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Micro-resonators have reached a distinctive level of maturity due to the accumulated wealth
of knowledge on their design, modeling, and manufacturing during the past few decades [1].
Alongside this tremendous scientific progress, micro-resonators are now commonly found in most
electronic systems. In this Special Issue, our attempt was to look deeper into less-common topics in this
field, such as the nonlinear operation of micro-resonators that are envisioned to play a more important
role with the evolution of this technological area.

As the energy density in a resonant device increases, the nonlinear effects could no longer be
avoided or ignored. Therefore, it is critical to identify and carefully study the system parameters that
impact nonlinearity in micro-resonators and to investigate the effect of nonlinearity in the performance.
In Reference [2], the authors study how non-idealities, such as etch profile, in the fabrication of
capacitive micro-resonators could affect nonlinear behavior of the device, and in Reference [3], a more
accurate one-degree-of-freedom model is developed for the prediction of nonlinear behavior in
capacitive beam resonators. Furthermore, in Reference [4], a novel resonator design is proposed
to excite a 2:1 internal resonance through nonlinear coupling and to study the effect of air-damping
loss on the operation of such devices.

Furthermore, the tuning range, frequency stability, and quality factor (Q) of micro-resonators
are the focus in References [5–7] correspondingly, all of which are of significant practical importance,
specifically in oscillator applications. The authors of [5] propose two methods for extending
tuning range through stiffness alteration that could be effectively implemented in torsional
resonators. In Reference [6], frequency stability in response to applied acceleration is investigated in
bulk-extensional single crystalline silicon resonators and the dependency of acceleration-sensitivity
on the resonator orientation with respect to the silicon crystalline planes are studied through finite
element modeling and demonstrated through measurement. In Reference [7], the authors present
the effectiveness of phononic crystal band-gap structures in improving the Q in bulk-extensional
micro-resonators by reflecting acoustic energy back to the acoustic cavity, as they are strategically
placed outside the anchors.

Finally, three unconventional micro-resonator structures are explored in References [8–10].
In Reference [8], the authors introduce a technique called chemical foaming to form glass bubbles that
could be utilized for the implementation of hemispherical resonators. In Reference [9], an LC tank
is presented with a significant size/performance enhancement achieved through the insertion of a
coupling capacitance at the center of an air-bridged circular spiral inductor. Lastly, in Reference [10],
the authors propose a unique approach to the realization of electromagnetically induced transparency
(EIT) through cascaded multi-mode optical micro-ring resonators.

At the end of this brief introduction to the Special Issue, we would like to thank the authors
who entrusted us with the publication of their scientific contributions and acknowledge the many
expert reviewers whose technical insight has been instrumental in the timely evaluation of the
submitted papers.

Micromachines 2018, 9, 623; doi:10.3390/mi9120623 www.mdpi.com/journal/micromachines1
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Abstract: Achieving the desired resonant frequency of resonators has been an important issue,
since it determines their performance. This paper presents the design and analysis of two concepts
for the resonant frequency tuning of resonators. The proposed methods are based on the stiffness
alteration of the springs by geometrical modification (shaft-widening) or by mechanical restriction
(shaft-holding) using micromachined frequency tuning units. Our designs have advantages in
(1) reversible and repetitive tuning; (2) decoupled control over the amplitude of the resonator and
the tuning ratio; and (3) a wide range of applications including torsional resonators. The ability to
tune the frequency by both methods is predicted by finite element analysis (FEA) and experimentally
verified on a torsional resonator driven by an electrostatic actuator. The tuning units and resonators
are fabricated on a double silicon-on-insulator (DSOI) wafer to electrically insulate the resonator from
the tuning units. The shaft-widening type and shaft-holding type exhibit a maximum tuning ratio of
5.29% and 10.7%, respectively.

Keywords: resonant frequency tuning; shaft-widening; shaft-holding; torsional resonator

1. Introduction

Micromachined resonators have a broad range of applications owing to their various advantages
such as fast response, high sensitivity, small size, low power consumption, and low fabrication
cost [1–3]. To ensure high and uniform performance, the micromachined resonators are supposed to
have desired resonant frequencies. However, the resonant frequencies of the micromachined resonators
often deviate from the intended value. One major source of this deviation is a dimensional error
inevitably existing in fabrication process. It has been reported that relative tolerance in microfabrication
could be as high as ±20% of the minimum feature size [4]. In addition, the cross section of
fabricated microstructures might be trapezoidal instead of intended square shape due to an imperfect
ion-reactive etching process [5]. The Microfabrication Laboratory at UC-Berkeley statically analyzed
the resonant frequencies of 31 micromachined resonators, and reported a maximum discrepancy up to
4.9% [6]. It is also reported that the micromachined resonators generally have a deviation in resonant
frequency between ±1%~±5% [7]. Operation environments such as pressure and temperature can
also shift the resonant frequency of the resonators [8,9]. While the fabrication errors are constant after
manufacture, environmental factors vary over time, which may cause frequent or continuous changes
in resonant frequency.

Micromachines 2017, 8, 342; doi:10.3390/mi8120342 www.mdpi.com/journal/micromachines3
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Previous works for resonant frequency tuning can be categorized into two groups. The first
approach is based on the permanent structural modification of the resonators, which is usually referred
to as passive frequency tuning [6,10–12]. Passive frequency tuning can be accomplished by increasing
the vibrating mass by the post-fabrication process such as pulsed laser deposition [6] and platinum
deposition using a focused ion beam (FIB) [10]. Stiffness adjustment has also been presented by using
polysilicon deposition [11] and FIB-machining [12]. The main advantage of the passive frequency
methods is that they do not consume power to maintain the tuned state. On the other hand, the second
approach does not rely on permanent structural modification, and therefore offers reversible and active
tuning capabilities [13–23]. Previous works for active frequency tuning utilized the electrostatic spring
effect [14,15], the geometry of the capacitors [16–21], the thermal stressing effect [22], and thermal
expansion [23]. Only a few works have been reported regarding the frequency tuning of torsional
resonators [14,24,25], such as designing angle limiters near the torsional spring [24] or inducing stress
on bending flexures [25].

In this paper, we present two concepts for the resonant frequency tuning of torsionally-driven
resonators [26]. The proposed methods are based on the micromachined frequency tuning unit, which is
integrated together with electrostatic torsional resonator on the same chip. The separation of actuators
for the tuning unit and resonator enables independent control over the amplitude and resonant
frequency of the resonator, allowing continuous and repetitive tuning.

2. Design and Principle

Our concept for resonant frequency tuning is based on the stiffness alteration of the torsional
shaft either by widening the angle of tilted shafts, or by constraining the torsional motion of the shaft.
Hereafter, the former and the latter are referred to as shaft-widening and shaft-holding, respectively.
The schematics of the frequency tuning units integrated with torsional resonators are shown in Figure 1:
(a) shaft-widening type, and (b) shaft-holding type. A staggered vertical comb (SVC) is utilized to
actuate the torsional resonator, and a micromirror is designed to optically read the torsional angle of
the resonator (Figure 1c). The resonator is torsionally-driven with respect to the torsional shafts by
electrostatic force between two sets of fixed and movable comb fingers at different vertical positions,
as shown in the inset of Figure 1c. The torsional resonator actuated by SVC sets is fabricated on two
different levels of single crystalline silicon layers of double silicon-on-insulator (DSOI) wafer with
fixed combs on upper layers (colored in white) and moving combs and mirrors on the lower layer
(colored in green). The usage of silicon double layers allows self-alignment between the fixed and
moving combs with simple fabrication [27].

The frequency tuning units for shaft-widening are composed of a chevron thermal actuator [28]
and a scissor mechanism part. The right ends of the scissor mechanism part (scissor tips) are connected
to the tilted shafts of the torsional resonator (Figure 2a). The force from the chevron thermal actuator is
used to drive the scissor mechanism. The scissor mechanism with three pairs of compliant segments is
designed to amplify the stroke of the thermal actuator and to convert a linear displacement to a scissor
blade-like symmetrical angular motion. As depicted in Figure 2a, when the shuttle is pulled leftward
by the chevron thermal actuator, the scissor mechanism part is opened at the right end, widening the
angle between the tilted shafts. This structural change increases the effective stiffness of the tilted
shafts, resulting in an increase of resonant frequency.

The shaft-holding type also employed a chevron thermal actuator and the scissor mechanism,
but the shaft-holders are attached to the scissor tips (Figure 2b). The chevron thermal actuator of the
shaft-holding type is designed to push the shuttle rightward, as depicted in Figure 2b. Then, the scissor
tips are closed at the right end, moving the shaft holders towards the torsional shaft of the resonator.
The shaft holders are structured as a bow-like shape, by which the level of restriction upon the torsional
spring would be continuously augmented as the shaft-holding flexure exhibits elastic deformation.
When the mechanical restriction is initiated, the contact occurs at the middle of the torsional shaft
resulting in a relatively lower tuning ratio (Figure 3a). As the shaft-holder moves further, full contact

4
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can be formed between the torsional spring and the holding flexure, extending the contact area to the
segment close to the mirror (Figure 3b). In this way, both a high tuning ratio and a wide tuning range
would be possible.

Figure 1. Schematics of frequency tuning units integrated with torsional resonators: (a) Shaft-widening
type and (b) shaft-holding type. (c) Schematic layout of staggered vertical comb (SVC)-based
torsional resonator. The micromirror is designed to optically read the torsional angle of the resonator.
(Inset: close-up view of the SVC set defined on different silicon layers. Upper and lower layers are
colored in white and green, respectively). Reproduced with permission from [26].

5
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Figure 2. Design of (a) shaft-widening and (b) shaft-holding type frequency tuning units. Linear motion
from the chevron thermal actuator (inset figure) is transformed and amplified to widen the gap between
the tilted shafts (shaft-widening type), or to mechanically restrict the rotational motion of the shaft
(shaft-holding type).

6
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Figure 3. Schematic view of shaft-holding mechanism. (a) By the driving force from the chevron
thermal actuator, the contact between the shaft-holding flexures and the torsional shaft starts to be
formed from the middle of the torsional shaft; (b) As the shaft-holder moves further, the shaft-holding
flexure is elastically deformed, resulting in a gradual increase in contact area.

One of critical aspects that we considered for the design of the frequency tuning unit is the
insulation of the electrical current, which may flow from the chevron thermal actuator to the
electrostatically driven torsional resonator, resulting in a malfunction of the resonator. Preventing this
charge leakage is another reason for employing the DSOI wafer with two isolated structural silicon
layers, as shown in Figure 4. The thermal actuator is formed on the upper layer of the DSOI and the
shuttle consists of both the upper and lower layers that are mechanically connected by the silicon
oxide layer, but electrically isolated. When the thermal actuator is actuated, it makes contact only with
the upper layer of the shuttle. However, the lower layer of the shuttle is also moved, since both layers
of the shuttle are mechanically connected through the buried oxide, actuating the scissor mechanism
that is defined on the lower layer. Thus, the connection of the tuning unit to the torsional shafts does
not cause any charge leakage from the electrostatic actuator, since the only connection between the
electrostatic resonator side and the thermal actuator side is through the buried oxide layer between the
upper and lower layers of the shuttle.

7
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Figure 4. Electrical isolation design to avoid short circuit formation and charge leakage between the
chevron thermal actuator and the electrostatic actuator.

3. Finite Element Analysis

For the design of the thermal chevron actuator, which may generate a limited amount of force,
the stiffness of the scissor mechanism should be taken into consideration. Hence the finite element
analysis (FEA) is conducted to calculate the required force from the thermal chevron actuator and to
decide the proper dimensions of the scissor mechanism. According to the FEA results, the shaft-holder
and torsional shaft start to contact with the thermal actuator stroke of 3 μm and make full contact
at the stroke of 7 μm (Figure 5a) under the structural dimensions shown in Table 1. The required
forces from the chevron thermal actuator for initial contact and full contact are 462 μN and 2286 μN,
respectively (Figure 5a). Based on this finding, the chevron actuator is designed with the structural
dimensions shown in Table 1.

In addition, the stiffness changes of the torsional shafts by the both tuning modes are quantified
by FEA. First, modal analysis is performed for the shaft-widening type with the structural dimensions
shown in Table 1. Based on the FEA result, we calculate torsional stiffness changes as a function of the
displacement of the shuttle (i.e., stroke of the thermal actuator). As the shuttle is pulled by the thermal
actuator, the torsional stiffness of the shaft gradually increases, as shown in Figure 5b. When the shuttle
is moved by 7 μm, the torsional stiffness of the shaft increases by 14.0%, which corresponds to the
tuning ratio of 3.4%.

For analysis for the shaft-holding type, we supposed two different restriction modes that may
possibly occur when the shaft-holding flexure makes contact with the torsion bar. The schematics
in Figure 6 are the cross-sectional view of the torsional shaft and the shaft-holding flexure, showing
the two restriction modes. In the first mode (Figure 6a), it is assumed that the shaft-holding flexure
is torsionally deformed together with the torsion bar as if there is no slip or separation between the
two structures (hereafter referred to as ‘no separation mode’). The FEA results for this boundary
condition give a maximum stiffness change of 333.6% and a maximum resonant frequency increase
of 63.3% compared to the original unrestricted structures (Figure 5b). The second mode, as depicted
in Figure 6b, allows mechanical separation between the torsional shaft and the shaft-holding flexure,
such that the mechanical restriction force is applied to the torsional shaft in the opposite direction of
the shaft deformation, but the shaft-holding flexure is not torsionally deformed (hereafter referred to

8
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as ‘separation mode’). In this case, the maximum stiffness change is 31.6% and the maximum resonant
frequency increase is 7.6%, showing the reduced restriction effect on the torsional shaft (Figure 5c).

Figure 5. Finite element analysis (FEA) results: (a) Required force from the chevron thermal
actuator to achieve full-contact between the shaft-holder and torsional shaft (shaft-holding type);
(b) Estimated torsional stiffness change by shaft-widening type (c) Estimated torsional stiffness change
by shaft-holding type. ‘No separation mode’ and ‘separation mode’ correspond to the restriction modes
illustrated in Figure 6a,b, respectively.

9
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Figure 6. The cross-sectional view of the torsional shaft and shaft-holding flexure, showing two
different restriction modes between the torsion bar and shaft-holding flexure. (a) No separation mode:
the shaft-holding flexure is torsionally deformed together with the torsional shaft. The areal contact is
maintained; (b) Separation mode: the areal contact is not maintained and the separation between the
torsional shaft and shaft-holding flexure exist.

Table 1. Design parameters for the torsional resonator and tuning unit.

Torsional Resonator

Mirror diameter 800 μm
Length/width of straight shaft 1050 μm /10 μm

Length/width of tilted shaft 600 μm /10 μm
Length/width of Comb 200 μm /5 μm

The number of moving/fixed Comb 72/73
Thickness 20 μm

Scissor Mechanism

Total length/width 2240 μm /680 μm
Length/width of shuttle 300 μm /300 μm
Length/width of hinges 60 μm /5 μm

Shaft-Holder
Total length 1000 μm

Width of shaft-holding flexure 5 μm

Chevron Thermal Actuator

Length/width of chevron beam 700 μm /10 μm
Number of chevron beam 20

Angle of chevron beam 1.06◦

4. Fabrication

Figure 7 illustrates the fabrication process for the torsional resonators and frequency tuning
units [26]. Both of the structures are fabricated on DSOI wafer purchased from Ultrasil Corporation
(Hayward, CA, USA). This wafer has two 20 μm-thick silicon device layers on the 425 μm thick base
substrate, each of which is separated by buried oxide. The arsenic-doped silicon device layer has a
resistivity less than 0.005 Ω·cm. To be used as etch masks, 1 μm-thick silicon oxide layers are grown on
both the front- and backside of the wafer by wet oxidation process (Figure 7a). Additionally, a 2-μm-thick
silicon oxide layer is deposited on the backside by plasma enhanced chemical vapor deposition
(PECVD) to get a thicker backside etch mask (Figure 7b). Then the silicon oxide layers on both sides are
lithographically patterned (Figure 7c). Next, the photoresist layer is patterned as shown in Figure 7d,
which will be transferred to the lower device layer later. Between step (c,d), a rough alignment is
acceptable, since the following oxide etch will form self-alignment between the silicon oxide and the
photoresist layers (Figure 7e). After both of the device layers and the oxide layers are etched by deep
reactive ion etching and reactive ion etching, respectively (Figure 7f–j), backside holes are defined
(Figure 7k). Finally, to release the device, the remaining oxide etch masks and the buried oxide layers
are wet-etched by exposing the entire chip to hydrofluoric acid (HF) solution (Figure 7l).

10
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Figure 7. Fabrication process for the torsional resonator integrated with frequency tuning unit.
The device is fabricated on a double silicon-on-insulator (DSOI) wafer. Reproduced with permission
from [26].

5. Result

Figure 8a,b show scanning electron microscope (SEM) images of the fabricated devices for the
shaft-widening type and the shaft-holding type [26]. The darker structures in the image are on the
lower silicon layer, and the brighter structures are on the upper layer. The resonant frequency tuning
of the electrostatic torsional resonator is experimentally verified while the driving voltages of 5 Vac

and 10 Vdc are applied on the resonator. To measure the rotational angle of the resonator, we focused a
laser beam emitted from a laser diode on the micromirror of the resonator. The reflected laser beam
scanned across a certain distance on a target screen. We measured the scanning distance of the laser
beam (R), and calculated the rotational angle (θ) of the resonator as follows:

θ = tan−1
(

R
2D

)
where D is the distance between the target screen and the mirror.

Figure 9 shows how the frequency response of the resonator is changed from the untuned state
to differently-tuned states by the shaft-widening type. The frequency response of our system does
not perfectly comply with a form of Lorentzian curve; the stiffness-softening behavior is observed in
all the frequency spectra, and is represented by a slight declination of the resonant peak toward the
low frequency region. Due to this asymmetry, the left and right sides of the resonant frequency are
fitted separately. We suspect that this nonlinearity mainly originated from the electrostatic actuation

11
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in our system [14]. However, obvious bifurcation or jump discontinuity due to the nonlinearity is
not observed in the frequency spectra, thus we expect that the developed system will function well
even in the presence of nonlinearity, as long as the excitation force no longer increases from the
applied value. When the tuning DC voltages of 10 V and 12 V are applied to the shaft-widening
type, the resonant frequency is shifted to 1.560 kHz and 1.593 kHz, respectively, from the untuned
resonant frequency of 1.507 kHz (Table 2). The tuning ratios are 3.31% and 5.29% at tuning voltages of
10 V and 12 V, respectively.

Figure 8. Scanning electron microscope (SEM) images of the fabricated devices: (a) Shaft-widening type
and (b) shaft-holding type. Reproduced with permission from [26].

In the shaft-holding type, when the tuning voltage of 7 V is applied to the thermal actuator,
the shaft-holding flexures started to make contact with the torsional spring, and under 12 V, they formed
full contact. Between 7 V and 12 V, the mechanical restriction process is completely reversible,
and continuous frequency tuning up and down is achieved. The experimental measurement results for
resonant frequency tuning are presented in Table 3, and changes in frequency responses are plotted
in Figure 10 [26]. Under the tuning DC voltage of 8 V, 10 V and 12 V, the resonant frequency is
shifted from the untuned resonant frequency of 1.698 kHz to 1.749 kHz, 1.826 kHz and 1.880 kHz,
respectively, which correspond to the tuning ratio of 3.03%, 7.05% and 10.7%, respectively. The untuned
resonant frequency of the torsional resonator (1.698 kHz) exhibits a deviation of 9.25% from the
designed resonant frequency (1.871 kHz). The maximum tuning ratio of the shaft-holding type
(10.7%) is sufficient to compensate for this discrepancy. However, it is noteworthy to mention that
geometric error could be reduced under well-controlled fabrication conditions. The manufacturing
processes for commercialized resonators probably have less fabrication errors than ours. In fact, as we
mentioned earlier, it has been reported that the resonant frequencies of micromachined resonators
generally exhibit a deviation between ±1%~±5% [7]. The Microfabrication Laboratory at UC-Berkeley
have also reported a maximum deviation of 4.9% in resonant frequencies for batch-fabricated
resonators [6]. Based on these criteria, the shaft-holding type, which exhibits lower tuning performance
(maximum tuning ratio of 5.29%) than the shaft-holding type, also meets the needs of demand. It is
expected that the tuning ratio would increase for the both types if the tuning actuator could be further
operated, however, it could not be experimentally verified since the chevron thermal actuator burnt at
a tuning voltage greater than 12 V.
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Figure 9. Frequency response change achieved by the shaft-widening type. Data points are fitted with
the Lorentzian function.

Figure 10. Frequency response change achieved by the shaft-holding type. Data points are fitted with
the Lorentzian function. Reproduced with permission from [26].

Table 2. Resonant frequency shifts achieved by the shaft-widening type.

Tuning Voltage (V) Resonant Frequency (kHz) Tuning Ratio (%)

0 V 1.507 -
10 V 1.560 3.31
12 V 1.593 5.29

Table 3. Resonant frequency shifts achieved by the shaft-holding type. Reproduced with permission
from [26].

Tuning Voltage (V) Resonant Frequency (kHz) Tuning Ratio (%)

0 V 1.698 -
8 V 1.749 3.03
10 V 1.826 7.05
12 V 1.880 10.7
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Figure 11 compares measured and simulated resonant frequency changes by the frequency tuning
units. Both the measured and the simulated resonant frequencies increase with the application of
tuning voltage, but there is some discrepancy in values between them. For example, the simulated
values for the shaft-widening type differ from the experimental results up to 34.8% (Figure 11a).
Our study does not further verify the factors causing this discrepancy. However, it is worth exploring
possible sources. Dimensional error from the microfabrication process could be one of the sources
of this mismatch. Imperfect lithography and the ion-reactive process might change the performance
of the tuning unit, if the resonant frequency is shifted from the desired value. It is also worth noting
that we used simplified boundary conditions for FEA. For example, when we derive the resonant
frequency by modal analysis, we do not consider some conditions that may cause nonlinearity,
including relatively large deflection, sliding between contact surfaces, varying contact area, and the
electrostatic spring effect.

Figure 11. Measured and simulated results for resonant frequency change as a function of applied
tuning voltage: (a) The shaft-widening type; (b) the shaft-holding type.

In the previous section, we assumed two restriction modes in the shaft-holding type: no separation
and separation modes. At a tuning voltage of 12 V, the estimated frequency tuning ratios for the no
separation and separation mode are 63.3% and 7.6%, respectively (Figure 11b). It is not obvious which
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mode is really happening, and a co-existence of both modes is also possible. However, the frequency
tuning ratio of the no separation mode is closer to that of the experimental results (10.7% at 12 V).

Since our tuning mechanism is based on mechanical stress and contact, we have extracted
Q-factors for each frequency spectrum. Instead of a half-power bandwidth formula, which is generally
used to calculate Q-factors for linear oscillating system, we used an alternative formula that is modified
for a non-linear system, especially for a micro-scanning mirror [29]. The Q-factors of the shaft-widening
type are calculated as 28, 27, and 29 at applied tuning voltages of 0 V, 10 V, and 12 V, respectively.
Considering that the Q-factor remains almost constant as the tuning is applied, it seems that the
level of energy dissipation does not change significantly with the increment of the stress inside the
spring. The Q-factors of the shaft-holding type are 17, 16, and 16 at applied tuning voltages of 0 V,
10 V, and 12 V, respectively, showing a slight decrease even under mechanical restriction. One of
the possible scenarios explaining this is that the resonator is under the dominant influence of the air
damping, since a relatively large mass (i.e., the micromirror) is oscillating in the ambient environment.
Thus, the contribution of mechanical stress or contact to the overall energy dissipation may not
be notable.

6. Conclusions

In this work, the resonant frequency tuning of a torsional resonator has been demonstrated by
two concepts: shaft-widening and shaft-holding. Based on the FEA results, we verified the validity
of our tuning methods, and derived the estimated change of torsional stiffness and tuning range.
The frequency tuning units were integrated into the resonator, and there is no necessity for additional
post fabrication processes for frequency-tuning. We experimentally verified the performance of both
designs. The results indicate that the shaft-holding type has a wider tuning range compared to
the shaft-widening type. Nevertheless, the tuning ratios of both are higher compared to those of
the previously method [14], and are also sufficient to compensate for the dimensional errors of the
conventional microfabrication process [6,7].
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Abstract: The micro-electro-mechanical system (MEMS) resonator developed based on surface
processing technology usually changes the section shape either due to excessive etching or insufficient
etching. In this paper, a section parameter is proposed to describe the microbeam changes in the upper
and lower sections. The effect of section change on the mechanical properties is studied analytically
and verified through numerical and finite element solutions. A doubly-clamped microbeam-based
resonator, which is actuated by an electrode on one side, is investigated. The higher-order model
is derived without neglecting the effects of neutral plane stretching and electrostatic nonlinearity.
Further, the Galerkin method and Newton–Cotes method are used to reduce the complexity and
order of the derived model. First of all, the influence of microbeam shape and gap variation on the
static pull-in are studied. Then, the dynamic analysis of the system is investigated. The method
of multiple scales (MMS) is applied to determine the response of the system for small amplitude
vibrations. The relationship between the microbeam shape and the frequency response is discussed.
Results show that the change of section and gap distance can make the vibration soften, harden, and
so on. Furthermore, when the amplitude of vibration is large, the frequency response softening effect
is weakened by the MMS. If the nonlinearity shows hardening-type behavior at the beginning, with
the increase of the amplitude, the frequency response will shift from hardening to softening behavior.
The large amplitude in-well motions are studied to investigate the transitions between hardening
and softening behaviors. Finally, the finite element analysis using COMSOL software (COMSOL Inc.,
Stockholm, Sweden) is carried out to verify the theoretical results, and the two results are very close
to each other in the stable region.

Keywords: MEMS; processing error; section parameter; nonlinear vibration

1. Introduction

Electrostatically-actuated microbeams have become major components in many micro-electro-
mechanical system (MEMS) devices [1] such as switches [2,3], sensors [4,5] and resonators [6] due
to their geometric simplicity, broad applicability and easy to implement characteristics. Moreover,
the existence of structure nonlinearity and nonlinear electrostatic force can make microbeams exhibit
rich static and dynamic behaviors [7,8]. These behaviors have aroused the interest of many scholars,
who have joined the study of MEMS. However, most of them have been aiming at the equal section
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beam under ideal conditions. However, the microbeams and microdiaphragms fabricated through
surface processing technology are prone to errors during fabrication [9]. Such errors during fabrication
of microdevices cannot be ignored as they can cause the bending of the microbeam neutral surface and
change the width, thickness and gap distance of the microresonator. Hence, it is very important to
analyze the static and dynamic behaviors of the electrostatically-actuated beam with surface processing
error for understanding its global dynamic behavior, developing a dynamic control problem and
optimizing vibration design. In the present paper, a doubly-clamped beam of variable thickness
actuated by a one-sided electrode is considered to study the influence of section variation on static and
dynamic behaviors.

The static pull-in instability is one of the key issues in the design of MEMS [10,11]. When the
direct current (DC) voltage is increased beyond a critical value, the stable equilibrium positions
of the microbeam cease to exist, and the pull-in instability will be triggered [12,13]. For example,
Abdel-Rahman et al. [14] investigated an electrically-actuated microbeam accounting for midplane
stretching and derived the static pull-in position of microbeam. Younis et al. [15] studied the effect
of residual stress on the static pull-in of microresonators and found that the residual stress would
increase the pull-in voltage. The system’s vibrations can cause an interesting nonlinear phenomenon
such as hysteresis, softening behavior, snap through and dynamic pull-in instability when it is excited
with DC and alternating current (AC) voltages [16–18]. These analyses are helpful to further grasp
the dynamic instability of microcomponents. Ghayesh and Farokh [19] investigated the static and
dynamic behavior of an electrically-actuated MEMS resonator based on the modified couple stress
theory. It is found that the pull-in voltage is larger by the coupled correction theory compared with
the classical theory. Zhang et al. [20] used the method of multiple scales (MMS) to study the response
and dynamic behaviors of the resonant parameters resonant in the MEMS resonator. The softening
behavior of the DC voltage and the effect of damping on the frequency response curve were discussed.
Ibrahim [21] investigated the effect of nonlinearities of a capacitive accelerometer due to squeeze film
damping (SQFD) and electrostatic actuation by the theoretical and experimental methods. Theoretical
results are compared to experimental data showing excellent agreement. Ghayesh, Farokh and
Gholipour [22,23] investigated the nonlinear dynamics of a microplate based on the modified couple
stress theory. The influence of system parameters on the resonant responses was highlighted by the
frequency-response and force-response curves. Alsaleem et al. [24] conducted an experimental study to
understand the dynamic pull-in voltage of the electrostatic drive microresonator. The experimental and
theoretical results are in good agreement. Furthermore, the applicable microresonator conditions are
pointed out. However, the majority of the previous studies are based on the equal section microbeam,
i.e., the impact of model errors is neglected.

With the deepening research in this discipline, the importance of understanding the processing
error of the microbeam on its performance has been realized. There are several sources of errors
possible, for example, residual [25], initial offset imperfection [26], surface processing technology
precision [27], etc. The residual stress causes the bending of the microbeam to form a microarch [28].
Farokhi and Ghayesh [29,30] established the mathematical model of a geometrically imperfect
microbeam/microplate, the nonlinear force of which was actuated on the basis of the modified
couple stress theory. The influence of physical parameters on the natural frequency and frequency
response were analyzed. What is more, Farokhi and Ghayesh [31] investigated the three-dimensional
motion characteristics of perfect and imperfect Timoshenko microbeams under mechanical and thermal
forces. Ruzziconi [32] studied many kinds of nonlinear behaviors of the microarch under different
parameters through theoretical analysis. The conclusions are in good agreement with experimental
analysis. Besides, a reliable theoretical model was obtained. Ruzziconi [33] predicted the global
bifurcation of the electrostatically-actuated microarch and studied the complex dynamics of the
microarch. Krylov et al. [34] studied the electrostatically-actuated microarch structures, focusing
on the influence of system geometry parameters on its dynamic behaviors and found that the main
influencing factors are microarch thickness, microarch height and the distance between the microarch
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and the plate. Xu et al. [35] studied the dynamic behavior of clamped-clamped carbon nanotubes with
initial bending and explored the non-resonance and resonance of carbon nanotubes by the shooting
method. Hassen et al. [36] established a clamped-clamped beam model considering the initial bending
and obtained its static and dynamic response using the Galerkin method and MMS. The microbeam
with initial offset imperfections is usually actuated by two electrodes. In this case, the microbeam is
still rectangular. However, the initial offset imperfections can break the symmetry along the transverse
vibrational direction in dynamic MEMS devices. Mobki et al. [37] discussed the influence of the initial
offset imperfections on the static bifurcation of a MEMS resonator. Han et al. [38] considered the
effect of initial offset imperfections on the mechanical behaviors of microbeam. The global static and
dynamic analysis of the microresonator is carried out using MMS and the finite difference method.
Results show that the initial offset may induce a complex frequency rebound phenomenon, and there
exists the frequency response in the medium and large amplitude in-well transitions between softening
and hardening behaviors. Although these two kinds of error forms have a great influence on the
mechanical properties of the system, the microbeam model is still an equal section beam. The error
caused due to the accuracy of surface machining will change the width or thickness of the microbeam.
Such dimensional changes affect the structural stiffness and electrostatic force, so it is necessary to
study these. However, the influence of such errors on the shape of the microbeam is random. Therefore,
scholars usually do smoothing processing by setting up the parametric equation model and adjusting
the shape of the microbeam by changing the parameters. Herrera [39] studied the resonant behavior
of a single-layered variable section microbeam. Furthermore, scholars have attempted to optimize
the MEMS device by optimizing the equation parameters. Joglekar and Trivedi [40,41] proposed
a versatile parametric width function, which can smoothly vary the width of a clamped-clamped
microbeam along its length. The parameters of the width function are optimized, and the methodology
is demonstrated in several cases [40,41]. On this basis, Zhang [42] discussed the effects of the optimized
shape on the dynamic response of the microbeam. Few researchers have considered the influence of
variations in microbeam thickness on the mechanical behavior. Kuang and Chen [43] investigated
the effect of shaping the thickness of a microactuator and gap distance on its natural frequencies.
Their study concluded that the shape variation could significantly alter the dynamic behavior of the
microbeam. In particular, the working voltage range was increased six times as compared to a uniform
rectangular cross-section microbeam with a flat electrode. Najar et al. [27,44] simulated and analyzed
the deflection and motion of variable section beams in MEMS devices, and the effect of changing their
geometrical parameters on the static bifurcation and frequency response was observed. However, only
single-sided section changes were considered in their study. The sections of the microbeam both change
up and down by taking into account the actual processing result. One section change is merely applied
to special cases. Therefore, in this paper, simultaneous changes in two sections of the microbeam
are considered to ensure that the obtained research models will be closer to reality. In addition, only
the static pull-in voltage and frequency response were studied in [27,44]. The nonlinear softening
and hardening behaviors, spring softening and other non-linear behaviors are still unclear. It is also
essential to study the scope of applications of the theoretical analysis. In this work, the influence
of processing error on the nonlinear softening and hardening behaviors, electrostatic softening and
dynamic behavior with a large amplitude are analyzed.

The structure of this paper is as follows. In Section 2, the model (partial differential equations)
based on the electrostatically-driven microbeam considering the size effect is given. A parameter
is proposed for describing the variations in the microbeam section to study the degree of influence.
The Galerkin method and Newton–Cotes method are applied to transform the original equation into
the ordinary differential equation. In Section 3, the effects of section parameters and gap distance
on the static pull-in and safety area are discussed. In Section 4, the MMS is applied to determine
the response of the system under small amplitude vibrations. The relationship between section
parameters and nonlinear characteristics and the relationship between the section parameters and the
transitions between softening and hardening are discussed. In Section 5, the results obtained using
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COMSOL (COMSOL Inc., Stockholm, Sweden) simulations are presented to verify the theory. Finally,
the summary and conclusions are presented in the last section.

2. Mathematical Model

2.1. Governing Equation

In this paper, a model considering the effect of surface machining error on the thickness of the
microbeam is studied. The bending vibration equation of the system is obtained through force analysis.

The schematic diagram of microbeam is shown in Figure 1. The thickness of the microbeam is not
constant due to the processing errors. In this study, a section parameter λ is proposed. The shape of
the microbeam is controlled by adjusting the value of section parameter λ. When λ < 0, the thickness
of two clamped ends is greater than the thickness of the middle portion. When λ > 0, the thickness
gradually decreases from the middle to both of the clamped ends. The λ = 0 case is the ideal case
where the section beam thickness is uniform.

Figure 1. Schematic of an electrically-actuated microbeam. (a) λ > 0 case. (b) λ < 0 case. The dotted
line in red is the ideal section location of the beam.

Since the pull-in behavior will cause structural damage, such instability should be avoided in
microresonators. Stability can be ensured by considering the impact of processing errors on the
pull-in effect.

The thickness of the microbeam changes according to y1(x) = h
2 + λh sin πx

L and y2(x) =

{−}( h
2 + λh sin πx

L ) after considering the effect of surface processing error. y1(x) is a function

consisting of the curve
�

A1 A2, and y2(x) is a function consisting of the curve
�

A3 A4. As shown in
Figure 1, A1, A2 and A3, A4 represent the end points at the upper and lower sections, respectively.
The parameter λ will be investigated to observe its impact on the system. The cross-sectional area
A(x) = A0(1 + 2λ sin(πx

L )) and moment of inertia I(x) = I0(1 + 2λ sin(πx
L ))3 are calculated from

y1(x) and y2(x). A0 = bh and I0 = bh3

12 are the area and the moment of inertia of the two clamped sides,
respectively. L and b are the length and the width of the microbeam, respectively. h is the thickness of
the microbeam at the clamped ends. c is the damping coefficient of the system. d is the distance from
the board to the x-axis. E is the effective Young’s modulus, and ρ is the material density. The actuation
of the clamped-clamped microbeam is realized by using a bias voltage VDC and AC voltage VAC cos
(Ωt). Ω is the alternating current excitation frequency. In the microresonator, VAC is far less than VDC.
ε0 is the dielectric constant in the free space, and εr is the relative permittivity of the gap space medium
with respect to the free space.

The equation of motion that governs the transverse deflection y(x,t) is written as [27]:

∂2

∂x2 (EI(x)
∂2y
∂x2 ) + ρA(x)

∂2y
∂t2 + c

∂y
∂t

=
E

2L

1∫
0

A(x)(
∂y
∂x

)
2
dx

∂2y
∂x2 +

ε0εrb[VDC + VAC cos(Ωt)]2

2(d − y1(x)− y)2 (1)
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The first term on the right-hand side of Equation (1) represents the mid-plane stretching effects,
and the second term represents the electrostatic force. The following are the boundary conditions:

y(0, t) =
∂y(0, t)

∂x
= 0, y(L, t) =

∂y(L, t)
∂x

= 0 (2)

The range of the parameter 6(d/h)2 is around 6(d/h)2∈ [0.1, 10] in the equal cross-section
microbeam resonator [1]. It can be deduced from 6(d/h)2∈ [0.1, 10] that the ratio of the gap distance
to the microbeam thickness ranges from 0.13–1.3 in equal cross-section microbeam resonator. After
adding the parameter λ, the thickness and the gap distance become h + 2λh and d – λh, respectively.
Therefore, the ratio becomes 0.13 ≤ d−λh

h+2λh ≤ 1.3. Besides, the range of λ should satisfy the physical
model. When the upper and lower sections of the microbeam are becoming thinner, the change of
section λh cannot exceed the microbeam’s neutral surface, which is λh > − h

2 . The change of section
cannot contact the plate when the microbeam section is becoming thicker, which is λh < d − h

2 .
Therefore, the ranges are as follows: {

0.13 ≤ d−λh
h+2λh ≤ 1.3

− h
2 < λh < d − h

2
(3)

It can be understood from Equation (3) that when λ = 0, the range of d/h is 0.12 ≤ d/h ≤ 1.3.
By simplification:

− 0.3 ≤ 0.27
d
h
− 0.37 ≤ λ ≤ 0.79

d
h
− 0.10 ≤ 0.9 (4)

For convenience, the following non-dimensional quantities are defined:

�
x = x

L ,
�
b = b

d ,
�
y = y

d ,
�
y 1 = y1(x)

d ,
�
y 2 = y2(x)

d ,
�
A(

�
x ) = A(x)

A0
,
�
I (

�
x ) = I(x)

I0
,
�
t = t

T , ω = Ωt
�
t

,

T =
√

l4ρA0
EI0

, μ = cL4

EI0T , α1 = ε0εrbl4VDC
2

2EI0d3 , ρ = VAC
VDC

, α2 = 6( d
h )

2
(5)

Substituting Equation (5) into Equations (1) and (2), the following non-dimensional equation of
motion can be obtained:

∂2

∂
�
x

2 (I(
�
x )

∂2�y

∂
�
x

2 ) + A(
�
x )

∂2�y

∂
�
t

2 + μ
∂
�
y

∂
�
t
− α2

1∫
0

A(
�
x )(

∂
�
y

∂
�
x
)

2

dx
∂2�y

∂
�
x

2 =
α1

(1 −�
y 1(x)−�

y )
2 (6)

with boundary conditions:

�
y (0,

�
t ) =

∂
�
y (0,

�
t )

∂
�
x

= 0,
�
y (1,

�
t ) =

∂
�
y (1,

�
t )

∂
�
x

= 0 (7)

In the following simplifications, the “ˆ” notation is dropped for convenience.

2.2. Galerkin Expansion

The Galerkin method is applied to derive a reduced-order model, and the deflection is
expressed as:

y(x, t) =
∞

∑
i=1

ui(t)φi(x) (8)

The boundary conditions are as follows:

φi(0) = φi(1) = φi
′(0) = φi

′(1) = 0 (9)
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where ui(t) is the modal coordinate amplitude of the i-th mode. φi(x) is the i-th mode shapes of
the normalized undamped linear orthonormal. For an electrostatic actuated microbeam, a single
degree-of-freedom model is sufficient to capture all the key nonlinear aspects in the Galerkin
approximation [25]. However, the one-mode approximation cannot capture the mode coupling effect or
internal resonances. These phenomena can be predicted to obtain a reasonable result by implementing
the number of modes. Nevertheless, the analysis becomes computationally expensive. Since the main
objective of this paper is to explore the main resonance problem in the nonlinear dynamics problem,
the first-order mode is sufficient to obtain good results. In this paper, the first-order modal vibration
y(x, t) = u(t)φ(x) is assumed. Substitute Equation (8) into Equation (6). Upon multiplying by φi(x)
and integrating, the outcome is from x = 0 to 1, and one can obtain the following equation:

..
u + μ

.
u + k1u − α2k3u3 = α1

∫ 1
0

φ(x)
(1−y1(x)−φ(x)u)2 dx + 2α1ρ cos(ωt)

∫ 1
0

φ(x)
(1−y1(x)−φ(x)u)2 dx

+α1ρ2 cos2(ωt)
∫ 1

0
φ(x)

(1−y1(x)−φ(x)u)2 dx
(10)

where
.
u = du/dt. The symbolic meanings of μ, k1 and k2 are discussed in Appendix A.

2.3. Newton–Cotes Method

The integral of the electrostatic force in Equation (10) is complicated; therefore, the Newton–Cotes
method is applied to fit the electrostatic force.

The integral interval [ã,b̃] is divided into n equal divisions. The step length is set as Δh = b̃−ã
n . The

node is xk = ã + kΔh, where k = 0, 1, 2, . . . , n. The interpolation type quadrature formula is as follows:

∫ b̃

ã

φ(x)

(1 − y1(x)− φ(x)u)2 dx = (b̃ − ã)
n

∑
k=0

C(n)
k

φ(xk)

(1 − y1(xk)− φ(xk)u)
2 (11)

where Cn
k is the Cotes coefficient, C(n)

k = 1
b̃−ã

∫ b̃
ã lk(x)dx, lk(x) =

∫ b̃
ã ∏

j �=k

(x−xj)

(xk−xj)
dx.

Using the equipartition of nodes, the coordinates are transformed using x = ã + tΔh. Using this
transformation, the Cotes coefficients can be simplified further as:

C(n)
k =

Δh
b̃ − ã

∫ n

0

n

∏
j = 0
j �= k

(t − j)
(k − j)

dt =
(−1)n−k

k!(n − k)!
1
n

∫ 1

0

n

∏
j = 0
j �= k

(t − j)dt (12)

Through Equations (10)–(12), the simplified mathematical equation can be obtained.

..
u + μ

.
u + k1u − α2k3u3 = 0.61α1

(1−δλ−1.48u)2 + 2α1ρ cos(ωt) 0.61
(1−δλ−1.48u)2

+α1ρ2 cos2(ωt) 0.61
(1−δλ−1.48u)2

(13)

where δ = h/d. It should be noted here that the maximum lateral displacement of the microbeam is at
the midpoint viz., ymax = φ(0.5)u ∈ [λδ, 1 − λδ]. At the middle point of microbeam, the value of the
modal function is φ(0.5) = 1.59. Therefore, the range of u is u ∈ [ λδ

1.59 , 1−λδ
1.59 ]. The degree of matching is

illustrated in Figure 2. The displacement is shown along the transverse coordinate and the electrostatic
force along the ordinate.
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Figure 2. Contrast diagram of fitting curves under different section parameters. The circle is calculated
using the numerical solution. The line is calculated using the Newton–Cotes method.

3. Static Analysis

The equilibrium position and the maximum pull-in voltage of MEMS can be found through
static analysis. The geometric parameters of the microbeam are L = 400 μm, b = 45 μm, d = 2 μm,
h = 2 μm, E = 165 GPa, ρ = 2.33 × 103 kg/m3 and the dielectric constant in free space ε0 = 8.85 × 10−12.
Then, −0.1 ≤ λ ≤ 0.69 can be obtained from Equation (4). By removing the time-related items in
Equation (13), the static response of the microresonator under the DC voltage actuation can be obtained.

k1us − α2k3u3
s =

0.61α1

(1 − δλ − 1.48us)
2 (14)

The relationship between the transverse displacement and DC voltage of the microbeam under
different sections is shown in Figure 3a. With an increase of λ, the motion distance us2 of the microbeam
gradually decreases. However, us2 has only a mathematical meaning and does not have any physical
significance. In addition, the pull-in voltage and the pull-in location decreases as the λ increases. This
is because the thickness of the beam increases as λ increases. As a result, the distance between the
plate and the microbeam section decreases, which causes the axial movement distance to decrease
resulting in pull-in. The influence of gap distance d on the static bifurcation is shown in Figure 3b.
It can be seen from this figure that the equilibrium point us2 is almost unchanged. The pull-in location
increases slowly with the increase of d, and this effect is opposite that of λ. Therefore, the study of the
relationship between λ and d is very necessary. The operating voltage range of the microresonator can
be predicted through analysis. When VDC = 25 V, several cases are selected to observe in Figure 4, and
the yellow regions are the stable regions. It can be found that λ promotes the pull-in phenomenon,
whereas d inhibits the pull-in occurrence. The results are consistent with the situation in Figure 3.
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Figure 3. Relationship between the DC voltage and static equilibrium point under different physical
parameters. (a) The influence of section parameters with d = 2.0 μm; (b) the influence of gap distance
with λ = 0. The solid lines represent the stable solution. The dashed lines represent the unstable
solution. The dotted lines are also stable, but it is impossible for them to appear in the physical model.

Figure 4. Potential energy curves and the corresponding phase diagrams under different physical
parameters. (a) The potential energy curve under different section parameters with d = 2.0 μm;
(b–d) are phase diagrams of λ = −0.1, λ = 0 and λ = 0.1, respectively; (e) the potential energy curve
under different gap distances with λ = 0. (f–h) are the phase diagrams of d = 1.8 μm, d = 2.0 μm and
d = 2.2 μm, respectively.

4. Dynamic Analysis

The resonance frequency and bifurcation behavior can be obtained through dynamic analysis.
The MMS is used to investigate the response of the microresonator with small vibration amplitude
around the stable equilibrium positions. Introducing u = us + uA, us is the response to DC voltage
and uA is the response to AC voltage. The response of DC voltage us is obtained from Equation (14).

Substitute u = us + uA into Equation (13), and expand the electrostatic force equation up to
third-order via Taylor expansion; the terms representing the equilibrium position can be eliminated.
Since VAC is far less than VDC in the microresonator, the terms VDC = O(1) and VAC = O(ε3) are
considered. Here, ε is regarded as a small non-dimensional bookkeeping parameter. Therefore,
Equation (13) can be modified as:

..
uA + ε2μ

.
uA + ω2

nuA + aquA
2 + acuA

3 = ε3 f cos(ωt) (15)
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The symbolic meanings of ωn aq ac and f are presented in Appendix A.

ω = ωn + ε2σ (16)

The approximate solution of Equation (15) can be obtained in the following form:

uA(t, ε) = εuA1(T0, T1, T2) + ε2uA2(T0, T1, T2) + ε3uA3(T0, T1, T2) (17)

where Tn = εnt, n = 0, 1, 2.
Substituting Equations (16) and (17) into Equation (15) and equating the coefficients of like powers

of ε, the following equations can be obtained:

O(ε1) : D2
0uA1 + ω2

nuA1 = 0 (18)

O(ε2) : D2
0uA2 + ω2

nuA2 = −2D0D1uA1 − aqu2
A1 (19)

O(ε3) : D2
0uA3 + ω2

nuA3 = −2D0D1uA2 − 2D0D2uA1 − D2
1uA1

−μD0uA1 − 2aquA1uA2 − acu3
A1

+ f cos(ωnT0 + σT2)

(20)

where Dn = ∂
∂Tn

, n = 0, 1, 2.
The general solution of Equation (18) can be written as:

uA1(T0, T1, T2) = A(T1, T2)eiωnT0 + A(T1, T2)e−iωnT0 (21)

Substituting Equation (21) into Equation (19), yields:

D2
0uA2 + ω2

nuA2 = −2iωn
∂A
∂T1

eiωnT0 − aq(A2e2iωnT0 + AA) + cc (22)

where cc represents the complex conjugate terms.
To eliminate the secular term, one needs:

− 2iωn
∂A
∂T1

eiωnT0 = 0 (23)

which indicates that A is only a function of T2.
Thus, Equation (22) becomes:

D2
0uA2 + ω2

nuA2 = −aq(A2e2iωnT0 + AA) + cc (24)

The solution of uA2 can be given as:

uA2(T0, T2) =
aq A2

3ω2
n

e2iωnT0 − aq AA
ω2

n
+ cc (25)

Substituting Equations (21) and (25) into Equation (20) yields the secular terms:

2iωn
∂A
∂T1

+ μiωn A − 10a2
q A2 A

3ωn2 + 3ac A2 A − f
2

eiσT2 = 0 (26)

At this point, it is convenient to express A in the polar form:

A =
1
2

a(T2)eiβ(T2) + cc (27)

26



Micromachines 2018, 9, 34

Substituting Equation (27) into Equation (26) and separating the imaginary and real parts yield:

Da
DT2

= −μ

2
a +

f
2ωn

sin ϕ (28)

a
Dϕ

DT2
= σa + a3(

5a2
q

12ω3
n
− 3ac

8ωn
) +

f
2ωn

cos ϕ (29)

where ϕ = σT2 − β.
The steady-state response can be obtained by imposing the conditions: Da

DT2
= Dϕ

DT2
= 0. Finally,

the frequency response equation can be derived as follows:

a2((
μ

2
)

2
+ (σ + a2κ)

2
) = (

f
2ωn

)
2

(30)

where κ =
5a2

q

12ω3
n
− 3ac

8ωn
.

The vibration peak value and backbone curve can be decided by amax = f /(μωn) and
ω = ωn − κamax, respectively. The stability of the periodic solution can be determined by evaluating
the eigenvalues of Jacobian matrix of Equations (28) and (29) at (a0, ϕ0).

J =

∣∣∣∣∣∣ − μ
2

f
2ωn

cos ϕ0

2κa0 − f
2ωna2

0
cos ϕ0 − f

2ωna0
sin ϕ0

∣∣∣∣∣∣ (31)

The system is stable if all the eigenvalues are negative; otherwise, the system is unstable [45].
The important dynamic properties of the microresonators include resonant frequency, frequency

response, pull-in behavior, and so on. These properties show a very significant influence on the
performance of microresonators. Therefore, the MMS and numerical analysis are used to observe the
dynamic behaviors of microresonator under the influence of various factors such as different geometric
parameters, external excitation, and so on.

4.1. Dynamic Analysis with Small Amplitude

The soft and hard nonlinearities of the system are related to k. Positive k can lead to a softening-
type behavior, while the negative value can lead to a hardening-type behavior. Meanwhile, when the k
value is approximately zero, i.e., the amplitude is small enough, the system experiences monostable
vibration, i.e., linear-like vibration, which is an ideal state for MEMS designers. From Equation (30),
one can notice that the nonlinear behaviors are affected by geometrical shape and electrostatic forces.
The shape of the section is changed by adjusting the value of λ. Further, the relationship between the
physical parameters and section shape is explored. The following physical quantities are assumed:
L = 400 μm, b = 45 μm, ρ = 2.33 × 103 kg/m3, E = 165 GPa, dielectric constant ε0 = 8.85 × 10−12 F/m
and the clamped end thickness h = 2 μm. The other variation parameters are listed in Table 1. Next,
the relationship between frequency response and various physical parameters is investigated.

Section changes due to the processing errors will have an impact on the system vibration.
The effect of λ and d on the nonlinear behavior is shown in Figure 5, and the dimensionless damping
coefficient μ = 0.1. VDC = 20.5544 V is obtained by calculating λ = 0 and k = 0. It can be noticed
in Figure 5a,d that both λ and d can change the nonlinear soft and hard behavior. When λ = −0.1,
the system has hard nonlinear characteristics. With the increase of λ, the system transits from hard to
soft nonlinearity. λ = 0 is the dividing line. The parameters λ and d show an opposite effect. The points
P0, P1, P2, P3 and P4 are selected for analysis. Figure 5c,f shows the relationship between DC voltage
and equivalent frequency at different λ and d. It can be seen that at VDC = 0, the larger the value of λ

is, the higher is the equivalent natural frequency. This is because of the increase of system stiffness,
which is caused by the increase of λ. One can see from Figure 5c,f that the pull-in phenomenon could
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be promoted with an increase in the value of λ and a decrease in the value of d. At the same time,
with the increase of the DC voltage, the equivalent frequency decreases. There is a significant “spring
softening” phenomenon. The greater the value of λ is, the more obvious the phenomenon becomes.

Table 1. Simulation cases under different parameters.

Case λ d (μm) Dynamic Behavior

P1 −0.1 2 hardening-type vibration
P0 0 2 linear-like vibration
P2 0.1 2 softening-type vibration
P3 0 1.8 softening-type vibration
P4 0 2.0 hardening-type vibration

Figure 5. Relationship between DC voltage and mechanical behaviors under different physical
parameters. (a–c) are the relationship between DC voltage and nondimensional parameter k, static
equilibrium and equivalent natural frequency, respectively, under different section parameters with
d = 2.0 μm. (d–f) are the relationship between DC voltage and nondimensional parameter k, static
equilibrium and equivalent natural frequency, respectively, under different gap distance with λ = 0.
The solid lines represent the stable solution. The dashed lines represent the unstable solution. The
dotted lines also represent a stable case, but it is impossible for them to appear in the physical model.

To validate the above theoretical results, the frequency responses of five cases shown in Table 1 are
studied using MMS. The long-time integration method of Equation (13) is used to obtain the numerical
solutions. The accuracy of the results is verified by comparing both results. The AC excitation
amplitude VAC is varied to adjust the maximum amplitude. It can be known from Figure 6a–c that the
nonlinear behavior changes from hardening to softening when λ = −0.1, λ = 0 and λ = 0.1. The system
shows a hard nonlinearity behavior at λ = −0.1. When λ = 0.1, the system shows a soft nonlinearity
behavior, and λ = 0 is the dividing line, where the vibration is linear.

In addition to λ, the gap distance d will also affect the frequency response. The parameters λ and
d affect the soft and hard behavior in the opposite way. The nonlinear behavior changes from soft
nonlinear to hard nonlinear when d = 1.8 μm, d = 2.0 μm and d = 2.2 μm, as shown in Figure 6a,d,e.
Therefore, adjusting the relationship between d and λ to achieve linear behavior is necessary.

However, this time, the numerical and analytical solutions do not match at point P0. The numerical
solution shows a softening behavior, whereas the analytical solution shows a linear behavior. This
situation will be elaborated in detail below.
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Figure 6. Frequency response curve in different situations, i.e., corresponding to cases P0, P1, P2, P3

and P4. (a) is the case of P0. (b) is the case of P1. (c) is the case of P2. (d) is the case of P3. (e) is the
case of P4. The solid lines represent stable solutions. The dashed lines represent unstable solutions.
The point represents the numerical solution.

4.2. Dynamic Analysis with Large Amplitude

With an increase of AC voltage, the MEMS resonator may undergo large amplitude vibration.
When the AC voltage is increased to beyond a certain value, the analytical and numerical solutions
will not match, for example, corresponding to the point P0 in Figure 6a. This phenomenon will be
analyzed in detail in Figure 7. In addition, the VDC = 15 V and VDC = 23 V cases are considered to
observe the phenomenon in the soft and hard nonlinearity cases. The amplitude of vibration increases,
i.e., shifts from left to right, when the AC voltage is adjusted. When the vibration amplitude is small,
the numerical and analytical solutions match very well. When the amplitude is close to u = 0.2, this
difference between the solutions begins to appear. This phenomenon shows that the softening effect
of analytic solutions is weakened. This is because the higher order terms in the Taylor expansion
of the electrostatic force equation are omitted during the simplification process. These higher order
terms are negligible when the amplitude is small. However, as the amplitude increases, these terms
are not negligible; especially the frequency response in the red frame, which transits from hardening
to softening behavior. When the vibration amplitude reaches around u = 0.3 and as the DC voltage
increases, the influence of electrostatic force nonlinearity exceeds the structural stiffness nonlinearity.
At this time, the electrostatic force plays a leading role. During sweep frequency response analysis, the
resonator at the point of P may generate two kinds of motion. The motion is dynamic pull-in instability
or jumping motion to the upper stable branch.

 

Figure 7. Cont.
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Figure 7. The frequency response changes with AC voltage at λ = 0. The DC voltages are VDC = 15 V,
VDC = 20.5544 V and VDC = 23 V, respectively, from top to bottom in the figure. The solid lines
represent stable solutions. The dashed lines represent unstable solutions. The point represents
a numerical solution.

The frequency response in the red frame is further considered for a detailed analysis; similarly,
the two models for the λ = –0.1 and λ = 0.1 cases are selected for analysis. It can be seen from Figure 8
that in the case of section parameter λ = 0, when the AC voltage amplitude VAC ≥ 0.22 V, the system
shows a jump in the frequency response. The vibration amplitude becomes large with the increase of
VAC, but the jump point does not change. The effect of the section parameter on jump phenomena is
shown in Figure 9. The increase of λ will promote the occurrence of the jump phenomenon. On the
contrary, when λ is small, a higher voltage is needed to observe a similar behavior. At the same time,
the system will generate more energy output.

The frequency is selected near the jump point in each case, and the corresponding time history
curves are shown in Figures 9–11. By setting different initial value x0, the displacement of all
stable solutions can be obtained. If there is no hardening-to-softening behavior, the vibration of
the resonator will appear from one stable solution to two stable solutions in the vicinity of the jump
point SN1 as shown in Figure 9. The case of two stable solutions appears after jump point SN1. If the
hardening-to-softening behavior appears, the solution case is the same as the one shown in Figure 9
when the nonlinearity is weak. On the contrary, in this situation, the two stable solutions case appears
before the jump point SN1, as shown in Figure 10. When the nonlinearity is strong as depicted in
Figure 11, there will be three stable solutions at most, and it changes into two stable solutions after the
jump at the SN2 point. As the frequency increases, the stable solution finally returns to one.

 

Figure 8. The changes in frequency response as AC voltage increases at λ = 0. (a) is the case of VAC = 210 mV.
(b) is the case of VAC = 220 mV. (c) is the case of VAC = 230 mV. The solid lines represent stable solutions.
The dashed lines represent unstable solutions. The point represents the numerical solution.
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Figure 9. Phase diagram and the corresponding time history curve at λ = −0.1. The solid lines
represent stable solutions. The dashed lines represent unstable solutions. The point represents the
numerical solution.

Figure 10. Phase diagram and the corresponding time history curve at λ = 0.1. The solid lines
represent stable solutions. The dashed lines represent unstable solutions. The point represents the
numerical solution.

 

Figure 11. Phase diagram and the corresponding time history curve at λ = 0. The solid lines
represent stable solutions. The dashed lines represent unstable solutions. The point represents the
numerical solution.
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5. Finite Element Verification

Static and dynamic analyses of the system were carried out through the mathematical model in the
previous research. The influence of surface machining error and gap distance on the nonlinear vibration
was obtained. However, the results are obviously not convincing since the analysis was carried out using
the mathematical model alone. In this section, the following physical quantities are assumed: L = 400 μm,
b = 45 μm, d = 2 μm, ρ = 2.33 × 103 kg/m3, E = 165 GPa, dielectric constant ε0 = 8.85 × 10−12 F/m
and the clamped end thickness h = 2 μm. The finite element simulations of the several λ values are
carried out using COMSOL software. The module used for this analysis is the MEMS module, and the
electrical physical field interface is selected. The interface combines solid mechanics and electrostatics
with the dynamic grids to model the deformation of an electrostatically-actuated structure. The number
of degrees of freedom for solving this system is 31,185. Some nonlinear behaviors such as the pull-in
effect and the electrostatic force softening effect are simulated in the real situation. The simulation of the
pull-in voltage is carried out in the steady-state solver. The simulation of electrostatic force softening
first proceeds through the parameterized scanning of DC voltage and then calculates the corresponding
value of each point voltage in the steady-state solver and the eigenvalue solver. The physical model
established through the finite element software is shown in Figure 12. As shown in the figure, below is
the beam model and above is the air area.

Figure 12. COMSOL simulation model.

A comparison between the finite element simulation and analytical solution on the electrostatic
softening effect is shown in Figure 13. Before VDC = 20 V, the two results are in the good agreement.
However, the error starts to increase near the pull-in position when the DC voltage exceeds 20 V.
It is evident from these results that the error increases as the value of λ increases. The finite element
simulation and analytical solution of the static pull-in effect are shown in Figure 14. It can be found
that the pull-in position of the two results is same. The pull-in voltage is well simulated at λ = 0, while
the other two cases are slightly different. It can be seen from Figures 13 and 14 that the maximum
error occurs near the pull-in point. The reason for the error could be as follows: the COMSOL software
acquiescent structure stiffness is linear, while the actual system contains nonlinear stiffness. Although
the analytical solutions take the nonlinear factors into account in the analysis, because of the limitation
of MMS, an error between the analytical and numerical solution is inevitable especially when the
amplitude is too large. The comprehensive mechanical behavior of the system cannot be obtained only
through the numerical method. Therefore, the contradiction really needs further consideration, which
is not within the scope of this paper.
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Figure 13. Relationship between DC voltage and equivalent frequency under different section parameters.
The solid lines represent the analytic solutions. The circles represent the finite element solutions.

Figure 14. Relationship between DC voltage and static equilibrium point under different section parameters.
The solid lines represent the analytic solutions. The circles represent the finite element solutions.

6. Conclusions

In this paper, the static and dynamic characteristics of a doubly-clamped electrostatic microresonator
considering the effect of surface processing error on the thickness are studied. A section parameter is
proposed to describe the microbeam changes in the upper and lower sections. The Galerkin discrete
method is used to decouple, and the finite element analysis is carried out using the software COMSOL.
To observe the system’s nonlinear vibration, the MMS is applied to obtain the approximate frequency
response equation, and the long-time integral method is used to verify. The key conclusions are as follows.

(1) From derivation, the range of section parameter in micro resonators is λ ∈ [−0.3, 0.9].
(2) The occurrence of pull-in phenomenon could be promoted by λ increasing and d decreasing.

Several typical cases are analyzed by using the potential energy curve and phase diagram. With
either the increase of the parameter λ or the decrease of d, the barrier energy gradually decreases
and the safe region reduces. As a result, the pull-in will occur.

(3) Under small perturbations, the resonator may vibrate in the neighborhood of the equilibrium
point. When the gap distance is constant, the sectional parameter λ > 0 will make the system
vibration tend to softening-type behavior. On the contrary, λ < 0 will make the system vibration
lean towards hardening-type behavior. When the section parameter is constant, as the gap
distance of the microbeam is larger, the hardening-type behavior more easily appears. Similarly,
as the gap distance is smaller, the softening-type behavior is easier to obtain. Therefore, if the
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microresonator is thinner or thicker because of the surface machining error, the gap distance d
can be adjusted to make the system vibration close to linear.

(4) The frequency response is obtained by MMS will lead to the nonlinear softening effect being
weakened. This error is negligible when the amplitude of vibration is relatively small. As the
amplitude increases beyond a certain value, this error will be more obvious. If the nonlinearity
exhibits hardening-type behavior at the beginning, the nonlinearity of electrostatic force will
gradually strengthen with the increases of the amplitude. Finally, the electrostatic force began to
dominate when its nonlinearity effect on the system exceeded the influence of structural stiffness
nonlinearity. At this time, the frequency response will exhibit hardening to softening behavior.
The higher the value of λ is, the more easily it appears.

It can be concluded from the presented results that the surface processing error does affect the
static and dynamic characteristics of the microresonator. When the existing micromachining process
is not improved, it will go for a revision only after considering the processing errors in the original
theoretically-based design. It can make the final product meet the theoretical design requirements and
increase the rate of finished products.
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Appendix A

g =
∫ 1

0
A(x)φ2(x)dx (A1)

μ = c/g (A2)

k1 =
∫ 1

0
(I(x)φ′′ (x))′′ φ(x)dx/g (A3)

k3 =
∫ 1

0
A(x)(φ′(x))2dx

∫ 1

0
φ′′ (x)φ(x)dx/g (A4)

ωn =

√
k1 − 3α2k3us2 − 1.8056α1

(1 − 1.48us − δλ)3 (A5)

aq = −3α2k3us − 4.00843α1

(1 − 1.48us − δλ)4 (A6)

ac = −α2k3 − 7.90997α1

(1 − 1.48us − δλ)5 (A7)

f =
1.22α1ρ

(1 − 1.48us − δλ)2 (A8)
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Abstract: Many researchers have studied the miniaturization of the hemisphere resonator gyroscope
for decades. The hemisphere resonator (HSR), as the core component, has a size that has been reduced
to the submillimeter level. We developed a method of batch production of micro-hemisphere shell
resonators based on a glass-blowing process to obtain larger hemisphere shells with a higher ratio
of height to diameter (H/D), we introduced the chemical foaming process (CFP) and acquired an
optimized hemisphere shell; the contrasted and improved H/D of the hemisphere shell are 0.61 and
0.80, respectively. Finally, we increased the volume of glass shell resonator by 51.48 times while
decreasing the four-node wineglass resonant frequencies from 7.24 MHz to 0.98 MHz. The larger
HSR with greater surface area is helpful for setting larger surrounding drive and sense capacitive
electrodes, thereby enhancing the sensitivity of HSR to the rotation. This CFP method not only
provides more convenience to control the shape of a hemisphere shell but also reduces non-negligible
cost in the fabrication process. In addition, this method may inspire some other research fields,
e.g., microfluidics, chemical analysis, and wafer level package (WLP).

Keywords: hemisphere resonator gyroscope; hemisphere resonator; chemical foaming process;
glassblowing; hemisphere shell; hollow glass microsphere; micro electro mechanical systems (MEMS)

1. Introduction

The hemisphere resonator gyroscope (HRG), as one type of Coriolis gyro, has superior navigation
precision because of its unique axisymmetric 3D structure [1]. Using a MEMS-based process, many
different mHRGs and uHRGs have already been studied by global research teams. The different
structural designs of the resonator mainly include hollow hemisphere [2], wineglass [3], disk [4],
these resonators are usually surrounded by several coupled drive and sense electrodes. The fabrication
processes of the resonator also differ, including deep reactive ion etching (DRIE), glassblowing [5],
atomic layer deposition [6], sacrificial layer etching [7], or a combination of the above methods.

Quality factor (Q-factor) is a dimensionless characteristic, which is defined as the ratio of the
energy stored to the power loss in every cycle when a system works on resonant status. The hemisphere
resonator (HSR) with a high Q is desired because it can reduce mechanical noise. The Q factor of the
HSR mainly depends on thermoelastic damping and anchor losses, studies of the detailed energy loss
mechanisms were presented in [7,8]. A low thermoelastic damping structural material can achieve
a high Q factor; for example, an HSR fabricated by microcrystalline diamond was found to have a
four-node wineglass resonant frequency of 18.321 kHz, with the observed Q of ~10,000 at the four-node
wineglass mode and 20,000 at six-node vibration mode [9]. A stem-supported hemispherical shell with
self-aligned tall capacitive electrodes was fabricated in polysilicon; the shell has a wineglass resonant
mode at 5.58 kHz with a Q of 17,600 [10]. Other materials, such as fused silica [11] and Pyrex have
also been used to fabricate an HSR [2]. The ideal drive axis and sense axis of a gyroscope should

Micromachines 2018, 9, 42; doi:10.3390/mi9020042 www.mdpi.com/journal/micromachines37



Micromachines 2018, 9, 42

be mutually perpendicular, which is called quadrature coupling, but the fabrication imperfections,
such as lithographic misalignment and inhomogeneous anchor region, would prevent the angle of
drive axis and sense axis from being 90◦ and result in quadrature error. When compared with the
conventional 2D flat massive block typed gyroscope, the inherent central symmetry resonator can
reduce quadrature error and provide more flexible signal excitation and pick up design.

A micro-hemisphere glass shell resonator is a good choice as the central component of the HRG.
Figure 1a shows a typical structure demonstration of a glass HSR, which has many advantages, such
as high stiffness, good shock resistance, and low thermal expansion coefficient consistent with that of
a silicon substrate [12]. The silicon substrate also provides high aspect ratio surrounding electrodes
and enables simultaneous fabrication [13]. Moreover, the processes for batch fabrication this type
HSR have been developed in [5], the key processes (which include DRIE, anodic bonding, and glass
blowing) are simple and convenient techniques those are easily accessible to related research groups.
For example, a 500-μm radius spherical resonator with a four-node wineglass resonant frequency of
1.37 MHz and a Q factor of 1280 in vacuum (0.4 mT) was reported in [6]. Further Q enhancement is
possible by minimizing the shell anchoring to the substrate or by using high-Q materials [2].

Glass Shell

Etched Cavity

Glass 

Silicon

(a) (b)

Figure 1. Demonstration diagram and micrograph of the glass hemisphere resonator (HSR):
(a) cross-sectional view of the micro glass shell structure; (b) microphotograph of a glass-blown
shell (height/diameter (H/D) = 0.79).

At the beginning, we utilized a similar process to fabricate the micro hemispherical glass shell,
however, the shell shapes were not very uniform. Figure 1b shows the highest hemisphere glass
shell blown by an 800 μm deep cavity, the radius of the etched cavity is 250 μm. We measured the
shape of the glass HSR via scanning electron microscope (SEM), the radius of this HSR is 439.18 μm.
We calculated that the glass HSR has a ratio of height to diameter (H/D) of 0.79. However, it is difficult
to obtain such a large glass shell because the H/D of most other samples did not exceed 0.5. An HSR
with high H/D is desirable for the larger HSR has several advantages, for example, greater surface
area is helpful for setting higher aspect surrounding drive and sense capacitive electrodes, which can
increase the sensitivity of HRG, and HSR with high H/D would lower its four-node wineglass resonant
frequency, which is beneficial for the drive and sense of the HRG. Finally, we managed to develop an
available method to produce larger, uniform glass HSRs.

There are some challenges in the fabrication of a glass HSR, for example, very deep cylindrical
cavities (usually 800 μm in depth) must be etched previously, requiring a thick silicon substrate
(equal or greater than 1000 μm in thickness). This thickness requirement not only increases the
process time and cost but also influences the subsequent processes because the excessively thick silicon
substrate increases the difficulty of the anodic bonding and dicing processes. Even with the use
of such a deep cavity to blow a hemispheric glass shell, the volume of the glass shell is still under
restrictions from the process parameters; thus, we seek a larger hemisphere glass shell by improving
the process condition or introducing some other valid approaches. To get a micro glass hemisphere
shell with higher H/D, Andrei M. Shkel et al. presented an alternative fabrication process to make an
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extra trapped air pocket [2,5], utilizing two bonded silicon wafers to achieve larger sphericity (H/D),
because which can provide more volume of the sealed gas. D. Senkal et al. also utilized an additional
stencil silicon layer to create an air pocket and fabricated a spherical shell structure with a stem, which
was conventional micro machining technology [14]. Jintang Shang et al. used foaming agent TiH2 to
fabricate glass bubbles [15] and hemispherical glass shells with self-formed stems [16]. To obtain a
larger glass HSR, we managed to introduce chemical foaming process (CFP) method in the fabrication
of glass-blown shell resonators, the H/D of glass hemisphere shell blown by 200 μm deep etched
cavity with quantified foaming agent can approach (even exceed) the HSR blown by the 800 μm deep
etched cavity without foaming agent.

In this work, analytical model and experimental verification were presented sequentially.
We utilized the height model to predict the shape of the glass-blown spherical shell, and then correlative
bonded stacks were heated in the furnace at a temperature above the softening point of the glass.
In the initial experiment stage, the resulting shapes were almost hemispheric shells (Figure 2a),
and the H/D of the shell samples was 0.61. We want to acquire a hollow glass shell that is closer to
a sphere, because this structure could provide more desirable properties of the gyroscope. Finally,
we explored an available method of transferring quantified foaming agent into the etched cavity before
anodic bonding to obtain a larger shell very close to a sphere (Figure 2b). The two samples’ detailed
experimental parameters are shown in Table 1 and characters are shown in Table 2.

 
(a) Sample 1 (b) Sample 2

Figure 2. Scanning electron microscope (SEM) images of two different glass shells: (a) glass shell blown
via an etched cavity without a foaming agent (H/D = 0.61); (b) glass shell blown via an etched cavity
with quantified foaming agent (H/D = 0.80).

2. Height Model of a Micro Glass-Blown Shell

We have a height model to estimate the height of a glass-blown shell produced by an etched cavity
with quantified foaming agent (Figure 3). The volume and shape of glass shell structures have been
studied in [5], however, that study did not involve foaming agent. At a high temperature above the
softening point of glass, the gas in the sealed cavity also includes the gas produced by foaming agent
previously added in the etched cavity, this gas expands and increases the inner gas pressure before
driving the high-temperature molten glass membrane to deform into a hollow spherical shell via the
same surface pressure distribution. After 2–5 min the glass shell samples were removed rapidly to
cool down in air to avoid the collapse of the glass shells. The shell shape was determined by the radius
and depth of the etched cavity, the thickness of the glass wafer, the temperature at which the cavity
was sealed, the temperature at which the glassblowing was executed, the mass of the foaming agent
in sealed cavity, and even the cooling down process of the softened glass shell all have a significant
influence on the final shape of the glass shell.
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h1

h

b R0

 

Figure 3. Height model of a micro glass-blown shell.

In the height model, we ignore the influence of gravity and the viscous force of the softened glass
and assume the thickness of the glass shell is uniform; thus, the volume of inflated gas enclosed obeys
the ideal gas law

PV = nRT (1)

where P is the inner pressure in the glass shell that is equal to atmosphere when the glass shell heated
in furnace reaches balanced state; n is the number of moles, consisting of two components, one is
the gas inside the etched cavity when bonding a glass wafer and the other is the gas released by the
foaming agent; R is the Boltzmann constant; T is the temperature in furnace. Because the foaming
agent provides extra molding gas, the equation can transform into

Vg =

(Tf

Tb
− 1

)
VE + VF (2)

where Vg is the volume of the glass shell, Tf is the heating temperature in the furnace, and Tb is the
temperature at which the etched cavity was bonded to a glass wafer. VE is the volume of the etched
cylindrical cavity, which can be written as

VE = πR2
0h (3)

where h is the depth of etched cavity. Regarding VF, which is the volume of gas released by foaming
agent when the bonded wafer transferred in furnace set a high temperature of Tf, we use CaCO3 as the
blowing agent, the chemical decomposition of which is described as

CaCO3(s)
∼900 ◦C
===== CaO(s) + CO2(g) (4)

The means to transfer the foaming agent will be explained in later section. We can control VF
by changing the number of moles of CaCO3, n0, which is equal to the number of moles of CO2; thus,
VF can be derived as

VF =
n0RTf

P
(5)

Because the shape of the glass shell is a spherical segment, Vg can be described by the
mathematical formula

Vg = πh2
1

(
3Rg − h1

3

)
(6)
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where h1 is the height of the glass shell, Rg is the radius of the spherical segment, we assume the
bottom radius of the glass shell is equal to the radius of etched cavity R0, and Vg can also be described
as another mathematical formula

Vg = πh1

(
3R2

0 + h2
1

6

)
(7)

By combining (6) and (7), the mathematical equation describing the relationship between h1 and
Rg is

Rg =
R2

0 + h2
1

2h1
(8)

Thus, combining (6) and (8), the height of glass shell can be derived as

h1 =
[(3Vg +

√
R0

6π2 + 9Vg
2)π2]

2/3
− R0

2π2

π[(3Vg +
√

R0
6π2 + 9Vg

2)π2]
1/3 (9)

where Vg =

(Tf

Tb
− 1

)
VE +

n0RTf

P
.

3. Materials and Methods

The fabrication process flow of a glass-blown spherical shell is shown in Figure 4. First a 200-nm
thick layer of aluminum is sputtered onto a 1000-μm thick silicon wafer, and then the wafer is patterned
using another layer of photoresist on the sputtered layer. Next, the aluminum mask is patterned
by using aluminum etching liquid and removing the photoresist by acetone, followed by etching
cylindrical cavities with 300 μm in radius and 800 μm in depth by DRIE. After this step, the aluminum
layer is removed by aluminum etching liquid to obtain the substrate wafer with etched cavities.

For the process of adding the foaming agent, we choose CaCO3 as the foaming agent because
it meets the requirement of the subsequent process, with the thermal decomposition temperature
(825 ◦C) that is lower than the temperature in the furnace (~900 ◦C) and higher than the temperature
of anodic bonding (~400 ◦C). As a result, all the gas produced by CaCO3 can contribute to the foaming
process of the glass shell during the glass blowing process. However, transferring the solid foaming
agent directly is too difficult to achieve. There are two main reasons for this difficulty: one is that there
is no effective method or tool to place the solid CaCO3 in a cavity with 300 μm radius, and the solid
CaCO3 (especially the powders) would result in bonding surface pollution that is difficult to remove;
the other reason is that CaCO3 is insoluble in most solvents. Thus, finding a proper means to place the
foaming agent inside the micro cavity is the key problem to be solved.

Eventually, we utilized the precipitation reaction of Na2CO3 solution and CaCl2 solution according
to the chemical equation

Na2CO3(aq) + CaCl2(aq) === CaCO3(s) + 2NaCl(aq) (10)

With the reactor being the etched cavity, we use two syringe pumps (Pump 11 Elite, Harvard
Apparatus, Holliston, MA, USA) and two microliter syringes (Shanghai Gaoge Industrial and Trading
Company, Shanghai, China, model 1448348727, 10 μL). Moreover, we use a 34 G syringe needle (190 μm
outer diameter and 60 μm inner diameter) to inject the solution because its outer diameter is smaller
than the diameter of the cavity. We can control the quantity of CaCO3 placed in an etched cavity by
adjusting the injected volume and concentration of the two reacting solutions.

After the micro-injection process, the water is removed by drying on a hot plate, thus,
the quantified amount of CaCO3 remains in the cavity. Next, the silicon wafer is anodically bonded to
a thin piece of Bf 33 glass (100 μm in thickness, Schott AG, Mainz, Germany) to isolate the atmosphere
in the single cavity.
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Figure 4. Fabrication process flow of a glass-blown spherical shell resonator.

In the step of glass blowing, we invert the bonded wafer by placing the wafer upside down onto a
quartz glass stencil and then transferring the assembly together into a quartz tube furnace set to a high
temperature (850 ◦C to 950 ◦C); the silicon wafer and the stencil are still stable, and the foaming agent
would release the gas while the glass wafer would become softened and the increased gas pressure in
the cavity would force the circular thin glass film on top of the etched cavity to become a spherical glass
shell. The force of gravity of the softened glass is beneficial to obtain a larger glass shell (higher H/D).
After an adequate heating time (120 s to 300 s), we take the glass shell samples out of the furnace and
allow the glass shell to cool down rapidly to retain its shape, because if the heating time is too short,
there’s no enough time for glass to become soften and blown into hemisphere shape, and if the heating
time is too long, the glass shell would deform even break because the softened glass would mostly
flow to the shell vertex on the influence of gravity. The required blow-up time has been discussed
in [5], we also perform series of contrast tests to determine the glass blowing characteristics.

4. Results and Discussion

4.1. Experimental Characteristics

In the experimental phase, researchers are interested in the effect of foaming agent on the shape of
glass-blown shell; thus, contrast experiments were designed and executed. There are some differences
between two experiments, with the most important distinction being whether the foaming agent was
added into the etched cavity or not. We compare and analyze two glass shell samples we made: sample
1, which is shown in Figure 2a, was blown by a cavity without foaming agent; sample 2, which is
shown in Figure 2b, was blown by a cavity that has 1.415 μg CaCO3 in a sealed cavity. The other
parameters, e.g., the radius of cavity R0, the depth of cavity h, the thickness of glass b, the bonding
temperature Tb, the temperature in the furnace for glass blowing Tf, and the heating time t, are all
shown in Table 1.

Table 1. The experimental parameters of the two samples.

Parameter R0 (μm) h (μm) b (μm) Tb (◦C) Tf (◦C) t (s)

Sample 1 300 800 129.82 360 900 180
Sample 2 300 800 132.85 400 900 180

The experiment results of the two samples are shown in Table 2. Vg predicted is calculated by
Equation (2), and Vg real is calculated by Equation (6). The real volume of glass shell 2 is 276% more
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than the volume of shell 1, and the H/D also increases from 0.61 to 0.80, because the CaCO3 can
release extra foaming gas during the glass blowing process. Thus, we testify that the application of
chemical foaming method in fabrication of a micro-hemisphere shell resonator can help researchers
achieve a larger glass shell (higher volume shell or greater height). Furthermore, we can produce a
micro glass-shell with a profile closer to a sphere compared with those micro-shells blown only by the
sealed atmosphere.

Table 2. The experimental results of the two samples.

Parameter Vg predicted (nL) Vg real (nL) h1 predicted (μm) h1 real (μm) Rg real (μm) H/D

Sample 1 192.92 207.69 592.85 512.12 422.78 0.61
Sample 2 1530.10 781.04 1400 950.19 592.09 0.80

4.2. Four-Node Wineglass Resonant Frequencies Simulation

Most HRGs utilize the four-node wineglass resonant mode (n = 2) of the HSR to sense the change
of rotation, this mode is an important and inherent characteristic that varies from dozens of kHz to
several MHz for different structures, materials, and processes.

Through the experimental process, we ultimately obtained hundreds of glass HSR samples,
most of which have different H/D because of the different process parameters, and we confirmed
that the most effective approach to increase the H/D is the chemical foaming method. In addition,
we divided the HSR samples along the symmetry axis into two identical parts, after a detailed
measurement of the HSR sectional dimensions via SEM. To study the influence of different shapes
on the natural frequencies, we restructured five 3D models in SolidWorks (2010, Dassault Systèmes,
Vélizy-Villacoublay, France) and then via COMSOL Multiphysics (5.2a, COMSOL Inc., Stockholm,
Sweden) to simulate corresponding resonant frequencies of the four-node wineglass resonant mode.
Figure 5 shows the simulated two degenerate four-node wineglass resonant mode shapes of an HSR,
the phase difference between the two degenerate four-node wineglass resonant mode shapes is 45◦.

(a) (b)

Figure 5. The simulated two degenerate four-node wineglass resonant mode (n = 2) shapes of an HSR:
(a) The four-node wineglass resonant mode shape; (b) The degenerate four-node wineglass resonant
mode shape.

The simulation results of the four-node wineglass resonant frequencies are shown in Table 3.
The five samples were fabricated by using different process parameters, sample 6 and sample 7 were
fabricated with the help of CaCO3, other parameters are same, the thickness of glass wafer b is 100 μm
and the depth of etched cavity h is 800 μm. HSRs with different profiles have different four-node
wineglass resonant frequencies fw (n = 2), we found that the fw (n = 2) decrease from 2.08 MHz to
0.94 MHz through the addition of CaCO3, it is a 54.8% decrease, enabling the HSR more sensitive to
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change of rotation, and it is convenient to set larger surrounding capacitive electrodes, allowing the
HSR to be easier to drive and sense, showing the efficiency of the CFP method in fabrication of a micro
glass HSR.

Table 3. The simulation results of four-node wineglass resonant frequencies.

Parameter mCaCO3
(μg) R0 (μm) Tb (◦C) Tf (◦C) t (s) h1 (μm) Rg (μm) H/D fw (MHz)

Sample 3 none 300 400 950 210 324.41 452.26 0.36 2.08
Sample 4 none 300 360 890 180 505.03 434.35 0.58 2.00
Sample 5 none 300 360 930 180 501.84 439.48 0.57 1.88
Sample 6 1.415 300 400 900 180 989.99 633.14 0.78 1.11
Sample 7 1.887 500 400 900 180 1039.45 759.33 0.68 0.94

4.3. Glass HSR Blown by 200 μm Deep Cavity

Furthermore, we used a 500 μm silicon wafer to replace the 1000 μm silicon wafer, and we just
etched 200 μm deep cavities instead of 800 μm deep cavities, the use of shallower cavities has many
advantages. For example, the cost of DRIE is very high, so we can save approximately 75% of the
expense of DRIE. In addition, we do not require the metal mask to resist such deep etching. Moreover,
a thinner silicon wafer is beneficial for decreasing the final thickness of the HRG, which would help in
the processes of DRIE, dicing, and anodic bonding, because 500 μm silicon wafers are more commonly
used in micro-machining.

We control the mass of CaCO3 in the 200 μm deep etched cavity while using the same values for
the other process parameters, the SEM images of the glass shell samples are shown in Figure 6, and the
corresponding results are shown in Table 4.

 
(a) Sample 8 (b) Sample 9 (c) Sample 10 

 
(d) Sample 11 (e) Sample 12 (f) Sample 13 

Figure 6. SEM images of the glass shell samples blown by 200 μm deep etched cavities.
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Table 4. The experimental results of the glass shell samples blown by 200 μm deep etched cavities 1.

Parameter
mCaCO3

(μg)
Vg predicted

(nL)
Vg real
(nL)

h1 predicted
(μm)

h1 real
(μm)

Dg real
(μm)

H/D fw (MHz)

Sample 8 none 43.683 27.93 250.66 133.39 1088.34 0.12 7.24
Sample 9 0.236 274.73 285.81 695.78 516.26 1026.86 0.50 1.59

Sample 10 0.472 505.78 446.36 897.76 682.42 1065.13 0.64 1.46
Sample 11 0.943 966.89 920.78 1200 823.83 1412.92 0.58 1.12
Sample 12 1.415 1429 1228.41 1300 1134.62 1363.88 0.83 1.05
Sample 13 1.887 1891.1 1437.96 1500 1205.46 1433.61 0.84 0.98

1 These samples have same process parameters except for the mass of CaCO3 in the 200 μm deep etched cavity,
R0 = 300 μm, h = 200 μm, Tb = 400 ◦C, Tf = 920 ◦C, t = 180 s.

By comparing the calculated volume and the real volume of the HSR samples in Figure 7a, we find
that the real HSR volume increases when more CaCO3 is added into the etched cavity. However,
the increase slope decreases. For example, the real volume of shell sample 13 (which was blown by
a 200 μm deep etched cavity with 1.887 μg of CaCO3) is 51.48 times that of sample 8 (which was
formed without the CaCO3), although it should be 67.71 times greater in theory. The reason for this
discrepancy may be the larger HSR shell has a thinner glass wall and more surface area, when we
take the shell sample out of the furnace, the inner atmosphere of the HSR shell cool down more easily,
which could result in the glass HSR shell shrink before the glass solidifies.

(a) (b)

Figure 7. The effect of CaCO3 on the volume and four-node wineglass resonant frequencies of HSR
samples: (a) Calculated volume versus real volume of HSR samples; (b) The four-node wineglass
resonant frequencies of the HSR samples.

The four-node wineglass resonant frequencies of HSR samples are shown in Figure 7b. Sample 8,
which was blown by an etched cavity without CaCO3, has a four-node wineglass resonant frequency
at 7.24 MHz, and sample 9, which is blown by etched cavity with 0.236 μg CaCO3 that practically
provides an extra 9.23 times volume as that of sample 8, has a four-node wineglass resonant frequency
at 1.59 MHz, which is 78% lower than that of the control group of sample 8 (7.24 MHz). The reason for
the decrease of fw (n = 2) is that the larger HSR has a thinner glass wall and lower stiffness. Note that
the fw (n = 2) decrease slope of other HSR samples is lower than that of samples 8 and 9, showing
the efficiency of CFP method in the fabrication of the HSR. The H/D value also increases from 0.12
to 0.50 with the addition of CaCO3, and the profile of sample 9 is a half sphere. Regarding samples
10, 11, and 13, their H/D values all exceed 0.5, and the largest one, sample 13, has a 4/5 sphere
profile. We also attempted other approaches, such as lowering the sealed temperature or increasing
the blowing temperature; the improvement of the HSR volume was minor, and those approaches are
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limited by the process conditions, so the CFP method is a better choice when we want to get a larger
glass HSR close to a sphere.

We conclude that we could obtain a larger HSR via application of the chemical foaming method,
which provides extra foaming gas. In addition, the volume of the HSR blown by the 200 μm deep
etched cavity with the quantified addition of foaming agent can approach (even exceed) the HSR blown
by the 800 μm deep etched cavity without foaming agent. The proposed approach not only reduces
process time and cost but also presents a means to reduce the dimensions of the HRG. Furthermore,
the larger HSR has several advantages, for example, greater surface area is helpful for setting larger
surrounding drive and sense capacitive electrodes, which can increase the HSR detection sensitivity of
rotation change.

Although the efficiency and economy of the introduction of CFP have been proven in fabrication
and experiment tests of the HSR, several difficulties remain need to be solved. For example, injecting
two reaction solutions must be very carefully performed; thus, we should ensure the liquid does not
overflow onto the surface of the silicon wafer to avoid the failure of anodic bonding. In addition,
the volumes of the two reacting solutions injected are very small (25 nL to 200 nL) and must be accurate;
thus, the proposed approach has a high requirement of location accuracy and injection control precision
for the platform used to add the foaming agent. Moreover, there are many factors that can influence the
final shape of the glass HSR, and previous processes have absolutely essential influences on the final
glass blowing result; thus, exploring a standard and successful process flow is of great importance.

5. Conclusions

A novel approach involving the application of the chemical foaming method in the fabrication
of micro-hemispherical shell resonators was developed to increase the volume of the glass-blown
shell, achieving a 51.48-fold increase compared to the traditional method without the foaming agent.
The larger HSR with greater surface area is helpful for setting larger surrounding drive and sense
capacitive electrodes, which can increase the HSR detection sensitivity of rotation. A height model
was first presented to estimate the shape of the glass-blown shell with chemical foaming agent,
and comparison experiments were performed to prove the efficiency of the new approach. We also
developed a method to miniaturize the dimension of the glass HSR; this method can reduce the cost
and increase the sensitivity of a glass HSR. This method may inspire related research in the design and
fabrication of HRG.
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Abstract: We demonstrate a promising strategy to combine the micro-electromechanical film bulk
acoustic resonator and the nanostructured sensitive fibers for the detection of low-concentration
formaldehyde vapor. The polyethyleneimine nanofibers were directly deposited on the resonator
surface by a simple electrospinning method. The film bulk acoustic resonator working at 4.4 GHz
acted as a sensitive mass loading platform and the three-dimensional structure of nanofibers provided
a large specific surface area for vapor adsorption and diffusion. The ultra-small mass change induced
by the absorption of formaldehyde molecules onto the amine groups in polyethyleneimine was
detected by measuring the frequency downshift of the film bulk acoustic resonator. The proposed
sensor exhibits a fast, reversible and linear response towards formaldehyde vapor with an excellent
selectivity. The gas sensitivity and the detection limit were 1.216 kHz/ppb and 37 ppb, respectively.
The study offers a great potential for developing sensitive, fast-response and portable sensors for the
detection of indoor air pollutions.

Keywords: film bulk acoustic resonator; formaldehyde; gas sensor; nanofibers

1. Introduction

Formaldehyde, usually derived from household materials, is one of the most common indoor
air pollutants. There is a strong demand for a sensitive, fast-response and portable method to detect
formaldehyde for indoor environmental monitoring due to its high carcinogenicity [1]. The traditional
spectroscopy, chromatography and mass spectrometry are very hypersensitive, accurate and reliable,
but they are limited by the large-scale equipment, professional operation and unable to detect
formaldehyde at a customer’s home [2]. The solution leads to the development of smart formaldehyde
sensors with small device size and rapid response speed. So far, metal oxide semiconductor (MOS) [3–5],
carbon nanotubes (CNTs) [6–8], conductive polymer [9] have been used to fabricate formaldehyde
sensors based on field effect, resistive and electroacoustic principles. Over the past decade, the technical
progress in micro-electromechanical systems (MEMS) brings a novel development direction for
the microsensors.

Film bulk acoustic resonator (FBAR) is a promising microelectromechanical system (MEMS) resonator
and has obtained the preliminary success in radio frequency communication technologies [10–12].
Moreover, its applications for gas [13–16] and biochemical detections [17–20] have received attention
thanks to the high sensitivity and micron-scale size. Compared with the conventional electroacoustic
resonator such as quartz crystal microbalance (QCM), the important advance of FBAR is the use of
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1–2 microns-thick piezoelectric films to replace the crystal plates, which provides a fundamental
working frequency at several gigahertz and enough mass sensitivity to probe a single gas molecules
layer [21,22]. In addition, FBAR is fabricated by standard MEMS process, thereby realizing the
ability to inexpensively combine a number of sensors on a chip and integrate them with the
analytical circuits. For gas-sensing applications, the FBAR usually works as a mass-loading platform.
A sensitive layer is coated on the device surface to absorb the target molecules. The small
additional mass on the sensing layer is detected by monitoring the variation of resonant frequency.
As a result, the properties of sensitive coating determine the molecule recognitions, and directly
affect the sensitivity, stability and reversibility of the sensor. Up to now, a variety of sensitive
coatings, such as polymers [23,24], proteins [25–27], aptamers [28–31], enzymes [32,33], supramolecular
monolayers [34,35], hydrophilic film [23] and CNTs [36] have been employed for FBAR sensors to achieve
the selectivity for different analytes.

Polyethyleneimine (PEI) and its derivatives are regarded as an appropriate formaldehyde-sensitive
material since PEI can efficiently adsorb formaldehyde molecules via a reversible reaction of primary
amines. Therefore, polystyrene (PS)/PEI [37], poly(vinyl alcohol) (PVA)/PEI [38], TiO2/PEI [39],
and CNTs/PEI composites [40] have been reported as the sensitive coating of mass-loading sensors for
the detection of formaldehyde vapor. On the other hand, in the view of the high sensitivity of FBAR
devices, the nanostructured materials featured with high surface areas and numerous sites are the
potential coating for gas sensing.

In this paper, we developed a promising strategy to combine PEI nanofibers and the FBAR with
high mass sensitivity to construct a formaldehyde microsensor. The PEI nanofibers were directly
deposited on an AlN FBAR surface by a simple electrospinning method. Benefiting from the high
working frequency at 4.4 GHz, the proposed FBAR was able to measure the ultra-small mass change
produced by the interaction between formaldehyde molecules and the PEI nanofibers with linear
response characteristics, fast response/recovery rate and excellent selectivity.

2. Device Configuration and Fabrication

2.1. Schematic Structure and Sensing Mechanism

Figure 1a,b shows the schematic structure, sensing mechanism and the photomicrograph of
the FBAR formaldehyde sensor. The major structure of FBAR (300 × 150 μm2) is a sandwiched Au
(100 nm)/AlN (1 μm)/Mo (100 nm) piezoelectric stack built on a Si3N4 sputtered layer (0.6 μm).
The PEI nanofibers were deposited on the surface of top Au electrode as the specific sensitive coating.
The active resonance and sensing area are overlapped between the two electrodes (3296 μm2). When the
FBAR sensor is exposed to gaseous formaldehyde, the reversible nucleophilic addition reaction
happens between the amines of PEI and the vapor molecules at room temperature [41]. In fact,
there is a σ-bond and a π-bond in the formaldehyde molecule. Because of the difference in electron
affinity, the oxygen atom side shows electronegativity while the positive side of carbon atoms can
be considered as the electrophile. In the amine group, the lone pair in the nitrogen atoms works as
the nucleophile and engages in the reaction with the π-bond in formaldehyde molecules. Therefore,
the vapor absorption can be measured by monitoring the downshift of resonant frequency based on
the mass-sensitive mechanism.

In order to minimize the environmental disturbance, the practical differential frequency method
was used to extract the sensing response as shown in Figure 1c. For this purpose, both the FBAR
coated with PEI nanofibers and the reference FBAR device (without coating) were wire-bonded to
a printed circular board (PCB) and packaged in the test chamber (Figure 1d). Upon the exposure of
formaldehyde, the resonant frequency of the former device decreased while the reference frequency
measured from the latter kept stable. The frequency difference between the two devices was read out
by a testing circuit as the sensing response to formaldehyde vapor. All components in the test circuit
were off-the-shelf. At first, the two FBAR devices were driven by independent Colpitts oscillators.
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The frequency signals were put into the mixer and then passed through the balun transformer, low-pass
filtered, the amplified, waveform converter and frequency dividing circuits. At last, a micro controller
unit was used to count, read out and store the differential frequency. The details of the circuit design
were shown in Supplementary Material (Figure S1).

Figure 1. (a) Schematic structure and sensing mechanism of the film bulk acoustic resonator (FBAR)
sensor coated with polyethyleneimine (PEI) nanofibers; (b) Photomicrograph of the fabricated device;
(c) Block diagram of the testing system based on differential frequency processing; (d) Completed
circuit board of the testing system.

2.2. Fabrication of Film Bulk Acoustic Resonator (FBAR) Device

The FBAR sensor was fabricated with a four-mask process using standard MEMS technology as
shown in Figure 2a. First, a low-stress Si3N4 layer was grown on both sides of a (100) silicon wafer by
low-pressure chemical vapor deposition. Then, an initial cavity was formed on one side of the wafer by
wet etching (80 ◦C KOH) with the patterned Si3N4 layer as the mask. About 15-μm-thick silicon was
left to support the following process on the other side of the wafer. Next, the Mo/AlN/Au piezoelectric
stack was prepared by radio frequency magnetron sputtering and patterned by conventional
photolithography technique. Finally, the residual silicon under the stack was etched by deep reactive
ion etching to isolate the resonator acoustically from the substrate.

(a) (b) (c) 

Figure 2. (a) Fabrication process of the FBAR formaldehyde sensor: (i) Growth of Si3N4 film; (ii) Etching
of one side of the silicon wafer; (iii) Deposition and pattern of bottom Mo electrode; (iv) Deposition of
AlN film; (v) Preparation of top Au electrode; (vi) Dry etching of the residual silicon. (b) Schematic
diagram illustrating the electrospinning deposition of PEI nanofibers. (c) Photographs of the FBAR
devices before and after the coating of clay.
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2.3. Electrospinning Deposition of Polyethyleneimine (PEI) Nanofibers

After the fabrication process, the silicon wafer was cut into small pieces with the area of 6 mm ×
6 mm (as shown in Figure 2c). Two FBAR devices on the opposite side were used in this experiment
as the detector and reference device, respectively. The reference device without sensitive layer was
manually coated with kid’s magic clay (DoDoLu, Zhigao colored clay Co., Ltd., Jinhua, China) before
the electrospinning process (see Figure 2c). The main components of magic clay are polyethylene
ethanol, cross-linking agent and water. The viscous magic clay was attached to the device surface and
then was easily removed after natural drying without any damage on the device structure. The PEI
aqueous solution (10 wt %, MW = 25,000, Macklin Biochemical Co., Ltd., Shanghai, China) was used
as the electrospinning solution. The feed rate of the solutions was regulated at 5 mL/h by a syringe
pump (LSP02, Longer Precision Pump Co., Ltd., Baoding, China). By applying the voltage of 20 kV
between the syringe and the conductive sheet at a tip-to-collector distance of 20 cm, the nanofibers
were continuously deposited on the FBAR device surface. After electrospinning, the device was dried
at 40 ◦C in vacuum for 30 min to evaporate the solvent. In addition, a flat PEI film was spin-coated
(30 wt % PEI solution, 2500 rpm for 45 s) on the surface of another FBAR device to compare the
formaldehyde sensing characteristics.

3. Results and Discussion

3.1. Characterization of the Resonator

The surface morphology of the sensitive coating on the FBAR surface was observed by a field
emission scanning electron microscope (FE-SEM, S-4800 Hitachi, Tokyo, Japan) as shown in Figure 3.
The average diameter of the PEI fibers was about 40 nm with random orientations. The distribution
became denser with the increase of deposition time, which had an obvious effect on the formaldehyde
response. Compared with the layer imbedded with nanoparticles [39] or nanotube [40] prepared by
spin coating, the electrospinning method forms the three-dimensional structure, which can provide a
larger specific surface area for vapor adsorption and diffusion.

Figure 3. Typical FE-SEM images of the PEI nanofibers on the FBAR surface for the deposition times of
(a) 50 s, (b) 150 s and (c) 300 s. The detail view of the nanofibers is shown in (d).
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The thickness of the PEI nanofiber layers was estimated by the cross-view SEM images as shown
in Figure 4. The thickness of the PEI nanofiber layer exhibited a linearly dependence on the deposition
time with the rate of 3.185 nm/s. Figure 5 shows the admittance of the FBAR sensors coating with
different amounts of nanofibers. The device frequency linearly went down from 4464.15 MHz to
4402.41 MHz with increasing nanofibers (Figure 6a). In addition, the Q factors of the FBAR devices
were determined by the Butterworth–Van Dyke model [42] to evaluate the energy loss because of the
sensitive coating. As shown in Figure 6b, the coated PEI nanofibers only caused a small influence on Q
factors (<5%) when the deposition time was less than 150 s. However, the loading of superfluous fibers
resulted in a dramatic degradation of Q factors, which may be ascribed to the scattering and absorption
of acoustic energy from the porous structure on the wave propagation path. Besides, the resonant
frequency of the bare device shows a temperature coefficient of frequency (TCF) of −52.2 ppm/◦C [43],
which can be attributed to the thermal expansion of the piezoelectric film and the change of the
acoustic velocity.

 
(a) (b) 

Figure 4. (a) Dependence of the thickness of the PEI nanofiber layer on the deposition time; (b) Typical
cross-view SEM image of the PEI nanofiber layer with the deposition times of 300 s.

Figure 5. The admittance curves of the bare FBAR device and PEI nanofibers-coated FBAR devices.
The times of electrospinning deposition were 50–300 s.
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(a) (b)

Figure 6. The changes of (a) resonant frequency and (b) Q factor of the PEI nanofibers-coated FBAR
devices for different deposition times.

3.2. Effect of Deposition Time on the Formaldehyde Response

In the gas-sensing tests, the formaldehyde samples with required concentration were obtained
by multiple dilution of the standard vapor (Changyuan Gas, Nanjing, China). All the gas tests were
performed at the constant temperature condition (22 ◦C). Figure 7 shows the time-dependent frequency
response of the FBAR sensors coated with flat PEI film and different amounts of PEI nanofibers in the
formaldehyde vapor with the concentration of 300 ppb. Every sensing cycle comprised both absorption
and desorption processes. At first, nitrogen was delivered to the test chamber and the stable resonant
frequency was recorded as the baseline. After the formaldehyde was injected, the formaldehyde
molecules were absorbed on the sensitive coating resulting in the downshift of resonant frequency.
When the nitrogen was introduced again, the formaldehyde molecules were blown off from the
sensitive coating and thus the response gradually raised to the baseline.

Figure 7. Time-dependent frequency response of the FBAR sensors coated with PEI flat film and
different amounts of PEI nanofibers when exposed to 300 ppb formaldehyde vapor. All the tests were
performed at room temperature and 40% relative humidity.

The structure and amount of the sensitive coating had an obvious influence on the absorption/
desorption behavior of formaldehyde. At the formaldehyde concentration of 300 ppb, the response of
the flat film coated sensor was very small (~50 kHz). As expected, the fibrous structure could absorb
more molecules and significantly enhance the sensitivity. The adsorption of formaldehyde onto the
sensitive coating is maintained by the polymeric amines in PEI via the reversible nucleophilic addition
reaction to form Schiff base [38]. As shown in the SEM images, the PEI fibers were connected to each
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other, forming net-like scaffolds, which increased the surface area and absorption sites and allowed the
formaldehyde molecules to diffuse more easily inside the large space to react with the amine groups
of PEI.

In particular, the sensor with the appropriate deposition time (150 s) exhibits the highest frequency
downshift (~430 kHz) among the devices. Some references considered the coupled resonance between
the microstructure coating and acoustic wave sensor [44–47]. However, in our study, the frequency
shows a linearly negative shift with increasing of deposition time. The “drop and jump” change
(the hallmark feature of coupled resonance) was not observed in Figure 6. On the other hand,
the theoretical model proposed by Mansfeld [48] indicates that the mass-loading sensitivity increases
sharply when the thickness of sensitive layer is close to a quarter of the acoustic wavelength. The Young
modulus and acoustic velocity of solid-state PEI is 3.1–3.7 GPa and 2100–2300 m/s, respectively [49].
For the FBAR working frequency at 4.4 GHz, the corresponding quarter of the acoustic wavelength is
470~520 nm, which is very close to the thickness at the deposition time of 150 s in consideration of the
velocity deviation between the solid state and nanofibers.

3.3. Sensitive Performance of the Optimized Sensor

On the basis of the above results, the optimized deposition time of 150 s was selected for further
tests. Figure 8a shows the dynamic measurement of the optimized FBAR sensor exposed to the
formaldehyde pulses with increasing concentrations. The fast adsorption and complete desorption
took place with the response time of 10–25 s and the recovery time within 60 s. A saturated response
was observed at vapor concentrations higher than 600 ppb, which is associated with the saturable
adsorption of the PEI nanofibers. However, this detectable range could be accepted for the indoor air
monitoring because serious throat and nasal irritation will occur when the formaldehyde concentration
reaches about 1 ppm. As shown in Figure 8b, the frequency downshift of FBAR sensor was linearly
proportional to the formaldehyde concentration before saturation with the regression coefficient
(R2) of 0.9921. The gas sensitivity, defined as the slope of calibration curve, was estimated to be
−1.257 kHz/ppb over the linear region. The limit of detection (LOD) is given by LOD = 3σ/S, where S
is the gas sensitivity of the sensor and σ is the average noise of the intrinsic frequency [50], respectively.
Benefiting from the high mass-sensitivity and the porous structure of PEI fibrous coating, the LOD
of the FBAR sensor was as low as 37 ppb (σ ≈ 15 kHz). In comparison, the formaldehyde detection
limit of a recently reported QCM sensor is 600 ppb [40]. The sensor noise determines the minimum
detectable frequency shift and thus is related to the detection limit. In this study, the average noise level
was about 15 kHz at the resonant frequency of 4.4 GHz, which is higher than that of commercialized
QCM systems (typically 0.01 Hz/8 MHz). Even so, the FBAR sensor still exhibits a very high sensitivity
and low detection limit. It is believed that the sensitivity can be further improved by optimizing the
device structure and test circuit.

For the mass-loading sensors, the higher working frequency produces a larger frequency shift
with the same mass change. Therefore, the FBAR sensor exhibits a gas sensitivity that was about ten
times higher than that of the QCM formaldehyde sensors [37–39]. The LOD of FBAR sensor reached
the same levels of MOS [3–5] and CNTs sensors [6–8]. Remarkably, in our case, we are able to employ
the operation at room temperature and the integration capability into micro-electromechanical systems.
Furthermore, compared with the analog resistance or current signals produced by MOS and CNTs
sensors, the digitized frequency response used by FBAR is more robust and can be read out directly
without the need of analog–digital conversion. Benefiting from the micrometer-scale size and the
MEMS fabrication, an e-nose could be constructed by integrating a large number of FBAR devices
with different sensitive coatings. Each sensor is sensitive to some analytes with different responses;
thus, a fingerprint pattern is generated for specific target recognition from the complex environment.
For example, Yao el al. [34] demonstrated an e-nose type gas sensor for the selective detection of
volatile organic compounds based on the FBAR sensor array functionalized with four supramolecular
monolayers (p-tert-butyl calix[8]-arene, porphine, β-cyclodextrin, and cucurbit[8]uril.).
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(a) (b) 

Figure 8. (a) Dynamic measurement of the FBAR sensor coated with PEI nanofibers exposed to the
formaldehyde pulses with increasing concentrations at room temperature and 40% relative humidity;
(b) Dependence of the frequency shift on the formaldehyde concentration.

3.4. Influence of Relative Humidity

In order to evaluate the influence of humidity on the sensing characteristics, the formaldehyde
vapor mixed with saturated water vapor was delivered to the test chamber. Figure 9a shows the
frequency response of the optimized FBAR sensor in three typical vapor concentrations measured at
different ambient humidity. Both the frequency shift and the gas sensitivity were obviously enhanced
with the increase of humidity. A possible reason is that the formaldehyde molecules could easily attach
to the water molecules via hydrogen bonds [51]. In the humid environment, more water molecules
were attached on the hydrophilic amine groups of PEI, and thus the adsorption capacity of the sensitive
coating was improved.

(a) (b)

Figure 9. (a) Real-time frequency response of the optimized FBAR sensor exposed to three typical
formaldehyde concentrations at the relative humidity of 40%, 60% and 80%. (b) Plots of frequency shift
as a function of formaldehyde concentration at the relative humidity of 40%, 60% and 80%.

3.5. Selectivity of the Sensors

The FBAR sensor was tested against several potential indoor pollution vapors, including ethanol,
acetone, benzene, dichloromethane, toluene and chloroform. As shown in Figure 10, the response
to formaldehyde was about ten times higher than that of ethanol (the second largest response)
indicating the excellent selectivity of the FBAR sensor coated with PEI nanofibers. As discussed
before in Section 2.1, the main absorbing mechanism to formaldehyde is the nucleophilic addition
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reaction between the carbon atoms in π-bonds (electrophile) and the nitrogen atoms in amine groups
(nucleophile). As a result, the specific attachment to formaldehyde is significantly stronger than the
physical or nonspecific adsorption of the interference vapors. Similar results were also observed in
other PEI-based sensors [36–39].

Figure 10. Plots of the frequency shift as a function of different concentration for formaldehyde and
potential indoor pollution vapors.

4. Conclusions

In summary, we deposited PEI nanofibers on the FBAR mass-loading sensor by electrospinning
and demonstrated its application for the detection of trace formaldehyde at room temperature.
The interconnected PEI fibers formed a porous three-dimensional structure and provided a larger
specific surface area to absorb formaldehyde molecules. The FBAR sensor exhibits a linear frequency
downshift with increasing vapor concentration and excellent selectivity to formaldehyde with respect
to other conventional organic vapors. The gas sensitivity is 1.216 kHz/ppb with the LOD of 37 ppb.
The proposed FBAR device is a promising candidate as a mass-sensitive platform, and the studies of
the electrospinning would benefit the developing of new sensitive coating for FBAR gas sensors.

Supplementary Materials: The following are available online at www.mdpi.com/2072-666X/9/2/62/s1, Figure
S1: Ddetails of the circuit design of the film bulk acoustic resonator (FBAR) testing system.
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Abstract: Monostable vibration can eliminate dynamic bifurcation and improve system stability,
which is required in many microelectromechanical systems (MEMS) applications, such as
microbeam-based and comb-driven resonators. This article aims to theoretically investigate the
monostable vibration in size-effected MEMS via a low dimensional model. An improved single
degree of freedom model to describe electrically actuated microbeam-based resonators is obtained by
using modified couple stress theory and Nonlinear Galerkin method. Static displacement, pull-in
voltage, resonant frequency and especially the monostable dynamic behaviors of the resonators are
investigated in detail. Through perturbation analysis, an approximate average equation is derived by
the application of the method of Multiple Scales. Theoretical expressions about parameter space and
maximum amplitude of monostable vibration are then deduced. Results show that this improved
model can describe the static behavior more accurately than that of single degree of freedom model
via traditional Galerkin Method. This desired monostable large amplitude vibration is significantly
affected by the ratio of the gap width to mircobeam thickness. The optimization design results show
that reasonable decrease of this ratio can be beneficial to monostable vibration. All these analytical
results are verified by numerical results via Differential Quadrature method, which show excellent
agreement with each other. This analysis has the potential of improving dynamic performance
in MEMS.

Keywords: MEMS; monostable vibration; Nonlinear Galerkin method; optimization

1. Introduction

Microbeam-based structures are widely applied in MEMS, such as microactuator/sensor [1–3],
energy harvester [4], microresonator [5–7], gyroscope [8], microgripper [9,10] and so on. Their light
weight, small size, low-energy consumption and durability make them even more attractive. MEMS
pressure sensors and accelerometers are widely used in the automotive industry. Some microsensors
and actuators are also adopted for various biomedical applications. In general, the operation of
these electrostatically actuated resonant devices is based on linear resonance [11]. However, these
dynamic systems are nonlinear and the output energy is very small in the case of linear resonance,
which is undesirable in MEMS. Therefore, monostable large amplitude vibration is required in MEMS
sensing application. It can eliminate dynamic bifurcation phenomenon and improve system stability.
Zhang et al. [12] studied the dynamic behavior of comb-driven resonators with inclination of the
fingers and edge effect on the capacitance and obtain parameters for linear resonance operation.
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The inclination of the fingers can be beneficial to restrain electrostatic nonlinearity and make the system
realize linear vibration. Han et al. [13] studied dynamic behaviors of a doubly clamped microresonator
and presented some design considerations to realize large amplitude vibration. Masri et al. [14] studied
the stability of MEMS resonators when undergoing large amplitude motion with a delayed feedback
velocity controller.

With the reduction of the scale of the MEMS, classic continuum mechanics theories are unable to
describe the size effects [15], thus higher-order continuum theories or non-classic theories are inevitably
needed to describe scale effect and corresponding relations in continuum mechanics [16]. The couple
stress theory is considered as one of the higher-order continuum theories [17]. It involves parameters
for expressing the effect of material length scale which possess the capability to describe the size
effect of microstructures [18]. This theory includes two extra material length scale parameters besides
the two classic material constants for elastic isotropic materials. Anthoine [19] and Yang et al. [20]
presented the modified couple stress theory in which the two material length scale parameters are
decreased to only one parameter. This feature facilitates the use of the modified couple stress theory
for the study of micro- and nano-scale structures.

Static/dynamic behaviors of electrically actuated microbeams have been studied a lot by using
different models and approaches. These investigations can be divided into two groups. The first group
focuses on lumped-mass model and establishes single degree of freedom equation. Then, perturbation
method is introduced to study dynamic behaviors of microbeam, which provides theoretical guidance for
engineering [21–24]. However, lumped-mass model cannot accurately describe dynamic characteristics
of mircobeam as the increase of amplitude. The other group focuses on continuum model and
establishes partial differential equations which are then solved with a variety of numerical methods,
such as Galerkin discretization and Differential Quadrature method. These results can describe
dynamic characteristics of mircobeam more accurately [11,25–27]. Although the continuum model
has high accuracy, it is not conducive to theoretical analysis in depth. Based on the continuum model,
Younis et al. [28–34] studied static pull-in behavior and dynamic pull-in behavior of electrically actuated
microbeams by using the Galerkin method, the Differential Quadrature method and the Shooting
method. Results showed that the single degree of freedom model cannot accurately describe static
displacement, pull-in voltage, resonant frequency or vibration amplitude. Specially, when amplitude
exceeds half of the gap, the error between single degree of freedom model and continuum model
increases significantly. Besides, Nayfeh et al. [23] analyzed the vibration behaviors of a Euler-Bernoulli
beam with direct application of the method of multiple scales to the governing partial-differential
equation. However, high-order vibration items were not considered in their study. In fact, high-order
vibration items have important influence on dynamic behavior [25]. Fortunately, the Nonlinear Galerkin
method can solve it with introducing higher modes into the single degree of freedom model [35].

The Nonlinear Galerkin method and the well-known Galerkin method can be used to obtain the
low dimensional manifold by some projection onto a sub manifold [35,36]. However, the well-known
Galerkin method restrict the sub-manifold at being a flat sub-manifold; the Nonlinear Galerkin method
tries to improve on this by not restricting the sub-manifold to an affine sub-space. Kang et al. [37]
studied dynamic behaviors of low-dimensional modeling of the fluid dynamic system with the
Nonlinear Galerkin method. Considering the effect of higher modes, the Nonlinear Galerkin method
can give an accurate description for the dynamic behaviors of the system. With the Nonlinear
Galerkin method, partial differential equations can be discretized into a finite-degree-of-freedom
system consisting of ordinary-differential equations and then, a low-dimensional model containing
higher modes information can be generated.

It can be concluded from the above analysis that monostable vibration can eliminate dynamic
bifurcation, improve system stability and increase the output of energy, which is desired in many
MEMS applications. However, to the best of our knowledge, there are fewer effective methods to study
monostable large amplitude vibration behaviors via the low dimensional model. This paper aims
to obtain an improved single degree of freedom model by using modified couple stress theory and
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Nonlinear Galerkin method and deduce theoretical expressions about parameter space and maximum
amplitude of monostable vibration.

The rest of this paper is organized as follows. In Section 2, a novel single degree of freedom model
to describe electrically actuated microbeam-based resonators is obtained by using modified couple
stress theory and Nonlinear Galerkin method. In Section 3, the method of Multiple Scales is used to
derive an approximate average equation. In Section 4, static and dynamic properties of these devices
are then investigated in detail. Parameter space and maximum amplitude of the monostable vibration
are theoretically derived and numerically verified. Concluding remarks are given in the last section.

2. Mathematical Model

2.1. Governing Equation

Here, we consider a clamped-clamped microbeam-based resonator, as shown in Figure 1.
The actuation of the microbeam is realized by means of a bias voltage and an AC voltage component.
The microbeam and the electrode are made from silicon material. Based on the modified couple stress
theory, the equation of motion that governs the transverse deflection ŵ(x, t) is written as [17].

ρA
..
ŵ + (EI + μAl2)ŵiv + c

.
ŵ = (N̂ +

EA
2L

∫ L

0
ŵ′2dx̂)ŵ′′ +

ε0b[Vdc + Vac cos(Ω̂t)]2

2(d − ŵ)2 (1)

with the following boundary conditions

ŵ(0, t̂) = ŵ′(0, t̂) = ŵ(L, t̂) = ŵ′(L, t̂) = 0 (2)

where
.

ŵ = ∂ŵ
∂t̂ and ŵ′ = ∂ŵ

∂x̂ .

Figure 1. Schematic of an electrically actuated microbeam.

The first term on the right hand of Equation (1) represents the axial force and mid-plane stretching
effects. Here, x̂ is the position along the microbeam length; A and I are the area and moment of inertia
of the cross section; d is the gap width; ε0 is the dielectric constant of the gap medium. The parameter
N corresponds to a tensile or compressive axial load, depending on whether it is positive or negative.
l is introduced into Equation (1) as the material length scale parameter that has the capability to
physically model properties of the couple stress effect. The last term in Equation (1) represents the
parallel-plate electric actuation which is composed of DC and AC components. Here, DC voltage can
cause a static deflection in the microbeam. There is a limit for the applied DC voltage called the static
pull-in voltage [38]. AC voltage, which is small compared to DC voltage, causes the dynamic response
of microbeam. Part of system parameters are defined as stated in Table 1.
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Table 1. Part of design parameters for a microbeam-based resonator.

Parameter Value Units

Mass density ρ 2300 kg/m3

Young’s modulus E 169 Gpa
Beam length L 365 μm
Beam width b 10 μm

Beam thickness h 1 μm
Axial load N̂ variable N

Viscous damping c 3.42 × 10−5 Ns/m2

In the relations above, μ is Lame’s constant that is defined by Young’s modulus E and Poisson’s
ratio ν as

μ =
E

2(1 + υ)
(3)

For convenience, the following non-dimensional variables are introduced

w =
ŵ
d

, x =
x̂
L

, t = t̂

√
EI

ρAL4 (4)

Substituting the non-dimensional variables into Equations (1) and (2), yields the following
non-dimensional equation of motion of the micro-resonator

..
w + (1 + η)wiv + cn

.
w − (N + α1

1∫
0

w′2dx)w′′ = α2
(Vdc + Vac cos Ωt)2

(1 − w)2 (5)

with boundary conditions

w(0, t) = w′(0, t) = w(1, t) = w′(1, t) = 0 (6)

The parameters appearing in Equation (5) are

α1 = 6 × (
d
h
)

2
, α2 =

6ε0L4

Ed3h3 , η =
μAl2

EI
, N =

N̂L2

EI
(7)

where α1 represents ratio coefficient of the gap width to the mircobeam thickness, α2 represents
electrostatic force coefficient and η represents scale effect.

2.2. The Nonlinear Galerkin Method

Compared with the Linear Galerkin method, the Nonlinear Galerkin method can describe the
dynamic behaviors of the system more accurately. In this section, we introduce the Nonlinear Galerkin
method to deal with Equation (5) and obtain an improved one degree of freedom model [36].

Firstly, considering the Galerkin procedure, we discretize Equation (5) into a finite-degree-of-
freedom system consisting of ordinary differential equations. This technique and its application to
nonlinear systems were discussed by Abdel-Rahman et al. [39].

The solution of Equation (5) can be expressed as

w(x, t) =
∞

∑
i=1

ui(t)φi(x) (8)
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where φi is the i-th linear undamped mode shape of the straight microbeam, normalized such that∫ 1
0 φiφjdx = δij and governed by

(1 + η)φiv
i = Nφi

′′ + ω2
i φi (9)

with
φi(0) = φi(1) = φi

′(0) = φi
′(1) = 0 (10)

where ωi is the i-th natural frequency of the microbeam. Equations (9) and (10) represent a
boundary-value problem that can be solved by using a combination of Shooting method and a
bisection procedure for each pair of mode shape and natural frequency [39].

Then, Equation (5) is multiplied by (1 − w)2 [25], so that the electric-force term is represented
exactly. Substituting Equation (8) into the resulting equation, multiplying by φi and integrating the
outcome from x = 0–1, yield

..
un + ω2

nun + cn
.
un − 2

M
∑

i,j=1
ui

..
uj
∫ 1

0 φiφjφndx +
M
∑

i,j,k=1
uiuj

..
uk
∫ 1

0 φiφjφkφndx

= 2
M
∑

i,j=1
ω2

i uiuj
∫ 1

0 φiφjφndx − M
∑

i,j,k=1
ω2

i uiujuk
∫ 1

0 φiφjφkφndx + 2cn
M
∑

i,j=1
ui

.
uj
∫ 1

0 φiφjφndx

−cn
M
∑

i,j,k=1
uiuj

.
uk
∫ 1

0 φiφjφkφndx + α1
M
∑

i,j,k=1
uiujukΓ(φi, φj)

∫ 1
0 φ

′′
k φndx

−2α1
M
∑

i,j,k,l=1
uiujukulΓ(φi, φj)

∫ 1
0 φkφ

′′
l φndx + α1

M
∑

i,j,k,l,m=1
uiujukulumΓ(φi, φj)

∫ 1
0 φkφlφ

′′
mφndx

+α2(Vdc + Vac cos Ωt)2∫ 1
0 φndx

(11)

where Γ(φi, φj) =
∫ 1

0 φiφjdx. Due to Vdc >> Vac [34], (Vdc + Vac cos Ωt)2 ≈ V2
dc + 2VdcVac cos Ωt

is obtained.
Equation (11) represents a discretized system consisting of ordinary-differential equations,

which contain all nonlinearities up to fifth order. The above is the Linear Galerkin method for
dimensionality reduction. Most researchers utilized the derived reduced-order models to simulate the
static behavior and dynamic response of microbeam-based MEMS devices. However, the way is not
conducive to theoretical analysis. Here, the Nonlinear Galerkin method is introduced to deal with the
above equations.

Starting with an abstract setting, a nonlinear dynamical system is separated into the linear and
the higher order nonlinear part

.
x + g(x, t) =

.
x + Ax + h(x, t) = 0, x ∈ R2×M (12)

with Ax as linear part and h(x, t) as nonlinear part of the system g(x, t). Here we take 2M spatial
dimension corresponding with Equation (11).

Here, we assume the solution x as

x = Ymξ + Zmη (13)

where the columns of the matrix Ym = [y1, · · · , ym] span the m-dimensional sub-space span
{y1, · · · , ym} and the columns of the matrix Zm = [ym+1, · · · , y2×M] span complementary sub-space
span {ym+1, · · · , y2×M} .

Substituting Equation (13) into Equation (12), multiplying by Ỹ
T
m and Z̃

T
m from the left, yield

.
ξ + Ỹ

T
AYξ + Ỹ

T
h(Yξ + Zη, t) = 0

.
η+ Z̃

T
AZη+ Z̃

T
h(Yξ + Zη, t) = 0

(14)
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where Ỹ
T
mYm = I, Z̃

T
mZm = I and I is unit matrix.

Combination with the dynamic response of microbeam, ξ represents low-frequency part and
η represents high-frequency part. To describe dynamic response of system accurately with the
low-frequency part, the following relation is introduced

η = φ(ξ) (15)

Substituting Equation (15) into Equation (14), we can obtain

.
ξ + Ỹ

T
AYξ + Ỹ

T
h(Yξ + Zφ(ξ), t) = 0 (16)

Both low-frequency part and high-frequency part are introduced in Equation (16). It is considered
that the high-frequency vibration has little impact on system dynamics under primary resonance
condition. So, we set

.
η = 0. Then, we can obtain the reduced order model that contains the information

of high order modes.
To obtain dynamic equation of single degree of freedom, we set subspace dimension equal to 2.
In order to simplify the calculation, we set M equal to 3 and only keep linear part of the high

dimensional space variables. The relationship between the high-frequency part and low-frequency
part is obtained, as shown below

u3 = 1
ω2

3
[2
∫ 1

0 φ2
1φ3dx(u1

..
u1 + cnu1

.
u1 + ω2

1u2
1)− u2

1
..
u1
∫ 1

0 φ3
1φ3dx − ω2

1u3
1
∫ 1

0 φ3
1φ3dx − cnu2

1
.
u1
∫ 1

0 φ3
1φ3dx

+ α1u3
1
∫ 1

0 φ′
1

2dx
∫ 1

0 φ1
′′ φ3dx − 2α1u4

1
∫ 1

0 φ′
1

2dx
∫ 1

0 φ1
′′ φ3φ1dx + α2Vdc

∫ 1
0 φ3dx]

(17)

Substituting Equation (17) into Equation (11) and keeping all nonlinearities up to fifth order, yield
the following novel single degree of freedom equation

(
..
u1 + ω2

1u1 + cn
.
u1)(n0 + n1u1 + n2u2

1 + n3u3
1 + n4u4

1)

= m1u3
1 + m2(u2

1
..
u1 + cnu2

1
.
u1) + m3u1 + m4 + 2m5VdcVac cos Ωt

+ m6u2
1 + m7u4

1 + m8(u3
1

..
u1 + cnu3

1
.
u1) + m9u5

1

(18)

where coefficients are expressed as Equations (A1)–(A15) in Appendix A.
The above is the Nonlinear Galerkin method for dimensionality reduction. The previous single

degree of freedom model obtained by the Linear Galerkin method only contains the first mode. In this
paper, the Nonlinear Galerkin method is introduced to obtain the improved single degree of freedom
model that contains the first mode and the third mode, which improves the accuracy of the model.

This paper aims to study monostable large amplitude vibration. With the increase of amplitude,
the advantage of the improved model becomes more and more obvious.

3. Perturbation Analysis

Static analysis is significant in the MEMS. Through it, equilibrium position, pull-in voltage and pull-in
location of the system can be obtained. Each of the DC voltage corresponds to a static displacement and the
perturbation method is used to obtain an approximate solution near the equilibrium position. We assume
u1 = u1d + u1s, where u1d and u1s represent dynamic behavior and static behavior, respectively. Then,
we can obtain the static equation by making the u1 independent of time

ω2
1u1s(n0 + n1u1s + n2u2

1s + n3u3
1s + n4u4

1s) = m1u3
1s + m3u1s + m4 + m6u2

1s + m7u4
1s + m9u5

1s (19)

and the dynamic equation by ignoring high order damping terms

..
u1d + ω2

1du1d + cn
.
u1d = q1u1d

..
u1d + q2u2

1d
..
u1d + q3u3

1d
..
u1d + q4u4

1d
..
u1d + q5u2

1d
+q6u3

1d + q7u4
1d + q8u5

1d + q9Vac cos Ωt
(20)

where coefficients are expressed as Equations (A16)–(A25) in Appendix A.
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To indicate the significance of each term in the equation of motion, ε is introduced as a small
non-dimensional bookkeeping parameter. Considering the electrostatic force term q9 = O(ε5), scaling
the dissipative terms, we obtain

..
u1d + ω2

1du1d + ε4cn
.
u1d = q1u1d

..
u1d + q2u2

1d
..
u1d + q3u3

1d
..
u1d + q4u4

1d
..
u1d + q5u2

1d
+q6u3

1d + q7u4
1d + q8u5

1d + ε5q9Vac cos Ωt
(21)

To express the relationship between the excitation frequency and the natural frequency, we
introduce a detuning parameter σ defined by Ω = ω1d + ε4σ. Here, σ is the tuning parameter. Then,
to determine a fifth-order uniform expansion of the solution of Equation (21) by using the method
of Multiple Scales, we introduce three time scales T0 = t, T2 = ε2t and T4 = ε4t [23] and expand the
time-dependent variable u1d in powers of ε as

u1d = εv1(T0, T2, T4) + ε2v2(T0, T2, T4) + ε3v3(T0, T2, T4) + ε4v4(T0, T2, T4) + ε5v5(T0, T2, T4) (22)

Substituting Equation (22) into Equation (21) and equating coefficients of like powers of ε, yields
order ε:

∂2v1

∂T2
0
+ ω2

1dv1 = 0 (23)

order ε2:
∂2v2

∂T2
0
+ ω2

1dv2 = q1v1
∂2v1

∂T2
0
+ q5v2

1 (24)

order ε3:

∂2v3

∂T2
0
+ ω2

1dv3 = −2
∂2v1

∂T0∂T2
+ q1v2

∂2v1

∂T2
0
+ q1v1

∂2v2

∂T2
0
+ 2q5v2v1 + q2v2

1
∂2v1

∂T2
0
+ q6v3

1 (25)

order ε4:

∂2v4
∂T2

0
+ ω2

1dv4 = −2D0D2v2 + q1(v1
∂2v3
∂T2

0
+ v3

∂2v1
∂T2

0
+ v2

∂2v2
∂T2

0
+ 2v1

∂2v1
∂T0∂T2

)

+q2(2v2v1
∂2v1
∂T2

0
+ v2

1
∂2v2
∂T2

0
) + q3v3

1
∂2v1
∂T2

0
+ q5(2v1v3 + v2

2) + 3q6v2
1v2 + q7v4

1

(26)

order ε5:

∂2v5
∂T2

0
+ ω2

1dv5 = −2D0D4v1 − 2D0D2v3 − D2D2v1 − cn
∂v1
∂T0

+ q1(v1
∂2v4
∂T2

0
+ v4

∂2v1
∂T2

0

+v3
∂2v2
∂T2

0
+ v2

∂2v3
∂T2

0
+ 2v1

∂2v2
∂T0∂T2

+ 2v2
∂2v1

∂T0∂T2
) + 4q7v3

1v2 + q8v5
1 + q2(2v3v1

∂2v1
∂T2

0

+v2
1

∂2v3
∂T2

0
+ 2v2v1

∂2v2
∂T2

0
+ v2

2
∂2v1
∂T2

0
) + q3(v3

1
∂2v2
∂T2

0
+ 3v2v2

1
∂2v1
∂T2

0
) + q4v4

1
∂2v1
∂T2

0

+q5(2v1v4 + 2v2v3) + 3q6(v2
2v1 + v2

1v3) + q9Vac cos Ωt

(27)

where Dn = ∂/∂Tn.
The solution of Equation (23) can be expressed as

v1 = A(T2, T4) exp(iω1dT0) + A(T2, T4) exp(−iω1dT0) (28)

where the overbar indicates the complex conjugate. The function A(T2, T4) can be determined by
eliminating the secular terms from Equations (24)–(27).

Expressing the amplitude A in the polar form A(T2, T4) =
1
2 aeiθ , where a and θ are real functions

of T2 and T4 and separating secular terms into its real and imaginary parts, we can obtain the following
average equation

a′ = −1
2

cna +
1
2

q9Vac

ω1d
sin ϕ (29)
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aϕ′ = σa +
1
8

κ1a3

ω1d
+

1
32

κ2a5

ω1d
+

1
2

q9Vac

ω1d
cos ϕ (30)

where ϕ = σT4 − θ, a′ = ∂a/∂T2 + ∂a/∂T4, ϕ′ = ∂ϕ/∂T2 + ∂ϕ/∂T4, κ1 = (q5 − q1ω2
1d)(

10q5
3ω2

1d
− 1

3 q1) +

3(q6 − q2ω2
1d) and κ2 is expressed as Equations (A26)–(A29) in Appendix A.

Then, the steady-state frequency response can be obtained by solving the following frequency
response equation

[(
1
2

cn)
2
+ (σ +

1
8

κ1a2

ω1d
+

1
32

κ2a4

ω1d
)

2

]a2 =
q2

9V2
ac

4ω2
1d

(31)

The relationship between the resonance frequency shift and the maximum amplitude of oscillation
is derived as

σ = −1
8

κ1a2
max

ω1d
− 1

32
κ2a4

max
ω1d

(32)

where amax = q9Vac/ω1dcn.
By inspection, when the κ1a2/8 + κ2a4/32 monotonically changes with the increase of amplitude,

it is clear that the device will experience hardening if κ1a2/8 + κ2a4/32 < 0 and will experience
softening if κ1a2/8 + κ2a4/32 > 0. If the change of the value of κ1a2/8 + κ2a4/32 is not monotonous,
the system will experience hardening and softening simultaneously. For small amplitude oscillation,
the hardening and softening of the system are decided by κ1. However, with the increase of amplitude,
the influence of high-order nonlinear terms on the system becomes more and more important.
So, hardening and softening properties become very complex under the large amplitude vibration.
Zhang et al. [22] and Nayfeh et al. [23] studied spring softening and hardening based on the traditional
single degree of freedom model. However, with the increase of amplitude, it cannot describe dynamic
behaviors of the system. Here, the monostable large amplitude vibration is studied with the improved
single degree of freedom model. Following, taking σ as the bifurcation parameter and taking Vdc and
Vac as the unfolding parameters, we calculate unfolding of Equation (31). The traditional calculation
method of the transition set of the system will lead to nonlinear equations containing high-order terms.
Here, we only need to obtain parameter space of the monostable vibration. So, a new way is given.

The amplitude frequency curve can be decomposed into two parts, as the following

σ = f1(a) = −1
8

κ1a2

ω1d
− 1

32
κ2a4

ω1d
+

√
q2

9V2
ac

4ω2
1da2

− (
1
2

cn)
2

(33)

σ = f2(a) = −1
8

κ1a2

ω1d
− 1

32
κ2a4

ω1d
−

√
q2

9V2
ac

4ω2
1da2

− (
1
2

cn)
2

(34)

The monostable vibration appears when the frequency σ of the left amplitude frequency
curve f2 monotonically increases with the increase of amplitude and the frequency σ of the right
amplitude frequency curve f1 monotonically decreases with the increase of amplitude. If the curve
f1 monotonically decreases and the curve f2 cannot monotonically change, the softening appears.
On the contrary, if the curve f2 monotonically increases and the curve f1 cannot monotonically change,
the hardening appears. If both the curve f2 and the curve f1 cannot monotonically change, the system
will experience hardening and softening simultaneously. Here, the dynamic curve is in contact with
mathematical function, which simplifies the calculation. Now, the necessary and sufficient conditions
of the existence of the monostable vibration are obtained.

d f1(a)
da

< 0 and
d f2(a)

da
> 0 for a ∈ [0, amax] (35)
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4. Results and Discussion

In this section, Differential Quadrature method and Finite Element method are introduced to
verify the accuracy of the model. Meanwhile, with unfolding analysis and optimization theory,
parameter space and maximum amplitude of the monostable vibration are obtained.

4.1. Convergence Analysis

Convergence is a key problem. With the traditional single degree of freedom model, static
displacement curve cannot be obtained accurately. To solve the problem, higher dimensional model was
introduced in previous studies [39]. Here, the novel single degree of freedom model is used to handle
this convergence problem. To validate accuracy of our model, finite element results are obtained from
the Multiphysics simulation software. Meanwhile, compared with single degree of freedom model
results obtained by using Linear Galerkin method, the ascendency of the Nonlinear Galerkin method
appears. Here, we consider a microbeam without scale effect and axial stress.

In Figure 2, the calculated static deflections of the microbeam obtained by using the Nonlinear
Galerkin method are compared with those obtained by using Linear Galerkin method and Finite
Element method. Results are presented from 0 V to pull-in voltage. It is noted from Figure 2 that
the pull-in voltage predicted by the Nonlinear Galerkin method is more accurate than that predicted
by Linear Galerkin method. The midpoint deflections predicted by those three methods are very
close away from pull-in voltage but the midpoint deflections predicted by Linear Galerkin method
deviate increasingly as pull-in is approached. The ascendency of the Nonlinear Galerkin method
appears. Then, natural frequency under different DC voltage is obtained by using those three methods.
As shown in Table 2, the error of results obtained by the Nonlinear Galerkin method is less than that
obtained by the Linear Galerkin method. As pull-in is approached, the error of results obtained by
Linear Galerkin method reaches to 9.0%. However, the error of results obtained by the Nonlinear
Galerkin method is about 2.3%. When DC voltage is away from pull-in. the error caused by the
Nonlinear Galerkin method is less than 1%. It is worth noting that the error is obtained by comparing
the result of the theory and that of the simulation.

 

Figure 2. Comparison of the calculated midpoint deflection using nonlinear Galerkin method, linear
Galerkin method and finite element method for various values of DC voltages under d = 1μm.

Besides, pull-in voltage is obtained by using those three methods under different gap width.
As shown in Table 3, it can be seen that the result obtained by the Nonlinear Galerkin method agrees
well with that obtained by Finite Element method, which demonstrates that the present analytical
method is effective. However, the error of results obtained by Linear Galerkin method reaches to 7.1%.
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Thus, our model is superior to the traditional single degree of freedom model. It can predict static
displacement, natural frequency and pull-in voltage more accurately and convergence problem is also
solved by our model.

Table 2. Natural frequency under different DC voltage when d = 1μm .

Case
DC Voltage

(V)
Linear Galerkin

Method Results (kHz)
Nonlinear Galerkin

Method Results (kHz)
Finite Element
Results (kHz)

Error

1 2 62.44 62.77 62.82 0.6%; 0.1%
2 2.5 59.85 60.42 60.54 1.1%; 0.2%
3 3 55.53 56.55 56.87 2.4%; 0.6%
4 3.5 44.33 47.59 48.71 9.0%; 2.3%

Table 3. Pull-in voltages under different gap width.

Case
Gap Width

(μm)
Linear Galerkin

Method Results (V)
Nonlinear Galerkin
Method Results (V)

Finite Element
Results (V)

Error

1 0.5 1.25 1.27 1.27 1.6%; 0%
2 1 3.66 3.74 3.76 2.7%; 0.5%
3 1.5 7.16 7.39 7.50 4.5%; 1.5%
4 2 11.94 12.47 12.85 7.1%; 3.0%

4.2. Static Analysis

In this section, scale effect and axial stress are considered. The static deflection and static pull-in
voltage of microbeam are calculated with our model. Meanwhile, Differential Quadrature method is
introduced to handle Equation (5) for numerical verification. The calculated static deflections of the
microbeam with η = 0.25, d = 1μm and subject to a stretched axial stress N = 6 are shown in Figure 3.
It can be noted from this figure that the pull-in voltage predicted by the Nonlinear Galerkin method is
accurate while that predicted by the Linear Galerkin method has significant error. The lower branches
predicted by those three methods are very close away from pull-in voltage but the branch predicted
by the Linear Galerkin method deviates increasingly as pull-in is approached. Generally, the results
obtained by using the Nonlinear Galerkin method are in excellent agreement with those obtained with
the Differential Quadrature method. However, the static deflections of microbeam obtained by using
the Linear Galerkin method are in poor agreement with them. Specially, when DC voltage approaches
zero, the upper branch predicted by Linear Galerkin method is non-convergent. The upper branch
represents potential barrier of the system. When the vibration amplitude approaches potential barrier,
the results predicted by Linear Galerkin method have serious errors. With the Nonlinear Galerkin
method, the misconvergence of potential barrier is solved.

What’s more, the calculation formula of the pull-in voltage can be obtained easily.
From Equation (19), the relationship between static displacement u1s and DC voltage Vdc is obtained

u1s = f (Vdc) (36)

When pull-in occurs, both branches collide and destroy each other with one eigenvalue tending
to zero. Thus, the pull-in voltage corresponds to a saddle-node bifurcation. So, the pull-in occurs
when dV/du1s = 0. As shown in Figure 4, the pull-in voltages under different size parameters and
axial stress are given. To describe qualitatively the change of pull-in voltages, the electrostatic force
coefficient α2 should remain constant with the increase of the ratio coefficient α1. It is noted from
Figure 4 that the pull-in voltage increases with the increase of the ratio coefficient of the gap width to
the mircobeam thickness. Meanwhile, a stretched axial stress can increase pull-in voltage. Driven by
the same DC voltage, increasing the ratio of the gap width to the mircobeam thickness and positive
axial stress is useful to prevent pull-in.
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Figure 3. Comparison of the calculated maximum non-dimensional deflection using Nonlinear
Galerkin method, Differential Quadrature method and linear Galerkin method for various values
of DC voltages (Solid line: stable; dashed line: unstable).

Figure 4. The influence of ratio of the gap width to mircobeam thickness and axial stress on the
pull-in voltage.

4.3. Dynamic Analysis

The monostable vibration is desired for many applications, such as microbeam resonator [40].
Here, parameter space and maximum amplitude about the monostable vibration are obtained.

4.3.1. Small Vibration

In Figure 5, we study the influence of the ratio of the gap width to the mircobeam thickness
and DC voltage on the hardening and softening properties of the system under the small amplitude
oscillation. It is noted that the increase of the DC voltage and the decrease of the gap width can lead to
softening phenomenon with κ1 > 0. On the contrary, the decrease of the voltage and the increase of
the gap width can lead to hardening phenomenon with κ1 < 0. It is found that the mechanical spring
is responsible for the hardening behavior and the electrostatic force is responsible for the softening
behavior. From Figure 5, the curve represents the boundary between the softening area and hardening
area. Near the boundary, there is no softening phenomenon or hardening phenomenon and the system
will experience monostable vibration.
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Three types of parameters (point A, point B and point C) are taken from softening area, hardening
area and boundary as shown in Figure 5. And the amplitude frequency response curves of them are
given as shown in Figure 6.

Figure 5. The parameter space of softening and hardening under the small vibration amplitudes.

  
(a) (b) 

 
(c) 

Figure 6. (a–c) Comparison of the frequency response curve obtained by nonlinear Galerkin method
(line) and differential quadrature method (dotted line) corresponding to A–C in Figure 5 (solid line:
stable; dashed line: unstable).

Figure 6a shows a representative frequency response to our problem when κ1 > 0 in the case
of Vdc = 2.5, Vac = 0.015, α1 = 1. Here, appropriate excitation voltages are needed to introduce
softening nonlinearity and prevent pull-in. And their stability is studied by using Routh Criterion.
Figure 6b shows monostable vibration when κ1 = 0 in the case of Vdc = 1.86, Vac = 0.022, α1 = 1.
At this time, the DC voltage and gap width should satisfy certain relations as shown in Figure 5.
Figure 6c shows hardening nonlinearity when κ1 < 0 in the case of Vdc = 2, Vac = 0.02, α1 = 6.
Meanwhile, the results obtained by the Nonlinear Galerkin method are compared with them obtained
by Differential Quadrature method. Here, we apply the way of frequency sweep into the Differential
Quadrature method and they are in excellent agreement with each other.
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4.3.2. Monostable Large Amplitude Vibration

Due to the existence of nonlinear electrostatic force and geometric nonlinearity, it is hard to realize
the monostable large amplitude vibration. The traditional single degree of freedom model is not
enough to characterize the frequency response under the large amplitude vibration. In this section,
we try to qualitatively study the monostable large amplitude vibration with the improved single
degree of freedom model. To verify the validity of the results, the Differential Quadrature method is
used to compare with the Nonlinear Galerkin method.

Section 4.3.1 shows that the nonlinear electrostatic force will make the device experience softening
and the geometric nonlinearity will make device experience hardening. Under the small amplitude
oscillation, to realize the monostable vibration, parameters should be selected near the boundary in
Figure 5. And, from Equation (5), it is found that the growth rate of nonlinear electrostatic force is
faster than that of geometric nonlinearity with the increase of amplitude of oscillation. The softening
becomes dominant when the gap width decreases. So, under the large amplitude oscillation, the device
tends to experience softening. In order to realize the monostable large amplitude vibration, we need
select parameters near the boundary in Figure 5 and control softening with the increase of amplitude.
Besides, as the AC voltage increases, the amplitude increases. More solutions will appear only when
amplitude increases to a critical value.

Then, from Equation (35), parameter space of the monostable vibration with the different
specification will be studied. As shown in Figure 7, the boundary between monostable vibration and
multistable vibration in the case of η = 0.25 and η = 0.5 is given. When AC voltage is less than that of
the boundary, monostable vibration appears. It is found that there is only one solution when the DC
voltage or AC voltage is very small, which can be proved with Equation (31). With a small vibration
force, the system is equivalent to linear vibration. It is impossible for the system to generate more than
one solution. With the increase of vibration force, to obtain the monostable vibration, strict parameter
conditions are given. It is noted that there is one peak under the different specification, where the
exciting force is put to the maximum. Under the monostable vibration, the system becomes almost
linear. And the amplitude of linear vibration is proportional to the exciting force. Then, the maximum
amplitude is obtained near the peak in the Figure 7a. What’s more, Figure 7 shows the parameter
space of the monostable vibration increases with the increase of the scale effect.

Besides, the AC voltage of the peak decreases as the ratio of the gap width to the mircobeam
thickness increases, which can be explained with Figure 5. With the increase of the ratio of the gap
width to the thickness of the mircobeam, a relatively large DC voltage is required to counteract
hardening of the system. However, as the amplitude increases, the softening is more and more obvious.
So, a relatively small AC voltage is needed to prevent bifurcation. On the contrary, if the ratio of the
gap width to the mircobeam thickness is too small, a small enough DC voltage is required to counteract
hardening. Meanwhile, a relatively large AC voltage is required to produce large amplitude. However,
the condition Vdc >> Vac is false. The second-order item of the AC voltage cannot be ignored, which
can lead to multiple frequency vibration.

The ratio of the gap width to the mircobeam thickness is the key to realize monostable large
amplitude vibration and it decides the maximum amplitude that can be realized with appropriate
DC and AC voltage. Reasonable decreasing the ratio of the gap width to the mircobeam thickness,
the system can realize monostable large amplitude vibration. As we know, monostable large amplitude
vibration is desired for many applications, such as microbeam resonator, which can eliminate the
dynamic bifurcation phenomenon and increase the vibration energy.

To verify the validity of the results, the Differential Quadrature method is proposed to compare
with the Nonlinear Galerkin method. Figure 8a–f show the frequency response corresponding to A–F
shown in Figure 7.
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(a) (b) 

Figure 7. The Vac − Vdc parameter space under different ratio of the gap width and the thickness of
the mircobeam in the case of η = 0.25 (a) and η = 0.5 (b) (The parameter area below the curve is
monostable parameter space).

  
(a) (b) 

  
(c) (d) 

  
(e) (f) 

Figure 8. Comparison of the frequency response curve obtained by Nonlinear Galerkin method
(solid line) and Differential Quadrature method: (a–f) corresponding to A–F in Figure 7a (dotted
line represents result obtained by sweeping up the frequency; rectangle represents result obtained by
sweeping down the frequency).

73



Micromachines 2018, 9, 89

Here, the frequency response is calculated with sweeping up the frequency and sweeping down
the frequency by Differential Quadrature method. As shown in Figure 8a–c, f, the results obtained
by sweep-up case and sweep-down case are consistent, which conforms to the monostable vibration
shown in Figure 7. From Figure 7, the voltage of point D exceeds parameter space of monostable
vibration, which leads to spring softening dominance as shown in Figure 8d. Meanwhile, the DC
voltage of point E is relatively small, which leads to spring hardening dominance as shown in Figure 8e.
From Figure 8, with the increase of the amplitude, the deviation between the results obtained by the
Nonlinear Galerkin method and those obtained by Differential Quadrature method becomes more
and more obvious. But the error cannot affect our conclusion that the improved single degree of
freedom model can study qualitatively monostable large amplitude vibration. To quantitatively study
monostable large amplitude vibration, an optimization theory is proposed.

The formula of maximum amplitude q9Vac/ω1dcnd is used near the peak shown in Figure 7.
Then, the maximum amplitude of monostable vibration under different ratio of the gap width to the
mircobeam thickness and size effect is predicted. And, an optimization theory, which is based on the
following three points, is proposed to verify theoretical prediction results.

(a) Under monostable vibration, κ1 and κ2 approximate to zero. The system is equivalent to
approximate linear vibration.

(b) The maximum amplitude of approximate linear vibration is proportional to exciting force that is
decided with the product of DC voltage and AC voltage.

(c) Optimization parameters, which can realize the maximum amplitude of monostable vibration,
are taken near the peak regions in Figure 7 (for example, the red frame with α1 = 1).

We take a rectangular area near the peak region and discretize it into many points as shown in
Figure 7. As serial number increases, exciting force decreases. Differential Quadrature method is
used to calculate the frequency response according to the order. When results obtained by sweeping
up the frequency and sweeping down the frequency are consistent, the calculation stops and the
maximum amplitude of monostable vibration is obtained as shown in Figure 9. It is found that the
maximum amplitude increases with the decrease of the ratio of the gap width to the mircobeam
thickness. Meanwhile, as size effect increases, the maximum amplitude increases. The results obtained
by theoretical prediction are qualitative agreement with them obtained by Differential Quadrature
method. However, theoretical results are larger than numerical ones. With the decrease of the ratio
of gap width to thickness of mircobeam, the deviation between theoretical prediction and numerical
result becomes more and more obvious. In the next study, in order to improve the calculation accuracy,
more space dimensions should be taken in the Nonlinear Galerkin method.

Figure 9. Comparison of the maximum amplitudes obtained by theoretical prediction and Differential
Quadrature method.
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In this section, the improved single degree of freedom model can describe monostable large
amplitude vibration qualitatively. Although, when amplitude exceeds half of the gap, the error between
reduced-order model and continuum model becomes obvious, our proposed model is significant to
study the relationship between maximum amplitude and physical parameter.

5. Conclusions

With the Nonlinear Galerkin method, we propose a novel approach to generate an improved
single degree of freedom model for electrically actuated microbeam-based MEMS and use it to
study the static and dynamic behaviors of these devices. Specially, the monostable vibration is
theoretically investigated in size effected MEMS via the low dimensional model. The proposed
theoretical results maintain a good situation consistency with the results obtained by Differential
Quadrature method. Besides, the Finite element results of case studies are used to verify the accuracy
of the model. Compared with the results obtained by the Linear Galerkin method, the model has
obvious superiority.

What’s more, the monostable large amplitude vibration eliminates dynamic bifurcation
phenomenon, improves the stability of the system and increases the vibration energy, which is desired
for many applications. Parameter space and maximum amplitude of the monostable vibration are
obtained by using unfolding analysis and optimization theory for the first time. It is found that
reasonable decreasing the ratio of the gap width to the thickness of the mircobeam is the key to realize
monostable large amplitude vibration. Besides, the Nonlinear Galerkin method gives a way to convert
partial differential equation into ordinary differential equation.
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Appendix A

Equations (A1)–(A15) represent the coefficients produced in the Nonlinear Galerkin process;
Equations (A16)–(A25) represent the coefficients that are obtained by eliminating static displacement;
Equations (A26)–(A29) represent the coefficients produced in the perturbation process.
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Abstract: Acceleration sensitivity in silicon bulk-extensional mode oscillators is studied in this
work, and a correlation between the resonator alignment to different crystalline planes of silicon
and the observed acceleration sensitivity is established. It is shown that the oscillator sensitivity
to the applied vibration is significantly lower when the silicon-based lateral-extensional mode
resonator is aligned to the <110> plane compared to when the same resonator is aligned to <100>.
A finite element model is developed that is capable of predicting the resonance frequency variation
when a distributed load (i.e., acceleration) is applied to the resonator. Using this model, the
orientation-dependent nature of acceleration sensitivity is confirmed, and the effect of material
nonlinearity on the acceleration sensitivity is also verified. A thin-film piezoelectric-on-substrate
platform is chosen for the implementation of resonators. Approximately, one order of magnitude
higher acceleration sensitivity is measured for oscillators built with a resonator aligned to the <100>
plane versus those with a resonator aligned to the <110> plane (an average of ~5.66 × 10−8 (1/g) vs.
~3.66 × 10−9 (1/g), respectively, for resonators on a degenerately n-type doped silicon layer).

Keywords: MEMS resonators; acceleration sensitivity; vibration sensitivity; nonlinearity

1. Introduction

In recent years, the application of micro-machined, silicon-based resonators in timing has been
growing steadily [1–3]. Internet of things, mobile and wearable, automotive, and smart infrastructure
monitoring are some examples of applications where extremely small and ultra-stable MEMS-based
oscillators could play an important role in the system performance. The stability of these oscillators
is affected by environmental conditions such as temperature, humidity, pressure, magnetic field,
acceleration/vibration, etc. A change in one or more of these environmental conditions can either
vary the resonance frequency of the resonator or the oscillator loop phase [4]. In the former case, any
change in the resonance frequency of the resonator will directly impact the oscillator frequency, as
other electronic components are assumed to be broadband. In the latter case, change in the phase of
the oscillator loop is compensated for by a shift in the oscillation frequency, so that the loop phase is
maintained at 360◦, which is a required condition for oscillation [4].

A significant mechanical vibration could exist in the typical operating environment of the
electronics utilized in certain applications such as cell-phone towers, aircrafts, automotives, aerospace
vehicles, and radar towers. Such vibration results in frequency instability and performance
deterioration of the oscillators onboard. Applied acceleration to the oscillator can induce a change in
the resonance frequency of the mechanical resonator, as the stress applied to the resonator through the
suspension tethers will change the instantaneous resonance frequency of the device. Alternatively, the
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stray capacitance and inductance of the circuit could change as the circuit board is deformed due to
the applied vibration, resulting in variation of the oscillator loop phase [4].

In order to characterize the shift in resonance frequency of a mechanical resonator due to
the applied stress, a parameter defined as a stress-frequency coefficient is typically used. The
stress-frequency coefficient is shown to depend on the combination of two factors: the geometrical
deformation and the nonlinear elastic properties of the material used in the resonator [5]. In quartz
crystal resonators, this coefficient is extensively studied and proven to be dependent on the crystal
cut [6–11]. Several methods have been used for reducing the vibration sensitivity of quartz-based
oscillators. For example, it is suggested that compensation of the acceleration-induced shift in
oscillation frequency is possible by applying an appropriately phase-shifted electrical signal to the
crystal’s electrodes that is proportional to the mechanical vibration [12]. Active compensation of
acceleration sensitivity has also been studied in recent years. In [13–15], authors have achieved low
vibration-sensitive oscillators through electrical compensation of the oscillator output using sensors
that are strategically mounted to accurately measure the applied acceleration. A similar method of
electronic vibration-induced noise cancelation has been used for optoelectronic oscillators as well [16].
In a different approach, two crystals with anti-parallel acceleration-sensitivity characteristics have
been used in an oscillator circuit so that the net acceleration sensitivity vector can be adjusted to
zero [11,17,18]. Similar compensation methods using discrete or stacked crystals are represented
in [19]. Choosing an appropriate shape and place for mounting supports in order to reduce stress, and
also employing precise fabrication techniques to accurately locate and shape the designed mounting
structures, are other important factors considered in previous works [20]. The type of the material
used in the oscillator is also another degree of freedom that could be utilized for reducing acceleration
sensitivity. As explained in [21], experimental results obtained from two different air-dielectric cavity
oscillators made from two different materials, ceramic and aluminum, showed almost one sixth
times lower acceleration sensitivity for the one made of ceramic. Optical oscillators also showed low
acceleration sensitivities due to their small size [22]. Other interesting improvements are reported in
the field of optical cavity resonators. The acceleration sensitivity of a cavity-stabilized laser is decreased
significantly using the feedforward correction of acceleration [23]. In addition, recent research
on the acceleration sensitivity of optical cavity resonators shows that performance deterioration
due to the external mechanical vibration can be minimized by the appropriate design of the cavity
structure [24–26].

As mentioned above, material nonlinearity is an important factor affecting the sensitivity of
the resonators to mechanical vibration [4,8,27,28]. Since nonlinear elastic constants in crystalline
material are anisotropic, the orientation-dependency of the vibration sensitivity due to this
nonlinearity is potentially predictable. It has been shown that the stress-frequency coefficient of
stress-compensated (SC)-cut quartz is nearly zero. Therefore, the cuts near SC-cut quartz are known to
exhibit enhanced performance metrics in terms of force-frequency, resonance amplitude-frequency,
acceleration-frequency, intermodulation, and dynamic thermal-frequency stability [5,29,30].

The oscillator market has recently begun to accept silicon-based MEMS resonators as an alternative
for the long-stablished quartz resonators [31,32]. In theory, MEMS resonators should exhibit lower
sensitivity to acceleration compared with quartz resonators because of their smaller size and mass. It is
of great importance to study the physics of vibration sensitivity in silicon-based resonators in order to
understand the limits and to develop proper design guidelines to reduce vibration induced instability
in silicon-MEMS oscillators. Several factors such as shape, position, and number of suspension
tethers, aspect ratio of the resonator dimensions, device layer thickness, and mode shape can affect
the acceleration sensitivity of a MEMS resonator. Different studies have been performed to analyze
the acceleration sensitivity of these resonators. In [33], the acceleration sensitivity of a lame-mode
resonator supported with four anchors located at four corners of the square-shape structure is studied.
In this work, it is shown that adding an extra anchor at the center of the resonator is effective at
reducing the acceleration sensitivity. The acceleration sensitivity of a small-gap capacitive MEMS
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oscillator is studied in [34]. In capacitive resonators, the vibration-induced variation of the gap size and
the transducer capacitance overlap area results in nonlinear changes in electrostatic stiffness, which
results in a shift in resonance frequency.

This paper focuses on the acceleration sensitivity of silicon-based MEMS resonators. It is
shown that the acceleration sensitivity of silicon-based resonators is orientation-dependent and
has a correlation with the elastic properties of silicon including the Poisson ratio and nonlinear
elastic coefficients. A finite element model in COMSOL is developed that predicts the hypothesized
orientation-dependent acceleration sensitivity, and presented experimental results agree with the
hypothesis as well. Recently, the preliminary results suggesting the orientation-dependency of the
vibration sensitivity for silicon-based MEMS resonators was presented by the authors [35]. This work
is an extension of the work that confirms the earlier results with a novel finite element model (FEM)
and an observation of the same trends on more resonator samples.

This paper is organized as follows. The theory of acceleration sensitivity is presented in Section 2.
In Section 3, the resonators used in this work are introduced and characterized. The finite element
model for simulating acceleration sensitivity is explained in Section 4. Experimental results for both
nonlinearity and vibration sensitivity measurements are demonstrated in Section 5. Finally, the study
is summed up in Section 6.

2. Theory of Acceleration Sensitivity

Acceleration sensitivity can be defined as frequency instability of a resonator due to the mechanical
vibration introduced by the environment. Applied acceleration will act on the resonator mass to
produce a force, and it consequently induces stress and strain within the resonant body. There are
two main causes of vibration sensitivity: geometric nonlinearity and material nonlinearity. If the
applied strain due to the acceleration is large enough, the device dimensions/geometry will change
(i.e., geometric nonlinearity) and consequently the resonance frequency will be affected. In addition, if
the elastic stiffness coefficients of the material are strain-dependent (i.e., material elastic nonlinearity),
the effective stiffness of the resonator changes due to the applied vibration and the natural resonance
frequency will change as a result.

The change in the natural resonance frequency of device as a function of the applied acceleration
can be represented as follows [8]:

f
(→

a
)
= f0

(
1 +

→
Γ ·→a

)
(1)

in which f 0 is the natural resonance frequency when there is no acceleration,
→
Γ is the acceleration

sensitivity vector, and
→
a is the applied acceleration in a certain direction.

Using Equation (1),
→
Γ can be found by

→
Γ ·→a = Δ f / f0 (2)

in which Δf is the shift in resonance frequency due to the applied vibration. If the applied acceleration
is a constant DC vibration, a constant shift will happen at resonance frequency. However, a sinusoidal
acceleration will result in a frequency modulation, and the resonance frequency will change periodically
from f 0 − Δf to f 0 + Δf at a rate equal to the vibration frequency. Since Δf is normally a very small
value, it is not easily detectable. Hence, to measure acceleration sensitivity, the resonator should be
employed in an oscillator circuit. Once the output power spectrum of the oscillator is analyzed, the
sidebands that appear at an offset equal to the vibration frequency of the carrier power are detectable.
Let us assume the output voltage of the oscillator is given by

V(t) = V0 cos(φ(t)) (3)
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in which φ(t) is the phase of the oscillator, which can be found by integrating the frequency

φ(t) = 2π

t∫
t0

f
(
t′
)
dt′ (4)

in which f(t) is the frequency of the oscillator under applied vibration. Considering a sinusoidal
acceleration Equation (5), resonance frequency will be modified as shown in Equation (6)

→
a =

→
A cos(2π fvt) (5)

f
(→

a
)
= f0

(
1 +

→
Γ ·

→
A cos(2π fvt)

)
(6)

Therefore, the phase is calculated as

φ(t) = 2π f0t +
(

Δ f
fv

)
sin(2π fvt), Δ f = f0(

→
Γ ·

→
A) (7)

By substituting Equation (7) in Equation (3) the output voltage of the oscillator is calculated
as follows:

V(t) = V0 cos
(

2π f0t +
(

Δ f
fv

)
sin(2π fvt)

)
(8)

As seen in Equation (8), the output of the oscillator under a sinusoidal vibration is a
frequency-modulated signal that can be expanded using a series of Bessel functions as follows:

V(t) = V0[J0(β) cos(2π f0t) + J1(β) cos(2π( f0 + fv)t) + J1(β) cos(2π( f0 − fv)t) + . . .] (9)

in which β = Δf /fv = (
→
Γ ·

→
A) f 0/fv is the modulation index. For β < 0.1, J0(β) = 1, J1(β) = β/2, and

Jn(β) = 0 for n > 2. Hence, for small modulation indices, the output spectrum of the oscillator only
contains the main resonance frequency and two sidelobes at f 0 ± f v. As seen from Equation (9), the
magnitude of these sidelobes (β/2) depends on the acceleration amplitude and frequency, resonance
frequency of the resonator, and the acceleration sensitivity vector. The ratio of the power in these two
sidelobes to the power of the carrier is derived through the following equation

Lv =

(
J1(β)

J0(β)

)2
(10)

or equivalently in decibels notation

Lv,dB = 20 log
(

J1(β)

J0(β)

)
= 20 log

(
β

2

)
= 20 log

⎛⎜⎜⎝
(→

Γ ·
→
A
)

f0

2 fv

⎞⎟⎟⎠ (11)

So, acceleration sensitivity in ith direction,
→
Γ , can be found as follows:

Γi = (2 fv/Ai f0)10Lv/20 (12)

in which fv is the vibration frequency, Ai is the amplitude of vibration in ith direction, and Lv is the
difference between the carrier signal power and sidebands power in dB.

The amplitude of total acceleration sensitivity along x, y, and z direction is calculated as follows:

Γt =
√

Γx2 + Γy2 + Γz2 (13)

82



Micromachines 2018, 9, 233

3. Resonator Design and Characterization

Thin-film piezoelectric-on-substrate (TPoS) platform is chosen in this work for prototyping the
silicon-based resonators as they offer high quality factor and low insertion loss [36]. The schematic of
a typical TPoS resonator used in this work is shown in Figure 1, in which a thin sputtered piezoelectric
AlN layer, sandwiched between top and bottom electrodes made of Molybdenum, is stacked on top of a
<100> silicon layer. The top electrode is patterned on the resonant structure to enable two-port operation
of the resonator. The specific interdigitated configuration could be used to excite higher harmonic
lateral-extensional resonance modes [37,38]. However, in this work the first harmonic resonance is used
in the oscillator, and the top electrodes are connected to each other for the resonator to be operated in a
one-port configuration. In order to study the effect of orientation on acceleration sensitivity, resonators
with identical design are rotated to align to different crystalline orientations. The stack layers of the
resonators used in this work include 8 μm silicon, 1 μm AlN, and 100 nm Molybdenum used as
electrodes. The substrate for all resonators is a phosphorus-doped silicon-on-insulator (SOI) wafer
with a device layer doped at a concentration of ~5 × 1019 cm−3.

 

Figure 1. The schematic of a typical TPoS resonator used in this work.

A schematic representing the relative position of the resonators aligned to <100> and <110>
orientations on the [100] SOI wafer is shown in Figure 2. The fundamental lateral extensional
mode-shape of the resonant structure used in this work is also shown in this figure.

(a)                                         (b)     

Figure 2. (a) A schematic representation of the relative position of <100> and <110> resonators on the
[100] wafer and (b) the simulated lateral extensional mode-shape of a resonator used in this work.
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The frequency response (S21 amplitude) and the scanning electron micrograph (SEM) of the
resonators used in this study are also shown in Figure 3.

 

 
(a)                                         (b) 

Figure 3. The frequency response (i.e., S21) and the SEM of the two sets of resonators used in this work
aligned to <100> (a) and <110> (b) silicon planes.

4. Finite Element Simulation

A theoretical or simulation model that could be used to predict and improve acceleration
sensitivity of resonators is very desirable for design purposes. Due to the nonlinear nature of vibration
sensitivity, developing such tools is not straightforward. Complicated equations have been developed
for vibration sensitivity of bulk mode resonators, indicating dependency of vibration sensitivity to a
complex function of linear and nonlinear elastic constants [39]. However, a finite element model can
be more useful, as numerical solutions have recently found popularity due to the great progress made
in computational speed and capacity.

In order to develop a finite element model for this purpose, geometric and material nonlinearities
should be both included. Geometric nonlinearity is already predefined in commercial FEM software
packages such as COMSOL, but capturing material nonlinearity of silicon is more challenging.

4.1. Geometric Nonlinearity

When there is relatively large deformation and rotation, the approximations typically used in
linear elastic equations break apart, and it is necessary to identify the distinction between deformed
and undeformed configuration, and the nonlinear definitions of stress and strain should be utilized as
opposed to the simplified engineering definitions.

The definition of linear engineering stain is shown in Equation (14), which needs to be replaced by
Equation (15), the nonlinear Green–Lagrangian strain, in case of having rotation or large deformation.

eX =
∂u
∂X

(14)

SX =
∂u
∂X

+
1
2

(
∂u
∂X

)2
+

1
2

(
∂V
∂X

)2
+

1
2

(
∂w
∂X

)2
(15)

Therefore, it is required to modify the equations of the FEM simulator in order to consider
nonlinear definitions of strain. COMSOL software will provide the option to consider geometric
nonlinearity in the model, and, once selected, the Green–Lagrangian strain will be utilized in
all calculations.
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4.2. Material Nonlinearity

In general, there is a nonlinear relationship between stress and strain for any arbitrary material.
Normally, for small strain values, one could use a linear approximate instead of the nonlinear relation.
However, for large values of strain, the nonlinear equation should be considered. In the case of
simulating acceleration sensitivity, we are dealing with small values of resonance frequency shift, in
the range of ppb. Thus, considering nonlinear terms is critical in accurately predicting very small
changes in resonance frequency, even though the applied acceleration and the resulted strain are small.
Equation (16) shows the nonlinear relationship between second Piola–Kirchhoff (2nd PK) stress and
Green–Lagrangian strain for silicon [40,41]

Tij(X) = CijklSkl +
1
2

CijklmnSklSmn (16)

in which Cijkl, Cijklmn, Tij, and Skl are linear and nonlinear elastic stiffness coefficients, 2nd PK stress,
and Green–Lagrangian strain, respectively. In order to capture acceleration sensitivity of the resonators
correctly, we propose to define this nonlinear stress-strain relation in COMSOL as follows. First,
Equation (16) will be rewritten as

Tij(X) = (Cijkl +
1
2

CijklmnSmn)Skl (17)

Next, the expression in parenthesis could be defined as an elastic stiffness tensor:

Cijkl
′ = Cijkl +

1
2

CijklmnSmn, i, j, k, l = 1, 2, 3 (18)

With this new definition, the linear second-order elastic stiffness tensor can be modified so that
it is strain-dependent using the coefficients of nonlinear elasticity. Since working with tensors is not
straight forward, Voigt notation should be used to convert tensorial format to matrix format. The same
concept presented above is shown below in matrix format:

Ti(X) = (Cij +
1
2

CijkSk)Sj (19)

Cij
′ = Cij +

1
2

CijkSk i, j, k = 1, 2, 3, 4, 5, 6

Now using Einstein notation and considering cubic symmetry for silicon structure, the equation
above can be expanded to find all of the 36 components of the new modified stiffness matrix Cij

′.
The structure used in this work for modeling is shown in Figure 4, which includes the lateral

extensional resonator connected to the substrate. It should be noted that in the proposed FEM model,
only the silicon layer is considered. Utilizing such simplified model is justified as, firstly, the thickness
of the AlN layer is 1/8th of the thickness of the silicon layer, and, secondly, the sputtered AlN used in
these resonators is isotropic in x-y plane. Therefore, it is concluded that the orientation dependency of
acceleration sensitivity in resonators is mainly dominated by their structural silicon body.

To study vibration sensitivity using COMSOL, a prestressed analysis is performed on the discussed
structure as follows: first, a stationary study is performed to obtain the final strain values due to
the applied acceleration followed by a second step of eigenfrequency study to predict the modified
natural resonance frequency while the initial strains calculated in the first step are applied to the

structure. It should be noted that acceleration is applied as a body load equal to
→
F = ρ

→
a (N/m3)

to the whole structure including the frame, in which ρ is effective density. It is worth mentioning
that COMSOL uses a perturbation model to calculate the eigenfrequencies of the pre-stressed system.
Although it is possible to directly solve a set of differential equations to find the resonance frequency
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under acceleration but as described in [39], it has been shown that calculating the first eigenvalue
perturbation is considerably more efficient.

Acceleration sensitivity is calculated as normalized resonance frequency shift due to the applied
acceleration using Equation (2). The resulted vibration sensitivity in x, y, and z direction as a function
of acceleration amplitude is shown in Figure 5 for a resonator aligned to <100> orientation. As seen,
the acceleration sensitivity in z direction is the dominant component of the Γvector, which is expected,
as in this case vibration is applied normally to the resonator plane, introducing an out-of-plane
bending moment with a relatively low effective stiffness in the structure. Hence, only acceleration
sensitivity in z direction is demonstrated in the following figures for simplicity. Material nonlinearity
for <100> orientation is defined in COMSOL, as explained before. In order to consider nonlinearity
in <110> orientation, a 45◦ rotated coordinate system in the resonator plane is used. The simulated
acceleration sensitivity for both resonators aligned to <100> and <110> orientations considering linear
and nonlinear material properties is demonstrated in Figure 6.

Figure 4. The structure developed in COMSOL for modeling the acceleration sensitivity.

 

Figure 5. The simulated acceleration sensitivity in x, y, and z directions for a resonator with lateral
extensional mode-shape aligned to <100> orientation.

As seen, acceleration sensitivity of the <100> resonator is larger than the <110> resonator, even
for the case of linear material properties. One possible reason is that the Young’s modulus in <100>
silicon is smaller and the Poisson ratio is larger than that of the <110> orientation [42]. Hence, when
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a load is applied in <100> direction normal to the plane of the resonator, larger bending results,
and the in-plane deformation of the resonator would be larger for the resonator aligned to <100>
plane compared with the resonator aligned to <110> plane. The resulting in-plane strain will directly
affect the resonance frequency, as the frequency is a function of the resonator’s in-plane dimensions.
Therefore, it appears that the dominant factor in the acceleration sensitivity of the resonator studied in
this work is the Poisson ratio of silicon. However, it should be noted that material nonlinearity also
affects the absolute value of acceleration sensitivity significantly. As seen, when material nonlinearity
is considered, acceleration sensitivity is increased in both <100> and <110> cases. When silicon is
defined as a linear material, the ratio of vibration sensitivity of resonator aligned with <100> to that
aligned with <110> is 4.7, while this ratio increases to 18.5 when the material nonlinearity of silicon is
considered. Therefore, material nonlinearity significantly affects both the value and the orientation
dependency of the acceleration sensitivity.

It is worth mentioning that this simulation only considers the resonator and part of the substrate
that is simplified compared to the experimental setups. In addition, elastic constants used in this
simulation are for n-type silicon with doping concentration of 2 × 1019 cm−3 [43], which is the closest
available data to the doping level for the devices fabricated in this work (~5 × 1019 cm−3). Furthermore,
defining material nonlinearity for other layers of the device including AlN may affect the absolute value
of acceleration sensitivity. However, in this study, the goal is to investigate the effect of orientation on
acceleration sensitivity of n-type highly doped silicon-based resonators and understand the effect of
material nonlinearity on that. Thus, predicting the relative sensitivity in different orientations is the
most important aim of this simulation, which can be achieved with this simplified model.

Figure 6. The simulated acceleration sensitivity considering linear/nonlinear elastic properties for
both <100> and <110> crystalline orientations.

From the above simulation, it is concluded that by increasing material nonlinearity, acceleration
sensitivity will increase. To confirm this conclusion, nonlinear elastic coefficients of <100> silicon are
intentionally modified so that a larger amplitude frequency, A-f, coefficient is obtained. This coefficient,
k, is a measure of nonlinearity, which will be explained in more detail in Section 5. In order to calculate
k as a function of nonlinear stiffness constants, first, the nonlinear Young’s modulus is calculated based
on the closed form equations presented in [40]. Then, amplitude-frequency coefficient k is calculated
using equations presented in [44] for lateral extensional mode-shape aligned with <100> orientation.
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The simulated acceleration sensitivity using the modified elastic constants is shown in Figure 7. As
seen, by increasing k (i.e., nonlinearity), acceleration sensitivity also increases, which confirms the
correlation between acceleration sensitivity and nonlinearity.

Figure 7. The acceleration sensitivity of <100> resonator using modified elastic constants, indicating
the correlation between elastic nonlinearity and acceleration sensitivity.

5. Measurements and Results

As explained in Section 1, we hypothesized that acceleration sensitivity of silicon-based MEMS
resonators is orientation-dependent and affected by the elastic properties of the resonator material.
In order to study this hypothesize, both nonlinearity and acceleration sensitivity of above resonators
need to be measured.

5.1. Nonlinearity Measurements

Amplitude-frequency (A-f ) coefficient k is a measure of nonlinearity in resonators. This coefficient
determines the relation between normalized resonance frequency shift of the resonator and the
amplitude of vibration (x) as presented by (20).

f = f0

(
1 + kx2

)
(20)

We will use backbone curve plots obtained through the ringdown response measurement in order
to evaluate nonlinearity of the resonators. A backbone curve is the plot of normalized frequency shift
versus amplitude of vibration. In order to find the shift of resonance frequency in nonlinear regime,
two methods can be used: forced or unforced oscillation. In former, the input excitation power is
increased gradually, and the shift in resonance frequency is read using a network analyzer while the
resonator is under forced excitation. However, in the latter, ringdown response of the resonator is
measured, and by analyzing the decaying signal, shift in natural resonance frequency of the unforced
device vibration can be calculated [45]. In this study, second method is used.

Each resonator is forced by a large enough input that guarantees a detectable shift in resonance
frequency. After exciting the resonator for a period of time, the input power is ceased, and the unforced
ringdown response of the device is captured. The time domain behavior of the output voltage signal for
one of the resonators used in this study captured by a digital oscilloscope is demonstrated in Figure 8.
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Figure 8. The ringdown response of the resonator and the FFT plots for different sections of the
decaying signal to find the backbone curve. fxmax and fxmin are the resonance frequencies of the device
corresponding to largest and smallest amplitudes of vibration, respectively.

The decaying signal is then spilt into several bins, and a fast Fourier transform (FFT) is used for
the data in each bin to find the natural resonance frequency of the resonator corresponding to the
varying output voltage (vibration amplitude) during the ringdown signal (Figure 8). Equivalently,
instead of using FFT over one decaying signal, the resonator can be excited separately with different
input powers. Then, for each input power FFT is taken over the first bin of decaying signal. Figure 9
shows the ringdown response for different input powers.

 

 

 

 

 

Figure 9. The ringdown response of the resonator for different input powers. The resonance frequencies
corresponding to the highest and lowest power (P1 and P4) are fxmax and fxmin , respectively.

Now, in order to plot the backbone curve, the output voltage needs to be converted to the
amplitude of vibration. For capacitive resonators, there already are closed form equations developed
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to perform this conversion [45]. However, for piezoelectric resonators such equations are not available
in literature. So to find the amplitude of vibration for each input power, the S parameters of the
resonators are collected for each case. Then, energy stored in resonator in each case is calculated using
the method proposed in [46]. In this approach, the magnitude and phase of the input and output
current and voltage of the resonator are calculated using a model developed in the advanced design
system (ADS) software and the S-parameters of the device. The energy stored in resonator is then
obtained using those calculated parameters [46]. This energy can be approximated by

E =
1
2

k0x2 (21)

in which x is the amplitude of vibration and k0 is the linear spring stiffness constant of the resonator,
which for lateral-extensional mode-shape can be calculated by [44]

k0 =
π2EA

2L
(22)

in which E is the effective Young’s modulus, and A and L are the cross section area and length of the
resonator, respectively. Using Equation (21), amplitude of vibration for each input power is calculated,
and the backbone curves are plotted. The plot is then fitted with Equation (23) in order to find A-f
coefficient k.

Δ f / f0 = kx2 (23)

The backbone curve and the fitted plot for both <100> and <110> resonators in set 1 is shown in
Figure 10. As seen, the absolute value of k for <100> resonator (4.803) is more than 3× larger than that
calculated for the <110> resonator (1.411). This confirms a larger nonlinearity for the <100> resonator.
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Figure 10. The backbone curve for <110> (left) and <100> (right) resonators and the associated
amplitude-frequency (k) coefficients calculated based on the curves, indicating higher nonlinearity in
the <100> resonator.

Hence, this resonator is expected to be more sensitive to acceleration, as simulation predicts more
sensitivity by increasing nonlinearity.

5.2. Acceleration Sensitivity Measurements

In order to measure acceleration sensitivity, the resonator must be employed in an oscillator circuit.
To minimize the number of components, a commercial oscillator IC, CF5027 is used. The printed
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circuit board (PCB) and the schematic of the oscillator used in this study are shown in Figure 11a,b.
The connections XT and XTN denoted on the IC are the amplifier input and output, into which the
MEMS resonator should be connected. Details of the oscillator IC specifications can be found in the
data sheet [47].

 
(a) (b) 

Figure 11. (a) The oscillator PCB containing the commercial oscillator IC (CF5027) and (b) the schematic
of the oscillator IC connected to the TPoS resonator [47].

The typical phase noise measured from the assembled oscillators is shown in Figure 12. As seen,
both oscillators exhibit excellent phase noise performance, which enables accurate measurement of the
acceleration sensitivity.

Figure 12. The phase noise performance of the oscillator circuits containing the <100> and
<110> resonators.

A closed loop magnetic shaker system from Vibration Research Group Inc. is used to simulate the
actual vibration coming from environment (Figure 13). The acceleration applied to the board is measured
by a DYTRAN 3055D1T accelerometer. The sensed acceleration is then fed back to the controller to be
compared with the desired acceleration set by the operator. A control signal is afterward sent to the
amplifier, which determines the power generated by the amplifier that feeds the magnetic motor.
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Figure 13. The acceleration-sensitivity measurement setup.

The phase noise and the output spectrum of the two resonators aligned with <100> and <110>
orientations are shown in Figure 14 when a 14 g, 800 Hz sinusoidal acceleration is applied in z
direction. As seen, two sidebands appear at an offset frequency of 800 Hz from the carrier in the
oscillator output spectrum for both resonators, as expected from theoretical explanations provided
in Section 2. The amplitude of these sidebands is proportional to the acceleration sensitivity of
resonator. Hence, it is obvious that resonator aligned to <100> plane is significantly more sensitive to
the acceleration compared with the one aligned to the <110> plane. Acceleration sensitivity of these
devices is 3.1 × 10−9 and 4.8 × 10−8 1/g for resonators aligned with <110> and <100> orientations,
respectively. Spurious signals will also appear on the phase noise plot at an offset frequency equal to
the vibration frequency. In fact, the sidebands on the output spectrum are considered as noise, and
hence the corresponding spurs on the phase noise are expected. It should be noted that the amplitude
of the spurs on the phase noise is almost equal to the difference between amplitude of the carrier and
sidebands in the spectrum, which corresponds to how the phase noise is calculated.

Figure 14. The oscillator output spectrum and the phase noise under 14 g, 800 Hz vibration for set 1 of
resonators. Larger amplitude of the sidebands that appeared at 800 Hz offset frequency from the carrier
in the output frequency spectrum of the oscillator with <100> resonator shows higher acceleration
sensitivity of this device. More theoretical details are provided in Section 2.
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It is worth mentioning that, in this study, the phase noise and frequency spectrum measurements
are done with a Rohde & Schwarz signal source analyzer. However, one can configure a platform to
do the same measurement, such as those presented in [48,49].

Acceleration sensitivity of all resonators has been measured by sweeping both acceleration
amplitude and frequency. The results for first set of resonators are shown in Figure 15. By averaging
total acceleration sensitivity over vibration frequency range of 0–3 kHz, ~5.66 × 10−8 and ~3.66 × 10−9

are obtained for resonators aligned to <100> and <110> orientations, respectively.
It is worth mentioning that, contrary to the measurement, the acceleration sensitivity is not

expected to vary with acceleration frequency. This is because the induced strain in the resonant
structure should not be a function of the acceleration frequency, as no resonance modes of the device
are within the range of applied frequency. However, the acceleration is not directly applied to the
device, and, rather, it is being applied to a board to which the resonator die is attached. It is suspected
that there are numerous resonance modes for the entirety of the board and the components it contains
including the wirebonds, cables, and connectors. Therefore, the effective force applied to the resonator
will end up varying with the frequency. In addition, other sources of acceleration sensitivity such as a
shift in the phase can play a role that is frequency-dependent.

The same measurement has been repeated for the second set of devices, and the same trend as for
the first is obtained, confirming our hypothesis on orientation-dependency of acceleration sensitivity.
Acceleration sensitivity of both sets of resonators for a 7 g, 2800 Hz sinusoidal vibration is reported in
Table 1.

Figure 15. Acceleration sensitivity in x, y, z direction vs. acceleration frequency (left) and magnitude
(right) for set 1 of resonators.
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Table 1. Acceleration sensitivity for both sets of devices for a 7 g, 2800 Hz sinusoidal vibration.

Orientation Гx Гy Гz Гtotal

Set 1
<100> 3.73 × 10−9 1.2 × 10−8 3.3 × 10−8 3.6 × 10−8

<110> 4.9 × 10−10 4.1 × 10−10 4 × 10−9 4.1 × 10−9

Set 2
<100> 8.5 × 10−9 2.5 × 10−8 8.1 × 10−8 8.5 × 10−8

<110> 3.1 × 10−10 6.4 × 10−9 4.8 × 10−9 8 × 10−9

6. Conclusions

The acceleration sensitivity of n-type, highly-doped, silicon-based extensional resonators aligned
with different crystalline orientations is studied. Experimental results suggest that a resonator aligned
with the <110> plane direction is much less sensitive to applied acceleration compared with a similar
resonator aligned with <100> plane. A finite element model is presented to simulate the acceleration
sensitivity of the resonators used in this study. Simulation results also confirm less sensitivity for the
<110> resonator. In addition, it was shown that material nonlinearity is an important factor affecting
the acceleration sensitivity of these type of resonators.
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Abstract: This letter presents a high-performance micro-fabricated resonator based on inscribing
a meandered-line square coupling capacitor in an air-bridged circular spiral inductor on the
GaAs-integrated passive device (IPD) technology. The main advantages of the proposed method,
which inserts a highly effective coupling capacitor between the two halves of a circular spiral
inductor, are the miniaturized size, enhanced coupling coefficient, and improved selectivity.
Moreover, using an air-bridge structure utilizes the enhanced mutual inductance in which it
maximizes the self-inductance by a stacking inductor layout to obtain a high coupling effect.
The simulated and measured S-parameters of a prototype resonator with an effective overall circuit
size of 1000 μm × 800 μm are in good agreement. The measured insertion and return losses of
0.41 and 24.21 dB, respectively, at a measured central frequency of 1.627 GHz, as well as an upper
band transmission zero with a suppression level of 38.7 dB, indicate the excellent selectivity of the
developed resonator.

Keywords: air-bridge; bandpass filter; meandered-line coupling capacitor; micro-fabricated;
spiral inductor

1. Introduction

Global positioning system (GPS) receivers are being miniaturized and their cost is being
minimized to make them accessible for virtually everyone. This has tremendously increased
the demand for high-performance compact resonators. An increased growth in the publication
rate on microstrip lines and printed circuit board (PCB) technology-based resonators partially
reflects the intense interest that resonators for GPS receivers have been generating [1–3].
However, PCB-technology-based resonators still suffer from many bottlenecks, such as limited design
flexibility, because of the impracticalities in implementing three-dimensional structures, large critical
dimensions (~0.2 mm), and large fabrication tolerances. Therefore, they cannot fulfil the demands
of high-level circuit miniaturization. On the other hand, integrated passive device (IPD) technology
provides noticeably improved critical dimensions (~5 μm), extended design flexibility with air-bridge
structures, low fabrication tolerances, and the capability to integrate with active circuits.

Therefore, IPD-based implementation of high-performance, miniaturized resonators has recently
garnered an increased amount of interest from researchers [4–6]. IPDs typically combine a number
of passive components into a single package. These devices are increasingly being built using GaAs
thin-film substrates rather than on silicon-like semiconductor devices or ceramic, which have very
poor characteristics or can be difficult to tune. The integration of a large number of passive components
including the individual passive devices such as transmission lines, inductors, and capacitors,
or functional passive devices with low loss and minimal crosstalk, is as important as the advancement

Micromachines 2018, 9, 294; doi:10.3390/mi9060294 www.mdpi.com/journal/micromachines97
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of active transistor technology [7,8]. IPDs are 50% smaller, 70% thinner, and require 50% less printed
circuit board (PCB) area compared to discrete passive devices. In addition, IPDs are a bridge
platform between the front and back ends of the semiconductor process. The use of air-bridged
differential transformers to miniaturize the effective size of the resonators has been gaining much
attention owing to the high self-inductance and increased mutual inductance of such transformers [9].
Metal–insulator–metal (MIM) capacitors with optimized plate areas can be embedded between the two
halves of the differential transformers to obtain highly miniaturized, high selectivity resonators [10,11].
However, the requirement of a SiNx dielectric layer increases the fabrication complexity and cost.
Other manufacturing challenges include materials and process standardization, library component
development, correlation between the design and IPD performance, and integration of the IPD.
Also, a higher capacitor density at a lower manufacturing cost is critical [12].

This study reports on the development of a compact resonator based on a micro-fabricated
circular spiral inductor and meandered-line coupling capacitor. The noticeable advantages of size
miniaturization and selectivity improvement, which are attributed to the coupling capacitor and
verified by the S-parameter and derived-lumped-parameter–based analyses, validate the importance
of the proposed method in developing high-performance resonators. The measured excellent selectivity
of the developed resonator’s insertion and return losses of 0.41 and 24.21 dB, respectively, at a measured
central frequency of 1.627 GHz, as well as an upper band transmission zero with a suppression level of
38.7 dB, shows the excellent selectivity in the developed resonator.

2. Materials and Methods

Resonator Design

A planar, square, meandered-line coupling capacitor was inscribed in a circular spiral inductor
to produce the proposed resonator. The coupling capacitor was inserted in series between the two
symmetric halves of the spiral inductor. Therefore, the produced resonator is equivalent to a series
combination of its distributed parameters including the loss resistance (R), net inductance (LCS),
and coupling capacitance (CC) [13]. Consequently, the resonator generates a central frequency (f 0)
expressed by the following equation:

f0 =
1

2π

√
1

LCSCC
−

(
R

LCS

)2
(1)

The proposed resonator based on a micro-fabricated air-bridged circular spiral inductor and
meandered-line coupling capacitor is shown Figure 1. The 3D layout and equivalent circuit of the
resonator (a), a scanning electron microscopy (SEM) image of the fabricated resonator (b), and an
enlarged focused ion beam (FIB) image of an air-bridge structure is shown in (c). In the (a) image,
GaAs substrate (400 μm) was used to allow high-speed microelectronics. The first passivation layer
deposited was SiNx at 2000 Å thickness. Next, a seed metal layer of Ti/Au at 20/80 nm thickness was
deposited. Lastly, Cu at a thickness of 3.35 μm was formed. According to the expression based on
a current-sheet expression [14], the inductance of a planar circular spiral inductor can be expressed
as follows:

LCS =
μ0n2davgc1

2

(
1n(c2/ρ) + c3ρ + c4ρ2

)
(2)

where μ0 (= 4π × 10−7 H/m) denotes the space permeability and n is the number of turns. c1, c2,
c3, and c4 are layout-dependent coefficients and exhibit values of 1, 2.46, 0, and 0.2, respectively,
for a circular layout. ρ = (dout − din)/(dout + din) and davg = (dout + din)/2 denote the fill ratio
and average diameter, respectively, in terms of the outer diameter (dout) and inner diameter (din).
The corresponding metal traces were crossed over using the air-bridge structure, to utilize the
enhanced mutual inductance, and the lower metal layer was used as a bridge. A stacked inductor
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layout was employed to maximize the self-inductance and achieve high area efficiency for a high
coupling coefficient [15].

The net coupling capacitance (CC) between the coupled lines can be expressed as follows:

CC =

⎡⎣ε0

(
1 + εs

2

)K
(√

1 − k2
)

K(k)
+ ε0

t
a

⎤⎦LC (3)

where ε0 and εs represent the dielectric constants of air and the substrate, respectively. LC denotes the
total length of the coupled lines and k (= t/a) and K(k) represent the elliptical integral of the first kind.

Q =
f0

B3-dB

...B3-dB = fh − fl (4)

(Q) is the quality factor and (f 0) is the center frequency. (B3-dB) is the 3-dB bandwidth.
The meandered-line coupling structure is used to maximize the coupling length and, therefore,
the coupling capacitance in a minimum area [16].

 
(a) 

(b) (c) 

Figure 1. Proposed resonator based on a micro-fabricated air-bridged circular spiral inductor and
meandered-line coupling capacitor. (a) 3D layout and equivalent lumped-element circuit; (b) scanning
electron microscopy (SEM) image of fabricated resonator; and (c) enlarged focused ion beam (FIB)
image of the air-bridge structure.
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3. Results and Discussion

A typical resonator based on the proposed design layout was simulated and optimized using
Agilent Advanced Design System (ADS) software (version 2016.01, Keysight Technologies, Inc.,
Santa Rosa, CA, USA) to generate a central frequency of 1.574 GHz. The optimized dimensions were
din = 530 μm, dout = 880 μm, and LC = 1850 μm. The air-bridged circular inductor consisted of five turns
(n = 5) with a 15 μm gap between the corresponding turns. The simulated S-parameters, which are
shown in Figure 2a, indicate that the air-bridged inductor alone resonated at a central frequency of 1.98
GHz and exhibited a 5 GHz transmission zero with 22.9 dB suppression. The capacitive effect required
that the resonance be provided by the coupling between the top metal layer and the ground aluminum
box through the sandwiched GaAs substrate, and has been shown in the detailed equivalent circuit in
our previous work [17]. In Figure 2a–d, the spiral inductor graph indicates a circular spiral inductor
that is outside of the design and a bandpass filter (BPF) in the inner meandered-line square capacitor.
Additionally, the inscribing of the meandered-line coupling capacitor shifted the central frequency
downward to 1.574 GHz and, therefore, reduced the effective size of the resonator by 26.67%.

 
(a) (b) 
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Figure 2. S-parameters and lumped parameters to study the effect of a coupling capacitor. (a) Simulated
S11 and S21; (b) resistance (R); (c) inductance (L); and (d) capacitance (C).

Moreover, it markedly enhanced the passband return loss and transmission zero suppression
level and, therefore, improved the resonator selectivity. The distributed resistance (R), inductance
(LCS), and capacitance (CC) were extracted from the simulated S-parameters [18] to analyze the effect
of the coupling capacitor on the resonator performance, and the corresponding results are shown
in Figure 2. It was observed that the use of the meandered-line structure increased LCS (from 1.09
nH to 4.21 nH) and CC (from 0.38 pH to 0.47 pH) slightly and decreased R (from 5.57 Ω to 4.22
Ω) at 1.574 GHz. In addition, the calculated coupling coefficient (k), which is shown in Figure 3,
indicated that the use of the coupling capacitor generated an over-coupled (k = 1.04) resonator at 1.574
GHz. A prototype resonator with optimized dimensions was fabricated on a conventional 6-inch,
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200-μm-thick GaAs substrate with a dielectric constant εs = 12.85 and loss tangent tan δ = 0.006;
the detailed fabrication process is explained elsewhere [19,20]. The coupling capacitor was realized
with k = 0.36 and K = 1.6257. Figure 1b,c illustrates a magnified scanning electron microscopy (SEM)
image of the fabricated resonator with overall physical dimensions of 1000 μm × 880 μm and a focused
ion beam (FIB) image of the air-bridge structure, respectively [21]. Figure 4 shows that the PCB board
was attached to a 2 cm2 Al Box as a ground to decrease the noise. Both sides were connected to an
subminiature version A (SMA) connector to measure with a vector network analyzer (VNA).

Figure 3. Variation of the coupling coefficient (k) with frequency for an air-bridged spiral inductor
alone and for the proposed resonator.

 
 

(a) (b) 

Figure 4. A printed circuit board (PCB) and ground are shown in (a) cross-section view; (b) and a top
section with a design chip.

The S-parameters measured using an Agilent 8510C VNA demonstrated good agreement with
the simulated values. However, a small (53 MHz) downward shift of the measured central frequency
(1.627 GHz) was observed with respect to the simulated value [22]. The measured 3 dB fractional
bandwidth of the passband was 54.08%. The small differences in the central frequency and fractional
bandwidth could be because of the substrate dielectric loss, dispersion loss at the inductor bends,
and the accuracy of the physical dimensions. Figure 5 shows that the measured insertion and return
losses of the passband were 0.41 and 24.21 dB, respectively. A transmission zero appeared at 3.9 GHz
with a high suppression level of 38.7 dB. The distributed parameters at 1.627 GHz, extracted from the
measured S-parameters, were R = 4.45 Ω, LCS = 1.08 nH, and CC = 0.48 pF [23].
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Figure 5. Simulated and measured S-parameters and the pictures of the fabricated resonator.

Table 1, which compares our developed resonator with several recently reported IPD resonators,
indicates that our work demonstrates a high-performance resonator with a more compact size and
better selectivity owing to the lower insertion loss and higher return loss. In addition, the smaller
number of metal layers reduces the fabrication complexity and cost of the device.

Table 1. Performance Comparison with Reported Resonators.

Reference Technology CF 1 (GHz) IL 2 (dB) RL 3 (dB) Size (mm2) Metal Layers

[17] GaAs IPD 2.27 0.8 26.1 0.9 2
[24] Silicon IPD 2.45 2.2 30 1.5 3
[25] GaAs IPD 7.7 1.63 40.1 4.98 1

This work GaAs IPD 1.627 0.4 24.2 0.88 2
1 Central Frequency, 2 Insertion Loss, 3 Return Loss.

4. Conclusions

A highly miniaturized resonator based on an air-bridged circular spiral inductor and an inscribed
square meandered-line coupling capacitor was developed using GaAs-based micro-fabrication IPD
technology. Lumped-parameter-based analysis revealed that a system of meandered coupled lines
between the two halves of a circular spiral inductor could provide high coupling capacitance,
miniaturize the effective size, and improve the selectivity of the resulting resonator, significantly.
The measured excellent selectivity of the developed resonator’s insertion and return losses of 0.41
and 24.21 dB, respectively, at a measured central frequency of 1.627 GHz, as well as an upper band
transmission zero with a suppression level of 38.7 dB, shows a good candidate for use in the next
upgrade of GPS applications.
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Abstract: This paper demonstrates the four fold enhancement in quality factor (Q) of a very high
frequency (VHF) band piezoelectric Aluminum Nitride (AlN) on Silicon (Si) Lamb mode resonator by
applying a unique wide acoustic bandgap (ABG) phononic crystal (PnC) at the anchoring boundaries
of the resonator. The PnC unit cell topology, based on a solid disk, is characterized by a wide ABG
of 120 MHz around a center frequency of 144.7 MHz from the experiments. The resulting wide
ABG described in this work allows for greater enhancement in Q compared to previously reported
PnC cell topologies characterized by narrower ABGs. The effect of geometrical variations to the
proposed PnC cells on their corresponding ABGs are described through simulations and validated
by transmission measurements of fabricated delay lines that incorporate these solid disk PnCs.
Experiments demonstrate that widening the ABG associated with the PnC described herein provides
for higher Q.

Keywords: microelectromechanical systems (MEMS); AlN-on-Si resonators; phononic crystal; anchor
loss; quality factor; acoustic bandgap

1. Introduction

Quartz crystal resonators are integral components in existing radio frequency (RF) communication
systems. With the advantages of small form factor and CMOS process compatibility, microelectromechanical
systems (MEMS) resonators have been of interest for providing integrated clock-chip solutions.
Among MEMS resonators, piezoelectric-on-silicon resonators have the advantage of possessing more
efficient electromechanical coupling (in relation to capacitive silicon resonators), lower acoustic loss
and high power handling capacity (in relation to piezoelectric film body resonators) [1]. High Q
and efficient coupling lead to lower motional resistance (Rm). As high Q and low Rm are desired for
low phase noise oscillators [2], various approaches have been proposed to improve the Qs (thus also
reducing Rm) of different piezoelectric resonators by suppressing anchor losses. This includes using
biconvex plates to trap acoustic energy in the center of the acoustic cavity and thus minimizing
the distribution of energy closed to the anchors [3]. For AlN-body resonators, butterfly-shaped
AlN plates have been proposed [4]. Another approach has been to etch acoustic reflectors into the
anchoring boundaries of the resonator to reflect the outgoing acoustic waves from the supports back
into the resonator [5]. Moreover, phononic crystals (PnCs) have been hybridized with Silicon (Si) [6],
Aluminum Nitride (AlN) [7,8], AlN-on-Si [9–12] and Gallium Nitride (GaN) [13] resonators with
either one-dimensional (1D) or two-dimensional (2D) periodicity. PnCs are inhomogeneous periodic
structures (e.g., solid–air) that shape the transmission of phonons through the PnC. This ability to
shape the behavior of acoustic waves in the PnC is due to the generation of an ABG that arises from
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the periodic alternation of acoustic properties (velocity and density) in the PnC. From the literature,
PnCs of different shapes and geometries have been investigated in relation to their effect on the width
of the associated ABG. The more common PnC shapes proposed in the literature include air-holes in
substrate [11,14–19], rings [9,10], cross-shaped [7,20], snowflake air inclusions [21] and fractals [22].
When a defect is introduced in a periodic PnC structure, various resonators and waveguides may be
formed. PnCs can be engineered with a desired bandgap around a target center frequency and can
be incorporated either in 1D or 2D patterns to realize cavity resonators and waveguides. The PnCs
around the cavity behave as an acoustic shield that confines the acoustic energy within the cavity.
However, cavity resonators and waveguides are associated with lower Qs and higher insertion losses.
Alternatively, PnC based supporting tethers [6–11] have been used in lieu of simple beam tethers
in resonators to reduce anchor loss and thus enhancing Q. As propagation of acoustic waves at
frequencies within the ABG is prohibited within the PnC [23], placing PnCs close to the resonator
where acoustic waves are expected propagate out has the benefit of reducing anchor loss. On this note,
the size of the ABG depends on the shape of the PnC unit cell.

Using simulations based on AlN as the solid matrix, Ardito [24] showed that shaping the PnC
unit cell as a solid-disk produces a notably wider ABG compared to other more common shapes.
This interesting PnC design resulted from an optimization process through applying the Bidirectional
Evolutionary Structural Optimization (BESO) technique. Recently, we applied the solid-disk PnC
unit cell topology proposed by Ardito [24] to a piezoelectric AlN-on-Si Lamb mode resonator to
demonstrate the proof of concept [25].

Most reports of the use of PnCs to enhance Q of piezoelectric resonators have been on AlN-body
resonators where the enhanced Qs have been rather limited [7,8]. While there has been some coverage
of PnCs applied to AlN-on-Si resonators, the enhanced Qs have been limited to below 4000 [9–12].
In comparison, we have previously demonstrated Qs around 10,000 using biconvex resonators to
reduce anchor loss to the point where electrode-related losses become dominant [26] but not with
PnCs to date [27]. This work seeks to validate the effectiveness of the uniquely optimized PnC design
proposed by Ardito [24] in reaching similar levels of Q. We show that these PnCs are able to enhance
Qs to the same levels as the biconvex resonators reported in [26]. These PnC enhanced resonators also
show similar Qs with respect to the number of electrodes, thus verifying that the PnCs can likewise
reduce anchor to a point where other kinds of losses related to the electrodes become dominant.
However, compared to the biconvex resonators, the use of PnCs anchors avoids the need to modify the
resonator shape and compromise on the coupling area.

This work extends from the preliminary work reported in [25] by experimentally validating the
existence of a wide band gap. By incorporating the PnC into a delay line, we demonstrate a stop
band that 120 MHz wide around a center frequency of 141 MHz. Furthermore, we demonstrate how
adjustments to the dimensions of the PnC cell affect the size of the band gap. These wide ABG PnCs
were applied as the anchoring boundaries of 7th-order mode AlN-on-Si Lamb mode resonators with
resonant frequencies of around 144 MHz to demonstrate enhancement in Q of over 4-fold.

2. Design and Simulations of ABG

As depicted by Figure 1a, the basic PnC unit cell has a lattice constant, a = 22 μm and comprises
a solid disk with a radius, r = 8 μm, with a thickness, t = 10 μm (set by the fabrication process [28]).
The solid disk in a given unit cell is linked to the solid disks in adjacent cells by slender links.
The minimum width of these links, w = 2 μm, is limited by the fabrication process. Using COMSOL
Multiphysics (version 5.2a, COMSOL Co., Ltd., Shanghai, China) finite element (FE) analysis,
the phononic band structure was computed by applying Floquet periodic boundary conditions on the
unit cell along the x- and y-axis and performing a parametric sweep in the wave vector k bounding the
first Brillouin zone illustrated by Figure 1b. The lattice parameter and disk radius were tuned in the FE
simulations to synthesize a wide complete ABG for which the center frequency of the band coincides
closely with the resonant frequency of the Lamb mode resonator to be physically bound by the PnC.
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The size of the ABG can be expressed in terms of a dimensionless parameter using the gap-to-mid gap
ratio to avoid frequency dependence:

BG =
fU − fL

( fU + fL)/2
(1)

where fU and fL are the upper and lower bounds, respectively, of the ABG. The widest complete ABG
of 82 MHz spanning from 93–175 MHz (depicted in Figure 1c) was obtained when the inter-cell link
was set to its minimum (i.e., w = 2 μm), which corresponds to a bandgap ratio of 61%. Increasing
w while keeping all other geometrical parameters unchanged, the ABG was reduced to 44% when
w = 3 μm, and further down to 29% when w = 4 μm. As such, the simulations show that widening the
inter-cell link reduces the ABG. Table 1 compares the simulated ABG of the proposed solid disk PnC
with the commonly used air-hole, ring, cross inclusion, square hole and fractal PnCs assuming the
same lattice size a = 22 μm and minimum feature size of 2 μm. The dimensions of each PnC shape have
been chosen to yield close to the widest possible ABG. The center frequencies of the associated ABGs
are within a similar range. A more exact alignment of center frequencies would require adjustments to
the lattice parameter and various dimensions in each PnC cell, although the ultimate conclusion on
which shape provides the widest ABG remains the same. The proposed solid-disk PnC possesses the
highest gap-to-mid gap ratio (BG).

Table 1. Comparison of simulated ABGs between various PnC shapes using the same lattice parameter
a = 22 μm and minimum feature size of 2 μm.

PnC Shape Dimensions (μm) ABG Range (MHz) fc (MHz) BG (%)

Air-Hole 136–147 141.5 7.7

Ring 107–144 125.5 29.4

Cross Inclusion 89–147 118 49.1

Square Hole - - -

Fractal 146–192 169 27.2

Solid-Disk (this work) 93–175 134 61.1

Next, FE models to simulate the effect of the PnC (and absence of) on the transmission through a
delay line were considered to compare against the experimental results. Figure 2a,b shows the 3D FE
simulated displacement profiles of the control delay line having solid slab as transmission medium
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and delay line with PnCs as transmission medium between drive and sense interdigitated transducers
(IDTs) respectively. To reduce computational time, the frequency response simulations were carried
out on a single row of 10 solid-disk PnCs with 6 finger electrodes for the IDTs on either side. Periodic
boundary conditions were applied in the transverse direction (i.e., y-axis with reference to coordinate
system annotated in Figure 2a,b. In the control delay line the PnCs were replaced by a solid slab.
To minimize the effect of the reflected waves, Perfectly Matched Layers (PMLs) were introduced at
the ends of the delay lines in the longitudinal direction. The FE simulation result illustrates the drop
in transmission at a frequency range that corresponds to the associated ABG of the PnC as the PnC
transmission medium effectively blocks the propagation of waves generated from the drive IDTs for
frequencies that lie within the ABG that otherwise propagate through.

 

Figure 1. (a) Perspective view of solid disk PnC basic unit cell; (b) 1st irreducible Brillouin zone in
k-space, frequency band diagrams by finite element (FE) analysis of a solid disk PnC for various
inter-cell link widths of (c) w = 2 μm (d) w = 3 μm (e) w = 4 μm. Figures modified from the preliminary
work in [25].

3. Experimental Validation of ABG

To experimentally verify the existence of the simulated ABGs associated with the solid-disk PnCs,
we designed and fabricated three delay lines using a standard AlN-on-SOI MEMS process [28], two of
which are depicted in Figure 3. The delay lines comprise a pair of IDTs with a pitch of 22 μm on each
side of the delay line and an aperture of 22 μm. In two of the delay lines, 12 rows of solid disk PnCs
were etched between the IDTs. Figure 3a shows one of these delay lines with solid disk PnCs in the
transmission medium. The PnCs either had inter-cell link widths of w = 2 μm or w = 3 μm. The third
delay line, depicted in Figure 3b, serves as a reference device by incorporating just a solid silicon slab
as the transmission medium between the IDTs. As shown in the side view schematic in Figure 3c,
the regions with IDT electrodes are released for both types of delay lines.

In the experiments, to reduce parasitic feedthrough, a fully-differential probe configuration was
applied to the IDTs. The measured transmission (S21) curves from the delay lines with two different
PnCs and a solid silicon slab as the propagating medium are shown in Figure 4. From Figure 4, we see
that the delay lines incorporating the solid disk PnC both show an abrupt drop in S21 in the form of
a wide band-stop filter. The drop in S21 measured around the middle of the stop band was 30 dB.
The experimental transmission response of the PnC delay lines generally agree with the FE simulated
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response. The difference in the amount of attenuation between experiments and simulation within
the stop band may be due to the difference between employing a finite number of rows (in the actual
device) as opposed to an infinite lattice (assumed in the FE simulations in relation to the applied
periodic boundary conditions). From the experiments, we see that the PnC with the narrower inter-cell
links (w = 2 μm) yielded a wider stop band compared to the wider inter-cell link (w = 3 μm).

 

Figure 2. FE simulations with periodic boundary conditions applied along the y-axis—Displacement
profiles of the (a) reference delay line having solid slab as the transmission medium and (b) delay line
with PnCs (with inter-cell link width w = 3 μm) as the transmission medium. (c) Simulated transmission
S21 of the three delay lines showing the existence of the bandgap associated with the solid disk PnC
observed through significant drops in transmission within a wide stop band.

Figure 3. Micrographs of the fabricated delay lines incorporating (a) PnCs (with link width of 2 μm) for
the transmission medium and (b) solid silicon slab as the transmission medium (as the control device
for comparison). (c) Transverse-view schematic of the delay line showing that the regions with IDT
electrodes are released for both types of delay lines.

 

Figure 4. Measured transmission S21 of the three delay lines showing the existence of the bandgap
associated with the solid disk PnC observed through the 30 dB drop in transmission within a wide
stop band.
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4. Experimental Validation of Q Enhancement with PnC Anchors

4.1. Resonators with Partial Coverage of Three IDT Fingers.

Having verified the existence of the wide ABG associated with the solid disk PnC, we applied the
PnCs as anchoring boundaries to a rectangular plate resonator to demonstrate their effectiveness in
enhancing Q by reducing anchor loss. The resonator has a center-to-center electrode pitch Wp = 30 μm
(as shown in Figure 5a), designed to be transduced in the 7th-order symmetric Lamb mode that occurs
at a frequency of 141 MHz, though lower harmonic modes can be transduced as well (as will be seen
in Section 4.3). The resonant frequency for any given harmonic mode is described by:

f =
nυ

2Wr
(2)

where v is the acoustic velocity of the resonator, Wr is the width of the resonator, and n is the mode
number of the respective harmonic. Hence to preferentially transduce the 7th-order Lamb mode,
Wp = Wr/7. As shown by the micrograph depicted in Figure 5b, the Lamb mode resonator is bound on
each anchoring side by solid disk PnCs. As the frequency of the 7th-order symmetric Lamb mode lies
well within the ABG of the PnCs, outgoing acoustic waves from the supporting tether are prohibited
from propagating through the PnCs. Solid disk PnCs with two different inter-cell link widths were
fabricated (w = 2 μm, w = 3 μm) to investigate the effect of the size of the ABG on Q. Figure 5c provides
a zoom-in image of the solid disk PnCs for one of the devices in relation to the Lamb mode resonator.
The device without PnCs depicted in Figure 5a served as a control device. As these devices were
released by trench etching through the bulk substrate, to ensure that the boundary conditions between
the control device and the resonator devices incorporating PnCs were similar, the same trench size
was used for all devices. The resonators were partially covered with IDTs, specifically only three IDT
fingers to reduce the effect of electrode-related losses.

Figure 5. Optical micrographs of the fabricated devices partially covered with 3 IDT fingers: (a) Control
device with no PnCs, (b) PnC bounded resonator, and (c) close-up view of the PnC matrix in relation
to the Lamb mode resonator connected through the tether whose width was kept to the minimum
allowed by the process.

To experimentally validate the effect of the ABG size on the performance of the 7th-order
symmetric Lamb mode AlN-on-Si resonators, we fabricated all these devices using the same
AlN-on-SOI MEMS process used to fabricate the delay lines described in previous sections. The width
of the supporting tether was kept to its practical minimum (16 μm) as allowed by the process with
the aim to minimize losses through the tethers particularly when these are wide. As depicted in
Figure 5b, five rows of PnCs were employed in the direction of outgoing wave from the tethers.
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On this note, it has been previously shown that the effectiveness of the PnCs in enhancing Q plateaus
after three PnC cells [9]. Short-open-load-through (SOLT) calibration was performed prior to measure
all resonators. Six samples of each of the three resonator types were tested (i.e., a total of 18 samples
tested) to ensure repeatability. The measured resonant frequencies of the Lamb mode resonators
coincide with the FE simulated values. Figure 6a depicts 7th-order harmonic Lamb mode simulated
by FE. Fixed boundary conditions were applied to the tether faces in the yz-plane. Figure 6b shows
the corresponding measured S21 of a resonator with PnC anchors (w = 2 μm) and a control device
(no PnC anchors) to illustrate the increase in Q and corresponding reduction in insertion loss by
incorporating the PnCs into the anchors. These results are typical of the measurements carried out
over multiple samples tested for repeatability. Figure 7 shows the extracted values of unloaded Q
(Qu) from the S21 responses of the 18 samples tested. It is worth pointing out that the values of Q
measured for the control resonators are typical of the Lamb wave mode resonators we have fabricated
with the same process and tested previously. We have also previously shown that the length of the
supporting tether does not significantly alter the value of Q of these resonators based on experiments
on multiple samples [29]. As such, the control resonators described herein do not represent particularly
poorly designed resonators to yield a sub-optimal Q. As seen from Figure 7, incorporating PnCs into
the anchors increases the mean Qu relative to the control device as much as 3.6-fold. The extent of
enhancement in Qu increases with narrower inter-cell links, a trend that was also observed previously
in the case air-hole in substrate PnCs [11]. For reference, the levels of Q attained using PnCs with the
narrower links are similar to the 7th-order biconvex resonators of the same frequencies with three IDT
fingers described in [26].

 

Figure 6. (a) FE simulation of the 7th-order symmetric Lamb mode where the contours denote the
associated y-direction strain component. (b) Typical measurements of the transmission S21 of two of
the partially covered resonators with three IDT fingers with PnC anchors (w = 2 μm) and a control
device (no PnC anchors) for comparison to illustrate the increase in Q; the resonators were transduced
in the 7th-order symmetric Lamb mode.

4.2. Resonators with Full Coverage of Seven IDT Fingers.

To investigate the effect of the electrodes on the degree of Q enhancement when applying the
PnCs in the anchoring boundaries, we designed and fabricated another set of resonators with same
size of those in the previous section but with full coverage of IDT fingers (i.e., seven IDT fingers).
As in the previous set of resonators with partial coverage of IDT electrodes, we considered four designs:
a control device with no PnCs, and three devices with PnCs comprising different inter-cell link widths
(w = 2 μm, w = 3 μm, w = 4 μm) to investigate the effect of the size of the ABG on Q in the limit where
electrode-related losses are more dominant. Figure 8a depicts a micrograph of the control device
with full IDT electrode coverage, and Figure 8b depicts a micrograph of one of the devices with PnCs
anchors. Figure 8c provides a zoom-in image of the solid disk PnCs for one of the devices in relation to
the Lamb mode resonator with full IDT electrode coverage.
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Figure 7. Partially covered resonators with three IDT fingers transduced in the 7th-order symmetric
Lamb mode—Extracted values of unloaded Q (Qu) of the control design with no PnCs in comparison to
the two other designs with PnCs in the anchors with different inter-cell link widths. The black squares
denote the mean value while the error bars denote the standard deviation over six samples for each
resonator design.

 

Figure 8. Optical micrographs of the fabricated devices: (a) Control device with no PnCs, (b) PnC
bounded resonator, and (c) close-up view of the PnC matrix in relation to the Lamb mode resonator
connected through the tether whose width was kept to the minimum allowed by the process.

To experimentally validate the effect of the ABG size on the performance of the 7th-order mode
AlN-on-Si resonators with seven IDT fingers, five samples of each of the four resonator types were
tested (i.e., total of 20 samples tested) to ensure repeatability. The measured resonant frequencies
of the Lamb mode resonators are in agreement with the FE simulated values. Figure 9 depicts the
extracted values of unloaded Q (Qu) from the S21 responses of the 20 samples tested. As seen from
Figure 9, incorporating PnCs into the anchors increases the mean Qu relative to the control device by
as much as 4.2-fold. As with the case of the resonators partially covered with IDT electrodes, we also
see that reducing the PnC link width results in an increase in Q. But we can also see that increasing the
number of IDT fingers has reduced the maximum achievable level of Q. For reference, the levels of
Q attained using PnCs with the narrowest links are similar to the 7th-order biconvex resonators of
the same frequencies with 5 IDT fingers described in [26]. As such, the levels of Q and trends of the
resonators bounded by the widest ABG PnCs (i.e., the narrowest links) are what have been observed
previously in biconvex resonators. As such, the results reported herein demonstrate that the wide ABG
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solid-disk PnCs are able to reduce anchor loss to a point whereby electrode-related losses begin to
dominate over anchor loss.

 

Figure 9. Fully covered resonators with seven IDT fingers transduced in the 7th-order symmetric Lamb
mode—Extracted values of unloaded Q (Qu) of the control design with no PnCs in comparison to the
three other devices with PnCs in the anchors with different inter-cell link widths. The black squares
denote the mean value while the error bars denote the standard deviation over five samples.

4.3. Frequency Selectivity of Q Enhancement.

To show that the effect of Q enhancement applies to frequencies that lie within the ABG, we tested
the very same resonators at their fundamental mode (20.3 MHz) and 3rd-order mode (61 MHz).
Both these frequencies lie outside the theoretical bandgap of the same PnC topology but with different
inter-cell link widths. We tested four die samples for each of the four designs (i.e., 16 devices
in total). Figure 10a depicts the fundamental Lamb mode simulated by FE (occurring around
20.3 MHz), while Figure 10b summarizes the associated unloaded Qs extracted from the measurements.
Similarly, Figure 11a depicts the 3rd-order Lamb mode simulated by FE (occurring around 61 MHz),
while Figure 11b summarizes the associated unloaded Qs extracted from the measurements of the very
same devices. We see that, for either harmonic mode, the PnCs do not provide any enhancement of Q.

 

Figure 10. (a) FE simulation of the fundamental Lamb mode (occurring around 20.3 MHz) where the
contours denote the associated y-direction strain component. (b) Fully covered resonators with seven
IDT fingers—Extracted values of unloaded Q (Qu) of the control design with no PnCs compared to the
other three designs with PnCs in the anchors with different inter-cell link widths transduced at the
fundamental Lamb mode (20.3 MHz), which lies outside the ABG. The black squares denote the mean
value, while the error bars denote the standard deviation over four samples.
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Figure 11. (a) FE simulation of the 3rd-order symmetric Lamb mode (occurring around 61 MHz),
where the contours denote the associated y-direction strain component. (b) Fully covered resonators
with seven IDT fingers—Extracted values of unloaded Q (Qu) of the control design with no PnCs
compared to the other three designs with PnCs in the anchors with different inter-cell link widths
transduced at the 3rd-order symmetric Lamb mode around 61 MHz that lies outside the ABG. The black
squares denote the mean value while the error bars denote the standard deviation over four samples.

Table 2 compares the performance of the PnC resonator hybrids (3 IDTs and inter-cell link widths
of 2 μm) transduced in the 7th-order symmetric Lamb mode reported herein with other state-of-the-art
piezoelectric AlN and AlN-on-Si resonators disclosed in the literature for similar resonant frequencies.

Table 2. Performance comparison of proposed PnC/resonator hybrids with the state-of-the-art
piezoelectric AlN and AlN-on-Si resonators that share similar resonant frequencies.

Reference Technology Frequency (MHz) Q f·Q (1011 Hz)

[30] AlN 175 1500 2.6
[31] AlN 101.71 1257 1.27
[2] AlN-on-Si 106 4000 4.24

[27] AlN-on-Si 100 5369 5.36
[10] AlN-on-Si 178 1400 2.49
[9] AlN-on-Si 141.5 5730 8.10

This work (w/o PnC) AlN-on-Si 140.9 2510 3.53
This work (with PnC) AlN-on-Si 140.5 10,492 14.7

5. Conclusions

In conclusion, we have experimentally demonstrated the existence of a wide ABG associated
with a solid-disk PnC unit cell topology. By incorporating these PnCs into a delay line, we have
experimentally demonstrated a bandgap ratio of 85%, inferred from the transmission measurement of
a delay line incorporating such PnCs. Moreover, we have shown that the geometrical dependence of
the bandgap ratio predicted by FE simulations is corroborated by the experiments. We have applied
these solid-disk wide ABG PnCs to the anchors of AlN-on-Si Lamb mode resonators to demonstrate
enhancements in Q by fourfold. The geometric dependence of the ABG is also evident in the extent of
enhancement in Q provided by the PnC.
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Abstract: We propose a method for generating the electromagnetically induced transparency (EIT)
like-transmission by using microring resonator based on cascaded 3 × 3 multimode interference
(MMI) structures. Based on the Fano resonance unit created from a 3 × 3 MMI coupler with a
feedback waveguide, two schemes of two coupled Fano resonator unit (FRU) are investigated to
generate the EIT like transmission. The theoretical and numerical analysis based on the coupled
mode theory and transfer matrix is used for the designs. Our proposed structure has advantages of
compactness and ease of fabrication. We use silicon waveguide for the design of the whole device
so it is compatible with the existing Complementary Metal-Oxide-Semiconductor (CMOS) circuitry
foundry. The fabrication tolerance and design parameters are also investigated in this study.

Keywords: optical microring resonator; electromagnetically induced transparency (EIT); multimode
interference (MMI); transfer matrix method (TMM); finite difference time difference (FDTD); beam
propagation method (BPM)

1. Introduction

The electromagnetically induced transparency (EIT) effect is a nonlinear effect found in the
interaction process between light and material. The EIT effect has been intensively investigated in
recent years [1,2]. The EIT has wide applications such as in quantum information [3], lasing without
inversion [4], optical delay, slow light [5], nonlinearity enhancement [6] and precise spectroscopy [7],
pushing frontiers in quantum mechanics and photonics and sensing technology [8]. In order to create
the EIT effect, there are some suggested approaches.

There is a significant benefit to determine the optical EIT like transmissions with high modulation
depth, which is defined by the difference in intensities between the peak and the dip at resonant
wavelengths. The EIT was first observed in atomic media [2]. Then, the EIT-like effects were
found in optical coupled resonant systems [9–11], mechanics, electrical circuits [12], plasmonics,
metamaterials [7,13] and hybrid configurations [14]. In the coupled resonant systems, the basic
underlying physical principle is the interference of fields instead of the probability of amplitudes,
as in a three-level atomic system [15,16]. Most of the proposed structures so far for the optical EIT
generation use metal-insulator-metal (MIM) plasmonic waveguide resonators [17,18], array of fiber
optic resonators [19], microspheres [20], metallic arrays of asymmetric dual stripes [21], heptamer-hole
array [22], plasmonic nanoring pentamers [23] and microtoroid resonator coupled system [24].
For these systems, the fiber beam splitters, directional couplers or MIM plasmonic waveguide must be
used. As a result, such structures bring large size, the complexity of the fabrication process to control
exactly the coupling ratios of the directional couplers and sensitivity to fabrication tolerance.

The transparency window of the EIT is caused by reduced absorption, due to the quantum
destructive interference between the transitions from the two dressed states, into a common energy
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level. Similarly, the EIT-like effect generated by optical resonators work by the means of coherent
interference between the resonating modes which produce optical transparency inside the absorption
window [25]. Compared to the EIT in atomic systems, the analogue of electromagnetically induced
transparency with optical resonators based on directional couplers has many remarkable advantages
such as simpler structure, smaller device size and easier design. However, due to the small size of
these structures, it is challenging to detune optical resonator for controlling the resonant interaction
between the two optical pathways and controlling the coupling ratio of the directional couplers [26].

In the literature, only 2 × 2 directional coupler was used for microring resonator based on the EIT
effects [25]. However, such structure is very sensitive to the fabrication. It has a large size and requires
a complicated fabrication process. It was shown that the integration of multimode interference (MMI)
and resonators can provide new physical characteristics. By using the MMIs, we can overcome the
disadvantages of devices based on directional couplers such as compactness, ease of fabrication and
large fabrication tolerance [27]. One of such structures is a 3 × 3 MMI based microring resonator.
We have proposed for the first time microring resonator structures based on 3 × 3 and 4 × 4 MMI
couplers for Fano resonance generation [28–30]. In this study, we further develop new structures based
on only cascaded 3 × 3 multimode interference coupler based microring resonators to produce the
EIT resonance like transmissions. The proposed device is analyzed and optimized using the transfer
matrix method, the beam propagation method (BPM) and finite difference time difference (FDTD) [31].
A description of the theory behind the use of multimode structures to achieve the FRU and EIT effect
is presented in Sections 2 and 3. A brief summary of the results of this research is given in Section 4.

2. Single Fano Resonance Unit (FRU)

Fano resonance can be created by many approaches such as integrated waveguide-coupled
microcavities [32,33], prism-coupled square micro-pillar resonators, multimode tapered fiber coupled
micro-spheres and Mach Zehnder interferometer (MZI) coupled micro-cavities [34], plasmonic
waveguide structure [35,36]. We have proposed integrated photonic circuits for realizing Fano
resonance based on 3 × 3 MMI and 4 × 4 MMI microring resonator [29,37]. Figure 1a shows a scheme
for Fano resonance unit (FRU) based on only one 3 × 3 MMI coupler with a feedback waveguide.
Figure 1b,c shows the FDTD simulation for the FRU with input signal presented at input ports 1 and
2, respectively.

In the time domain, the Fano resonance system created by 3 × 3 MMI coupler based microring
resonator in Figure 1 can be expressed by the coupled mode equations [38]

dan

dt
= [j(ω0 + δωn)− 1

τ
]an + d fn + dgn+1 (1)

gn = exp(jφ) fn + dan (2)

where n = 1, 2 and d = j exp(jφ/2)/
√
τ; φ is the phase of the resonator depending on the feedback

waveguide, δωn is the nonlinear phase shift, an is the amplitude in the resonator mode; fn, gn are
the complex amplitudes at input and output ports; ω0 and τ are resonant frequency and lifetime of
the resonator.

In the frequency domain, the 3 × 3 MMI coupler can be described by a transfer matrix
M = [mij]3×3 which describes the relationships between the input and output complex amplitudes
(fields) of the coupler [39]. The length of the MMI coupler is to be LMMI = Lπ, Lπ is the beat length of
the MMI coupler. The relationship between the output complex amplitudes bj(j = 1, 2, 3) and the
input complex amplitudes ai(i = 1, 2, 3) of the coupler can be expressed by [39]⎛⎜⎝ b1

b2

b3

⎞⎟⎠ =
1√
3

⎛⎜⎝ −e−j2π/3 e−j2π/3 −1
e−j2π/3 −1 e−j2π/3

−1 e−j2π/3 −e−j2π/3

⎞⎟⎠
⎛⎜⎝ a1

a2

a3

⎞⎟⎠ = M

⎛⎜⎝ a1

a2

a3

⎞⎟⎠ (3)
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(a) 

  
(b) (c) 

Figure 1. (a) Fano resonance unit created by 3 × 3 MMI (multimode interference) based resonator
(b) FDTD simulation for input 1 and (c) finite difference time difference (FDTD) simulation for input 2.

The complex amplitudes at output ports 1 and 2 of the first microring resonator of Figure 1 are
given by

b1= (m 11 +
m13m31aexp(jq)
1 − m33aexp(jq)

)a1+(m 12 +
m13m32aexp(jq)
1 − m33aexp(jq)

)a2 (4)

b2= (m 21 +
m23m31aexp(jq)
1 − m33aexp(jq)

)a1+(m 22 +
m23m32aexp(jq)
1 − m33aexp(jq)

)a2 (5)

where α = exp(−α0L) is the transmission loss along the ring waveguide, L is the length of the feedback
waveguide and α0 (dB/cm) is the loss coefficient in the core of the optical waveguide; θ = β0L is
the phase accumulated over the racetrack waveguide, where β0 = 2πneff/λ and neff is the effective
refractive index, λ is the wavelength.

In this study, we use silicon waveguide for the design, where SiO2 (nSiO2 = 1.46) is used as the
upper cladding material. The parameters used in the designs are as follows: the waveguide has a
standard silicon thickness of hco = 220 nm and access waveguide widths are Wa = 500 nm for single
mode operation. It is assumed that the designs are for the transverse electric (TE) polarization at a
central optical wavelength λ = 1550 nm. In this study, we use the three dimensional beam propagation
method (3D-BPM) and Finite Difference Time Domain (FDTD) to design the whole structure [40].

Firstly, we optimize the position of the access waveguide ports of the 3 × 3 MMI coupler to
determine the proper matrix of the 3 × 3 MMI coupler expressed by Equation (3). The normalized
output powers at output ports of the 3 × 3 MMI varying with the location of input port 1 are shown in
Figure 2a. Figure 2b shows the normalized output powers at output ports for different locations of
input port 2. Here, the width and length of the MMI coupler are optimized by the BPM simulations to
be WMMI = 6 μm and LMMI = 99.8 μm. As a result, the optimal positions of the input ports 1 and 3
are p1,3 = ∓ 2.05 μm, respectively.
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(a) (b) 

Figure 2. Normalized output powers for different positions of (a) input port 1 and (b) input port 2.

The phase sensitivity of the output signals to the length variation of the 3 × 3 MMI coupler based
microring resonators is particularly important to device performance. We use the BPM to investigate
the effect of the MMI length on the phase sensitivity. Figure 3a shows the phases at output ports of the
3 × 3 MMI coupler at different MMI lengths. We see that a change of ±10 nm in MMI length causes
a change of 4.7 × 10−4 π (rad) in output phases. For the existing CMOS circuitry with a fabrication
error of ±5 nm [41], this is feasible and has a very large fabrication tolerance. Similarly, we consider
the effect of the positions of input waveguides on the phase sensitivity as shown in Figure 3b. For a
fabrication tolerance in the MMI length of ±50 nm, the fluctuation in phases is nearly unchanged.

 
(a) (b) 

Figure 3. The sensitivity of phases in output ports to (a) MMI (multimode interference) length and
(b) position of input 2.

3. Coupled Fano Resonances and Generation of the EIT Effect

The schemes for coupled Fano resonances to generate the EIT effect is modeled in Figure 4, where
single Fano resonance 1 and Fano resonance 2 of Figure 4a is exactly the same and Fano resonance
1 and Fano resonance 2 of Figure 4b is different with an exchange of input ports. We show that by
cascading two Fano resonances as shown in Figure 4, the EIT effects can be created. The exchange unit
can be realized by using only one 2 × 2 MMI coupler as shown in reference [42].
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Figure 4. Schemes of Coupled Fano resonances (a) bar connect and (b) cross connect.

In our case, the Fano resonance 1 and 2 are the FRU created by 3 × 3 MMI coupler based microring
resonator as shown in Figure 1. The first schemes of Figure 4a can be made as shown in Figure 5a and
the second scheme of Figure 4b can be made as shown in Figure 5b.

(a) 

 
(b) 

Figure 5. Coupled Fano resonances based on microring resonators based on 3 × 3 cascaded MMI
couplers (a) cross without cross-connect and (b) bar with cross-connect made from 2 × 2 MMI
coupler [42].

By using analytical analysis, the transmissions at the output ports of Figure 5a, for the input signal
presented at input port 1 (a2 = 0) are expressed by
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T1 =

∣∣∣∣(m11 +
m13m31αejθ

1 − m33αejθ )(m11 +
m13m31αejθ

1 − m33αejθ ) + (m12 +
m13m32αejθ

1 − m33αejθ )(m21 +
m23m31αejθ

1 − m33αejθ )

∣∣∣∣2 (6)

T2 =

∣∣∣∣(m21 +
m23m31αejθ

1 − m33αejθ )(m11 +
m13m31αejθ

1 − m33αejθ ) + (m22 +
m23m32αejθ

1 − m33αejθ )(m21 +
m23m31αejθ

1 − m33αejθ )

∣∣∣∣2 (7)

The transmissions at these output ports of Figure 5b, for the input signal presented at input port 1
(a2 = 0) are

T′
1 =

∣∣∣∣(m11 +
m13m31αejθ

1 − m33αejθ )(m22 +
m23m32αejθ

1 − m33αejθ ) + (m12 +
m13m32αejθ

1 − m33αejθ )(m12 +
m13m32αejθ

1 − m33αejθ )

∣∣∣∣2 (8)

T′
2 =

∣∣∣∣(m21 +
m23m31αejθ

1 − m33αejθ )(m22 +
m23m32αejθ

1 − m33αejθ ) + (m22 +
m23m32αejθ

1 − m33αejθ )(m12 +
m13m32αejθ

1 − m33αejθ )

∣∣∣∣2 (9)

For our design, the silicon waveguide is used. The effective refractive index calculated by the
FDM (Finite Difference Method) is to be neff = 2.416299 for the TE polarization. It assumed that the
loss coefficient of the silicon waveguide is α = 0.98 [43], the length of the feedback waveguide is
LR = 700 μm [25]. For the first scheme of Figure 5a, the EIT effects shown in Figure 6a can be generated
at output ports 1 and 2 while the input signal is at the input port 1. Figure 6b shows the EIT effects are
also created at output ports 1 and 2 while the input signal is presented at input port 2. We see that
the modulation depth of 80% for these EIT like transmissions have been achieved. As a result, our
structure can generate both the W-shape and M-shape transmissions. Such shapes can be useful for
optical switching, fast and slow light and sensing applications.

(a) (b) 

Figure 6. Transmissions of the coupled Fano resonances for Figure 5a with input signal is presented at
(a) input port 1 and (b) input port 2.

For the second scheme of Figure 5b, the EIT effects shown in Figure 7a can be generated at output
port 1 and port 2 while input signal is at input port 1. Figure 7b shows the EIT effects are also created
at output ports 1 and 2 while the input signal is presented at input port 2.
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(a) (b) 

Figure 7. Transmissions of the coupled Fano resonances for Figure 5b with input signal is presented at
(a) input port 1 and (b) input port 2.

In order to verify our proposed analytical theory, we use the FDTD for accurate predictions of
the device’s working principle. Figure 8 shows the FDTD simulations for the device of Figure 5a,b for
input signal at port 1, respectively. Figure 9 shows the FDTD of Figure 5a,b for input signal at port 2.
In our FDTD simulations, we take into account of the refractive index of silicon material calculated by
using the Sellmeier equation [44,45]:

n2(λ) = ε+
A
λ2 +

Bλ2
1

λ2 − λ2
1

(10)

where ε = 11.6858, A = 0.939816 mm2, B = 8.10461 × 10−3 and λ1 = 1.1071 mm.

(a) 

 
(b) 

Figure 8. FDTD simulations for input signal at input port 1 for the EIT scheme of Figure 5a,b at
wavelength λ = 1550 nm.
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(a) (b) 

Figure 9. FDTD simulations for input signal at input port 2 for the EIT scheme of Figure 5a,b
λ = 1550 nm.

In our FDTD simulations, a Gaussian light pulse of 15 fs pulse width is launched from the input
to investigate the transmission characteristics of the device. The grid sizes Δx = Δy = 5 nm and
Δz = 10 nm are chosen [46].

For the purpose of comparing the theoretical and FDTD analysis, we investigate a comparison of
the EIT like transmission effect between the theory and FDTD simulations. It is shown that the FDTD
simulation has a good agreement with our theoretical analysis as presented in Figure 10.

Figure 10. Comparison of theoretical and FDTD simulations.

4. Conclusions

We have presented a new method for the generation of the EIT effect based on coupled 3 × 3 MMI
based microring resonators. Both of the M-shape and W-shape like transmissions are created. The
device based on silicon waveguide, that is compatible with the existing CMOS circuitry, has been
optimally designed. Our FDTD simulations show a good agreement with the theoretical analysis
based on the transfer matrix method. The EIT effect can be determined based on these structures with
advantages of ease of fabrication and large fabrication tolerance.
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16. Peng, B.; Özdemir, Ş.K.; Chen, W.; Nori, F.; Yang, L. What is and what is not electromagnetically induced
transparency in whispering-gallery microcavities. Nat. Commun. 2014, 5, 5082. [CrossRef] [PubMed]

17. Chen, Z.; Song, X.; Duan, G.; Wang, L.; Yu, L. Multiple fano resonances control in mim side-coupled cavities
systems. IEEE Photonics J. 2015, 7, 1–5. [CrossRef]

18. Wang, Y.; Li, S.; Zhang, Y.; Yu, L. Independently formed multiple fano resonances for ultra-high sensitivity
plasmonic nanosensor. Plasmonics 2018, 13, 107–113. [CrossRef]

19. Li, J.; Qu, Y.; Wu, Y. Add-drop double bus microresonator array local oscillators for sharp multiple fano
resonance engineering. J. Appl. Phys. 2018, 123, 104305. [CrossRef]

20. Dong, C.-H.; Zou, C.-L.; Xiao, Y.-F.; Cui, J.-M.; Han, Z.-F.; Guo, G.-C. Modified transmission spectrum
induced by two-mode interference in a single silica microsphere. J. Phys. B At. Mol. Opt. Phys. 2009, 42,
215401. [CrossRef]

21. Chen, Y.-T.; Chern, R.-L.; Lin, H.-Y. Multiple fano resonances in metallic arrays of asymmetric dual stripes.
Appl. Opt. 2010, 49, 2819–2826. [CrossRef] [PubMed]

22. He, J.; Ding, P.; Wang, J.; Fan, C.; Liang, E. Double fano-type resonances in heptamer-hole array transmission
spectra with high refractive index sensing. J. Mod. Opt. 2015, 62, 1241–1247. [CrossRef]

23. Liu, H.; Leong Eunice Sok, P.; Wang, Z.; Si, G.; Zheng, L.; Liu, Y.J.; Soci, C. Multiple and multipolar fano
resonances in plasmonic nanoring pentamers. Adv. Opt. Mater. 2013, 1, 978–983. [CrossRef]

24. Liang, W.; Yang, L.; Poon, J.K.; Huang, Y.; Vahala, K.J.; Yariv, A. Transmission characteristics of a fabry-perot
etalon-microtoroid resonator coupled system. Opt. Lett. 2006, 31, 510–512. [CrossRef] [PubMed]

125



Micromachines 2018, 9, 417

25. Liu, Y.-C.; Li, B.-B.; Xiao, Y.-F. Electromagnetically induced transparency in optical microcavities.
Nanophotonics 2017, 6, 789–811. [CrossRef]

26. Le, T.T.; Cahill, L.W.; Elton, D. The design of 2 × 2 SOI MMI couplers with arbitrary power coupling ratios.
Electron. Lett. 2009, 45, 1118–1119. [CrossRef]

27. Soldano, L.B.; Pennings, E.C.M. Optical multi-mode interference devices based on self-imaging: Principles
and applications. IEEE J. Lightwave Tech. 1995, 13, 615–627. [CrossRef]

28. Le, T.-T.; Cahill, L. Generation of two fano resonances using 4 × 4 multimode interference structures on
silicon waveguides. Opt. Commun. 2013, 301, 100–105. [CrossRef]

29. Le, T.-T. Fano resonance based on 3 × 3 multimode interference structures for fast and slow light applications.
Int. J. Microwave Opt. Technol. 2017, 13, 406–412.

30. Le, D.-T.; Le, T.-T. Fano resonance and EIT-like effect based on 4 × 4 multimode interference structures. Int. J.
Appl. Eng. Res. 2017, 12, 3784–3788.

31. Huang, W.P.; Xu, C.L.; Lui, W.; Yokoyama, K. The perfectly matched layer (PML) boundary condition for the
beam propagation method. IEEE Photonics Technol. Lett. 1996, 8, 649–651. [CrossRef]

32. Fan, S. Sharp asymmetric line shapes in side-coupled waveguide-cavity systems. Appl. Phys. Lett. 2002, 80,
908–910. [CrossRef]

33. Le, D.-T.; Le, T.-T. Coupled resonator induced transparency (CRIT) based on interference effect in 4 × 4 MMI
coupler. Int. J. Comput. Syst. 2017, 4, 95–98.

34. Hon, K.Y.; Poon, A. Silica polygonal micropillar resonators: Fano line shapes tuning by using a mach-zehnder
interferometer. In Proceedings of the Lasers and Applications in Science and Engineering, San Jose, CA, USA,
23 February 2006.

35. Chen, Z.-Q.; Qi, J.-W.; Jing, C.; Li, Y.-D. Fano resonance based on multimode interference in symmetric plasmonic
structures and its applications in plasmonic nanosensors. Chin. Phys. Lett. 2013, 30, 057301. [CrossRef]

36. Zhang, B.-H.; Wang, L.-L.; Li, H.-J.; Zhai, X.; Xia, S.-X. Two kinds of double fano resonances induced by an
asymmetric MIM waveguide structure. J. Opt. 2016, 18, 065001. [CrossRef]

37. Le, D.-T.; Do, T.-D.; Nguyen, V.-K.; Nguyen, A.-T.; Le, T.-T. Sharp asymmetric resonance based on
4 × 4 multimode interference coupler. Int. J. Appl. Eng. Res. 2017, 12, 2239–2242.

38. Fan, S.; Suh, W.; Joannopoulos, J.D. Temporal coupled-mode theory for the fano resonance in optical
resonators. J. Opt. Soc. Am. A 2003, 20, 569–572. [CrossRef]

39. Le, T.-T.; Cahill, L. Microresonators based on 3 × 3 restricted interference MMI couplers on an soi platform.
In Proceedings of the Annual Meeting Conference (LEOS 2009), Belek-Antalya, Turkey, 4–8 October 2009.

40. Taflove, A.; Hagness, S.C. Computational Electrodynamics: The Finite-Difference Time-Domain Method, 3rd ed.;
Artech House: Norwood, MA, USA, 2005.

41. Bogaerts, W.; Heyn, P.D.; Vaerenbergh, T.V. Silicon microring resonators. Laser Photonics Rev. 2012, 6, 47–73.
[CrossRef]

42. Le, T.-T. The design of optical signal transforms based on planar waveguides on a silicon on insulator
platform. Int. J. Eng. Technol. 2010, 2, 245–251.

43. Xia, F.; Sekaric, L.; Vlasov, Y.A. Mode conversion losses in silicon-on-insulator photonic wire based racetrack
resonators. Opt. Express 2006, 14, 3872–3886. [CrossRef] [PubMed]

44. Palik, E.D. Handbook of Optical Constants of Solids; Academic Press: San Diego, CA, USA, 1998.
45. Le, T.-T. Highly sensitive sensor based on 4 × 4 multimode interference coupler with microring resonators.

J. Opt. Adv. Mater. 2018, 5, 264–270.
46. Le, D.-T.; Nguyen, M.-C.; Le, T.-T. Fast and slow light enhancement using cascaded microring resonators

with the sagnac reflector. Optik Int. J. Light Elect. Opt. 2017, 131, 292–301. [CrossRef]

© 2018 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

126



micromachines

Article

Utilization of 2:1 Internal Resonance in Microsystems

Navid Noori, Atabak Sarrafan, Farid Golnaraghi and Behraad Bahreyni *

School of Mechatronic Systems Engineering, Simon Fraser University, Surrey, BC V5A 1S6, Canada;
nnoori@sfu.ca (N.N.); asarrafa@sfu.ca (A.S.); mfgolnar@sfu.ca (F.G.)
* Correspondence: behraad@ieee.org; Tel.: +1-778-782-8694

Received: 3 August 2018; Accepted: 6 September 2018; Published: 8 September 2018

Abstract: In this paper, the nonlinear mode coupling at 2:1 internal resonance has been studied both
analytically and experimentally. A modified micro T-beam structure is proposed, and the equations
of motion are developed using Lagrange’s energy method. A two-variable expansion perturbation
method is used to describe the nonlinear behavior of the system. It is shown that in a microresonator
with 2:1 internal resonance, the low-frequency mode is autoparametrically excited after the excitation
amplitude reaches a certain threshold. The effect of damping on the performance of the system is
also investigated.

Keywords: 2:1 internal resonance; energy transfer; micromachined resonators; nonlinear modal
interactions; perturbation method

1. Introduction

Microresonators are microfabricated devices that can be operated at their resonance. These
microdevices are used in a variety of applications including timing references, filters, sensors, actuators,
etc. [1]. Microresonators are typically used within their linear range of operation. Nevertheless, there
has been an increasing interest in operating the microresonators at the nonlinear mode of operation to
enhance their performance [2–5]. Unavoidable nonlinearities can be found in many micro or macro
systems. They can cause severe impact on performance of high quality-factor (Q) MEMS devices.
In some cases, neglecting the presence of nonlinearities can lead to erroneous predictions of system’s
dynamic [6]. It is not always the case that engineers avoid the nonlinearities because of the degradation
in the system’s performance and the unwanted outcomes. MEMS designers can also beneficially
exploit nonlinearities, e.g., mechanical or electrical nonlinearities, in the design of microdevices for
various purposes, e.g., sensing, actuation, timing, and signal processing [7].

Nonlinear mode coupling is one of the outcomes of the presence of nonlinearities in the system.
Nonlinear mode coupling results in transfer of energy from an intentionally excited mode to other
modes of vibration. One of the mechanisms of nonlinear mode coupling is internal resonance.
Internal resonance (also known as autoparametric excitation) refers to the transfer of energy from one
vibrational mode to another mode where the resonance frequencies of these vibrational modes are
commensurable or nearly commensurable. Internal resonance can be used in various applications
including mass sensing, inertial sensing [8], energy harvesting [9], and noise suppression [10].

In a system with nonlinear 2:1 internal resonance: (1) there exists a frequency ratio of 2:1 between
the natural frequencies of two resonant modes, and (2) quadratic nonlinearities couple the vibrational
modes [11]. Due to this nonlinear mode coupling, energy can be channelled from one mode to another
mode. There is an interesting nonlinear phenomenon in the systems with 2:1 internal resonance,
which is known as saturation. When the system is excited at its primary mode, the amplitude of
this mode increases linearly with an increase in the excitation amplitude until the modal amplitude
reaches a specific threshold. After this point, the amplitude of the primary mode remains at a constant
value and the excessive energy acquired by the increase in the excitation amplitude channels to
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the secondary mode. One of the simplest examples of a system with 2:1 internal resonance is a
spring-pendulum system where energy is being exchanged between spring mode and pendulum
mode [12–14]. A similar study to investigate the internal resonance in a micro H-shaped microdevice
has been done by Sarrafan et al. [15].

In this paper, a microresonator with 2:1 internal resonance is introduced. The mathematical model
of the system is developed and solved by using a perturbation method. Reduced-order analysis of
the structure in CoventorWare© software (ver. 2012, Coventor, Inc., Cary, NC, USA) is also explained.
Finally, fabricated microdevice is characterized, and the experimental results showing nonlinear mode
coupling are thoroughly discussed.

2. Materials and Methods

A modified micro T-beam structure is designed to operate based on the principle of nonlinear 2:1
internal resonance. The schematic of the microdevice is shown in Figure 1. This design idea originated
from the T-beam design in [16]. The modified T-beam structure consists of three beams: (1) the drive
beam (bottom beam) which is anchored to the substrate and used for actuating the structure, (2) the
narrowed beam which is connected to the center of the drive beam and has a relatively low stiffness,
and (3) the sense beam which is connected to the narrowed beam and is used for sensing the response
of the system.

Figure 1. Schematic view of the modified micro T-beam.

Figure 2 shows the desired mode shapes of the structure from finite element method (FEM)
simulations in ANSYS® software. The structure is designed to have a frequency ratio of 2:1 between
its first and second structural modes. It is expected that exciting the system at its second resonance
frequency excites the first vibrational mode autoparametrically.

Figure 2. In-plane mode shapes of the micro T-beam structure obtained from ANSYS® FEM simulation:
(a) the first mode (b) the second mode.
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To better understand the nonlinear mode coupling and energy transfer between vibrational
modes, the equations of motion of the system can be solved by perturbation method. The first step in
this process is to model the system mathematically. The modified T-beam structure can be described by
using lumped elements, shown in Figure 3. In this model, m1 and m2 represent the effective mass of the
drive beam and the sense beam, respectively. Similarly, ci and ki are the effective damping coefficient
and the spring constant of the beams, respectively. By using Lagrange’s energy method, the equations
of motion can be written as:

(m1 + m2)
..
r1 + c1

.
r1 + k1r1 − m2r2((

..
θ1 sin(θ2) +

.
θ

2
1 cos(θ2) + 2

.
θ1

.
θ2 cos(θ2))

−m2r2(
..
θ2sin(θ2) +

.
θ

2
2 cos(θ2))− (m1 + m2)r1

.
θ

2
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m2r2
2

..
θ2 + c2

.
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r1 sin(θ2) + 2m2

.
r1r2

.
θ1 cos(θ2)

+m2r1r2(
..
θ1 cos(θ2) +
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θ

2
1 sin(θ2)) = −m2r2

2

..
θ1

(1)

Figure 3. Lumped element representation of micro T-beam structure.

These equations will then be non-dimensionalized and scaled. A perturbation method named as
two-variable expansion method is used to study the nonlinear behaviour of the system. Due to the
lengthy nature of the perturbation method, only the final solution of the system is provided here, with
additional details about each step in the perturbation method provided in [5]. The final perturbation
solution of the modified T-beam structure for ρ and θ, the non-dimensionalized amplitudes of the
drive beam and the sense beam, respectively, are found from [5]:

ρ = 2ω2
ω2

1

√
(σ1 + σ2)

2 + μ2
2 cos(Ω1τ − γ1) + O(ε)

θ = 1
ω2

√
Λ1±

√
f 2
1 ω6

1−Λ2
2

mω1
cos( 1

2 Ω1τ − γ1+γ2
2 ) + O(ε)

(2)

Parameters in Equation (2) are defined in Table 1.
Figure 4 shows the simulated nonlinear frequency response of the system from perturbation

solution. As it can be seen, as the energy starts to transfer between the modes, the amplitude of the
drive mode drops and the amplitude in sense mode grows. It can also be seen that a nearly flat region
is formed in the frequency response of the sense mode. Figure 5 illustrates the saturation phenomenon.
It can be seen that the system behaves linearly before the amplitude of the drive mode reaches a certain
point and there is no energy transfer between vibrational modes. However, the system starts to behave
nonlinearly as the amplitude in the drive mode reaches the threshold.
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Table 1. Definition of nondimensionlized parameters for Equation (2).

Nondimensionalized Parameters Symbol

Drive mode frequency ω1
Sense mode frequency ω2
Perturbation parameter ε

Detuning frequency (Ω1 = ω1 + εσ1) σ1
Detuning frequency (ω1 = 2ω2 + εσ2) σ2

Drive beam damping γ1
Sense beam damping γ2

Excitation force amplitude f 1
Excitation force frequency Ω1
ω2[4σ1(σ1 + σ2)− 2μ1μ2] Λ1
ω2[2μ1(σ1 + σ2) + 4σ1μ2] Λ2

 

Figure 4. Simulated Nonlinear frequency sweep achieved from two-variable perturbation solution.

 

Figure 5. Simulated saturation curve by two-variable perturbation solution.

Numerical simulation in CoventorWare© to model the dynamical behaviour can be helpful for
the proper design of the system. FEM analysis is also an essential step in the design process of the
system to ensure that resonance frequencies of the two desired structural modes are close to the 2:1
ratio (ω2 = 2ω1). Dimensional adjustments are done based on these results from FEM analysis to
ensure the target 2:1 frequency ratio. Architect module in CoventorWare© is being used to perform
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a reduced-order modelling and simulation of the system. Figure 6 shows the schematic view of the
modelled system in the CoventorWare© Architect.

 

Figure 6. System schematic in CoventorWare© Architect.

The electrostatic excitation is used in the simulations. A 40 V DC voltage is applied to the
electrodes, and the drive beam is excited to reach its resonance by applying appropriate AC voltage
to the drive electrode. Figure 7 shows the time response of the system with energy transfer between
vibrational modes. As it can be seen in the time response-similar to results from perturbation solution,
when internal resonance begins to happen, energy starts to exchange between vibrational modes.
The drive mode amplitude starts to drop, and the amplitude of the sense mode simultaneously starts
to grow exponentially until the system reaches to the steady state. The exponential growth of the sense
mode amplitude reveals the absence of damping during the transfer of energy between modes.

Figure 7. Time-domain response from transient simulation in CoventorWare© showing the transfer of
energy between vibrational modes.
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It is also expected that by increasing the excitation amplitude, the coupling between vibrational
modes becomes stronger. Therefore, the higher amplitudes can be observed in both the drive and
sense modes. Figure 8 demonstrates the nonlinear frequency response of the system for different
excitation amplitudes.

 
Figure 8. Nonlinear frequency curves in CoventorWare© showing the nonlinear mode coupling
between the drive and sense modes.

With the help of the perturbation solution and the CoventorWare© simulations, the modified
micro T-beam structure is designed. The microdevice is fabricated by Silicon-on-Insulator Multi-User
MEMS Processes (SOIMUMPS). SOIMUMPS is a general purpose microfabrication process introduced
by MEMSCAP for micromachining of devices with highly planar surfaces in a SOI framework. This
process is a simple 4-mask level SOI patterning and etching. It is a great choice of fabrication for proof
of concept purpose. This process has a minimum feature size of 2 μm and the minimum gap between
any two silicon parts is also 2 μm. More details about this process can be found in [17]. Figure 9 shows
the final fabricated structure.

 

Figure 9. Fabricated device using SOIMUMPS (Silicon-on-Insulator Multi-User MEMS
Processes) process.
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The next step is to perform experimental tests to investigate the nonlinear response of the
fabricated structure. Figure 10 depicts the test setup used for the nonlinear frequency sweep test.
The experimental setup used to conduct the frequency sweep tests consists of (1) the fabricated
modified micro T-beam, (2) vacuum chamber, (3) a DC voltage source, (4) a function generator for
excitation, (5) a signal amplifier, (6) spectrum analyzer to monitor the output signal. As it can be
seen, the system is being excited to reach its resonance by exciting the drive beam electrostatically.
The response of the system is being sensed through the electrostatic electrodes beside the sense beam
and is then being amplified before reaching the spectrum analyzer for monitoring.

Figure 10. Experimental setup for frequency sweep. Both excitation and sensing are done by
electrostatic transduction.

Resonance frequencies of the fabricated structure are also measured by a network analyzer and
specified to be 361.135 kHz (first mode) and 722.590 kHz (second mode). These measurements imply a
nearly ideal frequency ratio of 2.001. In the next section, the experimental frequency sweeps and also
the effect of damping on the performance of the system are discussed.

3. Results and Discussion

The drive beam is actuated by an AC signal with a frequency near its resonance frequency in the
range of 714 kHz and 724 kHz. Both forward and backward frequency sweeps are acomplished to
investigate the nonlinear performance of the structure. Figure 11 shows the sense beam’s response
in forward and backward frequency sweeps. It can also be observed in this figure that there is an
overlapping region between forward and backward frequency sweeps. This region relates to the
frequency range that response of the system is not dependent on the direction of the sweep.
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Figure 11. Forward (blue) and backward (red) frequency sweeps showing the nonlinear response of
the system.

The next step is to investigate the effect of damping on the nonlinear response of the system.
Damping of a resonator can be represented by the quality factor of the system (Q-factor). Quality factor
is one of the most important parameters of microresonators which directly relates to the resonance
amplitude of the microresonator. In a linear microresonator, a linear relation is expected between
Q-factor and amplitude at resonance. Figure 12 shows quality factor of the sense mode of the system
within its linear range of operation at different operating pressures. As can be seen, viscous damping
dominates the energy loss at pressures above ~100 mTorr. At lower pressures, other sources of energy
loss, such as support losses or thermoelastic damping, dominate. As these loss mechanisms are
independent of pressure, the quality factor plateaus at pressures less than ~70 mTorr.

Figure 12. Quality factor of the sense mode of the structure while operating in its linear region.

This figure also shows that the quality factor of the system operating in the linear region varies
between 4500 and 2200 in the operating pressure of nearly zero (10 mTorr) to 1.6 Torr. A set
of experiment is conducted to investigate the effect of operating pressure on the response of the
microresonator in the presence of the 2:1 internal resonance. To conduct this test, the vacuum chamber’s
pressure is being changed slowly from near vacuum condition (here 10 mTorr) to 1.6 mTorr. After
fixing the pressure, frequency sweeps are performed to show the internal resonance phenomenon.
Figures 13 and 14 show the nonlinear response of the system in different operating pressures for both
backward and forward frequency sweeps.
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Figure 13. Effect of pressure on the performance of the system in the presence of internal resonance in
a backward frequency sweep.

Figure 14. Effect of pressure on the performance of the system in the presence of internal resonance in
a forward frequency sweep.

These figures reveal that unlike the linear case, the amplitude of response in the presence of
2:1 internal resonance does not change significantly for pressures below 1600 mTorr. However,
the bandwidth of the response becomes smaller as the operating pressure increases. These results
show that microresonators working under internal resonance do not need to be necessarily packaged
in near vacuum which can significantly reduce the packaging costs of these MEMS devices.

4. Conclusions

A modified micro T-beam with the 2:1 internal resonance was proposed and designed with the
help of perturbation solutions and the nonlinear analysis in CoventorWare© Architect. The designed
structure was then fabricated by a SOIMUMPS process. Experimental tests on the fabricated structure
with a nearly perfect frequency ratio of 2:1 verified the simulation results qualitatively. A significant
response enhancement in both forward and backward frequency sweeps were also observed in these
results. The response of the system in different operating pressures was studied. It showed that
unlike the linear response of the system, response amplitude under the 2:1 internal resonance does not
depend significantly on the operating pressure.
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