165 research outputs found

    Evaluation of Pedestrian Level of Service at Signalised Intersections from the Elderly Perspective

    Get PDF
    The crossing decisions and behaviour of elderly pedestrians are affected by the pedestrian level of service (PLOS). In this paper, an evaluation model was established to analyse the relationship between the traffic environment and the perceived evaluation of elderly pedestrians. Firstly, the characteristic parameters of the selected intersections and the perceived evaluation data of elderly pedestrians at the synchronisation scenery were extracted using manual recording and questionnaire-based truncation methods. The correlation between the perceived evaluation data of elderly pedestrians and the traffic parameters were tested with respect to the dimensions of safety, convenience and efficiency. Then, the significant parameters affecting PLOS were recognised. Based on the traffic characteristic parameters, the PLOS evaluation model from the elderly perspective was established using the fuzzy linear regression method. PLOS classification thresholds were obtained using the fuzzy C-means clustering algorithm. The data from two intersections were used to validate the model. The results show that the difference between the actual and the predicted PLOS values of the two crosswalks were 0.2 and 0.1, respectively. Thus, the proposed PLOS evaluation model in this paper can be used to accurately predict the PLOS from the elderly perspective using the traffic data of signalised intersections

    Evaluation of Pedestrian Level of Service at Signalised Intersections from the Elderly Perspective

    Get PDF
    The crossing decisions and behaviour of elderly pedestrians are affected by the pedestrian level of service (PLOS). In this paper, an evaluation model was established to analyse the relationship between the traffic environment and the perceived evaluation of elderly pedestrians. Firstly, the characteristic parameters of the selected intersections and the perceived evaluation data of elderly pedestrians at the synchronisation scenery were extracted using manual recording and questionnaire-based truncation methods. The correlation between the perceived evaluation data of elderly pedestrians and the traffic parameters were tested with respect to the dimensions of safety, convenience and efficiency. Then, the significant parameters affecting PLOS were recognised. Based on the traffic characteristic parameters, the PLOS evaluation model from the elderly perspective was established using the fuzzy linear regression method. PLOS classification thresholds were obtained using the fuzzy C-means clustering algorithm. The data from two intersections were used to validate the model. The results show that the difference between the actual and the predicted PLOS values of the two crosswalks were 0.2 and 0.1, respectively. Thus, the proposed PLOS evaluation model in this paper can be used to accurately predict the PLOS from the elderly perspective using the traffic data of signalised intersections

    Review of safety and mobility issues among older pedestrians

    Full text link

    Pedestrian Movement Direction Recognition Using Convolutional Neural Networks

    Get PDF
    Pedestrian movement direction recognition is an important factor in autonomous driver assistance and security surveillance systems. Pedestrians are the most crucial and fragile moving objects in streets, roads, and events, where thousands of people may gather on a regular basis. People flow analysis on zebra crossings and in shopping centers or events such as demonstrations are a key element to improve safety and to enable autonomous cars to drive in real life environments. This paper focuses on deep learning techniques such as convolutional neural networks (CNN) to achieve a reliable detection of pedestrians moving in a particular direction. We propose a CNN-based technique that leverages current pedestrian detection techniques (histograms of oriented gradients-linSVM) to generate a sum of subtracted frames (flow estimation around the detected pedestrian), which are used as an input for the proposed modified versions of various state-of-the-art CNN networks, such as AlexNet, GoogleNet, and ResNet. Moreover, we have also created a new data set for this purpose, and analyzed the importance of training in a known data set for the neural networks to achieve reliable results.This work was supported by the Feder funds, Spanish Government through the COMBAHO Project, under Grant TIN2016-76515-R, and in part by the University of Alicante Project under Grant GRE16-19

    Pedestrians\u27 Receptivity Toward Fully Autonomous Vehicles

    Get PDF
    Fully Autonomous Vehicles (FAVs) have the potential to provide safer vehicle operation and to enhance the overall transportation system. However, drivers and vehicles are not the only components that need to be considered. Research has shown that pedestrians are among the most unpredictable and vulnerable road users. To achieve full and successful implementation of FAVs, it is essential to understand pedestrian acceptance and intended behavior regarding FAVs. Three studies were developed to address this need: (1) development of a standardized framework to investigate pedestrians’ behaviors for the U.S. population; (2) development of a framework to evaluate their receptivity of FAVs; and (3) investigation of the influence of the external interacting interfaces of FAVs on pedestrian receptivity toward them. The pedestrian behavior questionnaire (PBQ) categorized pedestrian general behaviors into five factors: violations, errors, lapses, aggressive behaviors, and positive behaviors. The first four factors were found to be both valid and reliable; the positive behavior scale was not found to be reliable nor valid. A long (36-item) and a short (20-items) versions of the PBQ were validated by regressing scenario-based survey responses to the fiveactor PBQ subscale scores. The pedestrian receptivity questionnaire for FAVs (PRQF) consisted of three subscales: safety, interaction, and compatibility. This factor structure was verified by a confirmatory factor analysis and the reliability of each subscale was confirmed. Regression analyses showed that pedestrians’ intention to cross the road in front of a FAV was significantly predicted by both safety and interaction scores, but not by the compatibility score. On the other hand, acceptance of FAVs in the existing traffic system was predicted by all three subscale scores. Finally, an experimental study was performed to expose pedestrians to a simulated environment where they could experience a FAV. The FAV in the simulated environment was either equipped with external features (audible and/or visual) or had no external (warning) feature. The least preferred options were the FAVs with no features and those with a smiley face but no audible cue. The most preferred interface option, which instilled confidence for crossing in front of the FAV, was the walking silhouette

    Level of service criteria of urban walking environment in indian context using cluster analysis

    Get PDF
    To know how well roadways accommodate pedestrian travel or how they are pedestrian friendly it becomes necessary to assess the walking conditions. It would also help evaluating and prioritizing the needs of existing roadways for sidewalk construction. Estimation of Pedestrian Level of Service (PLOS) is the most common approach to assess the quality of operations of pedestrian facilities. The focus of this study is to identify and access the suitable methodology to evaluate PLOS for off-street pedestrian facilities in Indian context. Defining the level of service criteria for urban off-streets pedestrian facilities are basically classification problems. Cluster analysis is found to be the most suitable technique for solving these classification problems. Cluster analysis groups object based on the information found in the data describing their relationships. K-means, Hierarchical Agglomerative Clustering (HAC), Fuzzy c-means (FCM), Self Organizing MAP (SOM) in Artificial Neural Network (ANN), Affinity Propagation (AP) and Genetic Algorithm Fuzzy (GA Fuzzy) clustering are the six methods are those employed to define PLOS criteria in this study. Four parameters such as pedestrian space, flow rate, speed and volume to capacity (v/c) ratio are considered to classify PLOS categories of off-street pedestrian facilities. And from the analysis six LOS categories i.e. A, B, C, D, E and F which are having different ranges of the four parameters are defined. From the study it found that pedestrian faces a good level of service of “A”, “B” and “C” are more often than at poor levels of service of “D”, “E” and “F”. From all the six clustering methods K-means is found to be the most suitable one to classify PLOS in Indian context
    corecore