113 research outputs found

    Reliability and Data Analysis of Wearout Mechanisms for Circuits

    Get PDF
    The objective of this research is to develop methodologies for the failure analysis of circuits, as well as investigate the factors for accelerating testing for front-end-of-line time-dependent dielectric breakdown (FEOL TDDB). The separation of wearout mechanisms for circuits will be investigated, and the identification of failure modes for the failure samples will be analyzed. SRAMs and ring oscillators will be used to study the failure modes. The systematic and random errors for online monitoring of SRAMS will also be examined. Furthermore, the testing plans for acceleration testing will also be explored for ring oscillators. Error reduction through sampling will also be used to find the best testing conditions for accelerated testing. This work provides a way for engineers to better understand aging monitoring of circuits, and to design better testing to collect failure data.Ph.D

    A Study of Nanometer Semiconductor Scaling Effects on Microelectronics Reliability

    Get PDF
    The desire to assess the reliability of emerging scaled microelectronics technologies through faster reliability trials and more accurate acceleration models is the precursor for further research and experimentation in this relevant field. The effect of semiconductor scaling on microelectronics product reliability is an important aspect to the high reliability application user. From the perspective of a customer or user, who in many cases must deal with very limited, if any, manufacturer's reliability data to assess the product for a highly-reliable application, product-level testing is critical in the characterization and reliability assessment of advanced nanometer semiconductor scaling effects on microelectronics reliability. This dissertation provides a methodology on how to accomplish this and provides techniques for deriving the expected product-level reliability on commercial memory products. Competing mechanism theory and the multiple failure mechanism model are applied to two separate experiments; scaled SRAM and SDRAM products. Accelerated stress testing at multiple conditions is applied at the product level of several scaled memory products to assess the performance degradation and product reliability. Acceleration models are derived for each case. For several scaled SDRAM products, retention time degradation is studied and two distinct soft error populations are observed with each technology generation: early breakdown, characterized by randomly distributed weak bits with Weibull slope Beta=1, and a main population breakdown with an increasing failure rate. Retention time soft error rates are calculated and a multiple failure mechanism acceleration model with parameters is derived for each technology. Defect densities are calculated and reflect a decreasing trend in the percentage of random defective bits for each successive product generation. A normalized soft error failure rate of the memory data retention time in FIT/Gb and FIT/cm2 for several scaled SDRAM generations is presented revealing a power relationship. General models describing the soft error rates across scaled product generations are presented. The analysis methodology may be applied to other scaled microelectronic products and key parameters

    Electrical overstress and electrostatic discharge failure in silicon MOS devices

    Get PDF
    This thesis presents an experimental and theoretical investigation of electrical failure in MOS structures, with a particular emphasis on short-pulse and ESD failure. It begins with an extensive survey of MOS technology, its failure mechanisms and protection schemes. A program of experimental research on MOS breakdown is then reported, the results of which are used to develop a model of breakdown across a wide spectrum of time scales. This model, in which bulk-oxide electron trapping/emission plays a major role, prohibits the direct use of causal theory over short time-scales, invalidating earlier theories on the subject. The work is extended to ESD stress of both polarities. Negative polarity ESD breakdownis found to be primarily oxide-voltage activated, with no significant dependence on temperature of luminosity. Positive polarity breakdown depends on the rate of surface inversion, dictated by the Si avalanche threshold and/or the generation speed of light-induced carriers. An analytical model, based upon the above theory is developed to predict ESD breakdown over a wide range of conditions. The thesis ends with an experimental and theoretical investigation of the effects of ESD breakdown on device and circuit performance. Breakdown sites are modelled as resistive paths in the oxide, and their distorting effects upon transistor performance are studied. The degradation of a damaged transistor under working stress is observed, giving a deeper insight into the latent hazards of ESD damage

    DEEP SUBMICRON CMOS VLSI CIRCUIT RELIABILITY MODELING, SIMULATION AND DESIGN

    Get PDF
    CMOS VLSI circuit reliability modeling and simulation have attracted intense research interest in the last two decades, and as a result almost all IC Design For Reliability (DFR) tools now try to incrementally simulate device wearout mechanisms in iterative ways. These DFR tools are capable of accurately characterizing the device wearout process and predicting its impact on circuit performance. Nevertheless, excessive simulation time and tedious parameter testing process often limit popularity of these tools in product design and fabrication. This work develops a new SPICE reliability simulation method that shifts the focus of reliability analysis from device wearout to circuit functionality. A set of accelerated lifetime models and failure equivalent circuit models are proposed for the most common MOSFET intrinsic wearout mechanisms, including Hot Carrier Injection (HCI), Time Dependent Dielectric Breakdown (TDDB), and Negative Bias Temperature Instability (NBTI). The accelerated lifetime models help to identify the most degraded transistors in a circuit in terms of the device's terminal voltage and current waveforms. Then corresponding failure equivalent circuit models are incorporated into the circuit to substitute these identified transistors. Finally, SPICE simulation is performed again to check circuit functionality and analyze the impact of device wearout on circuit operation. Device wearout effects are lumped into a very limited number of failure equivalent circuit model parameters, and circuit performance degradation and functionality are determined by the magnitude of these parameters. In this new method, it is unnecessary to perform a large number of small-step SPICE simulation iterations. Therefore, simulation time is obviously shortened in comparison to other tools. In addition, a reduced set of failure equivalent circuit model parameters, rather than a large number of device SPICE model parameters, need to be accurately characterized at each interim wearout process. Thus device testing and parameter extraction work are also significantly simplified. These advantages will allow circuit designers to perform quick and efficient circuit reliability analyses and to develop practical guidelines for reliable electronic designs

    Cross-Layer Approaches for an Aging-Aware Design of Nanoscale Microprocessors

    Get PDF
    Thanks to aggressive scaling of transistor dimensions, computers have revolutionized our life. However, the increasing unreliability of devices fabricated in nanoscale technologies emerged as a major threat for the future success of computers. In particular, accelerated transistor aging is of great importance, as it reduces the lifetime of digital systems. This thesis addresses this challenge by proposing new methods to model, analyze and mitigate aging at microarchitecture-level and above

    Effect of wearout processes on the critical timing parameters and reliability of CMOS bistable circuits

    Get PDF
    The objective of the research presented in this thesis was to investigate the effects of wearout processes on the performance and reliability of CMOS bistable circuits. The main wearout process affecting reliability of submicron MOS devices was identified as hot-carrier stress (and the resulting degradation in circuit performance). The effect of hot-carrier degradation on the resolving time leading to metastability of the bistable circuits also have been investigated. Hot-carrier degradation was identified as a major reliability concern for CMOS bistable circuits designed using submicron technologies. The major hot-carrier effects are the impact ionisation of hot- carriers in the channel of a MOS device and the resulting substrate current and gate current generation. The substrate current has been used as the monitor for the hot-carrier stress and have developed a substrate current model based on existing models that have been extended to incorporate additional effects for submicron devices. The optimisation of the substrate current model led to the development of degradation and life-time models. These are presented in the thesis. A number of bistable circuits designed using 0.7 micron CMOS technology design rules were selected for the substrate current model analysis. The circuits were simulated using a set of optimised SPICE model parameters and the stress factors on each device was evaluated using the substrate current model implemented as a post processor to the SPICE simulation. Model parameters for each device in the bistable were degraded according to the stress experienced and simulated again to determine the degradation in characteristic timing parameters for a predetermined stress period. A comparative study of the effect of degradation on characteristic timing parameters for a number of latch circuits was carried out. The life-times of the bistables were determined using the life-time model. The bistable circuits were found to enter a metastable state under critical timing conditions. The effect of hot-carrier stress induced degradation on the metastable state operation of the bistables were analysed. Based on the analysis of the hot-carrier degradation effects on the latch circuits, techniques are suggested to reduce hot-carrier stress and to improve circuit life-time. Modifications for improving hot- carrier reliability were incorporated into all the bistable circuits which were re-simulated to determine the improvement in life-time and reliability of the circuits under hot-carrier stress. The improved circuits were degraded based on the new stress factors and the degradation effects on the critical timing parameters evaluated and these were compared with those before the modifications. The improvements in the life-time and the reliability of the selected bistable circuits were quantified. It has been demonstrated that the hot-carrier reliability for all the selected bistable circuits can be improved by design techniques to reduce the stress on identified critically stressed devices

    A CAD tool for the prediction of VLSI interconnect reliability.

    Get PDF
    Thesis (Ph.D.)-University of Natal, Durban, 1988.This thesis proposes a new approach to the design of reliable VLSI interconnects, based on predictive failure models embedded in a software tool for reliability analysis. A method for predicting the failure rate of complex integrated circuit interconnects subject to electromigration, is presented. This method is based on the principle of fracturing an interconnect pattern into a number of statistically independent conductor segments. Five commonly-occurring segment types are identified: straight runs, steps resulting from a discontinuity in the wafer surface, contact windows, vias and bonding pads. The relationship between median time-to-failure (Mtf) of each segment and physical dimensions, temperature and current density are determined. This model includes the effect of time-varying current density. The standard deviation of lifetime is also determined as a function of dimensions. A· minimum order statistical method is used to compute the failure rate of the interconnect system. This method, which is applicable to current densities below 106 AI cm2 , combines mask layout and simulation data from the design data base with process data to calculate failure rates. A suite of software tools called Reliant (RELIability Analyzer for iNTerconnects) which implements the algorithms described above, is presented. Reliant fractures a conductor pattern into segments and extracts electrical equivalent circuits for each segment. The equivalent circuits are used in conjunction with a modified version of the SPICE circuit simulator to determine the currents in all segments and to compute reliability. An interface to a data base query system provides the capability to access reliability data interactively. The performance of Reliant is evaluated, based on two CMOS standard cell layouts. Test structures for the calibration of the reliability models are provided. Reliant is suitable for the analysis of leaf cells containing a few hundred transistors. For MOS VLSI circuits, an alternative approach based on the use of an event-driven switch-level simulator is presented

    Unreliable Silicon: Circuit through System-Level Techniques for Mitigating the Adverse Effects of Process Variation, Device Degradation and Environmental Conditions.

    Full text link
    Designing and manufacturing integrated circuits in advanced, highly-scaled processing technologies that meet stringent specification sets is an increasingly unreliable proposition. Dimensional processing variations, time and stress dependent device degradation and potentially varying environmental conditions exacerbate deviations in performance, power and even functionality of integrated circuits. This work explores a system-level adaptive design philosophy intended to mitigate the power and performance impact of unreliable silicon devices and presents enabling circuits for SRAM variation mitigation and in-situ measurement of device degradation in 130nm and 45nm processing technologies. An adaptation of RAZOR-based DVS designed for on-chip memory power reduction and reliability lifetime improvement enables the elimination of 250 mV of voltage margin in a 1.8V design, with up to 500 mV of reduction when allowing 5% of memory operations to use multiple cycles. A novel PID-controlled dynamic reliability management (DRM) system is presented, allowing user-specified circuit lifetime to be dynamically managed via dynamic voltage and frequency scaling. Peak performance improvement of 20-35% is achievable in typical processing systems by allowing brief periods of elevated voltage operation through the real-time DRM system, while minimizing voltage during non-critical periods of operation to maximize circuit lifetime. A probabilistic analysis of oxide breakdown using the percolation model indicates the need for 1000-2000 integrated in-situ sensors to achieve oxide lifetime prediction error at or under 10%. The conclusions from the oxide analysis are used to guide the design of a series of novel on-chip reliability monitoring circuits for use in a real-time DRM system. A 130nm in-situ oxide breakdown measurement sensor presented is the first published design of an oxide-breakdown oriented circuit and is compatible with standard-cell style automatic “place and route” design styles used in the majority of application specific integrated circuit designs. Measured results show increases in gate oxide leakage of 14-35% after accelerated stress testing. A second generation design of the on-chip oxide degradation sensor is presented that reduces stress mode power consumption by 111,785X over the initial design while providing an ideal 1:1 mapping of gate leakage to output frequency in extracted simulations.Ph.D.Electrical EngineeringUniversity of Michigan, Horace H. Rackham School of Graduate Studieshttp://deepblue.lib.umich.edu/bitstream/2027.42/60701/1/ekarl_1.pd

    Primary Electric Propulsion Technology Study

    Get PDF
    An investigation of the 30-cm engineering-model-thruster technology with emphasis placed on the development of models for understanding and predicting the operational characteristics and wear-out mechanisms of the thruster as a function of operating or design parameters is presented. The task studies include: (1) the wear mechanisms and wear rates that determine the useful lifetime of the thruster discharge chamber; (2) cathode lifetime as determined by the depletion of barium from the barium-aluminate-impregnated-porous-tungsten insert that serves as a barium reservoir; (3) accelerator-grid-system technology; (4) a verification of the high-voltage propellant-flow-electrical-isolator design developed under NASA contract NAS3-20395 for operation at 10-kV applied voltage and 10-A equivalent propellant flow with mercury and argon propellants. A model was formulated for predicting performance

    Design for reliability: NASA reliability preferred practices for design and test

    Get PDF
    This tutorial summarizes reliability experience from both NASA and industry and reflects engineering practices that support current and future civil space programs. These practices were collected from various NASA field centers and were reviewed by a committee of senior technical representatives from the participating centers (members are listed at the end). The material for this tutorial was taken from the publication issued by the NASA Reliability and Maintainability Steering Committee (NASA Reliability Preferred Practices for Design and Test. NASA TM-4322, 1991). Reliability must be an integral part of the systems engineering process. Although both disciplines must be weighed equally with other technical and programmatic demands, the application of sound reliability principles will be the key to the effectiveness and affordability of America's space program. Our space programs have shown that reliability efforts must focus on the design characteristics that affect the frequency of failure. Herein, we emphasize that these identified design characteristics must be controlled by applying conservative engineering principles
    corecore