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Network intrusion detection remains one of the major challenges in cybersecurity. In recent years, many machine-learning-based
methods have been designed to capture the dynamic and complex intrusion patterns to improve the performance of intrusion
detection systems. However, two issues, including imbalanced training data and new unknown attacks, still hinder the de-
velopment of a reliable network intrusion detection system. In this paper, we propose a novel few-shot learning-based Siamese
capsule network to tackle the scarcity of abnormal network traffic training data and enhance the detection of unknown attacks. In
specific, the well-designed deep learning network excels at capturing dynamic relationships across traffic features. In addition, an
unsupervised subtype sampling scheme is seamlessly integrated with the Siamese network to improve the detection of network
intrusion attacks under the circumstance of imbalanced training data. Experimental results have demonstrated that the metric
learning framework is more suitable to extract subtle and distinctive features to identify both known and unknown attacks after
the sampling scheme compared to other supervised learning methods. Compared to the state-of-the-art methods, our proposed
method achieves superior performance to effectively detect both types of attacks.

1. Introduction

Network intrusion detection systems (NIDS) play important
roles in network security in the past several decades [1–3].
NIDS can distinguish abnormal network attacks from
routine network traffic, thus ensuring communications
safety. Many deep-learning-based methods, including deep
autoencoder [4], convolutional neural network [5], and
LSTM [6], have been proposed in recent NIDS studies to
identify various complex, unknown attacks resulted from the
growing popularity of the Internet of -ings and cloud-
based services [7]. Compared to the traditional machine
learning methods, such as SVM [8], KNN [9], random forest
[10], and boosting [11], deep-learning-based algorithms,
have demonstrated better performance to address the
growing complexity and diversity of types of attack.

Despite substantial advances being made, there exist two
major challenges in designing a reliable and effective NIDS,
namely the imbalanced training data sets and the frequent
occurrences of unknown attacks. In information systems,
normal samples in network traffic are sufficient, easy to
obtain, and diverse in subtypes. However, it is very difficult
to obtain network attack samples because abnormal flow
accounts for a small proportion of total flow, and traffic
samples of newly emerging forms of attacks such as “zero-
day” attacks are difficult to obtain.

To address the imbalanced data problem, either over- or
undersampling strategy has been proposed to balance the
training data [12–14]. However, each strategy has its own
weakness in practice. -e oversampling scheme, as men-
tioned in [15], is difficult to find an appropriate distribution
to oversample the abnormal intrusion attacks, whereas the
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undersampling strategy generates less data that may cause
overfitting issues for training an effective classifier. In ad-
dition, most advanced deep-learning-based NIDS classifiers
are less sensitive to unknown attacks as they are trained by
maximizing the possibility that a sample belongs to one
known attack type. A classifier’s performance is highly
dependent on the traffic characteristics used in the training
process, so it is difficult to identify unknown attacks in the
detection process, thus unable to cope with the changing
network environment.

To address the above-mentioned challenges, in this
paper, we propose a novel NIDS algorithm that integrates an
unsupervised subtype sampling scheme with a few-shot
learning-based Siamese capsule network to achieve reliable
detection of different types of network attacks as well as
identify new unknown attacks effectively. Specifically, we
design a new sampling method based on unsupervised
machine learning techniques, for example, clustering to
group training samples of each network attack type into
subtypes of data. With this method, more representative
samples can be preserved when balancing the training data.
-ese samples are then used to train the few-shot learning-
based Siamese capsule network so that subtle patterns and
distinctive features can be extracted by a metric learning
framework. -ese two components are complementary to
build a reliable and effective NIDS.

Recently, there are several few-shot learning-based in-
trusion detection methods proposed in [16–18]. -ese
methods can build an effective detection model with only a
small number of samples, and the similarity measurement
mechanism in methods is very suitable for dealing with
unknown attacks. Compared to previous studies, the dis-
tinctive advantages of the new data-processing method and
the improved algorithm structure have made the proposed
method outperform them. Overall, the contributions of our
method are highlighted as follows:

(i) We propose a new unsupervised subtype sampling
mechanism to construct a few-shot learning
training data set with an indefinite K value from an
unbalanced data set. -is scheme can obtain large
representative samples by clustering the training
data of each attack type into subtypes, thus taking
data distribution into consideration. It further
improves the reliability of the few-shot learning
network performance.

(ii) We develop an innovative Siamese capsule network
by adapting the capsule network architecture into
the Siamese network for intrusion detection. As a
result, the location information across features can
provide extra cues to help detect distinctive patterns
of intrusion attacks.

(iii) We redefine a so-called C-way K-shot E-extra
problem in the context of a few-shot learning
framework in the field of intrusion detection so that
our approach can detect unknown attack types
without samples. When facing unknown attacks,
this is more like a special zero-shot learning method
based on few-shot learning [19]. In the experiment,

we found that the support set and the similarity
comparison method are the main factors affecting
the detection accuracy of unknown types.

-e remainder of this paper is organized as follows.
Section 2 discusses related works to provide the background
of our approach. Section 3 explains the proposed NIDS
methods in detail. Section 4 presents experimental results to
demonstrate the effectiveness of our method and its per-
formance comparing to the state-of-the-art methods. Fi-
nally, Section 5 concludes the paper and identifies future
work.

2. Related Works

In this section, several issues in NIDS that are relevant to this
paper are discussed separately, including network intrusion
detection techniques, method of unbalanced data process-
ing, and few-shot learning. A compilation of related work is
shown in Table 1.

2.1. Network Intrusion Detection Techniques. Network in-
trusion detection systems are usually used to detect various
malicious traffic in information systems. -us, they can be
defined as binary classification systems to distinguish be-
tween normal and malicious network traffic. Wang et al. [8]
proposed an intrusion detection framework based on a
support vector machine (SVM). -is method applies the
logarithm marginal density ratios transformation to form
original features with the goal of obtaining new and better-
quality transformed features that can improve the detection
capability of an SVM-based detection model. As an excellent
classifier in machine learning, the XGBoost algorithm is also
applied in the field of intrusion detection. -e detection
model proposed by Su et al. [11] relies on XGBoost to obtain
high detection accuracy. A fuzzy rule-based automatic in-
trusion detection system [20] is proposed as a solution to
deal with precise measurement and uncertainty in the
judgment of each criterion. Furthermore, fuzzy TOPSIS
(Technique for Order of Preference by Similarity to Ideal
Solution) is used for response prioritization in multicriteria
decision-making. Iannucci and Abdelwahed [21] proposed a
probabilistic model-based intrusion detection system built
on a multiagent discrete-time Markov decision process
(MA-MDP), which effectively captures the dynamics of both
the defended system and the attacker. -is model is used to
automatically compose response actions to plan a multi-
objective long-term response policy in order to protect the
system.

Recently, deep learning-based algorithms are widely
used in intrusion detection due to their excellent perfor-
mance in classification tasks. Wu et al. [22] proposed an
intrusion detection method using a convolutional neural
network. -is method converts the vector format of the
original data into an image format. Consequently, the CNN
algorithm is used to extract traffic characteristics and builds
an intrusion detection model through training. -e method
proposed by Mirza and Cosan [6] exploited an autoencoder
to project sample data into a latent space, extract features

2 Computational Intelligence and Neuroscience



through the LSTM algorithm, and then determine whether
an incoming network data sequence is abnormal through a
preestablished threshold. Compared with LSTM, GRU
neural network is more suitable for real-time processing.
-us, Yan and Han [23] utilized the time relationships
between network traffic and used GRU as a classifier to
detect abnormal traffic. Furthermore, both Wang et al. [24]
and Vinayakumar et al. [5] demonstrated that combining
CNNs and RNNs to extract the temporal and spatial
characteristics of network traffic could achieve great per-
formance of classifying normal and abnormal traffic. Since
the efficiency and accuracy of the NIDS method of detection
are equally important, Mirsky et al. [25] proposed a method
based on the integration of artificial neural networks and
self-encoders (Kitsune) for unsupervised anomaly detection
tasks. -e detection performance of this method can be
gradually improved over time. Bovenzi et al. [26] further
proposed a lightweight solution based on multimodal deep
autoencoder (M2-DAE), which supports distributed de-
ployment and is able to manage numerical and categorical
features efficiently.

2.2. Method of Unbalanced Data Processing. To address the
imbalanced training data problem, extensive research has
been undertaken in preprocessing training data [27–29] as

the extreme imbalanced data sets between various types of
traffic attacks have greatly limited detection performance.

Yilmaz et al. [30] proposed to generate samples of
various attack types through the GAN network to construct
a balanced training data set. Caminero et al. [31] embedded
GAN into a classifier and extracted samples from the data set
based on reinforcement learning to generate new samples
and adjust this initial sample generation behaviour through
an adversarial network. However, it is still a challenge to
simulate data samples with unknown data distributions with
the convergence of GAN models. -e method proposed by
Zhang et al. [14] used SMOTE oversampling and GMM
clustering algorithm for under- and resampling all types of
samples to achieve uniformity. Similarly, Engly et al. [32]
created an imbalance-corrected data set using SMOTE’s
algorithm and then used three different methods for feature
selection on the data, such as correlation-based, fast cor-
relation-based, and consistency-based methods. Lopez-
Martin et al. [33] used the generative model of a variable
autoencoder (VAE) in their work. -eir model generated
samples based on the distribution of labels. Compared to
other oversampling methods, the process of this method is
simpler, more reliable, and faster. Yang et al. [34] proposed
an improved density peak clustering algorithm (MDPCA)
data preprocessing method to divide large-scale network
data into several training subsets of different clustering

Table 1: Compilation of related studies.

Feature Problem addressed Method

Network intrusion detection
techniques

Machine learning

SVM with feature augmentation [8]
Improved SMOTE and XGBoost [11]

Fuzzy analytic hierarchy process and fuzzy TOPSIS [20]
Multiagent discrete-time Markov decision process (MA-MDP)

[21]

Deep learning

CNN [22]
Sequential LSTM neural networks autoencoders [6]

Imbalanced learning and gated recurrent unit neural network
[23]

Spatial-temporal deep neural network [24]
Combine RNN and CNN [5]
ANN and autoencoders [25]
Hierarchical hybrid [26]

Method of unbalanced data
processing Imbalanced data sets

Deep reinforcement learning [27]
Feature selection and ensemble classifier [28]

Features dimensionality reduction [29]
Generative adversarial network [30]

Adversarial environment reinforcement learning [31]
CNN based on SMOTE and Gaussian mixture model [14]

SMOTE [32]
Variational data generative model [33]

Modified density peak clustering algorithm and deep belief
networks [34]

Semisupervised k-means clustering and posterior probability
SVM (PPSVM) [35]

Few-shot learning
Few-shot learning

Prototypical networks [37]
Relation network [38]
Matching networks [39]

Siamese neural networks [40]
Few-shot learning methods for

intrusion detection
Prototypical networks and deep CNN [17]
Siamese networks and deep CNN [18]
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centres. -is method breaks the imbalance of multiple types
of data and achieves feature dimensionality reduction.Wang
et al. [35] proposed a novel probabilistic detection frame-
work of weighted combining semisupervised k-means
clustering and posterior probability SVM (PPSVM) for
unbalanced data based on robot vision and achieved a
relatively significant improvement in detection perfor-
mance. While significant progress has beenmade, challenges
remain for these existing preprocessing methods. For ex-
ample, synthesizing samples using oversampling techniques
can reduce the sample quantity gap between classes but
increase the likelihood of overlapping samples within
classes, thus creating samples that do not provide valid
information. Undersampling balances the number of sam-
ples between types by reducing the number of sufficient
classes but is prone to overfitting. In a nutshell, data aug-
mentation alleviates overfitting in low data regimes but does
not solve it.

2.3. Few-Shot Learning. To address the detection of un-
known attacks, few-shot learning models have been pro-
posed to solve tasks with a limited number of training
samples [36]. -e models mainly include prototypical net-
works [37], relational networks [38], matching networks
[39], and Siamese networks [40]. Among them, the proto-
type network [37] provides the support set and the query set
so that it turns the classification problem into the nearest
neighbour problem in the embedding space. In contrast, the
matching network [39] uses two different embedding
functions for the support set and the query set. -e output of
the classifier is a weighted sum of the predicted values
between the support set samples and the query set. -e
relationship network [38] calculates the distance between
two samples by constructing a neural network to analyze the
degree of matching. -e Siamese network [40] constructs a
parallel neural network with shared weights. During
training, sample pairs are constructed by random combi-
nation as the input of the Siamese structure, and the distance
between the sample pairs is calculated to measure the
similarity between the sample pairs. During the test, the
Siamese network takes pairs of the tested sample and the
different types of samples in the support set as input and
treats the sample type with the highest similarity between the
support set and the tested sample as the type of the tested
sample.

Recently, two few-shot learning methods for intrusion
detection have been proposed by Yu and Bian [17] and Xu
et al. [18]. -e former exploits a deep convolutional neural
network algorithm that is integrated into the metric learning
network to calculate the Euclidean distances of different
samples to further distinguish between normal traffic
samples and attack traffic samples, whereas the latter [18]
further processes traffic data from spatial and temporal
features. -e method combines temporally adjacent samples
in the same connection into spatial three-channel images
and uses Conv3D’s convolution operation to construct a
Siamese network to detect image-based intrusion events.
Obviously, the deep learning algorithm still occupies a vital

part of the few-shot learning method. In contrast, the Sia-
mese networks model in the latter [18] is more scalable and
can be embedded with different algorithms to extract the
underlying features of the traffic data. However, this method
ignores the global spatial distance between classes, which is
not conducive to the improvement of detection accuracy.

3. The Proposed Approach

-e architecture of our proposed approach is illustrated in
Figure 1. Central to the approach is the notion of two Si-
amese capsule networks that provide a parallel network
structure to achieve directed feature extraction from dif-
ferent traffic samples. -e general idea is that in the training
phase, the network relies on a small number of samples to
obtain an effective detection model without falling into
overfitting. -en, in the testing phase, the similarity com-
parison method can be used to effectively classify abnormal
samples that are not included in the training set. As the few-
shot learning structure is robust in addressing sample
scarcity and imbalance in the learning process, the proposed
approach offers a promising solution for intrusion detection
including unknown sample types.

Specifically, the approach will work as follows. At the
training stage of our intrusion detection algorithm, data
samples from different types of attacks and normal network
traffic are clustered and sampled based on the proposed
unsupervised subtype sampling scheme, which is explained
in the next subsection. After resampling the raw data set, the
balanced data set and data samples collected from scarce
attack types are used to form the training set for the Siamese
capsule network training so that the few-shot learning al-
gorithm could learn more distinctive features to identify the
network attacks with such imbalanced data set. In addition,
the balanced few-shot training set is used as the support set
at the test stage to identify the abnormal network behav-
iours. At the test stage, we use the most similar samples in
the support set to classify the tested samples after extracting
features from the Siamese capsule network. It is to be noted
that two-dimensional grayscale images converted from the
traffic vectors are built as the input feature representations of
the proposed framework. -e detail of the representation is
explained in the experiment in Section 4.1.

3.1. Unsupervised Subtype Sample

3.1.1. Unbalanced Data Set. Learning tasks in scenarios with
unbalanced sample numbers have received extensive re-
search attention. Although a large volume of normal traffic
data could be easily collected, training samples of intrusion
attacks are usually much scarcer. When dealing with un-
balanced data sets, traditional methods usually use data
enhancement and enrich supervision information to con-
struct new balanced data sets [41]. -e specific operation is
to repeatedly undersample the types with sufficient samples
and discard some redundant samples. For the types with
scarce samples, new samples are generated by algorithms
such as GAN to balance the number of samples in the
sufficient and scarce classes [42]. However, simulating data
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samples from arbitrary data distributions using GAN is still a
challenging task. Similarly, cost-sensitive learning can deal
with the sample imbalance between classes. However, the
method still needs to rely on large-scale samples and is not
the key to solve the sample scarcity problem. Furthermore,
cost-sensitive learning pursues classification cost more than
classification accuracy, which is not feasible for many de-
tection tasks [43]. In contrast, few-shot learning is built on
top of themetric learning structure, which can better capture
unknown attacks.

-e “C-way K-shot” in few-shot learning is a learning
method, which constructs C categories, and each category
has K samples. In this method, the value of K for each
category is usually fixed and identical. However, the intra-
and interclass variations of traffic data in network intrusion
detection vary when the K value is changed. If the value of K
is much smaller than the type of its subtype, the learning
ability of the algorithm for normal samples will be insuf-
ficient, which will affect the detection performance. On the
contrary, if a high K value is set, the subtypes may have too
few samples as the sample number of newly emerging attacks
is sparse. -erefore, it is still difficult to build a suitable few-
shot training set using a fixed K value. In our method, in-
stead of pursuing the balance between samples and cate-
gories, we set the K value as an adaptive value, that is, the
value of K is different in different types. In this way, we are
able to fully learn the features in normal types, while
avoiding the restriction on K values of sparse classes.

To illustrate the variations of traffic samples of different
types of attacks, we randomly sample six types of attacks,
including Benign, Bot, DDoS, PortScan, DoS GoldenEye,
and Web Attack SQL Injection in the CICIDS-2017 data set
[44] and randomly select two different features to display the
data distributions. As shown in Figures 2(b), 2(c), 2(f), and
2(i), Bot-type samples are distributed loosely across the
feature spaces of Avg Fwd Segment Size, Packet length
Variance, Packet Length Std, Fwd Packet Length Mean, and
Subflow Fwd Bytes. In contrast, there are distinctive dif-
ferences between samples in the same attack types. As

illustrated in Figures 2(a), 2(d), 2(e), 2(h), and 2(i), samples
in some attack types, for example, the types such as Benign
and DoS GoldenEye with respect to the features Fwd IAT
Mean and Active Max, are densely distributed, and they
could be clustered well.

In an information system, the normal traffic of the HTTP
protocol and the SNMP protocol behave differently in
connection characteristics, traffic characteristics, and header
content; even the normal traffic within the HTTP protocol is
different. As the goal of traffic attacks is to disguise normal
samples from all levels, many samples of the attack data have
significant variations in characteristics, while samples of
different attack types share similarity in some characteristics.
-erefore, when constructing a few-shot data set, it is re-
quired to design a sampling scheme to obtain sufficient
samples to cover each subtype of these attacks.

3.1.2. Unsupervised Subtype Sampling Method. As shown in
Figure 3, when performing unsupervised subtype sampling,
first, we use an adaptive k-means method [45] to cluster the
samples into subtypes of each attack type for our resampling
scheme. Each subtype is then randomly sampled one by one
to obtain a subset representing that type available for
training. -e K number is determined adaptively based on
the silhouette coefficient [46], which balances cohesion and
separation factors as shown in the following equation:

S(i) �
b(i) − a(i)

max a(i) − b(i){ }
, (1)

where a(i) represents the average of the distances from
the samples i in the cluster to all other samples in the cluster
and b(i) represents the minimum value of the average
distance from the sample i in the cluster to all samples in the
cluster closest to the sample. -e calculation result of the
silhouette coefficient is between −1 and 1. After setting a set
of candidate K values and run the k-mean method to cluster
the data in each attack type, the final K value for each type is
selected based on the following equation, which is the

Type of normal 
Type of 

scarce attack

Type of 
sufficient attack Training set

Support 
set Detection model

Test set

Train

Test Traffic simple

Clustering

Sampling

Unsupervised 
sub-type sample

Siamese capsule 
network

Similarity metric

DF-Net

lable

Known attack

Normal 

Unknown attack 

Figure 1: -e architecture of directed unbalanced few-shot intrusion detection.
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smallest number of clusters from the top n largest silhouette
coefficient.

K � min argmaxn S(2), S(3), . . . , S(i){ } , (2)

where the parameter n is usually set to 10 and argmaxn
represents the number of clusters corresponding to the
largest first n silhouette coefficient. After obtaining the most
appropriate number of clusters, we take one sample from

each subtype after clustering to build a few-shot training set
of sufficient classes. In contrast, this new sampling method is
able to select representative samples from sufficient classes
for training and can alleviate the problem of information loss
in random undersampling. As shown in Figure 2, after
unsupervised clustering is used to obtain a type of set with
subtype labels, a sample is drawn from different subtypes,
and a subset of this type is generated as a training set.

Type of 
sufficient 
samples 

K-means

Sub-type

Sub-type

Sub-type

Sub-type

Silhouette
coefficient

Optimal number
of clusters 

Simple 1

Simple 2

Simple n-1

Simple n

. .
 .

. .
 .

Sampling

Sampling

Sampling

Sampling

Sub setSub-type set

Figure 3: Process of unsupervised subtype sampling.
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We illustrate the sampling results in Figure 4. Here,
1,000 samples without labels were randomly selected on the
normal traffic type, and the K-means algorithm was used for
clustering. According to the above unsupervised subtype
samplingmethod, the optimal number of clusters is 20. After
completing the clustering, a sample is randomly selected
from each subtype to observe the distribution of unsuper-
vised sampling samples in all samples. As shown in Figure 4,
a small set consisting of 20 samples is evenly distributed on
different features, with a high degree of dispersion, and has a
high representative value for each feature.

3.2. 1e Directed Few-Shot Network-Based NIDS

3.2.1. Siamese Network. Siamese network is an application
form of few-shot learning in the field of supervised learning
framework. Its main goal is to learn a reliable classification
model based on a very small number of samples. It is also
considered as one type of metric learning method, which
classifies samples by comparing the similarity between the
tested samples and the labelled samples in its support set.
-e classification task establishment process is as follows:

Step 1: determine the number of types C and the
sampling value K of each type. Construct a few-shot
learning data set, including training set, query set,
support set, and test set.
Step 2: choose suitable feature extraction neural net-
work algorithms to construct a backbone network with
weight sharing and choose a suitable similarity mea-
surement method to construct a comparison network.
Step 3: randomly sample the same type and different
types of sample pairs as the input of the Siamese
network. If the two samples in the input sample pair are
of the same type, the similarity label is 1, and if the types
are different, the similarity label is 0.
Step 4: compare the output label with the real label to
obtain the loss and establish the network model step by
step iteratively.
Step 5: bring the sample pair composed of the tested
sample and the sample in the support set into the model
to measure the similarity. Take the sample type in the
support set with the highest similarity to the tested
sample as the tested sample type.

3.2.2. 1e CapsuleNet Method. -e main function of the
Siamese backbone network is to extract features from
samples. CNN can effectively extract features, but it also has
certain limitations. First, the data is transferred between
neurons in a scalar way. Scalar has only content but no
direction, so CNN is not strong in recognizing the spatial
position relationship between features. Second, the pooling
layer of CNN will lose a lot of valuable information. -e
characteristic location of the network traffic sample is very
sensitive [47], and the confusion of the location relationship
will inevitably affect the accuracy of the judgment result. -e
capsule network transmits information in the form of

vectors, which can effectively characterize the location and
direction of features. In addition, the dynamic routing al-
gorithm of the capsule network avoids the feature loss
caused by the pooling operation. -us, there are two main
motivations for us to use the capsule-based architecture in
our work: firstly, a network intrusion attack typically gen-
erates very salient local features. Compared to other deep
learning architectures, capsule-based network architecture
has a distinctive advantage of using a local feature for
classification, which naturally fits the NIDS task. Secondly,
classical convolutional neural network architectures use the
max-pooling operation to explore the relationship between
features. While this operation causes information loss in
higher-level features extracted from the networks. In con-
trast, the capsule-based network architecture utilizes dy-
namic routing to replace the max-pooling operation.
Considering that the feature space of NIDS is relatively small
that cannot afford the information loss caused by the max-
pooling operation, it is believed that the capsule-based
network architecture is more suitable for NIDS. We develop
the CapsuleNet method as the backbone of our Siamese
backbone network, as illustrated in Figure 5.

Although the capsule network guarantees the direc-
tionality of the feature extraction process, the initial process
of extracting features from the original data still needs to rely
on the convolution operation. As shown in Figure 5, after a
sample is feature extracted through the initial convolution
operation, the feature is converted into a vector through the
Primary Caps layer as the input of the dynamic routing
algorithm. -e dynamic routing algorithm outputs a feature
vector representing image features after a series of opera-
tions such as matrix transformation, input weighting,
summation, and nonlinear transformation are performed on
the vector. -e output of the final capsule network can be
used as the input of the comparison network. Due to space
limitations, the specific calculation process of the dynamic
routing algorithm between capsules can be found in the
literature [48].

3.2.3. Using Siamese Capsule Network for Intrusion
Detection. In our work, we propose the Siamese capsule
network for the NID system. As the metric model is a crucial
part of the few-shot learning method, the Siamese network is
used in our work. As illustrated in Figure 6, the Siamese-
directed network constructed by combining few-shot
learning, and capsule network can effectively deal with the
problem of scarce attack samples and sensitive sample
feature positions in intrusion detection.

As shown in Figure 6, in the backbone network with
shared weights, the sample obtains the feature vector after
initial feature extraction through a two-dimensional con-
volution operation. After the features are reshaped, they are
input into the capsule network for directional extraction,
and Flatten is used to compress the vector output from the
capsule network in one dimension. -e one-dimensional
vectors of different samples are compared for similarity in
the comparison network. First, these two one-dimensional
vectors are subtracted, and then the absolute value is added.

Computational Intelligence and Neuroscience 7



It is equivalent to obtaining the norm of the difference
between the two eigenvectors. -en, it is fully connected to
this norm twice, and the second time, it is fully connected to
a neuron. Finally, the Sigmoid activation function is used to
activate the output of this neuron, so that its value is between
[0, 1], which represents the degree of similarity between the

two input pictures. Although the Siamese network using
random sample pairs can achieve multiclassification tasks, in
fact, according to the input of the Siamese network, the
training task is still carried out according to the binary
classification. -erefore, we use binary cross-entropy to
calculate the loss [49]; the formula is as follows:

. ..
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convolutionPicture Primary
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v

Figure 5: -e CapsuleNet method.
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where xi
1, xi

2 are two random samples input at one time.
If the samples are of the same type, y (xi

1, xi
2)� 1, otherwise,

it is y (xi
1, xi

2)� 0. In addition, we also use the Adam op-
timizer with better convergence performance [50]. To solve
the problem of insufficient generalization ability, the decay
mechanism is introduced to update the learning rate with
the epoch.-e pseudocode of generating the training set and
the proposed network training are provided as Algorithms 1
and 2.

4. Experiment

4.1. Experimental Data and Environments. To evaluate the
detection effect of the proposed methods, we conduct ex-
periments using the CICIDS-2017 data set [44] and
UNSW_NB15 data set [51]. CICIDS-2017 contains 14 attack
samples and 1 normal sample. According to the definition of

few-shot learning, 8 sample types are selected, including
normal type and 7 attack types. UNSW_NB15 contains 9
attack samples and 1 normal sample. According to the
definition of few-shot learning, 7 sample types are selected,
including 1 normal type and 6 attack types. To simulate the
imbalance of data, three types, namely sufficient, scarce, and
zero-sample, are categorized. -e specific distribution is
shown in Table 2.

Among the selected 7 attack types on the CICIDS-2017
data set, we define 5 of them as known attack types. -e
other 2 attack forms (iG and iH) simulate unknown attacks,
and there are no samples of these two types to be used in the
training set. Among the known attack types, the iB and iC
attack types are set to have sufficient traffic samples, and the
iD, iE, and iF attack types have limited traffic samples. Each
sample in the data set has 78 features and 1 sample label. We
set N� 9 and establish each sample as a 9∗ 9 grayscale image
to extract geometric features.

Among the selected 6 attack types on the UNSW_NB15
data set, we define 4 of them as known attack types. -e
other 2 attack forms (rF and rG) simulate unknown attacks,
and there are no samples of these two types to be used in the

……

Normal Attack 1 Attack n

Simple 1 Simple 2
Conv2D,16,5∗5

Conv2D,16,5∗5
Convolution Convolution

Weight
Capsule Capsule

Reshape (-1,32)

num_capsule=2,
dim_capsule=30,

routings=5
Flatten Flatten

Feature 1 Feature 2

Similarity
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Sigmoid
Output

Relu
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abs (Feature1-
Feature2)
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Figure 6: -e few-shot capsule network-based NID system.
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Input: Type L� {0, 1, . . ., C}. Type E� {0, 1, . . ., E}. Data setD� {(x1, y1),(x2, y2),. . .,(xn, yn)}, where xi denotes simple and yi denotes
the corresponding type of the sample. D<t> denotes the subset of D where yi � t, t ∈ L∪E.
Output: few-shot task T� {Sa, Su, Q, Te}.
Require: cluster (D, K) denotes a set get K subtypes by clustering. Judge(Type) denotes a type that requires unsupervised sampling.
UnsuperviseSample (D, K) denotes a set of K elements select uniformly at random from each subtype of setD. RandomSample (D,
K) denotes a set of K elements select uniformly at random from set D.

(1) Generate Sample set Sa
for i in L do

Type←RandSample (D <0>, i)
if Judge (Type) then

CD←Cluster (D <0>, K)
Sa<i>←UnsuperviseSample (CD, K)

end
else

Sa <i>←RandomSample (D <0>, K)
end

end for
Sa← Sa <0>∪Sa <1>∪. . .∪Sa <C>

(2) Generate Support set Su
for j in L do

Su <j>←RandomSample (Sa <j>, K)
end for
Su← Su <0>∪Su <1>∪. . .∪Su <C>

(3) Generate Query set Q
for m in L do

Complement←D <m>−Sa <m>
Q <m≥RandomSample (Complement, K)

end for
(4) Generate Test set Te

for m in L do
Complement←D <m>−Sa <m>−Q <m>
Te <m≥RandomSample (Complement, K)

end for
for n in E do

Te (m+ n)=RandomSample (D(m+ n), K)
T← {Sa, Su, Q, Te}

ALGORITHM 1: Generation of a multiclassification unbalanced few-shot task from the data set.

Input: Type L� {0, 1, . . ., C}. Training set T� {Sa, Q}. Sa� {(x1,y1), (x2,y2), . . ., (xn,yn)}, Q� {(xq
1, y

q
1), (x

q
2, y

q
2), . . ., (xq

n, y
q
n)}, where xi

denotes sample and yi denotes the corresponding type of the sample. Sa <t> denotes the subset of D, where yi � t. Batch size B.
Similarity value Sv. Epochs Ep.
Output: the loss J for backpropagation.
Require: DF-Net. Binary-CrossEntropy BC
for i in Epochs do

Type0←Randomsample (L, 1)
Type1←Randomsample ((L−Type0), 1)
Establish Sample Pairs: Sv0←Randomsample (Sa <Type0>, 1) ∪ Randomsample (Q <Type0>, 1)
Establish Sample Pairs: Sv1←Randomsample (Sa <Type0>, 1) ∪ Randomsample (Q <Type1>, 1)
if Sv0 then

Sv0←DF-Net (Sp0)
Calculate Loss: J← J+BC (Sv0, 1)

end
else

Sv1←DF−Net (Sp1)
Calculate Loss: J← J+BC (Sv1, 0)

end
end for

ALGORITHM 2: Training with DF-Net.
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training set. Among the known attack types, the rB and rC
attack types are set to have sufficient traffic samples, and the
iD and rE types have limited traffic samples. Each sample in
the data set has 49 features and 1 sample label. We set N� 7
and establish each sample as a 7∗ 7 grayscale image to
extract geometric features.

4.1.1. Training Set. We conduct experiments under two
different settings to simulate the imbalance of data in
practical applications. CICIDS-2017 data set is taken as an
example, in the first setting; we set the maximum number of
training samples for the Benign, DDoS, and Bot types in
abnormal traffic to 1,500, 1,000, and 500, respectively, and
the maximum number of training samples for scarce attack
types PortScan, DoS GoldenEye, and Web Attack SQL In-
jection to 5, 5, and 5, respectively. In the second setting, we
set the maximum number of training samples for the Be-
nign, DDoS, and Bot types in abnormal traffic to 3,000,
2,000, and 1,000, respectively, and the maximum number of
training samples for scarce attack types PortScan, DoS
GoldenEye, andWeb Attack SQL Injection to 20, 20, and 10,
respectively. After obtaining different types of available
training data sets, value samples are selected to form the
training data set through unsupervised subtype sampling
and establish multiple training sets with different sample
sizes to verify the usability of the method.-e UNSW_NB15
data set is the same in the selection strategy of the training
set. As shown in Table 3, training A and training B denote
two training sets with different sample sizes.

4.1.2. Implementation and Experiment Environments. -e
experiment was carried out under the environment of CPU
Intel Xeon E5-2620, GPU NVIDA GTX1080ti, RAM 64G,
video memory 11G, CuDNN 7.6.5, CUDA 11.0, TensorFlow
1.13.1, and Keras 2.2.4.

4.2. EvaluationMetrics. In addition, to test the classification
on the known attacks, the detection task is also tested on
unknown attacks. -e classification of unknown attack

samples relies on the comparison of their similarity with
normal samples and abnormal samples. -erefore, the
model’s detection of traffic samples is a process of binary
classification of normal samples and abnormal samples. -e
test results of the samples are divided into the following four
types:

(1) TP: normal samples are correctly detected as normal
samples

(2) FN: normal samples are incorrectly classified as
abnormal samples

(3) TN: attack samples are correctly detected as ab-
normal samples

(4) FP: attack samples are incorrectly classified as nor-
mal samples

We use three evaluation indicators including accuracy
rate, precision rate, and recall rate to evaluate the method.
-e accuracy rate is the ratio of the number of samples
correctly classified to the total number of samples, which can
reflect the accuracy of the model classification.-e precision
rate is the proportion of real positive samples in the samples
that are judged to be positive. -e recall rate refers to the
proportion of samples that are judged to be positive in all
samples that are truly positive. -e latter two items can
reflect the classification performance of the method from
two aspects: false positives and underreports. -e formulas
of each evaluation standard are as follows:

accuracy �
(TP + TN)

(TP + TN + FP + FN)
,

precision �
TP

(TP + FP)
,

recall �
TP

(TP + FN)
.

(4)

-e above three evaluation criteria can effectively judge
the detection accuracy of the method, but in order to better
show the model’s ability to detect attack traffic, we introduce
the detection rate to further evaluate the method. -e

Table 2: Experimental data distribution.

Data sets Definition Type Train Test Code

CICIDS-2017

Normal Benign Sufficient 16,320 iA

Simulate known attacks

Bot Sufficient 480 iB
DDoS Sufficient 480 iC

PortScan Scarce 480 iD
DoS GoldenEye Scarce 480 iE

Web Attack SQL Injection Scarce 20 iF

Simulate unknown attacks DoS Hulk Zero 1,050 iG
Heartbleed Zero 10 iH

UNSW_NB15

Normal Normal Sufficient 10,000 rA

Simulate known attacks

Reconnaissance Sufficient 600 rB
Exploits Sufficient 600 rC
Analysis Scarce 600 rD
Generic Scarce 600 rE

Simulate unknown attacks Backdoor Zero 583 rF
Shellcode Zero 378 rG
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detection rate refers to the proportion of samples that are
correctly judged as negative classes in the entire negative
class samples, that is, the proportion of detected attack
samples occupying all attack samples. -e expression for-
mula is as follows:

detection rate �
TN

(TN + FP)
. (5)

4.3.ValidationofEffects ofDifferentParameters andBackbone
Structures. -e Adam optimizer can maintain fast con-
vergence but has insufficient generalization ability. After
being supported by the decay strategy, its loss function
converges more smoothly. As shown in Figure 7, when
epoch� 500, the loss tends to stabilize, and the loss value
decreases from 0.7 to 0.0006. -erefore, in the following
experiment, the epoch is set to 500.

To verify the superiority of our proposed method, we
also compare our method with different backbone networks
that are integrated into the Siamese network. -e DCNN
network proposed by Yu and Bian [17], the VGG16 network
proposed by Simonyan and Zisserman [52], and the
ResNet18 network proposed by He et al. [53] are typical
CNN algorithms that have achieved relatively successful
applications in few-shot learning scenarios [54]. -us, they
are selected to compare with the proposed Siamese capsule
network on the known attack test set. -e performance of
different algorithms on accuracy, precision, and recall is
shown in Figure 8.

On training A of CICIDS-2017, the few-shot capsule
network demonstrated an overall advantage with accuracy
and recall of 98.37% and 96.29%, respectively. While en-
suring a high accuracy rate for all samples, the Siamese
capsule network algorithm can achieve an 86.55% abnormal
detection rate, which is relatively stable performance. On
training B, compared with the other two Siamese network
algorithms, the Siamese capsule network still maintains a
leading advantage as a whole. Although its detection rate of
anomalies is slightly lower than that of the capsule network
algorithm, it maintains a leading position in comprehensive
evaluation criteria such as accuracy and recall. -e exper-
iments on the UNSW_NB15 data set further demonstrate

the superiority of the method in the paper, maintaining the
lead in the correct classification of both abnormal samples
and normal samples. According to Figures 8(a)–8(d), it can
be seen that with the increase of samples, the detection
results are more stable. After multiple rounds of random
experiments, from the perspective of various evaluation
criteria, compared with other algorithms, the few-shot
capsule network can achieve stable and accurate detection.

4.4. Results and Comparisons

4.4.1. Validation of Unsupervised Subtype Sample Method.
To test the sampling effect of the unsupervised subtype
sample method, resampling method [17], random sampling
[18], and sequential sampling without any sampling method
are used for comparison on the data set mentioned in
Section 3.1. According to the principle of the ablation ex-
periment, the sampling method is set as the only variable,
and other variables are kept uniform and fixed according to
the proposed parameters in Table 3. Sequential sampling is
to sample each type according to the order of the samples on
the data set available for training. It is foreseeable that the
samples obtained by sequential sampling must not have too
much discreteness. Random sampling is to construct a data
set by randomly drawing samples from different types.
Resampling is divided into oversampling and under-
sampling. We use random sampling on types of sufficient to
complete undersampling and use the GAN algorithm to

Table 3: Training set with different sample sizes.

Data sets Type Training A Training B

CICIDS-2017

Benign 27 118
Bot 11 24

DDoS 10 19
PortScan 5 20

DoS GoldenEye 5 20
Web Attack SQL Injection 5 10

Total 63 211

UNSW_NB15

Normal 26 93
Reconnaissance 15 26

Exploits 11 31
Analysis 5 20
Generic 5 20
Total 62 190
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Figure 7: Loss curve.
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oversampling to generate scarce classes samples to complete
the construction of the resampled data set. Considering the
randomness of the sampling process of various sampling
methods, we conduct 10 experiments on various sampling
methods respectively. -e performance of the sampling
methods on the test set is as follows.

As shown in Figure 9, the optimal detection results of
different sampling methods are selected for comparison.
-e random sampling (RaS) method does not perform well
in the application scenario where a small number of large-
scale samples are sampled. Using resampling (ReS) to
establish a balanced sample is better than random sam-
pling, but there is still a big gap compared with an un-
supervised subtype sample (US). In addition, from
Figure 9(b), the detection result output by the unsupervised
subtype sample method is more stable, which is a very
important feature in the intrusion detection method. From
the perspective of evaluation indicators such as accuracy
and detection rate, the detection accuracy of the few-shot
data set constructed by the unsupervised subtype sample
method is much higher than that of the other three

sampling methods, and it is more suitable for constructing
a few-shot learning data set.

4.4.2. Comparison of Few-Shot Learning Methods. To pursue
higher detection accuracy, the method mentioned in [18]
considers the time characteristics of the flow data when
establishing the sample. -e training set is divided into a
sample set and a query set, which are constructed by random
sampling according to the determined K value. -e support
set is established using a small amount of random sampling
method. Its Siamese network architecture using FC-NET is
constructed by a deep neural network (DNN). When testing,
the tested sample is compared with the samples in different
types of support set, and the type of the tested sample is
judged by the size of the average value of each type in the
tested sample support set. -e difference between the above
method and the method proposed in this paper is shown in
Table 4.

To show the application effect of the method in the
intrusion detection field, the few-shot learning method

(2) On training B of CICIDS-2017

(3) On training A of UNSW_NB15 (4) On training B of UNSW_NB15

(1) On training A of CICIDS-2017
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mentioned in the literature [18] is compared with the
method mentioned in the paper on the test set containing
known attacks and unknown attacks.-e detection results of
different methods on each evaluation index are shown in
Table 5. Table 6 shows the detection rates of various methods
for different types of attacks.

In Table 6, on training A, there is no significant dif-
ference in the detection rate of different types of attacks by
each method. However, combining the accuracy, precision,
and recall rates in Table 5, the method in this article is
higher in detection accuracy than the other two methods.
Tables 5 and 6 shows that the detection rate of anomalies in
the training set with the number of samples from small to
large increases accordingly. On the B training set, the
detection rate of the method in this article for iB and iE
attack types is 100%, and the detection of rE attack types
can also reach 99.5%. -e comprehensive detection rate of

various abnormalities can reach more than 90%, which
exceeds the other two types of few-shot abnormality de-
tection methods.

When facing unknown attack types such as iG, iH, rF,
and rG, on the data set of K� 5, the FC-NETmethod has a
better detection effect on unknown anomalies. However, as
shown in Table 5, the accuracy of the FC-NETmethod can
only reach 88.09% on the CICIDS-2017 data set and 88.65%
on the UNSW_NB15, and its detection effect on unknown
anomalies is at the expense of its accuracy. With the small
increase in the number of samples, the detection rate of the
detection method in this article for unknown attacks sur-
passes the other two methods, and the overall accuracy is
higher. -e detection rate of this method for unknown types
of iG can reach 93.1%, surpassing FC-NET’s 66.3%, and it
also maintains a very high accuracy rate for normal types
and known attack types.
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Figure 9: Comparison of sampling methods: (a) comparison of optimal sampling results and (b) comparison of multiple experiments.

Table 4: Comparison of few-shot intrusion detection methods.

Method Sample method K value Algorithm Loss Measurement method
FC-NET [18] Random sampling Certain DNN MSE Average similarity comparison
Proposed Unsupervised subtype sampling Adaptive CNN+CapsuleNet Binary cross-entropy Maximum similarity comparison

Table 5: -e performance of each method on different evaluation criteria.

Data set Train set Method FP FN Accuracy (%) Precision (%) Recall (%)

CICIDS-2017
K� 5 or training A FC-NET 1,720 581 88.09 96.16 89.43

Proposed 606 579 93.87 96.45 96.29

K� 20 or training B FC-NET 1,907 510 87.49 96.58 88.31
Proposed 587 271 95.56 98.31 96.40

UNSW_NB15
K� 5 or training A FC-NET 1,109 407 88.65 88.91 95.62

Proposed 774 391 91.28 92.26 95.93

K� 20 or training B FC-NET 827 474 90.26 91.73 95.09
Proposed 527 316 93.69 94.73 96.77
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4.4.3. Comparison of Detection Results of Advanced Methods.
In addition to comparing the above few-shot learning
method recently proposed and applied in the field of in-
trusion detection with the method in the article under the
same conditions, we also included other methods for
comparison on different data sets. As shown in Table 7,
compared to other methods, the method proposed in the
article only uses a very small number of samples for training
to achieve high detection accuracy. Moreover, the method
proposed in the article also has the advantage of detection of
unknown attacks. On training B, if the detection of unknown
attacks is not included, the method can reach 96.26%,
99.07%, and 96.70% in accuracy, precision, and recall, re-
spectively. Compared with the method using the same data
sets [55, 56], the method in this paper has a better per-
formance in detection accuracy. Even compared with other
advanced methods that use a large number of samples for
training [43, 53], the overall performance of this method is
still not behind. However, compared with other methods of
training on large-scale data sets through deep learning
algorithms [57], this method is still slightly inadequate. But
this does not conceal the value of this method, because the
extremely low requirement on the number of samples and
outstanding detection capabilities for unknown attacks are
closer to intrusion detection in real scenarios. Furthermore,

we compare the computational complexity of different
algorithms by inference about floating points of operations
(FLOPs). -e efficiency of our proposed method is com-
parable to all advanced methods as a metric learning
method based on a conjoined structure in addition to the
highest accuracy performance we achieved. Moreover,
compared with FC-NET, an advanced method achieving
state-of-the-art performance mentioned in Section 4.4.2,
our method has only 5% of the FLOPs of the former, which
can be better adapted to the practical applications of in-
trusion detection.

5. Conclusions

In this paper, we designed a novel few-shot learning-based
intrusion detection method with imbalanced training data.
-is method uses unsupervised subtype sampling to es-
tablish a few-shot data set with adaptive K values and builds
a Siamese capsule network that can perform directed feature
extraction. -e experimental results show that we have
achieved high accurate classification rate using only a very
small number of samples, on the detection of both known
attacks and unknown attacks. -e detection of unknown
attacks in our work is particularly outstanding due to the
advantage of the metric learning framework.

Table 7: Comparison of detection results of advanced methods.

Data set Method Type Accuracy
(%)

Precision
(%)

Recall
(%) FLOPs

CICIDS-2017

2018 Flow-based features [58] CNN+LSTM 97.72 97.97 97.65 70,861
2020 Random attention capsule [47] Attention + capsule 98.60 98.59 98.61 31,844

Proposed (training A) FSL + capsule 95.25 98.37 96.29 94,309Proposed (training B) FSL + capsule 96.26 99.07 96.70

UNSW_NB15

2020 Deep learning-enabled LSTM autoencoder
[55] LSTM+ autoencoder 96.0 100 97.0 12,682

2021 Memory-augmented deep autoencoder
[56] Deep autoencoder 85.30 87.74 85.30 199,004

2021 Variational LSTM [57] LSTM 88.30 86.00 97.80 11,219
Proposed (training A) FSL + capsule 91.28 92.26 95.93 94,309Proposed (training B) FSL + capsule 93.69 94.73 96.77

Table 6: Comparison of detection rate (%) of the method to attack type.

Type
K� 5 or training A K� 20 or training B

FC-NET Proposed FC-NET Proposed
iB 90.4 90.0 100.0 100.0
iC 96.3 96.9 100.0 92.5
iD 65.6 67.5 69.4 67.5
iE 85.2 93.1 94.7 100.0
iF 50.0 55.0 95.0 90.0
iG 72.0 70.0 66.3 93.1
iH 80.0 80.0 80.0 90.0
rB 88.9 89.0 91.5 93.5
rC 90.7 84.3 89.3 90.7
rD 85.1 86.7 92.7 87.7
rE 100 97.2 98.2 99.5
rF 81.5 89.5 74.8 85.1
rG 76.2 80.7 58.5 84.9
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In future research, we will further explore the temporal
information to embed it into the meta-learning algorithms
for NIDS. We will investigate new few-shot-based learning
frameworks, such as triplet network and contrastive learning
methods. Additionally, we will incorporate parallelization
mechanisms to further improve the detection efficiency of
the method and make it more relevant to practical appli-
cations of intrusion detection.

Data Availability

We have disclosed the data and source code in our work to
facilitate subsequent research and make contribution to the
community. -e data set used in the article is the public data
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