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Summary 

This research focused on the design of a low noise, high stability silicon resonant 

accelerometer. It covered a range from the theory to the system implementation. First, the 

mechanisms that give rise to the unexpected phase noise and bias instability were 

explored with a theoretical study. In this theoretical study, state-space theory is applied to 

an ideal nonlinear oscillator with an ideal position sensor, an ideal velocity sensor, and an 

automatic amplitude control (AAC) loop. A quantitative phase noise model is thus 

derived. It soundly proved that despite of the nonlinearities in a MEMS resonator, the 

resultant phase noise is still governed by a linear transfer function to the noise sources in 

the oscillator loop and amplitude control loop. 

Guided by the derive model, a fully-differential MEMS oscillator circuit was 

designed for SOI resonant accelerometer. A differential sense resonator is proposed to 

facilitate fully-differential circuit topology and improves the SNR under a 3.3-V supply. 

The oscillator circuit consisted of an oscillation loop and a low noise automatic amplitude 

control (AAC) loop. The noise inside the oscillation loop was kept minimum by a low-

noise capacitive sense interface. The AAC loop contained a high-order loop filter and a 

novel chopper stabilized rectifier to remove the 1/f noise, and to minimize the phase 

noise caused by the noise aliasing. The complete resonant accelerometer operates under a 

3.3-V supply and achieves 140-Hz/g scaling factor, 20 μg/ Hz resolution and 4 μg bias 

stability, which was the state of the art. The readout circuit draws 7-mA under 3.3-V 

supply. 
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Chapter 1. Introduction 

 

1.1 Background 

1.1.1 MEMS reference oscillator 

Oscillators are widely used in modern communication systems, including 

voltage-controlled oscillators and timing reference (or clock). A timing reference 

is almost a must for every practical electronic system. Currently, the timing 

references for commercial products are dominantly provided by crystal oscillators, 

which have a market volume exceeding 4 billion dollars a year. Although a crystal 

oscillator is able to provide stable and clean oscillation, it is not compatible with 

any mainstream IC process. The timing reference is thus the bottleneck for a 

more compact and cheaper system. Additionally, crystal oscillators are relatively 

more expensive and dissipate significant power in portable systems.  

The primary concern of a timing reference is its spectrum cleanness. The 

spectrum cleanness is the defining factor for the fidelity of a communication 

system, which determines the maximum bit rate and the minimum power 

consumption. The cleanness of oscillation is usually characterized by its phase 

noise, which is defined by the ratio of noise to carrier power at certain frequency 

offset. Phase Noise near the carrier is particularly important in communication 

systems with narrow channel spacing. In fact, the allowable channel spacings are 

frequently constrained by the amount of the phase noise.  
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Oscillators based on high quality factor resonators are well-known for their 

ability to produce a stable, low-noise output frequency. An overwhelmingly high 

quality factor can be achieved in a MEMS resonator, from 10, 000s to 100, 000s, 

compared with only 1000s in a crystal resonator. This property makes MEMS 

oscillators attractive as alternative timing references in the near future. The 

drawbacks of crystal oscillators could also be avoided by MEMS oscillators, as it 

has the potential to be fully-integrated with other building blocks into a single chip 

and the MEMS resonator itself consumes negligible power. 

Startups such as Discera, and SiTime Corporation are manufacturing silicon 

MEMS oscillators. The first products from these two companies were two-chip 

solutions with limited phase noise performance, thus were limited to the low-end 

applications in Notebook PCs, digital cameras, DVD players, and other portable 

consumer electronic devices. Cell phones are also likely to witness the 

penetration of MEMS oscillators, as long as the next generation MEMS 

oscillators satisfy the tough phase noise specifications. 

 

1.1.2 MEMS resonant accelerometer 

The same properties mentioned above also make MEMS oscillators 

attractive in the sensing application. They are used in sensors such as MEMS 

vibratory gyroscopes, where an oscillation is established to produce a Coriolis 

acceleration, and resonant sensors, where the value of the frequency itself is the 

sensor output. Resonant sensors are superior to other type of sensors in a 



Silicon micromachined resonant accelerometer         HE LIN 2008  

 - 3 - 

number of aspects. Firstly, the phase noise of the oscillation output can be made 

very small [1], due to the high quality factor achievable in the sense resonator. 

Secondly, the quasi-digital nature of the output signal allows the sensor to easily 

interface digital systems. Thirdly, large input is allowed because the sensing 

element is generally a vibrating beam under an axial load, giving the sensor a 

very wide dynamic range [2]. 

Generally speaking, resonant sensing techniques are used when precision is 

the primary concern in the sensor application. Taking inertial navigation as an 

example, it requires accelerometers with extremely high precision at dc and low 

frequencies, as the positioning error is a double integral of the acceleration 

measurement error. In such applications, quartz resonant accelerometers, which 

are capable of detecting the tidal gravitational pull of the moon (10s of ng) [3], are 

frequently used [4]. 

Combining the powerful resonant sensing technique with micromachining 

could result in a high performance alternative for the expensive and bulky quartz 

resonant accelerometer but with much smaller size and lower cost. 

 

1.2 Motivation 

 

1.2.1 Problem statement 

As mentioned in the previous section, to be used as timing references, the 
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MEMS oscillators have to produce output signal with very low phase noise. 

Furthermore, to be used in resonant accelerometers for navigation application, 

the MEMS oscillators need not only to be low noise, but also to have low bias 

stability. Bias stability refers to the bias (offset) change during a certain period. 

Poor bias change can be caused by environmental factors such as temperature 

or by random factors such as 1/f noise. Since the temperature effect can be 

compensated in a number of ways, the ultimate precision of accelerometer is 

determined by the random bias change, such as 1/f noise in the frequency 

reading, or 1/f3 phase noise. Therefore, both the MEMS oscillators for timing 

reference application and for sensing application need to suppress the 1/f3 phase 

noise in the close-in region. 

At the first glance, it looks that MEMS oscillators should be able to achieve 

extremely low phase noise due to the extremely high quality factor achievable 

with the MEMS resonators. In practice, however, a MEMS oscillator always 

exhibits phase noise much worse than expected. A lot of experimental works 

have been done to find out the clues of this unexpected phase noise generation. 

T. A. Roessig [5] suggested that the nonlinearities in the mechanical component 

caused the 1/f3 noise through 1/f noise aliasing. S. Lee and C. T.-C. Nguyen [6] 

claimed that neither the 1/f noise in the sustaining circuitry nor the noise aliasing 

mechanism should be responsible for the measured 1/f3 phase noise. Instead, 

they speculated a link between the Duffing behavior and the unexpected phase 

noise and hence suggested that the oscillation amplitude should not exceed the 

Duffing bifurcation point. However, this link hasn’t been soundly proven yet. 
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Nevertheless, all the works highlighted a concrete link between the undesirable 

phase noise with the nonlinearities. 

Although there are ways to cancel the nonlinearities in a MEMS resonator, 

either through mechanical compensation, like folded suspension [7], or through 

nonlinear electrostatic stiffness [8], both of them work well only for low frequency 

resonators with natural frequency below hundreds of kHz. For MEMS resonators 

with higher natural frequencies, their mechanical stiffness are so high that the 

cancellation strategies mentioned above are no longer effective. Resonant 

accelerometers, although have a natural frequency around hundreds of kHz, are 

not applicable to these cancellation strategies either, as the same mechanism that 

causes nonlinearity is employed to cause the frequency shift under applied 

acceleration [2]. 

The constant scaling of the feature length in the CMOS technology and the 

resulting scaling down of supply voltage makes this nonlinearity problem even 

worse. Under a reduced polarization voltage, the output signal strength is 

compromised. To maintain the same signal-noise-ratio (SNR), a large oscillation-

amplitude is preferred, which in turn increases the resonator nonlinearity and the 

1/f3 phase noise. 

Fortunately, the nonlinearities will reduce as the oscillation amplitude 

decreases. It is therefore a common practice to introduce automatic amplitude 

control (AAC) to prevent a resonator from entering strong nonlinear region [5, 6]. 

The reduction of oscillation amplitude, however, will cause the linear phase noise 

to increase. A trade-off has to be made to reach optimum phase noise at specific 
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frequency offset, as shown in Fig.1. It is therefore desirable to maximize the 

oscillation amplitude without causing the nonlinear phase noise to dominate. 

However, there is a widely held belief that the maximum allowable oscillation 

amplitude is limited by the Duffing bifurcation point, otherwise a chaotic behavior 

will be triggered which abruptly deteriorates the phase noise [6]. Due to the high 

quality factor, the bifurcation limit of a MEMS resonator is extremely small [10], far 

smaller than the intrinsic material limit, which seems to doom the future of MEMS 

reference oscillator. It is thus crucial to understand the details of the interaction 

between the various noise sources and the nonlinearities in a MEMS oscillator 

and establish a reliable phase noise model for nonlinear MEMS oscillator so as to 

guide a low noise design.  

 

 

Figure 1.1 Illustration of phase noise in a nonlinear MEMS oscillator, the dotted 

line shows the changes of 1/f3 and 1/f2 phase noise at an increased amplitude. 
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However, the well-known linear time variant (LTV) model, which is widely 

used to analyze nonlinear electronic oscillators, fails to predict the phase noise in 

a nonlinear MEMS oscillator. In the LTV model, the oscillation frequency is 

explicitly assumed to be insensitive to the oscillation amplitude, which is in conflict 

with the A-S effect. Therefore, the phase noise mechanism in nonlinear MEMS 

oscillators needs to be studied with a different approach. It poses a challenge 

since a nonlinear oscillator with AAC loop is a complicated dynamic system which 

contains nonlinear building blocks such as amplitude detector, variable gain 

amplifier, and especially a nonlinear resonator. This prevents any ordinary linear 

analysis. To the author’s knowledge, a reliable quantitative phase noise model for 

a nonlinear mechanical oscillator has not been published yet. 

From the implementation point of view, low noise circuit level solutions need 

to be explored in both the oscillation loop and the AAC loop. The noise inside the 

AAC loop requires specific attention, as any additive noise introduced in this loop 

will appear as a noise in the oscillation amplitude and cause an extra phase noise 

through the A-S effect. The low noise design of the nonlinear building blocks in 

the AAC loop, such as amplitude detectors or rectifiers needs to be explored. 

 

1.2.2 Objective and overview 

This research aimed to suppress the 1/f3 phase noise and the bias stability 

caused by the nonlinear effect in the MEMS oscillators. Unlike many other 

colleagues in the area of MEMS oscillator, this work spent little effort on the 
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resonator design to minimize its nonlinearity, instead, it focused mainly on the 

system level solutions and circuit-level implementations to directly suppress the 

1/f3 phase noise caused by nonlinearity.  

The phase noise in a nonlinear MEMS oscillator employing automatic 

amplitude control is analyzed based on a state-space theory. From this analysis, 

a linear deterministic model was derived that quantitatively relates various noise 

sources to the resultant phase noise through the nonlinear terms. 

With the guide from the linear deterministic model, a robust AAC loop 

structure for nonlinear MEMS oscillators is used for better temperature stability 

and control of amplitude noise. A prototype low-noise low-drift MEMS oscillator 

with an integrated self-oscillation circuitry was presented in this research. This 

circuitry features a low-noise switched-cap capacitive sense front-end, a novel 

low-noise switched-cap differentiator, a linear variable-gain amplifier, a high-

efficiency trans-impedance buffer, a novel chopped rectifier, and an off-chip AAC 

loop filter. A prototype resonant accelerometer achieving 4-μg bias stability and 

20-μg/ Hz resolution is presented as well.  

The rest of the thesis is organized as follows:  

In chapter 2, an overview of resonant accelerometers will be presented. A 

brief description of accelerometer applications and their respective performance 

requirement is followed by a review of silicon resonant accelerometer as a 

possible low-cost high performance solution for high end application.  

Chapter 3 describes the operation principle and the design consideration of 

the silicon MEMS resonant accelerometer. In this chapter, the sensing 
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mechanism, force amplification, common-mode rejection, temperature effect, 

actuation mechanism, and readout principle are covered to give the reader an 

overview picture of MEMS resonant accelerometer. 

In Chapter 4, the fundamentals of nonlinear resonator are introduced. The 

dynamic behavior of a nonlinear resonator is described by a general nonlinear 

mass-damper-spring model and its amplitude-frequency response. The 

amplitude-stiffening effect as well as the Duffing bifurcation point is quantitatively 

studied.  

Chapter 5 reviews the previous works on MEMS oscillator structures and 

proposes a robust AAC loop structure for nonlinear MEMS oscillators for better 

temperature stability and control of amplitude noise. It was followed by the 

analysis of the phase noise in a nonlinear MEMS oscillator. Two of the widely 

recognized phase noise models, the linear time invariant (LTI) model and the 

linear time variant (LTV) model, are reviewed with their limitations on nonlinear 

MEMS oscillator examined. After that, a state-space analysis is performed on the 

nonlinear oscillator with the proposed AAC loop. A linear deterministic model is 

derived to quantitatively predict the phase noise. Low noise oscillator design 

guidelines are also developed in this chapter. Numerical simulation results are 

given to verify the model’s linear deterministic property and to compare the 

simulated phase noise power spectrum density with the model prediction. 

Chapter 6 discusses the implementation of the oscillator system, including 

the oscillator loop and the AAC loop. The capacitive sense interface makes 

extensive use of correlated-double-sampling to remove the opamp offset, the 
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charge injection and the kT/C noise. High speed switched-capacitor circuit design 

techniques are intentionally included to minimize the power consumption. In the 

AAC loop, a novel chopping technique is applied to the full-wave rectifier to chop 

away the 1/f noise component inside an ordinary rectifier. 

Chapter 7 presents experimental results from the prototyping oscillator and 

the resonant accelerometer developed during the course of this research. A 

resonant accelerometer with 4µg bias stability and 20µg/ Hz  noise floor is 

achieved.   

Chapter 8 concludes the thesis and describes the future work. 
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Chapter 2. Review of silicon resonant accelerometer 

 

In the following section, an overview of resonant accelerometers will be 

presented. A brief description of accelerometer applications and their respective 

performance requirement is followed by a review of silicon resonant 

accelerometer as a possible low-cost high performance solution for high end 

application. 

 

2.1 Accelerometer Applications and Performance Expectations 

Accelerometers can be used in any application that requires the 

measurement of acceleration. Since micromachined accelerometers are used in 

a wide range of applications, their required specifications are also application 

dependent and cover a rather broad spectrum. For instance, for microgravity 

measurements, a full-scale input range of ±0.1 g and a resolution of less than 

1μg in a frequency range from dc to 1 Hz are typical specifications. For 

navigation application where the accelerometer output needs to be double 

integrated to calculate the position information, the systematic accuracy is 

extremely sensitive to the dc and low frequency error in the measured 

acceleration. Therefore, in such an application, parameters like offset, long term 

bias stability, and scale factor stability are of primary concern. 

Summarized below are a few well established applications and their 
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associated performance expectations. 

 

2.1.1 Inertial navigation system (INS) 

Probably the most widely recognized accelerometer application is inertial 

navigation where accelerometers and gyroscopes are used to retrieve position 

information. Gyroscopes give the information of the orientation while a triad of 

accelerometers measures the acceleration vector. Performance requirements for 

accelerometers in these applications are very demanding and depend on 

systematic accuracy and the length of time over which the inertial sensor outputs 

are integrated. Tactical grade inertial navigation typically requires accelerometer 

resolution and drift to be below 100μg while strategic grade inertial navigation 

requires accelerometers with an order of magnitude or better resolution and drift. 

[11] 

 

2.1.2 GPS/INS 

The requirements for inertial navigation can be considerably relaxed with 

the aid of GPS. GPS provides periodic position information which not only 

shortens the required integration interval in an inertial navigation system but also 

provide information useful for characterizing and correcting errors in the inertial 

sensors. 

Tactical grade GPS/INS anticipate GPS signal jamming and hence the 

position is mainly determined by INS. In these cases, accelerometers with 0.1-
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1mg resolution are required. The bandwidth required for these sensors is usually 

application dependent but is generally in the 10 to 100-Hz range. [11] 

 

2.1.3 Automotive 

Automotive applications are diverse ranging from demanding GPS-assisted 

INS to crude collision detection in the event of a accident. Automotive GPS 

assisted inertial navigation and the associated accelerometer performance are 

similar to tactical grade GPS/INS, which is  0.1-1mg resolution with a bandwidth 

in the 10 to 100Hz range. On the contrary, accelerometers used in air bags 

require a quick response and hence a bandwidth above 400Hz, but the resolution 

can be greatly relaxed. [11] 

 

2.2 Literature review on silicon resonant accelerometer 

MEMS accelerometers, or silicon micromachined accelerometers, are one 

of the most important types of silicon-based sensors. They alone have the 

second largest market share after pressure sensors. In the last 20years, they 

have gradually replaced the conventional accelerometers in automotive and 

consumer application due to the low cost achieved through high-volume 

manufacturing, automated assembly and test methods and the relative ease of 

monolithic integration of CMOS electronics. They are used in automotive 

applications, such as safety systems, air bags, and electronic suspensions; in 

consumer applications, such as platform stabilization in camcorders, digital 
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camera, virtual reality, and sport equipment; in industrial applications, such as 

robotics and vibration monitoring.  

Despite the success of MEMS accelerometer in automatic and consumer 

applications, until very recently, the demands in high-end applications like 

aerospace and inertial navigation were still satisfied by the conventional bulky 

(and often expensive) accelerometers because of the demanding requirements. 

Due to the progress in the sensor fabrication and the interface circuit design, the 

performance of MEMS accelerometer keeps improving and is expected to step 

into traditional inertial navigation applications and emerging applications. 

In the past decade, though different detection mechanisms have been 

proposed, MEMS accelerometer development has been dominated by capacitive 

sensing [12-14], in which the acceleration is measured by the capacitance 

change, due to its good dc response, low temperature sensitivity [15]. However, 

capacitive accelerometer suffers from uncertain drift [16] in the presence of 

radiation, preventing them from the applications in harsh environment such as 

space exploration. Compared with capacitive MEMS accelerometer, resonant 

accelerometer is radiation resistant [17] as it measures the frequency shift of the 

resonant beams. Furthermore, the resonant beams are axially loaded during 

operation, which allow large input and wide dynamic range [2]. Historically, quartz 

resonant accelerometer is favored in high-precision, navigation quality sensors 

[3]. It is capable of detecting the tidal gravitational pull of the moon (10s of ng) [4]. 

However, quartz micromachining requires specific fabrication process which 

does not integrate well with IC process. 
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Combining the powerful resonant sensing technique with micromachining 

could result in a high performance alternative for the expensive and bulky quartz 

resonant accelerometer with only a size and cost comparable to a low-end 

MEMS capacitive accelerometer. The advantages of the silicon resonant 

accelerometer over conventional silicon micro accelerometer can be summarized 

below 

1. The frequency output can be read directly to the digital interface. 

The need for analog-to-digital conversion is thus eliminated, removing a major 

source of error and greatly reducing the system cost. 

2. Force rebalancing feedback is avoided, along with the extra error 

introduced in the feedback loop. 

3. The full-scale range is greatly extended by the open loop operation 

due to the super strength of silicon. 

4. The silicon wafer material has most impurities controlled to less 

than 0.1 ppb, in order to control the electronic properties of silicon. The same 

pure single crystal silicon used by the electronics industry also has extremely 

well defined and stable mechanical properties. Since the temperature 

coefficient of sensitivity (scale factor) is inherent in the material property, it is 

no doubt that it is constant and has no deviation. 

5. The frequency output has a build-in self-test feature. 

These features make the silicon resonant accelerometer a promising low-

cost solution for high-end applications, such as aerospace and navigation 

applications where the precision is a primary concern. 
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The first silicon micromachined resonant accelerometer was demonstrated 

by Satchell and Greenwood using piezoresistive sense and thermal actuation 

[23]. To cancel the effects of thermal expansion and nonlinearities, silicon 

resonant accelerometers with a differential matched resonator configuration are 

originally proposed and conceptually demonstrated by R. T. Howe and S.C. 

Chang [24], [25]. In their proposed structure, resonant accelerometers have a 

proof mass and two beams placed in the opposite sides or four beams at each 

side. This prototype achieved a sensitivity of 160Hz/g. Resolution and bias 

stability is not measured in this prototype. 

The first navigation grade silicon resonant accelerometer [18] was reported 

in 1994, fabricated from a hybrid process which combines the bulk 

micromachining to fabricate a huge proof mass and a fine reactive ion etching 

(RIE) process to fabricate a delicate sense resonator. The sense resonator is 

configured as a double ended tuning fork (DETF). The performance achieved 

was bias stability<50ug and TCF=42ppm, but the sensitivity and the unloaded 

frequency was not disclosed. An improved version [26] from the same group has 

a sensitivity of 680Hz/g at 90kHz unloaded frequency and 0.1ug (or 0.75ppb) 

bias stability. 

Although the lateral structure of resonant accelerometer described in [25] is 

straightforward, z-axis structure using bulk-micromachining and silicon-glass 

wafer bonding dominants the early development of resonant accelerometer. 

Taking advantage of a big proof-mass and large sensitivity, a navigation-grade 

resonant accelerometer was reported [27]. It has a chip size of 10.2mmх8.3mm 
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and a 2μg bias stability in more than several days.  

A resonant accelerometer employing piezoresistive sense and electrostatic 

drive was reported by D.W. Burns, et al. [19]. It had a similar structure and chip 

size as [18] but reached a much worse performance. The performance it 

achieved was: sensitivity greater than 700Hz/g, root Allen variance below 140μg, 

and seven day stability less than 1.4mg, almost two orders of magnitude worse 

than [18]. It suggests that capacitive sense and electrostatic actuation is the key 

feature for resonant accelerometers to achieve navigation grade performance. 

Resonant accelerometer can be fully integrated with CMOS interface circuit 

using modified CMOS process with surface micromachining option. Surface 

micromachining is virtually a two dimension process in which the proof mass has 

the same thickness as that of sense resonators, hence a small proof mass. To 

maintain enough sensitivity under such a small proof mass, a leverage 

mechanism that multiplies the force applied axially to the sense resonator, is a 

must. BSAC (Berkeley Sensors and Actuators Center) in University of California, 

Berkeley reported such a surface micromachined resonant accelerometer 

employing leverage mechanism [21]. The sense resonator used in this design is 

actually double-ended tuning-fork comb resonators. Its motion is sensed 

capacitively and driven electrostatically. The sensor is integrated with a CMOS 

interface circuit on chip. It achieved 45Hz/g sensitivity @ 68kHz base frequency, 

root Allen variance below 38mHz. An improved version of this kind of 

accelerometer was published in 2002 [28]. 

Similar resonant accelerometer design for surface micromachining can be 
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applied to dissolved wafer process which produces devices with uniform but thick 

structure. The Charles Stark Draper Laboratory reported one navigation grade 

resonant accelerometer based on silicon-on-glass dissolved wafer process [20]. 

This structure has a 12um thickness. With a breadboard electronic, it achieved a 

one sigma bias stability of 5µg, and a white noise of 23µg/√Hz.  

Not only mechanical stiffness, but also electrostatic stiffness can be 

employed for the resonant sense of displacement. The nonlinear transfer 

characteristic of capacitive transducer produces a negative stiffness responding 

to a polarization voltage. This negative stiffness is a function of displacement for 

plane capacitive transducer, therefore, applying a DC voltage between the two 

plates of a conventional capacitive Z-axial accelerometer will shift the plates’ 

natural frequency with respect to the displacement [22, 29, 30]. However, the 

output frequency is polarization voltage dependant, which makes it susceptible to 

the 1/f noise and supply voltage fluctuation and not suitable for high precision 

application. 

In general, the previously reported silicon resonant accelerometers with 

navigation-grade stability (10s of μg) is achieved by the combination of bulk-

micromachining, capacitive sense, electrostatic drive, breadboard electronics 

made from discrete components, as well as vacuum environment. Bulk-

micromachined sensor with breadboard electronics is inferior to fully integrated 

surface-micromachined sensor with on-chip interface circuit, in terms of system 

cost, power consumption, and size. However, it is difficult to design a low noise 

high accuracy monolithic readout circuit for SRA based on CMOS process. The 
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first SRA integrated with a CMOS readout circuit reached a 0.8 mg bias stability 

with 45 Hz/g sensitivity [21], which is two orders of magnitude away from the 

navigation-grade performance. Since the surface micromachining process is 

used and the resonator output is much weaker, the 1/f noise of the readout circuit 

dominates the poor bias stability. 

Bias stability refers to the bias (offset) change during a certain period. Poor 

bias change can be caused by environmental factors such as temperature or by 

random factors such as 1/f noise. Since the temperature effect can be 

compensated in a number of ways, the ultimate precision of accelerometer is 

determined by the random bias change. In this paper, bias stability refers to the 

random bias change to simplify the writing. In contrast to white noise, the bias 

change caused by 1/f noise can not be reduced by averaging and therefore must 

be minimized in the readout circuit. In SRA, the 1/f noise appears as 1/f3 

sideband, known as 1/f3 phase noise, around the frequency of oscillation and 

pollutes the frequency reading. 

The mechanism and the model of phase noise, in a MEMS oscillator, will be 

reviewed in chapter 5. In the next chapter, the operation principle of silicon 

resonant accelerometer will be presented. 
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Chapter 3 Silicon resonant accelerometer 

 

3.1 Sense principle 

A resonant accelerometer is a device that measures the frequency changes 

of sense elements under applied acceleration. As shown in Fig. 3.1, a typical 

silicon resonant accelerometer has a proof mass and two sense resonators 

placed at opposite sides along the axis of acceleration. When it is subject to 

acceleration, the proof mass will axially loads the beams of sense resonators and 

shift their stiffness and hence their natural frequencies.  

The frequency difference between the two sense resonators is the measure 

of the acceleration. To detect the frequency difference, the sense resonators are 

excited to their individual natural frequencies, f1 and f2, by self-oscillation loops. 

The two output frequencies are mixed together and passed through a low pass 

filter (LPF) to remove the high frequency artifacts, as shown in Fig. 3.1. The 

output frequency difference can then be measured either by analog methods 

such as phase-locked loops, or digital methods such as counting the zero-

crossings and comparing it to a high precision clock. For accuracy, the oscillation 

loop design should make sure that the oscillator oscillates precisely at the sense 

resonator’s natural frequency. 

One drawback of using of the silicon micromachined resonator as the sense 

element is its temperature dependence. Because of the temperature sensitivity of 
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the elastic modulus of the material, the natural frequency of the resonator is a 

strong function of the ambient temperature. This gives the resonant sensor a 

poor temperature stability. The problem is overcome by the use of differential 

topologies. Instead of relying on the absolute frequency reading of a resonant 

beam, this device reads the frequency difference between two matched 

resonators as the output of the sensor. A shift in the ambient temperature will 

cause the frequencies of both resonators to change. Provided that the resonators 

are well-matched, they will shift the same amount. And the frequency difference 

will remain unchanged. This ‘push-pull’ scheme cancels the temperature drift to 

the first order. This scheme is not limited to cancel the temperature effect only. 

As a matter of fact, any common mode error present in both of the sense 

resonators, such as the frequency shift caused by the residue stress, the 

systematic fabrication error and etc, can be rejected by the fully differential 

topology as well. 
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Figure 3.1 Schematic diagram of a typical differential resonant accelerometer 

 

3.2 Mechanical analysis of resonant beam 

The sense resonator in resonant accelerometer is made out of a resonant 

beam and its associated actuator. This resonator belongs to the clamped-

clamped resonator category as both of the ends of the resonant beam are 

clamped. The dimensions of the resonant beam and the material from which the 

sense resonator is made determine its natural frequency and its frequency 

sensitivity to the applied force. 
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Figure 3.2 Beam model used for vibration analysis 

 

The model for analyzing the vibration of a clamped-clamped beam is shown 

Fig. 3.2. The resonant beam is fixed at both ends with one or more masses 

placed along it. The lumped masses model the masses of the comb actuator, 

which will be discussed in the next subsection. The differential equation that 

describes the motion of the beam is thus given below [31] 

2 2 2

2 2 2( ) ( ) ( )w w wEI F A P y
y y y y t

ρ∂ ∂ ∂ ∂ ∂
+ + =

∂ ∂ ∂ ∂ ∂
                 (3.1) 

where w is the deflection of the beam, E is the modulus of elasticity of the 

material, I is the inertial momentum of the beam cross-section, F is the axial 

tension applied to the beam, ρ is the density of the material, A is the beam cross-

sectional area, and P is the transverse force applied to the beam. For the 

unforced motion, P is zero everywhere except where the actuation masses locate, 

where the inertial force of each mass has to be considered 
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( ) ( )j j j
j

P m w y yδ= ∑ ��                        (3.2) 

where mj is the jth mass and yj is the position of that mass. The boundary 

conditions for this beam are given below 

(0) ( ) 0w w L= =                                

(0) ( ) 0dw dw L
dy dy

= =                        (3.3) 

To solve Eq. (3.1), assume the motion of the beam is a linear combination of a 

number of vibration modes, each independent from the others and each being 

defined by the “modal coordinate” ( )ix t  multiplied by the “mode shape” ( )i yφ  

  ( , ) ( ) ( )i i
i

w t y x t yφ= ∑                       (3.4) 

Given this, the following equation can be derived [31] 

22
2 2 2

20 0 0
( ) ( ) 0

L L Li i
i j j i i

j
A dy m y x EI dy F dy x

y y
φ φρ φ φ

⎛ ⎞⎛ ⎞ ⎛ ⎞∂ ∂
⎜ ⎟+ + + =⎜ ⎟ ⎜ ⎟⎜ ⎟∂ ∂⎝ ⎠⎝ ⎠ ⎝ ⎠

∑∫ ∫ ∫��     (3.5) 

The first term in the above equation can be thought of as the inertia term and the 

second as the stiffness term. Thus the effective mass and the effective stiffness 

can be defined as 

2 2

0
( )

L

eff i j j
j

M A dy m yρ φ φ= + ∑∫                    (3.6.a) 

22
2

20 0
( )

L Li i
effK EI dy F dy

y y
φ φ⎛ ⎞∂ ∂

= + ⎜ ⎟∂ ∂⎝ ⎠
∫ ∫               (3.6.b) 

Note that the effective stiffness is linearly proportional to the axial tension F. This 

effect is the very effect that causes the frequency shift of sense resonator under 

applied acceleration. Using these definitions, the motion equation can be written 



Silicon micromachined resonant accelerometer         HE LIN 2008  

 - 25 - 

as 

0eff i eff iM x K x+ =��                            (3.7) 

The natural frequency corresponding to this particular mode is given 

eff
n

eff

K
M

ω =                               (3.8) 

According to the classical beam theory [32], the first resonance mode 

shape for this clamped-clamped beam is 

1( ) {sinh( / ) sin( / ) [cosh( / ) cos( / )]}y C y L y L y L y Lφ β β α β β= − − −     (3.9) 

where the constants are C≈0.619, β≈4.73, α≈1.018. Assuming the excitation 

force is applied at the center of the beam, the lumped effective mass and the 

spring constant corresponding to the first resonance mode are 

00.396m whLρ=                                 

3
0

125.1eff
YIK
L

= i                            (3.10) 

where I is the inertial momentum of the beam cross-section, Y is the Young’s 

modulus, h is the beam height, w is the beam width, and L0 is the beam length.  

 

3.3 Mechanical leverage-force amplifier 

In order to maximize the sensitivity achievable with a relatively small proof 

mass, a pair of mechanical leverages is used to amplify the forces axially 

applying to the resonant beams. A mechanical leverage consists of a pivot beam 

with one end fixed at an anchor, and a rigid bar to approximate a fulcrum and a 

lever, as shown in Fig. 3.4. The input of the leverage, Fin, is the inertial force of 
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the proof mass while the output of the leverage, Fout, is the force applied to the 

resonant beam. With the improved sensitivity from the amplified force, the noise 

floor and the bias stability of this acceleration sensor can be greatly improved 

with a reasonable silicon real estate. However, the maximum achievable force 

amplification factor is usually limited to an order of magnitude, because the 

bending of the pivot beam causes an energy loss and lowers the actual force 

multiplication ratio.  

 

Figure 3.3 illustration of a mechanical leverage 

 

3.4 Electrostatic Actuation 

The resonant beam studied here is excited electrostatically. The concept of 

electrostatic Actuation has been covered in a number of works [33, 34], so only 

the basics about electrostatic actuation are reviewed here. 
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Figure 3.4 Electrostatic actuation 

 

The purpose of an electrostatic actuator is to convert a mechanical power in 

the form of force, position and velocity to an electrical power in the form of 

voltage and current, or vice versa. This conversion is done through the capacitor 

formed between the stationary part and the movable part of the actuator. As 

shown in Fig. 3.4(a), a charge is stored across the capacitor when a DC voltage 

(referred to as Vp or the ‘polarization voltage’) is applied across it. If the parts 

move apart, the capacitance (and therefore the stored charge) decreases, 

resulting in a charge stream, or current, to flow from the structure.  

The motion-to-current transduction factor can be derived by considering the 

amount of charge stored across the transducer 

s P P
dQ dC dC dxi V V
dt dt dx dt

= = =                      (3.11) 

where si  is the sense current produced by the motion. Note that the polarization 

voltage is assumed to be constant on the sense node. The above equation 
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shows that the output current is proportional to the velocity of the movable 

portion of the transducer, assuming /dC dx  is a constant. 

An electrostatic force is also produced between the moving parts and 

stationary parts due to the attraction of positive and negative charges. Both the 

voltage-to-force and motion-to-current relations can be simply derived by taking 

the actuator as a variable capacitor. The amount of energy stored in the actuator 

is 

21
2 PU CV=                        (3.12) 

where C is the capacitance between the two parts of the electrode, and Vp is the 

polarization voltage applied across the actuator. The force exerted between the 

parts can be found by dU/dx, or 

21
2 P

CF V
x

∂
=

∂
                            (3.13) 

where x is the position of the movable structure. A small voltage variation vd in 

the polarization voltage results in a small incremental force change (Fig. 3.4(b)) 

( ) ( )p d p P d
CF F V v F V V v
x

∂
Δ = + − ≈

∂
                (3.14) 
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Figure 3.5 (a) Comb drive actuator and (b) parallel plate actuator 

 

There are two kinds of electrostatic actuators that are frequency used. One 

is comb-drive actuator while the other one is parallel-plate actuator. A comb drive 

actuator consists of two sets of interdigitated combs, as is shown in Fig. 3.5(a). 

The variable capacitor formed in this actuator can be viewed as a series of 

parallel-plate capacitors connecting in parallel. Since the capacitance change is 

caused by the change in overlap area between the two combs, it varies linearly 

with the position of the combs. This linear variance results in a constant /dC dx , 

independent of position. The capacitance associated with this structure is 

N txC
g
ε

=                           (3.15) 

Where N is the number of comb gaps, ε is the dielectric constant, t is the 

structure thickness, x is the overlap between the combs, and g is the comb gap 
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distance. Applying Eq. 3.15 to Eq. 3.11 and Eq. 3.14, the voltage/force and the 

motion/current relation are derived 

P d
N tF V v

g
ε

=  s P
N t dxi V

g dt
ε

=                     (3.16) 

In reality, the above equations are only approximations due to the presence of 

fringing fields. 

The other common class of electrostatic transducers is the parallel plate 

(Fig. 3.5(b)), where the capacitance change is due to the change in the distance 

between two plates. The capacitance of this structure is 

AC
g

ε
=                           (3.17) 

where A is the overlap area and g is the gap distance. So the voltage/force 

and motion/current relations are 

2 P d
AF V v

g
ε

=  2s P
A dgi V

g dt
ε

=                  (3.18) 

Note that as the movable plate changes position, the gap size will change as well. 

This dependence of the transduction constants on plate position illustrates the 

nonlinearity of the parallel plate method. This kind of transducer provides higher 

transduction, but is also very nonlinear with position. This nonlinearity results in a 

negative stiffness which appears as a frequency offset at the resonant frequency. 

Since it is very difficult to implement a polarization voltage as stable as the 

mechanical property of bulk silicon, this frequency offset caused by the negative 

stiffness is a source of frequency instability. Therefore, to achieve higher bias 

stability, comb drive actuator is generally preferred to parallel plate actuator. 
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3.5 Damping 

Damping refers to the mechanism that causes the energy loss. It has been 

neglected in the preceding dynamic analysis but is an important consideration in 

the design of a MEMS resonator. Damping gives rise to Brownian noise and 

determines the quality factor which limits the ultimate achievable frequency 

resolution. For this reason, care must be taken to reduce the damping either 

through the mechanical design or vacuum packaging. 

There are two main sources of damping in the MEMS resonators, one is the 

viscous damping from ambient gas and the other one is the structural damping 

from the material itself. Viscous damping dominates at atmospheric pressure or 

low vacuum level. It appears as a force against the motion of object and is 

proportional to the velocity of an object, as is given below 

dampF vη= −                          (3.19) 

where dampF  is the damping force, η is the damping coefficient, and v is the 

velocity of the object. In the case of comb-drive actuator, the opposite plates 

move parallel to each other, as shown in Fig. 3.6(a), causing a Couette flow 

damping (also known as slid film damping).  



Silicon micromachined resonant accelerometer         HE LIN 2008  

 - 32 - 

Figure 3.6 Illustration of (a) Couette flow damping and (b) Squeeze film damping 

 

The damping caused by Couette flow is given by 

A
g

η μ=                           (2.20) 

where η is the damping coefficient, μ is the fluid viscosity, A is the overlapping 

area, g is the gap distance.  

In the case of parallel plate actuator, opposite plates move to and fro with 

respect to each other (Fig. 3.6(b)). The gas in the gap is compressed and 

squeezed out the perimeter of the plates. The behavior of the squeezed film 

differs depending on how fast the plates move. For fast moving, the gas is mostly 

compressed and behaves like a spring. For slow moving, the gas is mostly 

squeezed out which results in a squeeze film damping. 

The viscous damping has been studied in a number of works [35-37], here 

only the concepts are introduced. In a real case, the visous damping is more 
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complicated than the simplified Couette flow damping or squeeze film damping 

and requires numerical simulation to determine its exact value.  

In a high vacuum environment, structural damping will tend to dominate 

over fluid damping [38]. Structural damping arises from viscoelastic strain in the 

mechanical element. With structural damping, the energy dissipated in each 

vibration cycle is proportional to the vibration amplitude. It means that the 

damping coefficient is no more a constant, as is in a typical viscous damping. As 

a matter of fact, the effective quality factor caused by structural damping tends to 

increase at an increased amplitude. However, to simplify analysis, the structural 

damping related quality factor is assumed to be a constant [39]. 

 

3.6 Equivalent electrical network 

With the help of electrostatic actuators, the MEMS resonator is no more a 

mechanical component. Instead, it can be modeled as an electrical network. This 

network has a voltage input at the drive electrode and a current output at the 

sense electrode. Fig. 3.7 shows the transformation of the MEMS resonator to an 

equivalent RLC network, with the relationships between mechanical parameters 

to electrical parameters indicated. This transformation shows that the equivalent 

resistance Reff inversely proportional to the square of polarization voltage Vp.  
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Figure 3.7 Transformation of a MEMS resonator to an equivalent RLC 

model 

 

3.7 Parasitic electrical coupling 

Parasitic electrical coupling, also known as feedthrough, refers to the 

undesirable signal caused by the parasitic electrical components. Fig. 3.8 

conceptually illustrated the possible coupling paths for a MEMS resonator. The 

MEMS resonator itself is represented by a RLC network. The motion current 

caused by the electrical-mechanical actuation is identified as Im. Cft represents 

the parasitic capacitance between the drive and sense node. To drive, to sense, 

and to polarize the resonator from the outside, 3 pads are required. Their 

parasitic capacitances to the substrate are represented by Cp1-Cp3. However, the 

substrate itself is not an ideal conductor, thus is modeled as a T-shape network. 

Icft represents the electrical coupling through the parasitic capacitance Cft. Isft 

represents the electrical coupling through the substrate. Fig. 3.9 conceptually 
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compares the frequency response between an electrostatically actuated 

resonator without and with parasitic electrical coupling. Since the current caused 

by the mechanical motion is very small, the existence of parasitic electrical 

coupling has a significant impact on the dynamic response of a feedback system. 

To remove the undesirable parasitic electrical coupling, two of the frequently 

used methods, known as electromechanical amplitude modulation (EAM) [40] 

and time-multiplexing [12], are frequently used. They will be discussed in more 

details in section V. 
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Figure 3.8 Illustration of parasitic electrical coupling paths in a MEMS 

resonator built from SOI substrate. 
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Figure 3.9 Illustration of the frequency response of a MEMS resonator (a) 

without parasitic electrical coupling and (b) with parasitic electrical coupling. The 

frequency is normalized to its natural frequency. 
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3.8 Fabrication process 

We chose a silicon-on-insulator (SOI) process [41] to fabricate our resonant 

accelerometer sensor to exploit the super stable mechanical property of single-

crystal silicon and the perfect temperature matching between the substrate and 

the structure layer. This SOI process starts with a SOI wafer which consists of a 

25 μm top structural silicon layer, a 1 μm oxide layer and a thick substrate layer 

(Fig. 3.10(a)). The top Silicon layer is doped to enhance its conductivity (Fig. 

3.10(b)). A metal stack (“pad metal”) consisting of 20 nm Cr and 500 nm Au is 

deposited and patterned on top of the electrodes which will be defined in the later 

processes to further enhance their conductivity (Fig. 3.10(c)). The top silicon 

layer is lithographically patterned and deep reactive ion etched (DRIE) to define 

the mechanical structures (Fig. 3.10(d)). Next, the wafer is selectively etched 

through the substrate layer from the backside to make trenches (Fig. 3.10(e, f)). 

These trenches not only release the movable structures in the top silicon layer, 

but also suppress the substrate parasitics. At last, on top of the wafer, a “shadow 

mask” is temporarily bonded, through which a second metal layer (blank metal) is 

deposited (Fig. 3.10(g, h)). The deposited metal layer, or ‘blanket metal’, is 

frequently used for large metal lines such as the substrate contact.  
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(a)starting wafer (b)doping of top silicon layer 

(c) pad metal forming (d) DRIE 

(e)bulk etching (f)releasing of protection layer 

(g)shadow mask and blank metal 

 

(h)remove shadow mask 

 

Figure 3.10 SOI process flow 
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3.9 Our resonant accelerometer design 

Our SRA design is conceptually sketched in Fig. 3.11. Since the whole 

structure is released with the through-hole from backside, the anchors in the 

mechanical leverages are not allowed to be placed in the center. Hence the 

mechanical leverages are modified with the anchors placed at the corner (shown 

in Fig. 3.11). The details of the modified mechanical leverage can be clearly seen 

in the microphotograph in Fig. 3.12. As is discussed in Section 3.3, the bending 

of the pivot beam caused the loss of amplification factor. Therefore, to minimize 

the bending of pivot beam, an additional wide rigid bar is inserted to strengthen 

the structure below the leverage. The pivot beam is also intentionally designed to 

be a slim one for the same reason. A clamper is included to prevent the motion at 

the end of resonant beam to make sure the resonant beam vibrates at the 

desirable mode. With the aid of a finite element analysis tool, this modified 

structure was finely adjusted to reach an optimum force amplification ratio of 

around 35.  To further improve the sensitivity, a layer of “blank metal” is 

deposited on top of the proof mass. The accelerometer achieves a sensitivity of 

140Hz/g with a nominal frequency of 135 kHz. 
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Figure 3.11 Schematic diagram of the resonant accelerometer based on 

SOIMUMPs process 

 

Figure 3.12 Microphotograph of a mechanical leverage in the resonant 

accelerometer 



Silicon micromachined resonant accelerometer         HE LIN 2008  

 - 41 - 

The sense resonator is a key component in a resonant accelerometer. In the 

previous work [18-20], the sense resonators are made with a double-ended 

tuning fork (DETF) structure shown in Fig. 3.13(a). The two beams are excited 

exactly 180° out-of-phase during the operation to minimize the acoustic radiation. 

Although this structure helps achieve a good quality factor (Q), it favors only 

single-ended operation. In our design, to take advantage of differential operation, 

a connection is made at the center of DETF, as shown in Fig. 3.13(b), which 

forces both beams to move exactly in-phase with each other, resulting in a 

differential capacitance change. Comb structures are chosen for electro-

mechanical transduction for their good linearity. The sense resonator has a 

measured Q of 30,000 @ 0.1m bar (Fig. 3.14(b)), compared with the Q of DETF 

resonator in the range of 50,000-100,000. The reduced Q of the new sense 

resonator is already high enough to bring the motion current above the noise 

level under a 3.3 V polarization voltage. However, due to the strong parasitic 

electrical coupling, the resonant peak is barely seen at 3.3 V, as shown in Fig. 

3.14 (a). 
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(b) 

Figure 3.13 (a) Double-ended tuning fork for single-ended operation and (b) 

modified structure for fully-differential operation. 
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(b) 

Figure 3.14 Measured sense resonator frequency response (a) at 3.3 V 

polarization voltage and (b) at 25 V polarization voltage. 
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Chapter 4 Resonator nonlinearities 

 

Strictly speaking, every physical device exhibits nonlinear characteristics, 

but the nonlinearities are usually so small that are ignored in analysis. However, 

due to the overwhelmingly high quality factor and the relatively large amplitude to 

achieve enough signal-noise-ratio, nonlinearities play an important role in the 

dynamic behavior of a MEMS resonator. This section reviews the origin of 

nonlinearities in the electrostatically actuated MEMS resonators and their forced 

dynamic response.  

 

4.1 Origin of nonlinearities 

The nonlinearities in MEMS resonators can have mechanical and/or 

capacitive origin. The mechanical nonlinearity is due to geometrical and material 

effects in the resonating element while the capacitive nonlinearity is due to 

nonlinear characteristic of electrostatic force. In this section, both effects are 

briefly reviewed. 

4.1.1 Geometrical 

(A) Clamped-clamped beam resonator 

The dominant source of nonlinearities present in the resonant beam is the 

mechanical nonlinearity due to geometrical effect. Take the clamped-clamped 
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beam resonator as an example, as its vibration amplitude increases, the 

resonant beam is forced to extend, as shown in Fig. 4.1. This extension causes 

additional axial force, adding to the stiffness in the structure. This stiffness is a 

function of vibration amplitude. At larger amplitude, the stiffness increases and 

causes the resonant frequency to increase. This effect can be analyzed using 

energy method [2]: The amount of extension of the beam for a given vibration 

amplitude is 

2

0

1
2

L dwL dy
dy

⎛ ⎞
Δ = ⎜ ⎟

⎝ ⎠
∫                                        (4.1) 

 

F0

F0+k L
x

y

 

Figure 4.1 Geometrical effect that leads to the nonlinearity in the clamped-

clamped beam resonator. 

 

The extra potential energy caused by extension can thus be found 
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EA dw dy
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⎛ ⎞⎛ ⎞
⎜ ⎟= Δ = ⎜ ⎟⎜ ⎟⎝ ⎠⎝ ⎠

⎛ ⎞⎛ ⎞
⎜ ⎟= ⎜ ⎟⎜ ⎟⎝ ⎠⎝ ⎠

∫

∫

                              (4.2) 

where k is the stiffness of the axial beam spring, EA/L. 

With the extra extension energy included, the total potential energy of the 

resonant beam is 

22 2 22

20 0 0

1 1 1
2 2 8

total bend axial extra

L L L

U U U U

d w dw EA dwEI dy F dy dy
dy dy L dy

= + +

⎛ ⎞⎛ ⎞ ⎛ ⎞ ⎛ ⎞
⎜ ⎟= + +⎜ ⎟ ⎜ ⎟ ⎜ ⎟⎜ ⎟⎝ ⎠ ⎝ ⎠⎝ ⎠ ⎝ ⎠

∫ ∫ ∫
         (4.3) 

Replace w with ( ) ( )x t yφ  and normalize y to ε, with ε= y/L 

22 2 221 1 12 4
3 2 30 0 0

1 1 1
2 2 8total

EI d F d EA dU d d x d x
L d L d L d

φ φ φε ε ε
ε ε ε

⎛ ⎞⎛ ⎞ ⎛ ⎞⎛ ⎞ ⎛ ⎞ ⎛ ⎞⎜ ⎟⎜ ⎟= + + ⎜ ⎟⎜ ⎟ ⎜ ⎟ ⎜ ⎟⎜ ⎟⎜ ⎟ ⎜ ⎟⎝ ⎠ ⎝ ⎠⎝ ⎠ ⎝ ⎠⎝ ⎠ ⎝ ⎠
∫ ∫ ∫   (4.4) 

The restoration force Fe, can be found as the derivative of U with respect to x 

22 2 221 1 1 3
3 2 30 0 0

3
3,

1
2

total
e

eff eff

dU EI d F d EA dF d d x d x
dx L d L d L d

K x K x

φ φ φε ε ε
ε ε ε

⎛ ⎞⎛ ⎞ ⎛ ⎞⎛ ⎞ ⎛ ⎞ ⎛ ⎞⎜ ⎟⎜ ⎟= = + + ⎜ ⎟⎜ ⎟ ⎜ ⎟ ⎜ ⎟⎜ ⎟⎜ ⎟ ⎜ ⎟⎝ ⎠ ⎝ ⎠⎝ ⎠ ⎝ ⎠⎝ ⎠ ⎝ ⎠
= +

∫ ∫ ∫   (4.5) 

This is a classic governing equation of a nonlinear spring. From this 

equation, it is obvious that both the effective stiffness changes caused by the 

applied force F and by the amplitude stiffening effect are proportional to the 

integration 
2

1

0

d d
d

φ ε
ε

⎛ ⎞
⎜ ⎟
⎝ ⎠∫ , which is determined by the dimension and the geometry 

of the resonant beam. This explains why the nonlinearity cancellation through 

mechanical design is not applicable to the sense resonator. 
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(B) Bulk acoustic wave (BAW) Resonator 

The vibration mode of the beam resonator shown in Fig. 4.2 is a half wave 

length longitudinal mode wave. This resonator is thus referred to a bulk acoustic 

wave (BAW) resonator. The stiffness of the resonator exhibits nonlinearity due to 

the change in the cross sectional area of the beam [42]. With the cross sectional 

area change included, the wave equation for a longitudinal displacement  ( , )u y t  

is 

2

2

( , ) ( , )( , ) ( ( , ) )u y t u y tA y t A y t Y
t y y

ρ ∂ ∂ ∂
=

∂ ∂ ∂
                                         (4.6) 

where ρ  is the material density, Y  is the Young’s modulus, and ( , )A y t  is beam 

cross sectional area. The deformed area ( , )A y t  is a function of longitudinal 

stress yS  

0 0( , ) (1 2 ) (1 2 )y
uA y t A vS A v
y

∂
= − = −

∂
                                      (4.7) 

where v is the poisson’s ratio. The solution to Eq. 4.6 is approximated by the 

linear solution 

( , ) ( , )sin( )
2

yu y t u L t
L

π
=                                                  (4.8) 

where ( , )u L t  is the motion of the beam tip. Substituting Eq. 4.8 into Eq. 4.6 

and Eq. 4.7 and integrating over the mode shape leads to 

2 2 2
20 0

0 2 2

( , ) ( , ) ( , )
4 3

A Y vA Yd u L tA L u L t u L t
dt L L

π πρ = − +                               (4.9) 

The effective mass and the nonlinear spring constant can be recognized as 
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0m A Lρ= ;     
2

0
0 4

A Yk
L

π
= ;      

2
0

1 23
vA Yk

L
π

= −                    (4.10) 

L

y
x u0

 

Figure 4.2 Spring softening due to change in the cross section area in the bulk 

acoustic wave (BAW) resonator. 

 

4.1.2 Nonlinear Young’s Modulus 

Single-crystal silicon is often regarded as a linear material. However, due to 

their overwhelmingly high quality factor, the MEMS resonators are susceptible to 

even small nonlinearities from the silicon material itself. The nonlinear Young’s 

modulus is defined as [43] 

2
0 1 2Y Y Y S Y S= + +                                              (4.11) 

where /S u x= ∂ ∂  is the displacement gradient with respect to undeformed 

coordinates, and Y1 and Y2 are the first- and second-order corrections to the 

linear Young’s modulus Y0, respectively. The linear and nonlinear young’s 

modulus terms in [100] and [110] directions are tabulated in Table 4.1[44].  
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Table 4.1 Nonlinear Young’s modulus for single-crystal silicon 

 Y0(GPa) Y1(GPa) Y2(GPa) 

[100]direction 130 84.5 -598 

[110]direction 170 -442 -1377 

 

Substituting Eq. 4.8 and Eq. 4.11 into the wave equation 4.6, and integrating over 

the mode shape leads to [44] 

42 2 2
2 30 0 1 0 2

0 2 2 3

3( , ) ( , ) ( , ) ( , )
4 3 64

A Y A Y A Yd u L tA L u L t u L t u L t
dt L L L

ππ πρ = − − −             (4.12) 

The effective mass and the nonlinear spring constant can be identified as 

0m A Lρ= ;     
2

0
0 4

A Yk
L

π
= ;      

2
0 1

1 23
A Yk
L

π
=       

4
0 2

2 3

3
64

A Yk
L

π
=                 (4.13) 

 

4.1.3 Capacitive transduction 

Take parallel plate capacitive actuator as an example, its electrostatic force is 

given by 

2 2( ) [ ( ) / ]
2 2
p p

e

V VC x AF x
x d x

ε∂
= − = − ∂ ∂

∂ −
                                          (4.14) 

Taken the series expansion of the capacitance 

2 3 4 41( ) ( ) [1 ( ) ( ) ( ) ( )]
1 /

A A A x x x xC x o x
d x d x d d d d d d
ε ε ε

= = = + + + +
− −

               (4.15) 

The electrostatic force can be found 



Silicon micromachined resonant accelerometer         HE LIN 2008  

 - 50 - 

2 2 2 3
3

2 3 4

1 2 3 4[ ( ) / ] [ ( )]
2 2
p p

e

V V A x x xF C x x o x
d d d d d

ε
= − ∂ ∂ = − + + + +                       (4.16) 

Therefore, the electrostatic force is nonlinearly dependent on the 

displacement x, thus is modeled by a nonlinear spring, with the nonlinear 

spring constants given by 

2

0 3
p

e

V A
k

d
ε

=      
2

1 4

3
2

p
e

V A
k

d
ε

=     
2

2 5

2 p
e

V A
k

d
ε

=                        (4.17) 

Since the electrical spring coefficient is proportional to 2
pV , the capacitive 

nonlinearity can be reduced by lowering the bias voltage. Also, the nonlinearity 

could be significantly reduced with different actuator configuration, e.g., comb-

drive actuation. 

 

4.2 Nonlinear forced vibration 

The equation of motion for a forced oscillation is 

2
2 3

0 1 22 cosd x dxm k x k x k x F t
dt dt ωγ ω+ + + + =                                (4.18) 

where t  is the time, x  is the displacement of the lumped mass m , γ  is the 

damping coefficient, 0k  is the linear spring constant, 1k  and 2k  are the first and 

second order nonlinear corrections for the spring constant, and cosF tω ω  is the 

applied harmonic force. It is useful to define the natural frequency 0 0 /k mω =  

and quality factor 0 /Q mω γ= . The solutions to Eq. 4.18 can be obtained by the 

method of successive approximations by assuming a solution in the following 
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form [45] 

0 1 0 2 0 3 0( ) cos cos 2 cos3x t x x t x t x tω ω ω′ ′ ′= + + + +…                    (4.19) 

For vibrations without damping, the amplitude of the higher harmonics 

is given by 

21
2 1

06
kx x
k

=                                                        

2
31 2

3 12
0 0

( )
48 32

k kx x
k k

= +                                (4.20) 

The resonance frequency is related to the vibration amplitude  

2
2 22 1

0 0 1 0 12
0 0

3 5[1 ] (1 )
8 12

k k x x
k k

ω ω ω λ
⎛ ⎞

′ = + − = +⎜ ⎟
⎝ ⎠

                   (4.21) 

 where 
2

2 1
2

0 0

3 5
8 12
k k
k k

λ = − . Eq. 4.21 indicates that the existence of k1, no matter it is 

negative or positive, will cause the peak frequency to shift to a lower frequency. 

Similarly, a negative k2 results in the peak-frequency shifting to a lower 

frequency while a positive k2 results in a higher peak-frequency. 

The influence of the peak-frequency shift on the amplitude-frequency response is 

illustrated in Fig. 4.3. A typical linear amplitude-frequency response is shown in 

Fig. 4.3(a). A negative λ  causes a tilting of the resonance peak to a lower 

frequency (Fig. 4.3(b)) while a positive λ  results in tilting of the peak to a higher 

frequency (Fig. 4.3(c)). Increasing the excitation signal causes further increase in 

nonlinearity and eventually the amplitude-frequency response shows hysteresis 

(bifurcation) (Fig. 4.3(d)). 
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Figure 4.3 The amplitude-frequency response of (a) a linear resonator; (b) a 

nonlinear resonator that has a negative frequency shift; (c) a nonlinear resonator 

that has a positive frequency shift; (d) a nonlinear resonator excited below and 

beyond the bifurcation points. 

 

Beyond the bifurcation point, the frequency-amplitude plot shows hysteresis. 

In the hysteresis region, the amplitude is no more a single value function of 

exciting frequency. As a matter of fact, in a practical case, the system energy 
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does not allow sudden jump of amplitude from one value to another. Instead, the 

amplitude will gradually change. This amplitude ambiguity is the origin of chaotic 

behavior.  
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Chapter 5 MEMS oscillator and phase noise theory 

 

This chapter forms the theoretical basis for the design of low noise MEMS 

oscillator. The existing oscillation structures of MEMS resonators are reviewed 

and their drawbacks analyzed. A novel automatic amplitude control structure is 

thus proposed for better temperature stability and phase noise control. To 

analyze the phase noise in a MEMS oscillator system, we first reviewed two of 

the most recognized phase noise models, the LTI model and the LTV model, with 

their limitations in analyzing a mechanical oscillator. Later on, a state-space 

analysis is performed on the nonlinear oscillator with the proposed AAC loop. 

Numerical simulation results are presented as well for verification. 

 

5.1  MEMS oscillator and automatic amplitude control 

A simple MEMS oscillator can be constructed using the circuit given in Fig. 

5.1 [46]. The resonant beam needs to be polarized at Vp. At motion, the resonant 

beam produces a motion current at one electrode. This current is sensed and fed 

back to the other electrode or through a comparator [47] to generate an 

electrostatic force. If the gain and phase criterion is satisfied, the resonant beam 

will oscillate until its amplitude is eventually stabilized by the nonlinearities in the 

mechanical part or electrical part. The amplitude of this oscillator suffers from 

temperature and supply voltage variation and thus is limited to the low accuracy 

arena due to the amplitude caused frequency drift.  
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Figure 5.1 Schematic diagram of direct feedback MEMS oscillator 

 

An automatic amplitude control (AAC) loop is introduced to avoid strong 

nonlinearity. The most widely used AAC structure (Fig. 5. 2) [5, 6, 9] adjusts the 

gain of the sense amplifier by replacing the feedback resistor with a MOSFET 

transistor operating in linear region. The amplitude of the oscillation signal at the 

sense amplifier output is detected and compared with a preset value. The 

amplified error signal is used to adjust the resistance of the MOSFET transistor. 

Once a stable oscillation is established, the feedback resistor will precisely match 

the effective resistance of the MEMS resonator. Therefore, the temperature drift 

of the effective resistance will cause the same drift in oscillation amplitude and in 

turn causes a frequency drift.  
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Figure 5.2 Schematic diagram of MEMS oscillator with AAC loop and gain 

control performed on the sense amplifier. 

 

We propose a more temperature-robust AAC structure with a fixed gain 

amplifier and a linear variable gain amplifier (VGA) following it, as is shown in Fig. 

5.3. The gain of the linear VGA is controlled by the difference between the 

oscillator amplitude and the present value, VR0, through a loop filter L(s). 

The MEMS oscillators with AAC loop contains nonlinear building blocks 

such as amplitude detector, variable gain amplifier, and especially a nonlinear 

resonator, which prevent any ordinary linear analysis. To give the reader a better 

understanding our own phase noise analysis, it is useful to briefly review the LTI 

model and the LTV model in the next section. 
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Figure 5.3 Oscillator structure with fixed gain sense amplifier and AAC 

performed on a separate linear VGA. 

 

5.2 Existing phase noise theory 

5.2.1 Phase noise basics 

Ideally, the output of an oscillator may be expressed as 0( ) cos( )y t A tω φ= + , 

where A is the amplitude, and 0ω  is the frequency. In practice, however, the 

amplitude A and the phase offset φ  are functions of time. Ignoring the waveform 

distortion, the output can be thus given by  

0( ) ( ) cos[ ( )]y t A t t tω φ= +                                          (5.1) 

and further decomposed into 
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y t A t t t

A t t t

A t t t t t

ω φ

δ ω φ

ω δ ω φ ω

= +

= + +

≈ + +

                           (5.2) 

The above equation indicates that the amplitude variation is actually caused by 

the in-phase component, while the phase variation is actually caused by the 

quadrature component, with referred to the ideal oscillation 0cos( )tω . The marking 

of noise in the time-domain with referred to the oscillation waveform is the key to 

understand the dynamics of an oscillator. 

The amplitude noise and phase noise produces noise sidebands around the 

oscillation frequency. In a practical oscillator, the noise in ( )A t  will be reduced by 

an amplitude limiting mechanism like saturation, or eliminated by the application 

of a limiter to the output signal, whereas the noise in ( )tφ  won’t be affected and 

will accumulate over-time. Thus the noise sideband is dominated by the phase 

portion, known as phase noise. 

 

5.2.2 Linear time-invariant model 

The linear time-invariant (LTI) model was derived from a linear frequency-

domain transfer function [48-50]. Take a simple feedback system shown in Fig. 

5.4 as an example. N(s) represents a noise source, and H(s) is the frequency 

selection tank. If at frequency 0ω , the phase-shift across H(s) precisely matches 

360o and the loop gain across H(s) matches unity, the closed-loop transfer 

function 
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ωω
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−

                                       (5.3) 

goes to infinity, thus an oscillation at 0ω   will build up until limited by some 

mechanisms. Suppose the oscillation frequency ω  slightly deviates from 0ω , 

0ω ω ω= + Δ , the phase shift deviates from 360o or the loop gain deviates from 

the unity, thus its noise transfer function can be approximated as 

0
0

0

0
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H j jY j
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H j dH d
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− + Δ
+ Δ

=
− − Δ
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i

                        (5.4) 

Since 0( ) 1H jω =  and for most practical cases | /dH dω ωΔ i |<<1, Eq. (5.4) 

reduces to 

0
1[ ( )]

/
Y j
N dH d

ω ω
ω ω

−
+ Δ =

Δ i
                            (5.5) 

This equation indicates that a noise component at 0ω ω ω= + Δ  is multiplied by 

( /dH dω ωΔ i )-1 when it appears at the output of the oscillator. In other words, the 

noise power spectral density is shaped by 

2

0 2 2

1[ ( )]
( ) | / |

Y j
N dH d

ω ω
ω ω

+ Δ =
Δ

                               (5.6) 

To gain more insight, let ( ) ( ) exp[ ( )]H j A jω ω ω≈ Φ , and hence 

( ) exp( )dH dA djA j
d d dω ω ω

Φ
= + Φ                                    (5.7) 

Since for 0ω ω≈ , 1A ≈ , Eq. (5.6) can be written as 

2
0 2 2 2

1| [ ( )] |
( ) [( / ) ( / ) ]

Y j
N dA d d d

ω ω
ω ω ω

+ Δ =
Δ + Φ

                       (5.8) 
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With the quality factor generally defined as [49] 

2 2
0

2
dA dQ
d d

ω
ω ω

Φ⎛ ⎞ ⎛ ⎞= +⎜ ⎟ ⎜ ⎟
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                                   (5.9) 

Eq. (5.8) is reduced to 

22
0

0 2

1[ ( )]
4

Y j
N Q

ωω ω
ω

⎛ ⎞+ Δ = ⎜ ⎟Δ⎝ ⎠
                               (5.10) 

The output noise can be equally divided into phase and amplitude fluctuations 

with referred to the output oscillation. Taking only phase fluctuation into account 

yields 

2 2
0

0 2

1[ ( )]
8

pY
j

N Q
ωω ω

ω
⎛ ⎞+ Δ = ⎜ ⎟Δ⎝ ⎠

                          (5.11) 

Because of the linear assumption and the stationary noise source assumption, 

the LTI phase noise model provides important qualitative design insights but is 

limited in its quantitative predictive ability. For example, the measured phase 

noise usually follows a 1/f3 behavior at close-in region, and flats out at a large 

frequency offset. 

H(s)
N(s)

 

 

Figure 5.4 A linear oscillator system 
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Figure 5.5 LC oscillator showing charge injection 

 

5.2.3 Linear time-variant model 

The Linear time-variant (LTV) model was proposed by A. Hajimiri and T. H. 

Lee [51] to include the omnipresent nonlinearity in a linear model. This model can 

be explained using a LC oscillator shown in Fig. 5.5 as an example. Assume a 

charge injection occurs when the oscillator is oscillating at a steady state. It can 

be seen from Fig. 5.6 that the resultant amplitude and phase change is time 

dependent. In particular, if the charge is applied at the peak of the voltage across 

the capacitor, the oscillation amplitude will increase, as shown in Fig. 5.6(a). 

Assuming that an amplitude change does not affect the oscillation frequency, the 

timing of the zero crossings (or phase) won’t be affected in this case. On the 

other hand, if this impulse is applied at the zero crossing, it affects the zero-

crossing but has negligible effect on the amplitude, as shown in Fig. 5.6(b). 
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(a) 

Vout

V

t

After charge injection

 

(b) 

Figure 5.6 Impulse response of LC oscillator 

 

Based on the above observation, an impulse sensitivity function (ISF) Γ(x), 

as a function of when the injection takes place, can be derived. The phase 

change with response to an impulse input is thus given by 

0

max

( )( , ) ( )h t u t
q
ω ττ τΦ

Γ
= −                                    (5.12) 
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where u(t) is the unit step function, qmax is the maximum charge displacement 

across the capacitor, and Γ(x) is the impulse sensitivity function and is a 

dimensionless periodic function with a period of 2π. Fig. 5.7 shows the ISF for an 

LC oscillator, which has its maximum value near the zero crossings of the 

oscillation, and a zero value at the peak of the oscillation waveform. The phase 

shift of the oscillator caused by a current perturbation i(t) is thus given in the 

block diagram shown in Fig. 5.8.  

 

 

Figure 5.7 Waveform and ISF for a LC oscillator 

 



Silicon micromachined resonant accelerometer         HE LIN 2008  

 - 64 - 

 

 

Figure 5.8 The equivalent block diagram of the LTV model 

 

 

 Figure 5.9 Noise folding due to ISF decomposition 

 

Γ(x) can be expressed as a Fourier series 

0
0 0

1

( ) cos( )
2 n n

n

c c nω τ ω τ θ
∞

=

Γ = + +∑                               (5.13) 

where θn is the phase of the nth harmonic of the ISF. Fig. 5.9 explains how the 

noise folding happens in an oscillator. Note that 1/f3 noise is caused by the 
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upconversion of 1/f noise through the coefficient c0. Since c0 is the dc value of 

the ISF, 1/f3 phase-noise can be greatly reduced by the proper ISF design, 

through adjustment of the rise- and fall-time symmetry. 

 

5.2.4 Limitation of LTV model 

At the first glance it looks that the LTV model well solves the nonlinearity 

associated with an oscillator. But this theory is derived from an implicit 

assumption that the frequency does not change with amplitude variation. Take 

a clamped-clamped beam micro resonator as an example, whose restoration 

force is given by 

3
0 2rF k x k x= − −                                          (5.14) 

Due to the missing of first order nonlinear correction term 2
1k x , an oscillator 

made from it outputs fully symmetrical waveform. Hence, c0, the dc value of the 

ISF, is zero, which predicts no 1/f3 phase noise in the close-in region. The 

measured phase noise, however, exhibits strong 1/f3 phase noise [5]. In this case, 

the oscillation frequency is actually a function of amplitude, making the 

assumption of unchanging frequency and step function invalid. 

 

5.3 State-space theory 

Analyzing phase noise in the state space is not a new idea. To the author’s 

acknowledgement, a unifying phase noise model proposed by Kaertner and 

Demir [60-63] belongs to this category. In this model, the noise perturbation is 
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decomposed into orbital and phasal components along the Floquet vectors in the 

state-space, and models the phasal perturbation as a diffusion problem. The 

soundness of this model is verified in numerical simulators [64-65]. In addition, 

the oscillation envelop can also be predicted by employing this model [66]. 

However, due to the complexity in mathematics, this model fails to arrive at a 

closed-form solution based on the circuit or device parameters. To guide the 

oscillator design process, we combine the mathematical soundness of state-

space approach and the understandability of Hajimiri’s approach in our model. 

Our model is different from Kaertner and Demir’s model in that the orbital 

component still influences the phase. 

5.3.1 Unperturbed oscillator trajectory in state-space 

To gain insight into the origin of phase noise, the dynamics of a nonlinear 

oscillator with automatic amplitude control is studied via the state-space 

approach. The analysis is performed in the mechanical domain for simplicity.  

With a nonlinear spring force 2 3
0 1 2F k x k x k x= − − − , the motion of a second-order 

spring-mass-damping resonator is given by its state-space equation: 

1

2

2 30 01 2

01
fb

y xdy d d
y xdt dt dt

x
k k k Fmx x x x
m m m m

η

⎡ ⎤ ⎡ ⎤
= =⎢ ⎥ ⎢ ⎥

⎣ ⎦⎣ ⎦
⎡ ⎤ ⎡ ⎤⎢ ⎥= + ⎢ ⎥⎢ ⎥− − − − ⎣ ⎦⎣ ⎦

�
�

�

                     (5.15) 

where fbF  is the excitation force or feedback force applied to the resonator. A 

feedback mechanism observes the velocity x�  and applies a force fbF  which is 
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proportional to the observed velocity. The feedback gain is finely adjusted to 0η  

so that the mechanical loss 0xη �  is exactly balanced by the feedback force fbF , as 

is given by 

2 30 01 2

2 30 1 2
0

01 ( )

xxdy d
k k kxdt dt x x x x
m m m m

x
f yk k kxm x x x

m m m

η

η

⎡ ⎤⎡ ⎤ ⎢ ⎥= =⎢ ⎥ ⎢ ⎥− − − −⎣ ⎦ ⎣ ⎦
⎡ ⎤⎡ ⎤ ⎢ ⎥+ = =⎢ ⎥ ⎢ ⎥− − −⎣ ⎦ ⎣ ⎦

�

� �

�

�

                     (5.16) 

Eq. (5.16) has a periodic solution 0 0 0( ) ( ( ), ( ))y t x t x t= �  plotted in the state-space 

plane (Fig. 5.10) where the position 0 ( )x t  is plotted against velocity 0 ( )x t� . The 

solution forms a closed curve, or unperturbed trajectory. Since the mechanical 

loss is fully compensated, the unperturbed trajectory follows an orbit that has a 

fixed energy E given by 

2

2 2 3 4
0 1 2

1 ( )
2

1 1 1 1
2 2 3 4

E mx k x xdx

mx k x k x k x

= +

= + + +

∫�

�
                       (5.17) 
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ξ

 

 

Figure 5.10 Unperturbed oscillation trajectory y0(t) and perturbation 

decomposition. 

 

5.3.2 Velocity observation noise and gain variation 

The noise introduced in the sense amplifier and the driving buffer can be 

simplified as a velocity observation noise vN . The feedback gain may not 

precisely match 0η  all the time, which is modeled as a feedback gain variation 

ηΔ . The velocity observation noise and the gain variation are included in the 

macro model of a second order nonlinear oscillator, as shown in Fig 5.11.  

The describing function of the oscillator shown in Fig. 5.11 is thus given by 

0

0
( ) ( )

v

dy f y f yNxdt
m m

ξηη
⎡ ⎤
⎢ ⎥= + = +Δ⎢ ⎥+
⎣ ⎦

�                  (5.18) 
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x�

vN

 

Figure 5.11 Macro model of second order nonlinear oscillator with noise in the 

observed velocity and feedback gain. Inside the dash box is the macro model of 

nonlinear resonator 

 

5.3.3 Orbital and phase perturbation  

Let’s use Fig. 5.10 to study the influence of ξ  over the motion trajectory. We 

noticed that, in an unperturbed trajectory, the vector ( x , x� ) is a monotonic 

function of time (within a period). Therefore, phase can be uniquely defined by 
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the vector ( x , x� ), for any unperturbed trajectory with different orbit. Therefore, if 

the trajectory is perturbed by a component proportional to 0 0( , )y x x= � , the phase 

will remain fixed but the orbit will change. On the contrary, a perturbation in 

parallel with ( )f y  is not going to change the motion trajectory (or orbit), but will 

change the speed of cycling and hence affect the phase (refer to Eq. 5.16). 

Therefore, the perturbation ξ  can be decomposed into an orbital perturbation 

that is parallel to y , and a phase perturbation that is in parallel to ( )f y , as 

shown in Fig. 5.10.  

1 1

1 1

0 0

[ ( ),0][ ( ), ] [0, ][ ( ), ]

0 0
{ ( )[1 0][ ( ), ] [0 1][ ( ), ] }

1 1

( ) [ ( ) ( ) ( ) ]( )v v

f y f y y y f y y

f y f y y y f y y

N Nx xy f y y y
m m m m

ξ ξ ξ

η ηη η

− −

− −

= +

⎡ ⎤ ⎡ ⎤
= +⎢ ⎥ ⎢ ⎥

⎣ ⎦ ⎣ ⎦

Δ Δ
+ = Γ + Η +
� �

                     (5.19) 

where  

1

2 2 3 4 3 4
0 1 2 1 2

0
( ) [1 0][ ( ), ]

1

( ) 2 ( / 3) ( / 2)

y f y y

mx mx
mx k x k x k x E k x k x
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,  

1

2 2 3 4 3 4
0 1 2 1 2

0
( ) [0 1][ ( ), ]

1

( ) 2 ( / 3) ( / 2)

y f y y

mx mx
mx k x k x k x E k x k x

− ⎡ ⎤
Η = ⎢ ⎥

⎣ ⎦
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� �
�
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Combine Eq. (5.18) and (5.19) yields 

0

0

[1 ( ) ( )] ( )

( ) ( )

v

v

Ndy x y f y
dt m m

Nx H y y
m m

ηη

ηη

Δ
= + + Γ

Δ
+ +

�

�
                       (5.20) 
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Figure 5.12 Illustration of ( )yΓ , ( )H y , ( )x yΓ�  and ( )xH y� . 

The term 0( ) ( )vNx y
m m

ηηΔ
+ Γ
�  determines the fractional timing shift due to the 

phase perturbation, while the term 0( ) ( )vNx H y
m m

ηηΔ
+
�  determines the fractional 

orbital shift due to the orbital perturbation. Fractional timing shift refers to the 

timing shift divided by the unperturbed oscillation period T, while fractional orbital 

shift refers to the energy change divided by the unperturbed energy. Since the 

energy change is very small, the fractional orbital shift can be approximated as 

0/x XΔ , where xΔ  is the amplitude change and 0X  is the unperturbed oscillation 

amplitude. 

5.3.4 Cycling speed correction factor 

Besides the phase perturbation, the orbital change will cause an additional 

phase change due to the A-S effect, as is indicated in Eq. (4.21). The oscillation 
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period T is actually a function of the oscillation amplitude 0X . Within a narrow 

band of the orbit 

2 2
0 0 0

0
02 2

0 0 0

2 2 2
(1 ) [1 ( ) ]

22 (1 ) (1 )
(1 ) 1

T
X X x

X x T c x
X X

π π π
ω ω λ ω λ

λπ
ω λ λ

= = =
+ + + Δ

′≈ − Δ = − Δ
+ +

                        (5.21) 

where 0X  is the amplitude of unperturbed oscillation, 0T ′  is the unperturbed 

period, T  is the perturbed period at amplitude X , and c equals to 

2
0 02 /(1 )X Xλ λ+ . The net timing shift is the result of both the phase perturbation 

and the orbital perturbation. Taking both of them into account, we have a cycling 

speed correction factor  

0
0( ) ( ) ( )vNxCF y c t X

m m
ηη δΔ

= + Γ +
�                           (5.22) 

Where ( )tδ  is the fractional orbital shift.  In Eq. (5.22), the first part is caused by 

the phase perturbation, while the second part is caused by the orbital shift. 

Therefore, the equivalent model for a perturbed free running nonlinear oscillator 

is plotted in Fig. 5.12, with ( )tδ  representing the fractional orbital shift, and ( )tϕ  

representing the fractional phase shift. The perturbed oscillator has an output 

0[1 ( )] {[1 ( )] }t y t tδ ϕ+ + , where 0 ( )y t  is the unperturbed oscillation from Eq. (5.17). 

The observed velocity noise vN  is transformed by ( )H y  into a normalized 

orbital perturbation N1 and by ( )yΓ  into a normalized phase perturbation N2. This 

transformation is similar to the phase and orbital decomposition in the linear time-

invariant (LTI) model. If the nonlinear spring term k1 and k2 does not exist, ( )H y  

and ( )yΓ  will degenerate to sinusoidal functions, and N1 and N2 will be equally 
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split, which agrees well with the LTI model. Fig. 5.12 illustrate ( )yΓ , ( )H y , ( )x yΓ�  

and ( )xH y�  as a function of time. 

01/( )T s′

 

Figure 5.13 Equivalent models of a perturbed free running nonlinear oscillator 

described by Equation 5.18 

 

5.3.5 Amplitude limiting-Automatic amplitude control (AAC) 

If the oscillator is free of any amplitude limiting mechanism, the orbital 

perturbation will be integrated and result in an unbounded orbital shift. Such an 

undesirable unbounded shift is avoided by employing the proposed automatic 

amplitude control. The following analysis is performed on the oscillator with an 

ideal position sensor, an ideal velocity sensor and an AAC loop, as is shown in 

Fig. 5.14(a) Here the orbital position is identified by the oscillation amplitude X . 

The detected oscillation amplitude X  is compared with a preset value, 0X . Their 
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difference is fed to the AAC loop filter L(s) to produce the gain perturbation signal 

ηΔ .   
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(a) 

01/( )T s′

 

(b) 

 

Figure 5.14 (a) Nonlinear MEMS oscillator with ideal position and velocity sensor 

and AAC loop; and (b) its equivalent linear model. 
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Inside the AAC loop, the amplitude detection introduces extra noise which is 

modeled as Nc(t) and the variable gain amplifier has a input referred noise Ng(t) 

at the gain control node (Fig. 5.14(a)). Assume that the amplitude control loop 

responds much slower than the oscillation itself, ( )x yΓ�  and ( )xH y� can be 

replaced with their average values for simplicity, as is given below 

0

1 ( )
T

A xH y dt
T

= ∫ �        
0

1 ( )
T

B x y dt
T

= Γ∫ �                  (5.23) 

Fig. 5.14(b) shows the derived linear equivalent model for this ideal nonlinear 

MEMS oscillator. The transfer function of the fractional orbital fluctuation is given 

by 

0 1

0

[ ( ) ( ) ( ) ( )] /
( )

1 ( ) /
g cN s AN s AN s L s s

s
AX L s s

η + +
Δ =

+
                       (5.24) 

In the derived linear model, it is interesting to note that the AAC loop 

features the same integrator as is in the derived model for a linear LC oscillator 

[52], which reminds us of the similarity between the AAC loop and the phase-

locked loop (PLL). Without the negative feedback of the AAC loop, the orbit shift 

will build up exactly in the same way as the phase difference between two 

frequencies does. Therefore, the same loop filter design strategy used in PLL can 

be applied directly to the AAC loop. A 2nd order loop filter borrowed from the 

charge-pump PLL [53] can satisfy both the noise shaping and stability 

requirement, as is given below 

0L ( / 1)L(s)=
( / 1)

z

p

s
s s

ω
ω

+
+

                                        (5.25) 
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5.3.6 Phase noise discussion 

The transfer function of the fractional phase fluctuation is given by 

0 2 0 0

0 2 0 0
0

( ) ( ( ) ( ) ) /( )

( ) ( ) ( )
( ( ) ) /( )

1 ( ) /
g c

s N s cX s B T s

N s N s L s
N s cX B T s

AX L s s

η η

η

′Φ = + Δ + Δ

+
′= + Δ +

+

                     (5.26) 

Three phase noise sources are identified in Eq. (4.26). 0 2 0/N T sη ′  is caused by 

the normalized phase perturbation, corresponding to the linear phase noise in LTI 

model. 0 0( ) /s cX T s′Δ  is caused by the orbital fluctuation through the A-S effect, 

which aliases the 1/f noise component in δ(t) into 1/f3 phase noise. It looks from 

the last term 0( ) /( )s B T sη ′Δ  that an extra phase noise is caused by the feedback 

gain variation through the asymmetry of the oscillation waveform. However, we 

found through simulation that B is so small that can be practically ignored even 

though an asymmetrical waveform is produced by the first nonlinear correction 

term 2
1k x . 

So far, we have proved that as long as the unperturbed trajectory forms a 

closed trajectory, the amplitude noise as well as the phase noise from a nonlinear 

mechanical oscillator can be still studied using a linear model. Therefore, the 

oscillation amplitude should only constrained by the hard limits such as material, 

structure, or supply voltage, providing that the circuit design ensures a noiseless 

AAC loop.   

At frequency close to dc, the orbital fluctuation 
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1

0 0

( )( )( ) ( ) ( 0)
( ) ( )

g
c

N sN ss N s s
AX L s X L s
η

Δ ≈ + + →                (5.27) 

Eq. (5.27) indicates that N1 and Ng will be shaped by L(s), but Nc will stay 

untouched. The suggested AAC loop filter has a high gain at dc to minimize the 

orbital fluctuation so that the phase noise can be minimized. 

Since Nc will appear unattenuated in the orbital fluctuation at low 

frequencies, its 1/f noise component is the only source that gives rise to 1/f3 

phase noise in the close-in region. Attention thus must be paid to design a low 

noise amplitude detector as well as a low noise error amplifier. 

To use this model in a practical MEMS oscillator, proper scaling is required 

to accommodate the C/V and V/F conversion. 

 

5.4 Numerical simulation  

Simulink is used to numerically simulate the ideal nonlinear oscillator shown 

in Fig. 5.15. Two nonlinear resonators with normalized stiffness and resonant 

frequency are used in the simulation, as is given in Table 5.1. The quality factors 

are set to 1000 instead of hundreds of thousands in a practical case, due to the 

accuracy achievable with the simulation tool. The peak-frequency shifts caused 

by 1k  and 2k are in the same amount, except that in resonator 1 both of them tilt 

to the same direction while in resonator 2 they completely cancel each other, as 

is shown in Fig. 5.15. For resonator 1, the oscillation amplitude is already far 

beyond the Duffing bifurcation point. 

Table 5.1 parameters for the simulation setup 
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 Resonator 1 Resonator 2 
m 1/(4π2) 1/(4π2) 
k0 1 1 
k1 0.1 0.1 
k2 -0.011111 0.011111 
Q 1000 1000 
X0 2 2 
Xb (bifurcation point) [8] 0.263 NA 
f 0.9663 1 
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Figure 5.15 Amplitude-frequency responses of resonator 1 (black) and resonator 

2 (blue) in Table 5.1. 

 

Fig. 5.16 shows the state-space trajectories of the stable oscillations for 

resonator 1, resonator 2 and a linear resonator. Although the trajectories for 

oscillator 1 and oscillator 2 shows asymmetry against the oscillation amplitude x 

due to the first order nonlinear correction term, the waveforms should have 

symmetrical rising and falling time. Therefore, LTV model should yield a close 

result as LTI model. 
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Figure 5.16 the state-space trajectories of the oscillator built from resonator 1, 

resonator 2 and an ideal linear resonator. 

 

A two-tone test is employed to verify the linearity between a control signal at the 

AAC loop and the resulted phase change. The testing tones, f1 (0.004rad/s) and 

f2 (0.01rad/s), are injected at the amplitude comparison node. To remove the 

amplitude noise, the oscillation output is fed to an amplitude limiter. The 

simulated sideband spectrums after the amplitude limiter are shown in Fig. 5.17. 

For resonator 1, only two tones are clearly seen in the phase plot. The absent of 

an intermodulation tone indicates a perfect linear relationship. For resonator 2, 

no tone is seen at the desired frequency, indicating neither the A-S induced 
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phase shift nor asymmetry related phase shift exists. 

 

 

Figure 5.17 Simulated two-tone spectrum sidebands for resonator 1 and 

resonator 2. 

 

To verify the quantitative prediction power of the proposed phase noise model, 

flicker noise is inserted at the amplitude comparison node in the oscillator based 

on resonator 1. Fig. 5.18 compares the simulated sideband spectrum with the LTI 

(and LTV) model and state-space model. The state-space model agrees well with 

the simulated spectrum, but the LTI model underestimate the resultant phase 

noise. 
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Figure 5.18 Simulated phase noise sideband versus LTI model and State-space 

model 
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Chapter 6 Circuit design 

 

6.1 System overview 

Based on the analysis in chapter 5, a readout system with a low-noise AAC 

loop for SOI resonant accelerometer is proposed and shown in Fig. 6.1. A 

switched-cap capacitive sense interface is used to detect the displacement of the 

resonant beam. A velocity signal is obtained by a differentiator to provide a 

proper phase shift required for oscillation. The signal is multiplied by a gain 

control signal and fed back through a buffer to drive the resonator. The gain 

control signal is automatically set by the AAC loop. Inside the AAC loop, the 

oscillation signal is pre-amplified by A2 before feeding it to the rectifier to ensure 

its proper operation. An error amplifier is used to amplify the difference between 

the detected amplitude and a preset value VR0. To reduce the 1/f noise, chopper 

stabilization is applied to the rectifier and the error amplifier. The resultant error 

signal is fed to the loop filter L(s) whose output controls the gain of the linear 

VGA (or multiplier). To operate the whole system under 3.3 V power supply, a 

driving scheme from [54, 55] is adopted to reject the driving feedthrough by 

separating the sense and drive operation in the time domain. The same 

electrodes are reused to maximize the signal. 
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 Figure 6.1 Block diagram of the proposed readout circuit with automatic 

amplitude control. 

 

Figure 6.2 Block diagram of the proposed readout circuit with automatic 

amplitude control. 
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6.2 Low noise capacitive sense interface 

The motion of the resonator causes a sense capacitance variation at a 

frequency of 135 kHz. This capacitance variation is over-sampled by the sense 

interface at a rate of 5 MHz to maintain a near-smooth waveform and to minimize 

the delay introduced. This sense interface is modified from a switched-cap 

charge integrator, with correlated double sampling (CDS) performed at the 

amplifier output to remove the offset and flicker noise [54, 55]. Fig. 6.2 depicts 

the proposed capacitive sense interface circuit and its associated clock timing 

diagram. An additional gain stage is placed after the switched-cap charge 

integrator. 

The operation of this sense interface involves four phases, namely, clear, 

autozero, sense, and drive. Fig. 6.3 shows the simplified configurations of the 

sense amplifier in four respective phases. The clear phase (Fig. 6.3(a)) resets the 

input common-mode voltage of the sense interface to Vicm to ensure a correct 

bias point and discharges the capacitors to erase the memory from previous 

cycle. During the autozero phase (Fig. 6.3(b)), the amplifier offset and flicker 

noise are amplified and stored in CH and to be subtracted in the subsequent 

sense phase. The polarization voltage Vp is kept at 2VDD. During the sense phase 

(Fig. 6.3(c)), Vp transits from 2VDD to VDD. A small differential charge that is 

proportional to Cs is produced and flows onto the integrating capacitor Ci. During 

the drive phase (Fig. 6.3(d)), Vp is reset back to 2VDD to improve the voltage-to-

force transduction. A fully-differential drive voltage Vd is applied to the same 

electrodes that connect the sense interface. To avoid overdriving OTA1, a pair of 
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capacitors Cc is used to isolate the drive signal from the inputs of OTA1 whose 

inputs are shorted during the drive phase. 

With CDS, at the end of the autozero phase, broadband thermal noise will 

be sampled onto CH. The capacitive resolution of this sense block is derived as 

[56] 

 
2 2

2 2
3 2( 1)( )

( )
c g T n

n dB s
c P

C C C VC f T
C V

π −

+
≈ −

Δ
                           (6.1) 

where f-3dB is the close-loop -3dB bandwidth, Ts is the length of sensing phase, 

T s p g iC C C C C= + + +  is the total capacitance, Vn is the input noise of OTA1, and 

　VP is the voltage step applied to the common node of capacitive half-bridge. Eq. 

(6.1) implies that reducing CT or increasing the sampling rate helps improve the 

resolution of the sense interface. 

In order to reduce the parasitic capacitance at the input of OTA1, the input 

common mode feedback (ICMFB) [54, 55] is not employed. This will cause the 

input common mode voltage to vary in response to the voltage step Vp and hence 

any mismatch between the parasitic capacitances will appear as an offset at the 

output. In our design, this offset can be removed by the following differentiator 

and thus, it is no longer an issue. 
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Figure 6.3 Simplified schematic of fast-settling opamp with feedforward path. 

 

The sampling rate is improved by the following techniques. Firstly, two 

feedforward fast-settling OTAs, OTA1 and OTA2, are designed by introducing a 

pair of cross-coupling capacitors Cff between the gates and opposite drains of the 

differential pair [57], as shown in Fig. 6.3. Secondly, a pair of compensation 

resistors Rc (Fig. 6.2) is introduced in the extra gain stage to optimize its setting 

time. Thirdly, the reset switches of OTA1 and OTA2 are assigned to different 

clocks, CLR for OTA1 and CLRD for OTA2, to avoid two-stage settling in the 

autozero phase, which is identified as the settling bottleneck. CLR is only half of 

CLRD (Fig. 6.2), which remains high in the whole clear phase. Therefore, at the 

end of clear phase, the error signal in the first stage is already settled and stored 
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on CA. 

 

 

Figure 6.4 (a) Schematic of offset-free differentiator and (b) its associated clock 

diagram (FBND is delayed version of FBN and FBNDD is delayed version of 

FBND). 

 

6.3 Offset-free differentiator 

The feedback force should be in phase with the velocity of the resonant 
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beam to excite self-oscillation. This velocity signal is obtained by differentiating 

the sensed position signal, C　 s, in the z domain. Fig. 6.4 shows the schematic of 

the differentiator and its clock timing diagram. The differentiation function is 

realized by charge redistribution among two capacitors. C1 stores the present 

signal while C2 and C3 alternatively store the delayed signal. The capacitances of 

C1, C2, and C3 are equal. As the signal at the input of the differentiator is still 

weak, any low frequency noise from OTA3 could jeopardize the signal. Thus, 

correlated double sampling (CDS) is applied to remove the DC offset and 1/f 

noise at the input of OTA3. During the drive phase, the charges stored on C1, C2 

or C3 are transferred to C5 and the output becomes valid. During the phase when 

FBN is high, C6 holds the output signal from the previous period so that OTA3 

remains closed loop. The differentiator stage also provides 4x voltage gain.  

The differentiator output is sampled by a pair of switches and held on the 

input capacitances of a differential pair amplifier. 
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(a) 

 

(b) 

Figure 6.5 Schematic diagram of VGA with transimpedance amplifier as the 

output buffer. 
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6.4 Linear VGA and buffer 

The linear VGA is essentially a multiplier implemented by a Gilbert cell. Its 

differential current output is amplified by a trans-impedance amplifier (Fig. 6.5(a)). 

The common mode output current from the Gilbert cell is subtracted by the input 

common mode feedback block. Capacitor Cf is introduced in parallel with Rf for 

phase compensation. This compensation technique allows us to design an op-

amp with minimum bandwidth. The TIA has to drive the sense resonator 

periodically in the presence of parasitic capacitance Cp. Since the output of the 

TIA drives both the capacitive and resistive loads, a variant of the conventional 

two-stage Miller amplifier is used, as shown in Fig. 6.5(b). Unlike the 

conventional two-stage Miller amplifier where the output stage is biased by a 

constant current, in our modified version, a push-pull output stage is used, which 

is able to deliver large output current for a large input signal and hence improves 

the slew rate. A feed-forward path is also introduced in the bottom differential pair 

to further speed the linear settling. 
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Figure 6.6 Chopper stabilized peak detector and error amplifier. 

 

6.5 CHS peak detector and error amplifier 

The AAC loop consists of a rectifier, an error amplifier, and a loop filter. The 

rectifier is realized using an alternating-voltage-follower (AVF) (Fig. 6.6) for its 

compatibility to standard CMOS process and its reduced threshold voltage 

compared with diode based rectifier. However, it suffers from the 1/f noise in the 

tail current. Thus, a chopper stabilization (CHS) is employed in the rectifier to 

remove the 1/f noise. Two sets of AVFs are used, when one is detecting the 

amplitude, the other acts as a reference to compensate for the voltage shift of 

source follower. To modulate the input signal, two switches are added at the 

inputs of the AVFs (Fig. 6.6). These two switches periodically exchange the roles 

of the rectification and the reference AVFs. This novel CHS is easy to implement 

and consumes little power compared with CDS.  

The comparison between the detected amplitude and the preset value VR0 is 

performed in the current domain through two linearized transconductors, which 
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convert the output voltage of the rectifier to current. An off-chip RC network 

provides the necessary poles and zeros for the loop filter L(s). Three sets of 

chopper are placed around the transconductors to complete the chopper 

stabilization. 

 

6.6 Chip floorplan and microphotograph 

 

Figure 6.7 Chip floorplan 
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Figure 6.8 Chip microphotograph 
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Chapter 7 Experimental result 

 

7.1 MEMS oscillator 

The readout circuit IC was designed twice based on a 2P4M CMOS 0.35 um 

process. In the first run, the circuit chip was characterized with a single sense 

resonator, whose parameters are given in Table 7.1. They are mounted together 

on a PCB and interconnected through bond wires, as shown in Fig. 7.1. The PCB 

is placed in a vacuum chamber. The oscillation amplitude is set to be 0.15 μm by 

the external voltage VR0, which is already 3 times the bifurcation point. This 

corresponds to a capacitance variation of 0.5 fF. The resonator has a 113 kHz 

resonant frequency. The AAC loop bandwidth is set around 100 Hz to attenuate 

the ripple introduced in the rectifier. The chopping frequency is set to be 2 kHz to 

facilitate the filter design.  
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Figure 7.1 Microphotograph of CMOS readout circuit chip and SOI resonator 

interconnected. 

 

Table 7.1 parameters of the sense resonator 

parameters  units parameters  units 

Beam Length 400 μ m Quality Factor 15,000 – 

Beam Width 5 μ m Effective Stiffness kef 274 N/m 

Number of Fingers 17 – Effective Mass mef 2.18×10-9 kg 

Finger Overlap 6 μ m Static overlap Cap Cs 20 fF 

Gap 2 μ m Equivalent Cap Cx 1.29×10-16 F 

Thickness 25 μ m Equivalent Induc. Lx 6.17×104 H 

Measured Freq 113.36k Hz Equivalent Res. Rx 4.37×107 Ω 

DC bias voltage 50 V feedthrough Cft 12 fF 

 

To measure the phase noise with the signal source analyzer available 

(Agilent E5052A), an off-chip phase-locked-loop (PLL) is built to multiply the 

oscillation frequency by a factor of 420. The chip design allows us to disable the 

chopper in the AAC loop and replace the 2nd order AAC loop filter with a 1st order 

one. The measured phase noises were plotted in Fig. 7.2. The performance 

improvement by the CHS can be clearly seen.  
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Figure 7.2 The oscillator phase noise deduced from the measured PLL 

phase noise. 

 

Secondly, the random bias variation was characterized using Allan variance, 

a method proposed for clock systems [58]. The definition of Allan variance σ is 

given by 

2 2
1

1( ) ( )
2y n ny yσ τ += < − >                                    (7.1) 

where yn is the average frequency reading over sample period n, and τ is the 

time span per sample period.  

The instant frequency value is read at a rate of 5 Hz with the universal 

counter Agilent E53131A. Fig. 7.3 shows a sample of measured frequency, from 

which a slow frequency drift can be observed. This drift is believed to be caused 

by the temperature drift. To study the random bias variation, the recorded 

frequency reading was filtered by a 0.5 mHz butterworth high pass filter to 
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remove the temperature drift. The filtered frequency reading is also plotted in Fig. 

7.3. 
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Figure 7.3 A sample of measured frequency at PLL output versus elapsed time 

and its compensated result. 

Allan variance calculation was applied to the filtered frequency reading and 

plotted in Fig. 7.4. The Allan variance gradually flattens out as the averaging time 

increases. The floor is known as the Allan deviation, which indicates the random 

parts of the bias variation. Allan deviation improves from 8 mHz to 3.5 mHz with 

chopper enabled. 
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Figure 7.4 Measured Allan Variance. 

 

The residue bias instability could be attributed to the 1/f noise in the bias 

current of the differential pair in Fig. 6.4, which modulate the gain of the 

differential pair and introduce an additive 1/f amplitude noise. 

 

7.2 SOI resonant accelerometer 

We designed the second chip which contains two readout channels 

dedicated to the two sense resonators of an SOI resonant accelerometer. The 

output signals of the two channels are multiplied with each other with an off-chip 

multiplier to extract their frequency difference. The multiplier output is low-pass 

filtered to remove the high frequency components. The complete resonant 
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accelerometer system is schematically shown in Fig. 7.5. Fig. 7.6 shows the 

readout IC interconnected with the accelerometer sensor. 

 Figure 7.5 system block diagram of the SOI resonant accelerometer. 

 

Figure 7.6 Microphotograph of the interconnected CMOS readout circuit chip and 

SOI resonant accelerometer. 
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To verify that the 1/f noise upconversion causes the undesirable bias 

instability, the bias current in Fig. 6.4 is replaced with a low-noise one in our 

second chip. The temperature drift is common mode to both of the resonators 

and is therefore rejected to the first order. Fig. 7.7 plots the Allan variance of the 

output frequency difference, from which a 3 mHz variance at 1s and a 0.6 mHz 

floor is observed, which is about 5 times lower than that of the first design by 

merely replacing the current source in the differential pair. 
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Figure 7.7 The measured Allan variance of the resonant accelerometer. 

 

Due to lack of high precision rotation stage, the sensitivity or the scale factor 

is characterized by 3 static tests using gravity, that is, 1g, -1g and zero 
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acceleration. The unloaded frequencies are slightly different from 135 kHz, due to 

the fabrication error. The result is shown in Fig. 7.8. Based on the measured 

sensitivity, the measured Allan variance corresponds to 20 μg/ Hz resolution and 

4 μg bias stability. The 20 μg/ Hz resolution is mainly determined by the noise of 

differentiator while the bias stability is determined by the 1/f noise in the bias 

current. 
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Figure 7.8 Static acceleration testing result. 

 

This work is compared with the previous capacitive accelerometers in Table 

7.2 and the previous CMOS readout circuit for SRA in Table 7.3. Although it 

consumes more power and requires a PLL or high resolution counters for readout, 

it has a potential to achieve a much higher dynamic range than a conventional 

capacitive accelerometer. 
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It seems that the rectifier dominates the noise since other noise sources in total 

only explain a small portion of the total noise density while the 1/f noise in the 

bias current dominates the bias instability. However, the rectifier noise is mostly 

caused by the switching behavior, which converts 1/f noise into a wide band 

noise, a mechanism that is not properly modeled in any tools [59], making it hard 

to predict. Nevertheless, the result highlights the importance of the low noise 

AAC loop in the design of the high quality MEMS oscillator. 

Table 7.2 Comparison of this work with previous capacitive MEMS accelerometer 

 Supply Power Full range Noise 

[54] 5-V 135-mW ± 0.2g 110μg/ Hz 

[13] N.A N.A ± 13g 1m g/ Hz 

[14] 5-V 12-mW ± 1g 1.6μg/ Hz 

This work 3.3-V 23- mW ± 20g (design 

value) 

20μg/ Hz 

 

Table 7.3 Comparison of this work with previous silicon resonant accelerometer 

  Vp power noise Bias stability 

[21] 5-V 16-V N.A 900μg/ Hz 0.84mg 

This work 3.3-V 3.3-6.4V 23mW 20μg/ Hz 4μg 
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Chapter 8 Conclusions and future work 

8.1 Conclusion 

We proposed a new phase noise model for nonlinear MEMS oscillator 

employing automatic amplitude control. This model is derived based on state-

space theory. According to our analysis, the phase noise is still governed by its 

linear transfer function, despite of the nonlinearity in the MEMS resonator. The 

suspicious Duffing behavior is not found in this model, which suggests that even 

if the MEMS resonator is oscillating far beyond the Duffing bifurcation point, the 

resultant phase noise should be still governed by linear transfer function. 

Therefore, to reach the minimum phase noise, the designers are encouraged to 

maximize the oscillation amplitude, and put more emphasis on the low noise 

automatic amplitude control loop design so as to minimize the noise aliasing 

through A-S effect. 

Guided by the proposed phase noise model, a prototype MEMS oscillator 

circuit for silicon resonant accelerometer was demonstrated in this research. The 

noise inside the oscillation loop was intentionally minimized by a low-noise 

capacitive sense interface to highlight the importance of the AAC loop. A high-

order loop filter borrowed from the PLL design is used to shape the noise at the 

gain control input of the variable gain amplifier. A novel chopper stabilized (CHS) 

peak detector and error amplifier is introduced to remove the 1/f noise inside the 

AAC loop and to minimize the phase noise caused by the A-S effect. Combined 
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with a prototype resonant accelerometer sensor, the circuit achieved 4-μg bias 

stability and 20-μg/ Hz resolution. The residue bias instability was found to be 

caused by the 1/f noise upconversion in the gain stage following the differentiator.  

 

8.2 Future work 

We made several assumptions for simplicity in the proposed phase noise 

model. For example, in this model, the damping is assumed to be viscous. In 

practice, however, the damping mechanism under high vacuum is dominated by 

the structural damping arising from viscoelastic strain in the mechanical element, 

which does not follow a strict linear relationship between damping and the 

velocity. On the other hand, due to the small size of MEMS devices, absorption-

desorption of air atoms may cause additional phase noise around dc. 

Temperature stability is another possible obstacle to reach higher stability. All of 

this requires extra work in the modeling. 

The analysis of the measurement results suggest that the unexpected residue 

bias instability was caused by the 1/f upconversion through the open-loop gain 

stages and the frequency resolution is mainly determined by the noise from the 

rectifier. The rectifier noise is unknown due to its switching behavior, which 

converts 1/f noise into a wide band noise. The research into a less noisy AAC 

loop is therefore a logical next step. 

From the power point of view, in this prototype, the sense interface was designed 

based on the power hungry switched-cap principle. Achieving a better stability 
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and better resolution at much low power consumption is one of the major 

challenges in the future work. 
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