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GLOSSARY

Symbols | A | B | C | D | F | G | H | I | L | M | N | O | P | R | S | T | V

Symbols

Vdd Supply voltage of a transistor.

Vgs Gate-Source voltage of a transistor.

Vth Transistor threshold voltage.

α Transistor switching activity (→ Section 2.3.2).

δ Transistor duty cycle which is the ratio of ON to OFF time (→ Section 2.3.1).

A

Aging rate The aging rate of a device refers to its aging-induced relative delay increase (→ Section 2.3.3).

ALU Arithmetic Logic Unit.

B

BTI Bias Temperature Instability (→ Section 2.3.1).

C

CHC Channel Hot Carrier (→ Section 2.3.2).

CMOS Complementary Metal-Oxide-Semiconductor.

D

DTS Digital Thermal Sensor.

DUI Design Under Investigation.

Duty cycle The transistor duty cycle δ is the ratio of ON to OFF time (→ Section 2.3.1).

DVFS Dynamic Voltage and Frequency Scaling.

F

FabScalar Academic superscalar processor with configurable out-of-order instruction pipeline [1].

FPU Floating Point Unit.

G

GA Genetic Algorithm.

Gem5 Configurable performance simulator supporting various instruction set architectures [2] (→ Section 3.2.1).

Guardband Additional timing margin added by designers to avoid timing failures within a given lifetime.

H

HCI Hot Carrier Injection (→ Section 2.3.2).

HotSpot Compact thermal model [3] (→ Section 3.2.1).
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Glossary

I

IPC Instructions Per Cycle: Average number of instructions executed by a microprocessor for each clock cycle.

ISE Instruction Set Encoding.

ITRS International Technology Roadmap for Semiconductors.

IVC Input Vector Control (→ Section 2.4.2).

IVM Illinois Verilog Model of the Alpha 21264 microprocessor at Register-Transfer-Level [4].

L

LSU Load-Store Unit.

LTF Linear Trend Function (→ Section 7.2).

M

McPAT Power and area modeling framework [5] (→ Section 3.2.1).

MOSFET Metal-Oxide-Semiconductor Field-Effect Transistor (→ Section 2.1).

MTTF Mean Time To Failure.

N

NBTI Negative Bias Temperature Instability (→ Section 2.3.1).

NMOS n-type MOSFET (electrons are charge carriers).

NOP No-Operation Instruction.

NTC Non-Timing Critical.

O

OpenSPARC T1 Industrial processor with an in-order, 6-stage pipeline that features 4-way simultaneous mul-
tithreading (SMT) [6].

P

PBTI Positive Bias Temperature Instability (→ Section 2.3.1).

PG Power Gating.

PMOS p-type MOSFET (holes are charge carriers).

R

RTL Register-Transfer-Level.

S

SA Simulated Annealing.

SAIF Switching Activity Interchange Format.

SDF Standard Delay Format.

Signal probability The signal probability is the probability of a signal to have the logic value ’1’.

Slack The slack is the time difference between the signal arrival time and the clock edge (→ Section 2.1).

SPR Special Purpose Register.

T

TC Timing Critical.

TR Toggle rate of a logic signal.

TTF Time To Failure.

V

VCD Value Change Dump.

VLSI Very Large Integration Scale.
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ABSTRACT

Thanks to the aggressive scaling of transistor dimensions in the past decades, computing systems
have revolutionized our life. However, in the shade of the downscaling benefits such as increased
microprocessor performance, more integrated features and improved energy/cost efficiency, a major
threat for the future success of computing systems has grown: The unreliability of devices fabricated
in nanoscale technology nodes. Because of that, with every new technology node, it becomes harder for
the chip manufacturers to ensure the reliable operation of their chips, i.e. their correct functionality
in the field. As a consequence, malfunctions during the operational mode, that can lead to erroneous
program outputs or even system crashes, are more likely to occur.

Among various reliability challenges, accelerated transistor aging is of particular importance. It
degrades the transistor switching speed, and thus leads to slower circuits over time. As a result, in
synchronous digital systems such as microprocessors, timing failures due to the increased circuit delay
can occur and cause incorrect system states. This considerably reduces the overall lifetime of digital
systems. To make matters worse, it is projected that transistor aging will become worse with the
next technology nodes, if no countermeasures are taken. Hence, it is a necessity to consider reliability,
and in particular lifetime, as another design constraint, beside the traditional performance, power and
cost parameters. However, due to the strong interdependencies among the different constraints, the
co-optimization is very challenging.

To avoid aging-induced failures in the field, designers add timing margins to their designs, which,
however, is very inefficient and costly. In addition, a great deal of efforts is spent on improvements at
the lowest hardware layers (i.e. at transistor/gate-level), as these layers are very close to the physical
origin of the problem. However, the influence of higher levels in the hardware-software design stack
such as the architecture- or application-level is neglected in most state-of-the-art solutions, although
these layers have a considerable effect on the system lifetime. Therefore, it is crucial to investigate
the impact of these higher abstraction layers, to achieve cost-efficient resilient computer systems. This
requires models and frameworks to allow an aging-aware design space exploration at higher abstraction
layers to effectively co-optimize reliability with the traditional design parameters.

This thesis addresses this challenge for microprocessors and pushes the state-of-the-art forward
by proposing novel methods to model, analyze and mitigate transistor aging at higher abstraction
levels such as microarchitecture-level and above. For this purpose, unique cross-layer multi-objective
frameworks are developed covering the entire abstraction stack from circuit-level up to application-
level. These platforms include aging, power and thermal models to enable an effective design space
exploration which treats lifetime as an additional design constraint. Using these platforms, several new
cross-layer aging-mitigation techniques addressing different microprocessor components are developed.
Among these, there are solutions that are employed during the microprocessor design process to improve
the functional units, the decoding stages of the instruction pipeline and the pipeline design philosophy,
respectively. Furthermore, an aging-aware proactive dynamic system adaptation approach is provided,
that tackles transistor aging at runtime, and thus complements the other design time techniques.
All of these approaches are cross-layer schemes which means that the combined knowledge of various
abstraction levels is exploited, to achieve effective solutions. The effectiveness of the proposed schemes
is demonstrated in extensive experiments that show significant improvements of the proposed methods
upon state-of-the-art solutions, i.e. better lifetime results with lower costs in terms of performance,
power and area.
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ZUSAMMENFASSUNG DER ARBEIT

Computersysteme haben in den letzten Jahrzehnten unser alltägliches Leben revolutioniert. Dank im-
mer kleiner werdenden Transistorabmessungen konnten die Chiphersteller einen größeren Funktionsum-
fang in ihre Computersysteme integrieren, deren Leistungsfähigkeit steigern und zugleich die Energie-
/Kosteneffizienz verbessern. Als Folge dessen haben Computersysteme immer mehr Bereiche unseres
Lebens erobert und erleichtert. Allerdings bringt die stete Verkleinerung der Bauteile auch einige
Probleme mit sich. Eine der größten Herausforderungen ist hierbei die wachsende Unzuverlässigkeit
von Bauteilen, die Strukturbreiten im Nanometerbereich aufweisen. Aus diesem Grund wird es für
die Chiphersteller mit jedem neuen Verkleinerungsschritt immer schwieriger den zuverlässigen Betrieb
der Chips zu gewährleisten, d.h. die korrekte Funktion der Computersysteme im normalen Betrieb
sicherzustellen. Damit einhergehend steigt die Wahrscheinlichkeit für Fehlfunktionen während des
Betriebs, die zu fehlerhaften Programmausgaben, falschen Rechenergebnissen oder Systemabstürzen
führen können.

Neben zahlreichen Zuverlässigkeitsherausforderungen ist die beschleunigte Transistoralterung von
besonderer Bedeutung. Sie beeinträchtigt die Schaltgeschwindigkeit der Transistoren im Laufe der
Betriebsdauer und führt damit zu einer “langsamer” werdenden Schaltung. Deshalb steigen die Signal-
laufzeiten mit der Zeit an, was schwerwiegende Laufzeitfehler in synchronen Schaltungen (z.B. Mikro-
prozessoren) zur Folge haben kann. Diese machen sich in falschen Systemzuständen oder Rechenergeb-
nissen bemerkbar, so dass die korrekte Funktionsweise nicht mehr gewährleistet werden kann. Folglich
sinkt auch die zu erwartende Lebensdauer der Computersysteme. In Zukunft wird sich dieser Effekt
sogar noch verstärken, wenn keine Gegenmaßnahmen ergriffen werden. Daher ist die Berücksichti-
gung der Zuverlässigkeit und insbesondere der Lebensdauer als weiterer Entwicklungsparameter neben
den traditionellen Werten (Leistung, Energiebedarf und Kosten) von großer Bedeutung. Aufgrund der
starken Wechselwirkungen zwischen den unterschiedlichen Randbedingungen ist jedoch die gleichzeitige
Optimierung aller Parameter eine große Herausforderung.

Um alterungsbedingte Ausfälle während des Betriebs zu vermeiden, führen Designer üblicherweise
zusätzliche Sicherheitsmargen ein, d.h. bei der Festlegung der Länge eines Taktzyklus wird der al-
terungsbedingte Anstieg der Signallaufzeiten miteinbezogen. Dies ist jedoch sehr ineffizient und teuer.
Darüber hinaus wird ein großer Aufwand betrieben, um Verbesserungen auf den untersten Hardware-
schichten (d.h. auf Transistor- oder Gatter-Ebene) zu erzielen, da diese Schichten nahe an der physikalis-
chen Ursache des Problems liegen. Dagegen wird der Einfluss höherer Abstraktionsebenen im Hardware-
Software-Design-Ablauf, wie z.B. die Architektur- oder Anwendungsebene, in den meisten aktuellen
Lösungsansätzen vernachlässigt, obwohl diese Schichten einen erheblichen Einfluss auf die Lebens-
dauer und Alterungsgeschwindigkeit von Computersystemen haben. Daher ist es von entscheidender
Bedeutung die Auswirkungen dieser höheren Abstraktionsschichten zu untersuchen und mit in das
Schaltungsdesign einzubeziehen, um kostengünstige und zugleich zuverlässige Computersysteme zu er-
möglichen. Dies erfordert allerdings geeignete Modelle und Plattformen, um eine Untersuchung des
Parameterraums auf höheren Abstraktionsschichten unter Berücksichtigung der Lebensdauer und Al-
terungsgeschwindigkeit zu ermöglichen, die das Ziel hat die Lebensdauer und die traditionellen Design-
Parametern zu optimieren.

Diese Doktorarbeit befasst sich mit der beschriebenen Herausforderung für Mikroprozessoren und
stellt dafür neue Methoden zur Modellierung, Analyse und Bekämpfung der beschleunigten Tran-
sistoralterung auf höheren Abstraktionsebenen (Mikroarchitekturebene und höher) vor. Zu diesem
Zweck werden neue Simulationsplattformen entwickelt, die den gesamten Abstraktionsraum von der
Schaltkreisebene bis zur Anwendungsebene abdecken. Diese Plattformen beinhalten dabei Modelle zur
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Zusammenfassung der Arbeit

Analyse der Alterung, des Energiebedarfs und der Temperaturentwicklung. Damit ermöglichen sie eine
effektive Untersuchung des gesamten Parameterraums unter Berücksichtigung aller Rahmenbedingun-
gen, zu denen auch die Lebensdauer des Mikroprozessors zählt. Mit Hilfe dieser Plattformen werden
mehrere neue Techniken entwickelt, die das Ziel haben die Mikroprozessorlebensdauer zu verbessern.
Dazu zählen Methoden, die während des Entwurfsprozesses zum Einsatz kommen, um die Lebens-
dauer der Ausführungseinheiten sowie der Dekodierstufen in der Befehlspipeline zu verlängern, und um
die Design-Philosophie der gesamten Befehlspipeline zu verbessern. Darüber hinaus stellen wir einen
neuartigen, dynamischen und proaktiven Lösungsansatz vor, der während des normalen Betriebs die
Systemkonfiguration dynamisch auf die jeweils aktuellen Zustände anpasst und dadurch die Alterung
verlangsamt. Damit ergänzt diese Methode die vorher genannten Ansätze, die während der Entwurf-
sphase eingesetzt werden. Alle Vorgehensweisen haben dabei gemein, dass es sich um sogenannte
Cross-Layer Ansätze handelt, d.h. sie nutzen die Informationen von verschiedenen Abstraktionsebe-
nen aus, um Lösungen mit hoher Effizienz zu erzielen. Die Wirksamkeit aller vorgestellter Methoden
wird in umfangreichen Experimenten analysiert, deren Ergebnisse signifikante Vorteile gegenüber dem
aktuellen Stand der Technik aufzeigen, d.h. z.B. eine deutlich verbesserte Lebensdauer bei zugleich
geringeren Kosten in Bezug auf Leistungsfähigkeit, Energiebedarf und Fertigungskosten.
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CHAPTER

ONE

INTRODUCTION

Nowadays, computing systems are indispensable in our daily life, covering a wide range of dif-
ferent application areas from electronic control units, high performance computing labs, data
centers, banking or health care to traditional computers, multimedia devices and smartphones.
In all of these fields, the never ending demands for higher performance, more integrated fea-
tures and increasing energy/cost efficiency drive the need for a continuous downscaling of Very
Large Integration Scale (VLSI) technology. Therefore, the microelectronic industry shrinks the
Complementary Metal-Oxide-Semiconductor (CMOS) device feature size (i.e. transistor dimen-
sions) approximately every two years, which allows them to double the number of transistors
in an integrated circuit in the same time period [28]. This paradigm is known as Moore’s
Law that was postulated by Gordon E. Moore1 in 1965 [29]. The resulting abundance of
transistor-integration capacity was deployed by designers to enhance their microprocessors [30]
with more sophisticated architectures such as superscalar and out-of-order instruction pipelines,
on-die caches, integrated graphics processing units (GPUs) or multi/many-core approaches, as
depicted in Figure 1.1 [24–27]. In other words, the technology development was driving the
architecture development.
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Figure 1.1.: Microprocessor development and transistor count from 1970 to 2014 based on Intel proces-
sors illustrating Moore’s Law (data taken from [24–27])

1Gordon Earle Moore (born 1929) is a co-founder of Intel, a semiconductor chip maker corporation
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Figure 1.2.: Failure rate projections from Intel and NASA for recent technology nodes considering ac-
celerated transistor aging 1 and susceptibility to noise as well as soft errors 2

Although the continuous downscaling of CMOS technology is very advantageous for the
overall system performance, feature count and mobility, it also comes along with various severe
design challenges, especially in the era of nanoscale technology nodes (i.e. below 130 nm).
Beside the increasing power density [33, 34], which makes heat dissipation more and more
difficult, the increasing unreliability (i.e. higher failure rates during the operational time) of
devices fabricated in nanometer CMOS technology nodes is critical [10, 30, 35–39]. Because of
that, with every new technology node, it becomes harder for the manufacturers to guarantee the
reliable operation of their chips, i.e. their correct functionality in the field (see Figure 1.2). The
reasons for the increasing reliability challenges are manifold [7, 10, 32, 40–43]. The increasing
design complexity and process variability due to lithography issues lead to a rising number
of bugs that escape to the field. In addition, transient errors in the field become more likely
because of the higher sensitivity to electrical noise and radiation-induced soft errors. Moreover,
transistors fabricated in nanoscale dimensions suffer from accelerated aging, which degrades the
transistor characteristics (e.g. delay and current flowing through the transistor channel) over
time such that the circuit lifetime is limited to a few years, as illustrated in Figure 1.2(a).

In summary, due to all of these reliability challenges, the failure rate increases in all phases
of the chip lifetime, as illustrated by the bathtub curves in Figure 1.2 based on the data
from Intel [31] and NASA [32]. As a consequence, malfunctions in computing systems ranging
from annoying computer crashes, through data and financial losses, to loss of human life are
more likely to occur [42]. On top of that, the period of “normal execution” (i.e. lifetime)
shrinks due to accelerated transistor aging (see Figure 1.2), and thus the Mean Time To Failure
(MTTF)2 becomes shorter. In addition, it is projected that both unreliability aspects (higher
failure rate and reduced MTTF) may increase exponentially in future [7]. As a result, it is a
necessity to consider reliability as another design constraint, beside the traditional parameters
performance, power and cost. However, due to the strong interdependencies among the different
constraints, the co-optimization is very challenging. For example, a higher clock frequency
improves the performance at the cost of a higher power consumption and reduced reliability
(lifetime), and using redundant hardware to enhance the reliability (lifetime) increases the
power consumption as well as the cost. This thesis tackles this challenge for one of the most
important reliability issues, i.e. reduced lifetime due to accelerated transistor aging. Therefore,
several novel approaches to efficiently co-optimize aging-induced lifetime degradation, system-
level performance, power consumption and cost for nanoscale microprocessors are proposed.

2MTTF is the statistical expectation of the time to failure, i.e. it represents the expected lifetime value.
However, in the field, devices may fail sooner or later, since MTTF is a statistical measure and does not stand
for a guaranteed lifetime.
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1.1. Accelerated Transistor Aging: Status Quo and Trends

Accelerated transistor aging is nowadays one of the most important reliability challenges [10],
as it considerably reduces the operational lifetime of nanoscale microprocessors, as depicted in
Figure 1.2. Among various physical phenomena that cause transistor aging, Bias Temperature
Instability (BTI) [44–50] and Hot Carrier Injection (HCI) [46, 51–54] are of particular inter-
est [10, 41]. Both lead to a degradation of the transistor’s threshold voltage and drive current,
where the degradation rate depends on various aspects such as workload, temperature, supply
voltage or frequency. As a result of this transistor parameter shift, device, path and circuit
delays increase over time, i.e they become “slower” over time. Consequently, erroneous data is
eventually calculated and stored, as the correct signal values cannot be obtained in time (i.e.
not before the clock edge). Hence, at system-level these problems manifest in corrupted data
(bit errors), program as well as system crashes and a reduced MTTF.

Application
(e.g. application choice)

Operating System
(e.g. task scheduling)

Firmware
(e.g. DVFS policy)

(Micro)-Architecture
(e.g. ISA, Scheduling)

Circuit
(e.g. path balancing)

Gate
(e.g. stacking effect)

Device
(e.g. materials)

Figure 1.4.: Design stack and its
impact on transistor
aging

In order to avoid such severe scenarios, designers and man-
ufacturers add safety margins3, so called guardbands, to their
designs, to ensure the reliable operation for a certain amount
of time. However, the guardbands to account for aging in a
modern technology node can be 10% of the clock period4 for a
lifetime of 3 years [55–57]. To make matters worse, the guard-
bands have to considerably increase in future, since transistor
aging is accelerated by downscaling [7], as shown in Figure 1.3.
Thus, guardbands are very costly, as expensive overdesigns are
required [58].

Therefore, techniques to co-optimize lifetime, performance,
power and cost are a necessity [10, 35, 38, 39]. For this purpose,
various approaches at the lowest hardware layers (i.e. device-
to circuit-level) were proposed such as [49, 59–69], as these
layers are very close to the physical origin of the problems.
However, also higher levels in the design stack of a computing
system have a considerable aging impact, as these influence im-
portant parameters such as temperature, workload, frequency
or supply voltage, for instance via the instruction scheduling policy or the Dynamic Voltage
and Frequency Scaling (DVFS) strategy. This important point is motivated in Figure 1.4. In

3Employing a safety margin means that the clock frequency of a microprocessor is set according to its
slowest component plus an additional timing margin, i.e. clock period = delay of slowest component + margin.

4Please note that the actual timing margin strongly depends on the technology and application domain (e.g.
low power, high performance, harsh environment, mission-critical).
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1. Introduction

fact, only very few approaches exploit higher-level knobs to alleviate the impact of accelerated
transistor aging such as re-active techniques to adjust the frequency or supply voltage in a
stepwise manner to compensate the delay degradation [70–75] as well as load/stress balancing
approaches [11, 76–78]. In addition, most of the state-of-the-art techniques exploit only the
information of a single abstraction layer and ignore the interdependencies among the different
layers. However, if the information of several abstraction layers is taken into consideration to
alleviate accelerated transistor aging, reliability, performance, power and cost can be better
co-optimized [79–82]. Such approaches, that use the combined knowledge of various layers, are
called cross-layer techniques.

In summary, due to the considerable impact of accelerated transistor aging on the system
lifetime, efficient mitigation techniques are required. In this regard, cross-layer approaches are
a great promise, as the combined knowledge of various abstraction layers is exploited, and thus
a better tuning of the system with respect to lifetime, performance power and cost is possible.
Moreover, also abstraction layers above circuit-level should be taken into account, as these have
a great influence on wearout, as well. In other words, now the system-architecture needs to
develop to allow further CMOS developments. This need has been also stated recently by the
“International Technology Roadmap for Semiconductors” (ITRS) [10] as well as the ENIAC
Strategic Research Agenda [39]. Therefore, this thesis pushes the state-of-the-art in aging mod-
eling and mitigation forward by proposing novel cross-layer modeling and analysis frameworks,
as well as several new cross-layer aging mitigation techniques that take also higher abstrac-
tion levels of the design stack into account to efficiently co-optimize the lifetime, performance,
energy consumption and cost of nanoscale microprocessors.

1.2. Contribution of this Thesis

As motivated before, the objective of this thesis is to alleviate the impact of transistor aging
using efficient means available at higher abstraction levels (i.e. microarchitecture and above).
Therefore, device-level models were abstracted all the way to architecture-level to develop fast
and accurate lifetime reliability analysis frameworks. Based on these cross-layer multi-objective
frameworks, investigations of various wearout influencing parameters from microarchitecture-
level all the way to application-level were performed. Furthermore, several novel mitigation
techniques employed at runtime and during the design process, that co-optimize lifetime, per-
formance, power and area, were designed. In this regard, cross-layer approaches are of special
interest, as explained before.

In particular, the novel contributions of this thesis are:

• Cross-Layer modeling and analysis platforms to evaluate aging, performance,
power and cost: For evaluating cross-layer aging mitigation techniques two different
platforms for different purposes were developed. The first one is an architectural frame-
work called ExtraTime, which can be used, when detailed circuit-level information is
not required or not available. The second platform is a microarchitectural framework at
Register-Transfer-Level, which is intended for investigations that rely on detailed gate-
level knowledge. Both platforms include aging, power and thermal models, and are
designed in such a way that the interplay of real-world applications, performance, power,
temperature and aging is considered. As a result, these frameworks allow a very effective
design space exploration for co-optimizing reliability (lifetime), performance, power and
cost (die area). In addition, an actual experimental hardware-platform is built using the
ExtraTime models to demonstrate their accuracy and capabilities. This platform can
be used to evaluate the feasibility of various aging mitigation techniques not only by
simulations, but also by employing them in a real system.
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1.2. Contribution of this Thesis

• Aging-Aware Design of Microprocessor Instruction Pipelines: Traditionally the
delays of all instruction pipeline stages are balanced at design time. However, accelerated
transistor aging causes a non-uniform delay degradation among all stages due to different
usage patterns. Consequently, this design approach results in an imbalanced design after
a short period of time. As a result, a single pipeline stage will become the bottleneck for
the overall microprocessor lifetime. To alleviate this problem, we propose a novel design
paradigm (MTTF-Balanced pipeline design) for the microprocessor instruction pipeline
according to which all pipeline stage delays are balanced at the end of the desired lifetime.
As a result, the overall microprocessor lifetime can be improved without affecting the
performance.

• Aging-aware instruction scheduling: To alleviate transistor aging inside the execu-
tion units, which are among the most critical parts of a microprocessor, an aging-aware
instruction scheduling technique was developed. The novelty of this cross-layer scheduling
policy is the consideration of the timing-criticality of incoming instructions to increase
the idle ratio of functional units executing the most critical instructions. This is exploited
to considerably improve the lifetime of the functional units compared to a single-layer
balanced scheduling approach that ignores the detailed timing information.

• Aging-aware instruction set encoding (ArISE): We observed that beside the exe-
cution units also the decoding stages of a microprocessor can become aging-critical and
limit the microprocessor lifetime, especially when aging mitigation techniques targeting
the functional units are employed. Hence, the decoding stages have to be considered
for an aging-aware microprocessor design. Since the instruction set encoding, i.e. the
mapping between instructions and opcodes, has a strong influence on the wearout of the
decoding stages, we propose a novel aging-aware instruction set encoding methodology
called ArISE to address the delay degradation in the decoding stages. The result is an
optimization that yields significant lifetime improvements with negligible impact on other
design parameters.

• Aging-aware proactive dynamic runtime adaptation: In order to detect and avoid
potentially critical system conditions while the system is running, dynamic aging allevia-
tion schemes employed at runtime (i.e. runtime solutions) have to complement mitigation
solutions that are applied during the design phase of a microprocessor (i.e. design time
solutions) [83]. However, the state-of-the-art dynamic runtime adaption techniques em-
ploy only reactive methodologies, which are inefficient due to the nature of “damage
control”-type of techniques. In other words, these policies deal with already “aged” chips.
In contrast, we provide a proactive and preventive runtime adaptation policy that tries to
slow down the delay degradation in all phases of the chip lifetime, and hence can prolong
the lifetime more efficiently than state-of-the-art techniques, i.e. with lower performance
and power overheads.

All aforementioned aging mitigation techniques are cross-layer approaches that are very
effective, as they combine the knowledge from different abstraction layers. We will demonstrate
this fact in various parts of the thesis. Moreover, all approaches were evaluated using modern
microprocessors such as FabScalar [1] (academic superscalar processor with configurable out-of-
order instruction pipeline), OpenSPARC T1 [6] (industrial processor with an in-order, 6-stage
pipeline that features 4-way simultaneous multithreading), or the out-of-order core of gem5
that is similar to the Alpha 21264 [84]. In addition, two real hardware-systems, one with an
IBM Power7+ processor [8] and one based on recent Intel Core processors [85], are utilized
to backup various data with real experimental results. Thus, the theoretical ideas have been
analyzed and validated under realistic scenarios.
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1. Introduction

1.3. Outline

The rest of this thesis is organized in four main parts. The first one (Chapter 2) focuses on the
background and state-of-the-art. In Part II (Chapter 3), the developed aging modeling and
evaluation frameworks are presented, followed by the proposed aging mitigation techniques in
Part III (Chapters 4-7). Finally, Part IV (Chapter 8) concludes this thesis.

After this introduction, the thesis continues with a broad overview of the background on
reliability and in particular accelerated transistor aging in Chapter 2. In addition, this chapter
also discusses the state-of-the-art techniques to model and alleviate transistor aging at various
abstraction levels.

The proposed cross-layer aging modeling and evaluation frameworks are presented in Chap-
ter 3. In the first part of this chapter, the architectural framework ExtraTime is described,
and the novel architectural aging models are derived. Afterwards, a real experimental system
is introduced that can be used to obtain very localized power and thermal information about
various microprocessor components. The RTL-based evaluation platform is provided in the
third part of the chapter.

The novel MTTF-balanced instruction pipeline design paradigm is proposed in Chapter 4,
which starts with the problem introduction and motivation, followed by the new design method-
ology. Afterwards, two microprocessors are analyzed to evaluate the benefits of the MTTF-
balanced design paradigm. The chapter ends with a discussion of related work and conclusions.

In Chapter 5 we present our envisioned aging-aware instruction scheduling approach. At the
beginning, the need for a new scheduling approach is motivated, followed by the presentation
of the scheduling technique itself. Next, the scheduling scheme is evaluated using various
microprocessor configurations and compared to a state-of-the-art scheduling method. At the
end, the related work is discussed followed by some concluding remarks.

Chapter 6 provides the aging-aware instruction set encoding methodology, starting with an
introduction of the aging problem in instruction decoders and a motivation of the proposed
technique. Afterwards, the scheme is introduced in detail, and two heuristic solutions are
provided to solve the complex optimization problem. Next, the proposed encoding approach is
analyzed and compared to a standard encoding. Then, a summary of related work is presented
and finally the chapter ends with a conclusion.

The last aging-aware technique proposed in this thesis is presented in Chapter 7. In the
first part of the chapter, the DVFS methodology is introduced, followed by our envisioned
pro-active aging-aware implementation based on a two-level expert system. Afterwards, the
benefits and drawbacks of the proposed DVFS technique are investigated and compared against
other, non-proactive approaches. Also this chapter ends with a summary of related work and
some concluding remarks.

Finally, Chapter 8 summarizes and concludes the thesis. In addition, an outlook into the
future is provided in this chapter.
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CHAPTER

TWO

BACKGROUND & STATE OF THE ART

As laid out in the previous chapter, this thesis tackles one of the most important design aspects
of microprocessors fabricated in current and future CMOS technology nodes: The increasing
unreliability, and in particular, the shrinking lifetime due to accelerated transistor aging. In
order to provide a general background of these issues, some fundamental transistor information
is provided in this chapter, and the basic notion of reliability as well as its most important
threats are introduced with a special focus on accelerated transistor aging. Finally, a summary
of the most relevant state of the art approaches to model and alleviate transistor aging is
presented.

2.1. Basic Terminology of CMOS Transistors

Although this thesis tackles the problem of accelerated transistor aging at higher abstraction
levels such as microarchitecture-level and above, it is fundamentally important to have a basic
understanding of the functionality of a modern transistor. Therefore, in this section, a brief
introduction on transistors and their important characteristics is given. Further details can be
found in [86].

Nowadays, the manufacturing of microprocessors relies on CMOS: Complementary Metal-
Oxide-Semiconductor. This means that a combination of p-type and n-type MOSFETs (Metal-
Oxide-Semiconductor Field-Effect Transistors) is employed to implement logic gates, where p
and n represent the charge carriers used in the transistor (n for electrons, p for holes). In this
thesis, we refer to p-type MOSFETs as PMOS and NMOS for n-type MOSFETs.

The basic layout of a MOSFET is depicted in Figure 2.1. As the name indicates, it uses
a metal gate which is attached to a few nanometer thin oxide layer (e.g. silicon oxide SiO2)
and a semiconducting substrate (typically silicon Si). If, for an NMOS (similar for PMOS),
the voltage between gate and source (Vgs) is larger than the threshold voltage (Vth) of the
transistor, a conducting path (i.e. channel) under the gate oxide will be formed between source
and drain. In this case, the transistor is referred to as ON and current flows through the
channel (on-current). Otherwise, it is not conducting (no channel), i.e. OFF.

Source Drain
Gate

Oxide

ChannelSilicon (Si)

Metal Vth – Threshold Voltage
Vdd – Supply Voltage
Vgs – Gate-Source Voltage
Vds – Drain-Source Voltage

Figure 2.1.: Basic illustration and terminology of a MOSFET
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Input Output

Vdd

InputOutput

aged
fresh

Time

Voltage
PMOS OFF

NMOS ON

PMOS ON

NMOS OFF
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Figure 2.2.: Illustration of the delay increase (here: output rise delay) due to aging for a CMOS inverter
(here: Vth of the PMOS is degraded due to aging)

A very important relation for transistors is the one between the threshold voltage and the
switching speed (delay d) of a transistor [87]. This relation can be approximated using the
following power model:

d ≈ C

(Vdd − Vth)σ
∼ (Vdd − Vth)−σ , (2.1)

where C and σ are technology dependent constants with σ being around 1.3 in recent technology
nodes [88]. Due to this relationship, an increase in threshold voltage (e.g. due to aging →
Section 2.3) will impair the switching speed of the affected transistor, and thus also the gate
delay. This circumstance is illustrated in Figure 2.2 for a simple CMOS inverter and its output
rise delay. If the threshold voltage of the PMOS degrades, the PMOS becomes slower and thus
the output rise delay increases, as the PMOS transistor is the responsible transistor to perform
a rise transition of the output. Similarly, if the NMOS is affected, the output fall delay will
increase, since in this case the NMOS transistor is responsible. At circuit-level, such increasing
gate delays cause an increase in the path delays as depicted in Figure 2.3. Thus, the slack, i.e.
the time difference between the arrival time of the correct signal values at the circuit outputs
and the clock edge, decreases over time. Eventually, due to this process, some output signals
may not switch to the correct values in time, i.e. before the clock edge arrives, which means
that wrong data is captured in memories or released via primary outputs. Consequently, the
correct functionality of the system is affected.

In1

In2

A
Out

clk

In1

In2

A

Out

Aging-induced
Delay Increase

Slack

Figure 2.3.: Illustration of the circuit delay increase due to aging for a simple circuit

2.2. Reliability: Basic Notions and Challenges

If the correct functionality of a system is impaired, it also means that its reliability is affected.
In order to quantify the reliability of a system, a statistical definition is commonly used. To
understand this definition, it is important to first explain and differentiate various reliability
threats, namely faults, errors and failures [89].
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Fault
Activation Propagation

Error Failure

Logic-View Information-View System-View

Figure 2.4.: Fundamental chain of reliability threats

While fault, error and failure have very similar meanings in the common speech, their notions
are considerably different in the field of reliable computing. A fault is the logical representation
of a defect. For instance, in case of transistor aging, the defect is the increased threshold
voltage and its logic representation, i.e. the fault, is the delay increase of the affected gate (see
Figure 2.2). In general, defects can occur in hardware (e.g. broken interconnects, crosstalk
between wires, or a damaged gate oxide) as well as software (e.g bug, input mistakes), they can
be permanent (e.g. broken interconnect) or transient (e.g. crosstalk), and can be caused by
natural phenomena (e.g. crosstalk, transistor aging) or can be human made (design mistake).

Upon activation of a (previously dormant) fault (invoking the faulty component or uncov-
ering the fault by an appropriate system state), an error is produced. Thus, an error is the
manifestation of a fault in form of a wrong bit value, system state or information. In case of
transistor aging, the error occurs if the delay increase (fault) leads to a timing violation and
hence to a wrong bit value (error). In fact, not all faults lead to errors, as masking effects (e.g.
a path with increased delay is not sensitized) can prevent faults to become active.

Eventually, when the error leads to a malfunction of the system (e.g. wrong program
output), it is called failure. Similar to the activation of a fault, not every error propagates and
becomes noticeable at system-level (i.e. becomes a failure) as illustrated in Figure 2.4, e.g. if
a wrong intermediate result is not used anymore and thus does not affect the final program
output. This causal chain is also depicted in Figure 2.5 for the case of transistor aging.

2.2.1. Notion of Reliability

Based on the definition of a failure, one can define reliability as a statistical measure. In this
regard, the following definition of reliability is nowadays very common [89].

Definition 2.2.1 (Reliability)
The reliability R(t) of a computing system is the probability that the system correctly
performs its required function under the specified conditions for a given time period t, i.e.
no failure occurs during this time period.

For instance, if the failure rate λ of a system, which is defined as λ = − d
dtR(t) · 1

R(t) , is
constant over time, the system reliability R(t) follows an exponential function, i.e. R(t) =
e−λt. However, in case of transistor aging the failure rate is not constant over time, and
thus the system reliability with respect to transistor aging cannot be obtained that easily.

Fresh |Vth| Increase

aged
Healthy Defect Fault Error Failure

clk

data

Delay Increase

1Memory

clk

data

Timing Violation

0Memory

Segmentation Fault

Hello World
.......
Segmentation fault

Figure 2.5.: Chain of fault, error and failure in case of transistor aging
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In fact, the failure rate follows an exponential function (no failures in early life phases and
exponentially increasing failure rate in late life phases) that has to be obtained experimentally
or by simulation.

To quantify the reliability of a system, the Mean Time To Failure (MTTF) is often used.
It stands for the length of time the system is expected to last in operation without having a
failure [89]. Therefore, its mathematical definition is:

Definition 2.2.2 (Mean Time To Failure)
MTTF =

∫∞
0 R(t)dt

For example, if the failure rate λ is again constant, the MTTF of the system is 1
λ .

In the scope of transistor aging the TTF (time to failure) is the time until a failure due to
an aging-induced timing violation occurs. Assuming, that all timing errors result in a failure,
the TTF can be approximated by the time until timing violations start to appear. This TTF
estimation is also used in this thesis. Based on this TTF definition, the MTTF can be obtained
as explained in Chapter 3.2.

The reliability of a computing system can be improved in various ways that can be cate-
gorized into four groups according to [89]: Fault prevention, fault forecasting, fault removal,
and fault tolerance. During the design and manufacturing phase, fault prevention techniques
are intended to prevent faults by using better materials or rigorous design rules. In fact, an
absolute fault avoidance is impossible. Therefore, fault removal approaches aim at identifying
and removing possible faults by employing verification and test techniques which can be used
during the design, manufacturing and operational phase. The fault forecasting is applied to
predict the occurrence of faults and their likelihood by analyzing a diversity of system states.
Finally, when a fault becomes active (i.e. error) fault tolerance techniques are employed to first
detect the resulting errors and then to correct the erroneous system state. In this thesis, four
different approaches to mitigate the impact of accelerated transistor aging are presented that
belong to the categories of fault prevention (longer lifetime by design modifications) as well as
fault forecasting combined with fault removal (prediction indicates the likelihood of a timing
violation and based on the result, countermeasures are activated).

Beside reliability there are also various other attributes namely availability, safety, confiden-
tiality, integrity and maintainability that describe how “trustable” the usage and output of a
computing system is. The root of all these attributes is called dependability which is the “ability
of a system to deliver its intended behavior that can justifiably be trusted” [89]. Together with
the already introduced categories for reliability (dependability) threats and means to improve
reliability (dependability), these attributes form the dependability tree depicted in Figure 2.6.

DEPENDABILITY Attributes

Reliability
Availability
Safety
Confidentiality
Integrity
Maintainability

Threats
Faults
Errors
Failures

Means

Fault Prevention
Fault Forecasting
Fault Removal
Fault Tolerance

Figure 2.6.: Dependability tree [89] (highlighted parts indicate the field of this thesis)

12



2.2. Reliability: Basic Notions and Challenges

Reliability

Complexity

Process Variation

Suscepebility to Noise
Soft Errors

Aging

Figure 2.7.: Illustration of important reliability challenges in nanoscale CMOS technology nodes

2.2.2. Sources of Unreliability

The reliability of microprocessors fabricated in nanoscale CMOS technology nodes is threatened
by various phenomena [10] as depicted in Figure 2.7. The first source for faults and defects is
the increasing complexity at device-, circuit-, and architecture-level of modern microprocessors
with billion transistors and a very rich feature set. The result is an increasing number of
design flaws and electrical bugs in the design that are very hard to activate, isolate and debug.
In current systems, the silicon debug already requires more than 50% of the total time-to-
market [90] while this portion was only 17% in 2002 [91]. Moreover, on the way to manycore
processors, even more integrated features and smaller device sizes, the complexity of silicon
debug will further increase [92]. Consequently, bugs in the final product are almost inevitable,
although rigorous verification and test procedures are performed. This is underlined by the
errata documents of modern processors that often list more than 200 known bugs [93]. Very
famous examples of such escaping bugs due to the increasing complexity are Intel’s division
bug1 in the Pentium processor (1994) [94], AMD’s bug in the Translation Lookaside Buffer
(TLB)2 in the K10 processor (2007) [95] and Intel’s recent issue in the transactional memory
extensions (TSX)3 in 2014 [96].

Another growing reliability issue is process variation. Due to the ongoing transistor minia-
turization an exact manufacturing process becomes increasingly challenging. As a result, in
a microprocessor with billions of transistors, no transistor is exactly like the other. Due to
lithography issues and dopant fluctuation, channel lengths differ from transistor to transistor,
and variations of the gate oxide thickness as well as threshold voltage are on the agenda [10].
Such variations could be global (chip to chip) and local (core to core). At system-level these
problems manifest in considerable performance and power consumption variations of different
manufactured parts. For example, Intel reported for a 100 million transistor 80-core proces-
sor fabricated in a 65 nm technology node that the core-to-core variation leads to a frequency
spread of 28% at 1.2V and 62% at 0.8V between the fastest and slowest cores on the die [97].
This means that some cores can be of high quality, making high clock frequencies or low power
consumption possible, while others may even not be operational at all.

In addition to errors due to imperfect design, another major reliability threat is posed by
radiation-induced soft errors at runtime [98, 99]. Cosmic radiation in form of neutrons and
alpha particles from packaging material can cause a charge disturbance inside the transistor
that was hit. If this charge disturbance was large enough, it can flip the signal state in form
of a transient pulse which can lead to faulty data being latched or stored in a memory cell.
Depending on how many transistors are affected, even multiple stored bits can be affected
(Multi Bit Upset) [100]. Since the damage to the circuit is not permanent, these errors are called

1Errata 20 [94]: “Slight precision loss for floating-point divides on specific operand pairs”
2Errata 298 in [95]: “L2 Eviction May Occur During Processor Operation To Set Accessed or Dirty Bit”
3Errata HSW.136 in [96]: “Software Using Intel TSX May Result in Unpredictable System Behavior”
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“soft”. Nevertheless, these errors are a major challenge, in particular as the vulnerability of
digital circuits to radiation-induced soft errors increases considerably with every new technology
node (e.g. 8x higher error rate in 40 nm than in 130 nm) [98, 101, 102]. Therefore, hardening
approaches and sophisticated error detection and correction techniques typically in form of
parity bits and error correcting codes (ECC) are employed in modern microprocessors [37].

Beside the transient soft errors also the intermittent4 errors due to the increasing suscepti-
bility to electric noise are of growing importance. Crosstalk and coupling effects between wires
can cause wrong signal states and the drop of the supply voltage caused by active circuits can
lead to wrong computation output [10]. To alleviate these issues more conservative design rules
need to be employed, and more sophisticated power delivery networks have to be designed. In
particular, the power delivery network is very important as it is not uncommon for a modern
microprocessor with a die area of 300mm2 to burn more than 150 Watts [103]. In fact, due to
the end of the Dennard scaling model [104] (supply voltage and threshold voltage are lowered
by about the same factor as the device feature size), the power density is increasing with every
new technology generation. Because of that, the power density of a modern microprocessor
exceeds already that of a common household iron [103]. This increasing power density makes
thermal hotspots more likely to occur, which in turn necessitates more sophisticated cooling
solutions. In addition, it considerably affects reliability, especially thermally accelerated effects
such as transistor and interconnect wearout.

Finally, the accelerated wearout of interconnects and transistors in nanoscale CMOS technol-
ogy nodes considerably reduces the operational lifetime of microprocessors, and thus is another
important reliability challenge [31, 32, 105]. Physical effects such as Bias Temperature Instabil-
ity (BTI) or Hot Carrier Injection (HCI) lead to an increasing switching delay of the transistors
resulting in slower cores [10]. Moreover, Time Dependent Dielectric Breakdown (TDDB) and
electromigration will cause sneaking deaths of transistors and wires [10]. Hence, aging is a
time-dependent effect that will eventually lead to the death of the system. Furthermore, the
system state changes over time, since not all transistors age at the same rate, as they are ex-
posed to various temperature and activity conditions. Therefore, the nature of electrical bugs
in the system, and how they result in (intermittent) failures, changes over time.

To deal with the aforementioned reliability challenges a common approach is to add timing
margins in form of guardbands to the design to reduce the likelihood of failures (i.e. the
clock frequency is reduced). The breakdown of such a timing margin for the different fault
categories for the IBM Power7+ microprocessor [8] is depicted in Figure 2.8. Obviously a
significant amount of the budget is put to tackle the impact of accelerated aging (around
15%). Together with the fact that aging will become more severe in future technology nodes
as shown in Figure 1.3, it is a necessity to find more efficient means than purely overdesigning
the hardware (i.e. adding safety margins) to mitigate wearout. Therefore, this thesis proposes
various novel cross-layer approaches that efficiently reduce the impact of transistor aging.

Test inaccuracy Uncertainty Aging Voltage variation Thermal variation

Overall timing margin

Figure 2.8.: Guardband decomposition for the IBM Power7+ [8]

4transient errors are non-permanent errors caused by environmental issues while intermittent errors are due
to circuit-internal issues
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2.3. Background on Transistor Aging

Transistor aging is a rather old phenomenon that was already under discussion in the 1960s
and following decades [51, 52, 106–108]. However, at that time transistor aging did not reduce
the microprocessor lifetime or its reliability to an alarmingly low value. In contrast, due to
CMOS device feature sizes of 32 nm and less, transistor aging is nowadays a severe reliability
issue, as it considerably reduces the microprocessor lifetime, i.e. microprocessors build in
recent and future technology nodes start to fail sooner. Therefore, manufactures need to add
greater timing margins to their designs, to guarantee the required lifetime. For instance, the
experimental study performed in [55, 57] show that the delay degradation can be more than
10% for a runtime of 3 years5.

The three major physical phenomena that cause transistors to age are Bias Temperature
Instability (BTI) , Hot Carrier Injection (HCI) and Time Dependent Dielectric Breakdown
(TDDB) [10]. The first two effects cause a gradual increase of the transistor threshold voltage
and on-current, which leads to an increasing circuit delay over time. In other words, BTI
and HCI make a circuit, for example a microprocessor, slower over time. Because of that it
could be necessary to reduce the clock frequency of a microprocessor after a certain amount
of time to maintain a fault-free execution. Also TDDB can affect the circuit speed, in form
of a “soft” breakdown. In this case, small defects are created inside the gate oxide which
reduce the switching speed of the affected transistor. However, if a conducting path through
the oxide is formed, the affected transistor will be no more functional, which is called “hard”
breakdown [10].

This thesis addresses the problem of gradually decreasing circuit speed due to threshold
voltage degradation and thus deals with BTI and HCI as accelerated transistor aging phenom-
ena. TDDB in form of “soft” breakdowns is not the primary focus of this thesis, since its impact
on the circuit delay is considerably smaller than that of the two other phenomena [109, 110].
In the following, BTI and HCI are introduced in detail and the fundamental models used in
thesis are explained.

2.3.1. Bias Temperature Instability
Physical Mechanisms of BTI

BTI is a wearout phenomenon that, as the name tells, occurs under certain gate-source bias
conditions and is accelerated under elevated temperature. It can be separated into the very
similar phenomena positive and negative BTI (PBTI and NBTI), affecting NMOS and PMOS
transistors, respectively [50, 111]. While NBTI is known since the 1960s [106] to cause a degra-
dation of the switching speed of affected transistors, PBTI received only little attention [112].
This, however, changed considerably with the introduction of metal gates in combination with
high-κ gate oxides for which stacks of Hafnium and other materials replace the classical SiO2

compound for the gate oxide to improve the controllability of the channel via the gate6 [50].
Using these high-κ metal gates the effect of PBTI became comparable to NBTI [50] and thus
nowadays both phenomena need to be considered.

5Please note that these numbers can vary from one chip manufacturer to another or from one technology
to another and are also dependent on the application domain (e.g. low power, long mission time, health care,
aerospace, consumer devices) the microprocessor is designed for.

6The gate oxide acts as a dielectric in a capacitor formed by channel and gate. Thus, a high permittivity
for this dielectric is required to achieve a good controllability of the channel (i.e. high capacity). Because of
that the traditional SiO2 gate oxide became thinner and thinner with every new generation. However, at some
point it became too thin (less than 2 nm) and various parasitic effects became visible (e.g. very high leakage
current through the gate oxide). To be able to increase the oxide thickness again, high-κ materials (with better
permittivity than pure SiO2) replaced the SiO2 compound.
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Figure 2.9.: Illustration of the Si− SiO2 interface showing dangling bonds and Si-H bonds

Although, as mentioned before, BTI is a rather old phenomenon, the underlying physical
and chemical processes are not yet fully understood and heavily debated. This is due to the
fact that it cannot be observed directly, as it is happening inside transistors with nanometer
dimensions. Thus, only indirect explanations based on measurements are possible. However,
these are very challenging, as it is very hard to first provoke the BTI effect, and then to directly
measure its consequences (e.g. threshold voltage) without changing the status of the transistor
due to the fast dynamics of BTI [113, 114]. Nowadays, the most prevalent explanations are
based on trapping/detrapping and reaction/diffusion processes [48, 114–116]. In both theories,
the origin of the BTI effect is the manufacturing process of the gate oxide [43]. Therefore, this
process is explained next for a conventional SiO2 gate oxide. Nevertheless, the same principles
apply also for a high-κ gate oxide and similar observations can be made.

The gate oxide is obtained using a dry oxidation process to let the amorphous SiO2 grow
thermally on top of the silicon (crystalline) substrate. However, there is a considerable lattice
mismatch between the SiO2 and the crystalline Si. Although a major part of this mismatch can
be compensated by the very flexible Si-O-Si bonds, some unbound silicon atoms are remaining
at the interface. These unbound atoms are called dangling bonds. In fact, at the gate oxide
interface of a transistor with 100 nm gate length and a gate width of 1µm the density of dangling
bonds after the completion of the oxidation process is said to be around 1012 cm−2eV−1 [117].
This translates to 1000 dangling bonds, which means that such a transistor cannot operate
properly, as dangling bonds are active interface states (not all four valence electrons of Si are
included in bonds) that degrade the important transistor parameters such as threshold voltage,
on-current and carrier mobility. Therefore, to reduce the number of dangling bonds, hydrogen
(H) is employed to passivated the dangling bonds by forming Si-H bonds [118]. As a result,
the dangling bond density can be reduced to 1010 cm−2eV−1, which is good enough. Hence,
the interface between the gate oxide and the silicon substrate looks similar to the illustration
in Figure 2.9 [119]. As it can be seen, beside Si-O and Si-H bonds, also other bonds such as
Si-Si can occur in the interface between substrate and gate oxide, and even other materials
may be deposited during the manufacturing process due to impurities.

The Si-H bonds as well as the remaining dangling bonds, which act as charge traps, are
the source of the BTI effect. According to both BTI theories (trapping/detrapping and reac-
tion/diffusion), this effect can be split into two phases depending on the gate bias, i.e. whether
the transistor is ON or OFF (from there comes the “bias” in BTI).

• Stress Phase – Transistor is ON: When the transistor is ON, various things can
happen as depicted in Figure 2.10(a). On the one hand, Si-H bonds can be torn apart
due to the applied vertical electric field and their low binding energy. On the other hand,
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Figure 2.10.: Illustration of the two BTI phases (stress and recovery) with trapping/detrapping and
reaction-diffusion (colored traps have captured a charge carrier)

charges that move through the channel can react with the Si-H bonds and break these.
In both cases, the results are additional dangling bonds (not fully bound silicon atoms),
and free hydrogen atoms as well as hydrogen molecules (created by combination of two
hydrogen atoms) that diffuse into the gate oxide. In addition, also hydrogen ions H∗

and silicon ions Si∗ can be created. Beside these reaction and diffusion processes also
trapping effects can occur, since the dangling bonds as well as the free hydrogen atoms
act as traps and can capture charges creating Si∗ or H∗. In this regard, depending on
the Fermi-level7 of these traps, either holes or electrons are collected. As a result of all
these processes, the |Vth| of the affected transistors increases.

• Recovery Phase – Transistor is OFF: When the transistor is OFF, some of the Si∗

and H∗ ions emit their captured charges (detrapping) and some of these even undergo a
new bond with H atoms that diffuse back, as illustrated in Figure 2.10(b). Consequently,
|Vth| decreases again (see Figure 2.11). However, due to emission and back-diffusion
times that range from fractions of a millisecond to hours or days [114, 122], the initial
shift cannot be entirely compensated leading to a gradual increase of |Vth| over time as
shown in Figure 2.11. In this regard, the overall Vth shift, i.e. the wearout rate, depends
on several aspects, such as technology parameters, supply voltage (i.e. the vertical electric
field), temperature (from there comes the “temperature” in BTI) and duty cycle δ, i.e the
ratio of stress to total time (see Figure 2.12).

Please note that the given explanations for the commonly observed behavior (Figure 2.11 and
Figure 2.12) are still under discussion, since the exact physical mechanisms and electrochemical
reactions are not yet fully understood. Thus, these may change with new technologies. For
current technologies, it seems that the trapping/detrapping process is mainly responsible for
the fast and large Vth changes at the beginning of each stress or recovery phase, whereas the

Stress Recovery
∆|Vth|

Stress Recovery

Overall

Time

Figure 2.11.: Illustration of a sequence of stress and recovery phases and their impact on |Vth| based on
the experimental data in [122]

7Briefly spoken the Fermi-level of a trap describes the likelihood with which it captures a hole or an
electron [120, 121]
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Figure 2.12.: Illustration of the duty cycle, supply voltage (Vdd, i.e. vertical electric field) and temper-
ature impact on BTI-induced Vth degradation

reaction-diffusion process is more important for the long-term behavior (over several weeks),
as explained in [115].

Modeling the Vth shift due to BTI

Since the focus of this thesis is on the long-term (i.e. more than a few seconds) delay degradation
of transistors due to BTI, a reaction-diffusion based model for the threshold voltage shift is
applied, which is proven to accurately capture the device degradation for a wide range of
measurements [126]. Although this model was only verified for NBTI, we also employ it to
model the PBTI effect. This is reasonable, as both phenomena have a very similar impact on
the affected transistors as laid out in [111]. In combination with the power law in Equation (2.1)
this model allows us to model the delay degradation of single transistors, gates and at higher
abstraction-levels even entire logic blocks.

In the following, we will now introduce the reaction-diffusion model which we use in this
thesis. It is based on the model developed in [126] and for the matter of simplicity we focus
now on PMOS transistors, i.e. NBTI.

Stress Phase:
According to [127] the generation rate of interface traps NIT follows the equation:

dNIT

dt
= kF (N0 −NIT )P − kBNHNIT , (2.2)

where N0 is the initial concentration of Si-H bonds, P is the charge (holes) concentration
and NH is the concentration of hydrogen at the interface between channel and gate oxide.
Moreover, kF and kB are the forward and backward reaction rates, which means that kF is the
rate of trap generation (i.e. reaction of a hole and an Si-H bond) and kB is the rate of trap
passivation (i.e. recombination of Si and H).

At the beginning of a stress phase, the trap generation rate is very small as laid out in [127].

Thus,
dNIT

dt
≈ 0 and NIT � N0 which simplifies Equation (2.2) to:

NHNIT ≈
kF
kB
PN0. (2.3)

With the continuation of the stress period, more and more free H atoms are created that diffuse
into the gate oxide layer. In this phase, the reaction balance is governed by the diffusion process,
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which itself is controlled by the gradient of the free hydrogen density NH . According to Fick’s
second law [128] the diffusion process can be described as

dNH

dt
= DH

d2NH

dx2
. (2.4)

In this regard, DH follows the Arrhenius equation, i.e. it has an exponential dependency on
the temperature T and the activation energy Ea of the chemical reaction:

DH = γe−Ea/kT , (2.5)

where k is the Boltzmann constant and γ is the constant prefactor.
Using the approximated diffusion profile [126] the total number of interface traps at time t

can now be approximated:

NIT (t) ≈
(

(1 + ε) tox +
√
DHt

)
NH . (2.6)

tox is the oxide thickness of the affected transistor and ε < 1 is a fitting parameter that has to
be determined experimentally. By combining the Equations (2.6) and (2.3) it follows that:

NIT (t) ≈
(
kF
kB
PN0

)1/2 (
(1 + ε) tox +

√
DHt

)1/2
. (2.7)

Knowing that ∆Vth = qNIT /Cox (q is the elementary charge and Cox is the gate oxide
capacitance), P = Cox(Vgs − Vth) and that N0kF /kB is a function of the vertical electric field
Eox in the gate, the threshold voltage shift during a single stress period that lasts for the time
period t can be estimated [126]. It holds with n = 1/4 that:

∆Vth(t) = A
(

(1 + ε) tox +
√
DH(t)

)2n
A =

q

Cox

((
K exp

(
Eox
E0

))2

Cox(Vgs − Vth)

)1/(2n) (2.8)

Here, K and E0 are technology dependent parameters that describe the relation between the
charge density P and the electric field.

Accordingly, if at time t0 a threshold voltage shift of ∆Vth(t0) exists, the shift at time t can
be calculated as follows:

∆Vth(t) =
(
A1/(2n)

√
DH

(√
t−
√
t0

)
+ ∆Vth(t0)

1/(2n)
)2n

. (2.9)

Recovery Phase:
During the recovery phase, as the transistor is OFF, no holes are present to create new interface
traps. However, the hydrogen species can diffuse back to the interface and anneal existing
traps. This back-diffusion process and with it the number of annealed traps NA

IT can be
mathematically expressed as:

NA
IT (t) ≈

(
ξ1tox +

√
ξ2DH(t− t1)

)
NH . (2.10)

ξ1 and ξ2 are the back-diffusion constants, te is a technology dependent parameter and t1 is the
point in time at which the recovery phase started. Combining this equation with Equation (2.6)
it follows that

NA
IT (t) ≈ NIT (t)

(
ξ1tox +

√
ξ2DH(t− t1)

(1 + ε)tox +
√
DHt

)
. (2.11)
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By knowing that the total number of interface traps at time t is computed according to

NIT (t) = NIT (t1)−NA
IT , (2.12)

the overall threshold voltage shift at time t after a recovery phase that started at time t1 can
be obtained as follows:

∆Vth(t) ≤ ∆Vth(t1)

(
1−

ξ1tox +
√
ξ2DH(t− t1)

2tox +
√
DHt

)
. (2.13)

Long-Term Dynamic Behavior:
Based on the models for the stress and recovery phases (Equation (2.9) and Equation (2.13)),
which were validated in [126, 129], the long-term dynamic effect of BTI on the threshold voltage
can be estimated. Such an estimation of the long-term behavior is required, as it is impossible
to use the independent stress and recovery models for high performance processors in which
the transistors undergo several billion stress and recovery periods within less than one hour.
For this estimation it is assumed that the total time t can be divided into stress-recovery cycles
with the length Tcyc (i.e. t = mTcyc). For each cycle, the duty cycle is δ ≤ 1. Thus, after l
cycles it holds:

∆Vth,s,l =

(
A1/(2n)

√
DH

(√
δTcyc + (l − 1)Tcyc −

√
(l − 1)Tcyc

)
+ ∆V

1/(2n)
th,r,l−1

)2n

(2.14)

∆Vth,r,l ≤ ∆Vth,s,l

(
1−

ξ1tox +
√
ξ2DH(1− δ)Tcyc

2tox +
√
DH lTcyc

)
(2.15)

In this regard, Vth,s,l is the threshold voltage shift after the l-th stress cycle and similarly, Vth,r,l
is the corresponding Vth shift after the following recovery phase. Moreover, since δ ≤ 1 an upper
bound for Equation (2.15) can be obtained using the inequality

√
δ + (l − 1)−

√
l − 1 ≤

√
δ:

∆Vth,s,l ≤
(
A1/(2n)

√
DH

√
δTcyc + ∆V

1/(2n)
th,r,l−1

)2n
(2.16)

Using the Equation (2.16) and Equation (2.15) iteratively, it follows that:

∆Vth,s,l+1 ≤
(
A1/nDHδTcyc

)n( l∑
i=1

(
l∏

j=l−i+1

β
1/(2n)
j

))2n

βj = 1−
ξ1tox +

√
ξ2DH(1− δ)Tcyc

2tox +
√
DHjTcyc

(2.17)

For this equation an upper bound can be obtained by using the fact that βj1 ≤ βj2 ≤ 1 for
j1 ≤ j2. This upper bound is of the form:

∆Vth,s,l+1 ≤

(√
A1/nDHδTcyc

(
l∑

i=1

(
β
1/(2n)
l

)i))2n

(2.18)

Finally, by employing the inequality for the geometric progression
l∑

i=1

(
β
1/(2n)
l

)i
a closed form

to estimate the threshold voltage shift at time t can be obtained:

∆Vth(t) ≤ ABTI

( √
DHδTcyc

1− β1/(2n)(t)

)2n

β(t) = 1−
ξ1tox +

√
ξ2DH(1− δ)Tcyc

2tox +
√
DHt

.

(2.19)
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∆Vth(t) ≤ ABTI

( √
DHδTcyc

1− β1/(2n)(t)

)2n

Long-term BTI model for the Vth shift
β(t) = 1−

ξ1tox +
√
ξ2DH(1− δ)Tcyc

2tox +
√
DHt

ABTI =
q

Cox

((
K exp

(
Eox

E0

))2

Cox(Vgs − Vth)

)1/(2n)

n = 0.25

δ = stress time to total time Duty Cycle
DH = γe−Ea/kT

Diffusion constant
γ = 108, Ea = 0.13 eV, k = 8.6174 · 10−5 eV/K
ξ1 = 1.8, ξ2 = 0.5 Back-diffusion constants
tox = 2.2 nm for PMOS, 2.0nm for NMOS Oxide thickness
q = 1.602 · 10−19 C Elementary charge

Cox = t−1
ox · 3.45 · 10−22 F/nm Oxide capacitance

Eox =
Vgs−Vth,0

tox
Electric field

E0 = 0.335V/nm Constant
Vth,0 = 0.317V for PMOS, 0.271V for NMOS Default threshold voltage

Tcyc
stress-recovery cycle time
(often clock frequency)

T Temperature
K Electric field influence

Table 2.1.: Summary of the BTI model employed in this thesis (parameters are obtained from the TSMC
65nm general purpose library and [61, 126])

This upper bound for the long-term threshold voltage shift was validated against real data
in [129] and is used in this thesis as BTI model, since it is capable to capture the duty cycle
influence as well as the impact of temperature and supply voltage very well. Moreover, together
with the power model in Equation (2.1), this BTI model allows to estimate the long-term delay
degradation due to BTI. Therefore, Table 2.1 summarizes the most important facts and presents
the constant parameter values based on the TSMC 65nm general purpose library. This setup
is used throughout this thesis. Please note that we used n = 1/4 which is valid for diffusion
processes that are dominated by free hydrogen atoms. If H2 is more important the final model
and its derivation is still valid, however in this case n = 1/6 [126].

It is important to note that the influence of the electric field K is a kind of proportionality
constant in the BTI model. Since its exact influence can only be determined experimentally,
we set K in such a way, that under worst-case conditions, i.e. permanent stress and high
temperature (100 ◦C), the delay degradation is at most 10% after 3 years. As laid out in [55, 56]
this assumption is very reasonable for recent technology nodes.

Furthermore, please note that due to changing technologies and new insights about BTI,
the model may change in future. Nevertheless, the techniques and methodologies developed
and presented in this thesis will still be valid and can be employed for aging mitigation. This is
due to the fact that the proposed approaches are not based on the fundamental transistor-level
models rather than on the observation, that transistors become slower over time due to stress,
elevated temperature or high supply voltage. Thus, with new models, the exact numbers may
change, but the overall approaches will still hold.

2.3.2. Hot Carrier Injection

Physical Mechanisms of HCI

Beside BTI also Hot Carrier Injection (HCI), which is often referred to as Channel Hot Carrier
(CHC) effect, is a critical reliability threat in nanoscale CMOS technology nodes [54]. As the
name suggests, the origin of HCI are “hot” charge carriers that travel through the transistor
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Gate Gate-OxideCarrier
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Channel
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Figure 2.13.: Physical mechanism of HCI including impact ionization and charge injection when the
transistor is in the saturation regime

channel. In this regard, “hot” refers to the high kinetic energy of the carriers that is built up
due to the strong electric field in and around the channel. If these hot carriers gain enough
energy, while traveling through the channel, they can be injected into the gate oxide, or can
collide with silicon atoms which can result in an impact ionization creating secondary particles
(electron-hole pairs) as illustrated in Figure 2.13. In both cases, charges can be injected into
the gate oxide which degrades the important device characteristics, especially the threshold
voltage Vth [43, 51, 53, 54]. Thus, the degradation is directly associated to the strength of
the electric field, i.e. the stronger the electric field along the channel, the faster the transistor
degrades. This accelerating electric field is related to the potential between drain and source
(VDS). When the transistor operates in its linear regime (VDS < VGS − Vth), the channel
electric field is very small and thus hot carriers are not of importance. However, when the
transistor operates in the saturation mode (VDS > VGS − Vth), i.e. the channel is pinched off
(see Figure 2.13), the electric field is very strong and consequently carriers can be injected into
the gate oxide or can ionize silicon atoms around the pinch-off point, causing an irreversible
degradation of the affected transistor [43, 55, 130]. In this regard, the degradation rate strongly
depends on the temperature and supply voltage, as depicted in Figure 2.14.

Although HCI affects both NMOS and PMOS transistors, its impact on NMOS transistors
is observed to be considerably more severe [54, 132, 133]. In fact, HCI for PMOS transistors is
negligible compared to the effect of BTI [133]. The exact reason for this huge difference between
NMOS and PMOS transistors is still under discussion, however it seems that – maybe due to
the higher mobility of electrons compared to holes – in NMOS transistors impact ionization
occurs much more often than in PMOS transistors and also the affected region around the
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Figure 2.14.: Illustration of the runtime, supply voltage (Vdd, i.e. electric field) and temperature impact
on HCI-induced Vth shift based on data presented in [131]
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pinch-off point is much wider [133]. Thus, in NMOS more secondary particles are injected into
the gate oxide, resulting in a stronger degradation.

It is important to note that HCI is not a new degradation mechanism that appeared recently.
Instead, HCI was already observed for NMOS transistors in the 1980s [51, 52, 107]. The reason
for this was the continuous downscaling of transistor dimensions, while the supply voltage
was not reduced at the same rate. Thus, the electric field in the channel became very high
which eventually resulted in hot charge carriers. From the nineties onwards, the supply voltage
started to drop considerably due to arising power and reliability constraints, and thus HCI was
less important. However, in recent technology nodes, supply voltage scaling came to an end,
as the threshold voltage could not be lowered anymore due to the increasing importance of
leakage power. Hence, the electric field is increasing again, and as a result HCI is becoming an
important reliability threat [54].

Modeling the Vth shift due to HCI

Similar to the long-term BTI model, we will introduce in this section a long-term model for
HCI that describes the induced threshold voltage shift over a long period of time (i.e. more
than a few seconds).

As pointed out in the previous discussion about the physical processes of HCI, hot carriers
are mostly created when the transistor is in the saturation region. In CMOS, this happens
only during transitions of the corresponding gate output [130]. Thus, the number of charges
trapped in the gate oxide and accordingly the induced threshold voltage shift, is a function
of the number of transitions Ntrans. As laid out in [51], this relation is sub-linear with an
exponent of 0.5 for the long-term behavior. Hence, it follows:

∆Vth(t) ∼
√
Ntrans(t) (2.20)

The number of transitions in the time period t can be approximated by

Ntrans(t) ≈ α · f · t, (2.21)

where α is the average switching activity of the gate output per clock cycle and f is the clock
frequency of the circuit.

Moreover, it is shown in [54] that the threshold voltage shift has an exponential relation
to the temperature T , which – similar to BTI – originates from the diffusion process of the
charges in the gate oxide (see Equation (2.5)). Thus,

∆Vth(t) ∼ exp

(
−Ea
kT

)
, (2.22)

where k is the Boltzmann constant and Ea the activation energy for the charge injection into
the gate oxide. As a consequence of this relationship, a high temperature accelerates the HCI-
induced threshold voltage degradation. In this regard it is important to note that in former
technology nodes (above 90 nm), this intuitive temperature relation (higher temperature means
more kinetic energy, and thus stronger degradation) was inverted, i.e. a high temperature
reduced the impact of HCI. This was due to the fact, that in old technology nodes the mean
free path8 of the hot carriers was shorter than the channel, while nowadays the channel is
shorter. Hence, by increasing the temperature, the mean free path increased and as a result
fewer collisions between the hot carriers and the silicon atoms occurred. This in turn reduced
the number of ionized atoms and free charges such that the threshold voltage shift at higher
temperature was smaller than at a lower temperature [54, 134].

8mean free path is the average distance traveled by a moving particle between successive impacts
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Finally, there is also an exponential dependency between the vertical electric field in the
transistor and the threshold voltage shift [51]:

∆Vth(t) ∼ exp
(
Eox
E1

)
, (2.23)

where E1 is a technology dependent constant. The reason for this dependency is similar to
BTI (see Equation (2.8)), i.e. ionization and injection rate are a function of the vertical electric
field.

Putting all these dependencies together results in the Vth shift model used in this thesis:

∆Vth ≈ AHCI · exp

(
Eox
E1

)
· exp

(
−Ea
kT

)
·
√
α · f · t. (2.24)

In the equation above, AHCI is a technology dependent constant, that describes among other
things the impact of the electric field along the channel [126]. However, as the exact value
of this constant is not known and can only be determined experimentally, we set AHCI in
such a way, that under worst-case conditions, i.e. α = 1 and high temperature (100 ◦C), the
delay degradation is at most 10% after 3 years. This assumption is very reasonable for recent
technology nodes, as laid out in [55]. The other parameters of the model are based on [126] as
well as the TSMC 65nm general purpose library, and are summarized in Table 2.2. Together
with the power law in Equation (2.1) this model allows us to model the HCI-induced delay
degradation of single transistors, gates and at higher abstraction-levels even entire logic blocks.

Please note that the different components of this model were validated for various technology
nodes [51, 52, 54, 126, 130, 131, 134]. However, due to rapidly changing technologies, it
can happen in future that some relations may change, as it happened in the past with the
temperature relation. Consequently, also the model has to be adjusted. Nevertheless, as long
as high temperature, high supply voltage and high switching activity accelerate the threshold
voltage shift due to HCI, all techniques proposed in this thesis can still be employed to alleviate
the impact of HCI, as these are based on the overall HCI trends and not on particular numbers.

2.3.3. Summary

In summary, both HCI and BTI degrade the threshold voltage of the affected transistors de-
pending on the transistor state (usage), supply voltage and temperature as summarized in
Table 2.3. In order to mitigate accelerated transistor aging, these parameters have to be ad-
dressed. This can be done at various abstraction levels, as motivated in the Introduction (→

∆Vth(t) ≈ AHCI · exp

(
Eox

E1

)
· exp

(
−Ea

kT

)
·
√
α · f · t Long-term HCI model for the Vth shift

Ea = 0.1 eV, k = 8.6174 · 10−5 eV/K Reaction/Diffusion constants
Eox =

Vgs−Vth,0

tox
Electric field

tox = 2.0 nm for NMOS Oxide thickness
Vth,0 = 0.271V for NMOS Default threshold voltage
E1 = 0.8 Technology dependent constant

T Temperature
α Switching activity of gate output
f Clock frequency of the microprocessor
AHCI Technology dependent constant

Table 2.2.: Summary of the HCI model employed in this thesis (parameters are obtained from the
TSMC 65nm general purpose library and [126])
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BTI HCI
Temperature (T ) exponential exponential
Frequency (f) - sublinear
Voltage (Vdd) exponential exponential

Exec. Time (t) sublinear sublinear
Usage (δ, α) sublinear sublinear

Table 2.3.: Impact of different parameters on BTI and HCI

Figure 1.4). For instance, temperature and supply voltage can be adjusted at runtime by em-
ploying dynamic voltage and frequency scaling techniques. At (micro)-architecture-level the
instruction scheduling can be adapted to reduce the stress time to alleviate BTI, or power and
clock-gating approaches can be employed to reduce the impact of HCI (lower switching activ-
ity) and BTI (longer recovery time). Therefore, in the following section, a general introduction
into the state of the art approaches is presented.

The overall relative delay degradation ∆reld at time t, which is referred to as aging rate, for
a single transistor considering both BTI and HCI can be estimated using Equation (2.1). It
follows that:

∆reld(t) =
d(t)

d(0)
=

(Vdd − Vth)σ

(Vdd − Vth −∆Vth(t))σ
=

(
1− ∆Vth(t)

Vdd − Vth

)−σ
, (2.25)

where ∆Vth(t) is the superposition of the shift due to BTI and that due to HCI.

2.4. State of the Art

In order to mitigate accelerated transistor aging, the microelectronic industry including Intel
[45, 124, 135], IBM [46], TSMC [44] and Globalfoundries [55] spends a great deal of effort
on finding new device technologies (e.g. material compounds) or improved manufacturing
processes that result in lower aging rates. Nevertheless, as laid out in various studies such
as [55–57], the gradual delay increase due to HCI and BTI in recent technology nodes can be
more than 10% in 3 years, and is likely to increase further with the next technology nodes [7]
(see Figure 1.3). Therefore, it is an absolute necessity to develop aging modeling and simulation
platforms to be able to analyze the long-term effect of accelerated transistor aging. Moreover,
efficient aging mitigation techniques have to be designed to lower the overall aging rate, and
thus, to allow reduced guardbands or longer lifetime results.

In this section, an overview of the state of the art on modeling and mitigation approaches
for accelerated transistor aging due to HCI and BTI is presented. In addition, for every aging
mitigation technique proposed in this thesis, a detailed comparison with related approaches
can be found in the corresponding chapter.

2.4.1. Modeling and Simulation

BTI Modeling Traditionally, most BTI modeling approaches focus on NBTI, since PBTI was
not an issue until the mid 2000s. In addition, PBTI in recent technology nodes is very similar
to NBTI as explained in Section 2.3.1, and consequently most of the NBTI models are also
applicable to evaluate the behavior of transistors under PBTI-induced degradation.

The simplest behavioral BTI model at transistor-level considers only static stress, which
means that the transistors are assumed to be continuously ON or OFF [48, 136]. However,
during the normal operation of a PMOS (or NMOS) transistor in a CMOS gate, the applied
gate bias switches between high and low voltages, and consequently stress phases alternate with
recovery periods. Because of that, static models tend to be too pessimistic and overestimate the
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real transistor degradation. As a result, it is important to analyze BTI under realistic dynamic
conditions (considering both stress and recovery phases). Therefore, various reaction-diffusion
based predictive models similar to the one presented in Section 2.3.1 were proposed to model
the long-term effect of NBTI [49, 129, 137, 138]. Although all of these models explain the BTI
phenomenon with the same physical process, all of them have unique features. For example,
some of these models can capture the influence of supply voltage and temperature as well as
the relation of NBTI with the oxide thickness, the diffusing species and other key design pa-
rameters [49, 138], while others just provide a simplified model [129]. Based on such an holistic
reaction-diffusion model, gate-level aging models were proposed in [139], which can accurately
capture the effect of NBTI on complete CMOS gates taking the stacking effect9 into account.
Beside the reaction-diffusion-based models, also some trapping/detrapping models were pre-
sented in [115, 140, 141], which explain the NBTI effect with trapping/detrapping processes
(see Section 2.3.1). Similar to the reaction-diffusion models also these models differ in the
number of accurately captured impact factors, e.g. temperature and supply voltage. Further-
more, as the trapping/detrapping process is probabilistic, i.e. the capture and emission times
of the different traps are randomly distributed, atomistic trap-based models were developed to
account for this variability [142]. These models can be used to analyze the effect of different
traps on the overall device degradation. However, due to the complexity of these stochastic
models, no (probabilistic) trapping/detrapping model at gate-level has been proposed, yet.

HCI Modeling The model diversity for HCI is considerably smaller compared to BTI, as the
physical origins are better understood. In [51, 130] the influence of runtime and switching
activity were investigated and accurate models to capture this relation were proposed. Fur-
thermore, the impact of the device temperature was described in [54, 55]. In addition, in [126]
a model was presented that accurately captures the impact of the electric fields. Since, all
of these models focus on particular aspects, a combined transistor-level is employed in this
thesis to form the basis of all studies, as explained in Section 2.3.2. A similar model for the
threshold voltage shift was also proposed in [78], however, an inaccurate switching activity
dependency was used. Similar to BTI, also HCI models have been abstracted from transistor-
to gate-level [139, 143].

A major challenge for modeling aging effects is the consideration of their interdependencies.
Although various HCI and BTI models were already proposed, the interdependencies of these
simultaneously occurring effects were mostly neglected. Instead, the different phenomena were
considered independently. To overcome this problem, a first step towards a combined aging
model for different physical processes was presented in [144]. In this work an approach from
device- to system-level was proposed which takes NBTI, PBTI and HCI into consideration.
Therefore, the device-level aging models were combined and abstracted to system-level failure
models for the case of SRAM cells.

High-Level Modeling & Simulation In order to simulate the long-term behavior of a micro-
processor, or in general a circuit, under accelerated transistor aging, pure gate-level simulations
are not sufficient, as workload-dependent factors such as temperature and usage (switching ac-
tivity and duty cycle) are not accurately captured. Therefore, circuit-level platforms were
proposed in [145–147] which rely on gate-level models, but use more realistic input data. Be-
cause of that, the simulation effort is very high, and thus the circuit behavior can be only
simulated for a very short period of time (typically a few million clock cycles). In addition,

9In a complex CMOS gate that consists of many serial and parallel transistors the aging rate of a single
transistors is not only dependent on the state of the affected transistor, but also on the states of the surrounding
transistors. This phenomenon is called stacking effect.
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these platforms require the analysis of a huge amount of data for large size circuits to extract
the degradation of each gate, which makes them often infeasible for the analysis of complete
microprocessors (see Section 3.4.4 for more details). Moreover, the impact of dynamic runtime
adaptation approaches can hardly be evaluated at this level. Therefore, cycle-accurate perfor-
mance simulators at system- and architecture-level such as gem5 [2] have to be employed with
which billions of clock cycles can be simulated. However, these platforms omit the low-level
behavior of a circuit and consequently the aging estimation at these levels is based on simplified
models [78, 148, 149]. For instance, at high abstraction levels (e.g. architecture-level) often the
combined effect of HCI and BTI is represented by a simple lifetime model considering only the
influence of temperature or supply voltage [71, 148–150] or a simple inverter chain is used to
mimic the underlying circuit behavior [78]. However, due to the strong simplifications of these
models, the results are often inaccurate [15] (see Section 3.2.4 for more details).

Summary In summary, a lot of research has been performed at transistor- and gate-level to
develop accurate behavioral aging models. However, these models are hardly applicable at
higher abstraction levels. Therefore, abstracted yet accurate models and cross-layer evaluation
platforms are necessary, which however are very rare. To close this gap, two novel cross-layer
analysis frameworks are proposed in this thesis. Moreover, accurate architectural aging models
are designed to allow a fast and accurate aging estimation in early design phases when no
circuit-level information is available.

2.4.2. Mitigation

To alleviate the effects of accelerated transistor aging such as a reduced operational lifetime,
several schemes and design techniques have been proposed. Since NBTI was considered for
a long time to be the most important issue [151], most of these techniques focus on NBTI.
However, as said before, the same approaches can be used to alleviate PBTI as well, or can
be extended to also address HCI. In general, all aging mitigation schemes can be split into
two major categories: Compensation and Reduction. The first class of techniques, tries to
compensate the delay degradation of logic circuits, while the second class of approaches tries
to reduce the overall aging rate. Nevertheless, the result for the entire system is in both cases a
better lifetime. In the following the most relevant approaches for each category are introduced.

Aging Compensation Techniques The key idea behind these approaches is not to primarily
address the actual aging rate of a gate, path, circuit or entire microprocessor. Instead, these
approaches aim at compensating the delay degradation by either adjusting the circuit design
or by adapting system parameters (e.g. supply voltage or frequency) at runtime. Therefore,
gate sizing techniques [59, 62] set a suitable size for each transistor proportional to its expected
probability of being stressed. In other words, gates with high aging rates are designed faster (i.e.
with larger transistors) and gates that wearout very slowly are designed with smaller transistors.
A similar idea is followed by threshold voltage tuning approaches [61] that reduce Vth for aging-
critical (i.e. high aging rate) transistors to make them faster. Another class of approaches also
employs this idea to re-organization circuit paths based on their aging criticality [63]. Therefore,
these techniques try to design aging-critical paths with more slack, while non-critical paths are
designed with less slack. In all of these schemes the actual aging rate of a gate or path
is not considerably affected, however, since the critical components have more timing slack,
the overall lifetime is improved. Furthermore, there are body biasing [68] and supply voltage
tuning [71, 75] approaches which compensate the aging-induced delay degradation by adjusting
the body voltage or the supply voltage. For this purpose, these techniques are combined with
monitoring circuits [58, 152] to continuously track the delay of the circuit or aging prediction
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approaches. Based on the measured or predicted value, the operating voltage is adjusted in an
reactive manner such that the circuit can meet the timing constraints for the next time period.

Aging Reduction Techniques In contrast to the aging compensation techniques, the aging
reduction approaches aim at directly reducing the aging rate of gates, paths or entire processors,
and by that means try to improve the overall lifetime. The authors in [64] proposed a circuit-
level technique based on power gating to reduce the power consumption and the NBTI effect,
since power gated transistors are in the recovery mode. However, power gating techniques
become less effective when the idle time of a circuit is not long enough or could not be predicted,
as a result of the long wake-up latency [15]. A second circuit-level approach named “Input
Vector Control” (IVC) uses the fact that the input vector of a circuit can be used to control
the status (stress, recovery) of a PMOS transistor. Hence, NBTI can be alleviated by assigning
a suitable input vector, when the circuit does not perform any operation (standby mode) [65].
Similarly, “internal node control” can be employed to address NBTI [67]. The difference of
this approach compared to IVC is that additional controlling elements are added to the circuit
to be able to change to state of particular gates and transistors. The idea of controlling the
circuit inputs was extended in [145] to microarchitecture-level, by designing an NBTI-aware
NOP (no-operation) instruction10 that replaces the default NOP, and thus reduces the wearout
in functional units. Furthermore, a stacking-based pin reordering technique at circuit-level was
proposed in [61] to reduce the overall circuit degradation due to NBTI. This approach uses the
fact that transistors inside a gate can be re-ordered under certain constraints without changing
the gate output. Moreover, as the transistor duty cycles inside a gate are not balanced, the
transistors can be re-ordered such that the overall NBTI-induced degradation is reduced. This
concept was extended to consider HCI-induced wearout as well in [143].

At architecture-level, it was proposed in [11] to balance the stress and recovery time of
transistors by periodically inverting the instruction opcodes and operands. Consequently, the
transistor duty cycles are likely to be around 0.5, and thus it is avoided that particular de-
vices suffer from high NBTI-induced aging rates (i.e. high duty cycle). Similarly, various
techniques address NBTI-induced wearout in memory elements, by employing low-cost cell-
flipping schemes [153, 154]. Furthermore, aging-aware instruction scheduling techniques were
proposed [77]. These try to balance the workloads among all available functional units, to
balance their delay degradation. The authors in [78] suggested to even employ an aging-aware
task scheduling in combination with voltage scaling to balance the aging rates due to NBTI and
HCI of different cores in a multiprocessor environment. Beside these “static” techniques, where
all decisions are taken during the design phase of the microprocessor, there are also dynamic
aging mitigation techniques that adjust the system at runtime. For instance, in [155] a runtime
methodology was proposed to adapt frequency, supply voltage and body bias at runtime to
maximize the average performance or improve the energy efficiency, while maintaining a given
lifetime target. Finally, also at application-level aging mitigation can be performed. Therefore,
in [156] an NBTI-aware OpenMP-based programming approach was presented to increase the
recovery time of the cores with the highest aging rates.

In addition to these “direct” aging mitigation schemes, also all methodologies that aim at
reducing the overall temperature such as thermal and power management schemes improve
the microprocessor lifetime, since BTI and HCI are thermally accelerated effects. In this
regard, various techniques were proposed that address different microprocessor parts [157–
162]. However, it is important to note that it is not mandatory to reduce temperature or power
to improve the microprocessor lifetime. This is due to the fact, that also other parameters have
a strong influence on the wearout rate.

10A NOP instruction is a no-operation instruction, i.e. an instruction that effectively does nothing at all
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Summary In summary, similar to the aging modeling approaches, a lot of research has been
performed at low abstraction levels. In contrast, only very few techniques make use of knobs
available at microarchitecture-level and above. However, also these higher abstraction levels
have a considerable impact on the overall aging rate, and thus on the microprocessor lifetime.
Therefore, this thesis proposes four novel aging mitigation approaches that utilize such knobs.
Moreover, all of the proposed solutions exploit information of several abstraction layers, i.e.
these are cross-layer solution. As we will show later, this allows a more effective co-optimization
of lifetime, performance, energy consumption and cost, compared to traditional design solutions
that focus on a single layer only.

2.4.3. Error detection and correction schemes

Although this thesis aims at extending the lifetime of microprocessors by alleviating the issue
of accelerated transistor aging, it is impossible to completely avoid that timing violations will
occur at some point. As explained in Section 2.2, this eventually leads to erroneous data and
system failures. To reduce the failure rate, classical fault tolerance approaches based on error
detection and correction schemes can be employed.

Traditional fault tolerance approaches to protect computer systems employ temporal or spa-
cial (in form of additional hardware) redundancy. Among these, Dual Modular Redundancy
(DMR) and Triple Modular Redundancy (TMR) are very well known approaches [163]. More-
over, for memory components, parity bits or Error Correction Codes (ECC) can be employed
to detect and correct erroneous bits. In addition, Razor-like [164, 165] flipflops can be used
instead of traditional flipflops to detect and correct timing errors. Moreover, with DIVA [166]
and Argus [167], two further error detection techniques for the instruction pipeline of a micro-
processor were proposed. DIVA is an online checker component inserted into the commit stage
of the instruction pipeline, which continuously validates the computation, communication and
controls exercised in a complex microprocessor core. The Argus technique continuously checks
invariants to detect execution errors. Another resilient processor is developed by Intel [168]
which employs several resiliency features to detect and correct errors. These include error-
detection techniques as well as tunable replica circuits. An instruction-replay technique is used
for correction of erroneous instructions. In this regard it is important to note that classical
replay mechanisms for error correction cannot be applied to cope with aging-induced errors.
This is due to the fact that once timing violations lead to errors, these errors have to be con-
sidered as permanent, i.e. whenever the same input combination (e.g. instruction + operands)
is applied under the same conditions, the circuit output will be erroneous. Hence, if a replay
scheme is employed, the circuit conditions have to be adapted, for instance by lowering the
clock frequency. Beside these hardware-based approaches, also software-based, or algorithm-
based fault tolerance (ABFT) techniques can be employed [169]. The main idea behind ABFT
is that algorithms are designed in such a way, that they can tolerate errors. Therefore, various
works have been published up until now that are intended for mathematical operations such as
matrix-matrix multiplications [169–172], complete mathematical solvers for partial differential
equations [173] and even cryptographic algorithms [174].
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CHAPTER

THREE

CROSS-LAYER AGING MODELING AND ANALYSIS FRAMEWORKS

In this chapter, we introduce the two cross-layer aging modeling and analysis frameworks
which we developed to evaluate aging and aging-influencing parameters at different abstraction
levels. At first, we give an overview about these frameworks, their purposes and differences,
and afterwards both multi-purpose platforms are discussed independently. In this regard, we
put a special focus on the employed and abstracted transistor aging models. Furthermore, an
experimental platform using real processors is introduced that enables us to demonstrate the
feasibility of various solutions with experimental data.

3.1. Overview

In order to model and evaluate accelerated transistor aging at higher abstraction levels (above
circuit-level), and to explore the design space with various constraints including aging miti-
gation approaches, a holistic cross-layer aging analysis framework is required, as only such a
framework allows to accurately analyze performance, temperature, power and aging under the
influence of realistic applications. For this purpose, two platforms for different purposes were
developed in the scope of this thesis. The first one is an architectural framework, which can
be used, when detailed circuit-level information is not required or not available. For instance,
this is the case in early phases of the design process during which a good approximation of the
impact of accelerated transistor aging is sufficient. The other platform is a microarchitectural
framework at Register-Transfer-Level (RTL), which is intended for investigations that rely on
circuit- and gate-level knowledge. As a result, this framework allows an accurate and detailed
aging analysis.

The architectural framework called ExtraTime is based on the cycle-accurate performance
simulator gem5 [2], that allows to run a complete computing system including an operating
system (OS). In addition, we integrated appropriate power and temperature models, as well as
novel (micro)-architectural aging models. This enables a runtime analysis of power, tempera-

ExtraTime RTL-Platform
Cross-Layer

Simulation Speed
Flexibility

Dynamic Runtime Adaptation
Aging Accuracy

Area/Power Evaluation
Performance Evaluation

Table 3.1.: Comparison of the two different cross-layer platforms developed in the scope of this thesis
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ExtraTime
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Figure 3.1.: Abstraction levels covered by ExtraTime and the RTL-Platform

ture and wearout, which makes the investigation of cross-layer and dynamic runtime adaptation
techniques possible. Moreover, since the entire framework including the models for the micro-
processor are written in C++, it is very flexible, i.e. design space exploration is easy. Also
the simulation speed of this framework is very high as shown in Table 3.1, and because of that
several billion clock cycles can be simulated and analyzed within a few hours.

The RTL-framework is based on standard industrial design tools from the electronic design
automation (EDA) process such as synthesis tools1 and circuit simulators2 together with gate-
level aging models. It is capable of analyzing all internal signals as well as gates, and it also
considers the interplay of workloads, aging, power and temperature. Hence, this platform allows
a very accurate analysis of aging, power and area cost. However, the flexibility compared to
ExtraTime is significantly reduced and the simulation speed is rather low (only a few million
clock cycles can be simulated within a few hours). In addition, the influence of the operating
system and the firmware can hardly be captured as shown in Figure 3.1.

In summary, the ExtraTime platform is intended for design space exploration at architecture-
level and above, that requires a fast and simplified aging estimation with reasonable accuracy.
In contrast, the RTL-framework also accurately considers the circuit- and gate-level influence,
and hence allows a very accurate aging estimation, however at the cost of a reduced flexibility.
Thus, ExtraTime can be used in early design phases to allow the design of aging-aware micro-
processors, while the RTL-framework is employed in later phases to fine-tune the design. In
the following both platforms are introduced and discussed in detail. In Section 3.2, ExtraTime
is presented and Section 3.4 focuses on the RTL-platform. In addition, in Section 3.3 our
experimental platform based on the ExtraTime models, but using real processors, is presented.

3.2. ExtraTime: Modeling and Analysis of Transistor Aging at
Architecture-Level

The objective of the ExtraTime framework is to model and analyze wearout due to transistor
aging at architecture-level without requiring detailed transistor- or circuit-level information.
Hence, the aging rate of each architectural component has to be estimated using only pa-
rameters known at this abstraction level. In this regard, architectural blocks are for example
the instruction fetch unit, the different functional units such as ALUs and FPUs, the branch
predictor, or the caches. Therefore, novel aging models are required. These were developed

1A synthesis tool transforms the behavioral RTL description of a circuit to a gate-level netlist.
2A circuit simulator is used to simulate the signal behavior inside a circuit under a sequence of input stimuli.
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Figure 3.2.: Gem5 performance simulator platform with a single core configuration

in the scope of this thesis and are an essential part of ExtraTime. In this section we present
this platform as well as the aging models in detail. Moreover, at the end a comparison with
state-of-the-art modeling and simulation approaches is presented.

3.2.1. Overview and Introduction of the Basic Components

The basis of our ExtraTime framework is the gem5 performance simulator [2] that includes con-
figurable models for various microarchitectures ranging from simple 5-stage in-order pipelines
to complex out-of-order architectures. Moreover, it supports a diversity of instruction sets
(e.g. x86, alpha, power, ARM, SPARC), and it allows to run a Linux-based operating system
on top of the modeled computing system (microprocessor, main memory, hard disk, network
interface). In addition, almost every setup parameter such as memory sizes, memory latencies,
number of functional units and their latencies, clock frequency and pipeline width3 can be con-
figured by the user. For this thesis, we picked the alpha instruction set and the cycle-accurate
model for the 7-stage out-of-order, superscalar architecture, which is based on the Alpha 21264
core [84]. Nevertheless, the modeling and analysis infrastructure is not tight to this particular
configuration, and can be used with any other setup requiring only small code modifications.
Moreover, we modified gem5 to support various clock- and power gating strategies [15], several
instruction scheduling policies [15] and dynamic voltage and frequency scaling (DVFS). Among
the scheduling techniques is also the one presented in Chapter 5, and the DVFS approach is
discussed in Chapter 7.

As the illustration in Figure 3.2 shows, the gem5 simulator delivers detailed information
about the performance statistics of the modeled processor, while executing an application (e.g.
a SPEC benchmark). This output contains, among other information, data about the hit and
miss rates of caches, the usage of functional units, or the number of committed instructions.
However, this information alone is not enough to accurately estimate the aging rates of differ-
ent architectural components, since accelerated transistor aging is strongly dependent on the
temperature. Thus, sophisticated architectural temperature models are required. Moreover,
since temperature is correlated with the power consumption, also detailed models for the power
consumption are needed. In this thesis, we use a customized version of McPAT [5] to obtain the
dynamic and static power consumption of all architectural components and the corresponding
temperature model is based on HotSpot [3].

McPAT is a power and area modeling framework that was validated using several modern
microprocessors [5] such as an ARM Cortex A9 with out-of-order execution or an Intel Atom
with an in-order instruction pipeline. Also our own data, extracted with the experimental
platform detailed in Section 3.3, shows the accuracy of McPAT compared to real measured

3The width of an instruction pipeline describes how many instructions can be fetched, decoded or committed
in parallel.
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data. As depicted in Figure 3.3, it uses a cross-layer abstraction approach from transistor-
to architecture-level to obtain the size as well as the static and dynamic power consumption
for each architectural component inside a microprocessor. Therefore, technology data (Vdd,
Vth, feature size, etc.) based on the ITRS roadmap [10] for technology nodes ranging from
90 nm to 22 nm is employed to estimate the power consumption and size for various gate
types (inverter, NAND, NOR, etc.). This information is then abstracted in several steps using
architecture models for the basic microprocessor components (execution units, pipeline stages,
caches, registers, etc.) to calculate the results for complete architectural blocks. Depending
on the regularity of the block under investigation, this process is either performed analytically
(e.g. for regular caches) or with the help of empirical data (e.g. for irregular functional units).
Finally, the performance data delivered by a performance simulator is used to obtain the overall
activity of a particular component for the last evaluation period. By that means, the average
dynamic and static power consumption of this block for the corresponding time period can
be estimated. In order to use McPAT as part of the ExtraTime framework and not as a
standalone tool, several enhancements were made, such that the power model now supports
dynamic adjustments of frequency and supply voltage at runtime as well as clock and power
gating. Moreover, to integrate it into the gem5 simulator, we modified the code structure in such
a way, that parameter changes do not require a time consuming reconfiguration of the cross-
layer power models, which is the case for the original standalone version. Therefore, the models
were updated according to the Equations (3.1) and (3.2) to take temperature T , frequency f
or supply voltage Vdd changes into account [175] without requiring a re-initialization. As a
result, the simulation time is improved by one to several orders of magnitude, depending on
how often the power consumption is evaluated (in this thesis power is usually evaluated every
1µs to 1ms).

Pdynamic ∼ f · V 2
dd (3.1)

Pstatic ∼ Vdd ·
(
aT 2 · exp(

αVdd + β

T
) + b · exp (γVdd + δ)

)
(3.2)

The (constant) fitting parameters a, b, α, β, γ, δ that describe the temperature and voltage
impact on the static power were extracted using McPAT’s default static power model.

HotSpot is an accurate compact thermal model validated against various FPGA-based de-
signs. Its accuracy is also underlined by our own experimental data obtained with the exper-
imental platform described in Section 3.3. In HotSpot, the thermal behavior of architectural
components and their thermal interaction is modeled with an equivalent circuit of resistances
and capacitances. This is possible due to the duality between heat flow and electrical cur-
rent [176], i.e. the heat flow passing through a thermal resistance is equivalent to an electrical
current through an electrical resistance (R). Moreover, the potential (voltage) of a node corre-
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Figure 3.3.: Overview of the McPAT power and area modeling framework
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sponds to its temperature. In addition, heat absorbing materials (e.g. a cooler) are modeled as
thermal capacitances which can be translated to electrical capacitances (C). By that means, the
thermal modeling problem is translated to an electrical RC problem in which the heat source
is replaced with a current source, as illustrated in Figure 3.4. Therefore, the current value for
each component is computed using the power data delivered by a power model. Beside this
power trace, HotSpot also requires a floorplan (layout) of the microprocessors as input, which
contains the size of each architectural component and shows which components are neighbors
to model the thermal interactions accurately. Moreover, HotSpot also considers the influence
of essential aspects of the thermal package (thermal resistance of the package, heatspreader,
PCB material, etc.) on the temperature distribution.

As part of the ExtraTime framework, the temperature model is used to obtain the maximum,
minimum and average temperature within a given time interval for each architectural compo-
nent. This temperature information in conjunction with information about the usage/activity
of different architectural blocks is used by our proposed architectural aging models, to estimate
the aging rates and lifetime for each microprocessor component. Therefore, the aging models
(which are explained in the next subsection), the power model and the temperature model are
integrated in one common framework (no more standalone tools) considering their interdepen-
dencies (e.g. power affects temperature, which in turn affects power), as shown in Figure 3.5.
As a result of this design, ExtraTime is capable of analyzing the impact of various knobs at dif-
ferent abstraction levels ranging from architecture-level up to application-level on performance,
power and in particular aging. In addition, it enables a runtime analysis of power, temper-
ature and wearout, which makes the investigation of dynamic runtime adaptation techniques
possible (see Section 3.2.4 for more details). Because of that, ExtraTime models a dependable
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Figure 3.5.: Data flow in the proposed ExtraTime framework consisting of gem5, a power and temper-
ature model and novel aging models
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system, i.e. the microprocessor configuration can be adapted depending on the power, thermal
or wearout status.

Please note that in a real processor the models for power and temperature can be realized
by sensors. In this case, the aging rates can be either estimated using path delay sensors or
by employing analytical approaches (i.e. aging models) in hardware or software, depending on
the required accuracy, implementation overhead and runtime costs.

3.2.2. Aging Models at Architecture-Level

For our purpose, to model aging at architecture-level without having detailed transistor-level
implementations, it is necessary to use special models. In the following we introduce these
models and explain how these are derived from transistor-level models.

Definition of an Aging Metric

As the first step to build the architectural aging models, the definition of a suitable metric to
estimate aging is necessary. For this purpose, we use the relative delay change ∆reldB (see
Section 2.3.3) of an architectural block B at time t > t0 induced by aged transistors, which is
defined as:

∆reldB(t) =
dB(t)

dB(t0)
. (3.3)

The delay of a block always depends on its circuit layout (i.e. the number, size and type of
transistors in the critical paths, the delay of the transistors, etc.). However, this information is
usually not available at architecture-level, e.g. in early phases of the microprocessor develop-
ment the RTL- or transistor-level circuit description is not available. Hence, in order to build
architectural aging models some assumptions of the underlying hardware layout are necessary.
Therefore, for a start, we assume that all transistors in one architectural block behave similar,
i.e. age at the same rate. This means that all transistors inside one architectural block can be
represented by one single transistor T (representative transistor). By that means, ∆reldB of a
block can be estimated by the relative delay change of the representative transistor ∆reldTB of
this block, i.e:

∆reldB ≈ ∆reldTB . (3.4)

With the relation between ∆reld and ∆Vth given in Equation (2.25) the relative delay change
∆reldTB of the representative transistor of block B is:

∆reldTB (t) =

(
1− ∆Vth(t)

Vdd − Vth(t0)

)−σ
= f(∆Vth(t)). (3.5)

Since everything in this equation is constant in time (and known) except ∆Vth, only ∆Vth has
to be calculated to determine ∆reldTB . As it is explained in the following subsections, this can
be done using only architectural information and known constants. Thus, ∆reld of each block
can be obtained using only data which is known at architecture-level.

∆reldB ≈ ∆reldTB = f(∆Vth)
≈ f(g(parameters known at architecture-level)) (3.6)

The last equation is also the reason, why we have chosen the relative delay change as the
aging metric and not the total delay change (dB(t) − dB(t0)). While the former one can be
estimated using only architectural information, for the latter the original delay dB(t0) has to be
known, which is usually not the case at architecture-level. In addition, since ∆reldB(t = TTF)
exceeds the guardbands due to the TTF definition used in this thesis (see Section 2.2.1), also
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the TTF can be calculated as a function of ∆reldB. Therefore, since it is impossible to run
a simulation for tsim = TTF , the average degradation of the representative transistor during
the simulation time is calculated and then used to estimate the degradation for t > tsim (i.e.
extrapolated), by assuming that this average behavior is preserved for t > tsim. Consequently,
the average behavior of the block under investigation is considered to estimate TTF, and thus
the resulting value can also be used to represent the MTTF of this block.

Bias Temperature Instability

The goal in the following is to estimate the Vth shift of the representative transistor TB of an
architectural block B due to BTI by using only architectural information.

Except the transistor dependent temperature T and duty cycle δ, all parameters of the
transistor-level aging model (see Table 2.1) for BTI are known at architecture-level. Hence,
only these two variables have to be attained. Since our first-order assumption is that all
transistors in one architectural block behave similar, they have the same temperature (as the
whole block) TB, which is the maximum temperature of this particular block given by the
temperature model of ExtraTime. By that means, also TB has this temperature. In order to
estimate the duty cycle δ of TB (ratio between the time the transistor is under stress and total
time) at architecture-level, the duty cycle δB of the block B is used, which represents the usage
behavior of the block. Therefore, the stress time of block B is defined as the time in which at
least one transistor inside this block can be under stress:

δB =
tstress,B
ttotal

=
#cycstress,B
#cyctotal

(3.7)

Thus, the newly defined architectural duty cycle δB of an entire block can be derived from
parameters delivered by a performance simulator (total cycle count = #cyctotal, number of
stress cycles = #cycstess,B). If power gating is used, the number of stress cycles can be easily
calculated using the following relation (number of power gated cycles = #cycpg,B):

#cycstess,B = #cyctotal −#cycpg,B. (3.8)

Otherwise, if power gating is not used, in all cycles at least one transistor can be under stress,
and consequently δB = 1 in this case.

Putting all this together and using δB as an estimation for the duty cycle of the representative
transistor TB leads to a first-order upper bound estimation at architecture-level for the Vth shift
of TB due to BTI:

∆1stVth(t) ≤ ABTI

(√
DH(TB) · δB · Tcyc

1− β1/(2n)(δB, TB, t)

)2n

, (3.9)

whereby β, ABTI , Tcyc and DH are defined as in the transistor-level model (see Table 2.1), but
using the architectural values TB and δB instead of the transistor dependent ones (T , δ).

It is important to note that this BTI model delivers an upper bound for the real degradation.
This is due to the definition of the block duty cycle in Equation (3.7) which was a consequence
of the starting assumption that all transistors inside one block behave the same. In fact, in
typical workloads, the duty cycle of each transistor inside a block will be far less than the
duty cycle of the entire block. In other words, the assumption, that all transistors inside one
block have the same duty cycle as the block, is too pessimistic. Hence, the real Vth shift will
be smaller than the one calculated in Equation (3.9), which means that this equation is an
overestimation. To improve this first-order estimation, it is necessary, to take a look at circuit-
level. In a path inside a circuit, there are fast as well as slow gates, and there are gates with
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high aging rates as well as low aging rates. Hence, the idea to approximate the aging rate of a
path by averaging the aging rates of all gates is self-evident. This means:

∆reldpath(t) =
dpath(t)

dpath(0)
=

n∑
i=0

dgate,i(0)

dpath(0)
· dgate,i(t)
dgate,i(0)

≈ 1

n

n∑
i=0

dgate,i(t)

dgate,i(0)
(3.10)

Indeed, this is a good estimation (inaccuracy ≤ 3%), according to the simulations we performed
for various circuits and stress conditions (i.e. input patterns, temperature, etc.) using accurate
transistor-level models (see Section 3.2.3 for more details). However, at architecture-level
the aging rates as well as delays of gates and paths are not available, and thus, additional
simplifications are required to employ the approximation in Equation (3.10) at this abstraction
level. Therefore, the duty cycle of a transistor inside a block B is represented by the product of
the duty cycle of the block δB and the effective duty cycle δe. The latter is then assumed to be
uniformly distributed between 0 and 1. As a result, one can obtain a second-order estimation
for the Vth shift of the representative transistor, which corresponds to the “average” Vth shift
considering all transistors.

∆2ndVth(t) ≤
1∫

0

ABTI

(√
DH(TB) · δB · δe · Tcyc

1− β1/(2n)(δB · δe, TB, t)

)2n

dδe. (3.11)

Of course, this estimation is too optimistic for particular transistors inside the block, but
since we are interested in the Vth shift of the representative transistor, i.e. the delay change
of the entire architectural block rather than in the change of a single transistor, the “average”
Vth shift is a good estimation, as motivated before. We validated the accuracy of this high-
level BTI modeling approach in Section 3.2.3 with the result, that this model can estimate the
worst-case delay degradation very well, i.e. the relative inaccuracy is less than 5% compared
to a detailed transistor-level model. Hence, this equation forms our architectural BTI model
to estimate the Vth shift of the representative transistor TB, and together with Equation (3.5)
the aging rate of the component B.

Please note that the assumption of a uniform duty cycle distribution can be further op-
timized to be only partially uniform, if detailed knowledge about the underlying hardware
implementation is available. In this case, a partially weighted mean (integral) is used, where
the weights represent the occurrence probability of certain duty cycle ranges. As a result, also
other distributions such as normal or W-shape distributions (similar to Figure 4.8(b)) can be
modeled with this approach.

Hot Carrier Injection

As for BTI, the goal of the following part is to estimate the Vth shift of the representative
transistor TB due to HCI by using only architectural information.

The approach to transfer the transistor-level model for HCI in Equation (2.24) to architecture-
level is quite similar to the one used for BTI. Again, the problem is that the temperature T
corresponds to individual transistors and the activity factor α is also transistor-dependent.
Hence, as for BTI, the temperature TB of an entire architectural block B is used for all tran-
sistors inside this block. Since the activity factor of a transistor is the product of the activity
factor of this transistor, while the complete architectural block B is active (effective activity
factor αeff ), and the activity factor αB of the block itself, Equation (2.24) can be written as
follows:

∆Vth(t) = AHCI · exp

(
Eox
E1

)
· exp

(
−Ea
kTB

)
·
√
αB · αeff · f · t. (3.12)
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In this regard, a block is active, when at least one transistor inside this block is active (i.e it
can make a transition):

αB =
tactive,B
ttotal

=
cycactive,B
#cyctotal

(3.13)

As the equation above illustrates, the activity factor αB of a block can be calculated using only
parameters delivered by the performance simulator (total cycle count = #cyctotal, number of
active cycles = #cycactive,B). In case clock or power gating is available, the number of active
cycles of a block can be calculated using the following relation (number of power gated cycles
= #cycpg,B, number of clock gated cycles = #cyccg,B):

#cycactive,B = #cyctotal −#cycpg,B −#cyccg,B. (3.14)

Otherwise, if neither clock nor power gating are employed, at least one transistor inside the
block can switch and consequently, αB = 1.

With respect to the representative transistor, the effective activity factor αeff has a specific
meaning. It represents the average switching activity αavg,B of all gates in the architectural
block B. In worst case the average switching activity for the (near-)critical paths can be
1, according to our transistor-level investigations using SPEC2000 workloads. Hence, we use
the value of 1 for αavg,B to obtain the maximum Vth shift that can be induced by typical
applications. If detailed transistor-level information is available, this value can also be adjusted
to improve the accuracy of the estimation.

Thus, the HCI model at architecture-level and in this way the estimation of the Vth shift of
the representative transistor TB has the form:

∆Vth(t) ≤ AHCI ·
√
αavg,B · exp

(
Eox
E1

)
· exp

(
−Ea
kTB

)
·
√
αB · f · t, (3.15)

where the parameters AHCI , Eox, E1, Ea and k are defined in Table 2.2.
Similar to BTI-induced aging, Equation (3.5) and (3.15) enable us to also calculate the

∆reld due to HCI during runtime to determine the actual aging status. Since, the inaccuracy
of this high-level HCI model is less than 5% compared to a detailed transistor-level model, as
explained in the Section 3.2.3, we employ this model in ExtraTime.

3.2.3. Accuracy Analysis

As mentioned earlier, the abstraction of the aging models from transistor-level to architecture-
level has an impact on the estimation accuracy. The purpose in the following is to quantify
the amount of inaccuracy due to this abstraction.

Temperature

One major assumption of our proposed architectural aging models is that all transistors within
a block have the same temperature, which is equal to the maximum temperature of the block
obtained by the thermal model. Hence, the temperature gradient within a block is neglected.
Using ExtraTime we observed that the maximum temperature difference within one architec-
tural block is at most 6 ◦C for various SPEC2000 benchmarks simulated with the out-of-order
processor model of gem5. This is supported by experimental results using an IBM Power7+
system4 which features five digital temperature sensors per core [177]. For this machine the
maximum measured temperature difference for an entire core was 9 ◦C, while running the
SPEC2006 benchmark suite.

4System Configuration: IBM Power 720 with 4 Power7+-cores [8] running at 3.6GHz with 1.08Volt, manu-
factured in a 32 nm technology; 16GByte DDR3-RAM; Debian Wheezy Linux 3.2; SPEC2006 benchmark suite
compiled with GCC 4.6.3; Sensor readout performed with IBM’s Amester software.
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Temperature ∆reldALU after 3 years
due to BTI due to HCI

Minimum 71 ◦C 9.4% 8.5%
Maximum 77 ◦C 9.6% 8.9%

Relative Difference 2.1% 4.5%

Table 3.2.: Temperature effect on the aging-induced delay change for an ALU

Based on accurate transistor-level aging models for an ALU, the observed temperature
gradient translates to a difference in total delay of less than 1%, which is negligible. Also the
difference in terms of ∆reld is considerably small (< 5%), as shown Table 3.2. Hence, the
deviation of our architectural aging models, which use the maximum temperature per block,
compared to accurate transistor-level models is less than 5%, which is very good given the
level of abstraction.

Usage

Beside the assumption that all transistors have the same temperature, we also made an as-
sumption regarding the “usage” of the transistors in an architectural block, i.e. the time a
transistor is under stress (BTI) or the amount of transitions that occur (HCI).

For BTI we derived the “average” Vth shift given in Equation (3.11), to take into account
that different transistors in one block will have different stress times. We have validated this
approach using a detailed transistor-level model of an ALU by considering the influence of
different input vectors (i.e. different instruction opcodes and different operands) [65] and the
stacking effect [61]. Therefore, the ALU of the Illinois Verilog Model (IVM) [4], which is a
Verilog model of the Alpha 21264 core, was synthesized using the Synopsys Design Compiler
and mapped to the SAED 90 nm standard cell library. Afterwards, for each instruction 10,000
random operands together with the instruction opcode were applied at the inputs of the ALU
to find out the duty cycle of each transistor in the 10% most critical paths. In the next
step, the delay change for each considered transistor was estimated using the transistor-level
model given in Table 2.1. Using these results, the overall delay change for the entire ALU was
calculated. For a runtime of three years under a constant temperature of 70 ◦C, this accurate
transistor-level approach estimates the maximum ∆reldALU (maximum over all input vectors)
to be 9.7%. Using our architectural BTI model the ∆reldALU is estimated to be 9.4% under
the same conditions (i.e. temperature, supply voltage, etc.). Hence, as given in Table 3.3, our
model is just 3% off. This shows that our architectural aging model for BTI comes with a
reasonable accuracy given the level of abstraction, but in addition architectural investigations
are possible.

Please note that investigating the maximum ∆reldALU is sufficient here, since the maximum
delay degradation that can occur matters most, i.e. it does not matter how many input
combinations are working, as long as one can lead to a timing failure, the entire system can
fail. Furthermore, as mentioned in Section 3.2.2, the accuracy of our architectural model for
BTI can be improved, if detailed knowledge about the underlying hardware implementation is
available.

∆reldALU after 3 years
BTI HCI

Detailed Transistor-Level Model (Max) 9.7% 8.4%
Proposed Architectural Model 9.4% 8.4%

Relative Difference 3.1% 0.0%

Table 3.3.: Difference between a detailed transistor-level model and the proposed architectural models
regarding the estimate delay for an ALU after 3 years
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For HCI the accuracy investigation is very similar. The only difference is, that pairs of
input combinations have to be investigated, in order to obtain the switching behavior of the
circuit. The results are even better, showing that also the model for HCI comes with a satisfying
accuracy for the estimation of the maximum degradation with respect to the level of abstraction.

In summary, both architectural models are reasonable accurate and are based on simplifica-
tions that are typical for this abstraction level (e.g. McPAT uses similar simplifications). Thus,
these models allow a fast, yet accurate aging estimation without requiring detailed circuit- or
even transistor-level knowledge. Because of that, these models can be employed in early design
phases and allow comprehensive aging-aware microprocessor designs.

3.2.4. Comparison with State of the Art Approches

Beside the accurate aging models, ExtraTime possesses several other advantages compared to
state-of-the-art approaches at (micro)-architecture-level. In the following part the advantages
are explained and underlined with simulation data.

The major advantage of ExtraTime compared to other platforms such as [78, 146, 148,
149] is the usage of realistic high-level aging models that do not require detailed circuit-level
information. As a result, it can be used already in early design phases to allow a first order
aging analysis and design space exploration. In contrast, in [146] a circuit-level description of
the microprocessor is required, and in [78] an inverter chain is modeled to estimate the delay
degradation leading to non-realistic aging conditions. In addition, the aging models are often
too simplistic. For example, in [148, 149] the applied models do not consider usage at all,
meaning an architectural block has always the same aging rate, no matter if the block is used,
clock gated or power gated. Hence, these frameworks are not capable of accurately modeling
aging of modern microprocessors under varying applications. In [78] usage is taken into account,
but for HCI the usage dependency is considered to be linear. In fact, this relationship is
sublinear [51], which leads to overestimations. Another problem of some techniques is that
the temperature is estimated on a too coarse level, e.g. in [148] the highest temperature of
the entire microprocessor is used to estimate aging. Our experimental analysis shows that
this would lead to around 30% wearout-overestimation for the execution units of the processor
under investigation.

To increase the accuracy of the aging estimation we have extended the power model (based
on McPAT) in various areas. Our customized version uses the actual temperature of each
architectural block to estimate leakage power. Compared to the original version, in which
all blocks were assumed to have the same temperature, this is a huge benefit. This is also
a major lack in current solutions such as [78, 146, 148], where usually first the performance
simulation is accomplished, afterwards a power trace is created followed by a modeling of the
temperature behavior. Hence, an accurate coupling between temperature and power is missing
in most existing solutions. Thereby, our results obtained with the adjusted version of McPAT
show that a temperature difference of 10 degrees can impact leakage power by up to 50%, if
temperature increases by 30 degrees, leakage power can even increase by a factor of 3. Due
to the coupling between temperature and power, the increase in leakage power leads to an
increase in temperature, which can be up to 23 degrees (analysis based on HotSpot) in the
latter case. If power and temperature are considered independently, the increase in leakage
power and its impact on temperature is neglected. For this reason, it is very important, to
consider the tight coupling between temperature and power, in order to obtain accurate power,
temperature results, which are necessary to accurately estimate aging.

Another advantage of our approach is the integration of all models in one common frame-
work. In order to allow dynamic runtime adaption based on the current state (temperature,
power, aging, performance) of the microprocessor, it is necessary to calculate the power con-
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Figure 3.6.: Layout of an Intel Core i5 3rd gen (complete processor and single core) taken from [24, 178]

sumption, temperature or wearout every X cycles while the simulation is running (online)
rather than only once after the simulation is done (offline). Transferring the necessary data
every X cycles among standalone (offline) solutions can result in considerable performance
overhead (up to 25%) and huge data storage overhead (up to 25x). In summary, the only vi-
able solution to accurately investigate wearout, temperature, and power including the runtime
behavior of the executed applications is the integration of the necessary models in one holistic
framework. In fact, this is missing in all previously published techniques, which have their
focus on (micro)-architectural solutions. ExtraTime closes this gap.

However, the advantage that ExtraTime omits detailed low-level information makes it hard
to evaluate the circuit-level implications of potential aging mitigation techniques with this
framework. For this purpose, we developed the already mentioned RTL-platform, which is
presented in Section 3.4.

3.3. ExtraTime in a real system

Beside the pure simulation framework ExtraTime, we also built a real hardware platform based
on Intel’s Core-i-microprocessors. For this purpose, this hardware platform reuses ExtraTime’s
power and thermal models which are calibrated using a single available on-chip sensor for
power and temperature, respectively. As a result, this framework allows us to extract power
and thermal information with a high spacial and temporal resolution, while the microprocessor
executes real workloads, although the available sensors only report aggregated values (e.g.
combined power consumption of all cores). Hence, this platform enables us to demonstrate the
feasibility of various approaches with experimental data (performance, power and temperature).

3.3.1. Description and Explanation of the Hardware Platform

The hardware platform is built around Intel’s Core-i-processors [85] (e.g. Intel Core i5-2400
or Core i5-3450) and as operating system Ubuntu Linux 64-bit is employed. The processors
feature up to four superscalar out-of-order cores that can execute up to two threads per core,
an integrated DVFS controller, memory controller and graphics, as depicted in Figure 3.6.
Furthermore, these processors have built-in sensors to monitor the average power consumption
of the last millisecond as well as a diversity of Digital Thermal Sensors (DTSs) that can be
accessed via Special Purpose Registers (SPRs) [179]. However, the power sensors can only
obtain the combined power consumption of all cores as well as the complete package, and as
a user one has also only access to the maximum temperature value of each core. Hence, the
available information is rather coarse-grained, which does not allow an accurate power, thermal
or aging estimation for different (micro)-architectural components.
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Special Purpose Registers (SPRs) Functionality Monitored Component
L2_TRANS_ALL_X L2 operations with X=Read/Write/Total L2Cache, DCache

UOPS_DISPATCHED_PORT_X Dispatched instructions at port X Exec, LSU, Reg, Scheduler
INSTS_RETIRED.ANY Retired instructions Fetch, Retire

CPU_CLK_UNHALTED_* Active cycles of the entire core Overall core
BR_*_ALL_BRANCHES Executed/Mispredicted branches Branch Predictor

MEM_UOPS_RETIRED_X Retired operations with X=Load/Store LSU, TLB, DCache
IDQ_MITE_ALL_UOPS Decoded micro-instructions ICache, Fetch, Decode, ROB
FP_COMP_OPS_EXE.* Computational scalar FP operations Exec

SIMD_FP_256.* Vector operations Exec

Table 3.4.: Employed SPRs for the proposed power estimation (here for Intel processors)

Therefore, we implemented ExtraTime’s power and thermal model in the form of kernel
modules to have a higher spacial resolution, i.e. information for each (micro)-architectural
block of the employed microprocessor. The input to the power model is performance data
(like in ExtraTime), which is gained from the available performance counters and SPRs [179].
For the Intel-based system we use, the SPRs detailed in Table 3.4 are accessed to extract the
necessary information. The access is performed by self-written C++-routines that use the
/dev/cpu/CPUNUM/msr interface of modern Linux kernels to read the SPR data. As a result,
the time required to gather all data and estimate the power consumption of all components
within a single core takes less than 50µs for an Intel Core i5-2400 in one estimation step.

The power estimation results are directly fed to the thermal model, which uses HotSpot’s
block-model to extract the temperature for each microarchitectural component based on the
layout shown in Figure 3.6. The block-model is employed, since it allows a very fast estimation
(less than 1ms) and is almost as accurate as the much slower grid-model (temperature difference
is less than 1 ◦C). As a result, the power and thermal model allow to obtain high-resolution
results very frequently, i.e. the access frequency can be up to 1 kHz.

In addition, both models will feature a self-calibration mechanism, i.e. the available power
and thermal sensors are employed to improve the accuracy of the power and temperature
models. This is of great importance, as nowadays, due to extensive process variation, every
manufactured processors behaves slightly different [180]. However, the software-based power
and thermal models only reflect the “average” behavior. Therefore, a calibration is required to
enhance the model accuracy. In case of our Intel-based experimental platform the access to the
sensors can be performed using the SPRs MSR_PP0_ENERGY_STATUS and IA32_THERM_STATUS.
The first one delivers the combined power consumption of all cores including their L1- and
L2-caches, while the second register contains the maximum per-core temperature.

The first observations made with this setup for an Intel Core i5-35405 and Core i5-24006

are very interesting. First of all, we already implemented the calibration feature for the power
model, and as a result the estimation inaccuracy for the combined power consumption is less
than 1% (over the SPEC2006 benchmark suite) w.r.t the readout of the available power sensor,
as depicted in Figure 3.7. Moreover, even without calibration the power model shows the correct
power trend during the execution of an application. In addition, frequency and voltage changes
due to the DVFS feature of these processors are accurately captured as shown in Figure 3.8(a).
As a result, the high resolution of ExtaTime’s power model allows deep insights in the power
consumption behavior of a microprocessor (see Figure 3.8(b)), which cannot be obtained with a
single sensor or with simple linear regression models that are often proposed in literature [177,
181–187] (see Figure 3.7(a)). In addition, this information can be exploited to predict thermal
hotspots more accurately compared to only a few DTSs that monitor only a few components.
For instance, as depicted in Figure 3.9 which was obtained with the thermal model using fine-
grained power data, for some application sequences the ALUs have a higher temperature than

5Intel Core i5-3450: 22 nm, 1.6GHz–3.1GHz, 0.88V–1.07V, DVFS and all sleep modes activated
6Intel Core i5-2400: 32 nm, 1.6GHz–3.1GHz, 1.06V–1.22V, DVFS and all sleep modes activated
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Figure 3.7.: Power consumption of the SPEC2006 gcc benchmark running on all cores for two different
processors (measured=sensor readout)
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Figure 3.8.: Power consumption of two different applications for the Intel Core i5-3450 (mea-
sured=sensor readout)
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Figure 3.9.: Temperature trace for two applications running on all cores for the Intel Core i5-3450
(measure=sensor readout representing maximum temperature)

the FPUs (Floating Point Units), while it is the other way around for other sequences. Thus,
if only one sensor is placed in the execution units (as it is typically the case [188, 189]), the
hottest component might not be monitored, which can affect reliability. Consequently, this
fine-grained power and thermal information helps to improve the microprocessor reliability.
Furthermore, Figure 3.9 shows also that the thermal model of ExtraTime can capture the
temperature behavior of a real processor very well. Hence, in summary, the power and thermal
model of ExtraTime are capable to accurately reflect the behavior of a real processor executing
real workloads, and consequently these models are a good choice for our simulation setup that
is used to evaluate various aging mitigation approaches.
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3.4. Modeling and Analysis of Transistor Aging at
Register-Transfer-Level

While the objective of ExtraTime is to allow a fast “first-order” aging prediction at high ab-
straction levels, the objective of the RTL-platform is to obtain a very accurate aging estimation
taking also circuit- and gate-level information into account. In addition, this framework should
also be able to capture the application and (micro)-architecture influence on aging to achieve
a realistic aging estimation. Therefore, we developed a novel RTL-based aging analysis frame-
work that relies on standard industrial design tools in combination with accurate gate-level
aging models. In this section, we present this RTL-platform including its aging models in
detail. Furthermore, the differences to other low-level frameworks are discussed.

3.4.1. Overview and Introduction of the Basic Components

As discussed in Section 2.3 the aging rates of transistors strongly depend on their duty cycles
and switching activities. Moreover, these values influence the power consumption of the mi-
croprocessor and hence the temperature distribution, which in turn also affects the aging rate
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Figure 3.10.: Basic components of the RTL aging evaluation platform
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of the transistors. Hence, it is very important for an accurate aging estimation, to precisely
calculate these values. Therefore, a gate-level description of the design under investigation
(e.g. a pipeline stage or an ALU) is necessary, to monitor all signals, while the circuit (e.g.
processor) executes representative workloads (applications).

Hence, the first step within the RTL-framework, depicted in Figure 3.10, is to generate
a gate-level description (netlist) of the design under investigation (DUI) using a standard
synthesis software (e.g. Synopsys Design Compiler). During this step, also the fresh, not-
yet aged circuit and gate delays are extracted and stored in form of a Standard Delay Format
(SDF) file7 (see Figure 3.11). In addition, the circuit description is stored using an intermediate
representation format (DDC file), that contains all information about the circuit required for
the power estimation or timing analysis steps.

Afterwards, the netlist of the DUI is used by a place-and-route software (e.g. Cadence
SoC Encounter) to obtain the design layout which is required for an accurate thermal profile
estimation. In parallel, the chosen workload is transformed to a testbench for the DUI, i.e. the
workload is simulated and the primary input behavior of the DUI is extracted and then used
to generate a testbench.

As a next step, the gate-level description of the DUI is used together with the testbench
to simulate the circuit behavior, when the design executes a representative workload. During
this logic simulation (e.g. performed with Cadence NCSim), the behavior of all internal signals
is obtained and stored in a Switching Activity Interchange Format (SAIF) file, which contains
the switching activity as well as the signal probability8 for each signal in the design. This SAIF
file is then used by a power analysis tool (e.g. Synopsys PrimeTime) together with the DDC
description of the DUI to annotate the design with the extracted signal behavior9 in order to
obtain the power consumption for each (sub)-block of the DUI10. Afterwards, the results are
given to a temperature model (e.g. HotSpot [3]), which calculates the temperature for each
block. Since, the temperature of a block strongly depends on the temperature of its surrounding
blocks, the temperature model has to consider the layout of the entire design.

The following step is to extract the delay degradation of the DUI. Therefore, the temperature
information and the SAIF file are given to an aging estimation tool, which was developed in
the scope of this thesis and is described in more detail in the next subsection. This tool
accurately calculates the delay degradation for each gate in the DUI after a given amount
of time, and generates an “aged” SDF file containing the degraded gate delays. Finally, this
“aged” SDF is read by the synthesis tool, the design is annotated accordingly11 and a new
timing analysis is performed to extract the aged circuit delay. Together with the information

module ALU(
input ...
output ... );
reg [31:0] result;
always@(*)
begin:Operation
...;

end

endmodule

RTL Design
module ALU(
input ...
output ...
wire ...
NAND U1(...)
NOR U2(...)
INV U3(...)
...

endmodule

Netlist
(delayfile
(design "ALU"
(...
(cell
(celltype "INV")
(instance U3)
(delay
((0.12) (0.17))

rise fall
)

))))

SDF
(saiffile
(instance "ALU"
(...
(instance "INV"U3
(in
(T0 0) (T1 100)
(TX 0) (TC 1)

T0: time in = 0
TC: toggle count

)
(...)

))))

SAIF

Figure 3.11.: Illustration of inputs and intermediate outputs of the RTL-platform

7Using Synopsys Design Compiler the corresponding commands are: report_timing and write_sdf
8Signal probability is the probability of a signal having the logic value ’1’
9Using Synopsys tools the corresponding command is read_saif
10Using Synopsys tools the corresponding command is report_power
11Using Synopsys tools the corresponding command is read_sdf
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Synthesis + Timing Estimation Synopsys Design Compiler D-2010.03-SP4
Synthesis Library TSMC 65nm General Purpose Library

Simulation + SAIF-Generation Cadence NCSim 12.10-s005
Power Extraction Synopsys PrimeTime D-2010.03-SP4

Temperature Extraction HotSpot 5.02 [3]
Aging Analysis Self-Developed C++-Tool

Table 3.5.: Tools employed in the RTL aging estimation framework

about the most critical path at design time and the given clock period the delay degradation
as well as the MTTF for the DUI can be estimated. In this regard it is important to note that
the timing analysis of the synthesis tool considers all possible paths, and thus the extracted
delay information is very accurate. In contrast, many other aging estimation approaches (see
Section 3.4.4) evaluate only a subset of potentially critical paths. However, since real designs
are very balanced, several million paths can have almost the same delay [63], which makes
these approaches almost intractable and less accurate.

Please note that the described cross-layer platform (gate- to application-level influences are
visible) can be used with any synthesis, power estimation or temperature model. For this
thesis, we used the tools described in Table 3.5. Moreover, as this framework requires an RTL
design of a microprocessor that can execute real workloads, we have chosen the FabScalar
microprocessor [1] (academic superscalar processor with configurable out-of-order instruction
pipeline) and OpenSPARC T1 [6] (industrial processor with an in-order, 6-stage pipeline that
features 4-way simultaneous multithreading). Both processors are synthesizable and include
frameworks to execute real applications, i.e. the testbench generation is automatically han-
dled by the opensource frameworks that come along with the microprocessor RTL description.
Moreover, it is important to note that the simulation speed of the logic simulator is rather
low, which means that only a few million clock cycles can be simulated within a few hours.
Consequently, only short periods of applications and not their complete execution time can be
simulated. Therefore, the influence of the operating system is not considered in this framework,
whereas it is part of ExtraTime.

3.4.2. Aging Analysis Tool

Our developed aging analysis tool estimates the delay degradation for each gate in the circuit
under investigation. As the first step, the SAIF file is parsed and for each gate the input
signal probabilities and the input switching activities are gathered. Afterwards, the effective
duty cycle and switching activity for each transistor in each gate is calculated considering the
stacking effect12. For this purpose, the accurate modeling approach proposed in [143] is used,
according to which all transistor stacks are divided into serial transistor connections (STCs)
and parallel transistor connections (PTCs). As a result, the following rules can be derived:

• In an STC, a transistor is ON, if either all upper transistors in the STC are ON, or if at
least one lower transistor in the STC is OFF.

• In an STC, a transistor can make a transition, if either all lower transistors in the STC
are ON, or if at least one upper transistor in the STC is OFF.

• In a PTC, the ON- or OFF-state of a transistor as well as the possibility of a transition
is independent from the other transistors in the PTC.

Based on these rules, which were validated and shown to be accurate in [143], the effective duty
cycle and switching activity for each transistor can be derived, as the example in Figure 3.12
illustrates. By that means, the threshold voltage shift due to BTI and HCI for each transistor

12The stacking effect means that the duty cycle (switching activity) of a transistor depends not only on its
own state, but also on the position inside the transistor stack and the states of the other transistors
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Figure 3.12.: Illustration of the employed aging modeling approach

after a given amount of time taged (e.g. 3 years) can be obtained considering the circuit temper-
ature according to the transistor-level models detailed in Table 2.1 and Table 2.2. Therefore,
similar to the approach in ExtraTime (see Section 3.2.2), the average transistor behavior ob-
served during the simulation time is assumed to be preserved for taged. In other words, the
simulation time is extrapolated to taged. Finally, with this information, the delay degradation
(rise and fall delay) of the entire gate can be extracted. In this regard it is important to note
that NBTI affects the rise delay as explained in Section 2.1 and HCI as well as PBTI contribute
to the degradation of the fall delay.

Having the delay degradation for all gates, an “aged” SDF is generated by the aging analysis
tool. Therefore, the default SDF with “fresh” delays is parsed, all delays are adjusted according
to the obtained relative degradation data (daged = ∆reld · dfresh), and finally an updated SDF
is written back. Afterwards, the “aged” SDF is read by a synthesis tool and a timing analysis is
performed to obtain the overall delay degradation of the entire circuit after taged as well as its
TTF (by sweeping taged). Since the TTF is extracted based on the average circuit behavior, as
just explained, the MTTF (i.e. lifetime) can be also represented by this value. Consequently,
in this thesis, the MTTF stands for the expected time until the delay of a circuit exceeds its
guardband (timing violations start to appear) for a given application.

3.4.3. Enhancements

Since the RTL-framework is based on commercial, highly optimized design tools, the runtime
for the different steps except the logic simulation is very small. For example, the entire flow,
starting with a behavioral RTL description of a load-store-unit with more than 50,000 gates
requires less than 10minutes (for synthesis, power estimation, thermal profiling, aging estima-
tion and timing analysis) without the logic simulation step. However, the runtime of the logic
simulation can be easily more than an hour for designs of such a size for a simulation time
of 106 clock cycles. Thus, the overall runtime for the aging estimation flow is dominated by
the time required to perform post-synthesis simulations for a sufficiently large number of clock
cycles. In this subsection we will discuss two possibilities to eliminate these costly simulations
and how the accuracy of the aging estimation is impacted using these techniques.

Since the post-synthesis simulations are performed to extract the (average) signal properties
over a long period of time, the first approach is to use a default annotation (e.g. δ = 0.5,
α = 0.01) for all primary inputs of the DUI and to propagate these information through the
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remaining design to get the signal properties for all internal signals. In contrast, the second
technique uses the real signal properties for all primary inputs, outputs and flipflops (extracted
during higher-level, pre-synthesis simulation steps) and propagates these information through
the remaining design. In both ways, the costly post-synthesis simulations can be avoided
and the synthesis tool can be used to perform the signal property propagation to extract a
SAIF file for the entire design13. However, the cost for the speedup are inaccurate signal
properties compared to post-synthesis simulations as the signal property propagation is never
100% accurate [190]. As a result, the aging estimation using these two techniques will be
inaccurate. In fact, as shown in Figure 3.13, the inaccuracy for the first approach can reach
almost 6% in case of the FabScalar microprocessor which corresponds to an inaccuracy of
more than 10x in terms of MTTF. This also shows how important it is to accurately capture
the workload influence (i.e. to have a cross-layer solution), since not representative data can
lead to huge over- or underestimations of the microprocessor lifetime. In contrast, the second
approach is much more accurate (less than 1% deviation), which is due to the fact, that real
data is used to annotate the design. Therefore, this approach can be chosen whenever some
small inaccuracy is acceptable or post-synthesis simulations are not feasible.

Please note that the high-level simulations, that are necessary for the second technique,
are always performed during the typical design-flow and hence do not need to be conducted
additionally. For example, during the design of a new microarchitecture or the verification
of a behavioral RTL model such simulations are performed. Hence, no additional runtime is
required, only the necessary data needs to be stored for the future.

3.4.4. Comparison with other Low-Level Platforms

Beside our cross-layer RTL-platform, there are also various other low-level aging evaluation
platforms available in literature. However, many of them are incapable of handling real work-

13Using Synopsys tools the corresponding command is write_saif -propagated
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loads and are intended to be used in combination with artificial (very often random) input
combinations [63, 191, 192]. Hence, investigations of application-level effects is impossible with
these frameworks.

Another challenge of many approaches is that only a set of potentially critical paths is
considered during the analysis (path-based14 platforms) [146, 191, 192]. However, as shown
in Chapter 4 and in [49, 63] the critical path changes over time due to aging. As a result,
the path-based approaches are always likely to be inaccurate or a huge number of paths (in
complex designs more than 108 paths according to [63]) has to be considered, which leads to long
evaluation times. Thus, for realistic designs, path-based approaches are intractable. Instead,
block-based15 approaches such as the one proposed in [63] or those employed by commercial
synthesis tools (that are used by our framework) are favorable, since these consider all possible
paths. In addition, since the number of nodes is considerably smaller than the number of paths,
the block-based techniques are much faster than path-based solutions.

Moreover, various platforms do not use SAIF files to store and evaluate the signal probabili-
ties and switching activities. Instead, Value Change Dump (VCD) files are generated [191, 193].
In a VCD file the exact signal behavior over time is captured, e.g. when a signal makes a tran-
sition from ’1’ to ’0’ or vice versa an entry is generated in the VCD file. As a result, these
files consume a lot of memory (several GByte), if more than a few thousand clock cycles are
simulated. In addition, the analysis of a VCD is very time consuming, which considerably in-
creases the runtime of the power and aging estimation steps. As a consequence, the evaluation
of the mentioned load-store-unit requires several hours instead of a few minutes required by
our platform due to the usage of SAIF files.

In summary, our RTL platform is capable of executing real workloads and accurately ana-
lyzing transistor aging at gate-level in a block-based manner. Nevertheless, the runtime of a
complete aging evaluation phase is still acceptable. Both aspects together make our platform
favorable over all previously mentioned frameworks.

3.5. Summary

In this chapter, we presented two cross-layer multi-objective aging analysis frameworks and
an experimental platform to support simulation data with real experimental results. The first
cross-layer framework is the architectural platform ExtraTime which is built on top of a perfor-
mance simulation. Furthermore, it employs power, thermal and aging models at architecture-
level. Hence, this platform can be used, when detailed circuit-level information is not required
or not available. The second aging analysis platform is an RTL-framework, that is designed for
investigations that require detailed circuit- and gate-level information. Therefore, it makes use
of standard industrial electronic design tools and accurate gate-level aging models. As a result,
this framework allows an accurate and detailed aging analysis. The experimental platform
is built around a real hardware system that incorporates high-resolution power and thermal
models to accurately monitor the power consumption and temperature of various microarchi-
tectural microprocessor components. By that means, it enables us to perform detailed power
and thermal evaluations of real microprocessors.

14A path-based timing analysis sums all gate delays along specified paths for a given set of paths. At the
end, the maximum of all path delays corresponds to the worst-case circuit delay, if the right paths were selected.

15A block-based timing analysis calculates the signal arrival times for each node working forward through the
circuit. At the end, the maximum of all primary output and flipflop arrival times corresponds to the worst-case
circuit delay.

52



Part III.
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OVERVIEW

As described previously in this thesis, accelerated transistor aging due to BTI and HCI signifi-
cantly impairs the microprocessors lifetime. Therefore, efficient aging mitigation techniques are
required to tackle this challenge, and by that means to co-optimize lifetime (i.e. MTTF), per-
formance, power (energy) and cost. Since transistor aging leads to the challenge of constantly
changing system conditions, both design time and runtime schemes based on sense-and-adapt as
well as prediction-based strategies are necessary to efficiently improve the system lifetime [83].
In this regard, the design time solutions have to consider lifetime as one optimization objective
and tune the design accordingly based on a given set of representative workload scenarios, while
the runtime techniques have to deal with the constantly changing conditions and adapt the
system to avoid critical states. Thus, the combination of both schemes enables effective and
holistic aging mitigation solutions. In this part of the thesis, four complementary cross-layer
aging mitigation approaches are proposed and analyzed using the previously introduced cross-
layer multi-objective frameworks. Each of them addresses different layers in the abstraction
stack and different microprocessor components as depicted in Figure 3.14.
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Figure 3.14.: Overview of the proposed aging mitigation techniques

At first, an aging-aware design methodology for instruction pipelines is proposed to improve
the overall lifetime of a microprocessor (Chapter 4). The idea behind this approach is to
balance the pipeline stage delays at the end of the desired lifetime rather than at design
time (traditional scheme), since the traditional approach leads to the problem that a single
pipeline stage limits the overall microprocessor lifetime and the operational clock frequency.
Hence, the remaining stages are overdesigned using the traditional design approach, which is
very inefficient. To perform the proposed aging-aware instruction pipeline optimization (at
microarchitecture-level), circuit-level modifications are mandatory and accurate application-
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level information is also required.
The second approach employs a special instruction scheduling technique to address the

degradation of execution units, which are one of the most aging-critical components in modern
microprocessors (Chapter 5). The novelty of this scheduling policy is that the timing-criticality
(i.e. how much slack each instruction has at circuit-level) is considered during the scheduling
process to reduce the workload of functional units that execute critical instructions. Hence,
their idle time increases which can be exploited to considerably improve the lifetime of the
functional units compared to non-cross-layer balanced scheduling approaches.

Beside the functional units also the decoding stages of the instruction pipeline can become
critical. To tackle this challenge, we propose an aging-aware instruction set encoding technique
in Chapter 6. The idea of this approach is based on the observation that the instruction opcodes
significantly affect the aging rates of the instruction decoders. Consequently, the instruction
opcodes are optimized to reduce the delay degradation of the decoding stages considering the
influence of different instructions as well as circuit-level implications.

Finally, a dynamic runtime adaptation technique is employed to proactively mitigate aging of
the entire microprocessor (Chapter 7). Therefore, an expert system is designed to continuously
monitor and analyze the system states in terms of performance, temperature, power and in
particular aging. Whenever the evaluation indicates a critical system trend, e.g. rapidly
increasing aging rates, the supply voltage and frequency are proactively adjusted to avoid
critical system states before these actually occur. In other words, this proactive DVFS policy is
a combination of sense-and-adapt and prediction-based approaches. For this purpose, various
parameters at (micro)-architecture-level up to application-level are monitored and also user
specific parameters are taken into consideration during the system adaptation process.
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CHAPTER

FOUR

AGING-AWARE DESIGN OF MICROPROCESSOR INSTRUCTION
PIPELINES

In this chapter, we present our novel approach for the design of an instruction pipeline. First,
we explain the problem of the traditional instruction pipeline design paradigm and motivate
why it should be replaced with our proposed aging-aware design methodology. Afterwards, we
present the key idea as well as the design solution itself. Next, we compare the envisioned
design solution with the traditional technique for two complementary microprocessors. These
comprehensive tests show that the novel design paradigm can considerably enhance the pro-
cessor lifetime compared to the standard design scheme, while the performance (i.e. clock
frequency) can be maintained. At the same time, area and power consumption are improved
as well. Finally, a summary of related work is provided followed by concluding remarks.

4.1. Problem Introduction and Motivation

Nowadays almost all microprocessors ranging from low-power embedded parts to high-perfor-
mance processors use a pipelined architecture to increase the instruction throughput and by
that means the performance [24]. To maximize the performance, designers follow the same
paradigm since the dawn of the first pipelined microprocessors: They try to balance all pipeline
stage delays at design time (called: delay-balanced pipeline). The advantage of this approach
was the combination of high throughput together with efficient energy and area usage. This was
due to the fact, that as long as a pipeline stage is faster than the slowest one (which determines
the clock frequency), it can be often made slower using gate sizing or higher threshold voltage
to save energy and die area [194, 195].

However, in nanoscale CMOS technologies, accelerated transistor aging due to BTI and
HCI leads to increasing path delays and so degrades pipeline stage delays during runtime.
Hence, nowadays the clock frequency of the shipped parts can no longer be set according to the
worst-case delay at design time (tdesign). Instead, manufacturers have to add safety margins
(guardbands) to their delay-balanced designs, to ensure that the chips will be functional for a
certain lifetime (ttarget). A major problem associated with this guardbanding technique is that
the aging rates vary widely among pipeline stages, due to different temperature and usage rates.
Hence, although the original pipeline was delay-balanced, after some operational runtime the
stage delays become highly imbalanced. This also affects the MTTF of different pipeline stages,
which vary tremendously. Thus, a single pipeline stage can limit the overall microprocessor
lifetime and performance, as the guardband and hence the clock frequency is mandated by the
slowest stage at ttarget.

To illustrate this circumstance, two microprocessors, namely FabScalar and OpenSPARC T1,
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Figure 4.1.: Delay at design time and after 3 years (normalized to worst case design time delay) and
MTTF for different pipeline stages for two processors designed according to the delay-
balanced paradigm

were analyzed. For this purpose, both processors were synthesized with the Synopsys Design
Compiler using the TSCM 65nm library and evaluated with the framework detailed in Sec-
tion 3.4. To achieve a lifetime of at least 3 years (= ttarget) a timing guardband of 10% was
employed. The results of this analysis, depicted in Figure 4.1, clearly show that different
pipeline stages have different wearout rates1. While the delay of FabScalar’s execution stage
increases by almost 10% within 3 years, the delay of the retire stage increases by less than 1%,
although their delays at design time were similar (≈ 1.35 ns). Moreover, at design time, the
load-store stage is the most critical pipeline stage, while after some operational time it is the
execution stage. Hence, the most critical stage (i.e. most critical path) can change over time.
In addition, also the imbalance in terms of MTTF can be huge. For instance, between the
execution stage of FabScalar, which starts to fail first, and the retire stage, there is a factor of
more than 20x difference. In fact, this is not a FabScalar specific issue, as similar results were
observed for OpenSPARC T1 (see Figure 4.1(b)). This means that one pipeline stage already
produces timing failures, while other stages are still operating correctly. Hence, the latter are
overdesigned (i.e. too fast). Consequently, slow-aging stages can have less slack2 to save area
and energy, while fast-aging stages should have more slack to improve the overall MTTF.

In summary, in nanoscale CMOS technology nodes a delay-balanced design is no longer
appropriate, as a single pipeline stage will limit the overall microprocessor lifetime and perfor-
mance. Instead, a new design methodology is required to balance the lifetime of all pipeline
stages and to co-optimize reliability, performance, power and area. For this purpose, we propose
a radically newMTTF-balanced pipeline design scheme to replace the traditional delay-balanced
paradigm. Using this paradigm, slow-aging stages have less slack compared to a delay-balanced
design to save area and energy, while fast-aging stages have more slack, to improve the overall
MTTF. As a result, the MTTF values of all pipeline stages are balanced, and as a direct con-
sequence, the stage delays are also balanced at ttarget rather than at tdesign. By that means,
the full optimization potential for MTTF, area, power and performance can be exploited.

1For other processor designs or other technology libraries Figure 4.1 might look different, i.e. other stages age
faster, have different MTTF values, etc. However, the overall observation of delay and MTTF imbalance after a
certain operational time remains valid (e.g. in [146] similar results were reported for the IVM microprocessor),
as also shown by the two complementary processors chosen for this study.

2Slack is the time difference between the signal arrival time and the clock edge (see Figure 2.3)
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4.2. Main Idea

As motivated before, the key idea of the MTTF-balanced design paradigm is to balance the
delay and MTTF of all pipeline stages at ttarget. In this regard, depending on the criticality of
different pipeline stages at ttarget, there are two possible optimization strategies:

• Stages that are faster (i.e. have more slack) than the critical stage after ttarget can be
designed slower (i.e. with less slack), by applying appropriate gate-sizing techniques,
using a higher threshold voltage, etc., leading to extra energy and area savings [194, 195].

• If a stage S1 degrades faster than the design-time-critical stage S0, it can be designed
faster (i.e. with more slack). This can be used in two different ways, both shown in
Figure 4.2, where the dotted line represents the slow-aging, design-time-critical stage and
the solid line, the fast-aging stage. First, the clock frequency (i.e. clock period) can be
kept constant, so that a better MTTF can be achieved (that means that ttarget can be
increased). In Figure 4.2 that means that the clock period remains at d′ and that the
target lifetime increases to ttarget. In the second case, the MTTF is kept constant (i.e.
equal to t′target), so that the clock period can be reduced (i.e. less guardband and hence
higher frequency, meaning higher performance). Using the annotations from Figure 4.2,
it means that the new clock period is d∗ < d′.

Depending on whether the first or second case is chosen as the optimization target, the
design should be balanced either at ttarget or t′target, respectively. Since both cases require
the same optimization process (once with ttarget and once with t′target as input), only the
first case is presented and analyzed in this thesis.

In summary, slow-aging stages should be designed with less slack (i.e. slower) to save area
and energy, while the timing slack for fast-aging stages should be increased (i.e. speed-up)
to improve their MTTF and in turn the MTTF of the entire microprocessor or the overall
performance (i.e. clock frequency). Thereby, the key design aspect is that the pipeline stage
delays should be balanced after the target lifetime and not at design time. Since this is not
achievable using the traditional delay-balanced design approach, we propose a new MTTF-
balanced pipeline design which will be explained in detail in the following section.
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Please note that it can happen that the design-time-critical stage is also the aging-critical
stage. In this case, which could not be observed for FabScalar and OpenSPARC T1, only
area and energy/power savings can be achieved using the MTTF-balanced design approach,
while the overall MTTF and performance remain the same as with the traditional delay-
balanced design paradigm. Nevertheless, since nowadays a majority of all systems is power
constrained [196], the MTTF-balanced design scheme is also favorable in this case.

4.3. Aging-Aware Pipeline Design Methodology

In order to apply this idea to real microprocessors the design flow needs to be adjusted. There-
fore, the flow to generate an MTTF-balanced pipeline is explained next. In this regard, for the
matter of simplicity, we will only refer to the targeted lifetime ttarget.

4.3.1. Generation of an MTTF-balanced Pipeline Design

The transformation flow, detailed in Algorithm 4.1, is a multi-purpose flow that can be used
for various optimization objectives such as getting the best MTTF, while maintaining a given
clock frequency or extracting a design that is as fast as possible for a given target lifetime
ttarget. The last case will be explained in detail now.

The starting point of the transformation process is a delay-balanced design, as it is used
nowadays (Step 1). Next, the delay, d∗, after the given target lifetime ttarget of the design-time-
critical stage is extracted using the flow presented in Chapter 3.4 (Step 2). Since this stage
cannot be designed any faster (otherwise it would not be critical at design time), the clock
period of the final MTTF-balanced pipeline cannot be smaller than this delay. Since the final
design should be as fast as possible, d∗ will work as a reference for the clock period.

The next step (Step 3) is to extract the delay di of each pipeline stage after ttarget and to
compare it with d∗. If the delay is smaller than d∗ (i.e. the stage is faster than necessary), a
new, slower version of this pipeline stage will be generated. Therefore, we adjust the timing
constraints for this pipeline stage and re-synthesize it. As the synthesis tool supports gate-
sizing, path reorganization and time borrowing, all these techniques will be applied in parallel
to optimize for delay, power and area efficiency. In addition, a higher threshold voltage can be
used as well [194, 195]. However, as a result it is possible that different pipeline stage designs
result in the same MTTF. In Section 4.3.2, we will explain how such scenarios are handled
and how finally one design is chosen. In case re-synthesis is not feasible, it is also possible to
modify only small sub-circuits or gates [197].

If the delay di is greater than d∗ (i.e. stage is slower than necessary), a new, faster version
(using gate sizing, etc.) will be generated. If this is not possible, the final design has to use a
clock frequency of at least di. Hence, d∗ will be increased and set to di. In that case Step 3
has to be restarted.

After all pipeline stages are analyzed and eventually modified, their new delay information
is extracted (Step 4). Here it is extremely important to investigate all stages together and
not only those that have been changed in Step 3. This is due to the fact that as long as one
stage is modified, the power consumption and thus the temperature distribution will change,
which can affect also the wearout and hence the delay of other stages. If it is detected in
Step 4 that a stage, which was previously faster than necessary, is now slower than necessary,
the changes leading to this situation will be reverted and the previous implementation will be
used. Since these situations are undesired, the delay differences between the new and the old
implementation should be very small (see Section 4.3.3 for more details).

If there is at least one modified stage remaining after Step 4, again Step 3 followed by Step 4
will be executed until no pipeline stage is modified anymore, i.e. until no stage can be tuned
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1. Generate a delay-balanced design
2. d∗ = delay at ttarget of stage, that is critical at tdesign
d
′
= delay at ttarget of stage, that is critical at ttarget

d̃ = given clock delay in case there is a clock target and no lifetime target
/* ⇒ clock period of delay-balanced design dclk = d′ > d∗ */

/* Start transformation procedure */
3. Forall stages i = 0, . . . , n do

Extract di = delay at ttarget of stage i
stageiold = current version of stage i
/* if stage is faster than necessary */
If (di < d∗) then

stageinew = new version of stageiold with more delay at tdesign
/* if stage is slower than necessary */
Elseif (di > d∗) then

stageinew = new version of stageiold with less delay at tdesign
/* if no (further) speedup is possible adjust d∗ */
If (stageinew == stageiold) then
d∗ = di
Goto 3. /*restart with new d∗*/

Endif
Else

stageinew = stageiold
Endif

End

/* Extract new delay information at ttarget using flow presented in Section 3.4*/
4. Forall stages i = 0, . . . , n do

Extract di,new = delay at ttarget of stageinew

/* if old version was faster and new version is slower take old one */
If (di,new > d∗) and (di < d∗) then

stageinew = stageiold
Endif

End

/* If no more modifications are possible, transformation is done */
5. Forall stages i = 0, . . . , n do

If (stageiold 6= stageinew) then
Goto 3. /* restart */

Endif
End

6. Done. /* generated MTTF-balanced design with dclk = d∗*/

Algorithm 4.1: Transformation of a delay-balanced design to an MTTF-balanced design

further. When this saturation state is reached, the transformation process is finished.
Please note that in some application areas it might be more important to minimize the

die area or energy consumption instead of performance (clock frequency). In that case, the
transformation procedure is very similar to the one explained before. The only difference is,
that d′ is used as reference delay in place of d∗. Hence, no stage will be accelerated. Instead, all
stages, beside the one that is critical at ttarget, will be designed slower, hence with less energy
and area consumption.

The flow can also accept a given clock target instead of a lifetime target to find the MTTF-
balanced design with the best MTTF. In this case d∗ is replaced with d̃ and ttarget is set
according to the lifetime of the design-time-critical stage given the delay target d̃. If during
the optimization phase a pipeline stage cannot satisfy the given clock target (slower than
necessary), ttarget will be reduced to the lifetime of this stage (instead of adjusting d∗ as shown
in Step 3) and the transformation process is restarted (see Step 3).
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slower than necessaryfaster than necessary Pipeline Stage

tighter timing constraints
———————————–
→ larger gates
→ lower Vth

→ time borrowing
→ path re-organization
———————————–
⇒ dfresh ↓
⇒ daged ↓
⇒ MTTF ↑
⇒ area ↑
⇒ energy ↑

relaxed timing constraints
———————————–
→ smaller gates
→ higher Vth

→ time borrowing
→ path re-organization
———————————–
⇒ dfresh ↑
⇒ daged ↑
⇒ MTTF ↓
⇒ area ↓
⇒ energy ↓

Figure 4.3.: Pipeline stage modification (faster/slower) required to generate a MTTF-balanced design

4.3.2. Modification (faster/slower) of a Pipeline Stage
A crucial part of the previously presented transformation flow is the modification of a pipeline
stage, i.e. the step to generate a faster or slower version of a pipeline stage. As already
mentioned, the synthesis tool is used for this purpose. Therefore, the timing constraints are
tightened or relaxed (e.g. by 1%) and then the pipeline stage is re-synthesized using the new
timing constraints, while all other constraints are kept the same. To match the new timing
constraints the synthesis tool applies gate-sizing (smaller gates for relaxed constraints, larger
gates for tighter constraints), path re-organization as well as time borrowing techniques and
also the transistor threshold voltage can be tuned (lower Vth for tighter constraints, higher Vth
for weaker constraints) as illustrated in Figure 4.3. Hence, there are many different ways to
obtain an optimized design, e.g. with and without Vth-tuning. As a consequence, it is possible
that there are several different designs for the same pipeline stage that have different delays at
tdesign but the same MTTF. For example, the Fetch stage of FabScalar can achieve a lifetime
of 7 years in two different ways: First, using the nominal Vth and a fresh delay of 1.38 ns, and
second with a higher Vth and a fresh delay of 1.40 ns (see Section 4.4 for more details). In such
scenarios it is of course the question, which design should be chosen for the final microprocessor.
Therefore, to select one “final” design, the other design parameters such as area and energy
consumption are consulted to co-optimize lifetime, performance area and energy/power. As
a result, the design with the best energy consumption or smallest area among all available
designs can be chosen. However, generating more versions of the same pipeline stage increases
the transformation time. Hence, the number of generated versions strongly depends on the
time budget of the manufacturer or designer.

4.3.3. Runtime Analysis and Improvements
The runtime for the transformation process from a delay-balanced to an MTTF-balanced
pipeline is proportional to the number of necessary iterations, i.e. the number of synthesis
steps and delay/MTTF estimation steps. Hence, to reduce runtime, the number of iterations
has to be reduced.

The simplest implementation of the transformation flow uses a fixed resolution to tighten
or relax the delay constraints in each iteration, as shown in Figure 4.4(a). However, such a
uniform step width can lead to a huge number of iterations until the final MTTF-balanced
implementation is found. For example, the delay constraint for FabScalar’s retire stage could
be relaxed by a total of 0.1 ns, which corresponds to at least 10 iterations considering all pipeline
stages, if a step width of 0.01 ns is used.
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dfresh daged dclk

aging rate slack

aging rate slack

aging rate slack

aging rate

Delay-Balanced

1. Iteration

2. Iteration
...

nth Iteration

(a) Transformation using a fixed step width

dfresh daged dclk

aging rate slack

aging rate

Delay-Balanced

1. Iteration

(b) Enhanced transformation using non-
uniform step widths

Figure 4.4.: Simple and enhanced transformation flow for a single pipeline stage (that can have weaker
timing constraints) from a delay-balanced to an MTTF-balanced design

To improve the runtime of the transformation process, we propose to use a non-uniform res-
olution as shown in Figure 4.4(b). We observed that tighter or weaker timing constraints have
only a limited effect on the delay degradation itself. For example, if the delay degradation of a
pipeline stage is roughly 9% after 3 years, the gate-level modifications to have a faster/slower
version of this stage do not affect this value very much. This is reasonable, since gate-sizing
or re-organization of only a few paths do not affect the majority of the internal signals, and
thus the aging rate is not significantly affected [63]. Hence, the aging rate of the original,
delay-balanced version of a pipeline stage can be used to estimate its design time delay (i.e.
timing constraints) for the MTTF-balanced version, according to the following equation:

dnewfresh = dclk · (
dorigaged

dorigfresh

)−1 =
dclk

wearout rate
, (4.1)

where dclk is the targeted clock period, dnewfresh and dorigfresh are the design time delays of the
modified and delay-balanced pipeline stage, respectively, and dorigaged is the aged delay at ttarget
of the delay-balanced version. Using this estimation, the timing constraints for re-synthesis are
set and the design is optimized accordingly. Afterwards, it is evaluated whether the new design
matches the MTTF-balanced criteria or not. In the latter case, the design is tuned further
using a fixed step size. By that means, it is possible to significantly reduce the number of
iterations. For example, in case of FabScalar the number of iterations is reduced from 10 to 3,
which corresponds to a runtime improvement of more than 3x.

Besides the number of iterations, also the runtime of a single iteration step is crucial for the
overall runtime. To keep this as low as possible, the pipeline stages are not fully (re-)synthesized
every time an optimization step is performed. Instead, an intermediate representation of the last
version is stored in form of a ddc-file (Synopsys database format), which is then used for further
optimizations. As the ddc-file contains already the gate-level design with all optimizations to
match the previously used timing constraints, the initial synthesis from a behavioral to a
gate-level description as well as basic optimization are avoided, which significantly reduces the
runtime. Overall these optimizations can reduce the runtime of a single iteration step to less
than 1 minute for a single pipeline stage, if the runtime for the aging estimation step is not
considered. Hence, the runtime for one transformation step is less than 10 minutes for the
entire FabScalar processor considering all 11 pipeline stages and even less than 5 minutes for
OpenSPARC T1, as OpenSPARC T1 has only 6 pipeline stages.
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FabScalar [1] OpenSPARC T1 [6]
Frequency 740 Mhz 1140 Mhz
Architecture out-of-order in-order

Pipeline Stages 11 6
Simultaneaous Multithreading (SMT) no 4-way

Frontend-Width (per Thread) 4 insts/cycle 1 inst/cycle
Exec. Units (ALU/MUL/AGEN) 1/1/1 1/1/1

Table 4.1.: Architecture comparison of FabScalar and OpenSPARC

The runtime required by the aging estimation step depends on the flow to obtain the aging
rates, as discussed in Section 3.4.1. If time consuming, but very accurate post-synthesis simu-
lations are employed, the runtime for this step can easily exceed several hours (for simulating
106 cycles). However, if pre-synthesis simulations are used in combination with signal property
propagation techniques, the runtime is in the order of seconds. As a result, the overall runtime
of the entire transformation flow can be reduced to less than 15minutes 3 for an complete
out-of-order processor.

4.4. Experimental Results

To evaluate the concept of a MTTF-balanced pipeline design, the proposed design paradigm and
the classical delay-balanced one are compared in this section using the FabScalar microprocessor
and OpenSPARC T1. Employing these two microprocessors we can confirm that the proposed
approach is applicable to a wide range of microprocessor designs, as these are representatives of
“complementary” microprocessor families as shown in Table 4.1. The MTTF-balanced designs
were generated using the flow presented in Section 4.3. To have a fair comparison in terms of
energy and area, we used the optimization objective to get the best MTTF for a given clock
frequency, which is used by both the MTTF-balanced and the delay-balanced design. Thereby,
the clock period is given by the longest of all pipeline stage delays plus an additional safety
margin of 10% to avoid timing failures due to aging. The ambient processor temperature was
set to 40 ◦C resulting in processor temperatures between 50 ◦C and 75 ◦C, which is reasonable
for modern processors (see for example our experimental data in Figure 3.9).
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Figure 4.5.: Aging rates (after 3 years) of different pipeline stages of the FabScalar microprocessor for
six SPEC2000 benchmarks (min, max, avg.)

3All runtime measurements in this chapter were performed on a system with AMD Opteron 6174 processors
running at 2.2GHz, 256GByte RAM and Redhat Enterprise Linux 6.5 64 bit
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Figure 4.6.: Aging rates (after 3 years) of different pipeline stages of the FabScalar microprocessor for
different datasets using MiBench applications (min, max, avg.)

As shown in Figure 4.5, the application choice for the aging estimation is crucial. Hence, the
usage of not realistic, artificial workloads (e.g. applying random primary input combinations)
can lead to an inaccurate aging estimation and thus an imbalanced design. Therefore, we eval-
uated real-world applications and tuned the designs according to these, i.e. we performed a
cross-layer optimization. For this purpose, we employed in all of our experiments for FabScalar
six different SPEC2000 benchmarks (bzip, gap, gzip, mcf, parser, vortex) provided with Fab-
Scalar, and simulated the processor behavior for 106 cycles after a warmup. For OpenSPARC
T1 we used the regression test suite that comes with the simulation environment.

Table 4.2 summarizes the main results for FabScalar and Table 4.3 the ones for OpenSPARC.
In these tables as well as in the rest of this section, for the sake of simplicity, we present only the
worst-case delays and MTTFs for the different application tests as well as the average energy
consumption over the used benchmarks.

Remark 4.4.1 (Dataset dependency of the aging rate)
Beside the application itself also the chosen input dataset can have an influence on the aging
rates of different pipeline stages, as it determines the instruction operands. To analyze
how strong the dataset impact is, we evaluated various MiBench4 applications [198]. For
all of them, the aging rates were almost independent of the chosen dataset as illustrated
in Figure 4.6. An explanation for this independency is that the dataset mainly affects
the instruction operands, while most of the instruction stream is just slightly altered. In
addition, in each dataset there are “good” and “bad” operands in terms of aging, which leads
to canceling effects. As a result, the dataset influence on the aging rates can be neglected,
in particular compared to the impact of different workloads. Because of that, we evaluated
only one dataset for each application.

4For this purpose we have chosen MiBench workloads as these are much smaller than SPEC applications,
and thus can be simulated entirely. Hence, the impact of the dataset on operands and the instruction stream
can be investigated
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4.4.1. Optimization for FabScalar

The minimum clock period for FabScalar was 1.35 ns (= 740MHz), limited by the Load-Store-
Unit (LSU), which is the most complex unit of this microprocessor. Hence, given a margin of
10%, the clock target was 1.48 ns. For these settings the standard delay-balanced design will fail
after 3 years, as depicted in Figure 4.7(a). After 7 years the overall degradation reaches already
12.5% and after 10 years the delay increase is around 14%. In contrast, our proposed MTTF-
balanced approach (see Figure 4.7(b)) is able to achieve a MTTF of 7 years (2.3x improvement).
Therefore, the Predecode and Execute stage were designed faster (with less design time delay)
using the synthesis optimization detailed in Section 4.3.2. All other stages were designed
with less slack (i.e. slower). Therefore, a higher threshold voltage (20% increase in Vth) in
addition to the synthesis optimization techniques could be applied to all stages apart from the
Issue stage, which could not match the timing constraints, if high-Vth transistors were used in
the (near)-critical paths. By this means, the average energy consumption over all benchmarks
(extracted with Synopsys PrimeTime) of the MTTF-balanced design is 10% lower than the one
of the traditional delay-balanced pipeline for a clock period of 1.48 ns. Furthermore, a higher
Vth also reduces the aging rates, which can be used to achieve even higher energy savings. In
addition, the area is reduced by 2% if the MTTF-balanced version is employed (see Table 4.2).

As shown in Table 4.2, the area and energy savings are much smaller (1% and 2% for energy
and area, respectively), if the threshold voltage is not increased. This is mainly due to the fact,
that some of the pipeline stages cannot be designed any slower without using a higher Vth. The
reason for this behavior is the academic nature of FabScalar due to which the original design
is not efficiently balanced. However, no matter if Vth-tuning is used or not, the energy and
area savings are not only positive side-effects. Instead, these are a result of the optimization
process. As most pipeline stages are not aging-critical, energy consumption and area usage can
be reduced for the majority of the pipeline stages resulting in overall energy and area savings.

Another information that can be inferred from Table 4.2 is the possibility to reduce the
clock period of the MTTF-balanced design from 1.48 ns to 1.46 ns, while maintaining a lifetime
of 3 years. As a result, the performance compared to the delay-balanced design will increase by
more 2%, and in addition, energy and area consumption will be lower compared to the delay-
balanced version. This shows that the MTTF-balanced design paradigm can also be used to
improve the performance, if an increased MTTF is of secondary interest.

Moreover, Table 4.2 also shows that the critical path of a microprocessor (or in general a
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Figure 4.7.: Delay degradation of the delay-balanced design and MTTF-balanced design for the Fab-
Scalar microprocessor
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Figure 4.8.: Illustration of wearout affecting parameters (temperature, duty cycle)

circuit) changes over time. At the beginning, the LSU contains the most critical path. However,
after less than 3 years the functional units become critical. This is a very important observation
and underlines the necessity to consider all paths of a circuit for an accurate aging evaluation
(as it is done in our RTL platform) and not only a small subset as discussed in Section 3.4.4.

Observations & Remarks

An interesting observation of our results is that the Predecode and the Execute stage have a
very similar aging behavior, although their (microarchitecture-level) functionalities are totally
different. The reason is that the delay degradation of both stages is very sensitive to the
number of stall cycles that appear during the application execution (the higher the stall ratio,
the faster these stages wear out), while other stages are less affected by these cycles. This
can be explained as follows: During stall cycles the pipeline stage inputs remain constant,
which means that also all internal signals are constant for a longer period of time. If many
transistors inside the critical paths are under stress during these cycles, the delay degradation
is accelerated. The worst results (degradation of almost 10% in 3 years) were observed for
the mcf benchmark, which had a stall ratio of 70% for the pipeline front- and backend, while
others, such as the parser benchmark, had a stall ration of only 10% and caused a much slower
delay degradation (less than 7.5%). In contrast, a correlation between wearout rates and IPC
(instructions per cycle) could not be observed.

Another interesting observation is the tremendous differences in terms of MTTF and delay
degradation of different pipeline stages. As already mentioned earlier, these variations are due
to the fact that the parameters influencing aging, i.e. temperature and usage (duty cycle and
switching activity) are different for different pipeline stages. This circumstance is illustrated
in Figure 4.8 for the FabScalar microprocessor and is also reported by various papers such
as [146, 199]. As shown in Figure 4.8(b), the reason for the faster degradation of the Predecode
stage is not only its higher temperature compared to many other stages (see Figure 4.8(a)),
e.g. the Retire stage, but also the high duty cycle for many transistors in the most critical
paths. Considering the 100 most critical paths after 3 years, the average duty cycle in these
paths is roughly 0.5, while it is around 0.4 for the Retire stage. The difference in duty cycle
and temperature is caused by three major factors: First, the gate-level implementation; second
the microarchitecture design; and third the workload (i.e. input patterns) that is currently
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executed by each stage [200]. Moreover, the degradation rate of a pipeline stage strongly
depends on the amount of stress on the timing critical paths, while the behavior of all other
paths is almost negligible. Hence, since the aging rate is affected by so many inter-related
factors, it is a necessity to run detailed circuit-level simulations using real-world workloads to
obtain accurate and reasonable results.

Another important point to note is the relation between delay and MTTF. The considerable
MTTF improvements depicted in Table 4.2 come from the fact that the relation between
runtime and delay degradation follows a root-like function. For example, in case of BTI the
following relation can be used to estimate the delay degradation [129]:

d(t)− d(0)

d(0)
∼ δn · tn, (4.2)

where, d is the delay, δ the transistor’s duty cycle, t the runtime and n is a technology constant
equal to 0.25. Hence, reducing the design time delay (d(0)) from 1.35 ns to 1.33 ns, while the
duty cycle is kept constant, improves the lifetime by approximately two times. In other words,
small delay improvements lead to tremendous lifetime benefits. Please note that since the
behavior for HCI is very similar, however with n = 0.5, the real results shown in Table 4.2
slightly differ from this estimation.

4.4.2. Optimization for OpenSPARC T1

OpenSPARC T1 is the open source clone of the industrial UltraSPARC T1 (Niagara) processor
developed by Sun and released in 2005 [201]. Hence, the maximum clock frequency is much
higher than for the academic FabScalar, i.e. we could operate OpenSPARC at 1140MHz (clock
period of 0.88 ns) using the TSMC 65nm library limited by the WriteBack stage. Furthermore,
the delays of the original design are much more balanced than those of FabScalar.

Using the standard delay-balanced design, OpenSPARC T1 can achieve a lifetime of 3 years
for a timing margin of 10%, while for a lifetime of 10 years already a guardband of 15% is
necessary as illustrated in Figure 4.9(a). In contrast, using our proposed MTTF-balanced
design paradigm the MTTF can be extended from 3 years to 10 years (see Figure 4.9(b)), i.e.
MTTF is improved by more than 3x (for 10% timing margin). Therefore, the Fetch and
Execute stages had to be designed with more design time slack (see Table 4.3), while all other
stages were designed slower to save area and energy. However, without tuning the threshold
voltage the savings for the remaining stages only compensate the energy and area costs due to
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Figure 4.9.: Delay degradation of the delay-balanced design and MTTF-balanced design for the
OpenSPARC T1 microprocessor
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4.5. Comparison with Related Work

the faster version of the Fetch and Execute stage. With a higher threshold voltage the energy
consumption can be reduced by 10% and area by 1%. This is especially obvious for the LSU,
where energy can be reduced by almost 4x using a higher threshold voltage.

Similar to FabScalar, the clock frequency can be increased by 2%, if MTTF is kept the
same as for the delay-balanced design. Hence, also here the gained headroom can be used to
boost the performance.

4.4.3. Comparison of FabScalar and OpenSPARC T1

As explained in the previous subsections, the lifetime for both FabScalar and OpenSPARC can
be significantly extended using our proposed MTTF-balanced design paradigm, with better
results for OpenSPARC. However, in general, it cannot be concluded that our technique is
more efficient for simple, lightweight cores, since the two investigated processors as well as the
used workloads are very different. This is also the reason why a direct comparison of the aging
rates between FabScalar and OpenSPARC cannot be performed. Nevertheless a few conclusions
can be drawn by the numbers presented in this dissertation. For both architectures, it is the
execution stage which is aging-critical. Moreover, for both designs the delay degradation for
the execution stage is very similar. This is due to the fact that similar ALUs were used and
that the temperature as well as signal probabilities in the critical paths were in a similar range.
Furthermore, we observed for both designs that the aging rate of a pipeline stage is not very
sensitive to its design time delay. In other words, the aggressiveness with which a pipeline
stage is designed seems to have only a small effect on its aging rate. In fact, the functionality,
the workload and the temperature are far more important in terms of aging.

4.5. Comparison with Related Work

The proposed MTTF-balanced design paradigm is the first aging mitigation approach that
addresses the entire instruction pipeline in a holistic way. In contrast, in previous techniques
only small parts of the pipeline were addressed. Most of these solutions focused on the execution
units of a microprocessor, since these are typically the lifetime-limiting factors [19, 146]. Various
instruction scheduling techniques were evaluated in [76, 77] that aim at increasing the lifetime
of the functional units, by balancing the incoming instructions among all available functional
units. In addition, a novel aging-aware scheduling approach exploiting the timing criticality
of different instructions to issue the most critical instructions to separate units is presented in
Section 5 of this dissertation and summarized in [14]. In [145] the authors used an aging-aware
NOP (no operation) instruction to alleviate the impact of NBTI on the ALU of an MIPS
processor, which can be used for other execution units as well. Besides these techniques, in [11]
it was proposed to periodically invert the instruction opcode to alleviate aging in the pipeline
frontend. Also various techniques addressed wearout in memory elements, such as [153, 202]
that used cell-flipping in order to make the duty-cycle close to 0.5. Another approach presented
in [203] is intended to mitigate BTI-induced degradation in a register-file by flipping the leading
bits of narrow-width values periodically. All of the aforementioned techniques are orthogonal
to the proposed technique, and hence can be used in combination. This is also true for all other
device-, circuit- and system-level techniques discussed in Section 2.4. For that purpose, it is
only necessary to take the applied techniques during the aging estimation step into account
to avoid an overestimation of the wearout rates (i.e. underestimation of MTTF) and thus
imbalanced pipeline design.

While pipeline delay re-balancing is a novel idea for aging mitigation, similar techniques
were already introduced to combat process variation and to reduce the power density. However,
due to the different optimization targets, these techniques are typically not feasible for aging
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mitigation. For example in [204] a cycle-time borrowing/stealing approach was proposed to
re-balance the pipeline delay due to process variation, which was extended in [205] by added
also variable supply voltage domains. The main idea of these schemes is that cycle time is
“stolen” from fast stages and given to slow stages, so that the pipeline can operate at a clock
period closer to the average stage delay. Potentially, this idea can be used similarly to our
MTTF-balanced design paradigm. Stages that have high aging rates take some cycle time
from stages with lower aging rates, to increase their MTTF. However, using these techniques,
cycle time has to be redistributed, which is a complex task and not always possible. Instead,
our design paradigm does not require a redistribution of cycle time, which makes our technique
suitable for almost every design.

Another re-balancing technique using cycle-time borrowing was presented in [206], which
is intended to balanced the power consumption of different pipeline stages. By that means,
the problem that some pipeline stages consume much more energy than others is reduced.
Potentially this can also help to avoid hotspots, which can slow down transistor aging. However,
since the purpose is to minimize the overall power consumption, the timing slack for each
pipeline stage is minimized after applying cycle-time borrowing to the pipeline. This slack
reduction can negatively affect MTTF. In contrast, our technique tries to increase the timing
slack of some stages to improve their MTTF and so MTTF of the entire processor.

Moreover, there are some techniques that applied the same principle of balancing the delay
of various “components” at the end of the desired lifetime rather than at design time (in this
thesis pipeline stages are balanced). In [63] this idea was extended to paths inside a circuit and
in [207] the transistors inside gates were balanced according to the aging rates. Hence, since
these two approaches target lower abstraction levels (device to circuit), they are orthogonal to
our proposed scheme. Consequently, all three techniques can be combined to further optimize
the overall microprocessor design as proposed in [23].

4.6. Summary and Conclusion

In this chapter, we presented a novel holistic cross-layer design paradigm for microprocessor
instruction pipelines that takes the non-uniform delay degradation among all pipeline stages
into account. For this purpose, circuit- to application-level information is exploited. As a
result, the microprocessor lifetime can be significantly extended compared to state-of-the-art
design approaches without reducing the performance (i.e. clock frequency), and at the same
time power and area improve as well. Alternatively, the clock frequency can be increased
considerably by reducing the necessary guardbands. Which of those two objectives is chosen
in the end, depends on the application field. For instance, for a high-performance server a
higher clock frequency might be more preferable than an extended lifetime, while for embedded
systems with long mission times the first objective is favorable. In addition, it is also possible
to select a combination of both objectives, i.e. slightly improved performance and lifetime.
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CHAPTER

FIVE

AGING-AWARE INSTRUCTION SCHEDULING

As shown in the previous chapter, the execution stage is one of the most aging-critical stages in
microprocessors and often limits the overall microprocessor lifetime. To alleviate this prob-
lem, a cross-layer instruction scheduling approach that combines knowledge from circuit-,
microarchitecture- and application-level is presented in this chapter. To understand the neces-
sity for this aging-aware instruction scheduling scheme, we first explain the shortcomings of
state-of-the-art scheduling techniques. Afterwards, we introduce our novel scheduling method-
ology followed by various simulations that show the benefit of this aging-aware approach.
Finally, we compare our technique with related work and provide some concluding remarks.

5.1. Problem Introduction and Motivation

A very important observation of the previous chapter is that the execution stage of the instruc-
tion pipeline can limit the overall microprocessor lifetime. This circumstance was also reported
for the IVM processor [4] in [146]. Hence, to improve the microprocessor lifetime, it is of par-
ticular importance to address the execution units. Since wearout strongly depends on usage
(gate bias, etc.) and temperature of the affected transistors, various works proposed enhanced
instruction and application scheduling techniques to mitigate transistor aging [15, 77, 78] of
execution units, cores or complete microprocessors. The goal of these techniques is to balance
the necessary calculations on the available units (cores) to achieve equal wearout states on all
units (cores), which should guarantee a longer lifetime of these parts. However, as this chapter
shows, balancing the number of executed instructions (workload) over several functional units
is not always the best aging mitigation strategy. This is mainly due to the fact that within the
same clock cycle boundaries (timing boundaries), different instructions (workloads) executed
by the same functional unit (core) have different timing criticality and consequently different
time slacks1. For example, although all instructions executed in an ALU have an execution
time of one cycle, there are some instructions whose delay is close to one cycle (e.g. arithmetic
operations with long operands), while others need much less time (e.g. simple logic opera-
tions). Hence, the first group of instruction is called timing-critical (TC), while the other one
is named non-timing-critical (NTC). In fact, this classification makes no difference from the
performance point of view (always one cycle). However, in terms of aging, when the path delay
of the circuit increases, the TC instructions start to fail already (i.e. have timing delays), while
NTC instructions are still executed correctly. This key observation is illustrated in Figure 5.1
and is exploit by our proposed aging-aware scheduling.

To motivate this novel scheduling scheme, let us consider a microprocessor with two func-

1Slack is the time difference between the signal arrival time and the clock edge (see Figure 2.3)
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Figure 5.1.: Illustration of timing-critical (TC) and non-timing-critical (NTC) instructions

tional units of the same type (e.g. ALU) that uses a balanced instruction scheduling technique.
Hence, both units will fail almost after the same time. Now imagine, that one unit is used
only for the TC instructions and the other one only for the NTC instructions. Since the latter
have a delay which is far less than the TC instructions, the first unit will always fail first,
and thus determines the lifetime. However, as long as the fraction of TC instructions is less
than 50%, the critical unit will execute less instructions than in the balanced scenario. As a
result, the idle ratio of this unit is increased. This can be used in combination with various
architectural techniques such as power gating [64], clock gating [15], or input vector control
(IVC) for NOP-instructions2 [145] to alleviate the aging rates, and thus to increase the lifetime
of this unit. As a result, the overall lifetime of both execution units increases, as the unit that
executes the TC instructions is the limiting factor.

Based on this idea, a novel cross-layer approach combining aging-aware instruction schedul-
ing with specialized aging mitigation techniques (e.g. IVC and power gating) to alleviate the
impact of wearout on the execution units is presented in this chapter. The aging-aware in-
struction scheduling technique uses circuit-, architecture-, and software-level information to
maximize the lifetime of the systems according to given power constraints. In the proposed mi-
croarchitecture, the instructions are categorized depending on their worst-case delays (circuit-
level information) and occurrence rates (application-level information) into classes of critical
and non-critical instructions. In other words, the aging-aware scheduling policy takes the “per-
instruction” slack into account instead of the overall slack of a functional unit over all possible
instructions, which is the traditional approach. The resulting classification is exploited by the
instruction scheduler in such a way that each of these classes uses its own (specialized) func-
tional unit(s). By that means, it is possible to increase the idle ratio of the units executing
the critical instruction, which can be used to considerably extend the lifetime of the functional
units by applying special mitigation techniques.

5.2. Aging-aware Instruction Scheduling Methodology

In order to efficiently slow down wearout, it is mandatory to reduce temperature and usage,
which are two of the key aspects that influence transistor aging. In a functional unit like an
ALU, these two parameters strongly depend on the sequence of executed instructions. Es-

2A NOP-instruction is a no-operation instruction, i.e. an instruction that effectively does nothing at all
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pecially the idle periods between two instructions can be used to mitigate the aging impact,
for example by applying power gating, clock gating or input vector control (IVC) for NOP-
operations [15, 64, 145]. However, these techniques can only be used efficiently, if the idle
periods between two instructions are very long, which is often not the case. The envisioned
technique aims at increasing the idle periods between two instructions using an enhanced
aging-aware instruction scheduler. By that means, the benefit that can be taken from power
gating, clock gating or IVC can be increased. In the following this idea is introduced using an
exemplary ALU. However, the idea is also applicable to other functional units.

5.2.1. Instruction Classification
The first step to make the envisioned aging-aware instruction scheduling technique possible, is
to characterize all instructions based on their timing criticality. In this regard, by investigating
the delay of various paths in a functional unit such as an ALU in detail, it is observed that
different instructions have different execution times (path delays). Some instructions need just
a small fraction of a clock cycle to complete, while others need almost the entire clock cycle.
The real execution time (i.e. delay) thereby strongly depends on the instruction and the applied
operands. This is illustrated in Figure 5.2, which shows the worst-case delay and occurrence
rate (see Table 5.1) for each instruction supported by the IVM [4] ALU, which was synthesized
using the Synopsys Design Compiler and the SAED 90 nm library.

From the timing perspective, the delay of a functional unit is determined by its longest
path delay (slowest instruction) which is obtained from a static timing analysis. Once the
clock period is set accordingly, from the performance perspective at microarchitecture-level
all instructions are considered the same. However, due to aging effects, the delays of various
paths in the circuit increase, which eventually leads to the problem that for some instructions
the (intermediate) result will not be computed within the given timing boundaries, i.e. one
clock cycle. In this regard, the instructions with a very small timing slack are the first ones
that start to fail. This means that the timing-critical (TC) instructions (the ones with a real
delay close to one cycle) determine the lifetime of the ALU. Moreover, the critical instructions
(here it is ADDQ, i.e. add for 64 bit operands) occur much less frequent than the non-critical
instructions. Using the ExtraTime platform (see Section 3.2), we observed that only 18% of all
instructions of various SPEC2000 benchmarks (compiled with GCC 4.3 and -O3 -optimization)
that are executed in the ALU(s) belong to the critical category, while 82% are non-timing-
critical (NTC) instructions, as detailed in Table 5.1.
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Figure 5.2.: Worst-case delay and occurrence
rate of all instructions for the
IVM [4] ALU

Workload Instructions NTC [%] TC [%]
applu 291,012,195 73 27
bzip2 443,681,261 74 26
equake 219,397,379 85 15
gcc 440,405,407 86 14
gzip 505,045,344 82 18
lucas 345,330,553 80 20
mcf 385,659,378 88 12
mesa 356,736,706 88 12
mgrid 157,231,925 93 7
parser 363,009,269 89 11
swim 435,235,376 58 42
twolf 384,701,811 84 16

wupwise 364,318,715 90 10
average 360,905,025 82.3 17.7

Table 5.1.: Workloads and their instruction ra-
tios (execution time = 0.5 seconds)
using a single ALU
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Based on this observation, which basically tells different instructions have different aging-
criticality, the idea for the aging-aware scheduling is to use dedicated unit(s) for each of the
two instruction classes, instead of executing both classes in the same unit(s).

Please note that for another ALU or functional unit with a different set of instructions and/or
different implementation, the timing distribution of various instructions and their occurrence
rate will change from what is shown in Figure 5.2, but the overall classification will still be
valid. For instance, logic operations will have less delay than arithmetic operations (with wider
word sizes and more sophisticated bit operations).

5.2.2. Aging-Aware Scheduling

Normally, the aforementioned information about the instruction delay is not used by the in-
struction scheduler (or the unit which decides which functional unit will be used). Instead, if
more than one ALU is available, the scheduler will balance the workload, so that all ALUs will
execute roughly the same amount of instructions, which is mainly due to performance reasons.
Also some previous work on aging-aware instruction scheduling [15, 77], that consider the de-
lay of all instructions to be the same (i.e. one clock cycle), show that a balanced technique is
better than unbalanced ones in terms of MTTF. However, as discussed before, if the accurate
timing of instructions is taken into account, a balanced scheduling is not the best choice from
aging perspective. Hence, in the proposed microarchitecture each instruction class has its own
dedicated ALU(s), i.e. ALUTC(s) only for the TC instructions and ALUNTC(s) only for the
NTC ones, although this can lead to an unbalanced load among all available ALUs. Based on
the data presented in Table 5.1 this means that all available ALUTCs execute only 18% of all
instructions, while the other ALU(s) handle the remaining 82%. Consequently, the TC-ALUs
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Figure 5.3.: Assignment of instructions to functional units for balanced and aging-aware scheduling
policies
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are idle most of the time, which is also shown in Figure 5.3 for an example with one ALUTC
and one ALUNTC. Hence, these units can be power gated very efficiently, and also IVC can be
applied most of the time. As a result, the lifetime of the TC-ALUs is significantly better com-
pared a balanced scheduling approach (see Section 5.3 for more details). Moreover, the “critical
ALU(s)” are the ones which determine the overall lifetime, since the non-critical instructions
have a delay which is much smaller than the delay of the critical instructions and even with
aging included never surpasses the delay of the critical ones, before these will start to fail.
Thus, this “unbalanced” scheduling approach can considerable improve the overall lifetime.

Of course, the unbalanced load can lead to a performance loss compared to an architecture
with only “full” functional units of the same type (see example in Figure 5.3). However, the
specialized TC units can be much smaller than standard units (only 8% of the standard area
as explained in Section 5.3). Hence, instead of splitting a certain number of “full” units into a
group of TC-ALUs and another group of NTC-units, it is possible to convert all “full” functional
units to NTC-units and add additional TC-ALUs with small overall costs. As a result, the
performance even increases and lifetime will benefit as well, as shown in Section 5.3. In addition,
smaller units will consume less power and by that means stay cooler which will help to further
slow down wearout.

Beside the potential performance penalty, also the implementation costs for the enhanced
instruction scheduler need to be considered for the proposed technique. However, as the sched-
uler (or the unit which decides which functional unit will be used) selects the appropriate unit
for the actual instruction based on the instruction opcode, no extra bits to encode the classifi-
cation are necessary. For example, in our evaluated scenario the critical ADDQ instruction has
the opcode 1020h. Whenever this opcode is detected, the corresponding instruction (ADDQ)
is sent to an ALUTC, while all other instruction will be executed by an ALUNTC. Hence, there
are only additional costs for the instruction scheduler, if the total number of execution units
increases, since this raises the scheduler complexity.

5.2.3. Optimal Cut-off Line between TC and NTC Instructions

In order to improve the overall lifetime of the execution units, while maintaining a high per-
formance, it is crucial to find the optimal cut-off line between TC and NTC instructions, i.e.
to determine which instruction belongs to which group. This is a very complex optimization
problem as illustrated in Figure 5.4 for the simple case in which there is one functional unit for
the TC instructions (ALUTC) and another one for the NTC instructions (ALUNTC). If the cut-
off line is shifted to the right, more instructions are considered as NTC. Hence, the ALUNTC
MTTF will decrease (more instructions lead to a lower idle ratio which lowers the MTTF; in

Cut-Off Line

Delay

(ALUTC)(ALUNTC)
TC InstructionsNTC Instructions

Longer MTTF for ALUTC

Shorter MTTF for ALUNTC

Lower Performance

Shorter MTTF for ALUTC

Longer MTTF for ALUNTC

Higher Performance

Instr.1

Instr.2

Instr.m

Instr.m
+
1

Instr.n

Figure 5.4.: Classification of instructions into TC and NTC and its impact on MTTF and performance
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0. List all instructions according to their worst-case delay
/* delayInstruction 1 ≤ · · · ≤ delayInstruction n */

i = 0
1. TC = {Instruction n}

/* Perform simulations with this setting and estimate MTTF */
2. MTTF0 = min(MTTFALUTC ,MTTFALUNTC)
Do

i = i+ 1
3. TC = TC ∪{Instruction n− i}

/* Perform simulations with this setting and estimate MTTF */
4. MTTFi = min(MTTFALUTC ,MTTFALUNTC)

While (MTTFi > MTTFi−1)

/* Revert last TC adjustment, as it reduced MTTF */
5. TC = TC \ {Instruction n− i}
6. Done.

Algorithm 5.1: Flow to obtain instruction groups such that the overall MTTF is maximized

addition the worst-case delay increases and hence the MTTF decreases). However, at the same
time the ALUTC MTTF will improve (less instructions lead to a higher idle ratio and hence
higher MTTF). If the cut-off line is moved to the left, the ALUNTC MTTF will increase (less
instructions, lower worst-case delay), but the ALUTC MTTF will decrease (more instructions).
In addition, shifting the cut-off line also affects the performance. Fewer TC instructions typ-
ically lead to a decreased performance, as the load between all available units becomes more
unbalanced. Instead, moving the cut-off line to the left increases the performance until 50%
of all instructions are classified as TC and NTC, respectively. Also the overall area consumed
by the ALUs depends on the cut-off line. The fewer instructions are supported by the ALUTC,
the smaller this unit can be. Hence, placing the cut-off line is a complex optimization problem
and the solution will be a trade-off between performance, lifetime, area and power.

Our proposed algorithm, to find the best solution in terms of MTTF is described in Algo-
rithm 5.1. First, all instructions are sorted based on their worst-case delays. Next, only the
instruction with the highest worst-case delay (instruction n) is considered as TC instruction
(Step 1). Then, simulations are processed (e.g. with the ExtraTime platform) and the MTTF
of all ALUNTC(s) and all ALUTC(s) (if there are several) is evaluated (Step 2). Afterwards,
the set of TC instructions is expanded by instruction n − 1 (Step 3) and again the MTTF of
both units is evaluated (Step 4). This process is repeated until the best MTTF considering all
units is found. In this regard, it is important to note that as soon as the ALUTC determines
the overall lifetime, the search process is stopped. This is due to the fact that by adding more
instructions to the TC class, the MTTF of this unit (or units) will become even shorter.

In our case the algorithm yielded the result depicted in Figure 5.2. However, as the cut-
off line is a function of the number of TC and NTC units, different configurations can have
different cut-off lines.

5.2.4. Further Extensions

Beside for a simple ALU, the proposed scheduling technique is also applicable to much more
sophisticated functional units such as floating point units or vector execution units. Also these
units will feature some instructions (typically multi-cycle instructions) that have a slack close
to zero in one of their execution cycles.

Beside functional units, the concept of this scheduling technique can be also employed to
schedule applications to difference cores of a multicore processor. In this regard, the timing
criticality of applications, i.e. the deadline until the execution has to be finished, replaces the
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timing criticality of instructions. Hence, applications with very tight deadlines will be executed
on a particular core, while all the others use the remaining cores. To alleviate aging of the
“critical” core, voltage and frequency scaling can be applied.

Moreover, the concept can be also extended to handle process variation, as well. If two
functional units of the same type are available, one can be faster than the other one due to
process variation, i.e. the timing slack of an instruction executed in the faster unit is larger
than in the slower unit. In that case, the TC instructions should be scheduled to the faster unit,
while the NTC instructions should use the slower unit. As a result, lifetime (due to larger slack
for TC instructions) or performance (smaller overall delay, as clock period can be tightened)
can be improved.

5.3. Experimental Results

In this section the implications of the envisioned aging-aware scheduling technique on the sys-
tem performance, power consumption, area and in particular lifetime are presented. Therefore,
in the first part a circuit-level analysis is conducted to evaluate power and area. In the second
part, performance and reliability are studied using the architectural ExtraTime framework pre-
sented in Chapter 3.2. As case studies for the aging mitigation techniques that are employed
for the functional units during idle periods input vector control (IVC) and power gating (PG)
are used.

For all studies the IVM ALU was employed and NBTI was considered as primary aging
phenomenon. However, also PBTI can be alleviated with the proposed approach, as it is very
similar to NBTI. Because of that, also the results would be very similar, if PBTI is included in
the analysis. Also HCI is addressed by the proposed scheduling technique, since it reduces the
number of executed instruction in the critical unit which means also a lower switching activity.
Given the results in Table 5.1, the number of executed instructions compared to a balanced
scheduling approach is reduced by 2.8x, on average (if in both cases two functional units are
used). As a result, based on the aging models from ExtraTime, the lifetime will improve by
2.8x, on average, if only HCI is considered. Instead, for BTI-induced wearout, the improvement
is only 1.6x. Hence, BTI is more critical, and thus HCI is not considered in this section.

Further details on the entire processor configuration, technology parameters and the simu-
lated workloads (SPEC2000 benchmarks) can be found in Table 5.2. Overall, eight different
ALU configurations have been investigated to evaluate the scalability of the proposed tech-
nique, ranging from a low power solution (e.g. MIPS [24]) with only a single “full” ALU (“full”
means that TC and NTC instructions are executed), to a performance version with up to four
“full” ALUs (e.g. as in Intel’s recent Core-i-processors [208]).

Processor Single-core @ 3 GHz,
out-of-order, 4-issue

L1-Cache 64 KByte, 3 cyc latency
L2-Cache 2 MByte, 15 cyc latency

Execution Units 1x-4x ALU, 2x MUL, 2x FPU

Expected wearout 10% in 3 years,
i.e MTTF = 3 years (90 ◦C)

Conditions Tstart =57 ◦C,
Vdd = 1.0 V, Vth = 0.21 V

SPEC2000 benchmarks
applu, bzip2, equake, gcc, gzip,
lucas, mcf, mesa, mgrid, parser,

swim, twolf, wupwise
Runtime 0.5 seconds excluding initialization

Table 5.2.: Configuration details for the experiments
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Configuration 1/0/0 2/0/0 0/1/1 3/0/0 0/2/1 4/0/0 0/3/1 0/2/2

Avg. Power [µW] 148 296 160 444 307 592 456 320
100% 200% 108% 300% 207% 400% 308% 216%

Area [µm2] 45895 91790 49546 137685 95411 183580 141336 99092
100% 200% 108% 300% 208% 400% 308% 216%

Table 5.3.: Different ALU configurations (“full”/NTC/TC) and their impact on area and power

5.3.1. Power and Area Evaluation

As mentioned in Section 5.2.1, the timing critical instructions of the IVM ALU encompass
only the ADDQ-instruction (ADD instruction for three 64 bit operands a+b = c). Hence, the
specialized critical-ALUs need only to support the ADDQ-instruction. Therefore, the feature
set can be heavily reduced for these specialized ALUs, resulting in a very small size. Using
Synopsys Design Compiler and the SAED 90nm library the size for such a specialized ALU
is obtained to be only 8% of a normal, general purpose ALU (3651µm2 vs. 45895µm2).
Furthermore, the power consumption of these two configurations using Synopys PrimeTime
was investigated. For this purpose, the instruction sequences for each ALU were extracted
using ExtraTime and various SPEC2000 workloads. With ModelSim3 the switching activity
behavior for each benchmark and each ALU was extracted and afterwards PrimeTime was
used to calculate the power consumption of each ALU for each application. On average, the
power consumption of a specialized ALUTC is only 8% of the power consumption of a full ALU
(12µW vs. 148µW), as leakage power is dominant. As a result, the overhead in terms of power
and area for placing additional TC-ALUs is very small, as shown in Table 5.3. If the area and
power consumption of the entire processor are taken into account, the overheads become even
smaller and are (almost) negligible.

5.3.2. Performance and Lifetime Evaluation

Aging-Aware Scheduling & Input Vector Control

Usually input vector control (IVC) is used at gate-level to mitigate the influence of (N)BTI
and/or leakage. However, IVC can be also used at microarchitecture-level. At that level,
input vectors are applied at the primary inputs of the entire (micro)-architectural blocks,
such as functional units. For an ALU, the input vector consists of an instruction opcode and
two instruction operands. Since, the aging-aware input vector should not affect the program
execution running on the processor, it has to be a No-Operation (NOP) [24]. In the chosen
superscalar out-of-order processor the aging-aware input vector can be applied at the ALU
inputs every cycle the ALU is idle, i.e. not executing an instruction. Since it takes some time,
until all internal gates of the functional unit are in the state resulting in the minimal NBTI-
induced wearout, the first cycle in every idle period is considered as a normal operational cycle
with higher degradation rate.

To identify the NBTI-induced aging rates of the ALU, when the aging-aware input vector
is applied, the following steps were performed: First, the gate-level description of the IVM
ALU was extracted using Synopsys Design Compiler and the SAED 90nm library. Then,
a linear programming solver was used to extract the input vector resulting in the minimum
NBTI-induced degradation similar to [145]. Finally, the wearout rate for this NBTI-aware
input vector was calculated and used in the aging model of ExtraTime for the representative
transistor. The extracted input vector resulting in the minimum NBTI-induced degradation
leads to a relative delay increase of 6.4% in 3 years.

The proposed aging-aware scheduling can significantly improve the efficiency of input vector

3Logic simulator from Mentor Graphics
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5.3. Experimental Results

Application 1 ALU 2 ALUs 3 ALUs 4 ALUs
Aging-Aware Balanced Aging-Aware Balanced Aging-Aware Balanced

1/0/0 0/1/1 2/0/0 0/2/1 3/0/0 0/3/1 0/2/2 4/0/0
applu 4.34 8.46 5.83 8.61 6.61 8.65 9.98 7.30
bzip2 3.63 7.71 5.73 8.27 6.64 8.36 10.68 7.38
equake 4.86 8.39 5.90 8.13 6.51 8.17 8.57 6.99
gcc 3.79 10.10 5.41 10.10 6.30 10.46 12.26 7.09
gzip 3.30 8.67 4.97 9.67 5.84 9.71 11.72 6.59
lucas 4.79 10.18 6.26 10.48 7.36 10.59 11.95 8.21
mcf 6.28 11.23 7.66 10.56 8.40 10.82 11.23 9.00
mesa 3.85 11.24 5.92 11.90 6.88 12.17 13.97 7.70
mgrid 4.54 9.09 5.67 9.14 6.42 9.16 9.36 6.95
parser 4.81 12.05 6.53 11.59 7.61 11.90 12.86 8.44
swim 7.23 9.96 8.44 9.82 9.39 9.88 10.58 9.78
twolf 4.73 10.65 6.21 10.26 7.20 10.49 11.89 8.08

wupwise 3.43 10.60 5.14 11.54 5.94 11.84 13.29 6.61
Average 4.58 9.87 6.13 10.01 7.01 10.17 11.41 7.70

Table 5.4.: MTTF in years for several SPEC2000 benchmarks for the standard (balanced) schedul-
ing and the proposed aging-aware scheduling using an aging-aware IVC for different ALU
configurations (“full”/NTC/TC)

Configuration Performance MTTF Area-Cost
Avg. IPC [years] µm2

1/0/0 (balanced) 1.21 (8) 4.58 (8) 45895 (1)
0/1/1 (aging-aware) 1.25 (7) 9.87 (4) 49546 (2)
2/0/0 (balanced) 1.39 (6) 6.13 (7) 91790 (3)
0/2/1 (aging-aware) 1.40 (5) 10.01 (3) 95411 (4)
3/0/0 (balanced) 1.42 (3) 7.01 (6) 137685 (6)
0/3/1 (aging-aware) 1.42 (2) 10.17 (2) 141336 (7)
0/2/2 (aging-aware) 1.40 (4) 11.41 (1) 99092 (5)
4/0/0 (balanced) 1.42 (1) 7.70 (5) 183580 (8)

Table 5.5.: Summary for the standard (balanced) scheduling and the proposed aging-aware scheduling
using an aging-aware IVC for different ALU configurations (“full”/NTC/TC) in terms of
performance, MTTF and costs; Values in () represent the ranking
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Figure 5.5.: Comparison of different ALU configurations (“full”/NTC/TC) using aging-aware IVC in
terms of performance, MTTF, area and power consumption
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5. Aging-aware Instruction Scheduling

control, as it increases the idle time of the timing critical units and hence MTTF, as illustrated
in Table 5.4. Obviously, the technique is best, for low-power, embedded processors with a
small number of units, as in these cases the idle time gains are best. If the total number of
ALUs is kept constant, the proposed technique can increase the lifetime by at least 1.3x, in
best case (i.e. for a small number of units) even by more than 2.1x. Furthermore, as shown in
Table 5.5 and Figure 5.5, finding the best ALU configuration is a trade-off between performance,
lifetime and cost. However, for all cases, the proposed aging-aware scheduling in combination
with specialized functional units is superior to the traditional balanced scheduling in terms
of lifetime, area and power costs. However, the unbalanced workload distribution leads to a
performance penalty. This can be tackled by converting all “full” ALUs to NTC units and
adding a few specialized TC ALUs. By that means, the performance can be even improved
with only small area and power costs (see Table 5.5).

Please note that the scaling behavior of the computing performance, measured in IPC
(instruction per cycle) depends not only on the number and type of the functional units, but
also on the memory latencies as well as the width of the instruction pipeline frontend, i.e. how
many instruction can be fetched and decoded in parallel. As a 4-wide frontend is used, the
performance saturates soon by increasing the number of units.

Dynamic Input Vector Control for Different Operation Modes

A drawback of the input vector control approach is that it also affects power consumption, and
the effect on power is not in the same direction as on lifetime. Hence, using the best input
vector in terms of MTTF can increase the power consumption. In the studied case, the leakage
power increased by 2% using the aging-aware input vector, compared to a leakage-optimized
input vector. Hence, depending on the criticality of various runtime constraints, such as power
and lifetime, the user, the OS or a firmware can select different operation modes to either
optimize for lifetime, or for power saving.

The impact of different input vectors on aging is depicted in Figure 5.6. As one can see,
the aging-aware input vector (grey background) yields superior lifetime results for all ALU
configuration. However, with increasing average duty cycle (ratio of stress to total time), the
aging rates increase, and thus the lifetime improvements reduce. Moreover, the figure shows
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5.3. Experimental Results

also that MTTF scaling, and hence the efficiency of input vector control strongly depend on
the ALU configuration. If the idle ratio is small (i.e. if few units are available), the MTTF
improvements for better input vectors are significantly smaller compared to cases where the
idle ratio is higher (less than 2x vs. more than 4x).

As nowadays systems often support multiple operation modes such as a low power mode
using a low supply voltage to reduce power consumption, or a high performance mode using
a high frequency and supply voltage to achieve the best performance, two different input
vectors were extracted. First, an aging-aware input vector that is applied whenever the high
performance mode is used, and a leakage-aware vector which is applied during low power
operation periods. The aging-aware input vector is the same as the one discussed in the
previous subsection, i.e. it leads to an average duty cycle of 0.18 considering the most critical
path. In contrast, the leakage-aware input vector results in an average duty cycle of 0.85 (red
zone in Figure 5.6), and hence much higher stress time. Therefore, the leakage power is reduced
by 2%. Although the leakage-aware vector results in higher stress than the aging-aware vector,
is does not considerably affect lifetime. This is due to the fact, that in the low power mode,
frequency and supply voltage are significantly reduced, and hence transistor aging during these
phases is not a limiting factor. However, if this vector is used during the high performance
mode, when a high supply voltage is applied, MTTF would be 1.4x to 2.7x worse than with
the aging-aware input vector.

The results also underline, that input vector control is much more efficient for aging mitiga-
tion than for power reduction. This is due to the fact that the power consumption depends on
the status of all gates inside the circuit (i.e. additive), which is hard to control by applying a
single input vector. In contrast, the worst-case delay degradation depends only on a few paths
and the status of the gates inside these paths (i.e. selective).

Aging-Aware Scheduling & Power Gating

As mentioned before, beside IVC, also power gating can be used to mitigate NBTI-induced
transistor aging. The power gating technique chosen for this evaluation is relatively simple.
After an idle period of at least 200 cycles a functional unit can be power gated. The following
power down time until the ALU is completely power gated is set to 3ns [209, 210]. Until no new
instruction is incoming, the unit remains power gated (see Figure 5.7). When a new incoming
instruction is detected, the unit is woken up. The wake up time is set to 7ns [209, 210] and
afterwards it can execute the new instruction(s).

As it is shown in Table 5.6, the proposed aging-aware scheduling can significantly improve
the efficiency of power gating and hence can greatly improve MTTF. Depending on the ALU-
configuration, i.e. how many timing- and non-timing-critical units are available, the MTTF
can be increased by several orders. If the number of ALUs remains constant, at least an
improvement of around 1.8x is possible. If additional TC units are added to the design, even
more than 2x are possible. However, in some cases, both approaches, the balanced and the
aging-aware scheduling, deliver comparable results. This is due to the fact that a unit cannot
be power gated in every idle period. Compared to the situation without power gating, in which
MTTF is just 3 years, the improvements are even better and underline the efficiency of our
proposed scheduling technique.

Time

active inactive active

tdown tuptsleeptidle

new instruction

Figure 5.7.: Time flow of power gating periods of an execution unit
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Application 1 ALU 2 ALUs 3 ALUs 4 ALUs
Aging-Aware Balanced Aging-Aware Balanced Aging-Aware Balanced

1/0/0 0/1/1 2/0/0 0/2/1 3/0/0 0/3/1 0/2/2 4/0/0
applu 3.62 6.77 3.62 6.83 3.68 6.85 9.67 3.74
bzip 3.61 3.61 3.61 3.61 3.61 3.61 3.95 3.61

equake 3.61 3.73 3.73 3.76 4.61 3.77 9.75 5.78
gcc 3.61 4.79 3.61 3.89 3.61 4.52 5.60 3.62
gzip 3.61 3.97 3.61 3.97 3.61 3.97 4.82 3.61
lucas 3.61 4.92 3.61 4.96 3.86 4.62 12.69 3.97
mcf 3.61 7.78 3.61 6.55 4.57 6.66 12.84 5.92
mesa 3.61 4.84 3.61 4.75 3.61 4.79 4.80 3.61
mgrid 3.65 32.82 3.65 32.57 3.72 32.68 33.77 5.87
parser 3.61 6.93 3.61 4.00 3.61 4.90 10.82 3.61
swim 3.61 4.83 3.61 4.84 3.67 4.84 9.98 3.99
twolf 3.61 5.95 3.61 4.77 3.63 5.62 9.81 3.72

wupwise 3.61 4.99 3.61 3.62 3.61 3.65 3.89 3.61
Average 3.61 7.38 3.62 6.78 3.80 6.96 10.18 4.20

Table 5.6.: MTTF in years for several SPEC2000 benchmarks for the standard (balanced) scheduling
and the proposed aging-aware scheduling using power gating for different ALU configurations
(“full”/NTC/TC)

Configuration Performance MTTF Area-Cost
Avg. IPC [years] µm2

1/0/0 (balanced) 1.21 (8) 3.61 (8) 45895 (1)
0/1/1 (aging-aware) 1.24 (7) 7.38 (2) 49546 (2)
2/0/0 (balanced) 1.39 (1) 3.62 (7) 91790 (3)
0/2/1 (aging-aware) 1.38 (6) 6.78 (4) 95411 (4)
3/0/0 (balanced) 1.39 (2) 3.80 (6) 137685 (6)
0/3/1 (aging-aware) 1.38 (4) 6.96 (3) 141336 (7)
0/2/2 (aging-aware) 1.37 (5) 10.18 (1) 99092 (5)
4/0/0 (balanced) 1.39 (3) 4.20 (5) 183580 (8)

Table 5.7.: Summary for the standard (balanced) scheduling and the proposed aging-aware scheduling
using power gating for different ALU configurations (“full”/NTC/TC) in terms of perfor-
mance, MTTF and costs; Values in () represent the ranking
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Figure 5.8.: Comparison of different ALU configurations (“full”/NTC/TC) using power gating in terms
of performance, MTTF, area and power consumption
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5.4. Comparison with Related Work

In addition, the performance penalty of the proposed aging-aware scheduling technique is
usually very small as shown in Table 5.7. If 3 or 4 ALUs are available the performance penalty
is at most 1.5%, while at the same time MTTF can be significantly improved, and also the
costs in terms of area and power are significantly lower, if the aging-aware scheduling is used.
Only in case a design with 2 ALUs is transformed to a design with a single TC and a single
NTC unit the performance will be significantly impaired. However, as the costs for TC units
are very small (see Table 5.3) we propose to add specialized TC units to the design, such
that the overall number of ALUs increases. By this means, with minimal additional cost, the
performance penalty will be almost negligible and the lifetime will improve significantly.

Please note, that in some cases the performance with a higher number of ALUs is slightly
lower than the performance with fewer ALUs. This is due to the fact, that with more ALUs,
power gating can be applied more often. However, this also means, that the penalty due to the
wake up latencies has more impact and hence the overall performance can decrease, although
more ALUs are available. Moreover, the performance is in many cases lower, if power gating is
used, compared to the IVC usage. This is because IVC can be used in every idle cycle, without
any performance penalty, while power gating always infers a performance reduction due to long
wakeup latencies.

Moreover, Table 5.7 and Figure 5.8 illustrate that the configuration choice is always a trade-
off between performance, lifetime and cost. For example, the best performing configuration
has only an average lifetime of 3.62 years which is the second to last place in our evaluation.
In general our proposed aging-aware scheduling using specialized functional units is always the
best choice, no matter how many units are available.

5.4. Comparison with Related Work

In various microprocessors such as FabScalar, OpenSPARC T1 (see Section 4.4) and IVM the
execution units limit the overall microprocessor lifetime, due to their fast wearout [12, 14, 146].
Hence, in order to improve the overall microprocessor MTTF, wearout in the functional units
needs to be addressed. Beside the circuit-level techniques discussed in Section 2.4, this can be
achieved with microarchitectural solutions.

One solution is to periodically invert all operands to avoid that certain transistors are almost
permanently stressed. Such an approach is proposed in [11] and is orthogonal to the proposed
scheduling technique. Hence, both approaches can be employed together.

Another possibility is to use clock- and power gating to mitigate aging as proposed in [15, 64].
However, clock gating does not alleviate BTI, since the transistor states of the combinational
logic are not affected. In addition, power gating is not very effective, as long as the default
balanced scheduling approach is used, in which the functional unit is changed with every
incoming instruction [15], since the idle periods are too short. As a result, pure clock and
power gating approaches do not significantly improve the lifetime. To achieve a longer MTTF,
clock gating can be combined with all kinds of input vector control [65, 211] or aging-aware
NOP-instructions [145] to alleviate BTI-induced aging in functional units. However, also this
approach can only be applied during idle cycles and because of that its effectiveness depends
on the idle ratio. In this regard, it is possible to adjust the instruction scheduler to improve
the length of the idle periods to maximize the recovery time. In combination with clock and
power gating this can considerably improve the MTTF of the execution units [15]. However,
by increasing the idle periods, the number of units that can be used in parallel reduces, which
in turn significantly impairs the performance. For example, the scheduling approach from [15]
that uses the same functional unit for 109 cycles before changing it, reduces the performance
by 14% on average, which is much more than using our proposed methodology.
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Beside the performance problem, all balanced scheduling approaches proposed in literature
for instructions and applications [15, 76–78] cannot achieve the same lifetime results as the
aging-aware scheduling technique presented in this chapter, as shown in Section 5.3. This is
due to the fact that the previous techniques ignore the different timing criticality of different in-
structions (applications). Consequently, these approaches treat all instructions (applications)
in the same way which leads to a lower overall MTTF. This underlines that cross-layer ap-
proaches such as the aging-aware instruction scheduling can achieve better results, i.e. longer
lifetime in combination with better performance or reduced cost.

5.5. Summary and Conclusion

In this chapter, we presented a unique cross-layer instruction scheduling policy to slow down
the delay degradation of the functional units in microprocessors, as these are typically the
most critical components. The novelty of this scheduling scheme compared to state-of-the-art
solutions is that the timing criticality of different instructions executed by the same functional
unit (at circuit-level) is taken into account during the scheduling process. In other words, the
scheduler considers the “per-instruction” slack instead of the overall slack of a functional unit
over all possible instructions, which is the conventional approach. As a result, critical and non-
critical instructions are scheduled to different functional units to improve the idle ratio of those
units executing the critical instructions. This higher idle ratio can be exploited by various aging
relaxation techniques such as input vector control or power gating to alleviate wearout and by
that means to improve the lifetime of the functional units. As demonstrated by our extensive
simulation results, the lifetime can be improved considerably, with only a small performance
penalty which is due to an unbalanced load distribution among all functional units. At the
same time, power and area can be slightly improved. Alternatively, the proposed scheme also
allows to improve both lifetime and performance, with only a small power and area overhead.
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CHAPTER

SIX

AGING-AWARE INSTRUCTION SET ENCODING FOR LIFETIME
IMPROVEMENT

Beside the functional units also the decoding stages of the instruction pipeline can become
critical and limit the overall microprocessor lifetime, as these components also suffer from high
wearout rates (see Figure 4.1). Therefore, to tackle wearout in these parts of the microprocessor,
an aging-aware instruction set encoding methodology (ArISE) is proposed in this chapter. At
first, we demonstrate why the decoding stages have to be addressed and motivate the envisioned
aging mitigation technique. Next, the methodology to alleviate accelerated transistor aging
inside the decoding stages is presented, followed by a comprehensive evaluation, which shows
the benefits of this technique. Afterwards, a summary of related work is provided, and finally
the chapter ends with a concluding section.

6.1. Problem Introduction and Motivation

As explained in Chapter 4 and Chapter 5, the microprocessor lifetime is often determined by
the execution units [12, 146]. Therefore, various aging-aware solutions have been proposed to
extend the lifetime of these units. However, many of these techniques such as aging-aware
instruction scheduling presented in the previous chapter or aging-aware NOP instructions [145]
are hardly applicable to other stages of the instruction pipeline. Hence, by using such techniques
and extending the lifetime of the execution stages, the impact of other near-aging-critical
stages on the overall microprocessor lifetime becomes more pronounced. As a result, MTTF
improvements for the entire microprocessor become much smaller than the individual benefits
for the execution units. Therefore, additional approaches are necessary to also improve MTTF
of other pipeline stages. In particular the decoding stages have to be targeted, since these suffer
from high wearout rates and are almost as critical as or even more critical than the execution
stages, as illustrated in Figure 6.1. However, such approaches to improve lifetime of pipeline
stages in the frontend are still very rare.

To improve the MTTF of the decoding stages, the instruction opcodes can be modified.
Since these are part of the input stream of the decoding stages, the opcodes strongly affect
the internal signal properties, i.e. signal activity and signal probability. Moreover, by chang-
ing the instruction opcode, the instruction set encoding1 (ISE) is modified, which results in
circuit-level changes which in turn also affect the aging rates. Both aspects together lead to a
considerable influence of the ISE on the wearout of the decoding stages as depicted in Figure 6.1
for the FabScalar microprocessor (results were obtained with the RTL platform presented in

1The mapping of instructions (e.g. add) to their binary representation (e.g. 1101), i.e. opcode, is called
Instruction Set Encoding.
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Figure 6.1.: Worst-case delay change after 3 years for different pipeline stages for 3 different ISEs

Chapter 3.4). In terms of MTTF the depicted difference in delay degradation rates translates
to more than 2x difference, if a timing guardband of 10% is used. Moreover, the results also
show that the decoding stages can even become lifetime-limiting, if the ISE is not designed
aging-aware (see Encoding 3). On the other hand, the effect of ISE changes on other stages
is negligible, since the instruction opcode forms only a small part of the inputs of the other
stages (or is no input at all).

In summary, it is important to address aging in the decoding stages of the instruction
pipeline, which can be done by creating an aging-aware ISE. Therefore, a novel aging-aware
instruction set encoding technique called ArISE is proposed in this chapter. This technique
exploits the fact that the instruction set encoding (ISE) has a considerable impact on wearout
of the decoding stages, since it affects the input patterns (via the applied opcodes) and the
gate-level implementation of these stages, which both influence wearout. To find a good ISE
in terms of MTTF, the approach uses hierarchical optimization algorithms to obtain an aging-
aware opcode for each instruction in such a way, that the overall lifetime of the decoding
stages is improved. Moreover, since the ISE also affects the energy consumption of memory
components (via memory inputs switching activities) [212–214], the optimization algorithms
consider the energy consumption of memory elements as a second optimization objective to
co-optimize lifetime and energy consumption.

6.2. ArISE: Aging-aware Instruction Set Encoding

Designing an aging-aware ISE is a challenging task, as many instruction encodings have to
be modified to become aging-aware. For example, in case of the FabScalar microprocessor
the instruction set architecture contains 131 instructions that are encoded using 8 bits. This
means that there are (28)!/(28 − 131)! ≈ 10297 encoding possibilities. Similar results are also
obtained in case of real processors, for example for the x86 instruction set (also 8 bit opcode).
In general, if the instruction set supports n instructions with 2k−1 ≤ n ≤ 2k (i.e. k bit opcode),
the complexity of the solution space is:

2k!

(2k − n)!
>> en. (6.1)

In addition, since most encodings infer modifications in the gate-level implementation of the
stages and affect signal duty cycles as well as switching activities, each encoding requires a new
synthesis and simulation flow to determine its aging impact. Moreover, instructions cannot
be considered independently, since duty cycles and switching activities depend not only on
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the actual instruction, but also on the preceding and subsequent instructions in the executed
instruction streams. Therefore, to see the effect of a particular encoding, or even optimizing
the encoding for only one instruction, one has to simulate complete instruction streams. Due to
this complexity an exhaustive method is infeasible. Hence, a hierarchical heuristic methodology
is used to find an aging-aware ISE. The formal description of the corresponding optimization
objective is:

Find max
ISE∈{Set of ISEs}

{
min

i∈{Decoding Stages}
{MTTFi}

}
(6.2)

As heuristics simulated annealing and a genetic algorithm are employed, due to the following
reasons. First, neighboring ISEs where at most two instructions are different should result in
similar MTTF results, as only small changes in the hardware are required, and also the input
signal properties will remain similar. Thus, using simulated annealing and exchanging two
neighboring ISEs, the lifetime of the decoding stages can be improved in a stepwise manner.
Second, the main challenge of simulated annealing is that the optimization is a sequential pro-
cess. To overcome this issue, and by that means to improve the optimization runtime, we have
chosen a genetic algorithm, where the entire set of ISEs is optimized with a high degree of par-
allelism. As a consequence, both choices provide very good results, as presented in Section 6.3.
Therefore, in Section 6.2.1 the chosen simulated annealing approach is presented, followed by
the methodology based on a genetic algorithm (Section 6.2.2). The hierarchical approach to
improve the efficiency is discussed in Section 6.2.3. Afterwards, in Section 6.2.4, the methodol-
ogy to co-optimize memory power consumption and lifetime of the decoding stages is proposed.
Furthermore, a runtime analysis and further improvements are presented in Section 6.2.5. The
application of ArISE to a real system is described in Section 6.2.6.

6.2.1. Optimization using Simulated Annealing

The starting point of the approach based on simulated annealing [215] is a random ISE, as
detailed in Algorithm 6.1. For this ISE all pipeline stages have to be synthesized and their
MTTF values need to be extracted according to the flow presented in Chapter 3.4 (Steps 1+2).
Afterwards, a simulated annealing (SA) algorithm is invoked (Steps 3-9). As a first step,
it generates a “neighbor” ISE for the current one (Step 5). For this purpose, the neighbor
definition 6.2.1 is employed to guarantee that every possible ISE can be generated. In other
words, the ISE search space used by SA is not reduced by this definition. In addition, this
definition makes sure that the difference between the new and the old ISE is not that huge
that the optimization process is too random.

Definition 6.2.1 (ISE Neighbor)
Two ISEs are neighbors if and only if a) both ISEs differ only in one instruction opcode
(only possible if there are more binary opcodes than instructions), or b) the second ISE can
be derived from the first one by exchanging the opcodes of two instructions.

The next step of the optimization algorithm is to estimate the overall microprocessor MTTF
using the newly generated ISE (Step 6). Afterwards, it is evaluated if the new ISE will replace
the old one (Step 7). Therefore, the exponential function detailed in Equation (6.3) is applied
as cost function:

P (accept ISE) = exp (−(dnew − dold)/T )
?
> Preject. (6.3)

The inputs for the cost function are the worst-case delay (which can be used to represent MTTF)
after 3 years for the new and old ISE. Preject is the reject probability and T the annealing
temperature, which can be iteratively reduced (Step 4) according to the SA principal [215].
Since SA tries to find the global optimum, it does not only accept solutions with lower costs
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1. Select a starting ISE → ISE
2. Evaluate MTTF and delay D after X years for ISE

/* run simulated annealing */
3. While MTTF < MTTFstop or number of steps < limit do

4. Adjust temperature T

/* Mutation */
5. Generate “neighbor” ISE of ISE → ISE′

/* Evaluation */
6. Evaluate MTTF ′ and delay D′ after X years for ISE′

7. If ISE′ is acceptable according to Equation (6.3)
8. ISE = ISE′,MTTF = MTTF ′

9. ISEbest = ISE /* memorize best ISE */
End

End
Done.

Algorithm 6.1: Simulated annealing approach to generate an aging-aware ISE

(i.e. better MTTF) but also intermediate solutions with higher costs to avoid local optima. In
both cases a neighbor for the new ISE is created (Step 8-9) and the evaluation continues with
this new neighbor. Otherwise, if the costs for the new ISE are too high, a new neighbor for the
old ISE is generated.

6.2.2. Optimization using a Genetic Algorithm

Another option to tackle the complex optimization problem of finding an aging-aware ISE is
to employ a genetic algorithm (GA) [215, 216]. The advantage of an evolutionary approach
instead of simulated annealing is that a pool of solutions is employed (as in GA) for the
optimization process rather than a single solution that is iteratively improved (as in SA).
Moreover, new candidate solutions are generated not only by “mutation” (as in SA), but also
by “recombination” of two solutions from the pool, which promises better results than the
semi-random search of SA.

The methodology using a GA approach is shown in Algorithm 6.2. The first step is to
generate a set, s, of n random ISEs (Step 1). Afterwards, the overall microprocessor MTTF
for each ISE in s is evaluated according to the flow presented in Chapter 3.4 (Step 2-3). If no
ISE can satisfy the target lifetime, the genetic algorithm is started (Steps 4-15). Consequently,
at first, the quality of each solution is judged based on its “fitness” (Step 5). The fitness, fi, of
ISEi is defined as:

fi =
MTTFi∑n
j=1MTTFj

∈ [0, 1] ,

n∑
i=1

fi = 1 (6.4)

According to this equation, the fitness fi of ISEi is determined by its MTTF (MTTFi) and
normalized to the sum of all MTTF values. As a result, all fitness values are between 0 and 1,
and the sum equals 1. Moreover, the better the microprocessor MTTF with a particular ISE,
the higher is the fitness value of this ISE. The calculated fitness values are then used to select
n = |s| ISEs from s (Steps 6-7). In this regard, the fitness of ISEi determines the probability of
selecting this particular ISE, i.e. the higher the fitness, the more likely this ISE will be selected.
Note that since the selected ISEs are not removed from s, ISEs can be selected several times,
which means that in the pool of selected ISEs, s′, the same ISE can occur several times.

After n ISEs have been chosen, the next step is to recombine these ISEs (Steps 8-12).
Therefore, two ISEs, ISEi, and ISEj(i 6= j), in s′ are randomly chosen and removed from s′.
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1. Generate a pool of n random ISEs s = {ISE1, . . . , ISEn}
2. Evaluate MTTFi for every ISEi ∈ s
3. MTTF = maxMTTFi

/* run genetic algorithm */
4. While MTTF < MTTFstop or number of steps < limit do

/* Fitness */
5. Extract fitness fi of every ISEi ∈ s according to Equation (6.4)

/* Selection of n ISEs */
6. Generate empty set s′

7. Select ISEi ∈ s with probability fi and put it in s′ (n times)

/* Recombination */
8. Generate empty set s
9. While s′ 6= ∅ do

10. Select ISEi, ISEj ∈ s′(i 6= j)
11. Generate crossovers ISE′i, ISE′j and put these in s
12. Remove ISEi, ISEj from s′

End

/* Mutation */
13. For all ISEi ∈ s: Modify opcode k with probability p (for all k)

/* Evaluation */
14. Evaluate MTTFi for every ISEi ∈ s
15. MTTF = minMTTFi

End
Done.

Algorithm 6.2: Genetic algorithm to generate an aging-aware ISE

Then, the chosen ISEs are combined to generate two crossovers, which are put in a new pool s.
This procedure is repeated until there are no more ISEs in s′ (therefore n needs to be even).
In this thesis, the recombination of two ISEs works as follows: For each opcode of the first
ISE child, it is randomly decided from which parent the opcode is inherited as illustrated in
Figure 6.2, while the second ISE child inherits the other, not-selected, opcode. For instance,
in Figure 6.2 the opcode for add in ISE1×2 is randomly chosen to be a3 which comes from
ISE2. Consequently, in ISE′1×2 the opcode has to a6 from ISE1. However, this recombination
process cannot be purely random, as there is the constraint that not two instructions in one
ISE can have the same opcode, which needs to be considered during the crossover phase. For
example, in Figure 6.2, the opcode for xor in ISE1×2 cannot be a7, which comes from ISE2,
as a7 is already used for sub. Hence, the opcode from ISE1 has to be used, i.e. a8.

The next GA step is to allow a mutation of the new ISEs (Step 13). Therefore, every ISE
opcode is changed with the probability p. Again, since not two instructions can have the same
opcode, always two opcodes are rotated in case an opcode is modified. Finally, these newly
generated ISEs are evaluated based on the overall microprocessor lifetime (Steps 14-15) and
the GA procedure starts again.

Please note that the MTTF evaluation is the most time consuming part for the SA and
GA approaches, as a re-synthesis of the affected pipeline stages is required. Hence, if the SA
approach evaluates N solutions, the runtime is O(N). Instead for GA it is only O(N/n), as all
solutions within one set can be evaluated in parallel. For example, SA requires about 6 hours
to perform 100 iterations (see Section 6.2.5), i.e. to evaluate 100 solutions. In contrast, if
n = 20, GA only requires 20 minutes to analyze the same amount of solutions, which is a huge
advantage of the GA approach.
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Figure 6.2.: Exemplary recombination of ISE1 & ISE2 to ISE1×2 and ISE′1×2

6.2.3. Hierarchical Optimization

To improve the efficiency of the optimization process, the number of steps until an acceptable
solution is found needs to be reduced. Therefore, the hierarchical optimization approach shown
in Algorithm 6.3 and illustrated in Figure 6.3 is applied. First the instructions are classified
into different (sub)groups based on their characteristics, e.g. all branch/jump-instructions are
put into the same group (Step 1). Afterwards, at each hierarchy-level, the (sub)groups are
ranked according to their aging impact (Step 2). However, as the aging rate strongly depends
on the encoding, the real aging rates cannot be used for this ranking. As a matter of fact,
the instructions affecting the hardware-implementation (of the decoder), i.e. the instructions
that are decoded in this stage, have the biggest aging impact. For example, in FabScalar’s
predecode stage only the branch/jump-instructions are handled, and hence these have the
strongest influence. Therefore, the impact on hardware modifications due to a particular coding
scheme is used to form the ranking. If there are several (sub)groups affecting the hardware-
implementation, they are ranked depending on their occurrence frequency (Step 2.2). The next
step is to find the best encoding for each (sub)group, for all hierarchy-levels starting at the
coarsest hierarchy-level (Step 3). Thereby, at each level, the group ranking determines the
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Figure 6.3.: Instruction classification, ranking and sequence of the hierarchical optimization process

92



6.2. ArISE: Aging-aware Instruction Set Encoding

1. Partition instructions into groups and subgroups
/*Instruction groups, subgroups inside groups, */
/*instructions insides subgroups, etc.*/

2. Rank each group (and subgroups subsequently)
2.1 Based on their hardware-impact
2.2 If there are groups/subgroups with same ranking

then use occurrence frequency to rank these

3. For the coarsest down to the finest hierarchy-level do
For the highest ranked group down to the lowest do

3.1 Find the best encoding for the elements within that group
/*Either exhaustive or with simulated annealing*/

3.2 Stop as soon as MTTF is satisfactory
Endfor

Endfor

Algorithm 6.3: Hierarchical approach to obtain an aging-aware ISE

optimization order. As a result, an exhaustive technique can be applied, if there are only a few
(sub)groups at the same hierarchy level with considerable aging impact. Otherwise, a heuristic
optimization process, either GA or SA, can be applied for the (sub)groups.

Using this approach, at each hierarchy-level, only the opcode bits corresponding to that
level are modified. For example, if there are 16 groups at the coarsest level, only the four most
significant opcode bits are modified (i.e. 16! configurations). As we used only 16 instruction
groups, each of which contained at most 16 instructions the search space for the entire op-
timization process became much smaller than the original space (16!2 ≈ 4 · 1026 vs. 10297),
leading to fewer optimization steps. Although this search space reduction can theoretically
reduce the solution quality, the ISEs obtained with this approach are sill very good and yield
lifetime improvements of up to 2.4x, as shown in Section 6.3.

We compared this approach with a non-hierarchical one that uses the entire search space.
To limit the runtime for the latter, we enforced that one of the modified instructions in each
iteration had to be one of the 10 most frequent instructions (here: the 10 most frequent
instructions occurring in the SPEC2000 benchmarks) to avoid modifying only the encoding
of infrequent instructions, which have negligible effect on the overall aging rate. While this
version usually finds a feasible ISE within the first 80 to 90 iterations, the hierarchical approach
needs usually at most 30 iterations (i.e. at most 2 hours) to obtain an ISE which can achieve
a lifetime of at least 6 years (3 years with the default ISE), i.e 3x improvement in runtime.

Please note that the hierarchy can be divided into fewer or more optimization levels, de-
pending on the size of the instruction set and maximum runtime. Fewer levels allow to analyze
more ISEs, and thus a better solution can be obtained compared to an approach with more
levels, which however, has a much shorter runtime.

Furthermore, please note that also other grouping schemes can be used for this purpose.
In this thesis, we considered a two-level categorization and grouped the instructions based on
their type, e.g. all branch, arithmetic, load, store and logic instructions had their own group,
which is also the highest level of the hierarchy. The next hierarchy-level is the lowest level, i.e.
all instructions inside a group are optimized independently. Other schemes, for example based
on the occurrence frequency, are also possible and can affect the runtime as well as MTTF.
However, as within the 16 most frequent instructions 10 would belong to the branch/jump
group, the difference between these two approaches for the processor under consideration is
minimal. Therefore, we only present the results using the type-based classification.

As a final point, it is also important to note that instruction grouping is a standard in
the design of ISEs, to avoid that similar instructions have divergent opcodes. Hence, without

93



6. Aging-aware Instruction Set Encoding for Lifetime Improvement

-15

-10

-5

0

5

10

15

20

25

Im
pr
ov
em

en
ts

in
%

ISEs sorted by best aging

Switching Activity
Delta Delay (Aging)

Figure 6.4.: Improvements of various ISEs in terms of aging (delta delay) and switching activity of the
opcode bits in the instruction buffer compared to the default ISE (negative numbers mean
that the ISE is worse than the default ISE)

this hierarchical approach, aging-aware ISEs obtained with the standard simulated annealing
or genetic algorithm approach may contain various divergent opcodes. Thus, the hierarchical
approach is not only beneficial in terms of simulation effort and runtime, but also in terms of
ISE design.

6.2.4. Co-Optimization of Lifetime and Memory Power Consumption

ISEs are typically designed in such a way, that the switching activity in instruction-related
memories such as the instruction cache, instruction buffer or pipeline registers is reduced to
lower the energy consumption of these memories [212–214]. Thus, as our proposed approach
changes the ISE, it also affects the switching activity of memory cells that store the bits of the
instruction opcode (by up to 12% as shown in Section 6.3.3). Consequently, the aging-aware
ISE also has a significant influence on the power consumption of instruction-related memories.
Moreover, as these memories are quite small, dynamic power is typically more important than
leakage power due to a high access ratio. For example, using FabMem [217] we obtained the
read and write power for the instruction buffer of FabScalar to be 40x to 60x higher than the
leakage power. Hence, an increase in the dynamic power will significantly affect the overall
power consumption of these memories.

To study this effect we use the instruction buffer of FabScalar as case study, which stores
up to 32 decoded instructions including their opcode. For this memory, Figure 6.4 shows
the change in switching activity of the opcode bits as well as the aging improvements for the
decoding stages for various ISEs. As one can see, there is no correlation between the aging
rates of the decoding stages and the switching activity inside the memories. Moreover, the
figure shows that the switching activity of the affected bits increases by up to 12%. Hence, it
is important to co-optimize the switching activity inside the memories and the aging behavior
of the decoding stages.

For this purpose, as the dynamic power consumption is a direct function of the switching
activity, we added the average toggle rate of the affected bit-cells to the optimization process.
This is achieved by modifying the fitness function of the GA optimization (Equation (6.4)) and
the acceptance probability of the SA approach (Equation (6.3)). Beside lifetime or delay, these
have to also consider the average toggle rate (TR) of the affected memory cells. Consequently,
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the modified fitness function looks like:

fi =
MTTFi ·

1

tri
n∑
j=0

MTTFj ·
1

trj

∈ [0, 1] (6.5)

where tri is the average toggle rate of the affected memory cells using ISEi. For the SA
optimization, a second acceptance probability is defined, and an ISE is only accepted, if both
acceptance probabilities (P1 and P2) are satisfied.

P1 = exp (−(dnew − dold)/T )
?
> Prejectd

P2 = exp (−(trnew − trold)/T )
?
> PrejectTR

(6.6)

Using these modifications, the average switching activity and the lifetime are co-optimized,
and thus ISEs that only optimize one of those two aspects at the cost of the other parameter
are avoided.

To extract the toggle rate of the affected memory cells, the input stream for each affected
memory block is dumped to a file using the starting ISE. Afterwards, for each new ISE, only
the affected opcode bits are modified in this stream and the new average toggle rate is obtained.
As this process is very fast, the runtime of a single optimization step is not impaired by the
co-optimization.

6.2.5. Runtime Analysis and Further Improvements

The runtime for a single SA or GA step depends mainly on the time required by the RTL
platform described in Chapter 3.4 to obtain the MTTF for the affected stages. The major
contributors to the runtime of this flow are the necessary re-synthesis steps of the affected
stages every time the ISE is modified and the required simulations to extract the behavior of
all signals. In contrast, as explained in Chapter 3.4, the remaining steps are negligible. For this
reason, we propose to replace the (post-synthesis) simulations during the aging estimation phase
as shown in Figure 6.5. Instead, prior to the start of the optimization process, a behavioral
simulation is performed and the input-stream for all affected stages is stored in a file. Then,
during the optimization process, this input-stream is modified according to the ISE changes,
i.e. old opcodes are replaced with modified ones. The resulting input signal properties are
then given to the synthesis tool (in form of a Switching Activity Interchange Format, SAIF,
file). The synthesis tool propagates these properties through the entire design and calculates
the signal properties for all (internal) signals. By that means, extracting the internal signal
properties takes a negligible fraction of time compared to post-synthesis simulation (a few
seconds vs. ≈ 30 minutes for 106 clock cycles). However, the aging estimation accuracy will be
impacted, as signal correlations are not taken into account. Nevertheless, the inaccuracy is very
small as shown in Section 3.4.3, and hence this scheme is accurate enough to be used during
the optimization process. For the final results again the accurate but time-consuming flow is
employed to extract the signal properties to ensured that the obtained results are accurate and
that the optimization process was successful.

As a result, the runtime for a single SA or GA step depends now mainly on the time required
for synthesizing the stages, which is required every time aging (i.e. MTTF and delay) has to be
estimated. In addition, only aging-critical stages that are sensitive to ISE need to be considered
(here: decoding stages). Doing so, a single step takes in our case less than 4minutes, which
means that 100 steps can be performed within 6 hours2.

2All runtime measurements in this chapter were performed on a system with AMD Opteron 6174 processors
running at 2.2GHz, 256GByte RAM and Redhat Enterprise Linux 6.5 64 bit
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Figure 6.5.: ISE optimization flows including aging analysis: Left: fast version without post-synthesis
simulation, Right: slow and accurate version

Moreover, we avoid re-evaluating the same ISE in multiple steps, to reduce the runtime
further. Also, the best solution found during all performed iterations is memorized, such that
we can always apply the best ISE in terms of MTTF that was found and not only the last
accepted one, which may not necessarily be the best one.

Another improvement to reduce the runtime is to add optimization constraints. In particular
this holds for the SA approach which we extended with the possibility to use lower and upper
quality bounds for the solutions as shown in Figure 6.6. Using upper bounds means that
whenever the lifetime is better than a given threshold (MTTFup), the changes that led to this
particular ISE will be kept for all following iterations. In contrast, if the lifetime is worse than
a given threshold (MTTFlow), the changes that led to that particular ISE will be avoided for
all following iterations (lower bound). By that means, the search space becomes significantly
smaller, which improves the convergence speed. However, the solution quality can be affected
(see Section 6.3 for more details). Therefore, the bounds need to be carefully selected. In this
regard, the selection depends on various design constraints, such as target lifetime, lifetime
without enhancements and optimization budget (e.g. time available to optimize ISE).

6.2.6. Applying Modified Instruction Encoding

An ISE modification affects the usability of existing software binaries since software compiled
for the original ISE can no longer be executed. To address this issue a software- or a hardware-
based technique can be used.

The software-based solution re-compiles applications using a compiler based on the modified
ISE either on-the-fly (runtime compilation as it is used for instance by OpenCL [218]) or

...
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...

a6
a7
a8

a6
a7
a8

add
sub
xor

ISE ISE′

→ 1. case: MTTF ′ > MTTFup:
Fix sub = a7 and xor = 8 in all following ISEs
→ 2. case: MTTF ′ < MTTFlow:
Avoid sub = a7 and xor = 8 in all following ISEs

Figure 6.6.: Using lower and upper bounds as optimization constraints
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Processor FabScalar [1]
Frequency 740Mhz + 10% guardband
Technology TSMC 65nm
Architecture out-of-order

Pipeline Stages 11
Simultaneous Multithreading no
Frontend-Width (per Thread) 4 insts/cycle

Exec. Units (ALU/MUL/AGEN) 1/1/1
Ambient Temperature 40 ◦C

Table 6.1.: Architecture setup of the FabScalar microprocessor

when the application is started for the first time. In case of application-specific processors
re-compilation is not necessary, since hardware and compiler are typically designed in close
interaction and backwards compatibility is seldom required. In general, the advantage of this
approach is that it infers no additional hardware costs and is easy to implement.

The hardware-based approach is intended for processors that have to be backward compat-
ible to old software (e.g. x86-based microprocessors), or when re-compilation is not a feasible
solution. Therefore, a mapper is used, which translates the standard ISE into the aging-aware
ISE at runtime by using a lookup-table or logic-statements (if-else). This mapping can be done
while the instructions are written to or read from the instruction cache. Our analysis shows
that, the overhead of such a solution is negligible (less than 0.4% overhead for FabScalar).
Besides area overhead this mapper can potentially also impact performance, since it could in-
crease the critical path length. However, in case of FabScalar using a mapper did not negatively
affect the critical path, i.e there was no performance penalty. Therefore, for this dissertation
the hardware-based approach was employed.

For processors that rely on microcodes, i.e. each instruction is translated by the hardware
into several micro-instructions, the idea of an aging-aware ISE design can be also applied to
micro-instructions. In this case, no additional hardware overhead would be necessary to ensure
backward compatibility, as the micro-instructions are only used internally by the processor and
all instruction set related encodings could remain the same.

6.3. Experimental Results

In this section, the impact of an aging-aware ISE on the FabScalar microprocessor is evaluated,
the co-optimization of lifetime and memory power consumption is analyzed and our proposed
technique is compared to the method from [11], which periodically inverts the opcode bits to
achieve better wearout rates.

The processor, detailed in Table 6.1, was synthesized using the TSMC 65 nm library with
performance-optimized timing constraints, i.e. to achieve the highest possible clock frequency
(740MHz ≡ 1.35 ns clock period). The lifetime was estimated based on a guardband of 10%
with an ambient temperature of 40 ◦C resulting in processor temperatures between 50 ◦C and
75 ◦C, which is reasonable for modern processors (see for example our experimental data in Fig-
ure 3.9). For the evaluation we employed six SPEC2000 benchmarks provided with FabScalar
(bzip, gap, gzip, mcf, parser, vortex) and simulated 106 cycles after a warmup (see Section 4.4
and Remark 4.4.1 for further explanations). Afterwards, the observed behavior during the
simulated period was used to evaluate the power consumption and lifetime estimation based
on the flow presented in Section 3.4. Accordingly, the overall lifetime of the decoding stages
was 3 years with the default ISE, i.e. after 3 years the worst-case delay of the decoding stages
is larger than 1.485 ns (i.e. 1.35 ns + guardband). The runtime of the different optimization
approaches was measured on a server system with AMD Opteron 6174 processors running at
2.2GHz, 256GByte RAM and Redhat Enterprise Linux 6.5 64 bit.
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SA Preject / limit 0.9 / 100
GA limit / n / p 5 / 20 / 0.0625

General MTTFstop 6 years

Table 6.2.: Optimization parameters

6.3.1. Evaluation of an Aging-aware Instruction Set Encoding

In case of FabScalar, the Predecode stage is more critical than the Decode stage (MTTF of
3 years vs. 16 years), which means that the major optimization focus is on instructions with
considerable aging impact on the Predecode stage to extend the overall MTTF. Therefore, all
instructions were classified according to the hierarchical principle explained in Section 6.2.3.
As a result, the branch/jump instruction group containing all branch and jump instructions
had the highest influences on the wearout of the Predecode. Hence, first the best encoding for
the corresponding instruction group was exhaustively determined using 16 iterations, with the
result that the best encoding (using 8 bit) for this group is 0001XXXX3.

Afterwards, the encoding for each instruction in the branch/jump group was optimized using
the following approaches with the parameters detailed in Table 6.2.

SA Simulated Annealing: The encoding for the instructions inside the branch/jump is set
according to Algorithm 6.1 using 100 iterations. Furthermore, the quality constraints
explained in Section 6.2.5 were used. SA-L stands for the lower quality bound (here:
MTTFlow = 4.5 years which corresponds to 1.5x improvement), SA-U for the upper
quality bound (here: MTTFup = 5 years which corresponds to 1.67x improvement) and
SA-B means that both bounds are active. If no quality constraints are employed, the
name SA is used.

GA Genetic Algorithm: The encoding for the instructions inside the branch/jump is set
according to Algorithm 6.2 using 5 iterations with n = 20.

Please note that in all these optimization algorithms all decoding stages, i.e. the Predecode
and Decode stages were considered. This is necessary, as some encodings improve the aging
rates for one stage, but decrease the lifetime for the other stage. In contrast, the remaining
pipeline stages were not (significantly) affected by modified ISEs (see Table 6.7), and thus
these were excluded from the optimization process to improve the runtime. Furthermore, it is
important to note that the quality bounds for SA were chosen based on the original lifetime of
the decoding stages of 3 years. As we wanted to improve the lifetime by at least 1.5x, we set
the lower quality bound to 4.5 years. The upper quality bound was set to 5 years, since higher
values were not reached often enough to accelerate the convergence, and lower values did not
help to achieve acceptable lifetime results. However, for other designs or lifetime targets the
bounds may be chosen differently.

As all of the aforementioned approaches are based on a random selection process, we con-
ducted 30 independent runs for each of the three approaches to evaluate which of them is best
for the problem of finding an aging-aware ISE. Moreover, as soon as the worst-case delay is
smaller than 1.46 ns (i.e. overall MTTF of decoding stages is better than 6 years) the optimiza-
tion was stopped and the next run was started, to reduce the simulation time. The results of
this analysis are given in Table 6.3.

It is obvious from the presented results that the simulated annealing (SA) approach without
quality bounds is in summary the best optimization technique in this comparison. On average
over all runs, it can achieve a lifetime of 5.6 years for the decoding stages, which corresponds
to an improvement of 1.87x. In 27% of all runs, it can improve the MTTF even by more

3XXXX represents the four bits used by the instructions in the branch/jump group, 0001 stands for the
group encoding
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SA SA-L SA-U SA-B GA

All runs (30)

Avg. best† MTTF [years] 5.6 5.5 5.4 5.5 5.5
Avg. best† delay after 3y [ns] 1.461 1.462 1.462 1.462 1.462
Avg. No. of ISEs evaluated‡ 37.6 40.4 22.5 42.5 56

Avg. runtime‡ [min] 150.4 161.6 90.0 170.0 11.2

Runs with MTTF > 6 years

Occurrence 8 5 6 7 5
Avg. best† MTTF [years] 6.4 6.0 6.1 6.0 6.2

Avg. best† delay after 3y [ns] 1.457 1.459 1.458 1.459 1.458
Avg. No. of ISEs evaluated‡ 26.4 53.7 24.4 58.3 64

Avg. runtime‡ [min] 105.6 214.8 97.6 233.2 12.8

Best run Best MTTF [years] 7.1 6.2 6.7 6.3 6.8
Best delay [ns] 1.453 1.458 1.455 1.457 1.455

Table 6.3.: Comparison of different optimization strategies to generate an aging-aware ISE for the de-
coding stages (best values are marked bold, MTTF & delay are worst-case over all decoding
stages and all benchmarks) †: Avg. best MTTF (delay) is the average over all runs of the
best MTTF (delay) obtained in each run ‡: Avg. No. of ISEs (runtime) is the average over
all runs of the No. of ISEs (runtime) considering only the iterations until the best MTTF
is obtained

than 2.1x and the best MTTF achieved is 7.1 years and hence an improvement of 2.37x. The
quality bounds for SA do not help to improve the solution quality. In fact, the solution quality
becomes worse, because the search space is much smaller. However, the advantage is that the
number of performed iterations can be lower (see Section 6.2.5). In particular, SA-U benefits
from this fact. As a result, SA-U performs only 40 iterations per run (on average), as then
no more ISEs can be chosen (all opcodes are fixed). On the other hand, SA-L requires even
more iterations than the standard SA approach, since also potentially “good” opcodes are
excluded during the optimization process (see Section 6.2.5). Also the genetic algorithm (GA)
is slightly less effective compared to the SA approach in terms of lifetime optimization. A
possible explanation is that the combination of two “good” ISEs is not very likely to be “good”
as well (see Table 6.4). Hence, the recombination step in GA usually does not improve the ISE
quality significantly. However, as mentioned in Section 6.2.2, the degree of parallelism for GA
is much higher. Hence, since n = 20, 20 times more runs can be performed in the same amount
of time using GA instead of SA. This makes GA by far the fastest optimization method in our
experiments, i.e. it requires just around 12minutes to achieve an average lifetime of 5.5 years,
while simulated annealing requires 150minutes (10x slower) for 5.6 years (only 2% better).
This runtime advantage can be used to analyze more ISEs and thus improve the final solution.

Of course, the lifetime impact of a chosen ISE significantly depends on the application, since

P1 P2 C1 C2 C3 C4 C5 C6
JUMP 1f 16 16 1f 1f 16 16 1f
JAL 18 10 10 10 10 18 18 18
JR 1c 18 18 18 18 1c 1c 1c

JALR 15 13 15 13 15 15 13 13
BEQ 1e 1f 1f 1e 1e 1f 1f 1e
BNE 1b 19 1b 19 1b 1b 19 19
BLEZ 13 1a 13 1a 13 13 1a 1a
BGTZ 1d 1b 1d 1b 1d 1d 1b 1b
BLTZ 12 11 12 11 12 12 11 11
BGEZ 16 17 17 16 16 17 17 16
BC1F 17 1e 1e 17 17 1e 1e 17
BC1T 19 12 19 12 19 19 12 12
MTTF 5.7 6.8 5.3 3.6 4.2 4.4 4.6 4.0

Table 6.4.: Recombination of two “good” ISEs (P1 & P2) resulting in “worse” ISEs (C1-C6) for GA
(hexadecimal values represent the instruction opcodes)
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Figure 6.7.: Delay degradation of the decoding stages for different benchmarks using the standard ISE
and the best ISE in terms of lifetime

Instruction JUMP JAL JAR JALR BEQ BNE
Start ISE 01 02 03 04 05 06
Best ISE 11 17 13 14 18 1c
Instruction BLEZ BGTZ BLTZ BGEZ BC1F BC1T
Start ISE 07 08 09 0a 0b 0c
Best ISE 12 16 1a 15 1e 1b

Table 6.5.: Differences between the default ISE and the best ISE in terms of MTTF (all opcodes in
hexadecimal)

Stage
Standard Encoding Best Encoding

Delay [ns] Delay [ns] MTTF Delay [ns] Delay [ns] MTTF
(0y) (3y) [years] (0y) (3y) [years]

Predecode 1.350 1.480 3.0 1.350 1.453 7.1
Decode 1.340 1.421 15.9 1.350 1.402 45.8

Overall 1.350 1.480 3.0 1.350 1.453 7.1
+2.37x

Table 6.6.: Improvements of the best ISE in terms of MTTF and delay (both worst-case over the used
SPEC2000 benchmarks) for the evaluated Predecode and Decode stage

input patterns and temperature are application dependent. As depicted in Figure 6.7, the most
critical application is the mcf benchmark, since the Predecode stage is very sensitive to the
high stall cycle count of this benchmark (more than 70%), as discussed in Section 4.4.1. The
consequence of this observation is that representative workloads have to be considered for the
ISE optimization, i.e. a cross-layer approach, like the one presented here, is mandatory.

6.3.2. Impact of an Aging-aware ISE on the entire Processor

To evaluate the effect of an aging-aware ISE on the entire processor, we picked the best en-
coding that was obtained during the previous investigation. With this encoding, shown in
Table 6.5, the lifetime of the decoding stages improved by 2.37x as shown in Table 6.6. This
improvement is mainly due to the Predecode stage benefits, but also the Decode stage shows
a significant lifetime improvement with this encoding (almost 46 years instead of 16 years).
Beside the decoding stages also the Execute stage as well as the Load-Store-Unit (LSU) are
affected by ISE changes. Moreover, as the instruction mapper is part of the Fetch stage, also
this stage is modified. However, as shown in Table 6.7, the effect of the chosen encoding on
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Stage

Standard Encoding Best Encoding
Delay Energy Area Delay Energy Area Changes[ns] [µJ] [µm2] [ns] [µJ] [µm2]

Fetch 1.35 12.2 23262 1.35 (±0%) 12.7 (+4%) 24434 (+5%) yes
Predecode 1.35 16.6 35030 1.35 (±0%) 16.6 (±0%) 34984 (−1%) yes
Decode 1.34 6.1 23616 1.35 (±0%) 5.1 (−16%) 23707 (+1%) yes
Rename 1.33 1.3 4050 1.33 (±0%) 1.3 (±0%) 4050 (±0%) no
Dispatch 1.33 0.1 1867 1.33 (±0%) 0.1 (±0%) 1867 (±0%) no
Issue 1.35 14.3 30719 1.35 (±0%) 14.3 (±0%) 30719 (±0%) no

RegRead 1.33 2.1 12061 1.33 (±0%) 2.1 (±0%) 12061 (±0%) no
Execute 1.35 6.4 27529 1.35 (±0%) 6.3 (−2%) 27468 (−1%) yes
LSU 1.35 50.6 107664 1.35 (±0%) 50.6 (±0%) 107664 (±0%) yes

WriteBack 1.34 4.0 3183 1.34 (±0%) 4.0 (±0%) 3183 (±0%) no
Retire 1.35 1.6 3201 1.35 (±0%) 1.6 (±0%) 3201 (±0%) no
Overall 1.35 115.4 273133 1.35 (±0%) 114.8 (-0.5%) 274289 (+0.4%)

Table 6.7.: Comparison of the FabScalar’s standard ISE and the best obtained one in terms of design-
time delay, avg. energy (w/o memory) and area (w/o memory) considering all benchmarks

these stages is very small. Overall, the power consumption (and energy consumption) of the
entire microprocessor (w/o memory elements) is slightly better using the aging-aware encoding
compared to the standard encoding. However, this is only some positive side-effect and is negli-
gible considering the entire processor. Furthermore, with a different processor using a different
implementation, these effects may change. The overall area increases slightly (less than 0.4%),
as an additional mapper translating from the old to the new aging-aware ISE is required. In
this regard, it is important to note that, if ISE changes lead to significant changes in the energy
consumption of the microprocessor (w/o the memories) due to an increased switching activity,
a co-optimization similar to the one proposed in Section 6.2.4, can be employed to co-optimize
lifetime and dynamic energy consumption of the affected pipeline stages.

Please note that the considerable MTTF improvements come from the fact that the relation
between runtime and delay degradation follows a root-like function. For example, in case of
BTI the following relation can be used to estimate the delay degradation [129]:

∆d(t) ∼ δn · tn, (6.7)

where, d is the delay, δ the transistor’s duty cycle, t the runtime and n is a technology constant
equal to 0.25. Hence, a delta delay reduction from 9.5%, to 7.6% corresponds to a duty cycle,
which is roughly 2.4x smaller than the original one. As a result, the lifetime improves by this
factor. Since the behavior for HCI is very similar, however with n = 0.5, the real results shown
in Table 6.6 slightly differ from this estimation.

6.3.3. Impact of an Aging-aware ISE on the Memory Power Consumption

Beside the logic, also the processor memories are a major contributor to the overall power/energy
consumption. Because of that, as pointed out in Section 6.2.4, we employ a co-optimization to
improve the lifetime of the decoding stages and the memory power consumption. In this part,
we compare the results of this co-optimization with an optimization that does not consider the
switching activity inside the memory blocks. For this purpose, we picked the SA approach.

Due to the way ArISE is implemented in hardware (see Section 6.2.6), the largest instruction-
related memory, i.e. the instruction cache, is not affected by modifications of the ISE. Hence,
only the energy consumption of the instruction buffer and the pipeline registers changes by
employing a modified ISE. Moreover, the default ISE of FabScalar has the lowest average
switching activity of all investigated ISEs, and consequently all modified ISEs lead to an increase
in the toggle rate and hence also energy consumption compared to the default ISE. This
behavior is independent from the chosen optimization strategy.
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Optimization Co-Optimization
of MTTF only of MTTF and TR

All runs (30)

Avg. best† MTTF [years] 5.6 5.3
Avg. best† delay after 3y [ns] 1.461 1.463

Avg. TR increase‡ [%] 5.8 3.0
Avg. No. of ISEs evaluated‡ 37.6 54.1

Avg. runtime‡ [min] 150.4 216.4

Runs with MTTF > 6 years

Occurrence 8 4
Avg. best† MTTF [years] 6.4 6.3

Avg. best† delay after 3y [ns] 1.457 1.458
Avg. TR increase‡ [%] 6.0 2.5

Avg. No. of ISEs evaluated‡ 26.4 58
Avg. runtime‡ [min] 105.6 232

Best run
Best MTTF [years] 7.1 6.8

Best delay [ns] 1.453 1.454
TR increase [%] 5.4 1.5

Table 6.8.: Comparison of optimization strategies with and without considering the toggle rate (TR) in
memories (TR increase w.r.t. default ISE)

Using the proposed co-optimization technique the switching activity of the aging-aware ISE
is significantly smaller, without affecting the lifetime improvements too much. As shown in
Table 6.8, on average over 30 independent optimization runs, the achieved lifetime is 5.3 years,
which is still an improvement of 1.77x compared to the default encoding (3 years lifetime).
However, the average increase of the switching activity in the affected memories is only 3%
instead of 5.8%, if no co-optimization is employed. In case of the ISE with the best lifetime,
the improvement is even more significant (1.5% vs. 5.4%). This means that for an instruc-
tion buffer storing 32 decoded instructions, the dynamic energy consumption of the affected
memories increases by only 2% (1% for best ISE) and not by 4%, since the write energy is
almost 2x larger than the read energy (33 pJ vs. 17 pJ according to FabMem [217]) and in
almost every clock cycle instructions are written to and read from such a memory. This shows
the importance of a co-optimization of memory switching activity and lifetime of the decoding
stages. However, due to the additional optimization effort, the runtime increases by 44% on
average, since more ISEs have to be evaluated. Nevertheless, the overall runtime is still in an
acceptable range (less than 6 hours).

6.3.4. Aging-aware ISE vs. Periodical Inversion

Another technique that tries to alleviate wearout in the pipeline frontend was proposed in [11].
The idea of this approach is to periodically invert the opcode bits, to balance the transistor
duty cycles (around 0.5) and by that means to slow down BTI-induced delay degradation.
To compare this approach with our aging-aware ISE, we implemented the periodical inversion
approach in the Predecode stage of FabScalar. Therefore, all necessary signals and gates have
been added to the design.

However, the improvements of this duty-cycle balancing approach in terms of MTTF are
much smaller than that of our proposed technique as summarized in Table 6.9. Inverting the ISE
every 1000 cycles increases MTTF by just 1 year. Moreover, if the ISE is inverted permanently,
the improvements become even slightly better. Hence, our proposed technique significantly
outperforms the periodic inversion technique of [11], which is due to two reasons. First, HCI-
induced wearout is not considered in [11]. Second, the periodical inversion is intended to
balance wearout (duty cycles ≈ 0.5). However, this does not necessarily yield the best MTTF.
The reason is that it is often better to reduce wearout of the most critical paths as much as
possible (duty cycles << 0.5) at the expense of faster wearout of non-critical paths (duty cycles
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Our Technique Periodical Inversion [11]
with TR constraint never always every 103cyc

∆-Delay @ 3y 7.7% 9.1% 9.0% 9.1%
MTTF 6.8 years 4.0 years 4.1 years 4 years

Table 6.9.: Comparison between our proposed technique and periodical ISE inversion [11] in terms
of delay degradation and MTTF (never = ISE is never inverted, always = ISE is always
inverted, every 103cyc = Inversion period of 103 cycles)

>> 0.5). Overall this way a much better MTTF can be achieved.
An advantage of the duty cycle balancing approach is that is does not increase the memory

switching activity noticeably and hence has no influence on the memory power consumption.
In contrast, our proposed co-optimization technique has a small effect on the memory power
consumption, as shown in the previous section. However, the impact is almost negligible, in
particular if the entire microprocessor is considered. As a result, our co-optimization approach
is superior to the periodical inversion scheme.

Please note that the delay degradation with periodical inversion is not directly comparable
with the degradation of the standard design, as some additional circuitry is necessary to re-
invert the opcode everywhere it is used. Hence, also the overall circuit wearout is slightly
different.

6.4. Comparison with Related Work

ISE optimization is a common approach to reduce the dynamic power consumption of instruc-
tion buffers and registers by minimizing the input switching activity [212–214]. Therefore, the
goal is always to minimize

∑
{(i,j)}

w(i,j)H(i,j), where (i, j) represents a transition from instruction

i to instruction j, H(i,j) is the Hamming distance of these two instructions, and w(i,j) stands
for the number of transitions from instruction i to instruction j. To solve this NP-hard prob-
lem for the instruction opcode bits, in [214] various heuristic solutions including a simulated
annealing approach were evaluated, and in [212] binary as well as algebraic design diagrams
were employed. In [213] also other components of the instruction field such as the encoding of
source and destination registers is optimized using simulated annealing. However, minimizing
the overall switching activity of the opcode bits, does not necessarily alleviate transistor aging
due to BTI and HCI in the frontend of the instruction pipeline. Instead, the (internal) duty
cycles and switching activities of the transistors in the critical paths are much more important
and these are not only influenced by the opcode bits, but also by various other input signals as
well as the gate-level circuit design. As a result, the aforementioned low-power techniques are
not optimal for aging mitigation. For this purpose, other optimization objectives than minimiz-
ing the overall switching activity of the opcode bits are required. These are employed by our
ArISE philosophy, and thus ArISE is orthogonal to the low-power techniques. In fact, this also
means that power can be impacted. For example, we observed a 12% higher switching activity
at the inputs of the instruction buffer (SRAM-based) corresponding to the opcode bits for the
aging-aware ISE (see Section 6.2.4). This shows, that although power and wearout are coupled
(via temperature), they require different optimization strategies. Hence, both approaches need
to be combined to co-optimize power and lifetime. Therefore, we presented enhanced optimiza-
tion processes that also include the memory switching activity as optimization constraint (see
Section 6.3.3).

Mitigation of accelerated transistor aging in decoding stages was first targeted in [11]. The
authors proposed to periodically invert the instruction opcode to make the transistor duty cycles
close to 0.5, which should mitigate transistor aging due to BTI. However, HCI is not addressed
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and the overall MTTF improvements are much lower than those of our proposed approach
(see Section 6.3.4). Another technique that also addresses the lifetime of the pipeline frontend
was presented in Chapter 4. This scheme improves the lifetime of the entire microprocessor
by balancing the delays of all instruction pipeline stages at the desired lifetime. However, if
the decoding stages are aging-critical, this technique requires an overdesign (i.e. faster design
which means larger and more power hungry design) of these stages to improve their lifetime.
In contrast, the approach proposed in this chapter infers only minor overheads in terms of area
or power. Nevertheless, it is worth to note that both methodologies, the periodical inversion as
well as the pipeline stage balancing, are orthogonal to the ArISE technique. Thus, these can
be used in combination to achieve even better lifetime results.

Beside these techniques that directly target the pipeline frontend or the instruction opcode,
also all device- to circuit-level techniques as well as system- and application-level schemes
presented in Section 2.4 can be employed to alleviate wearout in the decoding stages. In fact,
as these are complementary to our proposed approach, these can be also used in combination
with ArISE to improve the lifetime further.

6.5. Summary and Conclusion

In this chapter, we proposed a novel cross-layer instruction set encoding methodology to address
the delay degradation of the instruction decoding stages in microprocessors, which can become
the lifetime limiting components. To derive an optimal mapping between instructions and
opcodes with respect to the overall lifetime of the decoding stages, a set of heuristic approaches
was presented. In addition, also the memory power consumption is taken into consideration by
these heuristics, since pure aging-aware instruction set encodings typically increase the memory
power consumption considerably, as shown by our simulation results. As a result, the lifetime
of the decoding stages can be significantly improved compared to state-of-the-art solutions with
only a small impact on the overall power consumption. At the same time, the performance (i.e.
clock frequency) can be maintained, and the implications on the overall die area are negligible.
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CHAPTER

SEVEN

AGING-AWARE PROACTIVE DYNAMIC RUNTIME ADAPTATION

The aging mitigation techniques presented in the previous chapters have to be employed during
the design phase, and hence their efficiency strongly depends on how good the real workload
behavior of the final product can be predicted a priori. Hence, for effective and holistic ag-
ing mitigation also runtime solutions based on senses-and-adapt as well as prediction-based
methodologies are required to cope with runtime variations. In this chapter, we propose a
dynamic approach based on proactive system adaptation to alleviate the impact of accelerated
transistor aging at runtime. To this end, this approach complements the three techniques pre-
sented before. In the first part of the chapter, we explain the problem of static approaches
and motivate why dynamic runtime adaptation is a great opportunity to mitigate aging. Af-
terwards, our proposed technique based on dynamic voltage and frequency scaling (DVFS) is
explained, followed by various tests that show the benefits of this scheme. Next, a comparison
with other runtime adaptation methods is provided. Finally, a summary and some conclusions
are presented.

7.1. Problem Introduction and Motivation

Accelerated transistor aging due to BTI and HCI can be addressed at various abstraction-
levels and at design time (i.e. during the design flow) or at runtime (i.e. while the system is
operating in the field). While the design time solutions have the advantage that almost every
parameter can be tuned to mitigate the effect of accelerated transistor aging, they come along
with the shortcoming that these approaches are static and optimized for particular system
conditions (e.g. workload, temperature). Hence, these techniques cannot react on sudden
condition changes. As a consequence, it can happen that the efficiency of design time solutions
is considerably reduced, if the predicted system conditions do not (permanently) hold in the
field. Therefore, dynamic runtime adaptation approaches have a great potential to alleviate
transistor aging, beside the “classical” design time solutions.

One of the most common runtime adaptation techniques in modern microprocessors and
modern operating systems is Dynamic Voltage and Frequency Scaling (DVFS), which is em-
ployed to “combine” high performance with low power consumption. For this purpose, frequency
and supply voltage are reduced to save energy, whenever a DVFS-capable microprocessor is
executing only a light workload or no workload at all. Moreover, it is also possible to increase
supply voltage and frequency beyond their default values to boost performance for certain
phases of application execution, in case power and temperature are not critical [219]. In both
cases, supply voltage and frequency can be typically adjusted every millisecond, resulting in
a constantly fluctuating frequency in the field, as depicted in Figure 7.1. Famous examples
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Figure 7.1.: Frequency of an Intel Core i5-3450
while a Youtube video is played back
using the DVFS ondemand governor of
Linux [9]

Frequency [MHz] Voltage [V]
Fmin= 3500 1.10

3400 1.09
3300 1.08
3200 1.08

Fnormal = 3100 1.07
3000 1.06
2900 1.04
2800 1.02
2700 1.00
2600 0.98
2500 0.96
2400 0.94
2300 0.92
2200 0.91
2100 0.90
2000 0.89
1900 0.89
1800 0.88
1700 0.88

Fmin = 1600 0.88

Table 7.1.: Intel Core i5-3450 P-States
extracted with our experi-
mental platform described in
Section 3.3

of microprocessor supporting DVFS are Intel’s Core-i processors [85], AMD’s Opteron offer-
ings [181], the IBM Power 7+ and Power 8 for high performance servers [188, 189] as well
as Qualcomm’s low power embedded S4 processor employed in various smartphones [220]. In
this regard it is important to note that modern microprocessors support a variety of P-States
(Frequency-Voltage settings), as shown in Table 7.1 for the case of an Intel Core i5-3450.

Furthermore, DVFS can be also applied to alleviate heat problems [157, 158, 221]. Therefore,
the microprocessor temperature is monitored and whenever it becomes critical or near-critical,
supply voltage and frequency are reduced to decrease the power consumption and consequently
to lower the temperature.

Moreover, since frequency and in particular the supply voltage have a strong influence on the
aging rates (see Chapter 2.3), DVFS can be also employed to mitigate the impact of accelerated
transistor aging. Therefore, some previous techniques such as [70, 71, 78] applied coarse-
grained stepwise voltage scaling policies to compensate the aging-induced delay degradation
in a reactive manner. In other words, these techniques monitor the delay degradation of the
circuits and whenever critical values are reached, these approaches increase the supply voltage
step-by-step at runtime to extend the time a certain frequency can be used. By this means,
the microprocessor lifetime is improved. However, as a matter of fact, these “damage-control”
sense-and-adapt kind of approaches are not very efficient [76], since the lifetime is extended at
the cost of a considerably increased supply voltage, i.e. increased power consumption. Instead,
a proactive approach that tries to prevent critical system states before they actually occur using
prediction-based techniques, promises to be more efficient as illustrated in Figure 7.2, i.e. it
promises longer MTTF results and lower energy consumption.

Therefore, we propose a novel proactive, fine-grained and highly dynamic DVFS approach
to extend lifetime and improve power as well as heat in this chapter. The technique is based
on an expert system that after each time frame determines the voltage-frequency configuration
for the next time period based on the current and former system states, the predicted system
behavior and user specific constraints. Hence, it combines sense-and-adapt with prediction-
based strategies. By this means, supply voltage and frequency are lowered whenever it is
possible, to achieve lower aging rates. Moreover, if the prediction indicates that the system is
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Figure 7.2.: Reactive vs. proactive adaptation philosophy

going to be in a critical state, supply voltage and frequency are reduced as well, to avoid that
state before it actually occurs. For this purpose, the expert system continuously monitors the
microprocessor states and can adjust the voltage and frequency every millisecond (i.e. very
fine-grained and highly dynamic adaption), and thus is feasible for inherently dynamic systems
where user/application needs can change in the order of seconds or less.

7.2. Dynamic Runtime Adaption Methodology

In this section, we present our dynamic runtime adaptation methodology. First, the monitoring
part is introduced, followed by the presentation of the expert system that is used to determine
the next (i.e. new) runtime configuration.

7.2.1. Runtime Monitoring

Many computing systems have tight constraints regarding power, operating temperature and
performance. Hence, if dynamic runtime adaptation techniques are used, it is important to
monitor these three aspects during runtime and make adaptation decisions dependent on the
current state of the system, the history of system states, the predicted system behavior in future
and user inputs. Furthermore, for our purpose the wearout status (lifetime) due to transistor
aging needs to be monitored as well. Therefore, various sensors available in many modern
microprocessors are accessed to gather all this data. The performance information such as IPC
(instructions per cycle), activity of execution units, etc. is delivered by special performance
counters (special purpose registers). The power consumption as well as the temperature can be
obtained from on-die sensors [85, 188, 189, 220], and aging can be measured using special path
delay sensors [222]. However, not all microprocessors feature all these sensors. In case some of
these sensors are missing, it is also possible to employ software-based models similar to those
used in the ExtraTime platform (see our experimental platform in Section 3.3) to extract the
necessary information about performance, power, temperature and wearout.

A crucial part for the decision making processes is the granularity at which information is
available, i.e. whether for instance only one single power or temperature value is available for
an entire microprocessor, or if data for each microarchitectural component is accessible. In
this regard it holds that the finer the granularity, the better can be the adaptation. However,
at the same time the analysis and decision making effort increases considerably and also there
is a rise in implementation costs. Thus, the system designers have to carefully decide which
components should be monitored. For example, since our proposed DVFS policy changes
the frequency and supply voltage of an entire processor core, the worst component inside the
targeted core matters most for the decision making process. Consequently, as the functional
units are typically the most aging-critical parts of a microprocessor (see the previous chapters),
we limited the wearout analysis to these components in this thesis.
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Figure 7.3.: Organization of the expert system for dynamic runtime adaptation

7.2.2. Expert System

All monitored data is sent to an expert system similar to the one depicted in Figure 7.3. It
is responsible for making decisions regarding the next runtime configuration and is split into
two parts. First, there is one local expert for each sensor group. These experts preselect the
monitored data, to reduce the data amount that has to be analyzed later on. Nevertheless, the
local experts can also initiate an immediate adaptation of the system, for example if critical
values, e.g for temperature, are detected. Further details on the preselection process of the
local experts and the critical values used in this thesis are given in Table 7.2.

Furthermore, there is one global expert used to find the best fitting runtime configuration in
case no local expert detects a critical status. The inputs of this expert are the current runtime
configuration, the preselected data from the local experts, history of the most recent system
states (wearout, temperature, etc.) and various objectives for which the optimal runtime
configuration for the next time frame has to be found. The process to find this configuration is
explained in detail in the following subsection. Furthermore, the global expert should be able
to take input from the user, for example to choose special objectives which fit the needs of the
user most. By that means, both self-adaptation and user-controlled adaptation are possible.

7.2.3. Dynamic Voltage and Frequency Scaling Policy

The global expert contains multi-dimensional objectives for runtime adaptation, since simple
one-dimensional objectives, such as max(lifetime), max(performance), min(power) or min(temp-
erature) are not the best choice for typical computing systems. For example, neglecting the
performance requirements, when maximizing the lifetime would lead to the choice of the lowest
possible P-State, which in turn would result in a very low performance. Hence, the global

Local Expert Preselection Function Critical If
Temperature Tmax = maxTi Tmax ≥ 100 ◦C = Tcrit

Power Ptotal =
∑
Pi Ptotal ≥ 25Watt = Pcrit

Performance no preselection none
Wearout MTTF = minMTTFi MTTF ≤ 11Days = MTTFcrit

Table 7.2.: Functionality of the local experts
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While system is running do
Wait until time = i · 1ms

/*** Perform ith analysis and adaptation step ***/
/*** i.e. Xi−1 = value of last interval; Xi value for future interval ***/

/* Evaluation and data aggregation by local experts */
Gather and preselect all sensor information according to Table 7.2
If (T i−1

max > Tcrit) or (P i−1
max > Pcrit) or (MTTF i−1 < MTTFcrit) /* critical state? */

(F i, V i) = Reduce(F i−1, V i−1)
Else

/** Analysis by global expert is performed **/
/* Evaluation of system trends */
Predict system trends according to Equation (7.1)
If (T i

trend critical) or (P i
trend critical) or (MTTF i

trend critical) /* critical trend? */
(F i, V i) = Reduce(F i−1, V i−1)

Else
/* Suggest new (F,V) based on performance */
Construct

{
(F i

sug , V
i
sug)

}
according to Equation (7.2)

/* Evaluate all (F,V) for next interval */
Forall (F,V) do

Estimate T i
(F,V )

, P i
(F,V )

and MTTF i
(F,V )

according to Equation (7.3)
If (T i

(F,V )
> Tcrit) or (P i

(F,V )
> Pcrit) or (MTTF i

(F,V )
< MTTFtarget) /* critical next state? */{

(F i
sug , V

i
sug)

}
=
{
(F i

sug , V
i
sug)

}
\ {(F, V )}

End
Endfor

/* Select new (F,V) based on temperature, power and MTTF */
If (

{
(F i

sug , V
i
sug)

}
6= ∅)

(F i, V i) = min
{
(F i

sug , V
i
sug)

}
Else

(F i, V i) = max
{
(F, V )|(T i

(F,V )
< Tcrit) ∧ (P i

(F,V )
< Pcrit) ∧ (MTTF i

(F,V )
> MTTFtarget)

}
End

End
End

Done.

Algorithm 7.1: Proactive DVFS methodology using trend analysis

expert has to contain complex objectives to optimize the system configuration for a certain
goal, but with respect to several constraints. A very important objective for computing de-
vices is to maximize the lifetime, while the required performance is still ensured (as well as
power and temperature constraints). In the following we will explain, how this objective can be
achieved using fine-grained and proactive DVFS. For this reason, we focus on the ith analysis
step, i.e. what analysis and decisions are made between the DVFS interval [ti−1, ti] and the
next DVFS interval [ti, ti+1]. The length of such an interval is 1ms, due to the explanations
given in Section 7.3 about the optimal sampling interval (see also Table 7.4).

1. Analyze recent trend of Temperature, Power, Wearout

After the local experts aggregated the sensor data and no critical value was detected, the global
expert initiates the decision making process for the P-State for the next DVFS interval (i.e.
(F i, V i)) as shown in Algorithm 7.1 which describes our proposed DVFS policy. Next, the
first step of the global expert is to analyze the history of the last n system states obtained
from the last n DVFS intervals (i.e. n ≤ i). Based on the history and the current state,
linear trend functions (LTF ) are built for wearout (i.e. MTTF), temperature and power. An
LTF is basically a linear regression of n data points using the least square fitting method1 as

1Least square fitting means finding a fitting parameter a such that
∑
|f(x, a) − y| is minimal for a given

fitting function f and a set of values y.
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Figure 7.4.: Linear trend function used to predict future (critical) system states

illustrated in Figure 7.4. With the obtained trend functions, the directions (i.e. derivatives) of
the trends for power, temperature and MTTF (i.e. towards better or worse system states) are
extracted according to Equation (7.1).

T itrend = LTF iT (T i−1, . . . , T i−n),
P itrend = LTF iP (P i−1, . . . , P i−n),

MTTF itrend = LTF iMTTF (MTTF i−1, . . . ,MTTF i−n),
(7.1)

If one of these trends Xi
trend is considered to be critical, the P-State in the next DVFS interval

[ti, ti+1] will be the next smaller P-State than the one used in the last DVFS interval [ti−1, ti]. In
other words, voltage and frequency are scaled one level down to reduce wearout, temperature,
or power. For instance, given the P-States in Table 7.1, the frequency is reduced by 100MHz
and the supply voltage is lowered accordingly. In this regard it is important to note that T itrend
(P itrend) is considered to be critical if Tcrit (Pcrit) will be reached within the next 10 DVFS
intervals (i.e. 10ms). Instead, MTTF itrend is critical, if the trend indicates that the overall
lifetime target cannot be achieved. By that means, it is possible in early life phases to detect
critical aging trends that would lead to a violation of the lifetime target and adjust frequency
and voltage accordingly.

The number of investigated system states n has a huge influence on the extrapolated values
and by that means on the decision making process. If n is too small, individual events have too
much influence on the trend. If, in contrast, n is too large, outdated system states still affect
the trend function. In our case, it has been shown that n = 10 is a good compromise between
proactive reliability enhancements and performance impact.

2.1. Suggest new P-State based on Performance

If the trend evaluation does not indicate problems, the next step is to find all possible P-
States, which guarantee that the performance constraints are fulfilled. Therefore, the global
expert accesses various load/performance indicators for the last DVFS interval [ti−1, ti], such as
IPCi−1, number of executed instructions in different execution units (activity Ai−1EUj

), current
frequency F i−1, etc. Based on these parameters all P-States are suggested for a usage in the
next DVFS interval, that satisfy the performance constraints, i.e.:{

(F isug, V
i
sug)

}
=
{

(F, V )|F ≥ Fbase = f(IPCi−1, Ai−1EUj
, ..., F i−1)

}
(7.2)

where Fbase is the minimum frequency fulfilling the performance requirements. For each sug-
gested frequency F isug,k the supply voltage is set according to the corresponding P-State.

Please note that the function f has not only a huge impact on performance, but also on
wearout, temperature and power consumption. The function f reflects the “aggressiveness”
with which the frequency/voltage is scaled up or down. From the wearout perspective, a very
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aggressive downscaling is desirable, while from the performance point of view an aggressive
upscaling is needed. Hence, the function f (and with it the “aggressiveness” of DVFS), which
is used to estimate the frequency needed for the next time period, can be used to optimize
the DVFS behavior in various ways, i.e. to make the DVFS policy more aging-aware or more
performance-aware. Since the global expert is capable of taking inputs from the user or oper-
ating system, the function f can be changed during runtime, depending on the current needs.

In this thesis, the function f is always a polynomial. The simplest case is thereby a linear
function with the structure f(P ) = a·P+b, where P is a vector containing the above mentioned
load indicators such as IPCi−1 or Ai−1EUj

. The parameters a and b are set in such a way, that
f(P ) returns the maximum allowed frequency, in case the maximum performance is required
and that the minimum allowed frequency is returned, if the minimum performance is sufficient.
For example, if P only contains the activity A ∈ [0, 1] of the first execution unit, the maximum
frequency is 3 GHz and the minimum is 1 GHz, f has the following form:

f(P ) = f(A) = (3GHz − 1GHz) ·A+ 1GHz.

2.2. Select new P-Sate based on Temperature, Power, Wearout

However, the aforementioned way to select the P-State for the next time frame is only one part.
While the first step is used to suggest a new P-State according to the performance needs, the
second part takes care of the other parameters such as power P , temperature T and wearout
MTTF . For each P-State of the microprocessor, power, temperature and wearout after the
“next” DVFS interval i are estimated, based on the current values and the chosen P-State:

P i(F,V ) = gP (P i−1, T i−1, F, V ) ∀(F, V ),

T i(F,V ) = gT (T i−1, P i, F, V ) ∀(F, V ),

MTTF i(F,V ) = gMTTF (MTTF i−1, T i, F, V ) ∀(F, V ).

(7.3)

The functions gP , gT , gW are basically power, temperature, and wearout models (similar to
those employed in our ExtraTime platform) based on various voltage and frequency combina-
tions. Note that the temperature model requires power information, and the wearout model
is also dependent on temperature, i.e. first P i has to be obtained, followed by T i and then
MTTF i can be predicted. Afterwards, all P-States are removed from

{
(F isug, V

i
sug)

}
, that lead

to critical values of P i, T i or MTTF i. If the set is empty afterwards, the largest, non-critical
pair (F, V ) is chosen as next P-State, since its performance will be closest to the one requested
by Fbase. Otherwise, the smallest pair out of the set is chosen, since this P-State will cause the
lowest wearout rates of all in the set, while still maintaining the performance target given by
Fbase.

Summing it up, the three steps to determine the P-State for the next time frame allow a
proactive lifetime extension (due to trend analysis, the function f , and the prediction in 2.2).
Of course, there is a chance that the prediction fails, i.e. a wrong behavior is predicted. This
can lead to a P-State lowering (e.g. critical value is predicted based on the trend analysis) or
a frequency increase (e.g. prediction indicates that more performance is necessary). However,
in both cases, the very fine-grained time steps (i.e. 1ms) allow almost immediate corrections
(i.e. P-State adaptation), in case the real behavior differs from the predicted one. As a result,
the performance penalty or lifetime impacts due to mispredictions will be very small, which is
underlined by the good results presented in Section 7.3.

Please note that in this dissertation we used linear trend functions, polynomial scaling
functions (f) and a fixed one-to-one-mapping between frequency and voltage (similar to the
one provided in Table 7.1). However, all approaches can be extended to support nonlinear trend
functions, more sophisticated scaling functions and various supply voltages per frequency grade
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Processor Single-core@3 GHz, out-of-order, 4-issue
L1-Cache / L2-Cache 64 KB, 3 cyc latency / 2 MB, 15 cyc latency
Expected wearout MTTF = 3years
DVFS parameters DVFS interval = 1 ms, stall latency = 1 µs

SPEC2000 benchmarks applu, bzip2, equake, gcc, gzip, lucas,
mesa, parser, twolf, wupwise

P-States 1.0 GHz/0.6 V, 1.5 GHz/0.7 V, 2.0 GHz/0.8 V,
(F -V -States) 2.5 GHz/0.9 V, 3.0 GHz/1.0 V

Table 7.3.: Configuration details for the experiments

depending on the wearout status, respectively. For instance, the DVFS ondemand governor of
modern operating systems could replace the scaling function [9]. As a result, the mathematical
relations will become more complex, but the overall methodology will still work.

7.2.4. Possible Implementation of the Expert System

In modern systems the DVFS implementation is split into two parts, which can be reused by
our proposed expert system. The performance monitors, temperature and power sensors are
implemented in hardware as well as the functionality to handle critical temperature or power
states. Our local experts can use these functionalities to detect and treat critical system states.
In contrast, delay sensors are not as widespread. If they are implemented in hardware as well,
they will increase the transistor count and die size. However, these sensors are very small.
In case eight of these are build into an ARM Cortex v8 the die size would increase by less
than 1% [222]. However, in case the transistor budget is limited the local experts can be also
implemented in software as a part of the operating system.

The more sophisticated analysis and decision making parts of current DVFS solutions are
embedded into the kernel of the operating system. Our proposed global expert can use these
parts. In fact, the available routines need to be extended by the proactive, wearout-aware
schemes. A negative performance impact is thereby not to be expected, since the software
routines do not use computationally expensive operations.

7.3. Experimental Results

7.3.1. Experimental Setup

In order to evaluate the benefits of the proposed proactive DVFS methodology we employed our
ExtraTime framework (see Chapter 3.2). The evaluated 32 nm processor runs at 3 GHz and has
one super-scalar, out-of-order core. Further details about the processor configuration can be
found in Table 7.3. The following evaluations were based on the execution of 109 instructions
of various SPEC2000 benchmarks. Thereby the simulations did not include the initialization
phase of each benchmark, which was executed but not included in the measurements. Moreover,
neither the power consumption nor the temperature were violating the given constraints (see
Table 7.2) and also their trends never reached a critical state.

Since gem5 does not support DVFS, we added this feature to our ExtraTime platform. In our
implementation a frequency/voltage change leads to a pipeline stall of a few µs, which is typical
for modern processors that support DVFS via digital PLLs [223]. Hence, the performance can
be (negatively) affected, which makes it unreasonable to adjust voltage or frequency in the
order of µs. In our case a 1ms sampling interval yields the best compromise between dynamics
of the system and performance, which is illustrated in Table 7.4. This underlines that only
fine-grained techniques can combine long lifetime and high performance.

Please note that the aging models for BTI and HCI in ExtraTime (see Section 3.2.2) are only
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Sampling Period [ms] 500 100 10 1 0.1 0.01 0.005
Performance [%] 100 99 98 98 97 94 91
worst MTTF [%] 100 100 135 163 164 164 164
average MTTF [%] 100 225 246 290 290 290 290

Table 7.4.: Effect of different sampling periods on performance and lifetime for the used SPEC2000
benchmarks

valid if the parameters such as supply voltage or frequency are constant over time. However,
due to the dynamic scaling of voltage and frequency at runtime, these parameters will change.
Hence, the Vth shift has to be calculated in a stepwise manner, where in each step frequency and
voltage are constant. Therefore, every time voltage or frequency changes, the aging rates have
to be adjusted according to the new parameters. Since ∆Vth(t) is continuous, the parameter
change at time t1 will not lead to a “jump” in ∆Vth, but to a continuous change, i.e:

∆Vth(t1, T1, Vdd,1, f1) = A′ ·∆Vth(t1, T2, Vdd,2, f2)

Using this equation A′ can be derived, and by that means the Vth shift for the following time
frame in which the parameters are again constant using the Equations (3.11) and (3.15) can be
determined. This process is also illustrated in Figure 7.5 for an example, in which the frequency
is changed at time t1.

7.3.2. Results

We investigated different f -functions (polynomials according to Equation (7.2)) to find out, how
aggressive the up/down-scaling of frequency/voltage should be. The results summarized over
all executed applications can be found in Figure 7.6. As it can be seen, the difference in terms
of performance and aging mitigation of the presented techniques is huge. While the choice of a
linear f -function leads to a performance loss of 26% compared to the non-DVFS case on average
(0.86 s average runtime vs. 0.68 s), it can extend the lifetime (MTTF) by more than 200% (i.e.
3x) in the worst-case (9.1 years vs. 3 years). This is due to the fact that very often voltage
and frequency are considerably reduced due to the very aggressive DVFS strategy. In contrast,
in case a polynomial of degree 5 is used as f -function (i.e. hexa policy), the downscaling of
frequency/voltage is much more conservative and hence the performance impact is minimized
(only 2% on average). However, the lifetime in the worst-case is only extended by 4%. If,
in addition, the proactive trend analysis is enabled, the same policy can achieve a lifetime
improvement of 63% in worst-case and almost 2.9x (8.7 years vs. 3 years) on average, while the
performance impact remains almost negligible. Compared to the standard hexa policy the huge
lifetime improvements are due to the proactive, small P-State adaptations that avoid critical
situations in advance as depicted in Figure 7.7, and hence no strong “emergency” adaptations
have to be applied (which reduce performance but do not extend lifetime a lot). In addition,

∆
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Runtime tt1
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Figure 7.5.: Effect of parameter changes on wearout at time t1
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Figure 7.6.: Effect of different DVFS policies on MTTF, energy (avg. over all benchmarks), temper-
ature (max. over all benchmarks) and performance (avg. over all benchmarks) w.r.t. a
configuration with no DVFS running at 3GHz

these small, proactive adaptations also reduce the maximum temperature (89 ◦C vs. 94 ◦C)
and lower the average energy consumption by 21% (11.2Ws vs. 14.2Ws). In this regard it
is important to note that the differences between DVFS without and with the trend analysis
clearly show that an aging-aware DVFS is required to efficiently improve the microprocessor
lifetime. If instead a power-aware DVFS without aging analysis is employed, the lifetime will
improve as well (since from frequency and voltage are also lowered from time to time), however
the lifetime improvements will be considerably smaller compared to our proposed proactive
aging-aware DVFS, since critical aging trends will not be detected.

Furthermore, we also evaluated a static approach with 2.5GHz. Also this method can con-
siderably improve the lifetime. However, the average performance loss is 6% (worst-case: 11%).
This underlines one major disadvantage of static techniques: for some applications they are
suitable, for others they are not. “Static DVFS” schemes or DVFS techniques with very long
adaptation intervals such as [70, 155], where an application is either executed with 2.5GHz or
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Figure 7.7.: Comparison of a DVFS technique with and without trend analysis for the applu benchmark
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Figure 7.8.: Influence of application on the efficiency of DVFS (hexa f + trend) w.r.t. a configuration
with no DVFS running at 3GHz

3GHz will minimize this performance penalty, however MTTF will also be considerably lower
compared to our proposed fine-grained and proactive DVFS methodology.

Since scaling of voltage/frequency and its efficiency strongly depends on the executed work-
load, the improvements can vary a lot. In Figure 7.8 the results for several applications for
the proactive “hexa policy” are given, in which the MTTF ranges between 4.7 and 14.8 years,
i.e. the chosen DVFS policy can extend lifetime by up to 5x. Furthermore, it is important to
note that for different applications and different policies the dominance of BTI and HCI on
wearout are different. In other words, the efficiency of the proposed DVFS technique for BTI
and HCI is different. Hence, neglecting one of these effects can lead to wrong predictions and
hence adaptations.

7.4. Comparison with Related Work

As mentioned in the beginning of this chapter, DVFS is a very popular approach to modify a
microprocessor configuration at runtime to improve its efficiency. In this regard, the objective
can be energy reduction, avoidance of thermal issues, or lifetime improvement.

For the last aspect, some previous work increase the supply voltage only in a stepwise
manner, so that frequency and hence performance can be kept on the original level [70, 78].
Also some of these techniques increase frequency in early life (possible due to guardbands) to
improve the performance [71]. Still, after a certain operating time, frequency and performance
are back on the original level (i.e. specified frequency). In other words, these static techniques
try to address transistor aging after it has been accumulated beyond a certain level, i.e. in a
reactive manner. Because of that, these approaches are often less efficient than our proposed
proactive scheme [76]. For instance, to improve the lifetime from 3 years to 8.7 years, the supply
voltage has to be increased by 4% to 5% after 3 years. Thus, the energy consumption increases
considerably (between 5% to 10% depending on the ratio between leakage and dynamic power)
during the second phase of the lifetime and also the temperature will be significantly higher.
In comparison, our proactive technique can achieve a MTTF of 8.7 years, while at the same
time the energy consumption and temperature throughout the entire lifetime are improved
(see Section 7.3). However, an advantage of the reactive approaches is, that the performance
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is not affected. Nevertheless, even if the frequency of a microprocessor featuring a reactive
aging alleviation DVFS scheme is reduced by 2% (i.e. this processor has a similar performance
compared to one using our proactive DVFS), its energy consumption and temperature behavior
will be worse than with our proactive DVFS approach. Still, both the reactive and proactive
techniques can be employed together to combine the best of both sides, which means even
longer lifetimes with good energy efficiency.

Furthermore, there are also some coarse-grained DVFS techniques that increase/decrease
frequency and voltage depending on the system needs to improve the lifetime, such as [70, 155].
However, these use much longer adaptation periods (i.e. in the order of days or more), which
can lead to huge performance impacts (up to a factor of fmax/fmin) or can not yield good aging
mitigation results (see Table 7.4), since these techniques cannot immediately react on dynamic
events due to changing environmental conditions, performance or power demands. This makes
them infeasible for some embedded systems e.g. smartphones, where user/application needs
can change in the order of seconds or less.

Please note that the proposed proactive DVFS technique can be also combined with all
lower level aging mitigation techniques mentioned in this thesis. As a result, the overall mi-
croprocessor lifetime will improve further. Alternatively, some of the lifetime benefits can be
used to lower the guardbands and thus to improve the clock frequency (i.e. performance). Also
power-aware DVFS schemes can be employed to increase the microprocessor MTTF. However,
as pointed out in Section 7.3, the lifetime improvements will be significantly smaller (see for
example our DVFS scheme without trend analysis) underlining that for considerable lifetime
improvements an aging-aware strategy is required.

7.5. Summary and Conclusion

In this chapter, we provided an innovative cross-layer dynamic runtime adaptation technique
to improve the overall microprocessor lifetime. This approach relies on a fine-grained and
proactive DVFS policy which is controlled by a multi-level monitoring and decision making
system. Compared to state-of-the-art solutions the main novelty of this DVFS scheme is the
proactive system state analysis that evaluates not only the current state (i.e. performance,
power, temperature and remaining lifetime) but also the trend of recent system states. This
enables the decision making system to detect trends that could lead to critical system states in
future, and thus to avoid these states before they really occur or at least to alleviate their im-
pact. In other words, the proposed methodology employs prediction-based (e.g. trend analysis)
strategies beside the classical sense-and-adapt schemes. As a result of these proactive features,
the presented DVFS policy can improve the microprocessor lifetime considerably compared to
reactive state-of-the-art strategies, with only a small performance penalty. This, however, can
be compensated by reducing the guardbands, which is possible due to the significant lifetime
improvements. In addition, also power and temperature benefit from the proposed technique.
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CHAPTER

EIGHT

SUMMARY, CONCLUSIONS AND OUTLOOK

8.1. Summary and Conclusions

The continuous downscaling of VLSI technology leads to predictability and reliability chal-
lenges, meaning that modern computing systems face a variety of issues such as increasing
process variation and design complexity, accelerated wearout as well as higher susceptibility
to noise. The result are fragile and vulnerable systems. Moreover, wearout and the higher
noise susceptibility lead to continuously changing system conditions in the field. The conse-
quences are very expensive systems due to huge design margins or higher failure rates as well
as a considerably reduced operational lifetime [10, 30, 35–39]. Hence, these aspects have to be
considered throughout the entire design phase, i.e. reliability as design constraint has to be as
important as the traditional parameters performance, power consumption and cost. This need
for a reliability-aware design philosophy is stated by both industry and academia, and a lot
of effort is spent to develop reliability-aware design solutions, for instance in the scope of the
DFG1 Priority Program SPP 1500 “Dependable Embedded Systems” [82, 224] in Germany or
the NSF2 Variablity Expedition [225] in the USA.

This dissertation tackles the challenge of accelerated transistor aging which can cause timing
failures and eventually results in a shorter operational lifetime of microprocessors fabricated in
nanoscale technology nodes. For this purpose, a set of unique integrated aging modeling and
evaluation frameworks was presented and several novel cross-layer aging mitigation techniques
were designed to efficiently extend chip lifetime with only small impacts on performance, power
and cost. The contributions of this thesis improve the state-of-the-art by considering lifetime as
a design constraint which is equally important as the traditional parameters, and by taking also
higher abstraction layers from (micro)architecture to application-level into account, which have
often been neglected before. To this end, the interdependencies among performance, power,
temperature, cost and lifetime can be analyzed with higher accuracy at higher abstraction
levels than with previous approaches, and lifetime can be more effectively co-optimized with
the traditional design parameters, e.g. longer lifetime at lower cost.

The set of aging modeling and evaluation frameworks consists of three novel platforms
covering the entire abstraction stack from circuit-level up to application-level. The first frame-
work is the architectural platform ExtraTime that models aging, power and temperature at
architecture-level, and hence can be employed already in early design phases for an aging-aware
design space exploration. Based on the same models, we also developed an experimental frame-
work using real processors that enables us to underline the simulation results with real data.

1Deutsche Forschungsgemeinschaft
2National Science Foundation

119



8. Summary, Conclusions and Outlook

The third platform is an RTL-framework considering circuit- up to application-level informa-
tion. Thus, it enables an accurate analysis of performance, power, area as well as aging, and
consequently it provides very accurate lifetime data.

Using these platforms, four novel cross-layer aging-mitigation techniques addressing differ-
ent microprocessor components were developed. Among these, there are three design time
solutions that target the functional units, the decoding stages of the instruction pipeline and
the pipeline design philosophy, respectively. Finally, an aging-aware proactive dynamic system
adaptation approach was provided, that tackles wearout at runtime. All of these approaches
result in considerable lifetime improvements with only small costs in terms of performance,
power or die area. Moreover, since these schemes are complementary to each other, they can
be employed together to achieve more efficient design solutions considering the entire micropro-
cessor. However, it is important to note that the overall lifetime improvements will not be the
superposition of all isolated improvements, as there are interdependencies among the different
approaches. While, for example, the aging-aware instruction scheduling and the aging-aware
instruction set encoding techniques are orthogonal to each other, the aging-aware instruction
pipeline design scheme is dependent on both of them. Consequently, if all three approaches are
applied together, the effectiveness of the pipeline design paradigm may be affected. Thus, as a
next step, these interdependencies have to be studied.

Based on the contributions of this thesis several conclusions can be drawn. The first one is
that although reliability is not for free, it has not to come with high cost. Nevertheless, reliabil-
ity has to be carefully traded off with the traditional design parameters. This can be achieved
by considering reliability (i.e. lifetime) as design constraint during all design phases instead
of only adding (huge) safety margins to the final design. Because of that, the microprocessor
characteristics lifetime, performance, power and cost can be more effectively co-optimized. Fur-
thermore, the consideration of the abstraction layers ranging from circuit- to application-level
enables the design of very effective and low-cost aging mitigation solutions. This is due to the
considerable impact of the higher abstraction layers and the great freedom to optimize various
associated knobs in an aging-aware manner. Finally, this thesis demonstrated that whenever the
knowledge of various abstraction layers is combined in form of cross-layer approaches (e.g. the
timing-aware instruction scheduling or considering application-level influences for the pipeline
design), the design can be co-optimized more effectively, i.e. the lifetime can be improved at
lower cost compared to traditional non-cross-layer design solutions.

8.2. Outlook

From today’s perspective, there is no real end of Moore’s law for conventional CMOS tech-
nologies in sight, as the microelectronic industry keeps on scaling, despite of all the challenges.
For instance, the ITRS roadmap projects that within the next 10 years feature sizes of less
than 3 nm can become reality [10], as depicted in Figure 8.1. However, to make this possible,
the system design has to be revolutionized from ground up due to the extent of the reliability
issues in the upcoming technology nodes (e.g. see Figure 1.3). From device to application-level
reliability has to become a first order design constraint to keep failure rates low, and maintain
sufficiently long operational lifetimes. In addition, software and hardware have to be designed

16/14 nm 11/10 nm 8/7 nm 6/5 nm 4/3 nm 3/2.5 nm 2/1.5 nm

2013 2015 2017 2019 2021 2023 2025

Figure 8.1.: Technology roadmap based on ITRS [10] from 2013 until 2025
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to be able to detect and correct errors of different kinds as well to be adaptable to various
environmental conditions. Therefore, reliability-aware cross-layer solutions such as those pre-
sented in this thesis have to be developed and employed. However, because of the future extent
of various reliability issues, the presented approaches have to be extended, to cope also with
other reliability challenges. In addition, a variety of different techniques has to be used in
combination for effective failure rate reduction and lifetime improvements. In particular, both
design time and runtime solutions have to be employed. For this purpose, it is important to
study the interdependencies of different approaches, which did not happen, yet. Moreover,
also novel toolsets at higher abstraction levels are required that allow the combined analysis of
interacting reliability effects.

The aging alleviation techniques presented in this thesis are designed to address primarily
BTI- and HCI-induced degradation. However, in terms of wearout also the oxide degradation
due to TDDB has to be considered in future, as identified by the ITRS roadmap [10]. For this
purpose, our proposed approaches can be extended to cope also with TDDB. In this regard it
is important to note that TDDB-induced degradation happens while current is flowing through
the transistor channel. Thus, mitigation techniques with focus on BTI also help to mitigate
TDDB. Nevertheless, more specialized approaches may become necessary in future.

Another main challenge in future technology nodes is process variation due to increasing
manufacturing issues. Hence, design time solutions such as those presented in this thesis have
to deal with delay distributions instead of fixed delays for gates, paths and circuits. This, for
example, can be achieved by employing Monte-Carlo simulations for the lifetime analysis, or
by considering several specific design corners. Nevertheless, as design variability is inevitable,
large safety margins have to be employed. To minimize these, dynamic runtime adaptation
techniques such as the one provided in this dissertation have to be employed to achieve the
best configuration for every microprocessor [226]. In addition, also the aging behavior itself
will become more and more stochastic in nature [142, 227]. As a result, different devices suffer
from different aging rates even if all conditions such as temperature, supply voltage or workload
are the same. Therefore, stochastic device-level models have to be developed and abstracted
to higher-levels to allow a thorough study. In this regard it is important to note that the aging
mitigation techniques proposed in this work are independent of the underlying aging model,
as explained in Section 2.3. Hence, even under stochastic aging behavior the approaches can
improve the overall microprocessor lifetime.
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