a
trainable part called readout representing the output. Fig. 1
depicts an ESN architecture where the dashed and the solid
arrows are respectively the trainable and not-trainable weights,
while the gray lines indicate valid, but not required links.

Input layer Reservoir layer Output layer(Readout)

u(t)

Win Wres

x(t) y(t)

⋮
⋮

Wout
Wback

K units N units L units

Fig. 1: ESN architecture.

Given an ESN with K input units, N reservoir units, and L
output units, we define its weights matrices as: Win ∈ RN×K ,
Wres ∈ RN×N , Wout ∈ RL×(K+N+L), and Wback ∈ RN×L

containing in the given order, the weights between the inputs
and the reservoir, the weights inside the reservoir, the weights

from the input and reservoir layers to the outputs, and the
feedback weights between the readout and the reservoir. Re-
membering that ESNs derive from RNNs, we introduce the
equations describing the network behavior as follows [6], [7]:

x(t+1) = f(Win ·u(t+1)+Wres ·x(t)+Wback ·y(t)), (1)

y(t+ 1) = g(Wout · [u(t+ 1), x(t+ 1), y(t)]), (2)

where x(t+1) is the new computed reservoir state acting as a
“memory” component, storing the temporal evolution (just like
in RNNs) and depending on the new input u(t+ 1), the state
x(t) and the output y(t), while f(·) is the activation function.

On the other hand, the new output equation is derived from
the concatenation of the new state x(t+1), the input u(t+1)
and the previous output y(t) which makes it depending on the
“history” of the network itself. Also in this case the entire
expression is wrapped around an activation function g(·) that
produces the actual output of the network.

Unlike traditional RNNs, in ESNs the weights of Win and
Wres are sparse, randomly sampled, and remain fixed (also
during the training process). Such a feature allows to decrease
the model complexity because of the lower number of trainable
weights. Moreover, since these weights are contained only
in the Wout matrix, it is possible to speed-up the training
phase which can be achieved (in some cases) solving a linear
regression problem [7]. On the other hand, the heavy stochastic
nature of ESNs requires a proper hyperparameters setting
in order to obtain a stability in the network outputs and
not making them only subject to the “luck” of the random
initialization. A typical solution is to use reservoirs with a
large number of internal units to “encourage” the formation
of independent sparsely connected subnetworks capable of
catching a wide range of input dynamics [7].

In this sense, the ESN core idea consists in using the
reservoir as a temporal feature extractor. Thanks to its large di-
mensionality, such a layer is able to extract high level features
(or meta features) that allow to capture the temporal structure
of the input data [22]. However, in order to properly work, the
reservoir must satisfy the separation and echo state properties
[7], [23] (hence the name of these networks). With respect to
the first one, it guarantees that two separate inputs will produce
separate states; this is fundamental to avoid the “collapse” of
the reservoir that could cause the extraction of almost the same
features for any provided input. To achieve this condition,
it is sufficient to adopt sparse and large reservoirs in order
to stimulate the generation of different connections with the
inputs. The echo state property tells that the effects of the
previous input u(t) and state x(t) on a future state x(t + 1)
should gradually vanish as the time passes [24]. In most cases,
empirical tests demonstrated that a Wres weight matrix whose
spectral radius (i.e., largest eigenvalue in absolute value) is
lower than one is a necessary (but not sufficient) requisite to
satisfy this property. Although weights initialization methods
(e.g., random normal or Glorot uniform), if properly scaled,
allow the generation of matrices respecting this condition,

This article has been accepted for publication in IEEE Transactions on Industrial Informatics. This is the author's version which has not been fully edited and 

content may change prior to final publication. Citation information: DOI 10.1109/TII.2022.3224981

© 2022 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: Missouri University of Science and Technology. Downloaded on February 22,2023 at 15:09:05 UTC from IEEE Xplore.  Restrictions apply. 



we should point out that for some inputs it could be neither
necessary nor sufficient, which makes the echo state property
still an object of research [25].

IV. PROPOSED ESN AUTOENCODER ARCHITECTURE

In the previous section, we provided a description about
ESNs and how they work. In this section, we introduce a
novel model architecture for ESN-AEs useful in the analysis
of multivariate time series data. For a better understanding,
let us define what an autoencoder is. From a topological point
of view, an autoencoder is a neural network which has the
task of learning an efficient representation of the input in
an unsupervised way (i.e., without the corresponding labels).
The peculiar aspect that differentiates these type of networks
from the others is a specific hidden layer named code layer
containing a new latent representation of the data passed as
input (as shown in Fig. 2).

Reduced representation

of the input

Input layer Code layer Output layer

z

̂uu

Encoder Decoder

Fig. 2: Autoencoder architecture.

An autoencoder can be described as the combination of two
building blocks, namely: the encoder and decoder networks.
They are defined as: E : U → Z and D : Z → U where the
encoder E is a function mapping a k dimensional (with k the
number of features) input U ∈ Rk in a new m dimensional
latent space (i.e., the code size) Z ∈ Rm where typically
m < k; in particular cases where m > k, these architectures
are called overcomplete autoencoders. On the other hand, the
decoder D is a function that reconstructs the input from the
latent space bringing it back to the original space. Obviously,
such a process implies a loss of information due to the
compression of the dimensions. Given the following system
of equations: 

z = fE(WEu+ bE)

û = fD(WDz + bD)

L = ∥u− û∥2 ,
(3)

the first equation describes the code computation z by the
encoder network where fE(·) is the encoder activation func-
tion, and WE and bE are the encoder weights matrix and bias
vector respectively. With respect to the second equation, û
is the input reconstructed by the decoder network where, just
like the previous case, fD(·) is the decoder activation function
(equal to the one used to encode), whereas WD and bD are

the decoder weight matrix and bias vector. Finally, the last
equation represents the neural network loss function L (or
reconstruction error) computed as the norm of the original
input u and the reconstructed one û. The autoencoder is
trained to find the best set of parameters which minimize the
loss function (and consequently, the reconstruction error); in
particular, the satisfaction of this condition ensures also the
minimization of information loss.

A vanilla ESN-AE is similar to an autoencoder [8]. It can be
considered as an ESN where the numbers of input and output
units coincide (i.e., K = L) and the input at the generic tth

time instant is equal to the output at the same instant (i.e.,
u(t) = y(t)) as shown in Fig. 3. In this specific case, we
can observe that the vanilla ESN-AE does not adopt some of
the connections which are typical of ESNs such as: the ones
between the input layer and the readout, those between the
output units, and the backwards connections. That said, we
can rewrite the vanilla ESN-AE equations as follows:

x(t+ 1) = f(Win · u(t+ 1) +Wres · x(t)), (4)

y(t+ 1) = g(Wout · x(t+ 1)). (5)

Given this setting, the network is trained to reconstruct the
sequences passed as input with the great advantage of keeping
fixed the majority of the weights inside the network. However,
when using such a topology, the ESN-AE loses some of the
peculiar features of “traditional” autoencoders.

Input layer Reservoir layer Output layer(Readout)

u(t)

Win Wres Wout

x(t) y(t)

⋮ ⋮

K units K unitsN units

Fig. 3: Vanilla ESN-AE architecture.

By observing the vanilla ESN-AE architecture the encoding
and decoding processes are somehow “mimicked” by the Win,
Wres, and Wout weights. However, due to the nature of
this technique, such that the only trainable weights are those
related to the output (i.e., Wout), we obtain a network where
only the decoding phase is really optimized. Another problem
is represented by the absence of a code layer (one of the core
elements in autoencoders) to achieve dimensionality reduction,
clustering, and anomaly detection tasks. We can think that the
latent code lives inside the reservoir, but unfortunately such a
layer is not suitable to play as a bottleneck element inside a
network, because “rich” reservoirs are required to fully catch
the dynamics of a system [7].

Hence, to address these issues, we propose a novel ESN-
AE architecture (shown in Fig. 4) with the purpose of making

This article has been accepted for publication in IEEE Transactions on Industrial Informatics. This is the author's version which has not been fully edited and 

content may change prior to final publication. Citation information: DOI 10.1109/TII.2022.3224981

© 2022 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: Missouri University of Science and Technology. Downloaded on February 22,2023 at 15:09:05 UTC from IEEE Xplore.  Restrictions apply. 



Input layer Encoding reservoir layer Code layer

u(t) x(t) z(t)

⋮
⋮

Decoding reservoir layer Output layer

̂x(t) ̂u(t)

⋮

Fig. 4: Proposed ESN-AE architecture.

it more similar to the original model definition of traditional
autoencoders. The first change we made towards this direction
consists in the use of two separated reservoirs (i.e., one for
the encoding and one for the decoding). Such an addition
has the main advantage of decoupling these two steps, thus
making the W E

res weights responsible for the learning of the
input dynamics and its encoding, and the WD

res weights for
the decoding and input reconstruction. Compared to vanilla
ESN-AE, where the single reservoir is involved in both the
processes, in this network model we were able to add a new
degree of freedom which results in a better learning process.

The second change we made is the introduction of a
trainable code layer acting as a connecting bridge between
the encoding and the decoding reservoirs. Such a layer plays
a key role in our model since it enables the optimization of the
encoding process. In particular, this has been made possible
by means of the trainable WCin

weights which force the en-
coder to generate an optimized encoded representation. More
specifically, the code is a fully connected layer whose units
fix the latent space dimension m with a consequent effect on
the number of encoded features. Given this new configuration,
let us define the equations describing the proposed ESN-AE
as follows:


x(t+ 1) = f(Win · u(t+ 1) +W E

res · x(t) + bE)

z(t+ 1) = f(WCin · x(t+ 1))

x̂(t+ 1) = f(WCout · z(t+ 1) +WD
res · x̂(t) + bD)

û(t+ 1) = f(Wout · x̂(t+ 1))
(6)

where the obtained system is a combination of eqs. (3), (4),
and (5). The first equation is equivalent to the one shown
for the vanilla ESN-AE with the new computed state still
depending on the input u(t+ 1) and on the state x(t) which
is multiplied by the encoding weights W E

res. The second
equation describes the output (i.e., the code layer) of the
first reservoir; mathematically speaking, it is equivalent to the
ESN-AE output equation (see eq. (5)), with the substantial
difference that the encoded features z(t + 1) are a function
of the computed model state and the input code weights
WCin

. The rest of the equations define the decoding network
whose task is to reconstruct the model state x̂(t+1) from the
latent representation z(t + 1). Unlike vanilla ESN-AEs, we
can observe that in this case the reconstruction task is split
into two phases: the first one is achieved by means of the

decoding reservoir weights WD
res for the state reconstruction.

Finally, the second phase is responsible for the actual input
reconstruction û(t + 1) by combining the reconstructed state
x̂(t + 1) computed at previous step and the trained weights
Wout. Hence, we were able to obtain a novel architecture
where the training process is balanced between the encoding
and decoding parts. Compared to the vanilla ESN-AE, our
approach requires a larger number of weights necessary for the
encoding optimization. However, if we consider the benefits
derived from their addition, the proposed architecture still
represents a good trade-off in terms of trainable parameters
and performance.

A. Computational complexity analysis

This sub-suction analyzes the computational complexity of
the proposed ESN-AE. Assuming input sequences of length T ,
K input neurons and N reservoir neurons, it has been demon-
strated that the time complexity for the reservoir connected to
the input layer is computed as follows [19]:

CE
res = O(2αTN2 + TNK), (7)

where α is the reservoir connectivity which usually is very
small (in the order of 0.1 or even smaller). The output of the
encoding reservoir is then passed to a fully connected layer
(i.e., the code) with M units (with M < K) for which the time
complexity depends on W E

res and WCin matrices, whose sizes
are N ×N and N ×M , respectively, and can be computed:

Ccode = O(N ·N ·M) =

= O(N2 ·M).
(8)

The last part of the model is another reservoir (i.e., the
decoding one) which in this case receives the input from the
code layer having M units. Hence, we can compute the time
computational complexity for the decoder part as already did
in eq. (7):

CD
res = O(2αTN2 + TNM). (9)

Combining these three components the overall time com-
plexity of the proposed ESN-AE is the following:

CESN−AE = CE
res + Ccode + CD

res =

= O(2αTN2 + TNK) +O(N2 ·M) +O(2αTN2 + TNM).
(10)

Due to the very small connectivity values, the time complexity
of the encoding and decoding reservoirs can be reduced
to O(TNK) and O(TNM), respectively. Moreover, if we
consider that M < K and in general TK < NM , we can
rewrite the time complexity equation as:

CESN−AE = O(TNK) +O(N2 ·M) =

= O(N2 ·M),
(11)

which results to be quadratic with respect to N .

This article has been accepted for publication in IEEE Transactions on Industrial Informatics. This is the author's version which has not been fully edited and 

content may change prior to final publication. Citation information: DOI 10.1109/TII.2022.3224981

© 2022 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: Missouri University of Science and Technology. Downloaded on February 22,2023 at 15:09:05 UTC from IEEE Xplore.  Restrictions apply. 



V. ANOMALY DETECTION

Over the years, understanding systems “health” state and
the consequent fault prevention have been two of the biggest
challenges in the industry business. Until recently, most of the
proposed approaches tackled this problem by fixing a mainte-
nance schedule to prevent the occurrence of faults. Evidently,
when working with complex systems, the use of such an
approach becomes unfeasible in terms of time, money, and
resources. Moreover, the large number of signals and intricate
non-linear relationships describing an industrial process make
very difficult the elaboration of a precise diagnosis using
traditional methods. In such a context, anomaly detection can
be considered a valid solution for the recognition of events that
can be potentially dangerous for an industrial plant. Indeed, a
timely detection becomes critical to avoid the emergence of
conditions that can be harmful for a system.

Although anomaly detection is gaining a lot of interest in
the recent period, the lack of anomalous data (especially in
the industrial environment) is another challenge that makes
very hard the validation and implementation of this kind
of algorithms. The literature demonstrated that the use of
unsupervised approaches can address this problem through the
definition of intelligent models that can learn from unlabeled
data. Specifically, if we consider an industrial scenario where
systems typically work in a “normal” operative setting, the
use of unsupervised techniques is a viable way to design
algorithms that should extract and learn patterns describing
a working plant and then exploit this knowledge to identify
anomalous behaviors and promptly start fault-response mech-
anisms.

The ESN-AE proposed in this work embodies the above
mentioned characteristics necessary to properly operate in an
industrial environment. Thanks to its unsupervised nature,
our algorithm does not require labeled data for the training
process; in fact, as described in Section IV, an autoencoder
is a model that is asked to learn how to reconstruct the input
samples by using as output the input itself. On the other hand,
the use of ESNs as encoder and decoder allows to reduce the
network weights, thus resulting into a model whose training
and inference process can be sustainable even for a constrained
Edge device.

The methodology we adopted to detect anomalies using the
proposed ESN-AE model is the following. We first trained
the ESN-AE in an unsupervised way passing as input the se-
quences associated to the normal working condition. By doing
this, the model is able to learn those patterns and features that
characterize this condition with the aim of obtaining a low
reconstruction error. On the contrary, for an anomaly that by
definition is an event that deviates from the trend determined
by the data to which it belongs, the reconstruction error can be
very high. Hence, we can exploit this metric as a discriminant
element between a normal and an anomalous behavior.
Fig. 5 depicts a histogram of the reconstruction errors for the
normal and anomalous sequences, where the Mean Squared
Error (MSE) has been used as loss function to compute the

0.00 0.01 0.02 0.03 0.04
Reconstruction error

0

10

20

30

40

50

60

Fr
eq

ue
nc

y

95th percentile threshold

(a) Normal reconstructions

0 2 4 6
Reconstruction error

0

10

20

30

40

Fr
eq

ue
nc

y

95th percentile threshold

(b) Anomalous reconstructions

Fig. 5: Reconstruction errors for normal and anomalous se-
quences.

“distance” between the original input sequences and the cor-
responding reconstructions. As we would expect, the majority
of the errors relative to the normal condition are very low
and clustered around zero (see Fig. 5a) with a range of
values sensibly lower than the ones shown in Fig. 5b where
the reconstruction errors exhibit a significant increase. In
general, the choice of a threshold value represents a core step
that heavily affects the performance of an anomaly detection
algorithm; this process becomes even more complex when
working in an industrial scenario, where the selection should
be carefully done in order to avoid the generation of too
many false positives and false negatives. In such a context, we
introduce the anomaly threshold τ as the 95th percentile over
the training reconstruction errors such that the input sequence
u(t) is anomalous if L(u(t), û(t)) ≥ τ . In this sense, to
select this threshold, we conducted a series of experiments
from which the 95th percentile resulted the best in terms of
performance. Using this definition, we obtained a threshold
which changes every time the model is updated with a new set
of training data. Such a property is fundamental to achieve a
dynamic threshold that can evolve and adapt to the occurrence
of new normal and anomalous patterns.

VI. EXPERIMENTAL RESULTS

In this section, we present the results derived from the
experimentation we conducted to test the proposed ESN-AE.
We demonstrate the feasibility of our approach showing its
performance in detecting the anomalies and the advantages
of using it compared to other machine and deep learning
techniques. Specifically, we considered a real assembly plant
(shown in Fig. 6) used in the automotive sector for the
transportation of car pieces. The system is equipped with two
gear motors, six belts and a cart that is able to move back and
forth by means of a limit switch that, when activated, reverses
the motion direction.

In such a context, we were interested in the detection of
anomalous vibrations along the testbed frame structure that
usually denote the presence of a mechanical fault. To this aim
we instrumented the plant with a VTV-122 sensor produced by
IFM electronics to measure the vibrations and detect anomalies
due to the brake system or cart limit switch malfunctioning.
In this sense, a very important feature of our testbed is the
possibility to manually inject mechanical faults. For example,

This article has been accepted for publication in IEEE Transactions on Industrial Informatics. This is the author's version which has not been fully edited and 

content may change prior to final publication. Citation information: DOI 10.1109/TII.2022.3224981

© 2022 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: Missouri University of Science and Technology. Downloaded on February 22,2023 at 15:09:05 UTC from IEEE Xplore.  Restrictions apply. 



Fig. 6: CAD representation of the scale replica industrial plant.

when acting on the plant brake system, it is possible to incre-
ment the motors gears friction causing a cart movement subject
to mechanical strains, which converts into the generation of
large vibrations. On the other hand, the fault injection in the
limit switch causes an immediate stop of the cart movement
once it reaches one of the plant extremities, with a consequent
reduction of the overall structural vibrations. In general, being
able to inject faults in the tested has been fundamental for
our studies allowing the collection of a labeled dataset, the
validation of our approach and a better understanding of the
plant behavior in a normal and anomalous operative setting.

Using the above mentioned testbed we were able to col-
lect samples in correspondence of two conditions, namely:
a normal setting where the cart is able to move back and
forth, and an anomalous one where a mechanical fault is
injected, negatively affecting the cart motion. Figure 7 depicts
two examples of vibration signals that have been obtained
slicing the raw data into smaller sequences by means of a
sliding window whose width of 100 samples has been set
experimentally.

0 20 40 60 80 100
Samples

0

100

200

300

400

500

Vi
br
at
io
n 
(m

m
/s
)

(a) Normal

0 20 40 60 80 100
Samples

0

100

200

300

400

Vi
br
at
io
n 
(m

m
/s
)

(b) Anomalous

Fig. 7: Vibration raw signals collected from the industrial plant
in correspondence of a normal and an anomalous condition.

In Table II, we report a possible view of the dataset structure
collected using the above described scale replica plant, where
each row represents a vibration sequence. The dataset is
provided with binary labels such that each record is associated
with a normal event (labelled as 0), or an anomaly (labelled as
1). With respect to the bottom part of the table, we computed
a set of statistical indicators (i.e., mean, standard deviation,
quartiles, and max value) for each column to provide a better
understanding of the data. We decided to tackle this problem
using an unsupervised approach; as already mentioned in
Section V, the use of such a technique can be beneficial

when working in industrial scenarios. Moreover, the use of
an unsupervised model makes the proposed algorithm more
generic and suitable even for those applications where the
data labelling is not available or possible. To this aim, the
normal data has been divided into train, validation and test
sets following a 80%, 10%, and 10% split ratio. We then
added the remaining anomalous data to the test set, so that the
training and validation processes are performed only on normal
data to learn its patterns and tune the model hyperparameters,
whereas the test set contains both normal and anomalous data
to evaluate the performance of the proposed approach. In
this sense, due to the unsupervised nature of the proposed
approach, the labels have been used exclusively during the
testing phase in order to compute the precision, recall, F1-
score, accuracy, and Matthews Correlation Coefficient (MCC)
metrics. As a final pre-processing step, we normalized the data
using a min-max scaling approach so that the features were in
the same range of values.

TABLE II: Dataset structure and statistical information.

t vibr(t+ 1) vibr(t+ 2) ... vibr(t+ 100) Label

0 222 333 ... 274 0
... ... ... ... ... ...
10 5 34 ... 79 0
11 195 398 ... 598 1
... ... ... ... ... ...
50 1100 304 ... 489 1
... ... ... ... ... ...

Mean value 507.07 494.09 ... 514.83 −
Std. 522.56 507.53 ... 514.83 −

1st quartile 139 128.75 ... 122.5 −
2nd quartile 294 279.50 ... 307.5 −
3rd quartile 778.35 732 ... 752.25 −
Max. value 2473 2489 ... 2497 −

Given this setting, we started with the implementation of our
ESN-AE by selecting the best hyperparameters according to
the performance achieved on the validation set. With respect
to the number of units, we set the encoding and decoding
reservoirs to 100 and the code layer to 50. Such a configuration
has been obtained by means of Keras tuner, an optimization
framework that helps finding the best hyperparameters for
a given neural network model. The connectivity parameter
α, which refers to the percentage of connections inside the
reservoirs was set to 0.1 (thus implying a sparsity of 90%)
to ensure the separation property discussed in Section III
whereas the spectral radius was set to 0.9 to achieve the echo
state property. The model implemented in [26] involves the
backpropagation algorithm for the training process, hence we
used Adam as optimizer with a learning rate of 0.001. Finally,
we set the training epochs to 2500, but to avoid the model
overfitting, we used an early stopping approach to terminate
the learning procedure if the model is not able to reduce the
validation loss for a consecutive number of epochs. Such a
value is defined by the patience term that in our specific
implementation was set to 10 epochs.

To demonstrate the advantages of the proposed ESN-AE,
we compared it against several approaches. In particular, we

This article has been accepted for publication in IEEE Transactions on Industrial Informatics. This is the author's version which has not been fully edited and 

content may change prior to final publication. Citation information: DOI 10.1109/TII.2022.3224981

© 2022 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: Missouri University of Science and Technology. Downloaded on February 22,2023 at 15:09:05 UTC from IEEE Xplore.  Restrictions apply. 



considered four different models, namely: a One Class Support
Vector Machine (OCSVM), a LSTM autoencoder (LSTM-
AE), a GRU autoencoder (GRU-AE), and the vanilla version of
ESN-AE. The results are summarized in Table III, moreover,
it is worth to mention that for each of the aforementioned
techniques, we performed 100 different experiments in order
to provide a more precise evaluation of their performance by
computing the mean and 95% confidence interval for each
index.

For the OCSVM model, we set the radial basis kernel, a
gamma equal to 1

Nf ·σ2(U) where Nf is the number of features
of the dataset and σ2(U) is the variance of the input passed for
the training. Finally, a tolerance value of 0.001 has been set as
stopping criterion for the solver. The OCSVM returned good
results with a precision of 0.93, a recall of 0.92, a F1-score
of 0.93, and a MCC of 0.34.

The LSTM-AE topology has been set via Keras tuner, which
returned the same results to the ones obtained for our ESN-
AE with 100 neurons for the LSTM encoder and decoder cells.
The model generated roughly 171 K parameters, which make
it very resource demanding in terms of memory and inference
time, on the other hand, it reached a precision of 0.95, a
recall of 0.96, a F1-score of 0.96 and a MCC of 0.66, thus
outperforming the OCSVM algorithm.

For the GRU-AE we used the same topology adopted in
the LSTM-AE resulting in a reduced amount of parameters
(i.e., 131 K). In general, the use of GRU cells as encoder
and decoders resulted in model with a level of performance in
between the OCVSM and the LSTM-AE with a precision of
0.94, a recall of 0.90, a F1-score of 0.93, and a MCC score
of 0.42.

Regarding the vanilla ESN-AE, we considered a topology
like the one shown in Fig. 3 with a reservoir of 100 neurons.
Despite the simplicity of the topology, the model performed
well and obtained a precision of 0.95, a recall of 0.90 a F1-
score of 0.92, and a MCC of 0.42; such results prove the
effectiveness of RC models and their ability to extract complex
time series dynamics using a much lower amount of trainable
parameters than deep learning models like LSTM-AE.

The proposed model architecture uses a larger amount of
parameters if compared with the vanilla ESN-AE; on the other
hand, the addition of a trainable code layer had a positive
impact on the overall performance which reached a very good
precision (i.e., 0.95) and the highest values of recall, F1-
score, and MCC: 0.97, 0.96, and 0.61, respectively. For the
sake of completeness, we report in Table IV the confusion
matrix extracted from the proposed ESN-AE in the best case
scenario on set of 100 experiments.

With reference to Fig. 8a, it shows a bar plot of models
memory footprint. As we would expect, the LSTM-AE which
resulted to be the model with the largest number of parameters
has also the largest size of 700 KB, followed by the GRU-
AE with a memory footprint of 547 KB. With respect to the
proposed ESN-AE, we were able to obtain a much smaller
model with a size of 224 KB by exploiting the RC framework
that allows to effectively reduce the network size thanks to

LSTM-AE GRU-AE Prop. ESN-AE   Vanilla ESN-AE
Models

0

100

200

300

400

500

600

700

M
od
el
 si
ze
 (K

B)

(a) Memory footprint

Code size

0
50
100

150
200

250
Reservo

ir size0 50 100 150 200 250

Av
er
an

ge
 in

fe
re
nc

e 
tim

e 
(s
)

2.5

3.0

3.5

4.0

(b) Time complexity

Fig. 8: Memory footprint and computational complexity of the
proposed ESN-AE.

its weights sparsity. The vanilla ESN-AE model reached the
lowest memory size with 138 KB. In this sense, the additional
encoding weights in our model generated a little increase of the
memory occupation which is still suitable to fit the hardware
of an Edge device.

Fig. 8b depicts the inference time computational complexity
of the proposed ESN-AE when varying the reservoir neurons
(i.e., N ) and code neurons (i.e., M ) sizes. As we would
expect from the analysis conducted in Section IV-A, the time
complexity exhibits a quadratic trend as the reservoir neurons
increase. In this sense, also the code has an impact on the
model performance due to the fully connected nature of this
layer. However, if we look at the worst case scenario, the
model has an average inference time of 4.43s which is still a
good response time.

To further prove the effectiveness of our approach, we com-
pared it against some of state of the art approaches we found
in the literature, where, for a fair comparison, we considered
the same ECG200 dataset adopted in these works [27]. Such
a dataset is a very popular anomaly detection benchmark used
for the recognition of anomalous heartbeats, where each of the
200 signal samples is a sequence of 96 timesteps. As in the
previous case, the dataset has been randomly split into train,
validation, and test sets (using only normal data during the
training and validation phases), and employing the labels in the
test set only to extract the performance metrics. Specifically
we considered four different approaches: two versions of
MOPSO-MLESNAE proposed in [17], the Global Reversible
Autoencoder Echo State Network (GRAE-ESN) presented in
[18], and a model combining a Temporal Feature Network
(TFN) and LSTM-based Attention Network (LSTMaN) [28].

Table V reports the results derived from this comparison.
Following the same methodology discussed above, we found
the best hyperparameters setup for our ESN-AE using Keras
tuner, which returned a topology with 150 reservoir neurons
for both the encoder and decoder, and 50 neurons for the code
layer. Also in this case, our solution reached good results with
a F1-score close to 1 (i.e., 0.953) and an overall accuracy
that outperforms the MOPSO-MLESNAE. In general, the best
performance are achieved by the GRAE-ESN and LSTMaN,

This article has been accepted for publication in IEEE Transactions on Industrial Informatics. This is the author's version which has not been fully edited and 

content may change prior to final publication. Citation information: DOI 10.1109/TII.2022.3224981

© 2022 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: Missouri University of Science and Technology. Downloaded on February 22,2023 at 15:09:05 UTC from IEEE Xplore.  Restrictions apply. 



TABLE III: Models performance comparison on our industrial dataset.

Model Precision Recall F1-score MCC Params

OCSVM 0.93± 0.003 0.92± 0.001 0.93± 0.001 0.34± 0.023 −
LSTM-AE 0.95± 0.003 0.96± 0.007 0.96± 0.003 0.60± 0.023 171 K
GRU-AE 0.94± 0.004 0.90± 0.008 0.93± 0.003 0.42± 0.020 131 K

Vanilla ESN-AE 0.95± 0.004 0.90± 0.006 0.92± 0.002 0.43± 0.020 30.2 K
Prop. ESN-AE 0.95± 0.004 0.97± 0.004 0.96± 0.001 0.61± 0.020 50.3 K

TABLE IV: Confusion matrix of the proposed ESN-AE.

Actual
Anomaly (1) Normal (0)

Pr
ed

. Anomaly (1) 1964 112
Normal (0) 24 225

TABLE V: Models performance comparison on ECG200
dataset.

Model F1-score Accuracy Params

MLESNAE (bi-objective) [17] - 0.905 -
MLESNAE (tri-objective) [17] - 0.900 -

GRAE-ESN [18] - 0.920 1.1M
TFN + LSTMaN [28] - 0.920 -

Prop. ESN-AE 0.953 0.912 89.2K

however it is worth to mention that the techniques adopted
in [18] and [28] make use of a supervised approach. In this
sense, one of the main advantages of the proposed ESN-AE is
the possibility to train it in an unsupervised way without the
need of external labels. Moreover, the GRAE-ESN requires a
massive amount of parameters which makes it unsuitable to
be deployed on a constrained Edge device; given these results
our ESN-AE can be considered the best trade-off in terms of
memory footprint and predictive performance.

VII. CONCLUSIONS

In this paper, we proposed a novel architecture which
extends the vanilla ESN-AE by decoupling the encoding and
decoding steps using two separate reservoirs, and introduces a
trainable code layer for the generation of an optimized latent
representation of the input. Our algorithm has been able to
outperform other approaches and techniques we found in the
literature resulting in the best trade-off in term of memory
occupation and predictive performance. Such features make
our model a viable solution to be executed on hardware
constrained devices (e.g., microcontrollers) and suitable for
an industrial application scenario.

Future works will be devoted to the improvement of the
anomaly detection algorithm performance, to the study of new
solutions that allow a further reduction of trainable weights
and memory footprint (e.g., model quantization), and to the
deployment on a Edge device to enable the possibility of an
on-device training and inference.

REFERENCES

[1] E. Kozłowski, D. Mazurkiewicz, T. Żabiński, S. Prucnal, and J. Sep,
“Machining sensor data management for operation-level predictive
model,” Expert Systems with Applications, vol. 159, p. 113600, 2020.

[2] F. De Vita, D. Bruneo, and S. K. Das, “A novel data collection frame-
work for telemetry and anomaly detection in industrial iot systems,” in
2020 IEEE/ACM Fifth International Conference on Internet-of-Things
Design and Implementation (IoTDI), 2020, pp. 245–251.

[3] G. Pang, C. Shen, L. Cao, and A. V. D. Hengel, “Deep learning for
anomaly detection: A review,” ACM Comput. Surv., vol. 54, no. 2, mar
2021.

[4] L. Cui, Y. Qu, G. Xie, D. Zeng, R. Li, S. Shen, and S. Yu, “Security
and privacy-enhanced federated learning for anomaly detection in iot
infrastructures,” IEEE Transactions on Industrial Informatics, vol. 18,
no. 5, pp. 3492–3500, 2022.

[5] F. De Vita, G. Nocera, D. Bruneo, V. Tomaselli, D. Giacalone, and
S. K. Das, “Quantitative analysis of deep leaf: a plant disease detector
on the smart edge,” in 2020 IEEE International Conference on Smart
Computing (SMARTCOMP), 2020, pp. 49–56.

[6] A. Rodan and P. Tino, “Minimum complexity echo state network,” IEEE
Transactions on Neural Networks, vol. 22, no. 1, pp. 131–144, 2011.

[7] H. Jaeger, “The “echo state” approach to analysing and training recur-
rent neural networks-with an erratum note,” Bonn, Germany: German
National Research Center for Information Technology GMD Technical
Report, vol. 148, no. 34, p. 13, 2001.

[8] S. Zhang, X. Lin, L. Wu, Y. Song, N. Liao, and Z. Liang, “Network
traffic anomaly detection based on ml-esn for power metering system,”
Mathematical Problems in Engineering, vol. 2020, 2020.

[9] Y. Zhang, Z. Y. Dong, W. Kong, and K. Meng, “A composite anomaly
detection system for data-driven power plant condition monitoring,”
IEEE Transactions on Industrial Informatics, vol. 16, no. 7, pp. 4390–
4402, 2020.

[10] G. Fragkos, C. Minwalla, J. Plusquellic, and E. E. Tsiropoulou, “Ar-
tificially intelligent electronic money,” IEEE Consumer Electronics
Magazine, vol. 10, no. 4, pp. 81–89, 2021.

[11] Y. Wang, X. Du, Z. Lu, Q. Duan, and J. Wu, “Improved lstm-based
time-series anomaly detection in rail transit operation environments,”
IEEE Transactions on Industrial Informatics, pp. 1–1, 2022.

[12] D. Wu, Z. Jiang, X. Xie, X. Wei, W. Yu, and R. Li, “Lstm learning with
bayesian and gaussian processing for anomaly detection in industrial
iot,” IEEE Transactions on Industrial Informatics, vol. 16, no. 8, pp.
5244–5253, 2020.

[13] X. Zhou, Y. Hu, W. Liang, J. Ma, and Q. Jin, “Variational lstm
enhanced anomaly detection for industrial big data,” IEEE Transactions
on Industrial Informatics, vol. 17, no. 5, pp. 3469–3477, 2021.

[14] F. Kong, J. Li, B. Jiang, H. Wang, and H. Song, “Integrated generative
model for industrial anomaly detection via bi-directional lstm and
attention mechanism,” IEEE Transactions on Industrial Informatics, pp.
1–1, 2021.

[15] L. Sun, B. Jin, H. Yang, J. Tong, C. Liu, and H. Xiong, “Unsuper-
vised eeg feature extraction based on echo state network,” Information
Sciences, vol. 475, pp. 1–17, 2019.

[16] J. Long, S. Zhang, and C. Li, “Evolving deep echo state networks for
intelligent fault diagnosis,” IEEE Transactions on Industrial Informatics,
vol. 16, no. 7, pp. 4928–4937, 2020.

[17] N. Chouikhi, B. Ammar, A. Hussain, and A. M. Alimi, “Bi-level multi-
objective evolution of a multi-layered echo-state network autoencoder
for data representations,” Neurocomputing, vol. 341, pp. 195–211, 2019.

[18] H. Wang, Q. J. Wu, D. Wang, J. Xin, Y. Yang, and K. Yu, “Echo
state network with a global reversible autoencoder for time series
classification,” Information Sciences, vol. 570, pp. 744–768, 2021.

[19] Q. Ma, L. Shen, and G. W. Cottrell, “Deepr-esn:
A deep projection-encoding echo-state network,” Information
Sciences, vol. 511, pp. 152–171, 2020. [Online]. Available:
https://www.sciencedirect.com/science/article/pii/S0020025519309053

[20] J. Long, Z. Sun, C. Li, Y. Hong, Y. Bai, and S. Zhang, “A novel sparse
echo autoencoder network for data-driven fault diagnosis of delta 3-

This article has been accepted for publication in IEEE Transactions on Industrial Informatics. This is the author's version which has not been fully edited and 

content may change prior to final publication. Citation information: DOI 10.1109/TII.2022.3224981

© 2022 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: Missouri University of Science and Technology. Downloaded on February 22,2023 at 15:09:05 UTC from IEEE Xplore.  Restrictions apply. 



d printers,” IEEE Transactions on Instrumentation and Measurement,
vol. 69, no. 3, pp. 683–692, 2020.

[21] R. Liu, B. Reimer, S. Song, B. Mehler, and E. Solovey, “Unsupervised
fNIRS feature extraction with CAE and ESN autoencoder for driver
cognitive load classification,” Journal of Neural Engineering, vol. 18,
no. 3, p. 036002, mar 2021.

[22] C. Gallicchio, A. Micheli, and L. Pedrelli, “Deep reservoir
computing: A critical experimental analysis,” Neurocomputing, vol.
268, pp. 87–99, 2017, advances in artificial neural networks,
machine learning and computational intelligence. [Online]. Available:
https://www.sciencedirect.com/science/article/pii/S0925231217307567

[23] W. Maass, T. Natschläger, and H. Markram, “Real-time computing
without stable states: A new framework for neural computation based
on perturbations,” Neural Computation, vol. 14, no. 11, pp. 2531–2560,
2002.

[24] M. Lukoševičius and H. Jaeger, “Reservoir computing approaches to
recurrent neural network training,” Computer Science Review, vol. 3,
no. 3, pp. 127–149, 2009.

[25] C. Gallicchio, “Chasing the echo state property,” in European Sym-
posium on Artificial Neural Networks, Computational Intelligence and
Machine Learning (ESANN), April 2019.

[26] M. Abadi et al., “TensorFlow: Large-scale machine learning on heteroge-
neous systems,” 2015. [Online]. Available: https://www.tensorflow.org/

[27] R. T. Olszewski, Generalized feature extraction for structural pattern
recognition in time-series data. Carnegie Mellon University, 2001.

[28] Z. Xiao, X. Xu, H. Xing, S. Luo, P. Dai, and D. Zhan, “Rtfn:
A robust temporal feature network for time series classification,”
Information Sciences, vol. 571, pp. 65–86, 2021. [Online]. Available:
https://www.sciencedirect.com/science/article/pii/S0020025521003820

Fabrizio De Vita is a Research Fellow at the Univer-
sity of Messina, Italy. The research activity of Fab-
rizio De Vita focuses on Intelligent Cyber Physical
Systems and implementation of machine/deep learn-
ing algorithms on Smart Environments. His research
topics also include the Internet of Things applied in
smart city contexts, where he has investigated the
problem of improving the applications Quality of
Service (QoS) by proposing solutions based on Fed-
erated Learning and Deep Reinforcement learning
approaches. Regarding the Smart Industry area, his

research activity aims to create smart systems to diagnose the health state of
an industrial plant via the fault prediction, anomaly detection and predictive
maintenance techniques.

Giorgio Nocera received the bachelor degree
(summa cum laude) in Electrical and Electroni-
cal Engineering from the Engineering Department
of the University of Messina (Italy) in 2019. In
2021, he received the master degree (summa cum
laude) in Engineering and Computer Science from
the Engineering Department of the University of
Messina (Italy). His research activity is focused on
the Internet of Things, embedded systems, and on
the study of machine learning techniques (Deep
Neural Networks, Recurrent Neural Networks, and

Deep/Reinforcement Learning) implementation on Intelligent Cyber Physical
Systems with applications on Smart Agriculture and Smart Industry contexts.

Dario Bruneo is an Associate Professor of Com-
puter Engineering at the University of Messina, Italy.
The research activity of Dario Bruneo has been
focused on the study of distributed systems with
particular regards to the management of advanced
service provisioning, to the system modeling and
performance evaluation. His current research topics
include Internet of Things (and its application in
Smart City scenarios), performance and reliability
of complex systems, Machine Learning techniques
for Cyber Physical Systems. He has published over

100 papers in international journal and conferences and he is co-editor of
the book ”Quantitative Assessments of Distributed Systems - Methodologies
and Techniques” - Scrivener/Wiley. He has been involved in several European
projects and he is co-founder of the startup SmartMe.io, a University spin-off
that develops innovative IoT solutions for smart environments.

Sajal K. Das (Fellow, IEEE) is currently a pro-
fessor of computer science and Daniel St. Clair
Endowed Chair at Missouri University of Science
and Technology, Rolla, USA. Prior to 2013, he
was a University Distinguished Scholar Professor at
the University of Texas at Arlington. His research
interests include cyber-physical systems and IoTs,
smart environments, cyber security, wireless and
sensor networks, mobile and pervasive computing,
cloud and fog computing, and social networks. He
published extensively in these areas and received ten

best paper awards. His h-index is 86 with more than 32,000 citations. He
serves as the founding Editor-in-Chief of Elsevier’s Pervasive and Mobile
Computing Journal, and as Associate Editor of several journals including the
IEEE Transactions of Mobile Computing, IEEE Transactions on Dependable
and Secure Computing, and ACM Transactions on Sensor Networks.

This article has been accepted for publication in IEEE Transactions on Industrial Informatics. This is the author's version which has not been fully edited and 

content may change prior to final publication. Citation information: DOI 10.1109/TII.2022.3224981

© 2022 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: Missouri University of Science and Technology. Downloaded on February 22,2023 at 15:09:05 UTC from IEEE Xplore.  Restrictions apply. 


	A Novel Echo State Network Autoencoder for Anomaly Detection in Industrial Iot Systems
	Recommended Citation

	A Novel Echo State Network Autoencoder for Anomaly Detection in Industrial IoT Systems

