50 research outputs found

    CMOS systems and circuits for sub-degree per hour MEMS gyroscopes

    Get PDF
    The objective of our research is to develop system architectures and CMOS circuits that interface with high-Q silicon microgyroscopes to implement navigation-grade angular rate sensors. The MEMS sensor used in this work is an in-plane bulk-micromachined mode-matched tuning fork gyroscope (M² – TFG ), fabricated on silicon-on-insulator substrate. The use of CMOS transimpedance amplifiers (TIA) as front-ends in high-Q MEMS resonant sensors is explored. A T-network TIA is proposed as the front-end for resonant capacitive detection. The T-TIA provides on-chip transimpedance gains of 25MΩ, has a measured capacitive resolution of 0.02aF /√Hz at 15kHz, a dynamic range of 104dB in a bandwidth of 10Hz and consumes 400μW of power. A second contribution is the development of an automated scheme to adaptively bias the mechanical structure, such that the sensor is operated in the mode-matched condition. Mode-matching leverages the inherently high quality factors of the microgyroscope, resulting in significant improvement in the Brownian noise floor, electronic noise, sensitivity and bias drift of the microsensor. We developed a novel architecture that utilizes the often ignored residual quadrature error in a gyroscope to achieve and maintain perfect mode-matching (i.e.0Hz split between the drive and sense mode frequencies), as well as electronically control the sensor bandwidth. A CMOS implementation is developed that allows mode-matching of the drive and sense frequencies of a gyroscope at a fraction of the time taken by current state of-the-art techniques. Further, this mode-matching technique allows for maintaining a controlled separation between the drive and sense resonant frequencies, providing a means of increasing sensor bandwidth and dynamic range. The mode-matching CMOS IC, implemented in a 0.5μm 2P3M process, and control algorithm have been interfaced with a 60μm thick M2−TFG to implement an angular rate sensor with bias drift as low as 0.1°/hr ℃ the lowest recorded to date for a silicon MEMS gyro.Ph.D.Committee Chair: Farrokh Ayazi; Committee Member: Jennifer Michaels; Committee Member: Levent Degertekin; Committee Member: Paul Hasler; Committee Member: W. Marshall Leac

    Low Power Cmos Circuit Design And Reliability Analysis For Wireless Me

    Get PDF
    A sensor node \u27AccuMicroMotion\u27 is proposed that has the ability to detect motion in 6 degrees of freedom for the application of physiological activity monitoring. It is expected to be light weight, low power, small and cheap. The sensor node may collect and transmit 3 axes of acceleration and 3 axes of angular rotation signals from MEMS transducers wirelessly to a nearby base station while attached to or implanted in human body. This dissertation proposes a wireless electronic system-on-a-single-chip to implement the sensor in a traditional CMOS process. The system is low power and may operate 50 hours from a single coin cell battery. A CMOS readout circuit, an analog to digital converter and a wireless transmitter is designed to implement the proposed system. In the architecture of the \u27AccuMicroMotion\u27 system, the readout circuit uses chopper stabilization technique and can resolve DC to 1 KHz and 200 nV signals from MEMS transducers. The base band signal is digitized using a 10-bit successive approximation register analog to digital converter. Digitized outputs from up to nine transducers can be combined in a parallel to serial converter for transmission by a 900 MHz RF transmitter that operates in amplitude shift keying modulation technique. The transmitter delivers a 2.2 mW power to a 50 Ù antenna. The system consumes an average current of 4.8 mA from a 3V supply when 6 sensors are in operation and provides an overall 60 dB dynamic range. Furthermore, in this dissertation, a methodology is developed that applies accelerated electrical stress on MOS devices to extract BSIM3 models and RF parameters through measurements to perform comprehensive study, analysis and modeling of several analog and RF circuits under hot carrier and breakdown degradation

    Silicon micromachined resonant accelerometer with CMOS interface circuits

    Get PDF
    Ph.DDOCTOR OF PHILOSOPH

    Automatic Control and Fault Diagnosis of MEMS Lateral Comb Resonators

    Get PDF
    Recent advancements in microfabrication of Micro Electro Mechanical Systems have made MEMS an important part of many applications such as safety and sensor/control devices. Miniature structure of MEMS makes them very sensitive to the environmental and operating conditions. In addition, fault in the device might change the parameters and result in unwanted behavioral variations. Therefore, imperfect device structure, fault and operating point dependencies suggest for active control of MEMS.;This research is focused on two main areas of control and fault diagnosis of MEMS devices. In the control part, the application of adaptive controllers is introduced for trajectory control of the device under health and fault conditions. Fault in different forms in the structure of the device are modeled and foundry manufactured for experimental verifications. Pull-in voltage effect in the MEMS Lateral Comb Resonators are investigated and controlled by variable structure controllers. Reliability of operation is enhanced by active control of the device under fault conditions.;The second part of this research is focused on the fault diagnosis of the MEMS devices. Fault is introduced and investigated for better understanding of the system behavioral changes. Modeling of the device in different operating conditions suggests for the multiple-model adaptive estimation (MMAE) fault diagnosis technique. Application of Kalman filters in MMAE is investigated and the performance of the fault diagnosis is compared with other techniques such as self-tuning and auto self-tuning techniques. According to the varying parameters of the system, online parameter identification systems are required to monitor the parameter variations and model the system accurately. Self-tuning banks are applied and combined with MMAE to provide accurate fault diagnosis systems. Different parameter identification techniques result in different system performances. In this regard, this research investigates the application of Recursive Least Square with Forgetting Factor. Different techniques for tuning of forgetting factor value are introduced and their results are compared for better performance. The organization of this dissertation is as follows:;Chapter I introduces the structure of the MEMS Lateral Comb Resonator; Chapter II introduces the application of control techniques and displacement feedback approach. Chapter III investigates the control approach and experimental results. In chapter IV, a new controller is introduced and designed for the MEMS trajectory controls. Chapter V is about the fault and different techniques of fault diagnosis in MEMS LCRs. Chapter 6 is the future work suggested through the current results and observations. Each chapter contains a section to summarize the concluding remarks

    Energy efficient control of electrostatically actuated MEMS

    Get PDF
    Plenty of Micro-electro-mechanical Systems (MEMS) devices are actuated using electrostatic forces, and specially, parallel-plate actuators are extensively used, due to the simplicity of their design. Nevertheless, parallel-plate actuators have some limitations due to the nonlinearity of the generated force. The dissertation analyzes the dynamics of the lumped electrostatically actuated nonlinear system, in order to obtain insight on its characteristics, define desired performance goals and implement a controller for energy efficient robustly stable actuation of MEMS resonators. In the first part of the dissertation, the modeling of the electromechanical lumped system is developed. From a complete distributed parameters model for MEMS devices which rely on electrostatic actuation, a concentrated parameters simplification is derived to be used for analysis and control design. Based on the model, energy analysis of the pull-in instability is performed. The classic approach is revisited to extend the results to models with a nonlinear springs. Analysis of the effect of dynamics is studied as an important factor for the stability of the system. From this study, the Resonant Pull-in Condition for parallel-plate electrostatically actuated MEMS resonators is defined and experimentally validated. Given the importance of the nonlinear dynamics and its richness in behaviors, Harmonic Balance is chosen as a tool to characterize the steady-state oscillation of the resonators. This characterization leads to the understanding of the key factors for large and stable oscillation of resonators. An important conclusion is reached, Harmonic Balance predicts that any oscillation amplitude is possible for any desired frequency if the appropriate voltage is applied to the resonator. And the energy consumption is dependent on this chosen oscillation frequency. Based on Harmonic Balance results, four main goals are defined for the control strategy: Stable oscillation with large amplitudes of motion; Robust oscillation independently of MEMS imperfections; Pure sinus-like oscillation for high-grade sensing; and Low energy consumption. The second part of the dissertation deals with the controller selection, design and verification. A survey of prior work on MEMS control confirms that existing control approaches cannot provide the desired performance. Consequently, a new three-stage controller is proposed to obtain the desired oscillation with the expected stability and energy efficiency. The controller has three different control loops. The first control loop includes a Robust controller designed using on µ-synthesis, to deal with MEMS resonators uncertainties. The second control loop includes an Internal-Model-Principle Resonant controller, to generate the desired control action to obtain the desired oscillation. And the third control loop handles the energy consumption minimization through an Extremum Seeking Controller, which selects the most efficient working frequency for the desired oscillation. The proposed controller is able to automatically generate the needed control voltage, as predicted by the Harmonic Balance analysis, to operate the parallel-plate electrostatically actuated MEMS resonator at the desired oscillation. Performance verification of stability, robustness, sinus-like oscillation and energy efficiency is carried out through simulation. Finally, the needed steps for a real implementation are analyzed. Independent two-sided actuation for full-range amplitude oscillation is introduced to overcome the limitations of one-sided actuation. And a modification of standard Electromechanical Amplitude Modulation is analyzed and validated for position feedback implementation. With these improvements, a MEMS resonator with the desired specifications for testing the proposed control is designed for fabrication. Based on this design, testing procedure is discussed as future work.Molts microsistemes (MEMS) són actuats amb forces electrostàtiques, i especialment, els actuadors electrostàtics de plaques paral.leles són molt usats, degut a la simplicitat del seu disseny. Tot i això, aquests actuadors tenen limitacions degut a la no-linealitat de les forces generades. La tesi analitza el sistema mecànic no-lineal actuat electrostàticament que forma el MEMS, per tal d'entendre'n les característiques, definir objectius de control de l'oscil.lació, i implementar un controlador robust, estable i eficient energèticament. A la primera part de la tesi es desenvolupa el modelat del sistema electromecànic complert. A partir de la formulació de paràmetres distribuïts aplicada a dispositius MEMS amb actuació electrostàtica, es deriva una formulació de paràmetres concentrats per a l'anàlisi i el disseny del control. Basat en aquest model, s'analitza energèticament la inestabilitat anomenada Pull-in, ampliant els resultats de l'enfocament clàssic al model amb motlles no-lineals. Dins de l'anàlisi, l'evolució dinàmica s'estudia per ser un factor important per a l'estabilitat. D'aquest estudi, la Resonant Pull-in Condition per a actuadors electrostàtics de plaques paral.leles es defineix i es valida experimentalment. Donada la importància de la dinàmica no-lineal del sistema i la seva riquesa de comportaments, s'utilitza Balanç d'Harmònics per tal de caracteritzar les oscil.lacions en estacionari. Aquesta caracterització permet entendre els factors claus per a obtenir oscil.lacions estables i d'amplitud elevada. El Balanç d'Harmònics dóna una conclusió important: qualsevol amplitud d'oscil.lació és possible per a qualsevol freqüència desitjada si s'aplica el voltatge adequat al ressonador. I el consum energètic associat a aquesta oscil.lació depèn de la freqüència triada. Llavors, basat en aquests resultats, quatre objectius es plantegen per a l'estratègia de control: oscil.lació estable amb amplituds elevades; robustesa de l'oscil.lació independentment de les imperfeccions dels MEMS; oscil.lació sinusoïdal sense harmònics per a aplicacions d'alta precisió; i baix consum energètic. La segona part de la tesi tracta la selecció, disseny i verificació dun controlador adequat per a aquests objectius. La revisió dels treballs existents en control de MEMS confirma que cap dels enfocaments actuals permet obtenir els objectius desitjats. En conseqüència, es proposa el disseny d'un nou controlador amb tres etapes per tal d'obtenir l'oscil.lació desitjada amb estabilitat i eficiència energètica. El controlador té tres llaços de control. Al primer llaç, un controlador robust dissenyat amb µ-síntesis gestiona les incertes es dels MEMS. El segon llaç inclou un controlador Ressonant, basat en el Principi del Model Intern, per a generar l'acció de control necessària per a obtenir l'oscil.lació desitjada. I el tercer llaç de control gestiona la minimització de l'energia consumida mitjançant un controlador basat en Extremum Seeking, el qual selecciona la freqüència de treball més eficient energèticament per a l'oscil.lació triada. El controlador proposat és capaç de generar automàticament el voltatge necessari, igual al previst pel Balanç d'Harmònics, per tal d'operar electrostàticament amb plaques paral.leles els ressonadors MEMS. Mitjançant simulació se'n verifica l'estabilitat, robustesa, inexistència d'harmònics i eficiència energètica de l'oscil.lació. Finalment, la implementació real és analitzada. En primer lloc, un nou esquema d'actuació per dos costats amb voltatges independents es proposa per aconseguir l'oscil.lació del ressonador en tot el rang d'amplituds. I en segon lloc, una modificació del sensat amb Modulació d'Amplitud Electromecànica s'utilitza per tancar el llaç de control de posició. Amb aquestes millores, un ressonador MEMS es dissenya per a ser fabricat i validar el control. Basat en aquest disseny, es proposa un procediment de test plantejat com a treball futur.Postprint (published version

    MME2010 21st Micromechanics and Micro systems Europe Workshop : Abstracts

    Get PDF

    Contribution to time domain readout circuits design for multi-standard sensing system for low voltage supply and high-resolution applications

    Get PDF
    Mención Internacional en el título de doctorThis research activity has the purpose of open new possibilities in the design of capacitance-to-digital converters (CDCs) by developing a solution based on time domain conversion. This can be applied to applications related with the Internet-of-Things (IoT). These applications are present in any electronic devices where sensing is needed. To be able to reduce the area of the whole system with the required performance, micro-electromechanical systems (MEMS) sensors are used in these applications. We propose a new family of sensor readout electronics to be integrated with MEMS sensors. Within the time domain converters, Dual Slope (DS) topology is very interesting to explore a new compromise between performances, area and power consumption. DS topology has been extensively used in instrumentation. The simplicity and robustness of the blocks inside classical DS converters it is the main advantage. However, they are not efficient for applications where higher bandwidth is required. To extend the bandwidth, DS converters have been introduced into ΔΣ loops. This topology has been named as integrating converters. They increase the bandwidth compare to classical DS architecture but at the expense of higher complexity. In this work we propose the use of a new family of DS converters that keep the advantages of the classical architecture and introduce noise shaping. This way the bandwidth is increased without extra blocks. The Self-Compensated noise-shaped DS converter (the name given to the new topology) keeps the signal transfer function (STF) and the noise transfer function (NTF) of Integrating converters. However, we introduce a new arrangement in the core of the converter to do noise shaping without extra circuitry. This way the simplicity of the architecture is preserved. We propose to use the Self-Compensated DS converter as a CDC for MEMS sensors. This work makes a study of the best possible integration of the two blocks to keep the signal integrity considering the electromechanical behavior of the sensor. The purpose of this front-end is to be connected to any kind of capacitive MEMS sensor. However, to prove the concepts developed in this thesis the architecture has been connected to a pressure MEMS sensor. An experimental prototype was implemented in 130-nm CMOS process using the architecture mentioned before. A peak SNR of 103.9 dB (equivalent to 1Pa) has been achieved within a time measurement of 20 ms. The final prototype has a power consumption of 220 μW with an effective area of 0.317 mm2. The designed architecture shows good performance having competitive numbers against high resolution topologies in amplitude domain.Esta actividad de investigación tiene el propósito de explorar nuevas posibilidades en el diseño de convertidores de capacitancia a digital (CDC) mediante el desarrollo de una solución basada en la conversión en el dominio del tiempo. Estos convertidores se pueden utilizar en aplicaciones relacionadas con el mercado del Internet-de-las-cosas (IoT). Hoy en día, estas aplicaciones están presentes en cualquier dispositivo electrónico donde se necesite sensar una magnitud. Para poder reducir el área de todo el sistema con el rendimiento requerido, se utilizan sensores de sistemas micro-electromecánicos (MEMS) en estas aplicaciones. Proponemos una nueva familia de electrónica de acondicionamiento para integrar con sensores MEMS. Dentro de los convertidores de dominio de tiempo, la topología del doble-rampa (DS) es muy interesante para explorar un nuevo compromiso entre rendimiento, área y consumo de energía. La topología de DS se ha usado ampliamente en instrumentación. La simplicidad y la solidez de los bloques dentro de los convertidores DS clásicos es la principal ventaja. Sin embargo, no son eficientes para aplicaciones donde se requiere mayor ancho de banda. Para ampliar el ancho de banda, los convertidores DS se han introducido en bucles ΔΣ. Esta topología ha sido nombrada como Integrating converters. Esta topología aumenta el ancho de banda en comparación con la arquitectura clásica de DS, pero a expensas de una mayor complejidad. En este trabajo, proponemos el uso de una nueva familia de convertidores DS que mantienen las ventajas de la arquitectura clásica e introducen la configuración del ruido. De esta forma, el ancho de banda aumenta sin bloques adicionales. El convertidor Self-Compensated noise-shaped DS (el nombre dado a la nueva topología) mantiene la función de transferencia de señal (STF) y la función de transferencia de ruido (NTF) de los Integrating converters. Sin embargo, presentamos una nueva topología en el núcleo del convertidor para conformar el ruido sin circuitos adicionales. De esta manera, se preserva la simplicidad de la arquitectura. Proponemos utilizar el Self-Compensated noise-shaped DS como un CDC para sensores MEMS. Este trabajo hace un estudio de la mejor integración posible de los dos bloques para mantener la integridad de la señal considerando el comportamiento electromecánico del sensor. El propósito de este circuito de acondicionamiento es conectarse a cualquier tipo de sensor MEMS capacitivo. Sin embargo, para demostrar los conceptos desarrollados en esta tesis, la arquitectura se ha conectado a un sensor MEMS de presión. Se ha implementado dos prototipos experimentales en un proceso CMOS de 130-nm utilizando la arquitectura mencionada anteriormente. Se ha logrado una relación señal-ruido máxima de 103.9 dB (equivalente a 1 Pa) con un tiempo de medida de 20 ms. El prototipo final tiene un consumo de energía de 220 μW con un área efectiva de 0.317 mm2. La arquitectura diseñada muestra un buen rendimiento comparable con las arquitecturas en el dominio de la amplitud que muestran resoluciones equivalentes.Programa Oficial de Doctorado en Ingeniería Eléctrica, Electrónica y AutomáticaPresidente: Pieter Rombouts.- Secretario: Alberto Rodríguez Pérez.- Vocal: Dietmar Strãußnig

    Estudio y diseño de dos placas de intercambio de datos de inclinación y posición entre dos cubesats

    Get PDF
    El grupo de investigación DISEN con sede en el Campus de Terrassa de la UPC está intentando impulsar el proyecto de la implementación de una infraestructura de comunicaciones basada en el enlace óptico de CubeSats. Mediante este tipo de comunicación, se podría obtener un mayor data-rate y un menor consumo de potencia que en los actuales sistemas de radiofrecuencia. Para poder realizar este enlace óptico, es necesario que el rayo láser proveniente de uno de los satélites se centre de forma muy precisa en el foto-detector del otro satélite. Para realizar dicho centrado, ambos satélites deberán conocer a priori la posición e inclinación de ambos, información que deberán intercambiarse mediante radiofrecuencia. El presente TFG versa sobre el diseño del subsistema de intercambio de datos de posición e inclinación entre dos CubeSats. Concretamente, el diseño de dos placas PCB formadas por un módulo GPS, para obtener la posición de los CubeSats; un módulo IMU, para obtener sus actitudes; un módulo de radio UHF, para enviar datos entre los dos CubeSats por radiofrecuencia; y un módulo Bluetooth para poder enlazar el sistema con el ordenador de base. Además, las placas cuentan con un microcontrolador para procesar y almacenar la información de dichos módulos

    Millimeter-Wave Reconfigurable CMOS-MEMS Integrated Devices

    Get PDF
    The millimeter-wave spectrum has sparked interest recently as a promising alternative to meet bandwidth requirements for wireless local area networks, vehicular radars, short-range multi-Gb/s links, and next-generation cellular system communications (5G). The unlicensed 7 GHz ISM band around 60 GHz is of particular interest. Compared to semiconductor technologies, Micro-Electro-Mechanical Systems (MEMS) have the potential to realize reconfigurable millimeter-wave devices with superior performance in terms of linearity, insertion loss and DC power consumption. This thesis presents the development and fabrication of miniaturized, low insertion loss, high isolation RF-MEMS switches implemented in CMOS chips through the use of a post-processing technique. Several CMOS-MEMS switches operating at 60 GHz and 77 GHz are demonstrated. Prototype units for SPST, SP3T switches and a distributed MEMS transmission line (DMTL) network are integrated on CMOS 0.35 μm. The challenges involved in realizing CMOS-MEMS devices at mm-wave frequencies are also addressed in this work

    Micro-Resonators: The Quest for Superior Performance

    Get PDF
    Microelectromechanical resonators are no longer solely a subject of research in university and government labs; they have found a variety of applications at industrial scale, where their market is predicted to grow steadily. Nevertheless, many barriers to enhance their performance and further spread their application remain to be overcome. In this Special Issue, we will focus our attention to some of the persistent challenges of micro-/nano-resonators such as nonlinearity, temperature stability, acceleration sensitivity, limits of quality factor, and failure modes that require a more in-depth understanding of the physics of vibration at small scale. The goal is to seek innovative solutions that take advantage of unique material properties and original designs to push the performance of micro-resonators beyond what is conventionally achievable. Contributions from academia discussing less-known characteristics of micro-resonators and from industry depicting the challenges of large-scale implementation of resonators are encouraged with the hopes of further stimulating the growth of this field, which is rich with fascinating physics and challenging problems
    corecore