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SUMMARY 

The Primary Electric Propulsion Technology Study was an investigation 

of ion-thruster technology that is representative of the "state of the art" 

with the goal of formulating models for describing the capabilities and 

limitations of thruster perfo'rmance. The work was conducted under four 

relatively independent tasks. The first and most 'important task was 

that of relating thruster discharge chamber wear rates and mechanisms to 

thruster operating parameters and ambient test-facility conditions. The 

second task was to explore the factors that limit the lifetime of thruster 

hollow cathodes. The third task called for relating the performance capa

bilities of the ion-accelerator grid system to the ion-optics design 

variables and operating parameters. The fourth task was that of continuing 

verification of propellant electrical isolator concepts and formulating a 

model to describe operating principles. The work'reported here built on 

the results obtained under preceeding or concurrent NASA contracts 

(NAS 3-19703, NAS 3-20395, NAS 3-21052, NAS 3-21357, and NAS 3-18914). 

In 3 of the 4 tasks, performance descriptions were developed that are 

quite adequate for describing the LeRC/Hughes 30-cm mercury-ion-thruster 

technology. 

In the first task, the major factors that affect discharge chamber 

lifetime were identified and quantitative relationships were developed 

for assessing wear rates and ultimate thruster lifetime. Factors that 

were investigated included thruster operating parameters (such as dis

charge voltage, discharge power, beam current, etc.), thruster design 

parameters (magnetic field configuration, accelerator grid transmission, 

etc.), ,and contaminant gases present in the testing environment (nitrogen, 

argon, methane, etc.). Nearly every parameter explored has some effect 

on wear rate, although the most important factors are discharge voltage, 

beam current, doubly charged ion density, magnetic field geometry, sur

.face material, and the reactive contaminant gases present in the test 

environment. 
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The cathode-lifetime investigation performed here completed a 

performance model that relates the temperature of the barium dispensing 

porous-tungsten "insert" to thruster operating parameters. The most im

portant variable in determining insert temperature was found to be cathode 

emission current. The performance model developed relates the lifetime of 

the cathode to the cathode emission current and the barium available 

within the porous-tungsten insert. The experiments performed also demon

strated that cathode emission properties (and insert temperature) are 

not sensitive to the changes in the thruster discharge-chamber proper

ties that occur when an ion beam is extracted. Consequently, the results 

of hollow cathode research and testing performed under non-thruster con

ditions should be applicable to thruster cathodes provided that the volt

ages and currents are similar. 

The investigation of accelerator-grid-system technology produced 

several off .. the prerequisites for formulating a performance model, but 

a comprehensive model was not obtained. In fact, we found that the 

accelerator_;grid-system design would benefit from additional development 

before further efforts are invested in performance modeling. The prin

cipal requirement identified was for supporting the screen and accel

erator grids in a manner that will withstand launch vibration, yet 

will permit thermal expansion of the grids without causing their 

deformation. 

The high-voltage propellant-isolator design developed under a pre

vious NASA contract (NAS 3-20395) was verified for operation at applied 

voltages greater than 10 kV and internal propellant pressure equivalent 

to mor~ than 10-A equivalent propellant flow. Testing showed that the 

insulator deterioration observed previously was an anomalous event. 

No increase in leakage current was observed in a test of over 1,600 hr 

under this program. The isolator operated equally well with argon or 

mercury vapor. Voltage division measured across the isolator chambers 

was not linear and was governed by capacitive effects (at least for the 



.. x· • 

isolator that was instrumented for measuring voltage division). Although 

the analytic description of isolator behavior was not totally success

ful (since experimental data are required for determining the capacitance 

values), the high-voltage isolator design was verified empirically for 

the range of operation for which it was designed. 
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SECTION 1 

INTRODUCTION 

By the beginning of the present program, the technology of the 

LeRC/Hughes 30-cm mercury ion thruster had attained a relatively high 

level of maturity. The overall goals of the program were to consolidate 

the available thruster test results, perform experiments to complete 

the data base, and formulate analytic and descriptive models for charac

terizing the performance capabilities and limitations of the 30-cm 

thruster. 

A. PROGRAM GOALS 

The work was performed under four independent tasks. Task 1 

required a formulation of the dependence of discharge-chamber wear 

rates on discharge-chamber design and operating parameters (and also 

on ambient test facility conditions). Task 2 required identification 

of factors that determine cathode lifetime. Task 3 required develop

ment of a description of the accelerator grid system performance capa

bilities and limitations. Task 4 required verification of a high-voltage 

(10 kV), high-current (10 A equivalent) propellant electrical isolator. 

Under each task, a performance model was to be developed that would 

provide an adequate description of the performance expected from a 

"state-of-the-art" thruster and would also enable predicting perform

ance limitations. At the beginning of the study, the scope of each 

task was defined. Initial results obtained under this program, aug

mented by results obtained under other programs (NASA Contracts 

NAS 3-21052 and NAS 3-21357), increased the range of phenomena* that had 

to be considered under Tasks 1 and 3. Consequently, satisfying the goals 

of these tasks became more demanding than initially anticipated. 

* In Task 1 it was found that all the reactive gases subjected to pre
liminary testing affected screen-grid wear rates, and in Task 3 it was 
found that a thermo-mechanical model of the accelerator system was 
necessary. 
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B. PROGRAM ACCOMPLISHMENTS 

Under Task 1, the effects of ambient test conditions on discharge

chamber wear rates were thoroughly explored and quantitatively docu

mented to validate the investigation of other parameters that affect 

wear rates. The effects of thruster operating parameters and thruster 

design parameters were investigated and a model was formulated for 

estimating discharge-chamber lifetime as a function of the more impor

tant parameters. 

Under Task 2, a conceptual model of cathode operation was used to 

relate cathode lifetime to the temperature of the impregnated porous

tungsten insert. Tests were performed to determine which of the possi

ble operational variables affect insert temperature. Cathode lifetime 

was ultimately found to be dependent primarily on cathode emission 

current. 

Work under Task 3 led to the realization that accelerator grid 

system technology is not as mature as was originally thought. Perform

ance of the accelerator grid system is critically dependent on the 

spacing between the grids. Existing data and analyses indicated that 

this spacing is strongly dependent on the temperature of the accelerator 

grids and their mounting ring. Progress was made in analytic modeling 

of the accelerator grid structure to determine the interelectrode spac

ing under thermal stress. The work performed here in effect established 

the basis for design of an improved mounting system instead of describ

ing the state-of-the-art performance capabilities. 

Task 4 efforts produced the empirical data required for verifying 

the high-voltage propellant-flow electrical-isolator design; however, 

some of the test results were rather unexpected. First, the isolator 

breakdown voltage was in excess of that anticipated. Second, the voltage 

division was found to be governed by capacitive rather than resistive 

effects. Therefore, the performance model developed requires the speci

fication of capacitance values that would be difficult to determine for 

an operational propellant electrical isolator (as compared to one that is 

instrumented for test). 



The work performed under each of the study tasks is described in 

detail in the following sections, one section being devoted to each 

task. The report also describes work performed under Hughes funding 

that enabled the contractual investigation to proceed more 

effectively. 
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SECTION 2 

DISCHARGE-CHAMBER AND SCREEN-GRID EROSION 

Throughout the evolution of the J-series JO-cm thruster, models have 

been formulated to describe the operation or performance of the thruster 

and many of its components. These models have increased our understand

ing of the operation of various elements of the thruster system and have 

made it possible to extrapolate beyond the normal operating envelope with 

a high degree of confidence. An example of this capability is a model 

developedfrom performance data obtained from measurements using the 

engineering-model thruster operated at a nominal specific impulse of 

3000 sec. The success of this model in predicting the performance char

acteristics of an extended-performance thruster configuration was demon-
2-1 strated under NASA Contract NAS 3-20395. · The model has since proven 

invaluable for various high-performance mission applications. A question 

that invariably arises when considering applications of the current 

thruster design or of an extended-performance version is that of life

time. Since the lower lifetime limit of the 30-cm thruster is thought 

to be determined by sputter erosion of the interior surfaces of the dis

charge chamber, an understanding of the chamber-erosion phenomena is 

essential to the development of a model of thruster lifetime. This sec

tion presents the results of an investigation of parameters that affect 

the erosion rates of critical components of the 30-cm thruster. Based 

on measured experimental results, a model of sputter erosion is formu

lated in terms of the design, operational, and material characteristics 

of the thruster. 

A. FACTORS CONSIDERED 

Various factors known to affect the wear rates of critical discharge

chamber components were considered when planning the experimental inves

tigation of sputter-erosion·phenomena occurring in the 30-cm thruster. 

These factors, which included material, design, operational, and ambient 

(or facility-related) characteristics, are discussed in detail in 

Sections 2.A.l through 2.A.4. 
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1. Thruster Operating Conditions 

The thruster operating conditions that are thought to be most 

important in determining internal chamber wear rates are beam current 

and discharge (anode) voltage. The beam-current operating point deter

mines the plasma density, which specifies the ion-arrival rate at the 

internal surfaces of the discharge chamber. The product of the effec

tive ion-arrival rate and surface sputtering yield determines the rate 

of removal of surface material and the lifetime of the component under 

consideration. Short-term erosion-rate measurements conducted under 

NASA Contract NAS 3-197032- 2 verified the anticipated increase in compo

nent erosion rate with beam current and demonstrated that the relation-

ship is nonlinear. This nonlinearity is the result of an increase in 

the relative concentration of doubly charged ions that accompanies the 

increase in plasma density. Doubly charged ions have a substantially 

higher sputtering rate since they impact surfaces with twice the energy 

of singly charged ions, and the sputtering yields of materials commonly 

used in discharge chamber construction increase exponentially with ion 

energy in the low-energy range. The discharge voltage strongly affects 

chamber wear rates since this parameter determines the plasma potential, 

which in turn specifies the energy of the ions striking the chamber 

surfaces. 

2. Thruster Design 

Various aspects of thruster design were considered during the 

investigation of discharge-chamber and screen-grid erosion. For example, 

the discharge chamber of the thruster (SN 301) used for the majority of 

the investigation was modified to duplicate as closely as possible the 

interior geometry of the current J-series thruster design. These modi

fications included: 



• Use of J-series (SHAG) electrodes. 

• Installation of J-series cathodes, anode pole piece, 
baffle assembly, and sintered-mesh anode. 

• Use of tantalum cladding on the baffle and cathode pole 
piece, and installation of wire-mesh flake control on 
the discharge-chamber backplate. 

Figure 2-1, a photograph of the SN 301-J discharge chamber, illustrates 

the internal modifications listed above. It also shows the ion-optics 

mounting ring, which is electrically isolated from the thruster body, 

enabling the screen electrode to be biased with respect to surfaces at 

cathode potential. 

Thruster design variables that are known to affect chamber wear 

rates strongly are the accelerator-electrode design and the plasma

density distribution. The open-area fraction of the accelerator elec

trode controls the neutral density within the chamber, and the concen

tra'tion of doubly charged ions varies inversely with neutral density. 

A reduction in the open area of the accelerator electrode permits the 

neutral density within the chamber to be increased, which reduces the 

doubly charged ion density and chamber wear rates. The increase in neutral 

density also allows the discharge voltage to be reduced while maintain-

ing constant propellant utilization. The reduction in discharge.voltage 

further reduces wear rate by reducing the plasma potental and the rate

of-production of doubly charged ions. During this study, the effects of 

accelerator-electrode open-area fraction were investigated by performing 

short-term erosion-rate measurements using ion-optics a~semblies that are 

representative of the 900- and J-series thruster designs (open-area frac

tions of 43% and 23%, respectively). 

The effects of the plasma-density distribution onchamber wear rates 

were investigated using two alternate discharge-chamber designs. Since 

the rate-of-production of ions is proportional to the densities of both 

species involved (i.e., electrons and atoms), an increase in the produc

tion rate should be possible by increasing the density of either species. 

In this manner it may be possible to increase the ion density near the 

cylindrical chamber boundary, permitting the ion density and wear rates 

on-axis to be reduced (at constant beam current). The electron density 
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Figure 2-1. Photograph of SN 301-J thruster. 
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distribution is determined to a large extent by the geometry of the 

magnetic field existing within the chamber, since the magnetic field 

lines tend to "guide" the energetic electrons entering the chamber from 

the cathode-discharge plasma region. This aspect of controlling the 

plasma-density distribution was investigated using an alternate discharge

chamber design that employs a single-cusp-magnetic-field geometry to dis

tribute and control the energetic ionizing electrons. This arrangement 

should produce a uniform plasma-density distribution and lower the 

erosion rate near the chamber axis. The other approach to altering the 

plasma-density distribution that we investigated during this study 

employed an anode geometry that was intended to increase the residence 

time of neutrals near the cylindrical chamber boundary. Results obtained 

using these alternate discharge-chamber geometries are presented in 

Section 2.C.9. 

3. Fabrication MAterials 

The choice of materials for use in fabricating critical ion-thruster 

components is extremely important to lifetime considerations since the 

sputtering yield and number density of the material determine the wear 

rate of a given surface. The current J-series thruster design ·employs 

either molybdenum or tantalum for critical life-limiting components. 

However, there are other low-sputter-yield materials (such as niobium 

and tungsten) that might also be suitable for fabricating life-limiting 

components. Several low-sputter-yield metals .were investigated during 

this study in an attempt to identify alternate materials for use in 

fabricating critical discharge-chamber components (such as the screen 

electrode). 

4. Vacuum-Test-Chamber Residual Gases 

The effects of vacuum-test-chamber residual gases on the erosion 

rates of thruster components must be understood in order to extrapolate 

the results of erosion-rate measurements conducted in vacuum chambers 

9 
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to the near-perfect vacuum of space. 2-3 Previous results of an 

investigation of the effects of facility residual gases on the wear rate 

of the screen electrode indicated that the presence of a sufficient 

quantity ofnitrogen can reduce the erosion rate of molybdenum. This 

reduction is apparently caused by the chemisorption of nitrogen atoms 

onto the surface, producing a molybdenum-nitrogen compound such as 

Mo 2N. Because of this surface coverage, the metallic sputtering rate is 

much lower than the value corresponding to a "clean" molybdenum surface. 

During the present investigation, the effects of residual gases on cham

ber wear rates were extended to include additional gases (such as oxygen, 

carbon dioxide, methane, cyanogen, and water vapor) that are commonly 

found in oil-diffusion-pumped vacuum chambers. The purpose of these 

tests was (1) to determine whether these gases have an effect on the 

wear rate of critical chamber components, (2) to determine the maximum 

partial pressure necessary to simulate the surface sputtering rates 

expected in space, and (3) to obtain quantitative measurements of the 

effects of facility-residual-gas pressure on the sputtering rate of cri

tical discharge-chamber components. 

B. MEASUREMENT TECHNIQUES 

The experimental investigation·6f discharge-chamber and screen-grid 

erosion involved a variety of optical, ·pressure, wear-rate, and plasma

diagnostic measurements. The experimental apparatus and techniques used 

in performing these measurements are described below. 

1. Optical Spectroscopy 

The thin-film erosion-monitor technique (described in detail in 

Section 2.B.5) provides estimates of critical component lifetimes in 

test durations of less than 1/1000 that of the thruster design lifetime. 

Although this method is short term in comparison with the 15,000-hr 

lifetime goal of the J-series thruster, it requires approximately four 

days per test point for thruster setup, testing, and interpretation of 

results. Therefore, in an experimental investigation that involves many 

test parameters and large numbers of erosion-rate measur.ements, a fast 



technique of assessing relative erosion rates is required. Optical 

spectroscopy provides a fast and nonperturbing means of obtaining 

plasma-diagnostic and relative-erosion-rate data. The usefulness of the 

spectroscopic approach in these applications has been demonstrated in 
2-3 2-4 past studies conducted by investigators at Hughes and NASA LeRC. 

The approach is based on the fact that excited atoms decay to the ground 

state by the spontaneous emission of radiation. The differences in 

energy of the two levels determines the wavelength of the emitted light; 

for optically thin plasmas, the intensity of the line observed at this 

wavelength is proportional to the density of the excited atoms. Excita

tion of these atoms occurs through electron bombardment of the ground

state atoms which are produced by sputter erosion of surfaces within the 

chamber, and, therefore, the measured line intensity is proportional* to 

the sputtering rate of the surface material. The line intensities cor

responding to excited atoms such as molybdenum are conveniently mea

sured using a monochromator equipped with a photomultiplier. 

The physical arrangement of the optical system used in this study 

is presented in Figure 2-2. The thruster discharge chamber is viewed 

through a quartz window located at the downstream end of the vacuum 

chamber approximately 9° off-axis. Light passing through the window is 

collected by the first lens and focused onto the plane of the mask holder 

by·the mirror and lens arrangement shown in the figure. Masks consist

ing of Plexiglass painted black in regions where light transmission is 

undesirable are placed in the holder, permitting light from selected 

regions of the discharge chamber ·to be focused onto the entrance slit 

of the monochromator using the lens arrangement indicated. Four masks 

were used in the measurements, permitting light from the entire dis

charge chamber or from equal-arearegions locatedat the center and at 

one-half and two-thirds of the chamber radius to reach:the entrance slit. 

The monochromator is equipped with a photomultiplier tube whose output 

* The constant of proportionality varies with thruster operating condi-
tions (such as discharge voltage Vn and beam current Jb) that influ
ence the degree of excitation of the sputtered atoms. 
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Figure 2-2. Optical setup used for measuring spectral line intensities. 



current is measured using an electrometer. This signal is recorded 

along with a signal proportional to wavelength on either an x-y plotter 

or a strip-chart recorder. Wavelength variation is achieved through 

motorized control of the diffraction grating. 

Monochromators having focal lengths of 1/4, 1/2, and 3/4 m were 

investigated at the beginning of the program: 3/4 m gave the best reso

lution of the three principal lines (corresponding to Mol, Hgl, and 

Hgii) in the wavelength range 3798 ! :S A :s 3807 A. A 3/4-m Spex mono

chromator equipped with a Czerny-Turner side-by-side mount was used for 

all measurements obtained during this program. Figure 2-3 presents a 

typicalvariation ofintensity versus wavelength for the three principal 

lines using 10-]lm slit widths at the entrance and exit of the monochromator. 

The resolving power calculated from the center peak of Figure 2-3 is 

approximately A/6A = 4000. 

The useful wavelength range of the setup illustrated in Figure 2-2 

is 3600 A :s A :s 6000 A, with the limits determined by one or more of the 

following limitations: (1) the transmission range of the glass lens sys

tem, (2) the grating efficiency of the monochromator, and (3) the spec

tral response of the phototube. The lines of interest in this investi

gation are listed in Table 2-1 according to species, wavelength, and 

relative intensity. The first three lines are of major interest since 

they are closely spaced in wavelength (minimizing wavelength scan-time) 

and provide an indication of the erosion rate of the molybdenum screen 

grid. A tantalum line indicative of the erosion rate of the baffle and 

pole piece is also ,of.interest, but, unfortunately, the strongest tanta

lum lines occur at wavelengths below 3600 A, which is the lower limit of 

the optical system used in this study. 

2. Residual Gas Analysis 

A quadrupole residual gas analyzer was used to measure the relative 

abundance of background gases in the Hughes 9-ft vacuum test chamber. 

This instrument was also used to perform partial-pressure measurements 

of various test gases that were introduced into the chamber. Figure 2-4 

presents a sketch of the vacuum facility showing the relative location 
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of the thruster, residual gas analyzer, monochromator, and ExB probe. 

The gas analyzer is located at the thruster end of the vacuum chamber 

so that it is exposed to essentially the same particle flux as the 

thruster. The instrument is housed within a stainless-steel cylinder 

equipped with a movable flap at the entrance end. This arrangement 

serves to shield the analyzer from back-sputtered material when not in 

use and to isolate the analyzer within a small volume for calibration 

purposes. 

The analyzer collector current is amplified by an electron multi

plier; the ?mplified current is measured using an electrometer. The 

output of the electrometer is used as input to an x-y plotter when the 

analyzer is used in the scanning mode and is displayed on a digital 

panel meter in the partial-pressure mode. In the latter case, the digi

tal output is directly proportional to the partial pressure of the gas 

corresponding to the mass peak selected. A typical recording of the 

mass spectra measured in the 0 to 50 amu range is presented in Figure 2-5, 

which shows the major consituents to be air, water vapor, and a heavy 

hydrocarbon. The resolution of the gas analyzer calculated from the peak 

at mass number 28 is approximately m/6m = 100. 

Table 2-1. Spectral Lines Selected for 
Study of Screen-Grid Erosion Rate 

a 0 I . b Excited Species Wavelength, A Relative ntens1ty 

Mo I 3798.25 50 

Hg I 3801.66 lOc 

Hg II 3806.38 10 

Mo I 3864.11 50 

Hg II 4398.62 10 

Hg III 4797.01 50 

aT a ken from MIT wavelength tables (Ref. 2-5). 

b Taken from Kayser and Ritschl (Ref. 2-6)o 

cTaken from Figure 2-3. 
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Partial-pressure measurements were performed by operating the gas 

analyzer in the manual mode and selecting one of the peaks in the 

0 to 50 amu range corresponding to the test gas under study. The 

pressure was calculated by multiplying the analyzer output by the sensi

tivity factor corresponding to this gas. The sensitivity of the gas 

analyzer to each test gas investigated was determined by performing an 

in-situ calibration of the instrument prior to each test. The calibra

tion was accomplished by isolating the gas analyzer in the small volume 

of the stainless-steel cylinder and increasing the pressure in this 

region by admitting small quantities of the test gas. In this manner, 

the gas analyzer could be calibrated over a pressure range as high 

as 10-3 .Pa (10-S Torr) while maintaining the vacuum-test-chamber pres

sure as low as 10-S Pa (10-7 Torr). The residual-gas-analyzer cali

bration procedure and sensitivity calculation are described in detail 

in. Appendix A. 

3. Residual-Gas Injection and Tank-Pressure Control 

The effects of various contaminant gases on the: erosion rates of 

critical chamber components such as the baffle and screen grid were 

investigated by introducing these gases into the vacuum test chamber at 

a rate sufficient to raise the tank pressure to the desired value. 

Figure 2-6 is a schematic of the gas-flow system used for admitting and 

controlling the flow of gas into the vacuum test facility. Valves A 

and B permit the gas to flow directly into the vacuum test chamber or, 

for calibration-purposes, into the residual-gas-analyzer enclosure. 

Precise control of the gas flow rate is accomplished using a Veeco 

PV-10 piezoelectric leak valve. Valve C permits the precision leak 

valve to be bypassed for rapid evacuation of the entire flow-control 

system into the vacuum facility or, by using an auxiliary pump and 

valve D, into the atmosphere. 

The tank pressure level was maintained constant by controlling 

the flow through the piezoelectric leak valve in proportion to the 

output of an ionization gauge for total-pressure control or to the 
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output of the residual gas analyzer for partial-pressure control. 

Figure 2-7 is a block diagram of a Hughes-built proportional-flow-control 

system furnished to this contract for use in the residual-gas studies. 

The controller supplies up to 100 V to the fast-response piezoelectric 

leak valve in proportion to the 0 to 2 V output of the ionization-gauge 

controller or the 0 to 5 V output of the residual-gas-analyzer electrom

eter. This system performed extremely well and enabled precise tank pres

sure control to be maintained over extended periods. 

4. Total Pressure 

Total-pressure measurements were made using Bayard-Alpert type 

ionization gauges that employ thoria-coated iridium filaments and Pyrex 

enclosures. The ionization gauge, controller, and interconnecting cables 

were calibrated as a unit in the Hughes Primary Standards Laboratory. 

The calibration is based on a set of interim standards maintained by the 

Primary Standards Laboratory, since the National Bureau of Standards 

does not provide a calibration service for the vacuum range below 1 Pa 

(10-2 Torr). The long-term drift of the ionization gauge/controller 

assemblies is approximately ±25% based on the Primary Standards 

Laboratory history of calibration of these instruments using dry 

contaminant-free nitrogen gas. 

The relationship between indicated and true pressure was found 

to be linear over each decade of the pressure range 10-6 Pa S p s 
-2 -8 -4 10 Pa (10 Torr S p s 10 Torr) so that the true pressure P 

true 
is given by the expression 

p = afP. d' d + b true 1n 1cate 
(2.1) 

where a and bare the calibration constants, P. d' t d is the pressure 1n 1ca e 
indicated by the controller, and f is the gauge factor of the test gas. 

The gauge factors are summarized in Table 2-2 for the gases investi

gated during this study. 
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Table 2-2. Ionization Gauge Factors 
(Taken from Ref. 2-7) 

Gas Gauge Factor 

Air 1.0 

Ar 0.76 

CH4 0.64 

C2N2 0.36 

co2 0.66 

H2o 1.0 

N2 0.90 

02 1.1 

6758 

Figure 2-4 shows the location of the ionization gauges on the 

Hughes 9-ft vacuum test chamber. Gauge P2 is located upstream from and 

slightly above the thruster. Because of its location, the pressure 

sensed by this gauge is representative of the pressure environment of 

the thruster. Gauge P3, located within the residual-gas-analyzer 

enclosure, is used when calibrating this instrument. The remaining 

gauge, Pl, is located behind the chamber cryowall and has no direct line 

of sight to the interior chamber walls. The pressure indicated by each 

gauge is approximately the same for beam-off conditions. With the 

beam on, however, gauge Pl is shielded from the particle flux caused 

by beam ions striking the cryowall and beam collector and indicates 

an order-of-magnitude-lower pressure than either gauges P2 or P3. The 

nearly steady-state pressures indicated by the end and side gauge 

after 10 to 12 hours of thruster operation at full-thrust beam condi

tions are nominally 1 x 10-4 Pa (9 x 10-7 Torr) and 1 x 10-5 Pa (9 x 10-8 

Torr), respectively. 



5. Thin-Film Erosion Honitors 

Short-term erosion-rate tests were conducted using thin-film monitors 

that were prepared in the Sputtering Processes Laboratory at Hughes. 

These monitors consist of alternating layers of color-contrasting materials 

(such as tantalum and copper, or molybdenum and copper) that were. sputter 

deposited onto a tantalum or stainless-steel substrate. Layer thickness 

was carefully controlled during the application process by hold'ing the 

sputtering-ion-beam voltage and current constant and by precisely tim-

ing the deposition. A small piece of polished material (sputter-deposited 

during preparation of the multilayer monitor material) was used for cali

brating layer thickness using a surface profilometer. Layer thickness 

was calibrated by measurements on the coated, polished sample as follows. 

First, a pattern of 25-~m lines and spaces was established on the sample 

surface using optical exposure of photo-resist through a suitable mask. 

The multilayer material was. then ion-beam machined away as shown in 

Figure 2-8 to make the layer interfaces readily identifiable. After 

this step, the photoresi,qt mask was removed chemically, and the· original 

polished surface provided .the necessary bench mark for Dektak* measure

ments of the layer thickness. 

The monitors had 8 tantalum or molybdenum layers and 7 copper layers; 

the thickness of the first layer (either tantalum or molybdenum) applied 

to the substrate was double that of the others. Because copper erodes 

about 20 to 40 times faster than molybdenum and tantalum, the copper 

layers were factored into the analysis as only a portion of a layer. 

Therefore, the total equivalent thickness of a 15-layer (8 tantalum or 

molybdenum plus 7 copper layers) monitor having 60-nm-thick layers was 

approximately 560 nm of molybdenum or 550 nm of tantalum. 

a. Test Procedure 

The baffle and screen grid were the critical chamber compo

nents selected for the erosion-rate measurements performed during this 

* Dektak Surface Profilometer, Sloan Instrument, Inc., Santa Barbara, CA. 
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investigation. Small pieces of the appropriate monitor material were 

spot-welded to these surfaces prior to the test. The screen-grid moni

tors were perforated, with the dimensions selected to account for the 

screen-electrode compensation. A small area of the baffle erosion 

monitors was masked-off during the test to aid in determining the num

ber of layers eroded during the exposure. 

Several precautions were taken during the erosion-rate tests to 

ensure the validity of the test results. For example, discharge-chamber 

operating conditions were carefully monitored and controlled by the.use 

of vaporizer control loops and stable power supplies. The vacuum condi

tions of the test chamber are crucial in obtaining valid erosion-rate 

measurements, since the presence of certain residual gases is known to 

substantially reduce the surface sputtering yield. The procedures fol

lowed during the erosion-rate tests included: 

• 

• 

• 

• 

• 

• 

Venting the vacuum test chamber \vi th gaseous nitrogen 
during thruster removal/installation operations. 

Pumping sufficiently to achieve chamber pressures in 
the low 10-4 Pa (lo-6 Torr) range using the oil-diffusion 
pump and LNz baffle arrangement in the Hughes 9-ft vacuum 
test chamber. 

Cryopumping prior to thruster startup to achieve chamber 
pressures in the range lo-6 Pa s p s 10-5 Pa (lo-8 Torr 
s p s 10-7 Torr). 

Recording periodically total-pressure conditions and 
relative-abundance measurements using ionization 
gauges, and the scan mode of the quadrupole residual 
gas analyzer. 

Maintaining the partial pressure constant using the 
proportional-flow-control system described earlier dur
ing those tests where contaminant gases were admitted 
into the vacuum chamber. 

Recording periodically the molybdenum line intensities 
to verify the constancy of the screen-grid erosion 
rate during the 10 to 12 hr required for erosion-rate 
measurements. 
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• Scaling the thruster operating time to remove several, 
but not all, of the erosion-monitor layers to minimize 
the uncertainty in the measured erosion rates. 

b. Interpretation of Results 

After completing the test, the erosion monitors were removed 

from the baffle and screen grid for analysis. Each monitor was diag-

nostically etched using an argon ion beam to expose the reamining layers 

and facilitate identifying the layer interfaces. During this investiga

tion, we developed a new technique to enhance the color contrast between 

the copper and molybdenum or tantalum and hence to facilitate identify

ing and counting the remaining layers. The color-enhancement technique 

involves accelerated oxidation of the erosion-monitor surface after per

forming the diagnostic etch. This was accomplished by heating the ero

sion monitors for ~45 min in an air furnace maintained at a temperature of 

~200°C. Oxidation of the exposed copper layers darkens them considerably, 

and this color enhancement makes it much easier to accurately count the 

remaining layers. Figure 2-9 is a color photograph that illustrates 

the dramatic improvement inthe visibility of the copper layers of a 

screen-grid erosion monitor after applying the color-enhancement tech

nique~ The copper layers (a total of seven) appeared as faint streaks 

prior to heating but as easily identifiable dark red or black lines 

after the heat treatment. The light-colored lines in the photograph 

are molybdenum layers, and the double-thickness molybdenum layer is 

clearly visible at the top of the photo. The apparent variation in the 

thickness of the remaining layers is caused by the nonuniform slope of 

the thickness profile produced by the diagnostic etch. 

After the number of copper layers remaining was determined, the 

erosion rate W was calculated using the expression 

w [(N N' + 0.5) oMo,Ta + (N - N') oCu/y]/T (2.2) 

where Nand N' are the initial and final numbers of copper layers, respec

tively; 8 is the layer thickness; T is the test time; and y accounts for 
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the increased erosion rate of copper (y = 20 for molybdenum monitors 

andy = 40 for tantalum monitors). The first term in the numerator of 

Eq. 2.2 represents the thickness of eroded tantalum or molybdenum, with 

the constant 0.5 introduced to account for the unknown fraction of the 

tantalum or molybdenum layer remaining above the highest visible copper 

layer. The second term in Eq. 2.2 accounts for the copper layers eroded; 

the factor 1/y converts copper layer thickness to equivalent tantalum 

or molybdenum layer thickness. For equal layer thickness, Eq. 2.2 

reduces to 

w (2. 3) 

Adopting the above definition of the unknown remaining layer thickness, 

the uncertatinty in the number of eroded layers is 0.5. This results 

in an erosion-rate uncertainty U given by 

6. Screen-Grid Ion Flux 

0 
U = ± 2T (2.4) 

The ion-optics mounting ring of the SN 30lthruster is electrically 

isolated from the thruster body, permitting electrical bias of the 

screen electrode. In this way, the ion arrival rate at the screen grid 

could be measured by biasing this electrode up to 30 V negative of the 

cathode. The :ion-current/bias-voltage relationship was recorded on an 

x-y plotter through the use of isolation amplifiers, and the ion-; 

saturation current was found by extrapolating this curve to zero (cathode) 

potential. 

Measurements of the local ion flux to the screen electrode were 

attempted using the probes shown in Figure 2-10. These probes were 

fabricated from the 0.05-mm stainless-steel substrate material used in 

fabricating the thin-film erosion monitors described above. A ceramic

coated lead wire was spot-welded to the collector (plasma) side of the 

probe, and the screen-grid side was coated with a sputter-deposited 
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Figure 2-10. Photograph of screen-grid ion-flux probes. 
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layer of Si02 , forming a dielectric coating on this surface. The probes 

and lead wire were cemented in place using a high-temperature, dielectric 

adhesive. Short-term use of these devices in an operating thruster was 

successful, but, within one or two hours, the probes invariably shorted 

to the screen grid due to contamination of the exposed adhesive inter

face between the probe and screen grid. A laborious attempt was made 

to undercut the adhesive to provide shadow shielding of this interface, 

and although this procedure allowed a shorted probe to be open-circuited, 

the undercut would eventually become coated with sputtered conducting 

material, causing the probes to short to the screen electrode. 

7. Plasma Potential 

The local plasma potential was the plasma property of primary 

interest in the investigation of discharge-chamber and screen-grid ero

sion, since this parameter determines the energy of the ions striking 

the chamber surfaces. Plasma-potential measurements were obtained 

at var~ous locations within the discharge chamber using the automated 

Langmuir-probe system described in Ref. 2-3. 

8. Beam Diagnostics 

The radial distribution of singly and doubly charged ions is 

necessary to provide an understanding of localized chamber-erosion 

phenomena. The total-current~density profile determines the radial 

location·of maximum chamber wear rate, and the approximate shape of 

this profile was obtained from beam-current-density measurements. 

These data were obtained using a Faraday-cup probe which could be 

swept through the ion beam at a distance ~6 rnrn downstream from the 

center of the accel electrode. The distributions of the singly and 

doubly charged ions were obtained by use of the articulating ExB probe2- 8 

shown in Figure 2-4. 
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C. EXPERIMENTAL RESULTS 

The investigation of discharge-chamber and screen-grid erosion 

required numerous experiments to provide a data base on which a model of 

wearout lifetime could be formulated. The studies involved an investi

gation of the thruster design, operational, and material characteristics 

as well as the facility-related parameters that were known or thought 

to affect the sputter rates of critical discharge-chamber components. 

The study began with preliminary experiments that were designed to 

confirm the validity of the spectroscopic technique of assessing rela

tive erosion rates and progressed through a series of tests that investi

gated the thruster and environmental parameters that were considered 

fundamental to understanding the chamber-erosion phenomena. The experi

mental results obtained during these studies are presented in 

Sections 2.C.l through 2.C.9. 

1. Preliminary Optical-Spectroscopy Heasurements 

A preliminary investigation of the effects of thruster operating 

conditions on the intensity I of light measured at various wavelengths 

corresponding to excitation of molybdenum, mercury, and copper atoms 

was conducted at the outset of this study. The purpose of these pre

liminary experiments was to establish the validity and sensitivity of 

the spectroscopic method of assessing relative changes in the screen

grid erosion rate. Since two sources of molybdenum - the screen and 

the accel electrodes - could contribute to the Mol line-intensity mea

surement, it was necessary to establish the source of the sputtered 

molybdenum producing the observed line intensity. Erosion of the accel 

electrode due to the impingement of either charge exchange or primary 

beam ions can be expected to vary with accelerator voltage, since this 

parameter determines the energy of the ions striking the electrode and 

affects the focusing of the beamlets formed by the accelerator system. 

Therefore, any change in the molybdenum line intensity due to variations 



in the accelerator voltage would indicate a change in the erosion rate 

of this electrode. Conversely, the absence of any change in line 

intensity would confirm the screen electrode as the primary source of 

sputtered molybdenum within the chamber. Figure 2-11 presents the mea

sured ratio of the intensities of the Mol and Hgl spectral lines at 
0 0 

wavelengths of A= 3798.3 A and A= 3801.7 A, respectively, as a func-

tion of accelerator voltage. The constancy of the intensity ratio over 

a wide voltage range confirmed the screen electrode as the primary 

source of the observed molybdenum line intensity. 

Having established the screen electrode as the primary source of 

sputtered molybdenum, it was then possible to demonstrate the sensitivity 

of the measured molybdenum line intensity to variations in parameters 

known to affect surface erosion rates. The parameters selected were 

the discharge voltage, beam current, and surface area of the sputtering 
. ' ' I 

source. Our results are discussed in Sections 2.C.l.a through 

2.C.l.d. 

a. Discharge-Voltage Sensitivity 

Figure 2-12 presents the measured variation of the normalized 

molybdenum-line-intensity ratios with discharge voltage. These results 

verified the dependence of the molybdenum-line-intensity measurements 

qn a thruster operating parameter that was known to affect the wear 

rate of the screen electroqe; they also demonstrated the sensitivity 

of the spectroscopic method. The presence of the same trend in all the 

normalized curves of Figure 2-12 indicates that both the Hgl and Hgii 

spectral lines are suitable for normalization of the Mol line intensity. 

Use of the Hgl line intensity as a normalizing quantity results in a 

somewhat greater sensitivity to discharge-voltage variations, since, for 

constant beam current, the neutral density decreases with increasing 

discharge voltage. The nonlinearity in the intensity-voltage variation. 

of Figure 2-12 reflects the nonlinear dependence of both the molybdenum 

sputtering yield and the doubly charged ion concentration on the dis

charge voltage. 
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b. Beam-Current Sensitivity 

The measured variation of the normalized molybdenum-line

intensity ratios with beam current is presented 'in Figure 2-13. The 

sensitivity of the normalized line intensities to beam 'current is 

clearly evident, with the relationship either linear or nonlinear 

depending on whether an Hgll or Hgl line was used in the normalization. 

These trends can be explained on the basis of the variations in the ion 

and neutral densities with beam current. The screen-grid erosion rate 

is known to vary nonlinearly with beam current. This strong depend

ence is due to the combined effects of the linear increase in plasma 

density and the resultant linear increase in doubly charged ion concen

tration with beam current. 

The neutral density in the discharge chamber of the 30-cm thruster 

remains nearly constant as the beam current is varied, which results 

in a nearly constant value of the line intensity corresponding to exci

tation of neutral mercury atoms. Therefote, normalization of the molyb

denum li~e intensity by the intensity of the atomic mercury line should 

res~lt in a quantity that is proportional to erosion rate. The normal

ized quantity should vary nonlinearly with beam current; this trend is 

evident in Figure 2-13. The mercury ion density within the discharge 

chamber varies nearly linearly with beam current, and normalization of 

the molybdenum line intensity by the line intensity corresponding to 

excitation of mercury ions results in a normalized parameter of the 

form 

(2.5) 

where H is the screen-grid erosion rate, and Jb is the beam current. 

Similarly, the constant-neutral-loss-rate argument resulted in the 

proportionality, 
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0: w (2.6) 

Combining these expressons yields the following proportionality between 

the normalized quantities 

IMoi 

IHgii 
0: (2. 7) 

The validity of this expression can be demonstrated by dividing the 

nonlinear data of Figure 2-13 (corresponding to normalization by the 

Hgi line) by the beam current and observing whether the derived quantity 

is a linear function. The results of these calcuiations are presented 

in Figure 2-14, which shows the linearization that results from multi

plying the normalized intensity IMoi/IHgi by the quantity 1/Jb. 

c. Surface-Area Effects 

A linear variation of line intensity with the surface area of 

the sputtering source is expected for conditions of constant ion densi~y 

and plasma potential. This aspect of surface sputtering was investi

gated in an operating thruster using a movable copper rod to vary the 

surface area of the primary source of the Cui line emitted at a wave-
o 

length of A = 3248 A. Figure 2-15 presents the measured variation of 

the copper line intensity with rod position, or surface area. The 

relatively small change in intensity in the region defined by 0 $ ~ $ 

5 ern is due to the low plasma density in the region upstream from the 

critical magnetic field line. In the region defined by ~?: 5 em, the 

line intensity increases rapidly, with the nonlinearity produced by 

the gradient in plasma density occurring downstream from the critical 

field line. 

The results given in Figure 2-15 confirmed the sensitivity of the 

measured line intensity to the surface area of the source of sputtered 

material and indicated that even small sources of sputtered material 
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located in regions of the chamber where the plasma is relatively dense are 

detectable using th~ optical system described above. These results sug

gested an alternate a~proach for obtaining quantitative erosion-rate data 

through the combined use of thin-film erosion monitors and optical 

spectroscopy. The proposed technique is based on (1) the observation 

that the line intensity produced by the sputtering of small sources 

of copper is detectable and (2) the assumption that small thin-film 

erosion monitors erode uniformly across their exposed surface, If these 

conditions are satisfied, the intensity of the copper line correspond-

ing to this source should exhibit a periodic variation, with the period 

equal to the time required to erode through one copper layer and one 

layer of the intervening material (which is chosen to be the same as 

the material of the surface under study). If successful, this tech

nique would provide quantitative erosion-rate data in essentially real 

time, and thruster setup time could be minimized through the use of 

many-layered thin-film monitors. Because of its potential usefulness, 

a limiteQ study of this technique was considered worthwhile. Although 

preliminary results were promising, the merits of such a technique 

could not be demonstrated conclusively in a reasonable length of time 

and further study was not considered justified under the present 

program. 

d. Correlation of Spectroscopic Measurements with Beam
Diagnostic Data 

Spatial resolution of the molybdenum- and mercury-line

intensity data was demonstrated using the mask arrangement described 

in Section 2.B.l. That the observed line intensities were representa

tive of local densities was verified by showing good correlation 

between the local line-intensity data and data from more direct measure

ments (ExB probe) of the same properties. This was accomplished by 

measuring theintensities of the Hgii and Hgiii lines (corresponding to 
0 

wavelengths of A= 3806.4 and 4797.0 A, respectively) using three dif-

ferent mask geometries that permitted light from select regions of the 

chamber to reach the entrance slit of the monochromator. These measure

ments were performed while varying the discharge voltage over the range 
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30 S VD 5 40 V. At each discharge-voltage level, the relative abundance 

of the doubly and singly charged beam ions was measured using the ExB 

probe shown in Figure 2.4. Figure 2-16 presents the correlation of the 

line-intensity measurements with the probe results for the chamber 

centerline, mid-radius, and entire chamber area. A linear least-squares 

regression of the data in Figure 2-16 results in correlation coefficients 

in the range 0.97 s r 2 s 0.99. The successful correlation of these 

results demonstrates the ability of the spectroscopic technique to provide 

both average and local diagnostic information. The extremely linear cor

relation of the results of Figure 2-16 illustrates the utility of the fast 

spectroscopic method in assessing relative changes in critical thruster 

performance parameters such as the ratio of doubly to singly charged 

ion densities. 

2. Erosion-Rate Measurements 

Measurements of the screen-grid and baffle erosion rates were per

formed using the thin-film technique described in Section 2.B.5. The 

screen-grid centerline is considered the most critical chamber surface 

from a lifetime standpoint, and primary emphasis was placed on assess

ing the erosion rates of this region under a variety of test conditions. 

The baffle, on the other hand, is not consi~ered a life-limiting compo

nent since it is amenable to cladding with a low-sputter-yield material 

such as tantalum. However, because of its central location and resul~ 

tant exposure to the dense discharge plasma, the baffle was also 

selected for erosion-rate measurements. Test times were scaled (based 

on calculated erosion rates) to result in the removal of 12 to 13 layers 

of the erosion monitors located at the center of the screen grid. 

Because of the nonuniform plasma-density distribution of the 30-cm 

thruster, this test-time criterion results in the removal of about one

half this many layers at the mid-radius location. At the full-thrust 
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beam and discharge conditions of the J-series thruster, a test time of 

approximately 12 hr is required to remove the upper 12 to 13 layers of 

the screen-centerline monitor. Because of the large number of test 

conditions investigated, 12 hr was considered the practical upper limit 

to the length of a continuous test. Longer duration tests could have 

been broken into shorter segments, but this approach is undesirable' 

since it introduces an additional uncertainty into the test results due 

to the effects of both thruster and facility starting transients. 

Therefore, the lower limits on discharge voltage and beam current that 

would nearly satisfy the test-time criteria were 29 V and 2 A, respec

tively. For those studies where nitrogen was added to the vacuum test 

chamber (Section 2.C.4), the discharge voltage was increased to 36 V 

to minimize the test-time requirement (and also to enhance the effects 

of a contaminant gas on erosion rate). 

Table 2-3 represents the erosion-rate test results obtained during 

the parametric study of the effects of discharge voltage, screen

electrode bias, and acclerator-electrode design. A complete dicsussion 

ot these results is presented in Sections 2.C.2.a through 2.C.2.c. 

However, some general comments on the results of Table 2-3 are warranted 

before discussing the more detailed aspects of the parameter-variation 

test results. First, the uncertainty in the measured erosion rates, 

defined as one-half a layer thickness divided by the test time, is due 

to the unknown fraction of the remaining molybdenum or tantalum layer 

that lies above the highest visible copper layer. Based on this defini

tion and the test duration criteria, the uncertainty is proportional to 

the maximum erosion rate and is, therefore, greater for the shorter 

tests. Second, the ratios of doubly charged to singly charged ion cur

rents presented in Table 2-3 exhibit the expected increase with dis

charge voltage, and generally the mid-radius value of this ratio agrees 

closely with the values obtained by averaging over the beam area. Third, 

the ratio of the average to the maximum beam current density F is about 

0.5 and independent of any of the indicated parameter variations. As a 
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result, the screen-grid erosion at the center is about twice that at the 

mid-radius. Fourth, the results of Table 2-3 are generally quite repeat

able, and repeated data agree within the uncertainty of the measurements. 

a. Discharge-Voltage Effects 

The effects of discharge-voltage variations are presented in 

lines 1 through 5 of Table 2-3. The expected increase in both doubly 

charged ion density and chamber erosion is evident in these data, which 

show a five-fold increase in both quantities as a result of increasing 

the discharge voltage from 29 to 36 V. The baffle erosion rates measured 

at discharge voltages of 29 and 32 V are equal to the uncertainty in 

the measurements, indicating that the erosion of this surface is much 

lower than that of the screen-grid centerline. Baffle erosion, particu

larly on the discharge side, increases substantially with discharge volt

age in the range 32 V $ VD $ 36 V. 

b. Ion-Optics Effects 

The results of Table 2-3 indicate that chamber wear rates are 

independent of accelerator open-area fraction unless the discharge 

operating conditions are varied. From these results, it is apparent 

that the discharge voltage, doubly charged ion concentration, and 

plasma-density distribution determine the chamber wear rates. 

c. Screen-Electrode Bias Effects 

The screen-grid erosion rate increased by a factor of five as 

a result of biasing the screen grid 15 V negative of cathode potential. 

The extreme sensitivity of erosion rate to screen bias reflects the 

nearly exponential increase in sputter yield with ion energy. As 

expected, there was no effect of screen-electrode bias onthe baffle 

erosion rate. 

The strong effect of screen-grid bias on the erosion rate of this 

electrode suggests that the lifetime of this component could be sub

stantially increased by allowing it to float with respect to the 



cathode. Using this arrangement, the screen grid would assume a potential 

intermediate to that of the cathode and plasma, resulting in a reduction 

in the energy of the ions striking its surface. This aspect of control

ling screen-grid lifetime was not pursued under the present investigation. 

d. Comparison of Erosion-Monitor and Long-Term Test Results 

The ,screen-grid erosion rates presented in 1able 2-3 for the 

900- and J-series thruster configurations (operated at standard discharge 

conditions) are about twice as high as the corresponding results 

obtained during long-term testing where surface thickness changes were 
2-2 2-4 

measurable.· ' The maximum erosion rate of about 22.-5 ± 2.5 nm/ 

hk listed in Table 2-3 for the standard J-series thruster operating 

condition does not compromise the lifetime goal of 15,000 hr (assuming 

that 90% wearout of the screen electrode near the. center is tolerable), 

bu"t the discrepancy in these measured results is disconcerting. There 

are several factors that could contribute to the differences in the 

measurements: 

e Effects of facility residual gases 

• Errors in determining the layer thickness of the thin
film monitors 

• Differences in ··the densities and sputter yields of 
bulk and sputter-deposited metals. 

Facility pressure effects can be ruled out as the source of the dis

crepancy since the chamber pressures were comparable in the long- and 

short-term tests. The thickness of the erosion-monitor layers was 

checked using a surface profilometer and found to be within 2% of the 

calibrated value, thus eliminating this factor as the source of the 

discrepancy. Sputter-deposited thin films are amorphous, whereas the 

bulk materials have a polycrystalline structure. Because of these sur

face geometries, the amorphous films tend to erode in a manner that 

preserves the planar nature of the surface, while the polycrystalline 

surfaces tend to become·faceted as a result of variations in the inci

dence angle of the ion beam and the variously oriented crystal planes. 
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Also, the density of sputter-deposited films could be less than that of 

bulk materials (which may have been rolled and heated). Although these 

latter effects are probably small, they could increase the erosion rate 

of sputter-deposited films over that of the bulk material. In a recent 

Hughes experiment, we compared the sputter rates of bulk and sputter

deposited molybdenum and found that they agreed to within 10%. This 

test was conducted by first using a 150-eV argon ion beam to sputter 

the two samples and then measuring the etch depth using a surface pro

filometer. Although this represents only one datum point, the close 

agreement suggests that differences in the sputter yields of bulk and 

sputter-deposited metals such as molybdenum do not explain the consis

tently higher erosion rates of thin-film monitors. 

The fundamental question of whether sputter-deposited layers erode 

at the same rate as bulk metals remains only partially answered. Until 

enough data are obtained to demonstrate conclusively that the sputter 

erosion rates are the same, or a calibration can be established, the 

results obtained with the thin-film monitors should be interpreted in a 

relative sense. 

3. Correlation of Erosion-Rate and Line-Intensity Measurements 

The basis for using molybdenum-line-intensity measurements to infer 

the erosion rate of the screen grid was discussed in Section 2.B.l. The 

validity of the spectroscopic technique can be established by demonstrat

ing a correlation between the measured line intensities and the screen

grid erosion rates. Figure 2-17 presents the correlation of normalized 

molybdenum line intensities and screen-grid erosion rates measured at 

the centerline and mid-radius. locations. The linear relationship indi

cated in Figure 2-17 demonstrates the utility of using line-intensity 

measurements as an indication of relative changes in the local erosion 

rate of the screen grid. The successful correlation of these measure

ments permits the spectroscopic technique to be used with confidence 

in applications (such as the contaminant gas study described in 

Section 2.C.4) where many test conditions must be evaluated. 
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4. Effects of Residual Gases on Discharge-Chamber Erosion Rates 

The presence of sufficient quantities of reactive residual gases 

(such as nitrogen) in the discharge chamber of the 30-cm thruster has 
2-4 

been shown to reduce the sputtering yield of the molybdenum screen 

grid. The reduction in wear rates is caused by chemisorption of the 

reactive gases onto this surface (and probably other chamber surfaces), 

resulting in the formation of a surface compound such as Mo 2N that has 

a lower sputter yield than the bare-metal surface. This phenomenon has 

b b d b h . . 2-9 through 2-16 . . . 
een o serve y ot er 1nvest1gators 1n var1ous plasma 

devices; the reaction process is described in Section 2.D.4. The tests 

conducted at NASA LeRC2- 4 indicated that when sufficient quantities of 

nitrogen or air were admitted into an operating 30-cm thruster (either 

directly or indirectly, by admitting the gases into the vacuum test 

chamber) the erosion rate of the molybdenum screen grid was reduced. 

Admitting argon, on the other hand, did not reduce the erosion rate, 

suggesting that the surface phenomenon involving either nitrogen or air 

was a chemical reaction. In the present study, the effects of residual 

gases on surface wear rates were extended to include other gases that 

are commonly found in vacuum test chambers used in ion-thruster testing. 

The objectives of this investigation were (1) to determine which of 

these gases have an effecton the wear rates of critical chamber com

ponents, (2) to determine the maximum partial pressures required to 

simulate the surface sputtering rates expected in space, and (3) to 

obtain quantitative measurements of the effects of facility-residual

gas pressure on the sputtering rates of critical discharge-chamber 
\ 

components. The results obtained for each of these objectives are 

discussed below. 

a. Line-Intensity Heasurements 

Measurements of the intensities of each of the spectral lines 

listed in Table 2-1 were performed while admitting various residual 

gases into the HRL 9-ft vacuum test chamber using the proportional-control 

and gas-flow system described above. Figure 2-18 presents the measured 



variation of these line intensities that was produced by admitting 

cyanogen gas into the vacuum chamber. Similar results were observed 

for all gases investigated (with the exception of argon, which was 

used as a test case). The pressure data of Figure 2-18 provide only an 

indication of the pressure rise produced by the admission of the test gas 

and do not represent either the partial or total pressure near the 

thruster since they were recorded on the ionization gauge (Pl) located 

behind the chamber cryowall. Figure 2-18 shows that the intensities of 

the measured mercury lines remained nearly constant as the pressure 

was increased by about four orders of magnitude. The two molybdenum 

lines, on the other hand, indicate a factor-of-three reduction in 

intensity as a r~sult of the presence of the test gas. The observation 

that the line intensities corresponding to mercury atoms (Hgi), singly 

charged ions (Hg II), and doubly charged ions (Hg III) are insensitive 

to pressure variation suggests that the average plasma properties are 

unaffected by the admission of the test gas. Therefore, the change in 

the molybdenum line intensity should be due to an increase in the 

density of this material, and good correlation of the line-intensity 

measurements with direct measurements of screen-grid erosion can be 

anticipated. 

Having confirmed the molybdenum line intensity as the only line 

source influenced by the increase in pressure caused by introducing 

residual gases into the test chamber, we proceeded to investigate the 

sensitivity of the molybdenum line intensity measured at a wavelength 
0 

of A = 3798.3 A to the presence of other contaminant gases such as 

nitrogen, oxygen, methane, carbon dioxide, and water vapor. For these 

tests, the SN 301 thruster was equipped with·a 900-series ion-optics 

assembly (SN 653) and was operated at a discharge voltage of VD = 42 V 

to accentuate the variation of the molybdenum line intensity with 

partial pressure. Figure 2-19 presents the measured variation of the 

molybdenum line intensity (A = 3798.3 A) with pressure (recorded on 

ionization gauge Pl), where the pressure rise was produced by admitting 

the indicated test gases. The line-intensity data have been normalized 
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to unity at the lowest pressure point (P . ), since at very-low pressures 
m1n 

the molybdenum line intensity should be representative of the erosion 

rate of the bare metal, which is independent of the test gas under con

sideration. The results of this preliminary survey indicated that each 

of the candidate contaminant gases produced a substantial reduction in 

the erosion rate of the screen electrode of the 30-cm thruster. Argon 

did not lower* the screen-grid erosion, substantiating the suspected 

chemical nature of the residual-gas effects on surface sputtering. 

Having identified at least six contaminant gases that retard the 

screen-grid erosion rate, four of these gases (nitrogen, oxygen, cyano

gen, and methane) were selected for further testing to determine the 

upper bounds on partial pressure levels that must be achieved in vacuum 

test chambers in order to simulate the surface erosion expected in 

space. In these tests, the SN 301 thruster was operated with a J-series 

ion-optics assembly (SN 828) at the standard operating conditions of 

VD = 32 V and Jb = 2 A. The variations of the normalized molybdenum 

line intensity with the partial pressure of nitrogen, oxygen, cyanogen, 

and methane are presented in Figures 2-20 through 2-23. Because of the 

substantial reduction in screen-grid erosion achieved with the J-series 

thruster design, the molybdenum line intensity is significantly lower, 

resulting in the scatter of the normalized data apparent in these 

figures. In fact, at the middle and two-thirds chamber-radius locations, 

the molybdenum line intensity is comparable to the signal noise produced 

by the dark current of the photomultiplier tube. Smoother curves simi

lar to Figure 2-19 could have been obtained by operating under condi

tions (such as increased discharge voltage or screen bias) that increase 

the sputter rate of the screen electrode, but these artificial condi

tions change the plasma properties and/or ion energy to the extent that 

the final results may not be representative of standard operating 

conditions (see Figure 2.23). 

* The argon data of Figure 2-19 suggest that the erosion rate increases 
with pressure. This misleading effect. is caused by normalization of 
the molybdenum line intensity by the Hgi line intensity, which 
decreases slightly with pressure in the high-pressure range. 
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The results given in Figures 2-20 through 2-23 were used to 

estimate the maximum partial pressure of each test gas that is required 

to simulate the surface sputtering expected in space. This upper bound 

on critical pressure was arbitrarily defined as the partial pressure at 

which the normalized molybdenumline intensity dropped to 0.95, based on 

the faired curves of Figure 2-20 through 2-23. Table 2-4 presents the 

values of the critical partial pressures determined in this manner and 
-5 -4 -7 indicates that partial pressures below the 10 to 10 Pa (10 to 

-6 10 Torr) range are required for these gases to simulate a screen-

electrode sputtering-rate that is ~95% of the value anticipated in 

space. 

b. Erosion-Rate Measurements 

Erosion rates of the baffle and screen electrode of the 

SN 301 thruster were measured at various nitrogen partial pressure 
-5 -3. -7 -5 levels in the range 10 · Pa :::: p :S 10 Pa (10 Torr :::.: p :S 10 Torr). 

For these tests, the 900-series ion-optics assembly (SN 653) was used, 

and the thruster was operated at discharge-voltage and beam-current 

conditions of VD = 36 V and Jb = 2 A, respectively. The 900-series 

thruster geometry and operating conditions were chosen to permit rea

sonable test durations at the high-p~essure conditions (the use of 

a J-series ion-optics assembly and 32-V discharge would have required 
-4 testing for up to 40 hr for pressures above 10- Pa). The results of 

these erosion-rate tests are presented in Table 2-5, which shows that 

increasing the nitrogen partial pressure from 7 x 10-S Pa to 2 x 10-3 Pa 

reduced the maximum screen-grid erosion rate by a factor of five. The 

erosion rates of the tantalum baffle are also observed to decrease with 

pressure, indicating that the nitrogen chemisorption effect is not unique 

to molybdenum. The measured erosion rates on the cathode side of the 

baffle do not indicate a consistent reduction in erosion rate with par

tial pressure because of the anomalously high erosion rate measured at 
-4 a partial pressure of 6.1 x 10 Pa. This inconsistency is thought to 

be a result of the interpretation difficulties that are sometimes 

encountered with the baffle erosion monitors. 
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Table 2-4. Maximum Partial Pressures Required to 
Simulate Space-Erosion Conditions (SN 301-J 
Thruster Operated at Vn = 32 V, Jb = 2 A, 

and Ei = 192 eV/ion) 

Maximum Partial Pressure 

Contaminant Gas 
Pa Torr 

Nitrogen 6.2 X 10-5 4.7 X 10-7 

Oxygen 1.5 X 10-4 1.1 X 10-6 

Cyanogen 1.2 X 10-5 9.0 X 10-8 

Methane 2.0 X 10-5 1.5 X 10-7 

6758 

5. Magnetic Baffle Current Effects 

The effect of magnetic baffle current on the screen-grid erosion 

rate was investigated using the optical-spectroscopy technique to moni

tor the molybdenum and mercury line intensities over a wide range of 

magnetic baffle current. This approach was selected because the effects 

of this operating parameter on the erosion rate of the screen grid were 

judged a priori to be small and probably of the order of the uncer

tainty in the thin-film.measurement technique. Figure 2-24 presents 

measurements of the normalized molybdenum line intensities for mag

netic baffle currents in the range 1.6 S J~ffi s 3.6 A. Two sets of data 

are presented in the figure, corresponding to the optical-system masks 

which permit light from the entire chamber or centerline regions to 

reach the monochromator. The mid-radius mask was not used in these 

tests because the signal-to-noise ratio at the 32-V discharge-voltage 

condition is too small to permit accurate detection of small signal 
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changes. The relatively weak intensity of the molybdenum line is 

manifest in the scatter of the results given in Figure 2-24. In spite 

of the scatter, however, some trends are evident. First, the data from 

the entire thruster suggest little, if any, effect of magnetic baffle 

current on the overall wear rate of the screen electrode. This result 

is consistent with the expectation that magnetic baffle current or cath

ode flow rate should have a negligible effect on the overall erosion 

of the screen grid. Second, the centerline results of Figure 2-24 

indicate that the magnetic baffle may produce a localized effect on· 

screen-grid erosion. The line intensities measured on centerli.ne appear 

to fall into one of two regions characterized by a nearly constant value 

of normalized molybdenum line intensity. The transition between these 

regions occurs at a magnetic baffle current of approximately JMB = 2.4 A. 
A 

Below this value, the normalized intensity is approximately I = 0.08; 
A 

above JMB = 2.4 A, the normalized intensity is approximately I = 0.10. 

The correlation of line-intensity and erosion-rate measurements presented 

in Figure 2-17 can be used to calculate erosion rates corresponding to 

these two intensity values. From Figure 2-17, the centerline erosion

rate and line-intensity data are related by the expression 

A 

w 182 I + 7 (2.8) 

resulting in calculated erosion rates of 21.6 and 25.2 nm/hr for the 

two regions of Figure 2-24. Because the difference in these rates is 

about the same as the uncertainty of the thin-film erosion rate measure

ment technique, direct verification of the effects of magnetic baffle 

current on the erosion rate of the screen grid on centerline was not 

considered to be feasible. 

6. Ion-Flux Heasurements 

Measurements of the screen-electrode ion-saturation current were 

conducted over a wide range of beam~current and beam-voltage operating 

conditions by biasing the electrically isolated screen electrode of the 
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SN 301-J thruster up to 30 V negative of cathode potential. Typical 

current-voltage curves obtained in this manner are presented in 

Figure 2-25. The linear range of the measured current-voltage curves 

was extrapolated to zero (cathode) potential to provide an estimate of 

the ion-arrival rate at the screen grid. The ion current determined in 

this manner was used to calculate the effective screen-electrode trans

parency, ¢ , using the expression 
s 

(2.9) 
J + J b screen 

where Jb is the beam current, and J is the extrapolated screen-screen 
electrode current. The results of these measurements, presented in 

Figure 2-26, show the variation of screen-grid transparency with beam 

current. and voltage. The trends evident in Figure 2-26 can be explained 

by considering the location of the plasma sheath necessary to satisfy 

the conditions of space-charge-limited ion flow through the accelerator 

system apertures: (1) At constant beam current, an increase in beam 

(total) voltage causes the plasma sheath to move upstream, which reduces 

the surface area available for ion recombination and, as a consequence, 

an increase in the effective transparency of the screen electrode. 

(2) At a constant beam (total) voltage, an increase in beam current 

causes the plasma sheath to move downstream, resulting in an increase 

in the surface area available for recombination, and, consequently, a 

reduction in the effective transparency. The experimental results of 

Figure 2-26 can be approximated by the indicated curve fits, which have 

the form 

¢s = 0.781 + 0.084 VT- 0.062 Jb (2.10) 

where VT is the total accelerating voltage. The optical or geometric 

transparency. of the J-series screen electrode is ¢ = 0.674. 
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7. Plasma-Potential Measurements 

Because of the relatively slow ion velocity within the thruster 

discharge chamber, the energy of the ions striking the chamber sur

faces is determined primarily by the difference in potential between 

the plasma and the adjacent surface. Therefore, an understanding of 

the physical sputtering phenomena occurring in the 30-cm thruster 

requires knowledge of the plasma-potential variation within the cham

ber, particularly near the surfaces of critical chamber components. 

The spatial variation of the plasma potential within the SN 301-J 

thruster discharge chamber was obtained by conducting La~gmuir-probe 

measurements at the locations indicated in Figure 2-27. The measure-

f d . d d . . . 2 .... 3 ments were per orme us1ng an automate ata-acqu1s1t1on system to 

digitize and record the probe I-V signals. In addition to the digital 

data, analog signals prop@rtional to probe voltage and the logarithm 

of the probe current were recorded on an x-y plotter. Figure 2-28 

presents current versus voltage curves typical of those obtained 

during the Langmuir-probe measurements. The extremely linear varia

tion in the logarithm of probe current in'·the retarding-field region 

of the characteristic indicates that the plasma-electron distribution 

is essentially Maxwellian. Although this observation is contrary to 

the generally accepted theory of a two-group plasma, all the recorded 

probe characteristics were observed to be linear over nearly two decades 

of probe current. The absence of a monoenergetic or primary-electron 

contribution to the probe-collector current suggests that the electrons 

drawn out of the cathode-discharge plasma region are rapidly random

ized through collisions with neutrals. The electron mean free path is 

shorter in thrusters operated with low-transparency accelerator grids, 

such as the J-series SHAG optics, due to the inherent increase in 

neutral density.' 

The dependence of the electron distribution function on mean free 

path has been observed in similar plasma devices operated on argon, 2- 17 

where it was found that the plasma contained a monoenergetic and 

Maxwellian electron g~oup only below a certain value of neutral 
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density. Above this critical density, the electron energy-distribution 

function was observed to be essentially Maxwellian, as deduced from the 

shape of the Langmuir probe characteristic in the retarding-field 
2-17 region. In these studies, the chamber was operated at a 60-V 

discharge on argon, and a critical chamber pressure of about 10-2 Pa 
-4 -3 -5 (10 Torr) was observed. At a pressure of 10 Pa (10 Torr), the 

probe characteristic contained a well-defined linear region due to the 

collection of monoenergetic electrons. At 10-2 Pa (10-4 Torr) and above, 

there was no linear region of the probe characteristic, indicating that 

the plasma electron distribution was essentially Maxwellian. If the 

phenomenon observed in the argon plasma device2- 17 is the result of the 

existence of a critical mean free path, then similar results might be 

expected in the 30-cm thruster, but at a lower pressure due to the 

larger ionization cross section of mercury. Based on the critical-path

length concept, the critical pressure PHg in a mercury discharge can be 

estimated using the expression 

(2 .11) 

where cr is the ionization cross section. Using the argon critical pres

sure of 10-2 Pa (10-4 Torr) and the ratio of the ionization cross sections 

of argon and mercury evaluated at 60 V and 30 V, respectively, results in 
-3 -5 a calculated critical mercury pressure of 6.5 x 10 Pa (5 x 10 Torr). 

The calculated partial pressure of mercury within the discharge chamber 

of the 30-cm thruster operated with SHAG optics is ~10-2 Pa (~8 x 10-5 

Torr), which is somewhat higher than the estimated critical pressure. 

At the same chamber propellant utilization, the estimated pressure in 

the 30-cm thruster operated with 900-series and earlier optics (43% 
-3 -5 accelerator electrode open area) is ~5 x 10 Pa (4 x 10 Torr), which 

is slightly lower than i:the estimated critical pressure. Although the 

possibility of an effect of accelerator~electrode design on the elec

tron energy distribution within the 30-cm thruster is of prime interest 

to an understanding of discharge-chamber operation, further study of 

this phenomenon was not pursued under the present investigation. 



The linear variation in the log-current/voltage characteristics 

renders them amenable to the simple graphical analysis technique of 

classical Langmuir probe theory. Using this technique, the plasma 

potential was found from the intersection of two lines: one drawn 

tangent to the curve in the retarding-field region of the characteristic 

and the other drawn tangent to the curve in the accelerating-field 

region slightly beyond the plasma potential. The local values of 

plasma potential.~ found in this manner are presented in Table .2.6. 
p 

As expected, the plasma potential is nearly equal to the discharge· 

(anode) potential and essentially independent of beam current. From 

the results in Table 2.6, the plasma potential near the screen grid is 

given by the following expression: 

~p = 1.28 VD - 9.38 (2.12) 

where VD is the discharge voltage in V. 

8. Erosion Rates of Alternate Fabrication Materials 

The use of a lower-sputter-yield material for fabricating the 

screen electrode of the 30-cm thruster is one possible way of increas

ing the thruster lifetime beyond that achieved with molybdenum elec-
2-2 trades. A previous study conducted under NASA Contract NAS 3-19703 

identified several low-sputter-yield metals that might be suitable as 

an alternate choice of screen-electrode material. Of the possible can

didate materials identified during that study, tantalum, titanium, arld 

niobium were recommended as alternate choices to molybdenum based on 

considerations of fabrication (chemical etching), availability, and 

thermal properties. During the present study, we investigated the rela

tive sputtering rates of these alternate materials when they are sub

jected to the discharge environment of the 30-cm thruster. 

M d . ld 2-lS f . . 1 b b d d b easure sputter y~e s o var~ous mater~a s om ar e y 

normally incident mercury ions are presented in Figure 2-29. If one 

considers the combined effects of sputtering by singly and doubly 

charged ions, a clear-cut choice of the optimum low-sputter-yield 
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. . 
Table 2-6. Summary of Discharge-Chamber plasma-Potential Measurements 

Obtained in the SN 301-J Thruster 

Plasma Potential (~p), V 

Probe 
Position 

Discharge Voltagea (V~), v Beam Currentb (Jb), A 

1 

2 

3 

4 

5 

6 

7 

8 

9 

10 

11 

12 

13 

14 

15 

16 

17 

18 

19 

20 

29 32 36 

27.8 31.8 36.8 

27.8 31.8 36.6 

27.6 31.6 36.2 

27.0 31.0 36.0 

26.6 31.8 36.0 

27.0 31.0 35.6 

25.0 30.0 34.2 

29.2 32.8 38.0 

29.0 32.8 37.8 

28.8 34.4 37.6 

28.6 33.0 38.0 

29.4 33.0 37.4 

30.6 33.6 38.6 

29.6 33.2 39.0 

29.0 33.0 39.0 

39.8 32.0 39.5 

31.0 34.4 39.5 

28.0 32.0 37.0 

27.8 32.6 36.5 

35.0 36.0 41.0 

1.0 

33.4 

33.4 

33.4 

32.4 

33.6 

33.4 

35.4 

33.8 

33.8 

33.6 

34.0 

34.2 

38.0 

34.0 

34.0 

34.4 

37.4 

32.6 

32.6 

1.5 2.0 

32.6 31.8 

32.6 31.8 

32.4 31.6 

32.0 31.0 

32.0 31.8 

32.0 31.0 

32.0 30.0 

33.0 32.8 

33.0 32.8 

32.6 34.4 

36.0 33.0 

33.6 33.0 

35.0 33.6 

33.6 33.2 

33.4 33.0 

34.0 32.0 

35.4 34.4 

32.4 32.0 

33.6 32.6 

38.6 36.0 

r---------~------~----~------~~----~~----~--~·-

2 A; E. = 192 eV/ion. 
]_ 

32 V, E. = 192 eV/ion. 
]_ 

6758 
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material is not immediately obvious because of the crossover of the 

curves in Figure 2-29. However, using an expression for erosion rate 

developed in Section 2.D and the data from Figure 2-29, the combined 

effects of sputtering by both singly and doubly charged ions can be 

accounted for, enabling relative sputtering rates to be estimated. 

The erosion rate W of the screen electrode can be written in the form 

w <X 
2S(E) + JS(2E) 

n ' . (2.13) 

where S is the sputter yield at energy E, n is the density of the 

material, and J is the ratio of doubly to singly charged ion currents. 

The experimental data of Figure 2-29 are observed to be nearly linear 

in the low-energy range, allowing the sputter yields to be approxi

mated by the expression 

S (E) (2.14) 

where A and B are constants that can be determined from curve-fitting 

the low-energy region of the curves in Figure 2-29. Combining Eqs. 

2.13 and 2.14 yields a simplified expression for a quantity f that is 

directly proportional to erosion rate: 

f (2.15) 

The quantity f, normalized by the value calculated for molybdenum, can 

be thought of as a figure of merit (relative to molybdenum) for sputter

ing of a given material subjected to plasma conditions specified by 

the choice of ion energy E and the ratio of doubly to singly charged ion 

currents J. Table 2-7 presents calculated values of the relative wear 

rates of several materials subjected to plasma conditions defined by 



Table 2.7. Normalized Wear Rates of Various Materials 

Material A X 105 B, 1 n X 10-22 , f X 1027 , 
f/fMo Atoms/Ion (eV)- cm3 cm3 

Nb 0.90 0.082 5.44 3.54 0.76 

w 0.04 0.138 6.32 . 3.60 0.77 

Mo 1.93 0.077 6.40 4.67 1.00 

Ta 1.26 0.102 5.52 14.7 3.14 

Ti 0.75 0.113 5.66 16.2 3.47 

Cu 3.15 0.127 8.48 105.0 22.5 

A and B are constants obtained from curve-fitting the data 
of Figure 2-29, n is density of the electrode material, 
and f was calculated using Eq. 2.15 with E = 32 V and 
J = 0.3. 

E = 32 V and J = 0.3 (representative of the J-series thruster operating 

at its nominal discharge voltage VD = 32 V). The values of the constants 

A and B were obtained from digitizing and curve-fitting the low-energy 

region of the curves of Figure 2-29. The normalized wear rates presented 

in the last column of Table 2-7 indicate that niobium and tungsten sputter 

at a rate that is about three-fourths that of molybdenum, while copper 

erodes nearly 25 times faster. 

The~relative erosion rates of various metals subjected to the 

plasma environment of the 30-cm thruster were measured using thin

film erosion monitors fabricated from molybdenum, niobium, tantalum, 

titanium, gold, and silver. Gold and silver were of interest because 

they will amalgamate with mercury. A preliminary test was conducted 

with erosion monitors located on the screen electrode ~1 em from the 

center. The SN 301-J thruster was operated at 32~V discharge voltage 

and 2-A beam current for a period of 3.5 hr, with the screen electrode 

biased 15 V negative of cathode potential to accelerate the wear rate. 

An examination of the monitors after the test revealed no visible copper 

lines on either the silver, gold, tantalum, or titanium monitors, and 

only a single copper line was visible on the molybdenum.monitor; five 

copper lines were visible on the niobium monitor. The calculated 
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erosion rates based on these results are 41 nm/hr for niobium, 110 nm/hr 

for molybdenum, and ~135 nm/hr for gold, silver, titanium, and tantalum. 

Because the sputtering rate of the niobium monitor was substantially less 

than the rate observed for molybdenum, a second test was run at nominal 

chamber operating conditions of VD = 32 V and Jb = 2 A, but without 

electrical bias of the screen electrode. 

A niobium monitor was placed at the center of the grids, and thin

film monitors fabricated from niobium, molybdenum, tantalum, and titanium 

were placed near (~1 em) the center of the screen electrode, equidistant 

from the center. The duration of this test was 11 hr, resulting in an 

uncertainty in the erosion-rate measurements of ±2.7 nm/hr. The niobium 

erosion monitor mounted at the center of the screen grid indicated an 

erosion rate of 14.2 nm/hr, which is about two-thirds the value shown in 

Table 2-3 for molybdenum monitors operated at the same beam conditions. 

The relative erosion rate of the niobium monitor is in good agreement with 

the calculated values given in Table 2-7 (f/fMo = 0.76). Post-test exami

nation of the tantalum and titanium monitors, located ~1 em from the center 

of the electrode, revealed that there were no visible lines remaning after 

the test, indicating an erosion rate ~42.8 nm/hr. This value is consis

tent with the results of Tables 2-3 and 2-7, which indicate an antici

pated erosion rate near the center of the screen electrode of about 

75 nm/hr for both tantalum and titanium. The niobium monitor located 

approximately 1 em from the center of the electrode indicated an erosion 

rate of 14.2 nm/hr, in agreement with the center monitor. The molyb

denum monitor located 1 em from the center also indicated an erosion rate 

of 14.2 nm/hr. This result is anomalous since the results given in 

Table 2-3 indicate that the erosion at the center is substantially higher. 

The results of the investigation of low-sputter-yield materials 

indicate that the niobium erosion rate is only 40 to 70% of the corres

ponding values for molybdenum. These preliminary results, which were 

anticipated based on the relative sputter-yield calculations presented 

in Table 2-7, suggest that the use of niobium in fabricating the screen 

electrode of the 30-cm thruster may signficantly extend its lifetime. 



The feasibility of using niobium to fabricate electrodes is contingent 

on finding a commercial vendor that can perform the chemical milling 

process. 

9. Alternate Discharge-Chamber Designs 

Maximum wear rates of 30-cm thruster discharge-chamber surfaces 

occur near the axis of the chamber where the plasma density is highest. 

Therefore, a discharge-chamber design that results in a more uniform 

plasma-density distribution is desirable in order to increase the 

chamber lifetime (at constant beam current), or increase the maximum 

beam current capability (for a fixed lifetime). The local ionization 

rate is proportional to the product of the electron and neutral densi

ties, suggesting that an increase in ion production is possible by 

increasing the local density of either species. The feasibility of 

increasing the electron and neutral densities in the region near the 

cylindrical boundary of the 30-cm thruster discharge chamber was investi

gated using two alternate chamber configurations. The first design 

employed a single-cusp-magnetic-field geometry to confine the ionizing 

electrons, resulting in an increase in electron density near the chamber 

wall. · The second design used the conventional divergent-magnetic-field 

configuration, but employed an anode geometry that was designed to 

increase the residence time of neutrals in the vicinity of the chamber 

wall. 

a. Magnetic Field Geometry 

The use of a single-cusp boundary-type magnetic field to 

achieve a uniform plasma-density distribution in bombardment-type dis

charge chambers has been investigated in past studies involving both 15-

and 30-cm-diameter thrusters.z-S,Z-l9 The objective of the present 

investigation was to evaluate the effects of plasma uniformity on screen

grid erosion, providing additional data for use in formulating a model 

of wearout lifetime. The Hughes 30-cm-diameter experimental thruster 

(EXP) has the capability of operating with either a divergent or a 
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boundary-type magnetic field configuration by simply reversing the 

polarity of the radial magnets located on the chamber backplate. This 

arrangement results in a highly versatile discharge chamber for use in 

ion-thruster research. However, it must be emphasized that no attempt 

has been made to optimize the chamber design, and, therefore, the per

formance of this thruster can be expected to fall short of the current 

J-series-thruster design goals, particularly in the single-cusp-magnetic

field configuration. 

Beam-current-density profiles were obtained for the EXP thruster 

operated with divergent and single-cusp magnetic-field geometries. 

These results, presented in Figure 2-30, show the dramatic improvement 

in plasma-density uniformity achievable with the single-cusp magnetic 

field geometry. The reduction in maximum plasma density in the central 
' region of the chamber suggests that the erosion rate in this region 

should be considerably lower than the corresponding wear rates of 

divergent-field geometries. This hypothesis was verified by conducting 

erosion-rate measurements using thin-film monitors mounted at the center

line and mid-radius of the screen grid. The·experimental thruster was 

operated with a single-cusp magnetic-field geometry using a 900-series 

optics design for a total accumulated test time of 20.7 hr at a 36-V 

discharge voltage and a 1.6-A beam current. The measured screen-grid 

erosion was 4.5 ± 1.5 nm/hr at both the center and mid-radius locations •. 

An extrapolation of these results to provide an estimate of the erosion 

rate expected at a 2-A beam current can be made by multiplying the mea

sured erosion rate by the ratio of beam currents. This results in a 

predicted value of 6 nm/hr. The actual value can be expected to be some

what higher than this estimate because the increased erosion rate caused 

by an increase in doubly charged ion density has not been accounted for 

in the extrapolation. There are two contributing factors to this effect: 

(1) a linear increase in plasma density with beam current, and (2) a 

second-order increase in doubly charged ion concentration with plasma 

density. These uncertainties are expected to have little, if any, impact 

on the observation that the erosion rates are the same at the centerline 

and mid-radius locations~ Based on this finding and the results in 
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Figure 2-30. Comparison of the beam current profile of the Hughes 30-cm 
experimental thruster operated with divergent and single-
cusp magnetic-field geometries. 79 



Table 2-3, it'appears that the screen-grid erosion on the centerline of 

the 30-cm thruster can be reduced by approximately a factor of two 

through the use of the single-cusp-magnetic-field discharge-chamber 

design. 

b. Anode Geometry 

The feasibility of increasing the residence time of neutrals 

in the vicinity of the chamber wall was investigated using an anode 

geometry that was designed to minimize the probability that atoms liberated 

from this surface would be directed toward the chamber axis. In arriving 

at the anode gometry, we assumed that the neutral flux from the surface 

of this electrode was diffuse due to surface irregularities and that 

the anode curvature could be neglected. Under these assumptions, the dis·~ 

tribution of particle flux r(8) from a small area of the conventional 

anode design is primarily normal to the surface, as indicated in 

Figure 2-3l(a). As a result, most atoms travel directly toward the 

axis of the chamber on being liberated. However, by suitable arrange

ment of the anode surface it should be possible to direct the particle 

flux toward the boundary, rather than the axis, resulting in an increase 

in the residence time of neutrals in the region close to the chamber wall. 

This idea is illustrated in Figure 2-3l(b). The analogy between the 

neutral particle flux and heat transfer from diffusely radiating sur

faces permits design criteria for the wavy~surface geometry to be estab

lished using geometric-shape-factor analysis. The geometry of 

Figure 2-3l(b) is equivalent to a configuration commonly encountered in 

radiant-heat-transfer calculations, consisting of two rectangles with 

one common edge and an included angle between the planes, as illustrated 

in Figure 2-32. Using this analogy, the design problem becomes one 

of choosing the quantities a and ¢ shown in Figure 2-32 such that the 

shape factor F12 describing the fraction of the flux leaving surface 1 

and arriving at surface 2 is a maximum. The shape factor is found to be 

a maximum for small values of the angle ¢ and the nondimensional height 

a/£. The shape factor lies in the range 0.70 S F12 S 0.74 for an included 
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(a) Plane-surface geometry 

(b) Wavy-surface geometry 

Figure 2-31. Geometry used in shape-factor analysis of wavy-surface 
geometries. 
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Figure 2-32. Geometry used in shape-factor analysis of wavy-surface 
anode design. 



angle of ¢ = 30° and a nondimensional height in the range 0.4 ~ a/~~ 

0.1. Based on these results and practical fabrication considerations, 

design values of¢= 30° and a/~ = 0.1 were chosen. An anode liner 

having these dimensions was fabricated from thin stainless-steel shim 

stock and installed in the Hughes experimental (divergent field) 

thruster. The photograph of the discharge chamber given in Figure 2-33 

illustrates the anode-liner installation. 

The beam-current-~ensity distributions for this thruster are compared 

in Figure 2-34 for operation with and without the anode liner. This com

parison indicates that the attempt to modify the neutral-density profile 

did not improve the plasma-density distribution. Although somewhat dis

appointing, these results are consistent with and support the concept of 

a critical magnetic-field line and the theory that changes made external 

to the plasma region defined by this boundary have essentially no effect 

on plasma-density distribution or chamber performance. 

D. MODEL OF EROSION PROCESSES 

The potential mission applications of the 30-cm thruster·would 

require a lifetime in excess of 10,000 hr. The lifetime design goal 

of the J-series thruster is 15,000 hr, and the projected lifetime (based 

on a 937-hr endurance test) is over 25,000 hr, assuming that useful life

time is determined by the maximum sputter-erosion rate of the screen 

electrode. A model for predicting the wearout lifetime of the LeRC/ 

Hughes 30-cm thruster would complement the existing thruster perform

ance model (given in Ref. 2-1) and the cathode and propellant-electrical

isolator models (presented in Sections 3 and 5). A model of wearout 

lifetime would also be useful in the design of extended-performance 

thrusters capable of high-thrust, long-life operation. Based on the 

principles of physical sputtering, we know a priori that the chamber 

wear rates are determined by the type of material; the energy, arrival 

rate, angle of incidence, and identity of the plasma ions; and the degree 

of surface contamination. Thus, we can at the outset identify the cri

tical thruster operating parameters as discharge voltage, beam current, 

and propellant utilization, since these variables specify the ion 
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Figure 2-33. Photograph of anode-liner installation in the Hughes 
experimental divergent-field thruster. 
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energies and arrival rates and the relative concentration of multiply 

charged plasma ions. Likewise, the most important chamber-desigh param

eters can be identified as (1) the magnetic-field geometry (which 

determines the plasma-density distribution), (2) the choice of materials 

(which determines the sputter yields), and (3) the open area of the 

screen and accelerator electrodes (which determines the ion and neutral 

densities required to satisfy the beam current and propellant-utiliza

tion requirements). Finally, to simulate the surface wear rates that will 

be encountered in space, the pressures in ground-based vacuum test cham

bers must be maintained at sufficiently low levels to prevent the forma

tion of surface compounds that sputter at rates different from those of 

the pure metals. 

By associating the fundamental factors that control physical sputter

ing with thruster design and operating parameters and with test-facility 

requirements, a qualitative model of thruster lifetime has been formulated 

that identifies all the variables involved. Although this model is use

ful in an academic sense, it does not provide the analytic description 

necessary to assess the relative importance of these variables in deter-

mining wearout lifetime. Such an analytic description is formulated 

below. 

1. Physical Sputtering 

The following assumptions were made in formulating a model of sur

face sputtering applicable to the discharge environment of the 30-cm 

thruster: 

• Sputt@ring occurs as a result of momentum transfer 
between the incoming ions and the surface atoms of 
the material 

• The ion pre-sheath velocities are negligible. There
fore, (1) the ion energies are determined by the 
product of their charge and the potential drop across 
the plasma sheath and (2) their angle of incidence 
is normal to the surface 



• The sputter yield of a given material is a function of 
ion energy only and is independent of the flux and 
charge of the incident ions 

e The gas pressure is sufficiently low to result in 
collisionless flow of the sputtered material away 
from the target 

• Impurity or residual-gas effects are negligible, and 
clean-metal sputter yields are valid (this assumption 
is modified in Section 2.D.4). 

Based on these assumptions, the sputtering rate W can be expressed in 

terms of the incident ion current density j and the surface sputtering 

yield S by the expression 

1 2: 
j.S(i<jl) 

w 1 p 
(2.16) qn i 

i 

where n is the density of the target material, q is the electronic charge, 

¢ is the plasma potential, and the summation is over all ionization 
p 

levels. Measurements of the fraction of multiply charged ions in the 

extracted beam of the 30-cm thruster have shown that the primary consti

tuents are singly and doubly charged ions. Therefore, Eq. 2.16 can be 

simplified and written as 

w 
__j__ 
2qn 

(2.17) 

where J is the ratio of the uoubly to singly charged ion current densi

ties, and j is their sum. Eq. 2.17 relates the sputter erosion rate 

of surfaces within the discharge chamber to the local values of the 

plasma properties <jl , j, and J under the assumptions stated earlier. 
p 

2. Qualitative Model of Chamber Erosion 

A qualitative model of wearout lifetime can be formulated by identi

fying the dependence of each term in Eq. 2.17 on the thruster design 

and operating parameters and on the materials used in fabricating criti

cal discharge-chamber components. The model formulated in this manner 
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is summarized in Table 2-8, which lists the variables appearing in the 

sputtering equation and identifies the dependence of each parameter on 

the thruster design, operational, and material characteristics. For 

example, Table 2-8 shows that the total current density J is determined 

by the thruster operating parameters of beam current and total accelerat

ing voltage (effective screen-grid transparency), and by the designs of 

the magnetic-field geometry and screen electrode. The sputter yield S, 

on theother hand, is specified by the discharge voltage (plasma potential) 

and choice of material. 

Table 2-8. Parameters Appearing in the Sputter-Yield Equation 
and Their Dependence on Thruster Operating, Design, and 

Material Characteristics 

Thruster Characteristic 
Parameter 

Operation Design Material 

j Beam current Screen open area --

Total accelerating Magnetic-field 
voltage geometry 

Beam current Magnetic-field 
geometry 

J 
Propellant utiliza-

Accel open area tion --

Discharge Chamber volume-
voltage to-area ratio 

s Discharge voltage Material 
property 

n Material 
property 



3. Lifetime Model 

The erosion of the screen electrode is of primary interest, since 

this component is thought to determine the lifetime of the 30-cm thruster. 

The erosion of other chamber surfaces (such as the baffle) may be com

parable, but these surfaces are amenable to surface treatments (such as 

cladding with low-sputter-yield materials). But the screen grid must 

be thin to achieve good chamber performance and to satisfy specific

impulse requirements. An expression for screen-grid wear rate W can be 
s 

obtained from Eq. 2.17 by introducing the ion-beam current density jb 

and the effective transparency of the screen electrode, ¢ : 
s 

w 
s 2qn¢ 

s· 
(2.18) 

Maximum screen-grid erosion occurs at the center of the electrode, since 

the ion current densities are at a maximum there. For screen-grid wear 

on centerline, Eq. 2.18 becomes 

w 
0 

p 0 p [
2S(¢ ) + J S(2¢ )] 

(2.19) 

where F is the beam flatness parameter, Jb is the beam current, ~ is the 

beam area, and the subscript o denotes values on centerline. Analytic 

expressions derived from measurements obtained with the 30-cm thruster of 

¢ and ¢ were presented earlier, but are repeated here for convenience: 
s p 

1.28 VD- 9.38 (2.20) 

0.781 + 0.084 VT- 0.062 Jb (2.21) 

Also, the sputter yield of many materials was shown to be given by the 

expression 

S(¢ ) 
p 

B¢ 
Ae p (2.-22) 
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where the constants A and Band the density n are presented in Table 2-7. 

For a given chamber design (which specifies the parameters A, B, F, and 

~ of Eqs. 2.19 and 2.22), the wear rate can be written as a function of 

the variables VD' Jb' J0 , and VT, by using the parametric relationships 

given by Eqs. 2.20, 2.21, and 2.22. The number of variables can be 

reduced to three* by introducing the perveance relationship: 

(2.23) 

where the measured perveance of the 30-cm thruster is 

p = 4.8 X 10-5 Av- 312 (2.24) 

Substituting the 30-cm thruster values of ~ = 573 cm2 and F = 0.5 into 

Eq. 2.19 results in the following equation for maximum wear rate in units 

of nm/hr: 

w 
0 

26 
3.92 X 10 Jb 

n¢ 
s 

(2.25) 

Defining the screen-grid lifetime L as the time required to erode 90% 

of the electrode thickness t results in the following relationship for 
s 

lifetime: 

L 
342,900 

w 
0 

where the 30-cm-thruster screen-electrode thickness of t 
s 

(0.015 in.) has been used. 

~~!. 

(2.26) 

0.38 mm 

The variable J 0 could be eliminated if sufficient parameter-variation 
data were available to express J 0 in terms of Vn and Jb• However, 
since Jo also depends on the propellant utilization efficiency nu, the 
number of independent vatiables is still three 



The validity of the lifetime model can be demonstrated by comparing 

calculated erosion rates with experimental results obtained from endur-
2-4 

ance tests of the 900- and J-series-equivalent thrusters. This com-

parison, presented in Table 2-9, shows that the calculated and measured 

values are in good agreement. 

The model of thruster lifetime formulated earlier can be used with 

confidence to calculate erosion rates as a function of the variables Jb' 

VD' and J 0 • Results of these calculations are presented for molybdenum 

in Figures 2-35 and 2-36, which illustrate the sensitivity of screen-grid 

lifetime to the indicated parameters. For example, Figure 2-35 shows 

that for a lifetime goal of 15,000 hr the maximum beam current can be 

increased from 1.5 A to 5 A by reducing the discharge voltage from 36 V 

to 28 V. The combined results of Figures 2-35 and 2-36 show that for a 

given beam current the lifetime can be increased by reducing either the 

discharge voltage or the doubly charged ion concentration, with discharge 

voltage being the most sensitive parameter. Figure 2-37 presents the 

results of lifetime calculations for molybdenum, niobium, and tantalum, 

and shows that substantial gains in lifetime may be possible if the 

screen electrode can be fabricated from niobium rather than molybdenum. 

The results given in Figure 2-37 show, for example, that, at a 2-A beam 

current, a niobium screen electrode should last nearly 10,000 hr longer 

than the presently used molybdenum electrode. 

Because of the inverse relationship between lifetime and beam cur

rent (which is evident in Eqs. 2.19 and 2.26), to achieve the goals for 

the extended-performance thruster of 15,000-hr lifetime at 6-A beam cur

rent will require reducing the discharge voltage and the ratio of doubly 

charged to singly charged ion densities; it may also require using 

materials that have sputter yields less than those of molybdenum. The 

screen-grid erosion model predicts a linear relationship between life

time and the beam flatness parameter, suggesting that advanced discharge 

chamber designs that employ single-cusp or multipole magnetic-field 

geometries will be necessary to achieve these lifetime and beam-current 

goals. 
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Table 2-9. Comparison of Calculated and Measured 
Screen-Grid Erosion Rates 

Screen-Grid Erosion 
Thruster Vn, VT, J~ 

Rate, nm/hr 
Series v kV 

Calculated Measured 

900 36 1.6 0~45 33.4 33.0 

J(equivalent) 32 1.4 0.26 13.6 12.9 

aFrom Table 2-3. 

6758 

4. Residual Gas Effects 

The presence of reactive residual gases can reduce the sputtering 

yield of metals (such as molybdenum) by forming a surface compound 

that has a lower sputter yield than the base metal. This phenomenon, 

which results fromthechemisorption of chemically active atoms and ions 

(such as N and N+) onto the surfaces of certain metals, has been 
. . 2-9 through 2-16 observed by several 1.nvest1.gators. The model presented 

below was formulated to describe similar effects of reactive residual 

gases on the erosion rate of the screen electrode of the 30-cm thruster. 

At very low residual-gas partial pressures, the arrival rate of 

impurity gas at a surface is small, and the sputtering rate is essentially 

that of the base metal. As the residual gas pressure is increased, the 

arrival rate of the impurity gas increases, and the surface coverage 

becomes significant. The flux of impurity gas contains chemically active 
+ + atoms, ions, and molecules such as N, N ,and N2 that are produced as a 

result of bombardment by energetic plasma electrons. Under these condi-

tions, a surface compound of the base metal (such as Mo 2N) can be formed 

by chemisorption. In the presence of the reactive residual gases, the 

sputtering rate W at a partial pressure p of reactive gas is related to 

the sputtering rates of the base metal Wb and the compound W by 
. 2-9 ase camp 

the express1.on: 
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f(p) 
W(p) - Wcomp 

w - w base c.omp 

1 (2. 2 7) 
n 

1 + (a/S)(p/p0 ) r(p) 

where f(p) is the normalized erosion rate, a(p/p )n is related to the 
0 2-20 sticking probability, p is the saturation pressure at which the 
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sputtering rate begins to rapidly decrease, n is the order of the reac-

tion, I'(p) is the incdent flux of reactive gas atoms, and S is the rate 

of evaporation of residual-gas atoms from a completely covered surface. 

The model of the effects of residual gas on surface erosion 
. . 2-9 2-16 

rates has been verified by other 1nvest1gators, ' who have shown a 

pressure-dependent sputtering rate that is described by the function f of 

Eq. 2.27 for nitrogen and oxygen gas infue presence of various metals 

such as molybdenum and titanium. The validity of the model in describ

ing the effects of facility residual gases on the erosion rate of the 

screen electrode of the 30-cm thruster was demonstrated by using Eq. 2.27 

to normalize the centerline erosion-rate measurements of Table 2-5 and 

then curve fitting these data to a function of the form: 

f(p) = (1 + apb)-l (2.28) 

where a and b are constants determined by the curve fit. These results 

are presented in Figure 2-38, which shows the normalized erosion rates 

and the function derived by fitting these data to Eq. 2-28. The agree

ment evident in Figure 2-38 and the similarity of the curve defined by 

the normalized sputtering-rate function and the line-intensity measure

ments of Figures 2-19 to 2-23 indicate that the model of residual gas 

effects presented earlier adequately describes the pressure-dependent 

sputtering observed in the 30-cm thruster. 
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SECTION 3 

CATHODE LIFETIME 

The objectives of this task were to identify the factors that 

limit hollow-cathode lifetime and to formulate a model for predicting 

cathode lifetime in terms of the principal life-limiting factors. The 

work described here builds on the results obtained under the preceding 

NASA contract (NAS 3-19703) and has succeeded in describing cathode life

time limits within the postulated model for cathode emission processes. 

The hollow-cathode emission process itself was not a subject of investi

gation under this study; however, a brief description of a conceptual 

model of the physical process has been included here to support the dis

cussion of the life-limiting factors. 

A. CONCEPTUAL MODEL OF HOLLOW-CATHODE PROCESSES 

The hollow-cathode configuration that was investigated is shown 

in Figure 3-1. This hollow-cathode is used as the electron source for 

the plasma-bridge neutralizer and the discharge chamber 9f the 30-cm 

mercury electron-bombardment ion thrusters under development at HRL and 

NASA LeRC. Hollow-cathode discharges have been a popular subject for 

investigation at several research centers and universities3-l through 3- 5 

for a number of years because of their unique operating characteristics, 

which defy precise analytic description. The two features that charac

terize this discharge and that are also essential to its application in 

ion-thruster technology are 

• Emission current is comparable to but slightly in excess 
of temperature-limited thermionic emission. 

• Very low discharge voltage, in some instances lower than 
the ionization potential of the gas used in the discharge. 

These two properties are considered to be closely coupled and critical 

to operation of the cathode for long lifetime and high current. In the 

configuration shown in Figure 3-1, mercury vapor flows through the 

cathode tube, limited by the cathode orifice. With the impregnated 
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porous-tungsten insert heated to about 1300°K, electrons are emitted from 

the insert surface into the plasma region of the hollow-cathode discharge 

and then collected at the keeper electrode (which is biased positive with 

respect to the cathode tube and orifice). After ignition, and under 

special mercury-vapor and cathode-emission conditions, discharge opera

tion has been maintained with an applied keeper voltage of only 2 V (in 

mercury vapor). This suggests that the ionization process is comparable 
3-6 3-7 to the one studied by Martin and Rowe and Salinger and Rowe at the 

University of Michigan. They have shown quantitative support for the 

theory that ionization takes place predominantly as a result of the 

collision of excited atoms in the discharges of gas-filled, thermionic

emitter diodes that operate at low voltage. They also show support for 

the theory that excitation of gas atoms occurs by collision with elec

trons from the high-energy tail of the Maxwellian electron distribution. 

Consequently, the applied voltage can be less than the ionization poten

tial and, in fact, even less than the lowest excitation potential. For 

operation using xenon and argon, Martin and Rowe also verified that there 

are no elevated potentials within the plasma region in discharges of this 

type and suggested that the same mode of operation would also be expected 

in mercury and alkali-plasma discharges. 

After examining the conditions required to sustain such a low

voltage discharge, we conclude that the prime requirements are for (1) a 

high density of thermionic electrons to furnish the high-energy 

Maxwellian tail and (2) an adequate gas density to ensure frequent 

excitation collisions. In the hollow-cathode configuration under consi

deration, the gas density is satisfied by the gas flow and constricting 

orifice. The thermionic emission must be provided by an adequate low

work-function surface area obtained from barium/bariurnroxide coverage 

of the porous-tungsten insert (also the cathode orifice and the cathode 

orifice plate). The basic assumptions in this investigation are that 

the cathode configuration has been developed to an extent that the con

ditions for achieving the low-voltage discharge mode described above 

have been met and that: 

(i) Ions that are accelerated through the internal plasma potentials 
to strike insert and orifice surfaces gain insufficient energy 
to erode these surfaces by ion sputtering 
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(ii) Barium is supplied to the insert surface from the pores of the 
porous tungsten and is lost only through evaporation 

(iii) The presence of propellant gas in the cathode interior does 
not influence the rate of barium evaporation 

(iv) The effect of the presence of barium vapor above the porous
tungsten·-insert surface on the evaporation rate is already 
accounted for in the measurement of barium loss-rate versus 
insert temperature performed under Contract NAS 3-19703 

(v) Barium lost from the porous-tungsten insert is no longer 
available to participate in the emission processes. 

The cathode operating conditions assumed above are only intended 

for examining macroscopic variations. For example, variations in plasma 

potentials, electron temperatures, neutral densities, etc. that do not 

violate condition (i) above are considered to be inconsequential unless 

barium depletion is grossly affected. 

B. LIFE-LIMITING FACTORS 

The one major requirement identified in the preceding discussion 

of hollow-cathode operation is that thermionic emission be maintained. 

This requirement has been assumed to be directly correlated with the 

barium coverage of the porous-tungsten, barium-aluminate-impregnated 

insert (reservoir for storing barium). The barium coverage is in turn 

a function of the insert temperature. Having determined the barium 

depletion rate during the preceding study (Contract NAS 3-19703), the 

task here was to determine those factors that affect the insert tem

perature under the anticipated operating conditions. The cathode 

operating parameters considered were 

• Total emission current 

• Cathode keeper current 

• Cathode propellant flow rate 

• Magnetic baffle current 

• Discharge voltage . 

104 



In addition to operating parameters, the procedures used in the care and 

handling of thrusters were considered as factors that could possibly 

impair the lifetime of the cathode. Some of the factors examined were 

• Cathode conditioning procedures 

• Intentional operation at excessive temperatures 

• Exposure to chemical vapors. 

Other factors recognized as contributing to life limitation caused by 

barium depletion are 

• The quantity of barium available within the insert 

• Contamination that could clog the pores of the porous
tungsten material. 

These factors were not investigated, primarily because they are not 

readily related to a single variable or set of parameters that can be 

quantified and controlled. Since the ultimate use of the information 

obtained was to formulate an analytic model for cathode lifetime, only 

the factors that could be measured quantitatively were explored in any 

depth. 

C. MEASUREHENT TECHNIQUE 

The major challenge under this task was to measure the temperature 

of the insert in an operating thruster in a way that did not appreciably 

change the cathode configuration or its thermal characteristics. Attach

ing thermocouples directly to the porous-tungsten insert was considered 

the most promising way of making the measurement, and specially fabri

cated encapsulated thermocouples were obtained. Figure 3-2(a) shows the 

normal porous-tungsten insert with its two electrical leads; Figure 3-2(b) 

shows the thermocouple-attachment configuration. The encapsulated thermo

couples have a tantalum sheath, which was used as the electrical lead 

for the insert. The thermocouples were attached to the porous-tungsten 

insert by brazing, using a minimal amount of molybdenum-nickel braze 

material to bond the thermocouple sheath to the insert only in the 

vicinity of the sensor. The braze was made by locally heating the 
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thermocouple sheath and the barium-aluminate impregnated insert using an 

electron-beam welder. This technique was selected after first consulting 

with the manufacturers of the porous-tungsten insert and the thermocouple 

for maintaining both the thermocouple and the insert in good working 

condition. 

The thermocouple itself was platinum/platinum-rhodium material 

with the sensor insulated from the sheath. The sensor has a 0.1-sec 

response time, which was more than adequate for the bridge circuit used 

to read temperatures. The thermocouples were installed on opposite .sides 

of the insert cylinder as shown in Figure 3-2(b), and the sensors were 

located 0.254 em from each end of the cylinder. The manner in which the 

thermocouple-instrumented insert assembly was installed in the thruster 

cathode is shown in Figure 3-3. Except for the flange that serves as 

the propellant inlet for the cathode, all of the cathode/cathode-pole

piece parts are "standard .• " Figure 3-4 shows a photograph of the assem

bly in place. 

D. EXPERIMENTAL RESULTS 

The experimental results are discussed here in decreasing order of 

significance (most significant fi~st). Figure 3-5 shows that the insert 

temperature measured at both thermocouple locations (shown in the sketch 

included in Figure 3-5) increases linearly with cathode emission. Fig

ure 3-6 shows that increasing the discharge voltage at a constant emis

sion current also increases both insert temperatures; however, the 

increase is not really appreciable with respect to the absolute accuracy 

of the temperature measurement (as indicated by the error bars shown in 

the figure). In fact, the variation shown is really a consequence of 

increasing the discharge power, and insert temperature is inversely 

proportional to discharge voltage when discharge power is held constant 

(by decreasing emission current), as illustrated by Figure 3-7. 

We had initially thought that cathode-keeper-discharge parameters 

would be very sensitive to insert temperature; however, as Figures 3-8 

and 3-9 show, the variation is not very significant (with respect to the 

absolute accuracy of the measurement). Cathode keeper voltage shows the 
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Figure 3-4. Photograph of cathode pole piece ~;.;rith instrumented 
cathode insert installed. 
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most variation, but the effect is probably more dependent on the 

combination of parameters that had to be varied to produce the changes 

in keeper voltage (cathode-keeper voltage cannot be varied independently 

if cathode-keeper current is held constant). 

The last set of thruster operating parameters available for varia

tion are magnetic-baffle current and cathode propellant flow. When dis

charge voltage and emission current are held constant, these parameters 

vary together, and the results are shown in Figure 3-10. Again, the 

variation is not appreciable, although insert temperature does appear to 

increase slightly with cathode propellant flow. Experiments were also 

performed to observe the effect on insert temperature of operating the 

thruster with and without ion-beam extraction. Keeping all other param~ 

eters as constant as possible, a l0°C increase in insert temperature was 

observed at both locations when the ion beam was extracted. Consequently, 

research and development efforts conducted in bell-jar configurations 

(where currents and voltages are kept similar to those representative of 

thruster operation) should provide results that are valid for thruster 

operation. 

Other parameters that were explored included the presence of con~ 

taminant gases in the vacuum chamber. Figure 3-11 shows that adding 

nitrogen and methane had little or no effect on the insert temperature. 

An attempt was also made to correlate thruster start-up with prior 

cathode treatment and/or the use of the current J-series thruster cath

ode conditioning cycle (shown in Figure 3-12) that was used to condition 

the insert initially and after subsequent exposure to air. Cathode 

start-up reliability could not be correlated with prior treatment of the 

vacuum chamber or the thruster, and the start-up sequence represented by 

the temperature history shown in Figure 3-13 (for the first 35 min) 

invariably produced cathode ignition and insert operating temperatures 

that were repeatable within the accuracy of the temperature measurement. 

Figure 3-13 also shows the effect of not turning off the cathode heater 

at the instant of keeper and discharge ignition. Although the insert 

temperatures exceed the "normal" temperature .for the JE = 6 A emission 

current set-point that is programmed for discharge ignition, the insert 

temperatures are not so excessive as to cause permanent damage. The 
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relatively long warm-up period of this start-up sequence is probably 

sufficient to out-gas any contamination that the thruster cathode would 

receive in normal handling; however, this observation should not be inter

preted as meaning that thruster cathodes are invulnerable to any form of 

contamination. The intent of our cathode environmental correlations was 

to establish that, with nominal care, the performance capability can be 

preserved (in contrast to determining what is required to destroy the 

cathode's emission capability). 

The experimental results presented here indicate that the primary 

factor that determines insert operating temperature is the cathode emis

sion current. The results presented were repeated at least once ~the 

insert was tested for over 50-hr total) and are considered representative 

of the LeRC/Hughes J-series-thruster cathode design. 

E. CATHODE LIFETIME MODEL 

In the preceding contract (NAS 3-19703), barium loss was measured 

as a function of temperature by heating the porous-tungsten inserts in 

a typical hollow-cathode configuration, but under ultra.,..high vacuum con

ditions. This measurement technique accounts for any retardation in 

barium loss that could result from the barium vapor pressure within the 

cathode, and also for view factors that reduce the probability that barium 

vapor is lost from the insert surface. An analytic expression for 

describing barium loss from porous-tungsten matrices has been validated 

by Brodie, Jenkins, and Trodden, 3- 8 and this form will be used here to 

develop a lifetime model for the cathode. Barium loss from a porous

tungsten insert varies with both time and temperature in accordance with 

the following relationships: 

ln dq 
dt = 

c2 
c --1 T 

dq -1/2 
~- = c3 t 
dt 

(3.1) 

(3. 2) 
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where q is the quantity of barium lost, T is temperature in °K, t is time 

of operation, and c1 , c2 , c3 are constants. If one assumes that q0 is 

the quantity of barium available in the impregnate at the beginning of 

life, then Eqs. 3.1 and 3.2 can be combined and integrated to obtain 

120 

C -a/T 1/2 
e t (3.3) 

where a and C are constants. By using the data obtained under Contract 

NAS 3-19703, a and C were determined to be 

(3.4) 

C = 400 hr-112 (3.5) 

In the preceding section, it was determined that the primary 

operating parameter (or variable) determining insert temperature is the 

cathode emission current JE. Fitting the available data like that shown 

in Figure 3-5 to obtain linear dependence results in 

(3.6) 

T2 = 1010 + 11.2 JE (3.7) 

for the range 5 A < JE < 35 A. Assuming that the higher temperature, T1 , 

controls end of life, Eqs. 3.3 and 3.6 can be used to relate the time t 

required to deplete the barium remaining in the porous-tungsten insert 

to the fraction q/q0 of the initial quantity as a function of the tempera

ture. This relationship is shown graphically in Figure 3-14. At best, 

q/q s 0.5 because at least one-half of the barium reacts with the porous-
a 

tungsten substrate to form products that do not participate in lowering 

the work function of the surface of the porous-tungsten insert. It is 

reasonable to assume that at least 50% of this remaining fraction of 
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barium is available and can reach the insert surface. Therefore? end~ 

of-life values corresponding to 0.25 S q/q s 0.5 should provide meaning~ 
0 

fulestimates of cathode lifetime as a function of cathode emission current. 

For J-series-thruster operating conditions, the calculated cathode life

time would be on the order of 55,000 hr. 

It would be desirable to have an empirical value for q/q that . 0 

corresponds to diminished cathode performance and therefore the end of 

useful life. An initial study of ways to achieve artificial or accel~ 

erated aging led to the conclusion that any such attempt could not be 

made representative of normal operation and there would be a high proba

bility of forming compounds that diffuse more slowly or not at all. Con

sequently, lifetime might appear to be far shorter than it would be in 

normal operation. The observation that insert temperature is essentially 

the same with or without ion-beam extraction will allow the long-duration 

"bell jar" tests being performed at NASA LeRC to be used for determining 

a value of q/q (from Figure 3-14) that represents the end of useful 
0 

life for thruster hollow cathodes. 

F. COMPARISON OF CALCULATED AND MEASURED EMISSION CURRENTS 

The total current emitted fr,om the insert can be calculated from · 

the data collected during this study. Since there is a temperature drop 

along the insert; the current density must be calculated and the total 

current is obtained by integrating over the insert surface. The theo

retical current density jth is written 

J• = A T exp -~ . 2 ( cp) 
th o kT 

2 A/em (3.8) 

where A is 120 A/cm2 deg2 ; k is the Boltzmann constant; e is the elec
o 

tronic charge; T is the emitter temperature determined by 

T = 1277 - 55 X ' °K (3.9) 
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where x is the distance from the orif1ce plane in em; and ~ is determined 
by3-9 

~ = 1.38 + 3.9 X 10-4 T 
' eV (3.10) 

Summing the current computed using Eqs. 3.8 through 3.10 yields a total 

·emitted current Jth = 11.1 A. The total experimentally observed cathode 

emission is Jex = 13 A for the temperature data used (the sum JE = ~2 A 

of emission current plus JCK = 1 A of keeper current), and the difference 

is readily explainable in terms of positive-ion current ~r by assuming 

field enhancement. 3- 3 

The work performed under this task provides a correlation between 

prior cathode investigations reported in the literature and ongoing work. 

The data obtained should provide confidence in the applicability of 

Refs. 3-1, 3-2, and 3-5 to the hollow-cathode configuration used in the 

LeRC/Hughes J-series 30-cm thrusters. The only remaining questions 

relate to changes in design for scaling to higher or lower emission cur

rents or operation with gases other than mercury vapor. 
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SECTION 4 

ACCELERATOR GRID SYSTEM TECHNOLOGY 

The basic principles that govern acceleration and focusing of ions 

to form a well~collimated beam are relatively well understood and have 

been documented both analytically and experimentally by several investi

gators in Refs. 4-1 through 4-16. The goal of this task was to use the 

data available from these analyses and experiments to formulate a descrip

tive model for the LeRC/Hughes 30-cm mercury ion thruster hardware 

that would be useful for predicting the capabilities and limitations of 

a "state-of-the-art" thruster. Since the state of the art changed some

what (the thruster design was advanced from the 900-series to the J-series 

design) during the study, it was necessary to redesign the accelerator 

grid assembly to achieve the performance goals. As a consquence, a 

better understanding of the support structure for the accelerator grid 

system needs to be developed for describing the experimental observa

tions. Hence, the work performed under this task succeeded only in 

completing the groundwork for analyzing ion optics assembly capabilities, 

and the descriptive model is only partially complete. The approach and 

results. obtained are. described in this section. 

A. DESIGN VARIABLES AND DESCRIPTIVE MODELS 

State-of-the-art 30-cm mercury ion thrusters employ two electrodes 

to extract, accelerate, and focus the ion beam. These acceleration 

electrodes have thousands of apertures configured as shown in 

Figure 4-1. In addition to ape~ture design specifications, the 30-cm 

thruster accelerator electrodes are curved so that the deformation 

ca~sed by thermal stress occurs in a predictable way. The design vari

ables used to specify electrode curvature are shown in Figure 4-2. The 

primary goal .of this task was to use these design variables to formulate 

a descriptive model for predicting the following performance 

characteristics: 
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Figure 4-1. Definition of design variables for ion
optics apertures. 



h - DISH DEPTH 
R - GRID RADIUS 
p - RADIUS OF CURVATURE 

8478-16R1 

Figure 4-2. Definition of design variables 
for accelerator-electrode 
curvature. 
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• Perveance 

• Screen grid lifetime 

e Thrust loss 

e Backstreaming limit 

e Propellant utilization efficiency 

• Discharge chamber performance 

• Accel grid lifetime 

e High-energy, high-angle ions 

• Thermal expansion of grids 

e Beamlet divergence compensation. 

Once these performance characteristics are related quantitatively to 

design and operating variables, the limits for increasing thrust and 

power density can be readily assessed. 

We began the study by compiling the data contained in the 16 refer

ences cited previously for the formulation of qualitative behavior. 

Table 4-1 summarizes the comparisons that were made for establishing 

trends, and the analyticalexpressionsthat can be used for determining 

quantitative evaluations. It should be noted that performance charac

teristics are both implicit and explicit functions of design and opera

tional variables. The arrows shown in the table identify whether there 

is a direct (arrow pointing up) or an inverse (arrow pointing down) 

relationship between a given performance characteristic and a design 

variable. For example, an increase in accel aperture diameter d would 
a 

be expected to (1) increase perveance, (2) decrease screen grid 

lifetime, (3) decrease the thrust loss factor a and increase the thrust 

loss factor Ft' (4) increase the magnitude of the accel voltage 

required to prevent backstreaming, (5) decrease propellant utilization 

efficiency, and (6) increase the discharge power required to produce 

a given beam current at a constant p~opellant-utilization efficiency. 

Although Table 4-1 is essentially self-explanatory, a few comments are 

appropriate with regard to each characteristic. 



Table 4-1. Ion-Optics Performance Characteristics and Their 
Relationships to Electrode and Thruster Design Variables 

Performance Design Variables 
Analytical Expression d 

Character is tics 
d t ¢a d t ¢s £g F a a s s 

t" •• •• •• jmaxF¢s'\ d2 
Perveance t p . --;rrr- " B 

t ~ 

.b .b 
ot8 ep F¢8 '\ 1 + J: 

Screen grid t t t t SGL . 
Jb s+ + i J:;:+s++ lifetime (SGL) 

Thrust loss 

.b .b . 1 + i J:;:'" 
1. a t a 

1 + J:+ 

f 2nrj (r)cos e (r)dr 
tb tb tc 

F t . 0 2. F t 
Jb 

ta ,a <a Jv.J 
vb 

Backs creaming . 
[ te limit 
2n~ exp (t /d >] - 1 a a 

,a .} a,b t +a . 1 Propellant nu vo¢\a utilization 
1 + 

4v¢8 V/A 

ta ta 1- a . C1A 
Discharge • 'i ¢s'\ losses 

3/:l Fe2v0 p r 2nd2 (a - d ) 2t nu a a a a Accelerator t • t AGL . 64- T7 (2£e + ta) 1 - nu grid lifetime 0 ce b (AGL) 

a 4-9 Results of Rawlin 

bResults of Vahrenkamp 4- 7 

cResults of Aston 4-3 

dDefinitions of symbols not previously used: 

j . current density vb . beam val tage 

Jb . beam current 
v . accelerator voltage 

a 
0 - fractional thickness of screen grid 

v . neutral speed 
0 

r . radial coordinate 
v . collision frequency 

R . thruster radius 
V/A . volume-to-area ratio of primary electron 

e . beamlet divergence angle region 

(discharge only) ci . plasma ion production cost 
nu . propellant utilization 

A . area of primary electron region e . electronic charge 

Ab . oren of ion beam envelope p . atom density of electrode 

s+ F . beam flatness parameter . sputtering coefficient for singly 
charged ions J++ . ratio of J* /J+ on axis 

+ 
s++ . sputtering coefficient for doubly d2 

charged ions l; . £2 + 
B 

g 4 
cr 

ce = charge exchange cross section 
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Pervean~e - The analytic expression given for perveance in 

Table 4-1 was formulated for analyzing existing data with the goal of 

developing an expression that relates Q, and t to observed perveance. 
g s 

In principle, it should be possible to formulate an expression for the 

accelerator system perveance P in terms of the single aperture design 

parameters as follows: 

p (4.1) 

where n is the number of apertures, Ph is the perveance per hole, and F 

is the beam flatness parameter (F is really a discharge plasma property). 
4-3 

Aston expresses Ph as 

(4.2) 

where E is the permittivity of free space, e is the electronic charge, 
0 

m is the mass of the ion beam accelerated, and Q, is the effective accel-

eration length. 
4-10 e 

Kaufman defined Q, in terms of Q, 
e g 

and d 
s 

as 

(4. 3) 

and relatively good agreement between theory and experiment was obtained 

in the experimenta..l ion optics investigations described in Refs. 4-1, 

4-2, and 4-3. Recent perveance me.1.surements performed on the LeRC/ 

Hughes J-series 30-cm thruster under NASA contracts NAS 3-21052 and 

NAS 3-21357 produced data that cannot be correlated using Eqs. 4.1 
~ 

and 4.2 unless Q, is made dependent on thruster operating parameters. 
e 

The interelectrode spacing Q, was identified as varying with the thrus
g 

ter temperature, and no further attempts were made to refine the 

perveance model. 
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Screen-Grid Lifetime - The expression formulated for assessing screen

grid lifetime was generalized to define the ion sputtering erosion in 

terms of the electrode-assembly design variables. Since the screen grid 

is also a boundary of the discharge chamber, modeling of screen-grid wear 

rate and the factors that affect wear ratewere discussed in Section 2. 

Thrust Loss - Actual thrust produced by an ion thruster is less than 

the value that is computed on the basis of measured ion beam current and 

net accelerating voltage because the ion beam contains doubly charged 

ions and also because ion trajectories have radial velocity components. 

The thrust loss factor a provides the correction for calculated thrust 

to account for doubly charged ions, and Ft provides the correction for 

non-axial ion-velocity components. The design of the ion accelerator 

assembly can only influence a through its effects on the percentage of 

charged and neutral propellant, which causes changes in the relative 

rate of doubly charged ion production. The thrust factor F is a direct 
t 

measure of the focusing capability of the aperture design. 

veance, ~ has a first-order effect on F • 
g t 

Like per-

Backstreaming Limit - The electrons that are emitted into the 

extracted ion beam to establish space-charge neutrality will "backstream" 

through the accelerator system electrodes unless the negative voltage 

applied to the accelerator grid is adequate to establish a barrier. 

The voltage required to prevent backstreaming is called the backstream

ing limit,. and the mathematical expression shown in Table 4-1 effectively 

predicts the limit. Figure 4-3 shows the correlation with experimental 

measurements. Note that by calculating ~ to include the effect of a 
e 

change in ~ that accounts for thermal deformation, the corrrelation is 
g 

significantly improved. 

· Propellant Utilization Efficiency - The expression for propellant 

utilization efficiency has been relatively well verified and the only 

uncertainty is in specifying the volume-to-area ratio V/A for the primary 

electron region. 
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Discharge Losses - The energy required to ionize the neutral 

propellant in the discharge chamber has been termed the discharge loss, 

E1 • The only way in which the ion accelerator . grid assembly can affect 

these losses is through the effective screen-grid transmission ¢ . Since 
s 

every ion that is neutralized on the screen grid and returned to the 

discharge chamber increases the discharge loss, ¢ should be as high 
s 

as possible consistent with structural integrity. 

Accelerator Grid Lifetime - The expression shown for accelerator 

grid lifetime was derived on the basis that the total production of 

charge-exchange ions sputter-erodes the web area of the accelerator 

grid. End of life was defined, somewhat arbitrarily, as the time 

required to erode away a volume that has a base of triangular cross 

section as shown in Figure 4-4 and a height equal to the thickness of 

the grid. Although the integrity of the accelerator grid would not be 

threatened by the loss of this amount of material, the increase in 

neutral propellant loss would probably change thruster performance 

significantly. 

We did not study the performance characteristics associated with 

the high-energy ions ejected from the thruster at large angles with 

respect to the thrust axis and with beamlet divergence compensation. 

Thermal expansion of the accelerator grids and their supporting 

assembly became the primary subject of the investigation because a 

meaningful description of the accelerator-grid performance character

istics could not be formulated without accounting for thermally driven 

dimensional changes, particularly in ~ • 
g 

B. THERMAL/STRUCTURAL ANALYSIS 

Initial test results obtained with the LeRC/Hughes J-series 

thruster under NASA Contract NAS 3-21357 indicated that a dimensional 

stability problem existed in the ion-accelerator grid system sub

assembly. The effects of differential expansion of the titanium grid 

mounting and the molybdenum grids were analyzed at NASA LeRC using a 

structural analysis computer code known as FEATAG~ This analysis 

showed that the grids were indeed deformed by the thermal expansion of 
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the titanium mount and that the displacement could explain the observed 

performance (at least qualitatively). Consequently, the two prerequi

sites to further refinement of the ion accelerator grid performance 

model were (1) measurement of the temperature dependence of the grids 

and supporting structure as a function of operating conditions and 

(2) the computation of the deformation based on the temperature depend

ence. Because of the urgency of accurately assessing the stability of 

the ion accelerator grid assembly, parallel, semi-independent investi

gations were conducted at HRL and NASA LeRC so that results could be 

compared. 

1. Temperature Measurements 

Thermocouples were installed on the grids of a 30-cm thruster 

(representative of the J-series design), and temperatures were measured as 

a function of discharge current (without extracting an ion beam). 

Figure 4-5 shows the temperatures measured at the screen and accel grid 

locations as designated in the included sketch. The temperature mea

surements made at NASA LeRC and HRL are in good agreement at location 3; 

however, the screen grid temperature T1 is lower in the center for the 

NASA LeRC center data, and the accel grid temperatures are higher. The 

only possible explanation is that the thruster used for the HRL experi

ments does not have exactly the same cathode pole-piece geometry as 

the J-series and may therefore have a somewhat different discharge 

plasma distribution. 

The HRL thruster was reconfigured in a single-cusp magnetic field 

geometry to explore the effect of plasma uniformity. Temperature was 

measured and the results are presented in Figure 4-6. The beam flatness 

parameter F was measured to be about 0.8 for the single-cusp magnetic 

field configuration, as compared to about 0.4 for the divergent field con-

figuration. Consequently, to analyze accelerator grid system limitations, 

the single-cusp discharge chamber was operated to a maximum discharge cur

r.ent of JD = 32 A (corresponding to a 6-A beam current) to obtain 
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temperature dependence. To illustrate that the grids are essentially 

radiatively cooled, the grid temperatures are shown in Figure 4-7 as a 

function of the fourth-root of the discharge power. It is apparent that 

using a single-cusp discharge-chamber geometry should permit operating 

the accelerator-grid system at significantly higher beam current (dis

charge power) levels before thermal deformations limit performance. 

2. Finite Element Stress Analysis of the Ion Accelerator Grid System 

The initial results obtained at NASA LeRC with the FEATAG computer 

modeling of the accelerator grid system showed significant variation of 

the interelectrode spacing when differences in the temperatures of the 

screen and accel grids were assumed. To explore this effect, the 

FEATAG computer code was obtained and checked out on the HRL computer. 

Initial attempts at reproducing a test case resulted in substantially 

different values for displacements between results computed at HRL and 

at NASA LeRC. Errors were eventually traced to differences in the 

round-off error in library subroutines between the NASA LeRC UNIVAC 

and the HRL DEC-10 computers. Since the intrinsic precision of the two 

computers is identical, the computational techniques used in FEATAG 

were suspected of being unsuited for the analysis of the accelerator 

grid system as required here. 

To explore this possibility, we sought help from several struc

tural analysts at other Hughes facilities; they recommended a vendor, 

who was employed to independently check out the FEATAG code and com

pare it with other stress-analysis codes. The end result was that a com

parison of results obtained with computer codes known as EASE 2 (Elastic 

Analysis for Structural Engineering) and ANSYS 2 produced nearly identi

cal grid displacements for the test case. Comparing these results with 

those obtained using FEATAG disclosed that grid displacements were not 

in good agreement and were even in the opposite direction for some of the 

analysis-model nodes. The inaccuracy of the FEATAG code for analyzing 

this particular structural problem is thought to be associated with the 
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technique employed for matrix reduction. Software was purchased for 

performing the computations using EASE 2. 

A cross section of the J-series 30-cm thruster ion accelerator grid 

assembly is shown in Figure 4-3. Both the screen and accel grids (molyb

denum) are riveted to molybdenum stiffening rings. The grids are mounted 

to the titanium support ring at 12 places (note that the support ring 

is slotted at the point where the screen-grid stiffening ring is 

attached). Th~ structure was modeled for the EASE 2 stress analysis 

by a 30° section, as shown in Figures 4-9, 4-10, and 4-11. The grids 

were modeled with shellelements, and the stiffening rings and mounting 

ring were modeled with solid elements. The insulator and spacer were 

modeled with pipe elements. The grids were attached to the stiffening 

rings with rigid beams; however, the screen-grid stiffening ring was 

attached to the mounting ring with rigid beams only at the shoulder 

(2.4° section of the area). The radial cuts in the mounting ring next 

to the shoulder were also accounted for in the model. 

Symmetry boundary conditions were defined at the cut planes of the 

30° section. The center nodes of the accel and screen grid were allowed 

to move only in the axial direction, and the bottom of the mounting 

ring was placed on rollers. 

Temperatures were specified at 10 grid locations, as shown in 

Figure4-12, using temperature data measured at NASA LeRC with thruster 

hardware representative of the J-series design. The computational model 

interpolates temperature for locations between the points specified. 

The initial objective of the computational analysis was to deter

mine the sensitivity of the structural deformation to the elastic con

stants that were used to represent the perforated grid material. 

Table 4-2 lists the values of Young's modulus and Poisson's ratio that 

were used in computing the cases considered. Case 1 modifies the solid 

material constants in accordance with a technique derived by O'Donnel 
4-17 

and Longer. . For Case 2, the constants were adjusted for ligament 

area ratios. Case 3 made use of the constants for solid sheets (with

out perforation). The centerline displacements of the grids for all the 
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Figure 4-9. 
30° sectional model of ion-acceler
ator grid assembly for EASE 2 analysis . 
(top view). 

8996-9 
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Figure 4-11. 30° sectional model of 
ion-accelerator grid 
assembly for EASE 2 
analysis (isometric 
view). 

8996-10 
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cases considered are listed in Table 4-3. It is apparent that the values 

of the elastic constants have very little effect on the displacements. 

Figure 4-13 shows the structural deformation that occurrred in Case 1 

(magnified by a factor of 50). Although it appears that the screen grid 

and accel grid have crossed over, this is a mis-representation caused by 

the magnification. The feature of interest here is the bending of the 

accel-grid stiffening ring. The computations for Cases 2 and 3 showed 

no change in this bending; in Case 4, the model was changed to assign 

uniform temperatures of 180°C and 239°C to the accel and screen grid. 

siffening rings (respectively). Again, very little change was noted in 

the grid deflections or in the structural deformation. 

Table 4-2. Elastic Constants Used to Describe Screen and Accel Grids 

Case 

1 

2 

3 

4 

5 

148 

Accel Grid Screen Grid 

Young's Modulus Poisson's Ratio Young's Modulus Poisson's 
X 106 X 106 

17.9 0.34 1.9 

26.7 0.32 0.3 

47 0.32 47 

47 0.32 47 

47 0.32 47 

Table 4-3. Deflections of Screen and Accel Grids 
on Centerline for the Five Cases Considered 

Case 
Screen, Accel, Differential 

ern (mils) ern (mils) ern (mils) 

1 0.0343 (13.5) 0.0028 (1.1) 0.0312 (12.3) 

2 0.0322 (12. 7) 0.0028 (1.1) 0.0292 (11.5) 

3 0.0327 (12.9) 0.0028. (1.1) 0.0297 (11. 7) 

4 0.0348 (13.7) 0.0030 (1. 2) 0.0318 (12.5) 

5 0.0345 (13. 6) 0.0264 (10.4) 0.0078 (3.1) 

6758 

0.92 

0.32 

0.32 

0.32 

0.32 

Ratio 

6758 
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We concluded that the deformation of the stiffening ring is a 

consequence of the bending moment that occurs because of the rigid accel 

grid support. For Case 5, the pipe elements used to model the acceler

ator grid spacer were replaced by beam elements that carry only axial 

loads. The uniform temperatures used for the accel and screen grid 

stiffening rings were also retained for Case 5. Figure 4-14 shows that 

the resultant deformation does not bend the 'accel stiffening ring, and 

Table 4-3 shows that the relative displacement of the screen and accel 

grids on centerline is significantly reduced. The results for Case 5· 

strongly recommend the incorporation of a beam-type accel grid spacer 

that has very little stiffness in the radial direction. 

The time and resources available to this study task had been con

sumed at the completion of the computations described above. Having the 

model for describing the variation in i with operating conditions, it 
g 

would now be possible to formulate descriptive models for perveance, 

backstreaming limit, beam divergence, etc. that could be used to corre

late existing data with theoretical expressions. Although refinement of 

the descriptive models would be verified for analyzing J-series thruster 

capabilities, Figure 4-14 clearly shows that performance would be sig

nificantly improved by modifying the support elements. Consequently, 

the formulation of models for the purpose of predicting the ultimate 

limitations of a 30-cm thruster would be more meaningful if th~ design 

of the hardware were changed as indicated. 
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SECTION 5 

ISOLATOR DEVELOPMENT 

This task, like the cathode lifetime task, builds on the work 

begun under another NASA program (Contract NAS 3-20395). The high

voltage propellant-flow isolator of interest in this study is based on 

the approach of dividing the applied voltage across electrically isolated 

"chambers" in the flow channel so that the voltage drop across any given 

chamber is below the minimum Paschen-breakdown-voltage. Under the earlier 

NASA program, we designed an isolator for operation at voltages up to 

6 kV and propellant flow rates equivalent to 4 A. An isolator meeting 

these requirements was fabricated and tested; however, excessive leakage 

current was observed during an extended test of the isolator. The rea

sons for the excessive current could not be explored within the scope of 

that study. Hence the goals for the present study task were to determine 

those reasons and verify the isolator performance model by demonstrating 

ultimate breakdown voltage and voltage division across the isolator. An 

additional goal was to extend isolator performance capability to 10-kV 

rated voltage and 10-A equivalent propellant flow. 

A. HIGH-VOLTAGE ISOLATOR DESIGN 

Although the design of this isolator has been !.described previously ,s-l 

a brief description is given here to facilitate discussing the results. 

The isolator design used in the LeRC/Hughes 30-cm J-series thruster has 

the vapor flow channel divided into seven chambers. With 1500 V applied, 

the voltage across any chamber isabout 215 V, which is less than the 

Paschen minimum (-250 V) for mercury (assuming that the voltage divides 

evenly across each chamber). By increasing the number of chambers to 

28, as shown in Figure 5-l, the isolator-voltage rating scales to 

6000 V. To keep the high-voltage isolator interchangeable with the 

J-series design, the isolator envelope and alumina body dimensions were 

maintained exactly the same as the design used in 'the LeRC/Hughes 

30-cm J-series thruster. Consequently, the internal alumina spacer had 

to be changed to the design shown in Figure 5-2 to accomplish the volt-

age scaling. 155 
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Figure 5-l. High-voltage propellant electrical isolator using multi
chamber design concept (internal scaling). 
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Figure 5-2. Alumina spacer for the 28-chamber isolator. 
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B. DESCRIPTION OF ISOLATOR TEST AND RESULTS 

Isolator-leakage and breakdown-voltage tests were performed with 

circuitry like that shown in Figure 5-3, and initial testing was per

formed to determine the cause of the leakage current behavior shown in 

Figure 5-4 (from Ref. 5-l). The same isolator that was tested under 

contract NAS 3-20395 was re-evaluated by measuring leakage current as a 

function of applied voltage. Figure 5-5 shows that the leakage current 

was still of the same order of magnitude although somewhat lower than in 

the earlier tests. We thought at the time that the excessive leakage cur

rent (5 to 10 nA was typical) was caused by contamination of the outer 

surface of the isolator ceramic from sources originating within the vacuum 
5-2 test facility, similar to that observed and reported during the develop-

ment of isolator technology for the LeRC/Hughes 30-cm thrusters. The pro

tective shields were removed from the isolator, and, although no discolor

ing of the ceramic isolator body was evident, the isolator was cleaned by 

grit blasting. After this surface cleaning, the isolator was reinstalled 

in the test facility, and the voltage/current tests were repeated. The 

results were identical to those shown (for this program) in Figure 5-5. 

After ensuring that no other source of leakage or circuit errors could 

be responsible for the leakage current observed, the isolator was dis

assembled, and the ceramic spacers were found to be contaminated. 

Several potential sources of contamination were identified, but 

each was ultimately rejected and, as a result, no conclusive evidence 

could be found to verify the source of contamination. Several types 

of chemical and spectroscopic analyses of the contaminated ceramic spacers 

revealed that the major percentage of foreign constituents was carbon. A 

carbon coating would readily explain the resistive characteristic of the 

current leakage shown in Figure 5-5, and the change in resistance with 

mercury flow is probably a consequence of the increased vaporizer tem

perature (which also increases the isolator temperature). 
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Figure 5-3. Schematic of high-voltage propellant-iso
lator test apparatus. 
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Figure 5-4. Isolator leakage current versus elapsed test time for 
the multisection isolator design shown in Figure 5-l. 
(This isolator was later found to be contaminated.) 
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In checking assembly procedures and assembly documentation? nothing 

was found to indicate any abnormalities during fabrication of the isola~ 

tor, and samples of the ceramic spacer were cleaned by different methods 

and then analyzed to determine whether any alteration of the cleaning 

procedure might result in excessive carbon. This comparison of cleaning 

proceduresshowed no measurable change in the purity of the samples. 

Since (1) the alumina used in the spacers is as pure as any alumina 

available commercially including the.type used for the isolator body 

(AL300) and (2) isolator fabrication and cleaning procedures as documented 

for the LeRC/Hughes 30-cm J-series thruster design are satisfactory for 

removing contamination from ceramic surfaces, we concluded that the 

observed contamination of the high-voltage isolator was an anomalous 

event. It may be necessary to formulate more precise specifications on 

storage of isolator parts and/or finished isolators to prevent anomalous 

contamination from recurring. 

To verify that the spacer contamination was an anomalous event, 

the isolator body was cleaned and fitted with a new set of spacers, which 

had been cleaned in accordance with the documented fabrication procedures 

and then hydrogen fired to remove any possible residue of cleaning solu

tions. The rebuilt isolator was then placed in test with mercury flow

ing at an equivalent rate of 100 rnA (corresponding to a vaporizer 

temperature of 340°C and an applied voltage of 4 kV). This test was con

tinued for a total of 1648 hr with no increase in leakage current. (The 

leakage current fluctuated more or less randomly between 5 nA and 10 nA.) 

These test results demonstrate that the high-voltage design meets the 

objectives for the int~nded operating conditions. 

The next parameter investigated was the breakdown voltage of the 

isolator. The test circuit was modified by inserting a series current

limiting resistor (100 MQ) to prevent damage to either the isolator or 

the power supply, and the applied voltage was increased until an increase 

in leakage current was observed (as shown in Figure 5-6). The isolator 

was tested first with mercury propellant (100 rnA equivalent flow) and 

then with argon (100- to 300-mA equivalent flow) using the vaporizer as a 

flow-limiting impedance. The current rise, or breakdown, repeatedly was 

in the 8.3 kV to 8.6 kV range for both gases. This "breakdown" was not 
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dependent on isolator temperature or propellant flow. The systematic 

check of the wiring, vacuum feedthroughs, etc. that we conducted led to 

the conclusion that the breakdown must occur between the isolator shields. 

The isolator shields were removed, and the isolator was tested with argon 

propellant to 12 kV without breakdown (no current rise). Higher voltages 

were not applied because of test-facility limitations (vacuum feed

throughs, etc.). We concluded that the high-voltage-breakdown limit of 

the isolator itself is well above the design value but that the isolator 

shields are designed for a 2-kV applied voltage and can ·only be used up 

to about 8 kV. For 10-kV operation, a redesign of the shields would be 

necessary. 

The way in which the applied voltage is divided across the seven 

chambers was also investigated under this program. We constructed a 

special isolator (shown in a schematic in Figure 5-7 and in a photograph 

in Figure 5-8) that enabled us to measure the potential of each of the 

screens that form the chamber boundaries. Initially, the isolator was 

designed to measure the potential of every fourth screen in the 

28-chamber design. When the purity of the thin ceramic spacers was 

in doubt, the design was modified to have only seven spacers, and hence 

the design is directly representative of the LeRC/Hughes J-series 

thruster. 

The first technical challenge presented in obtaining the voltage

division measurement was in fabricating an isolator having electrical 

connections that contact the wire mesh under the constraint that all 

possibilities for contaminating the ceramic insulator had to be avoided. 

The next challenge was to find a measurement technique that did not 

influence the voltage division. Figure 5-9 shows the measurement cir

cuit with the isolator represented by an equivalent resistive network. 

Since the value of each resistor in this network is estimated to be 

-1011 n, the input impedance of the measuring circuit must be extremely 

high (-1014 n). An electrostatic voltmeter was selected for this mea

surement because it couples capacitively to the point of measurement,and 

hence no steady-state current is drawn and the input impedance is essen

tially infinite. 
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Figure 5-7. Schematic of special isolator used for measuring voltage 
division across the isolator chambers. 

165 



166 

Ml2823 

Figure 5-8. Photograph of the demountable iso
lator with electrical connections 
for each wire mesh. 
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The initial voltage measurements obtained with this circuit were 

somewhat difficult to understand. The voltage measured at any given 

test point was more dependent on the technique for connecting the elec

trostatic voltmeter probe adapter to the point of measurement than on 

the propellant-flow or isolator-temperature conditions. By discharging 

the effective probe-adapter capacity and grounding all the test points, 

uniform initial conditions were established for measurement at each test 

point. The probe adapter was then connected to the test point of 

interest, and the voltage was applied across the isolator. The voltage 

drops across the isolator chambers were then determined by measuring 

the voltage from each test point to the isolator ground to obtain a 

characteristic such as the one shown in Figure 5-10. Even with this 

technique, the voltage division was still independent of propellant 

flow, isolator temperature, and isolator polarity (that is, the isolator 

could be connected in the circuit with the vaporizer end positive and 

the other end grounded without changing the voltage division). This 

eventually led to identifying an equivalent circuit for the isolator, 

as shown in Figure 5-11. Analyzing the data shown in Figure 5-10 using 

this circuit diagram yields 

(5.1) 

(5.2 

Calculating the voltage of the intermediate measurement points 

based on this equivalent circuit produced the theoretical curve shown 

in Figure 5-10, which is in good agreement with the intermediate experi

mental points. Consequently, we concluded, initially at least, that the 

internal voltage division is determined by capacitive, rather than 

resistive, behavior. The question remains as to how representative this 

result is for long-term steady-state isolator operation since the 

resistance of internal surfaces may be reduced by some form of contami

nation. An attempt to model isolator characteristics to account for 

modified resistance would be extremely speculative without more 
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information about the type of surface modification that can be expected 

under "typical" conditions. This measurement also leads to the conclu

sion that the observed leakage current probably flows on the external 

surface of the isolator and that the observed propellant flow effect 

on leakage current (below breakdown) is more accurately a temperature 

effect. 

C. ISOLATOR PERFORMANCE MODEL 

In the preceding section, the design of the high-voltage isolator 

and the measured performance characteristics were discussed in detail. 

A model for design and performance of a propellant electrical isolator 

has been formulated on the basis of these results and is discussed below. 

The model is based on two major assumptions: 

• Isolator voltage rating is determined by the Paschen break
down minimum (modified by geometry effects). 

Voltage division across isolator chambers is a capacitive 
effect. 

The minimum breakdown voltage for mercury vapor can be 

expressed by5- 3 

V . = 282 + 20 _Dd 
m1n 

(5. 3) 

where D is the diameter of the isolator channel, and d is the spacing 

between the wire mesh discs that form the multiple chamber boundaries. 

For the LeRC/Hughes J-series thruster isolator, D = 2.22 em (0.875 in.) 

and d = 0.32 em (0.125 in.), yielding a V . = 285 V. For the high-
m1n 

voltage isolator design, D = 1.74 em (0.685 in.) and d = 0.064 em 

(0.025 in.), yielding V . = 283 V. m1n 
The isolator voltage rating is determined by the total applied 

voltage that produces a voltage across any of the isolator chambers 

equal to V .. m1n 
On the basis of capacitive voltage division and assuming 

the equivalent circuit shown in Figure 5-11, the voltage across the 

end two chambers is greater than for other chambers. Equating the 
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voltage across these chambers to V . , the following relationship was m1n 
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derived for determining the total voltage VT that can be safely applied 

to the isolator: 

= 2 v . m1n r (n-2)C1] 
l + 2C 

2 
(5.4) 

where n is the total number of chambers in the isolator. Substituting 

c1 = 0.3 c2 into Eq. 5.4 to compute the maximum voltage yields VT ~ 998 

for the J-series-thruster isolator design and VT ~ 2773 for the high

voltage isolator design. Since these values are significantly less than 

the typical breakdown values measured with either the J-series or the 

high-voltage isolator design, using c1 = 0.3 c2 in Eq. 5.4 is probably 

not justified for modeling the isolator design. Moreover, the capacitive 

model requires the values of R (identified in Figure 5-11) to be very 

large (-1011 Q), which may not be the case for all isolator test 

samples. The applicability of Eq. 5.3 is also open to question since 

it is based on data obtained with a liquid-mercury pool as one of the 

electrodes. Values of V i that are both higher and lower than those mn 
predicted by Eq. 5.3 can be found in the literature. 

On the basis of the data available, it is concluded that isolator 

phenomena are reasonably well understood, and that minimum, conservative 

isolator capabilities can be described by Eqs. 5.3 and 5.4, with the 

provision that the ratio of c1/c2 can be specified. The greatest uncer

tainty lies in knowing whether the model represents typical operation 

of an isolator after many hours of operation (because of the potential 

for contamination by the propellant throughput). The measured breakdown 

of this isolator design was greater than 10 kV, which exceeds the goal, 

and there was no indication that propellant flow has any effect on the 

voltage rating. Achieving 10-A equivalent propellant flow to prove this 

point was not attempted. However, the internal isolator gas pressure 

required to establish 100 mA equivalent propellant flow through a cathode 

orifice is greater than the internal pressure required to conduct 10-A 

equivalent propellant flow directly into a relatively high-conductance 



propellant distribution plenum. Consequently, the goals of the task 

are satisfied by the results discussed here. 
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SECTION 6 

CONCLUSIONS 

A considerable base of information was generated under this study 

that should aid in the understanding of mercury-ion-thruster operation, 

testing requirements, lifetime limitations, and ultimate performance 

capabilities. Several conclusions were drawn from the Task 1 study: 

• 

• 

• 

• 

• 

Thruster test facilities must maintain ambient gases 
on the order of lo-5 Pa (lo-7 Torr) pressure or below 
to obtain valid wear-rate measurements. 

Wear rate is very sensitive to factors affecting 
the formation of doubly charged ions and to the 
energy of the ions doing the sputtering. 

The use of niobium for fabricating critical chamber 
components such as the screen electrode could extend 
the lifetime of the 30-cm thruster. 

Small-hole accelerator grids modify discharge
chamber plasma processes and reduce double ioniza
tion (as compared to large-hole accelerator grids 
operated at the same propellant utilization 
efficiency). 

An improvement in discharge-plasma uniformity can 
be achieved with a single-cusp magnetic field 
geometry, which should, in turn, improve the screen
grid lifetime. 

The major conclusions from the Task 2 study were that: 

• The barium-aluminate-impregnated porous-tungsten 
insert can dispense barium for over 50,000 hr at 
nominal 30-cm-thruster emission currents. 

• The results obtained in cathode bell-jar tests that 
duplicate the discharge-voltage and discharge
current conditions of thruster-operated cathodes 
should be applicable for describing thruster cathode 
phenomena. 
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The Task 3 study produced the following conclusions: 

• The important performance parameters cannot be pre
dicted without analyzing the structural deformation 
of the accelerator grids. 

e The LeRC/Hughes J-series-thruster ion-accelerator
grid support assembly is not yet optimal for main
taining minimum deformation. 

• The structural-analysis model of the electrode system 
under thermal stress should be verified experimentally 
before design optimization is begun. 

The Task 4 study showed that: 

• The high-voltage propellant-flow-electrical-isolator 
design can meet performance goals of up to 10-kV 
applied voltage if the protective shields are 
redesigned. 

e To achieve a predictable voltage distribution across 
the isolator, (1) the spacers will have to be made pre
dictably resistive or (2) the capacitance from cham
ber-to-chamber will have to be designed to be equal 
(accounting for fringe fields). 

• Modeling of ultimate breakdown capability requires a 
measurement of the minimum breakdown voltage for a 
"typical" isolator chamber with wire-mesh boundaries 
and ceramic spacers. 



APPENDIX A 

QUADRUPOLE RESIDUAL GAS ANALYZER CALIBRATION 

The discharge-chamber and screen-grid erosion investigation required 

partial-pressure measurements of various test gases. A quadrupole resid

ual gas analyzer was selected for performing these measurements as well 

as for determining the relative abundance of residual gases in the HRL 

9-ft vacuum chamber. However, since the quadrupole is normally used for 

relative density measurements, it was necessary to calibrate this instru

ment for use in obtaining quantitative pressure data. This section 

describes the calibration procedure and presents representative test 

results. 

A. CALIBRATION PROCEDURE 

In the first calibration step, the quadrupole is placed in the 

scan mode, and a trace of the quadrupole collector current versus mass 

number is recorded on an x-y recorder. In the next step, the precision 

leak valve is adjusted to produce the desired chamber pressure (near 

the maximum calibration pressure), and another scan is recorded. Com

paring the two curves verifies that the only mass peaks that changed 

appreciably are those corresponding to the test gas admitted. A com

parison of this type verifies that no extraneous gases are introduced 

into the vacuum system when the leak valve is opened. In the final 

calibration step, the quadrupole is placed in the manual mode and 

adjusted to the mass peak of interest. At this point, the resolution 

setting is reduced to provide a broader mass peak, thereby rendering 

the instrument less sensitive to small excursions about the center of 

mass and resolution settings. Next, the precision leak valve setting 

is varied and the quadrupole output current is recorded as a function 

of the ionization-gauge output. This procedure is repeated at least 

four times, and the resulting calibration data are used to compute an 

average sensitivity (slope of the calibration curve). For molecular 

gases, two mass peaks are calibrated corresponding to atoms and 

molecules of the test gas. 
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B. RESULTS 

Calibration curves are presented in Figure A-1 for carbon monoxide, 

mass 28. Similar curves were measured for argon, methane, cyanogen, 

carbon dioxide, water, nitrogen, and oxygen. The curves - plots of 

quadrupole collector current versus ionization-gauge output - are linear 

over the pressure range of interest. The slope of the calibration curves 

represents the sensitivity of the analyzer to the particular mass peak 

and is typically on the order of 10-S A/Pa (10-3 A/Torr). The repeat

ability of the calibration data is clearly indicated in Figure A-1, where 

the current origin of curves b through e has been displaced to permit 

plotting of five separate calibration curves. 

Since the analyzer current is linear and must vanish at zero partial 

pressure, the partial pressure p of the test gas can be calculated v'"'i.ng 

the expression 

p (A-1) 

where di/dP is the slope of the calibration curve, I is the quadrupole 

collector current, md P is the total pressure indicated by the ioniza

tion gauge, using a gauge sensitivity appropriate to the particular test 

gas. 
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Figure A-1. Calibration curve; mass peak height versus pressure. 
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