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SUMMARY 

The objective of this research is to develop methodologies for the failure analysis 

of circuits, as well as investigate the factors for accelerating testing for front-end-of-line 

time-dependent dielectric breakdown (FEOL TDDB). As the technology node enters into 

a new era where the planar MOSFET has now transitioned to FinFET structures due to 

device scaling, new reliability concerns arise. Therefore, it is critical to be able to 

understand and predict the failure for integrated circuits, especially as new emerging 

technologies, such as autonomous vehicles and wearable devices, are increasing the bar for 

reliability standards. 

In this thesis, the separation of wearout mechanisms for circuits will be 

investigated, and the identification of failure modes for the failure samples will be 

analyzed. SRAMs and ring oscillators based on the 14nm FinFET 

GlobalFoundries/Samsung/IBM PDK will be used to study the failure modes. The 

systematic and random errors for online monitoring of SRAMS will also be examined. 

 Furthermore, the testing plans for acceleration testing will also be explored for ring 

oscillators. The effects of stage number and testing time will be discussed. Error reduction 

through sampling will also be used to find the best testing conditions for accelerated testing. 

 This work provides a way for engineers to better understand aging monitoring of 

circuits, and to design better testing to collect failure data. With these developments, 

engineers may make improved failure predictions for growing complex systems. In 
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addition, the circuit design and manufacturing processes can be enhanced with better yield 

and product performance. 



 1 

INTRODUCTION 

Semiconductor devices and circuits are the core components of electronic devices. 

However, for these electronic devices to perform practically, reliability goals must be 

fulfilled [1], which has becoming even more challenging due to the increasing complexity 

in semiconductor manufacturing [2]. Furthermore, emerging technologies, such as 

autonomous vehicles and wearable sensors for health monitoring, are becoming 

increasingly interrelated with public safety, making the need for the assessment of highly 

reliable complex systems increasingly important [3-6]. Particularly for autonomous 

vehicles, the reliability standards are raised higher than traditional vehicles [7]. 

Reliability is the ability of a device to conform to its electrical, visual, and 

mechanical specifications over a specified period of time under specified conditions [8]. 

The development of technology, processes, and standards are made to ensure the reliability 

of semiconductor devices during application [9]. Reliability engineering is built upon a 

vast set of disciples, such as physics, statistics, and materials, etc., to ensure the continuous 

improvement of every device.  

Reliability is often confused with quality, but these two have different meanings. 

Quality refers to the device meeting its specifications, but reliability refers to the time 

dependence of the device degradation [10]. Degradation is a result of the Second Law of 

Thermodynamics, where the entropy of isolated systems will increase over time to move 

to a stable state in order to lower its Gibbs Potential Free Energy, as shown in Figure 1 

[11]. The degradation will affect the device parameter, as shown in Figure 2 [12]. The 

device parameter may increase or decrease as a result over time. 
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Figure 1 – Illustration of the material degradation reaction. The material will move 

from the initial state to the degraded state in order to lower its Gibbs Potential Free 

Energy [12]. 

 

 

Figure 2 – Materials degradation in a device can cause device parameter S to 

degrade with time, which can be increasing or decreasing [12]. 
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Here, this thesis is focused on device failure under stress, and how it impacts circuit 

reliability. Stress is any external agent that can cause degradation to occur in the material 

properties to the point where the device can no longer function properly in its intended 

application . All material will eventually degrade over time leading to device failure, so it 

is critical to pinpoint when the device cannot operate properly when designing products. 

1.1 Planar MOSFET and FinFET Device Structures 

In recent years, the shrinkage of device dimensions has allowed the density of 

integrated circuits on a chip to increase, lower costs and increase performance [13, 14], as 

shown in Figure 3 [15]. With each new technology node generation developed from the 

result of device scaling, reliability concerns arise [16], which may be due to the device 

structure or fabrication changes[17]. As a result, one of the most important changes from 

the decrease in the gate oxide length is the device structure transition from planar metal 

oxide semiconductor field-effect transistor (MOSFET) device to fin field-effect transistor 

(FinFET) structure [18]. 

 

Figure 3 – Minimum feature size scaling trend for Intel logic technologies [15, 19]. 
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The MOSFET device structure is the traditional device structure used in the 

semiconductor industry. It is composed of a gate that controls the current flowing from the 

source to drain, as shown in Figure 4 (a). However, with the scaling of process technology, 

the gate length has decreased dramatically, making it difficult for the gate to control the 

current [20].  

The FinFET structure was developed to address the increased leakage current and 

short channel effects of planar MOSFETs resulting from the shrinking size of the devices 

[21]. It has also lowered the soft error rates in static random-access memory [22]. The 

FinFET structure has the channel elevated, so that the gate can surround it on all three 

sides, looking like a fin, as shown in Figure 4 (b).  

 

    (a)                                                    (b) 

Figure 4 – Structure of (a) Planar MOSFET and (b) FinFET device [23]. 
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The improvement in the electrical characteristics from switching to the FinFET 

structure can be seen in Figure 5. However, the different structure and fabrication process 

for FinFETs introduces new reliability issues [24-26]. For example, the 3D structure of 

FinFETs gives rise to the concern of middle-of-line time-dependent dielectric breakdown, 

which was not previously critical in the planar MOSFET structures[27, 28]. FinFETs took 

around a quarter of a century to transition from the first demonstration in research to a 

commercialized product [29]. The first commercially-wide available FinFET chips were 

produced from Intel starting from their 22nm node [30], which was introduced just recently 

as shown in Figure 7.  

 

 

                       (a)                                                                  (b) 

Figure 5 – Comparison of planar versus FinFET transistor electrical characteristics. 

(a) Channel current versus gate voltage. (b) Transistor gate delay versus operating 

voltage [15]. 
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Figure 6  – Normalized scaling trends in the per-bit alpha and neutron SER of 

SRAMs as a function of technology node [22].  

 

 

 

Figure 7 – Intel’s development of the technology node for the past five generations 

[15]. 
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1.2 Statistical Analysis of Reliability Data 

To quantify reliability, reliability can also be thought of as the probability that a 

semiconductor device having initial satisfactory performance can continue to perform its 

intended function for a given time under actual usage conditions [31]. Therefore, reliability 

calculations are often based on statistical data collected using failure records using failure 

distributions. Mathematical analysis is used to predict how long devices will function. As 

illustrated in Figure 8, reliability aims to move the average of the failure distribution to a 

higher failure time, which is different than quality, which moves to reduce the variability. 

It is important to be able to predict the degradation of the product when it is in the field and 

predict the remaining life of the product over time [32]. Usages for reliability prediction 

are described in Figure 9 [33]. 

 

Figure 8 – Difference between the purposes of reliability and quality. 
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Figure 9 – Prediction uses [33]. 

1.2.1 Weibull Distribution 

The Weibull distribution is a very flexible distribution often used to analyse 

reliability data, especially for system failure [12]. The distribution is named after Waloddi 

Weibull, who originally used the probability distribution in 1951 as a model for material 

breaking strength, but has now widespread use in describing lifetime distributions [34]. 

The probability density function for a two parameter Weibull distribution can be calculated 

as follows: 

 
𝑓(𝑡) = (

𝛽

𝜂
) (

𝑡

𝜂
)

𝛽−1

𝑒𝑥𝑝 [− (
𝑡

𝜂
)

𝛽

] (1) 

where 𝛽  is the shape parameter, also known as the dispersion parameter, and 𝜂  is the 

characteristic lifetime, also known as the scale parameter, which is the lifetime at the 63% 

failure probability. The exponential distribution is a special case of the Weibull distribution 

where 𝛽 = 1. Examples of the Weibull distribution are shown in Figure 10. 
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Figure 10 – Weibull distributions with different shape parameters, β, and same scale 

parameter, η. 

The time-to-failure is when a device parameter degrades to the point that the device 

cannot function properly, and the characteristic lifetime can be used as an indicator of the 

time-to-failure. The time-to-failure of circuits can be investigated using compact modeling 

[35], where the failure modes can be described using the Weibull distribution. The failure 

modes will be described in more detail in Section 1.3. 

1.2.2 Maximum Likelihood Estimation 

Maximum likelihood estimation (MLE) is a statistical method that determines the 

parameters of a model from given observations, which would be failure times in the 

reliability applications discussed in this proposal, by finding the parameter values that 

maximizes the likelihood or highest probability of getting the observations (time-to-failure 

data in this proposal) given the parameters. The reasoning is that the estimate which 

explains the data best will be the best estimator. MLE is a powerful analysis tool that can 

be applied to both censored (the condition when the value of a measurement or observation 
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is only partially known) and uncensored failure data. MLE is used in this thesis to find the 

competing Weibull parameters for competing wearout mechanisms in circuits.  

1.2.3 Quasi-Newton Method 

The quasi-Newton method is a calculation method that can find the minima or 

maxima of functions. It is based on Newton’s method, which uses both the first and second 

derivative (Hessian matrix) values to find the roots of a function. Newton’s method can be 

thought of as similar to a gradient descent method, which is a first-order method, but with 

the addition of using second-order information to change the step size and direction. This 

addition of the Hessian information helps avoid descent directions that plateau too quickly. 

Therefore, the quasi-Newton method is somewhere of an intermediate between Newton’s 

method and gradient descent. The quasi-Newton method uses fewer steps to find the 

optimal value, taking more time to execute each step, while the gradient descent method, 

which is a first-order method, has the opposite properties [36]. 

Newton’s method is generally computationally expensive and slow, because it is 

more difficult to calculate the second derivative. The quasi-Newton method overcomes this 

problem by approximating the Hessian matrix instead of computing it directly. Various 

algorithms are available that can be used to find the Hessian matrix.   

1.3 Wearout Mechanisms 

Reliability concerns in transistor devices must be addressed in order to ensure that a 

product can perform its required functions for a stated period of time, which can generally 

be divided into front-end and back-end wearout mechanisms [37]. One of the most 
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important front-end wearout mechanisms typically found in both planar MOSFET and 

FinFET structures is the front-end-of-line time-dependent dielectric breakdown (FEOL 

TDDB), also known as the front-end gate oxide breakdown (GOBD). For back-end 

wearout mechanisms, both planar MOSFET and FinFET devices have back-end-of-line 

time-dependent dielectric breakdown (BEOL TDDB or BTDDB) and electromigration 

(EM). However, FinFET devices have an extra wearout mechanism that is not found in 

planar MOSFET devices, which is the middle-of-line time-dependent dielectric breakdown 

(MOL TDDB or MTDDB), that occurs due to process scaling [38].  

1.3.1 Front-end Wearout Mechanism 

Front-end-of-line time-dependent dielectric breakdown (FEOL TDDB), also known 

as front-end gate oxide breakdown (GOBD or GTDDB), is the main front-end wearout 

mechanism found in transistors, as shown in  Figure 11. When transistors are turned on, 

the gate dielectric region is subjected to voltage and thermal stress, and traps can build-up 

that degrade the gate oxide material [39]. As shown in Figure 11, the traps will eventually 

form a conduction path, leading to the breakdown of the oxide material. For the 45-65nm, 

technology nodes, the gate oxide can be as thin as 1.2 nm [40], where the same defect size 

will have a higher impact compared to the older technology node generations with thicker 

oxides, because the defect size is now impacting a larger portion of the oxide thickness for 

the thin oxides [41]. 
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Figure 11 – FEOL TDDB breakdown in the gate region of a FinFET transistor. 

 

 

Figure 12 – Generation of traps leading to gate oxide breakdown [42]. 
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FEOL TDDB can be modeled as [43]: 

 
η = 𝐴𝑜𝑥 (

1

𝑊𝐿
)

1
𝛽

𝑒
−1
𝛽 𝑉𝑎+𝑏𝑇𝑒𝑥𝑝 (

𝑐

𝑇
+

𝑑

𝑇2) 𝑠−1 (2) 

where β is the shape parameter, and η is the time-to-failure at the 63% probability point. 

W and L are the device width and length, s is the probability of stress, T is temperature, V 

is gate voltage, respectively. In addition, a, b, c, d, and Aox are fitting parameters, which 

depend on the type of technology process used. 

1.3.2 Back-end Wearout Mechanisms 

1.3.2.1 Back-end-of-line time-dependent dielectric breakdown (BEOL TDDB or 

BTDDB) 

Back-end-of-line time-dependent dielectric breakdown (BEOL TDDB or BTDDB) 

is the dielectric breakdown between adjacent metal interconnect lines[44], as shown in 

Figure 13. BEOL TDDB can be modelled as [45]: 

 
η = 𝐴𝐵𝐸𝑂𝐿𝐿

𝑖

−1
𝛽 𝑒𝑥𝑝 (−𝛾𝐸𝑚 +

𝐸𝑎

𝑘𝑇
) 𝑠−1 (3) 

where  𝐴𝐵𝐸𝑂𝐿 is a constant that is dependent on the technology process, 𝐿𝑖 is the vulnerable 

length (the distance where the metals run parallel to each other),  𝐸𝑎 is the activation energy 

(~0.5 eV), T is temperature, γ is the field acceleration factor, s is the probability of stress,  

and k is the Boltzmann constant. E is the electric field, which is a function of voltage, V 

and the distance between the conductions, 𝑆𝑖, i.e., E=V/𝑆𝑖, and  m is ½ for the √𝐸 model 

[46]. 
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Figure 13 – BEOL TDDB breakdown occurs between the spacing of two 

interconnect wires [47]. 

 

1.3.2.2 Electromigration (EM) 

Electromigration (EM) is the dislocation of atoms in the lattice of interconnect metals 

due to the momentum transfer of electrons [48]. The movement of atoms can cause voids 

due to the absence of atoms at one end and hillocks due to the build-up of atoms at the 

other end [49], as shown in Figure 14. This phenomena results in the function failure of 

circuits due to the loss of connections [50], as can be seen in the image in Figure 15. It can 

be modelled as [51]: 

 η = 𝐴𝐸𝑀𝐽−𝑛𝑒𝑥𝑝 (
𝐸𝑎

𝑘𝑇
) (4) 

where 𝐴𝐸𝑀 is a constant that is dependent on the technology process, T is temperature, J is 

current density, 𝐸𝑎  is the activation energy (0.85 eV), n=1 (void growth), and k is the  

Boltzmann constant.  
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Figure 14 – Formation of hillock and void resulting from electromigration. 

 

 

Figure 15 – Electromigration breakdown in an interconnect wire [52]. 

1.3.3 Middle-of-line Wearout Mechanism 

Due to the increasing complexity of the technology nodes, the fabrication process for 

between the wafer fabrication and back-end assembly has now evolved into a separate 

process, called  middle of the line (MEOL) process [53, 54]. The MEOL process can be 

performed after the front side treatment/bumping, or before the chip stacking assembly 

[55]. However, controlling the fabrication process between the polysilicon control gate and 

the diffusion contact may be challenging due to variations from the overlay, via size, line 

width, line edge roughness, defects, and image irregularities, which gives rise to dielectric 

breakdown in the middle-of-line [56]. 
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Therefore, the middle-of-line time-dependent dielectric breakdown (MOL TDDB or 

MTDDB) is a growing concern due to the architecture change in FinFET transistors and 

dimension scaling [57], as shown in Figure 16, which can be found in advanced technology 

nodes [58]. MOL TDDB is similar to BEOL TDDB, but the dielectric breakdown occurs 

in the spacing between the gate and the source/drain contacts [59]. Therefore, the device-

level model is similar to BEOL TDDB as follows [60]: 

 
η = 𝐴𝑀𝑂𝐿𝐿

𝑖

−1
𝛽 𝑒𝑥𝑝 (−𝛾𝐸𝑚 +

𝐸𝑎

𝑘𝑇
) 𝑠−1 (5) 

where 𝐴𝑀𝑂𝐿 is a constant the depends on the material properties of the dielectric, and m is 

1 for the E model [61]. All other parameters are similar to the BEOL TDDB parameters. 

 

 

Figure 16 – MTDDB breakdown occurs in the region between the contact and the 

gate. 
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1.4 Circuit Case Studies 

1.4.1 Process Design Kit (PDK) 

 The circuits used in this research are based on the 14nm FinFET technology node 

using the process design kit (PDK) jointly developed by GlobalFoundries 

(GF)/Samsung/IBM. A PDK is a set of files created by the foundry to model a fabrication 

process for the design tools that are used to design an integrated circuit. The circuits are 

investigated using the PDK files in Cadence Virtuoso, SPICE simulation, and Mentor 

Calibre for design rule checks of the layouts. The types of circuits used in this thesis are 

focused on ring oscillators and static random-access memories. 

1.4.2 Ring Oscillators 

Ring oscillators are a type of circuit that are often used in process validation [62, 63], 

such as in monitoring the gate delay and speed-power product of fabricated circuits due to  

easy implementation. The simplest type of a ring oscillator structure is composed of 

identical invertors and physical interconnections, as shown in Figure 17, where the output 

signal oscillates with a certain period depending on the gate delay. The gate delay is the 

length of time when the input to a logic gate becomes stable and valid to change, to the 

time that the output of that logic gate is stable and valid to change.  
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VDD VDD VDD

1st stage 2nd stage nth stage 
 

Figure 17 – Ring oscillator composed of identical invertors and physical 

interconnections connected together. 

To oscillate, the ring oscillator requires an odd number of stages. A stage number is 

the number of invertors (nmos and pmos connected together in a series) in a ring oscillator. 

The duty cycle of a ring oscillator is the ratio of the time the circuit is on compared to the 

time the circuit is off, which can be used to describe the percentage of time a signal is active 

in the ring oscillator. 

1.4.3 Static random-access memory (SRAM) 

Static random-access memory (SRAM) is a type of circuit that retains data bits in its 

memory as long as power is supplied [64], occupying a major portion of the total area and 

power of system-on-chip ICs [65]. It is also the most common embedded-memory option 

for CMOS ICs [66]. The need for low power consumption and high performance for ultra-

low power circuits, such as mobile and wearable devices, are the driving force for the 

demand for SRAMs [67]. 
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As shown in Figure 18, an SRAM is composed of six transistors, where A1 and A2 

are the access transistors, and L1, L2, L3 and L4 are the latch transistors. The data bit is 

stored in the latch transistors, which is the basic memory cell. The access transistors are 

used to control the access to the memory cell when reading and writing the data.  

 

Figure 18  – An SRAM is composed of six transistors, where A1 and A2 are the 

access transistors, and L1, L2, L3 and L4 are the latch transistors. 

 

1.5 Research Objectives 

This thesis aims to implement data analysis techniques to detect and identify 

competing wearout mechanisms in circuits. A methodology for online monitoring is also 

developed to detect FEOL TDDB failures. Test plans and sampling for accelerated testing 

are also studied to lower errors. 
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1.6 Thesis Overview 

This thesis is organized as follows. Chapter 2 will discuss the failure analysis for ring 

oscillators and SRAMs. Chapter 3 will describe the investigation of test conditions and 

sampling for accelerated testing. The conclusions and future work will be explained in 

Chapter 4.  
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FAILURE ANALYSIS OF CIRCUITS 

 This thesis focuses on two types of failure analysis of circuits. The first type is when 

the testing time is sufficient, so the entire failure data set can be collected. For these types 

of data sets, the failure data may be composed of more than one wearout mechanism, so 

the failure modes may need to be separated. The other type is for online monitoring, where 

the samples are monitored as they fail [68]. Generally, this type of failure data set will be 

incomplete, because not all samples may have failed. Through online monitoring, the goal 

is to prevent the user from experiencing the effects of failure and provide , notice of 

impending failure to allow corrective measures to be taken, which may be necessary in 

safety critical applications [69, 70]. 

1.7 Separation of competing wearout mechanisms in circuits 

 The standard method for analyzing failure samples is through examining test 

structures, with a typical test structure shown in Figure 19. However, actual products use 

circuits, which are more complex than test structures. One of the main differences between 

circuits and test structures is that test structures only have a single wearout mode, but 

circuits have confounded wearout modes. Therefore, the results from test structures may 

not be reflective of actual circuits.  

 The collection of lifetime data on large numbers of circuits is challenging, due to 

test setup cost and the need for large numbers of sample circuits.  Ring oscillators are an 

intermediate between circuits and test structures. Because ring oscillators have behaviors 

similar to circuits, they are used instead of test structures in this thesis to test for failure 

modes.   
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Figure 19 – Illustration of a test structure [12]. 

 In addition, invasive diagnostic methods are generally used for failure analysis, 

such as transmission electron microscopy (TEM), e-beam, or scanning electron microscopy 

(SEM), to study the failure modes, which require samples to be cut open, for example, 

using focused ion beam (FIB) techniques [71, 72]. For advanced technology nodes, the 

metrology for TEM and other failure analysis techniques can become intricate and 

complex, requiring significant time to prepare and analyze samples [73]. This causes a wait 

time to receive the failure results and high costs, which can impact product costs if done 

too often.   

 Furthermore, electron radiation from TEM and other failure analysis techniques 

may alter the composition or microstructure of the sample, making it difficult to interpret 

the results authentically [74, 75]. Also, for technology nodes for 10nm and below, when 

using the energy dispersive X-ray spectrometer in TEM and other failure analysis 

techniques for elemental identification, the peak for the composition analysis may overlap 

due to more and more elements used in FEOL TDDB and MOL TDDB processes[76]. 

Therefore, it is necessary to find a quick and non-invasive method to separate the causes 

of failure, so that efforts for process improvement can be prioritized. 
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1.7.1 Methodology 

 To analyze the confounded wearout modes in a circuit, data analysis techniques are 

used to separate the competing wearout mechanisms. The advantages for using data 

analysis include quicker, faster, scalable, and more cost-effective analysis of complex data 

[77, 78], and may be implemented in the monitoring of semiconductor manufacturing [79]. 

The wearout mechanisms are modeled as competing wearout mechanisms, which occur 

when failures are due to more than one degradation mode and are independent of each 

other.  

 For competing wearout mechanisms, suppose mechanism 1 (primary breakdown 

mode) has a probability density function, f1(t) and cumulative distribution function, F1(t). 

The survival function is R1(t) = 1 - F1(t). Similarly, mechanism 2 (secondary breakdown 

mode) has the probability density function, f2(t); cumulative distribution function, F2(t); 

survival function, R2(t). Thus, the competing failure probability density function, f(t), can 

be described as below [80]. 

 f(t) = P{T1 = t, T2 ≥ t} ∪ P{T1 ≥ t, T2 = t} 

      = P(T1 = t,T2 ≥ t) + P(T1≥t, T2 = t )  

      = P(T1 = t) P( T2 ≥ t) + P(T1 ≥ t) P(T2 = t)  

            = f1(t) * R2 (t) + f2 (t) * R1(t)                                        

(6) 

The competing failure probability density function is different than the mixed Weibull 

probability density function, as shown below [81]: 



 24 

 f(t) = a * f1(t) + b * f2(t) (7) 

where a and b are the mixed weights. The mixed Weibull probability density function 

occurs when the breakdown is due to both mechanisms at the same time and should not be 

confused with the competing Weibull probability density function [82]. The competing 

Weibull probability density function describes the breakdown at a specific failure time due 

to only one mechanism, but the cause can be from either mechanism 1 or 2, but not both. 

 MLE is employed to estimate the competing Weibull parameters. The parameter 

values are found by maximizing the likelihood that the process described by the model has 

produced the data that were observed using the likelihood function. The likelihood function 

describes how particular values of statistical parameters are for a given set of failure 

observations, and for uncensored data can be simplified from [80] as: 

 

ℒ(𝜃)  =  𝐶 ∏ 𝑓(𝑡𝑖)

𝑁

𝑖=1

 (8) 

where θ is the set of competing Weibull parameters, β1, β2, η1, η2. Generally, because the 

goal is to obtain θ, not the actual value of  ℒ(𝜃), it is easier to work with the log likelihood 

function compared to the likelihood function. The log likelihood function can be written 

as: 

 

ln ℒ(𝜃)  =  ∑ ln 𝑓(𝑡𝑖) +  ln 𝐶

𝑁

𝑖=1

 (9) 

where C is a constant. 
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 The derivatives for MLE can also be simplified from [80] as: 

 𝜕 ln ℒ(𝜃)

𝜕𝛽1
 =  ∑ {

𝑑𝑅1(𝑡𝑖)

𝑑𝛽1
𝑓2(𝑡𝑖)  +  

𝑑𝑓1(𝑡𝑖)

𝑑𝛽1
𝑅2(𝑡𝑖)}

𝑁

𝑖=1

/𝑓(𝑡𝑖) (10) 

 𝜕 ln ℒ(𝜃)

𝜕𝛽2
 =  ∑ {𝑅1(𝑡𝑖)

𝑑𝑓2(𝑡𝑖)

𝑑𝛽2
 +  𝑓1(𝑡𝑖)

𝑑𝑅2(𝑡𝑖)

𝑑𝛽2
}

𝑁

𝑖=1

/𝑓(𝑡𝑖) (11) 

 𝜕 ln ℒ(𝜃)

𝜕𝜂1
 =  ∑ {

𝑑𝑅1(𝑡𝑖)

𝑑𝜂1
𝑓2(𝑡𝑖)  +  

𝑑𝑓1(𝑡𝑖)

𝑑𝜂1
𝑅2(𝑡𝑖)}

𝑁

𝑖=1

/𝑓(𝑡𝑖) (12) 

 𝜕 ln ℒ(𝜃)

𝜕𝜂2
 =  ∑ {𝑅1(𝑡𝑖)

𝑑𝑓2(𝑡𝑖)

𝑑𝜂2
 +  𝑓1(𝑡𝑖)

𝑑𝑅2(𝑡𝑖)

𝑑𝜂2
}

𝑁

𝑖=1

/𝑓(𝑡𝑖) (13) 

 𝑑𝑅𝑘(𝑡)

𝑑𝛽𝑘
 = −𝑅𝑘(𝑡) (

𝑡

𝜂𝑘
)

𝛽𝑘

ln (
𝑡

𝜂𝑘
) (14) 

 𝑑𝑓𝑘(𝑡)

𝑑𝛽𝑘
 =   (

𝑡

𝜂𝑘
)

𝛽𝑘−1

𝑅𝑘(𝑡) {(
1

𝜂𝑘
) + (

𝛽𝑘

𝜂𝑘
) ln (

𝑡

𝜂𝑘
)} − 𝑓𝑘(𝑡) (

𝑡

𝜂𝑘
)

𝛽𝑘

ln (
𝑡

𝜂𝑘
) (15) 

   

 𝑑𝑅𝑘(𝑡)

𝑑𝜂𝑘
 =  𝑅𝑘(𝑡) (

𝛽𝑘

𝜂𝑘
) (

𝑡

𝜂𝑘
)

𝛽𝑘

 (16) 

 𝑑𝑓𝑘(𝑡)

𝑑𝜂𝑘
 =  (

𝛽𝑘

𝜂𝑘
)

2

(
𝑡

𝜂𝑘
)

𝛽𝑘−1

𝑅𝑘(𝑡) {−1 + (
𝑡

𝜂𝑘
)

𝛽𝑘

} (17) 

where k=1 or 2.  
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 The quasi-Newton method using the Davidon-Fletcher-Powell algorithm, also 

referred to as the variable metric method, is used to optimize equation (9). The algorithm 

was originally proposed by Davidon in 1959 and later developed by Flectcher and Power 

in 1963 [83]. Because the evaluation and use of the Hessian matrix is impractical, time-

consuming and costly, the Davidon-Fletcher-Powell algorithm approximates the inverse 

Hessian matrix instead. An initial matrix H0 is chosen (usually H0=I, where I is the identity 

matrix, also called unit matrix), and the inverse Hessian is updated by the sum of two 

symmetric rank one matrices, which allows the algorithm to run faster than a rank two 

calculation. The updates continue until the optimization point is reached. 

 The Davidon-Fletcher-Powell algorithm was chosen, because this algorithm is 

suitable for a data set on the order of 10 to 1000 samples. Industrial data sets for reliability 

failure times are generally on the order of 10 to 1000 samples. Data sets larger than 1000 

samples may take too long to monitor or may be too costly. Therefore, the Davidon-

Fletcher-Powell algorithm can be applied to the failure sets and can be used to analyze the 

data sets quickly. The implementation is shown in Figure 20 [80]. 
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Algorithm Procedure [80] 

1. Initial condition: 𝜃0 = [𝛽1, 𝛽2, 𝜂1, 𝜂2]𝑇, 𝐿0 = 𝑙𝑛𝐿(𝜃0) 

2. Set optimization direction: 

𝑑𝑖 = −𝑆𝑖𝑔
𝑖, where 𝑆𝑖 = 𝐼(𝑡ℎ𝑒 𝑢𝑛𝑖𝑡 𝑚𝑎𝑡𝑟𝑖𝑥), 

𝑔𝑖 =  − ∇ ln 𝐿 (𝜃𝑖)
𝑇
, i=0 

3. Line search: 𝜃𝑖+1 = 𝜃𝑖 + 𝛼𝑖𝑑𝑖, where 𝛼𝑖 is the optimal 

step length 

4. Calculate parameters for Hessian matrix and new 

direction: 

𝑝𝑖 = 𝛼𝑖𝑑
𝑖,  𝑔𝑖+1 =  − ∇ ln 𝐿 (𝜃𝑖+1)

𝑇
, 𝑞𝑖 = 𝑔𝑖+1 − 𝑔𝑖 

5. Estimate inverse Hessian matrix: 

𝑆𝑖+1 = 𝑆𝑖 +
𝑝𝑖𝑝𝑖𝑇

𝑝𝑖𝑇𝑞𝑖
−

𝑆𝑖𝑞
𝑖𝑞𝑖𝑇𝑆𝑖

𝑞𝑖𝑇𝑆𝑖𝑞𝑖
 

6. Find set of Weibull parameters: Set i=i+1. If i=4 

(number of Weibull parameters) then go to Step 7; otherwise 

go back to step 2. 

7. Iteration procedure for optimization and stop 

condition: 

If |ln 𝐿(𝜃𝑖) − 𝐿0| <  𝜀, then stop. Otherwise, set 

𝐿0 = ln 𝐿 ( 𝜃𝑖), i=0 and go back to step 2. 

Figure 20 – Implementation of the MLE algorithm. 

1.7.2 Investigation of Initial Conditions vs. Sample Size 

The competing wearout mechanisms for 11-stage ring oscillators based on the 

14nm pdk FinFET technology node jointly developed by GlobalFoundries(GF)/Samsung/ 

IBM were studied using the above method to extract the competing Weibull parameters 

from the confounded failure data. These ring oscillators have Weibull parameters of FEOL 

TDDB with β1=1.12, η1=9.87 (yrs) and MOL TDDB with β2=1.9, η2=15.36 (yrs).  

Before using the MLE algorithm to extract the overall competing Weibull 

parameters, the failure distributions of the competing wearout mechanisms were modeled 

by first picking a point randomly from each individual distribution. Next, the smaller value 

is set as the lifetime, because it is the mechanism that fails first at that time point. Then, 
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the points are plotted as ordered pairs: (ln(t1 ln(-ln(1-( 1

2𝑁
))), (ln(t2), ln(-ln(1-( 3

2𝑁
))), etc.  This 

was done for sample sizes N of 10, 100 and 100, as shown in Figure 21. 

N=1000 

 

N=100 

 

N=10 

 

Figure 21 – Distributions of data for 11-stage ring oscillators for FEOL TDDB with 

β1=1.12, η1=9.87 (yrs) and MOL TDDB with β2=1.9, η2=15.36 (yrs) (x axis: unit 

years), varying sample size. P is probability. The pink markers correspond to the 

primary wearout mechanism, while the black markers correspond to the secondary 

wearout mechanism. 
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The error results of the extracted competing Weibull parameters are shown in 

Figure 22. The initial conditions were set at the original values to exclude the effects of 

randomness. As the sample size is increased, the errors for all four parameters decrease, 

and when the sample size is increased from an order of magnitude from 10 to 1000, the 

parameter errors generally decrease around 5-fold. The shape parameter of the second 

competing Weibull mechanism, β2, has the highest error in all cases. The β2 value is harder 

to separate since it is closer to the β1 value, and there are fewer samples originating from 

the second mechanism since it fails later. 
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Figure 22 – Parameter errors as a function of sample size for extracted competing 

mechanisms, FEOL TDDB with β1=1.12, η1=9.87 (yrs) and MOL TDDB with β2=1.9, 

η2=15.36 (yrs). 
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For the cases where the initial conditions are not at the initial values, the shape and 

scale parameters, η and β, were both set at the same deviation from the original values at 

the same time. In other words, the β and η of both mechanisms were both set at 5% 

deviation from the initial condition, and MLE was employed to obtain the estimation 

results. Then, this procedure was repeated by setting both β and η of both mechanisms at 

10% deviation from the initial condition, and the process was repeated again increasing the 

deviation by 5% each time up to the 15% deviation from the initial condition. The entire 

procedure was also repeated for deviation from -5% to -15% from the initial condition.  

For a sample size of 10, the wearout mechanisms were able to be distinguished up 

to a deviation error of  ±5% from the actual value for the initial condition, while the sample 

sizes of 100 and 1000 could be separated for up to a deviation error of  ±15% from the 

actual value for the initial condition. 

1.7.3 Identification of Wearout Mechanism for Each Individual Sample 

The previous section described a methodology to determine which competing 

wearout mechanisms are present in a set of failure samples. However, it is not known which 

samples belong to which degradation mode. Here, a methodology is developed to identify 

the probabilistic origin of failure for each monitored sample, determine the region of error 

indicating the time period where the cause of failure is unknown, and analyze the sorting 

accuracy.  In doing so, only the necessary samples for physical failure analysis are selected 

instead of all failure samples, saving time and money.   

As mentioned previously, the competing failure probability density function, f(t), can 

be described as: 
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 f(t) = f1(t) * R2 (t) + f2 (t) * R1(t) (7) 

Therefore, the competing probability density function contribution from mechanism 1, 

called a1, is defined below: 

 a1 = f1(t) * R2(t) (18) 

which is the probability density function portion of the overall system showing that 

mechanism 1 has failed but mechanism 2 is still working. Similarly, the competing 

probability density function contribution from mechanism 2, called a2, can be defined as: 

 a2 = f2(t) * R1(t) (19) 

If the overall Weibull parameters for each set is known from the algorithm analysis 

in the previous section, each failure sample can be further sorted into its respective failure 

distribution. For each failure time point, the time-to-failure value can be inputted into each 

competing probability density function contribution, equation (18) and equation (19), for 

each distribution. Since a higher value represents the higher probability of the sample 

belonging to that respective distribution, one can compare the relative values, or ratio of 

equation (18) and equation (19), to sort the samples. 

An interesting phenomenon is that for the case of competing wearout mechanisms, 

the relative values or the ratio of the hazard function is also the same as comparing eq. (18) 

to eq. (19). The hazard function for mechanism 1 is: 

 ℎ1(𝑡) =
𝑓1(𝑡)

𝑅1(𝑡)
 (20) 
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and similarly, the hazard function for mechanism 2 is: 

 ℎ2(𝑡) =
𝑓2(𝑡)

𝑅2(𝑡)
 (21) 

The hazard function, also known as the instantaneous failure rate, shows the conditional 

probability of a failure given that the system is currently working. When multiplying both 

sides of eq. (20) or eq. (20) by R1 (t)*R2 (t), they can be rewritten as: 

 𝑅1(𝑡) ∗ 𝑅2(𝑡) ∗ ℎ1(𝑡) = 𝑓1(𝑡) ∗ 𝑅2(𝑡) (22) 

and: 

 𝑅1(𝑡) ∗ 𝑅2(𝑡) ∗ ℎ2(𝑡) = 𝑓2(𝑡) ∗ 𝑅1(𝑡) (23) 

where the right sides of eqs. (22) and (23) equal eqs. (18) and (29), respectively. Since only 

the relative values or ratio, not the absolute value, is needed, using the hazard function to 

sort the samples has the same results as using the competing probability density function 

contributions. 

Looking back at equation (12), at any time point, the competing failure probability 

is always composed of two contributions, f1(t)* R2(t) and f2(t) * R1(t). Therefore, x, which 

is the percentage of failures from mechanism 1 at a given time t, can be found by: 

 𝑥 =
𝑓1(𝑡)∗𝑅2(𝑡)

𝑓1(𝑡)∗𝑅2(𝑡) + 𝑓2(𝑡)∗𝑅1(𝑡)
 (24) 

and y, which is the percentage of failures from mechanism 2 at a given time t, is: 

 𝑦 =
𝑓2(𝑡)∗𝑅1(𝑡)

𝑓1(𝑡)∗𝑅2(𝑡) + 𝑓2(𝑡)∗𝑅1(𝑡)
 (25) 
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Plotting equation (24) and (21) for all failure times will show the region where error 

will most likely be highest, which occurs near x=y=0.5, meaning that there is a 50% 

probability that the sorting could be right for either distribution. This is shown as an 

example in Figure 23, which looks at FEOL TDDB with β1=1.64, η1=9.87 and EM with 

β2=1.14, η2=25.1296 for a sample size of 100 in 14nm FinFET ring oscillators. The plot 

will also show the region where one distribution has a 100% probability of showing up 

(a.k.a. the other distribution having a 0% probability of showing up), meaning that this 

region can have failure samples sorted to their relative distributions without any 

inaccuracies. When the distribution’s 100% probability lowers, any future time point may 

be sorted incorrectly, which is called the region of error.  This region identifies the time 

periods that are most important for physical failure analysis, where it may be necessary to 

perform further in-depth diagnosis.   

No difference was found in the analysis of sorting errors between the original and 

MLE extracted parameters. The region of no error was found to increase when either the 

sample size or β ratio of the dominant wearout mechanism to secondary wearout 

mechanism is decreased. The sorting accuracy was also found to increase as the β ratio 

increases but varies slightly with a difference in sample size. When the percentage of each 

failure distribution is near 50%, there is a higher probability of the samples being sorted to 

the wrong distribution, due to the risk of the wrong categorization being around 50% too. 

This information can be used to signal that the samples near this area are the only ones that 

one may need to perform physical failure analysis, not the entire lot, which saves analysis 

costs. Therefore, the above methodology is a quick procedure to perform preliminary  
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Figure 23 – Sorting accuracy of 93.0% for FEOL TDDB (1st dist.) vs. EM failure 

(2nd dist.) in 14nm FinFET ring oscillators for a sample size of 100. 

screening to identify the wearout mechanism in individual samples for confounded wearout 

modes. 

1.7.3.1 Case Study 

A case study using 11-stage ring oscillators based on the 14nm 

GlobalFoundries/IBM/Samsung FinFET technology node was used to investigate the 

effects of the competing wearout mechanisms. The parameters for the 14nm FinFET 

technology node were extracted from experimental data [84-86]. The 11-stage ring 

oscillators have FEOL TDDB wearout parameters of β=1.64, η=20 yrs, and MOL TDDB 

wearout parameters of β=1, η=10 yrs. 

The selectivity of a mechanism is the probability that the failure is caused by that 

mechanism when there are multiple failure possibilities. If there are two wearout 

region of 

error
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mechanisms, x and y with Weibull distributions, ηx, βx and ηy, βy, respectively,  selectivity 

can be computed as follows [87]:  

 
𝑠𝑒𝑙𝑒𝑐𝑡𝑖𝑣𝑖𝑡𝑦 =

𝑃𝑥_𝑓𝑎𝑖𝑙_𝑓𝑖𝑟𝑠𝑡

𝑃𝑓𝑎𝑖𝑙
 (26) 

where 

 

𝑃𝑥𝑓𝑎𝑖𝑙𝑓𝑖𝑟𝑠𝑡
= 1 − exp (− (

𝑡𝑠𝑡𝑜𝑝

𝜂𝑦
)

𝛽𝑦

) − ∫ exp (−𝑢 − (
𝜂𝑥

𝜂𝑦
)

𝛽𝑥

𝑢
𝛽𝑥
𝛽𝑦) 𝑑𝑢

(
𝑡𝑠𝑡𝑜𝑝

𝜂𝑦
)

𝛽𝑦

0
  (27) 

with tstop=testing time 

and 

 

𝑃𝑓𝑎𝑖𝑙 =  (1 − 𝑒𝑥𝑝 (− (
𝑡𝑠𝑡𝑜𝑝

𝜂𝑥
)

𝛽𝑥

)) (1 − 𝑒𝑥𝑝 (− (
𝑡𝑠𝑡𝑜𝑝

𝜂𝑥
)

𝛽𝑥

)) (28) 

The selectivity for FEOL TDDB and MOL TDDB was found for various voltages and 

temperatures, as shown in Figure 24 and Figure 25. FEOL TDDB selectivity is higher at 

higher voltages and temperatures, while MOL TDDB is preferred at lower voltages and 

temperatures.  

To shorten the test time, the selectivity maps were used to find a region where the 

FEOL TDDB and MOL TDDB had a selectivities of 0.5, and the ring oscillators were 

accelerated to 1.37 V, 199.72oC. The test times for the ring oscillators to reach 100 samples 

are shown in Figure 26, where it can be seen that there is an even mix of samples from both 
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wearout mechanisms. The 100th sample failure time out of 100 samples at FEOL TDDB 

selectivity=0.5 at various voltages and temperatures are shown in Figure 27, while the 

1000th sample failure time out of 1000 samples at the same conditions are shown in Figure 

28. The testing times for the 100th sample failure and 1000th sample failure can decrease 

by three orders depending on the accelerated testing conditions. For the same accelerated 

conditions of 1.37 V, 199.72oC, the 100th sample failure time out of 100 samples is 9.3 

days, while the 1000th sample failure time out of 1000 samples is 13.34 days.  

The confidence interval for the extracted competing wearout mechanism are shown 

in Table I. Because the two competing wearout mechanisms have parameters that are close 

together, it is harder to separate the all the parameters, which results in a larger confidence 

interval level range. Also, because the selectivity is at 0.5, meaning that there is an equal 

probability of either sample failing at a failure point, the sorting accuracy is also lower, 

which is 61%, as shown in Figure 29. 

 

Figure 24 – FEOL TDDB selectivity in 14nm FinFET ring oscillators. 
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Figure 25 – MOL TDDB selectivity in 14nm FinFET ring oscillators. 

 

 

Figure 26 – Test times for 11-stage ring oscillators at accelerated conditions (1.37V, 

194.72OC)  for a sample size of 100.  
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(a) 

 

 

 

(b) 

Figure 27 – Failure time for 100th sample out of 100 samples at FEOL TDDB=0.5 

selectivity (a) as a function of voltage and temperature (b) close-up.  
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(a) 

 

 

 

(b) 

Figure 28 – Failure time for 1000th sample out of 1000 samples at FEOL TDDB=0.5 

selectivity (a) as a function of voltage and temperature (b) close-up.  
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Figure 29 – Sorting accuracy of 80% for FEOL TDDB (1st dist.) vs. MOL failure 

(2nd dist.) in 14nm FinFET ring oscillators for a sample size of 100.  

 

 

 

 

Table 1 

95% Confidence Intervals for 11-stage ring oscillators at accelerated conditions 

(1.37V, 194.72oC)   

 

FEOL TDDB MOL TDDB 

Beta1 Eta1 Beta2 Eta2 

Original 

Values 

1.64 2.88  (days) 1.9 3.13 (days)  

Sample Size 

= 100 

2.39 ± 1.39 3.19 ± 2.09 1.01 ± 0.48 2.46 ± 3.00 
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1.7.3.2 Application to Trojan Detection 

The methodology of extracting wearout parameters with MLE can also be applied to 

detect Trojans and to select suspicious samples for failure analysis.  Instead of extracting 

parameters for two confounded distributions, we assume a known distribution for 

mechanism 1, and use MLE to extract the parameters for mechanism 2 based on the data.  

Since hardware Trojans are triggered by unlikely events and accelerate a specific wearout 

mode depending on its design, a worst-case scenario is used as a study, where the original 

GTDDB parameters are β1=1.64, η1=10 yrs, and Trojan affected samples have altered 

GTDDB parameters to β2=1.64, η2=5 yrs in a 14nm FinFET 501-stage ring oscillator. For 

a sample size of 100, the sorting accuracy was found to be 80%. 

1.8 Failure Analysis for On-line Testing 

For online testing, product failures are observed one by one as they fail with the 

increase of time. Because the time to observe the failures of all products may be too long, 

on-line testing generally has a limited set of samples, instead of a collection of all samples. 

Therefore, this thesis researches a methodology to determine the wearout parameters of 

failure samples as the samples fail immediately, through using on-line data collected during 

operations. 

SRAMs are major components of systems-on-chips and are also used for memory in 

systems that require very low power consumption and easy access to data [88]. It is static 

and volatile, where data retention exists as long as the device is powered without any form 

of a refresh. When the power is cut, data will be lost. Because it is random access, the next 

memory location that can be read or written does not depend on the previous access 
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location. The static property of SRAM is due to the feedback mechanism used to maintain 

the stored bit state.  

To ensure that memory operation is stable during operation, the reliability of SRAMs 

need to be considered. Oxide layer failures cause transistor malfunctions that translate to 

the circuit level, such as the flipping of cell data due to voltages lower than the nominal 

one, making FEOL TDDB an important cause of concern [89]. In this study, we use data 

on failures in the SRAM to estimate the wearout model parameters of FEOL TDDB, which 

are based on a time-to-failure stamp.  To detect failure rates, it is necessary to monitor 

actual failures and to link these failures to lifetime models.  Because of the large number 

of identical cells, the SRAM can be used to detect the characteristics of wearout due to 

FEOL TDDB.  Therefore, the SRAM data is used as a vehicle to appropriately estimate the 

model parameters. The parameters to be extracted are based on the two parameter Weibull 

distribution for FEOL TDDB, which are  the characteristic lifetime, η, and the shape 

parameter, β. The model parameters are extracted from time-to-failure data from the cells 

in the SRAM.   

In addition, this study also investigates the accuracy in extracting the model 

parameters by considering both random and systematic errors.  The random errors occur 

due to the availability of samples (failed SRAM cells). Systematic errors occur from usage 

variations, such as supply voltage and operating temperature fluctuations, as well as 

variations due to process parameters and workload.  The analysis of systematic errors is 

used to determine when and if sensor data is needed to supplement analytical wearout 

models when estimating wearout model parameters.   
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1.8.1 Methodology 

The lifetime distribution of a device due to wearout by front-end gate oxide 

breakdown (FEOL TDDB) can be found by [87]: 

 
𝑃(𝑡) = 1 − 𝑒𝑥𝑝 (− (

𝑡

𝜂
)

𝛽
) (29) 

where η is the characteristic lifetime and β is the shape parameter. 

The characteristic lifetime of the SRAM, 𝜂𝑆𝑅𝐴𝑀 , is a combination of Weibull 

distributions for the components, and is the solution of [90]: 

 
1 = ∑ (

𝜂𝑆𝑅𝐴𝑀

𝜂𝑖
)

𝛽𝑖
𝑛

𝑖=1

 (30) 

where 𝜂𝑖, i=1, …, n are the characteristic lifetime of all the circuit components, and β𝑖 are 

the corresponding shape parameters. Similarly, it can be found that [91]: 

 
𝛽𝑆𝑅𝐴𝑀 = ∑ 𝛽𝑖 (

𝜂𝑆𝑅𝐴𝑀

𝜂𝑖
)

𝛽𝑖
𝑛

𝑖=1

 (31) 

When investigating the failure of the SRAM, the probability of stress for the circuit 

needs to be considered, because the usage scenario needs to be taken into account, where 

the circuit may be on and off at different times. For example, if the SRAM stores logic “1” 

50% of the time and logic “0” 50% of the time, then s=0.5 in Equation (2) for all cells’ four 

transistors in the latch.  s≈0 for the access transistors because it is only turned on when the 
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cell is accessed.  50% is set as the baseline for comparison. If the duty cycle is changed, 

then the SRAM will degrade at a different rate. 

The SRAM failures due to FEOL TDDB during operation are calculated using 

Monte Carlo simulation. The random variable is the failure probability in Equation (18).  

The resulting data are time stamps for the failures of SRAM cells.   By using the sequence 

of time stamps for SRAM failures due to FEOL TDDB, the Weibull parameters are 

extracted using generalized maximum likelihood estimation [92].  

The original SRAM cell parameters for FEOL TDDB degradation in this study are 

η=20 years and β=1.12. As shown in Figure 30 (a), the SRAM failure samples for a sample 

size of 94,000 (an SRAM with 94k cells) due to FEOL TDDB are plotted on a Weibull 

plot. The FEOL TDDB extracted parameters are η=19.966 and β=1.119. Figure 30 (b) 

shows the case where only the first 100 failed samples are available. The FEOL TDDB 

extracted parameters are η=39.66, β=0.99 for the first 100 samples, which are far from the 

actual parameters, η= 20 and β=1.12.  

When data is collected during operations, information will generally be available 

for only part of the samples. As the sample size is increased, the FEOL TDDB extracted 

parameters become closer to the actual parameters. However, the monitoring time may be 

too long or the cost may be too great to be able to collect all the failure information from 

every sample. 

The wearout model, Equation (2), are for single devices with s=1, where the 

probability of stress is considered to be the always on. The degradation for the devices will 

be constant with time. However, the observed data is from an SRAM cell, where the 
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probability of stress may be different, because the circuit may be on or off depending on 

the time. 

The probability of stress in an SRAM is based on the duty cycle. A duty cycle of 0 

refers to the cell storing 0 all the time, and a duty cycle of 0.5 means that the cell stores 0 

half of the time. Generally, duty cycle distributions can be found to be around 30-50% [94]. 

In this case, the wearout model parameters observed from SRAM data  (η and β) are not 

the same as the single devices, but are for collections of devices, as computed with 

Equation (30) and (31).  Therefore, the observed results need to be mapped to the device 

model. 

Simulation is used to find the mapping between the process-level Weibull 

parameters and SRAM cell Weibull parameters, as shown in Figure 31. However, because 

only the SRAM parameters are observed during testing, the maps in Figure 31 need to be 

inverted to map the SRAM parameters into device model parameters, as shown in Figure 

32. Therefore, Figure 32 is used to find the device model parameters from the observed 

failure data of the SRAMs. 
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(a) 

 

(b) 

Figure 30 – SRAM failure samples due to FEOL TDDB for (a) a sample size of 

94,000 with extracted FEOL TDDB failure parameters, η= 19.966 and β=1.119, and 

(b) a sample size of 100 out of 94,000 SRAM cells with extracted FEOL TDDB 

failure parameters of η=39.66 and β=0.99. 
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(a) 

 

 

(b) 

Figure 31 – Mapping between process-level Weibull parameters (η and β)  and 

SRAM cell Weibull parameters for (a) η  and (b) β  for FEOL TDDB.   
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(a) 

 

 

(b) 

Figure 32 – Inverse mapping between process-level Weibull parameters (η and β)  

and SRAM cell Weibull parameters for (a) η  and (b) β  for FEOL TDDB.    
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1.8.2 Error Analysis 

The errors in extracting the parameters are composed of random and systematic 

errors. The random error occurs from the limited sample size used to extract the parameters 

and properties of the map in Figure 32. The systematic error occurs due to variations in 

temperature, supply voltage, process parameters and use scenario. Here, the die-to-die 

variation in channel length is the primary source of process parameter variations. The use 

scenario depends on the duty cycle of the SRAM. 

1.8.2.1 Random Error 

By using model parameters and Equation (29), the expected number of samples as 

a function of time for an SRAM with 94k cells can be calculated. Figure 33 shows the 

relative standard deviation (standard deviation/mean) for ln(η) as a function of time, and 

the result for β is similar. Figure 33 (a) is the relative error in estimating SRAM parameters, 

which were mapped to device model parameters with the functions in Figure 32. The errors 

in estimating the parameters of the SRAM can be found by: 

 𝜎2(ln(𝜂𝑑𝑒𝑣𝑖𝑐𝑒)) = (
𝜕(ln (𝜂𝑑𝑒𝑣𝑖𝑐𝑒))

𝜕(ln (𝜂𝑆𝑅𝐴𝑀))
)

2

𝜎2(ln(𝜂𝑆𝑅𝐴𝑀)) + (
𝜕(ln (𝜂𝑑𝑒𝑣𝑖𝑐𝑒))

𝜕(𝛽𝑆𝑅𝐴𝑀)
)

2

𝜎2(𝛽𝑆𝑅𝐴𝑀)                          (32) 

The standard deviation errors for the device are larger than those of the SRAM, 

because the mapping from the cell to process-level parameters introduces large 

sensitivities.  For the SRAM cell, a 30% error is observed at 0.019 years, a 20% error is 

seen at 0.036 years, and a 10% error is found at 0.111 yrs. For the device in Figure 33 (b), 

the standard deviation falls to 30% in 4.7 years.   
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(a) 

 

 

(b) 

Figure 33 – Standard deviation error of the extraction of ln(η) as a function of time 

for the (a) SRAM with η=20 yrs, β=1.12 and (b) a single  device. 
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1.8.2.2 Systematic Errors 

The percent changes in the SRAM characteristic lifetime errors due to the percent 

changes in operating temperature and voltage are shown in Figure 34. When the operating 

temperature overshoots by 15% or voltage overshoots by 5%, the characteristic lifetime 

errors drop 82%. However, when the operating temperature undershoots by 15%, the 

SRAM characteristic lifetime errors can increase by 1373%. Similarly, when the operating 

voltage undershoots by 5%, the SRAM characteristic lifetime errors can increase by 

1512%. This signals that undershooting the operating conditions has a larger effect on 

changing the SRAM lifetime compared to overshooting, which can be as large as 16.7 

times larger for temperature with a 15% error in operating conditions, and 18.44 times 

larger for voltage with a 5% error in operating conditions, respectively. 

These errors translate into systematic errors in the estimation of device wearout 

parameters. The systematic errors due to shifts in temperature and voltage are very large, 

especially for shifts towards lower temperatures and voltages.  For positive shifts in voltage 

and temperature, the systematic errors are not as large.  
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(a) 

 

 

(b) 

Figure 34 – Percent changes in errors in device characteristic lifetime estimation 

from variations in (a) temperature and (b) voltage. Voltage error differences above 

5% causes the SRAM to fail upon startup and below -5% causes the SRAM to have 

essentially infinite characteristic lifetimes (e.g. above 300 years).   
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To see how the percent changes in characteristic lifetime due to variations in 

systematic errors translate into actual errors in device model parameters, the sensitivity of 

device model parameters to temperature and voltage can be computed as follows: 

 ∆𝑙𝑛 (𝜂𝑑𝑒𝑣𝑖𝑐𝑒)

𝑙𝑛 (𝜂𝑑𝑒𝑣𝑖𝑐𝑒)
=

𝜕(𝑙𝑛 (𝜂𝑑𝑒𝑣𝑖𝑐𝑒)) 𝑙𝑛 (𝜂𝑑𝑒𝑣𝑖𝑐𝑒)⁄

𝜕(𝑙𝑛 (𝜂𝑆𝑅𝐴𝑀))/𝑙𝑛 (𝜂𝑆𝑅𝐴𝑀)
∙

𝜕(𝑙𝑛 (𝜂𝑆𝑅𝐴𝑀))/𝑙𝑛 (𝜂𝑆𝑅𝐴𝑀)

𝜕(𝑇)/𝑇
+

              
𝜕(𝑙𝑛 (𝜂𝑑𝑒𝑣𝑖𝑐𝑒))/𝑙𝑛 (𝛽𝑑𝑒𝑣𝑖𝑐𝑒)

𝜕(𝛽𝑆𝑅𝐴𝑀)/𝛽𝑆𝑅𝐴𝑀
∙

𝜕(𝛽𝑆𝑅𝐴𝑀)/𝛽𝑆𝑅𝐴𝑀

𝜕(𝑇)/𝑇
                      

(33) 

and 

 ∆ln (𝜂𝑑𝑒𝑣𝑖𝑐𝑒)

ln (𝜂𝑑𝑒𝑣𝑖𝑐𝑒)
=

𝜕(ln (𝜂𝑑𝑒𝑣𝑖𝑐𝑒)) ln (𝜂𝑑𝑒𝑣𝑖𝑐𝑒)⁄

𝜕(ln (𝜂𝑆𝑅𝐴𝑀))/ln (𝜂𝑆𝑅𝐴𝑀)
∙

𝜕(ln (𝜂𝑆𝑅𝐴𝑀))/ln (𝜂𝑆𝑅𝐴𝑀)

𝜕(𝑉)/𝑉

+              
𝜕(ln (𝜂𝑑𝑒𝑣𝑖𝑐𝑒))/ln (𝜂𝑑𝑒𝑣𝑖𝑐𝑒)

𝜕(𝛽𝑆𝑅𝐴𝑀)/𝛽𝑆𝑅𝐴𝑀
∙

𝜕(𝛽𝑆𝑅𝐴𝑀)/𝛽𝑆𝑅𝐴𝑀

𝜕(𝑉)/𝑉
 

(34) 

There are various sensors for monitoring temperature and voltage [93-97], which 

are widely used and embedded in system-on-chips (SoCs). These sensors are used to slow 

down operations when the temperature is too high to prevent overheating. A typical limit 

for temperature is 85oC, which is the limit for Raspberry Pi SOCs[98].  For a 45nm process, 

the accuracy for a temperature and voltage sensor is 4.13 oC and 10.67 mV, respectively in 

the range from 0.91V~1.09V and 0 oC~120 oC [94].  Thus, temperature variations can be 

detected within 2%. 

The sensitivity of extraction of wearout parameters to variation in temperature and 

voltage is shown in Figure 35. When the temperature or voltage variations are positive, the 

random errors dominate the temperature/voltage variations, and vise versa. The positive 

temperature/voltage changes make the samples fail in a very short time, so the random  
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(a) 

 

(b) 

Figure 35 – Sensitivity of the extraction of ln (𝜼𝒅𝒆𝒗𝒊𝒄𝒆) to changes in (a) temperature 

and (b) voltage. 
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effects from sample size is hard to observe for these cases. Therefore, process monitors are 

needed to make sure the temperature and voltage do not have negative changes, which 

makes the errors increase greatly. 

Besides the effects of the environmental parameters, such as temperature and 

voltage, other systematic variations also need to be considered. The process parameters 

and duty cycles may also be causes of systematic variations. As can be seen from Figure 

36, errors in process parameters and duty cycle cause smaller changes in errors in the 

lifetime. From Figure 37, these errors cause smaller errors in the extracted parameters than 

voltage and temperature.  The errors in process parameters and duty cycle are also smaller 

than random variations. If cost and space are an issue, process and duty cycle monitors can 

be excluded, because they are not as dominant. 

Overall, systematic errors are larger than random errors when extracting device 

wearout parameters. Of the systematic errors, changes in supply voltage and temperature 

produce the largest errors. All four conditions should be monitored with sensors during 

operation to update the models accordingly. With appropriate sensors of operating 

conditions, the SRAM can be used to estimate wearout model parameters for individual 

chips using data from operation. 
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(a) 

 

(b) 

Figure 36 – Percent changes in errors for characteristic lifetime from variations in 

(a) channel length and (b) duty cycle (error calibrated to a duty cycle of 50%).   
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(a) 

 

 

(b) 

Figure 37 – Sensitivity resulting from changes in (a) channel length and (b) duty 

cycle. 
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ACCELERATED TESTING 

To evaluate product lifetime, accelerated life tests are performed to collect failure data 

by applying high stresses to samples, such as high voltages and temperatures, to accelerate 

the normal degradation rate [99]. The collected failure information is then extrapolated to 

predict lifetime, as shown in Figure 38. Accelerated testing are utilized when there are 

measures that relate system health to function or operation [100], which can be used to 

understand the stress and dependence of failure mechanisms [101]. Health is the extent of 

deviation or degradation from its expected typical operating performance [102]. The 

information is then used to make improvements early in the design cycle through better 

design rules or materials selection criteria,  as well as process and manufacturing control 

[103]. 

 

Figure 38 – Example of acceleration of failure distribution [12].  
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However, this process produces errors in lifetime estimation, leading to large costs due 

to inaccuracies. The effects of various parameters and stresses for 14nm FinFET ring 

oscillator circuits are investigated in order to understand how to select the correct testing 

criteria for accelerated testing. The study focuses on FEOL TDDB, because it is one of the 

most important front-end wearout mechanism in circuits. 

1.9 Failure Probability  vs. Test Time 

The effects of testing time on the characteristic lifetime for FEOL TDDB of a 1001-

stage ring oscillator for various temperature and voltage conditions are shown in Figure 

39. The characteristic lifetime, which is the time when 63% fail, shifts towards higher 

temperatures and voltages as the testing time is decreased, because the degradation time is 

shorter for the 1001-stage ring oscillator. Since 63% failure corresponds to the 

characteristic lifetime, the contours indicate the test conditions where 63% fail prior to the 

end of testing. 

When looking at the characteristic lifetime comparison in Figure 39 for 0.85 V, there 

is a 114 oC difference in temperature when changing from a two hour testing period to a 

two week testing period, but only a 28 oC difference when changing from a two week to a 

two month testing period. Similarly, the change in temperature from a testing time of two 

months to six months is about the same as the change from two weeks to two months. Since 

the change in temperature is much more significant when going from a testing time of two 

hours to two weeks, the two week testing time is a better choice if the testing conditions 

need to be run at lower temperatures because of cost. 
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Figure 39 – Contour plot of the 63% failure probability (characteristic lifetime) as a 

function of temperature and voltage acceleration, for accelerated testing of the 1001-

stage ring oscillator, with testing times ranging from two hours to six months. 

For the 101-stage and 11-stage ring oscillators, the failure probability over various 

voltages and temperatures has a similar trend with the 1001-stage ring oscillator. The 

changes in temperature for different testing times also have similar results for the 101-stage 

and 11-stage ring oscillators. Therefore, if the temperature conditions need to be lower for 

the 101-stage and 11-stage ring oscillator, the two week testing period is the most suitable 

in terms of cost.  Also note that smaller ring oscillators require more acceleration. 

1.10 Sample Size vs. Test Time 

The sample sizes required to produce at least one failed sample with 95% confidence 

for test times of two hours, two weeks, two months, and six months for 1001-stage and 11-

stage ring oscillators for various voltages and temperatures are shown in Figure 40 to 

Figure 43. The results for the 101-stage ring oscillator is similar to the 1001-stage and 11-

stage ring oscillators. When comparing the failure probabilities to the sample sizes, the 

high voltage and temperature regions only require a sample size of 1 to detect at least one 
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failure due to the failure probability being 100%. However, as the temperatures and 

voltages are decreased, the increase in sample size needed for a 95% confidence level 

increases by three orders of magnitude for a two hour testing time, whereas the sample size 

increase is only one order of magnitude when the testing time is longer at six months. 

The change in temperature conditions at fixed voltages for the same sample size for 

each type of ring oscillator for various testing times follows the same trend as the 

characteristic lifetime. For both ring oscillators, there is a significant difference in the 

voltage for the required sample size at a 95% confidence level when changing from a two 

hour to a two week testing period, but a much smaller difference when changing from a 

two week to a two month testing period, as well as from a two month to a six month testing 

period. Therefore, the two week testing period is also optimal when considering the 

required sample size to produce a failed sample for a fixed confidence level and the voltage 

requirement if a lower temperature test is required.   

Also, for longer testing times, such as six months, the 11-stage ring oscillator requires 

at least an order of magnitude more samples compared to the 101-stage ring oscillator, and 

a similar trend is seen when comparing the 1001-stage ring oscillator to the 101-stage ring 

oscillator.  When comparing the changes in a sample size to produce four failures for all 

ring oscillators, the corresponding voltage and temperature conditions shift higher as the 

number of stages decreases. 
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(a) 

 
(b) 

(c) (d) 

Figure 40 – Sample size needed produce a single failure with 95% confidence as a 

function of voltage and temperature for a 1001-stage ring oscillator for a testing 

time of (a) two hours (b) two weeks (c) two months and (d) six months. 

 

 

Figure 41 – Contour plot for sample size of four to produce at least 1 failure with 

95% confidence as a function of voltage and temperature for a 1001-stage ring 

oscillator with testing time ranging from two hours to six months. 

2 hrs 2 wks 

2 months 6 months 
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(a) 

 
(b) 

(c) (d) 

Figure 42 – Sample size needed produce a single failure with 95% confidence as a 

function of voltage and temperature for a 11-stage ring oscillator for a testing time 

of (a) two hours (b) two weeks (c) two months and (d) six months. 

 

 

Figure 43 – Contour plot for sample size of four to produce at least 1 failure with 

95% confidence as a function of voltage and temperature for a 11-stage ring 

oscillator with testing time ranging from two hours to six months. 
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2 months 6 months 2 months 
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1.11 Effects of the Number of Stages 

1.11.1.1 Number of Stages vs. Characteristic Failure Lifetime 

The characteristic lifetime, which occurs when there is a failure probability of 63%, 

shifts to lower temperatures and voltages as the number of stages in the ring oscillators 

increases, as shown in Figure 44. This is due to the increase in area as the number of stages 

is increased, which allows for more area under stress. When the testing time is increased, 

the temperature and voltage required for 63% failure probability is also lowered for each 

type of ring oscillator. 

 

 
(a) 

 
(b) 

 
(c) (d) 

Figure 44 –  Comparison of the contour plots for the number of stages and 63% 

failure probability (characteristic lifetime) as a function of voltage and temperature 

for (a) 2 hours (b) 2 weeks (c) 2 months and (d) 6 months. 

 

2 months 6 months 
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1.11.1.2 Number of Stages vs the Minimum Required Sample Size 

A comparison of number of stages and sample size for the three different types of 

ring oscillators over different voltage and temperature regions is shown in Figure 45. The 

sample size needed for a 95% confidence level to detect at least one failure can decrease 

by an order of magnitude as the testing time increases from two hours to six months for all 

three different types of ring oscillators. 

 

(a) 
(b) 

 
(c) (d) 

Figure 45 – Comparison of the number of stages and the test conditions needed to 

detect at least one failure for various sample sizes as a function of voltage and 

temperature for test times of (a) two hours (b) two weeks (c) two months and (d) six 

months. 
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1.12 Lifetime Estimation Method for Use Conditions 

The extraction of wearout distribution parameters at accelerated test conditions 

depends on the number of available failed samples. The number of failure samples can be 

viewed as a function of acceleration and increases as the circuit is stressed more. Based on 

the available sample size, the variance in parameter extraction is computed at all possible 

test conditions, 𝜎𝑖
2 . This study focuses on the variance of ln(η) since any errors in 

extracting β are similarly reduced.  

To find the test points that minimize the variance at use conditions, a weighted 

regression equation is used to estimate the lifetime at use conditions based on the 

accelerated test points. Weighted regression is used, because the errors, or variance, are 

different at each test condition [104]. The deviation between the observed and expected 

values of yi is multiplied by a weight, wi, inversely proportional to the variance at that 

testing condition for n samples, 𝜎𝑖
2: 

 
𝑤𝑖 =

1

𝜎𝑖
2 (35) 

where i=1, …b are the test points.  The lifetime at use conditions is computed by regression 

by solving 

 (𝑋𝑇𝑊𝑋)𝛽 = 𝑋𝑇𝑊𝑦 (36) 

where W is a diagonal matrix of elements w_i, and β is a vector of regression coefficients.  

The linear regression equation for FEOL TDDB is approximated as 
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 ln(𝜂) = 𝑎0 + 𝑎1 ln(𝑉) + 𝑎2 (
1

𝑇
). (37) 

To find the optimal testing conditions, we minimize the variance at use conditions: 

 (�̂�) = 𝑥0
𝑇(𝑋𝑇𝑊𝑋)−1𝑥0𝑠2 (38) 

where x0 are at use conditions and 𝑠2 = 1 (variance of the residual mean square which 

follows a normal distribution).   

1.13 Testing Conditions 

1.13.1 Computing the Error for the Accelerated Test Conditions 

To study the optimal test conditions, three types of ring oscillators with different 

numbers of stages, the 1001-stage, 101-stage, and 11-stage ring oscillators were examined. 

Furthermore, to investigate the effects of testing time, each type of ring oscillator was also 

studied for testing times of two hours, two weeks, two months, and six months. 

 The acceleration maps for the circuits were obtained by finding the lifetime 

distribution at each voltage and temperature.  An available number of tested circuits was 

first assumed, with a specified maximum test time.  A minimum lifetime is also specified 

for samples that failed too fast (smaller than one minute), because the time to failure could 

not be measured.  These are declared to be “dead on arrival” and dropped from the sample.  

At each voltage and temperature, the probability between the “dead on arrival” time and 

the maximum test time is determined.  The total available number of tested circuits is 

multiplied by this probability to determine a failed sample size at each voltage and 

temperature.   
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 The errors (variance in the parameter estimates) in characteristic lifetime, 𝜎𝑖, as a 

function of sample size can be calculated using Monte Carlo simulation with the 

generalized maximum likelihood method for estimation [92]. As shown in Figure 46, the 

standard deviation for estimating ln(η) decreases with the increase in sample size, 

signifying that a larger sample size increases the accuracy in estimating ln(η).   

 

Figure 46 – Standard deviations of estimates of the errors in ln(η)  using Monte 

Carlo simulations. 

1.13.2 Test Plans 

Experiments were designed by varying the distance between two different test 

points in voltage or temperature. The minimal variance of ln(η) at use conditions will also 

be referred to as the tolerance level. The variance at use conditions is minimized with two-

point test plans with duplicates and voltage acceleration only for the ring oscillators. For 

all acceleration test domains, either the two- or three-point test plans with duplicates 

minimize errors at use conditions for ring oscillators.  After considering all possible two- 

and three-point test plans, it was found that the two-point test plans were best for the ring 
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oscillators.  Therefore, two test points with duplicates of (VL, T0) and (VH, T0) were used 

to find the minimum total variance as [104]: 

 
𝜎2 =

(ln (𝑉𝐿) − ln (𝑉𝑛𝑜𝑚))2𝜎𝐻
2

(ln (𝑉𝐻) − ln (𝑉𝐿))2
+

(ln (𝑉𝐻) − ln (𝑉𝑛𝑜𝑚))2𝜎𝐿
2

(ln (𝑉𝐻) − ln (𝑉𝐿))2
 (39) 

where VL is the lower value of the accelerated voltage, VH is the higher value of the 

accelerated voltage, Vnom=0.8 V is the voltage at use condition, and T0=25℃  is the 

temperature at use condition. 𝜎𝐻
2   and 𝜎𝐿

2
  are the variances for 100 samples at each of the 

test points VH and VL, respectively.   

The resulting test plans are shown in Fig. 2.  These optimal test plans assumed an 

available sample size of 2000.  When the test time is shorter, more acceleration is needed 

to induce the same number of failures. The size of the ring oscillator does not affect the 

optimal test plans very much. 

 

Figure 47 – Optimal testing points for 1001-stage, 101-stage and 11-stage ring 

oscillators for testing times of two hours, two weeks, two months and six months. 
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1.14 Error Reduction Through Sampling 

Under ideal circumstances, an infinite number of samples for testing can eliminate 

all errors. However, the available sample size for testing is limited, so other methods must 

be used to practically achieve a balance between the sample size and error. To do this, first, 

the sample fractions for a fixed overall sample size are adjusted. Second, a reasonable 

tolerance level is set, and the overall sample size needed to achieve this tolerance is found. 

1.14.1 Adjusting Sample Fractions for a Fixed Overall Sample Size 

For a fixed overall total sample size of 2000 samples, the errors, also known as 

tolerance, depends on the percentage of  samples at each of the test points and the testing 

time. As shown in Figure 48, the tolerance is about the same for a wide range of sampling 

fractions, so it is just necessary to avoid placing almost all samples at either the high- or 

low-test conditions.  For a two-point voltage test plan, the tolerance for the 1001-stage ring 

oscillator reduces the most when changing from a testing time of two hours to two weeks 

for the same percentage of samples at the lower testing point. The results are similar for 

the other two ring oscillators.   

The comparisons of the lowest tolerances for the 11-stage, 101-stage and 1001-stage 

ring oscillators with various testing times of two hours, two weeks, two months and six 

months, as well as the corresponding percentage of sample size at the lower and higher 

voltage points, are shown in Figure 49. For the same testing time, the lowest tolerance 

decreases with the increase in the number of stages and testing time. Because the lower 

acceleration voltage can be decreased as the testing time increases, more samples can be 

placed at the lower voltage point with the increase in testing time for all ring oscillators.   
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At the minimum tolerance, the VL tolerance dominates that of VH, since most of the 

samples are placed at the lower voltage point, meaning that changes in VH are not as 

sensitive as VL for various testing times. Also, the higher voltage point value has little 

sensitivity to testing time for the same number of stages. For both the higher and lower 

voltage points, the smaller ring oscillators require higher acceleration for the same testing 

times. 

 For all testing times and numbers of stages, the tolerance is lowest when most of 

the samples are placed at the lower voltage, since extrapolating from a lower voltage point 

gives smaller errors at use conditions. There still needs to be some samples placed at the 

higher voltage point in order to obtain the acceleration factor. However, an insufficient 

number of samples at either voltage point can result in the high tolerance values as seen in 

the left and right ends at Figure 50.  

The minimum tolerance can be significantly reduced from 216.7% to as low as 

around 1.3% when the percentage of samples at the lower voltage point is changed from 

0.5% to 83% for a testing time of two weeks for a 1001-stage ring oscillator. For the 1001-

stage ring oscillator, the tolerance when 50% of the samples are placed at VL is 2.1%. 

However, the difference when placing 83% of the samples at VL instead of 50% causes 

only a minor change of 0.8%, which is close to negligible. The results are similar for the 

101-stage and 1001-stage ring oscillators. 
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(b) 

Figure 48   Relationship between percent sample size at the lower voltage and 

tolerance for the 1001-stage ring oscillator with overall sample size of 2000 and 

testing times of two hours, two weeks, two months and six months for (a) the overall 

tolerance range and (b) with a close up of the tolerance range below 30%. 
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(c) (d)  

Figure 49 – For a sample size of 2000, a comparison of 11-stage, 101-stage and 1001-

stage ring oscillators for a testing time of two hours, two weeks, two months and six 

months in terms of (a) the lowest tolerance, (b) the corresponding percentage of the 

sample at the lower voltage point to achieve the minimum tolerance, (c) the 

corresponding lower voltage point to achieve the minimum tolerance, and (d) the 

corresponding higher voltage point to achieve the minimum tolerance. 
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Figure 50 – Relationship between percent sample size at the lower voltage and the 

tolerance for the 11-stage, 101-stage and 1001-stage ring oscillators with a testing 

time of two weeks. (Tolerances above 30% are not shown for clarity.) 

1.14.2 Minimum Sample Size to Achieve Fixed Tolerance  

The minimum sample sizes necessary to achieve a 10%, 20% and 30% tolerance 

for the 1001-stage, 101-stage and 11-stage ring oscillators with different testing times are 

shown in Figure 51. For all ring oscillator sizes, the total number of samples decreases 

around three-fold when changing from a two hour to two week testing time period, but the 

sample size does not vary much when changing from two weeks to two months or from 

two months to six months. Also, at the 10% tolerance level for all ring oscillators, there is 

around an order of magnitude difference in the sample size when changing from the two 

hour to two week testing time frame. This also signifies that the two week testing period 

produces the best step-up in tolerance compared to the two- and six-month test times.    
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Figure 51 – Comparison between the total sample size and the testing time for 1001-

stage, 101-stage and 11-stage ring oscillators to achieve a 10%, 20% and 30% 

tolerance. 

However, if the test cost is dependent only on the cost of test time and sample size, two 

hours is the optimal for the four test times considered.    

 For the same number of stages and testing time, the required minimum sample sizes 

are around two times smaller when changing from a 10% to a 20% tolerance level. 

However, the difference is around 1.3 to 1.5 times smaller when changing from a 20% to 

a 30% tolerance level. Therefore, the trade-off between the increase in the total minimum 

sample size and tolerance level is larger as the accuracy increases. 



 76 

In Figure 52, the minimum total sample sizes for achieving various tolerances for 

the two week testing time is shown. The trade-off between the increase in the total 

minimum sample size and tolerance level increases as the tolerance level is lowered for the 

same number of stages and testing time. For a 5% tolerance level, the total minimum 

sample sizes need to be above 500 for all numbers of stages. However, when the tolerance 

is changed to 30%, the required minimum total sample sizes can be reduced to around 100, 

and the 20% tolerance level can be achieved with sample sizes under 200.  For tolerances 

lower than 20%, the change in sample size increases considerably higher.  Decreasing the 

tolerance level further below 10% requires more than a 100 sample size increase for ring 

oscillators.  For the same tolerance level, the smaller ring oscillators require a larger total 

minimum sample size to reach the same accuracy. 
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Figure 52 – Relationship between percent tolerance and number of stages for a 

testing time of two weeks. 
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1.14.3 Lowest Tolerance and Total Sample Size 

The relationship between the lowest tolerance and total sample size for a two week 

testing period is compared for the 11-stage, 101-stage and 1001-stage ring oscillators in 

Figure 53. For all three ring oscillators, the lowest tolerance decreases as the total sample 

size increases, because the errors at both the VL and VH decrease as more sampling is 

available. For the same total sample size, the lowest tolerance is about the same for all three 

ring oscillators. 
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Figure 53 – Relationship between lowest tolerance and total sample size at a two 

week testing time for 11-stage ring oscillator, 101-stage ring oscillator, and 1001-

stage ring oscillator. 
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If the silicon area and cost are the same, the 1000 11-stage will have the lowest 

tolerance level, followed by 100 101-stage and 10 1001-stage ring oscillators for the two 

week testing period, because the tolerance level will decrease by an order of magnitude for 

each comparison described, respectively. Similarly, 10000 11-stage ring oscillators will 

produce lower errors compared to 1000 101-stage ring oscillators, which is lower than 100 

1001-stage ring oscillators. Therefore, it is best to opt for a larger number of smaller ring 

oscillators compared to a smaller number of large ring oscillators to have more accurate 

results if silicon area and cost have the same consideration However greater acceleration 

will be required for smaller ring oscillators. 

1.15 Summary 

The minimum errors for accelerated testing of ring oscillators can be achieved by 

using the two-point test plan.  For a fixed sample size, the lowest tolerance occurs when 

most of the samples are placed at the lower voltage point for all ring oscillators with 

different numbers of stages and testing times. For a fixed tolerance, the lowest sample size 

also occurs when most of the samples are placed at VL for all ring oscillators with different 

numbers of stages and testing times.  

 Since large ring oscillators require more area, errors can be reduced if a large 

number of small ring oscillators are implemented, rather than a few large ones. Shorter test 

times minimize the tradeoff between accuracy and tester usage, indicating that testing a 

large sample for a shorter time is also more optimal. The optimal solution of testing larger 

numbers of small ring oscillators with shorter test times is limited by the required 

acceleration which can potentially distort results.  
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CONCLUSIONS 

1.16 Summary 

This thesis investigates the failure analysis and accelerated testing of circuits. The 

14nm FinFET PDK developed by GlolbalFoundries/Samsung/IBM was used to investigate 

the circuits. SRAMs and ring oscillators were used as case studies.  

A methodology was developed to separate competing wearout mechanisms and 

identify the samples belonging to their respective degradation modes using data analysis 

techniques for ring oscillators. In addition, the online monitoring of SRAMs for FEOL 

TDDB were studied to investigate the impact of systematic and random errors on extracting 

wearout parameters. It was found that systematic errors are dominant over random errors. 

Temperature and voltage variations produce the largest influences in sensitivity to device 

model parameters, and monitors should be implemented to screen these variables.  

The experimental plans for accelerated testing were found for FEOL TDDB in ring 

oscillators for a 1001-stage, 101-stage and 11-stage ring oscillator for testing times of 2 

hours, 2 weeks, 2 months and 6 month, with the two point test plans having the lowest 

errors. Errors were reduced further by investigating the effects on sampling for a fixed 

overall sample size, as well as finding the minimum total sample size to achieve a fixed 

tolerance. Placing the majority of the samples at the lower voltage point was found to have 

the lowest errors. 
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1.17 Future Work 

There are several directions that may be taken to expand the research in this thesis. 

The methodology for separating competing wearout mechanisms can be implemented for 

online monitoring. The accelerated testing plans can be used to test FEOL TDDB 

degradation in ring oscillators circuits based on the TSMC 130nm technology node. 

Furthermore, the incorporation of FEOL TDDB breakdown can be used in statistical timing 

analysis to calculate the delay in order to design better circuits, by incorporating the 

reliability budget considerations to achieve higher performance. 
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