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The desire to assess the reliability of emergiraest microelectronics technologies
through faster reliability trials and more accurateeleration models is the precursor
for further research and experimentation in thievant field. The effect of
semiconductor scaling on microelectronics prodetiibility is an important aspect
to the high reliability application user. From tperspective of a customer or user,
who in many cases must deal with very limited,ny,amanufacturer’s reliability data
to assess the product for a highly-reliable apptica product-level testing is critical
in the characterization and reliability assessmarit advanced nanometer
semiconductor scaling effects on microelectroniediability. This dissertation
provides a methodology on how to accomplish thid grovides techniques for

deriving the expected product-level reliability commercial memory products.



Competing mechanism theory and the multiple failmexhanism model are applied
to two separate experiments; scaled SRAM and SDRAdMucts. Accelerated stress
testing at multiple conditions is applied at thedurct level of several scaled memory
products to assess the performance degradatiopraddct reliability. Acceleration
models are derived for each case. For several&IMRAM products, retention time
degradation is studied and two distinct soft epopulations are observed with each
technology generation: early breakdown, charaadrlzy randomly distributed weak
bits with Weibull slope=1, and a main population breakdown with an indreps
failure rate. Retention time soft error rates asdcwlated and a multiple failure
mechanism acceleration model with parameters isvetbrfor each technology.
Defect densities are calculated and reflect a @sang trend in the percentage of

random defective bits for each successive prodemeigation.

A normalized soft error failure rate of the memadata retention time in FIT/Gb and
FIT/cnf? for several scaled SDRAM generations is presemeealing a power

relationship. General models describing the saftrerates across scaled product
generations are presented. The analysis methodohagybe applied to other scaled

microelectronic products and key parameters.
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Chapter 1: Introduction

1.1 Background

Two major upcoming missions for NASA include tha Bropulsion Laboratory
(JPL) Mars Science Laboratory (MSL) and the Jugtelar Orbiter (Juno); both are
planned for launch in 2011. There are major teldgical, environmental and
semiconductor scaling trend challenges with resfmetite electronics required for the
systems in these missions. The systems will imm@tp some of the latest scaled
microelectronic technologies, some of which mustetmdéong life operating
requirements and perform in extreme temperaturea gpace environment. See

Figure 1.

Building on the success of the two Mars Explorafitovers, Spirit and Opportunity,
that arrived at Mars in early 2004, NASA's nextaowission is planned to travel to
Mars in 2011. Twice as long and three times asyhaathe first two rovers, the Mars
Science Laboratory will collect martian soil sangéand rock cores and analyze them
for organic compounds and environmental condititimst could have supported
microbial life now or in the past. The mission istiaipated to have international
collaboration, with a neutron-based hydrogen detdotr locating water provided by
the Russian Federal Space Agency, a meteorologiaekage provided by the
Spanish Ministry of Education and Science, and ectspmeter provided by the

Canadian Space Agency with participation by the B&nck Institute for Chemistry



in Germany. Like the twin rovers now on the surfaafe Mars, Mars Science
Laboratory will have six wheels and cameras moumteca mast. Unlike the twin
rovers, it will carry a laser for vaporizing a tHayer from the surface of a rock and
analyzing the elemental composition of the undedymaterials. It will also collect
and crush rock and soil samples and distribute tteemmn-board test chambers for
chemical analysis. Its design includes a suitec@ngific instruments for identifying
organic compounds such as proteins, amino acids,ofimer acids and bases that
attach themselves to carbon backbones and aretietsetife as we know it. It could
also identify features such as atmospheric gasat ity be associated with

biological activity.

Current Rover Configuration
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Figure 1. _MSL and Juno Spacecratft lllustrations.

The Jupiter Polar Orbiter mission will conduct &thtime, in-depth study of the giant
planet. This mission proposes to place a spaceoraftpolar orbit around Jupiter to
investigate the existence of an ice-rock core; rda@tee the amount of global water
and ammonia present in the atmosphere; study ctomeznd deep wind profiles in

the atmosphere; investigate the origin of the Jovimgnetic field; and explore the



polar magnetosphere. See Figure 2. The missionfeapr science goal is to

significantly improve our understanding of the fatran and structure of Jupiter.
The spacecraft will have an onboard suite of seagnce instruments. In addition, a
camera called JunoCam will be used by studentgiaatits in the Juno Education

and Public Outreach program to take the first isagfelupiter's Polar Regions.

Deep Space Maneuvers
July-Oct. 2012

| Earth Flyby
) Oct. 2013 —

Launch ecliptic !
Aug. 2011 J2000

Jupiter Arrival
Aug. 2016

End of Mission
Oct. 2017

Jupiter's
orbit 7

Figure 2. _Juno Mission Overview.

NASA, the aerospace community, and other high loéiig (hi-rel) users of advanced

microelectronic products face many challenges elsntogy scales into deep sub-
micron feature sizes. 90nm and 65nm technologiesnaw being assessed for
product reliability as the desire for higher penfiance, lower operating power, and
lower stand-by power characteristics continue tosbaght after in hi-rel space

systems. International Technology Roadmap for 8enductors (ITRS) predictions



over the next few years will drive manufacturerseaach both physical and material
limitations as technology continues to scale. Assult, new materials, designs and
processes will be employed to keep up with thegosarance demands of the industry.
While target product lifetimes for mil-product hagenerally been ten years at
maximum rated junction temperature, leading edgensercial-off-the-shelf (COTS)
microelectronics may be somewhat less due to redoast consumer electronics and
reduced safety and reliability margins, includingsidn life. Therefore, reliability
uncertainties through the introduction of new miatey processes and architectures,
coupled with the economic pressures to designréasonable life,” pose a concern to
the hi-rel user of advanced scaled microelectrotechnologies. These aspects, in
addition to higher power and thermal densitiesrease the risk of introducing new

failure mechanisms and accelerating known failuegmanisms.

The desire to assess the reliability of emergimtitelogies through faster reliability
trials and more accurate acceleration models igptbeeursor for further research and
experimentation in this field. Semiconductor suoglieffects on microelectronics
reliability prediction, qualification strategies danderating criteria for space
applications is an area where ongoing researchaisanted. Ramp-voltage and
constant-voltage stress tests to determine voladgweakdown and time-to-
breakdown, coupled with temperature accelerati@n be effective methods to
identify and model critical stress levels and tlediability of emerging deep-sub
micron microelectronics. Here, an overview ofduat reliability trends, emerging

issues with scaling, derating approaches and pdvpdifailure (PoF) considerations



for reliability assessment of advanced scaled reieatronics technologies for hi-rel

space applications will be presented.

Derating microelectronic devices and their critichless parameters in aerospace
applications has been common practice for decadl@sprove device reliability and
extend operating life in critical missions. Denatiis the intentional reduction of key
parameters, e.g., supply voltage and junction teatpee, to reduce internal stresses
and increase device lifetime and reliability. Sesnductor technology scaling and
process improvements, however, compel us to reat@lucommon failure
mechanisms, application and stress conditionsabiity trends, and common
derating principles to provide affirmation that gdate derating criteria is applied to
current technologies destined for high reliabipace systems. It is incumbent upon
the user to develop an understanding of advancathédogy failure mechanisms
through modeling, accelerated testing, and failmalysis prior to the infusion of
new nano-scale CMOS products in critical high keliey environments. NASA
needs PoF based derating guidance for advancestistedroelectronic technologies
for long-term critical missions. Semiconductor macturers in general do not
publish their reliability reports for fear of logintheir competitive edge, and
customers are often forced into making assumptiith the performance and
reliability trade-offs. JPL Derating Guidelines8345 [1] provide recommendations
for the derating of electronic parts used in JPacgflight hardware. Many of the
current derating methodologies are based on asgmapthat have not changed in

20-30 years. Examples of this include passive comapts requiring a derating factor



of 0.6 and generic failure mechanism activationrgies of ~0.7 for reliability

predictions. The rationale to continue to supparths guidelines may not be
applicable to current technology. Violation of thigrrent D-8545 guidelines occurs
frequently on a variety of missions and is a mayaiver generator for JPL. More
technically sound derating criteria are neededtlier reliable application of current
device technologies. Such an improvement in degatriteria can be obtained by an

approach based more rigorously on the physicsatéedailure.

There has been steady progress over the year® idetvelopment of a physics-of-
failure understanding of the effect that variougsg drivers have on semiconductor
structure performance and wearout. This has egbulh better modeling and
prediction capabilities. Applying a PoF approach reliability prediction and
derating of EEE parts for NASA/JPL flight projeats an improvement in device
reliability assessment on the basis of environnmieatal operating stresses. The

benefits to NASA flight projects as a result oftiiork include:

1) More technically sound predictive reliability mod@nd derating guidance for
the reliable application of flight electronic pafased on a PoF derating
approach, particularly emerging scaled microeleutréechnologies;

2) Fewer parts waivers; and

3) Less evaluation time.



1.1.1 Aerospace Vehicle Systems Institute (AVSI) Consonti

Some of the more relevant work in this area of asde was initiated by the
Aerospace Vehicle Systems Institute (AVSI) Consantin 2002. AVSI Project #17
— Methods to Account for Accelerated Semiconductovidee Wearout was

established to investigate, understand and addhessmpacts of microelectronic
nanometer technology and its implication on devifstime as a result of device
wearout. The project was oriented toward aviomigplications, however, all high-
reliability users of scaled microelectronics widrefit from this work. In his thesis,
Methods to Account for Accelerated Semiconductorie Wearout in Long life

Aerospace Applications [2], J. Walter supported sahthe primary objectives of the

AVSI project, including:

1) Determination of likely failure mechanisms of fueusemiconductor devices
in avionics applications;

2) Development of models to estimate expected lifesioiefuture avionics; and

3) Development of device assessment methods and esi®ystem design

guidelines.

Walter discussed failure mechanism lifetime modalsd derating modeling
approaches with an emphasis on systems engineengtgodologies, impact of
scaling, and mitigating the impact of decreasingyiae reliability in aerospace

applications.



1.1.2 Lifetime Enhancement through Derating

A semiconductor device’s lifetime may be affected thanging its operating
parameters, specifically junction temperature, beeaof heat activated mechanisms
and supply voltage. A semiconductor device’s opagatoltage {dd) directly affects
many of its parameters. These include current tie(s) and the electric fieldHox)
across the gate dielectric. Supply voltage also @asgnificant effect on junction
temperature Tj). Junction temperature is the internal operatmgperature of a
device. It is dependent on the power dissipatechftbe device Bp), the ambient
operating temperaturdd), and the sum of the thermal impedances betweznlith
and ambient environmen@jé). An engineer can exercise some control over efch

these factors in a system design.

The relationship for determining the junction temgtere is [3]:

Tj = 6ja*Pp + Ta (1.1)

The power dissipated in thig@ equation is determined by [4]:

Pp = K*C*vdd? *f + i,vdd (1.2)

whereVyq is the supply voltagd,is the switching frequenc¥ is the switching factor

and C is the average node capacitance. The power dissipatthe sum of both



dynamic and static power dissipation. In CMOS dissudynamic power is the
dominant factor, accounting for at least 90% ofgbever dissipation [5]. Therefore a

first order approximation of the power dissipatisgiven by:
PD ~ Piynamic = Ceff*vdd * (1.3)

whereCgs combines the physical capacitance and activitynfmer of active nodes) to
account for the average capacitance charged deacty 1/f period. While the
above equation shows thdiy has a direct impact on junction temperatig,has a
further impact in that frequency is proportionalitas well. In a CMOS circuit, a

reduction inVyq results in a near linear reduction in circuit dgly

1.1.3 Derating Factor

The termDerating Factor(Df) is synonymous witiicceleration Factoi(Ar), but is
defined as the ratio of measured MTTF of a semigotat at its manufacturer rated
operating conditions to the measured MTTF of id=itdevices operating at derated

conditions. This is described as:

.= [ MTTFderatedj (14)

M TT Frated

The desired values f@; are greater than zer®{> 0), with larger values providing a

longer operational life. Therefore, the derateetiihe is described as:



MTTFgeratea= Dt XMT TFated (1-5)

Walter [2] went on to model the individual and canda electromigration (EM), hot
carrier degradation (HCD), time-dependent-dieledireakdown (TDDB), and
derating factorvs. derated voltage while keeping operating tentpesa and
frequency constant in Figure 3. In the case othihee intrinsic wearout mechanisms
discussed, the combined total derating factor seidieed by Walter as:

B A
 Jem Ancp  Atpps
+ +

Diem Dmico  Drroos

D, (1.6)

where) can represent either the total failure rate orstn@ of the failure rates of the
wearout mechanisms. This will result in two difiereanswers, the total derating

factor and wearout derating factor respectively.

10
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AEM = ATDDB =AHCD, Tj = 85°C, Ta= 20°C, Vddmax= 3.3V, Vth= 0.8V, Eaem= 0.8 eV,
n=2,B=70,Earpe= 0.75 eV,Eox= 4 MV/cm, g = 3 Naperians per MV/cm.

Due to the low failure rates of semiconductor desjca device’'s failure rate is
normally determined through accelerated life tgstind then extrapolated back to at-
use conditions, using an acceleration factor, @eoto approximate an MTTF. When
accelerated life testing is used to determine #tedr lifetime of a device, care must

be taken to ensure that all the relevant failurelrmaisms are accelerated in order to

make a reasonable extrapolation of the devicelgré&arate.
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1.1.4 Failure Mechanism Simulation

Over the years, there has been a significant amofusitmulation work that focuses
on individual failure mechanisms and their impastsemiconductor reliability. Of
note, Hsu, et al. [7] and Chun, et al. [8] devetb@AD tools for hot carrier induced
damage effects in VLSI circuits; Alam, et. al. [@¢veloped models to simulate
microelectronic reliability from electromigrationachage; and P.C. Li, et al. [10]
studied the effect of oxide failure on microeleaimoreliability using simulation.
Electromigration and hot-carrier effects on perfante degradation of a 2-stage op-
amp were simulated on a CAD reliability tool intaggd with a Cadence Spectre

simulator by Xuan and Chatterjee [11].

Attempts have been made over the years to simaiatéple failure mechanisms in
microelectronics. Some of the earlier ones includtrop, et al. [12] who provided
an investigative program using a CAD tool to impgrawicroelectronic reliability by
generating failure information due to electromigmat charge injection and
electrostatic discharge; in 1992, Hu [13] developedircuit reliability simulation
model called BERT, that simulates the hot electeffiect, oxide time-dependent
breakdown, electromigration, bipolar transistomgdegradation, and radiation effects
on microelectronics as part of the design proces#s simulators became more
advanced, more sophisticated approaches to modelewgce performance and

reliability were developed.
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1.1.5 Micro-Architectural Level Reliability Modeling

While junction temperature reduction has traditipndbeen the primary derating
focus, various SRAM field studies of commercial ideg, and experimental research
and modeling of the effects of duty cycle ang stresses on the device, suggest that
derating these elements wifly can provide an order of magnitude or more
improvement in reliability (FIT) [14-16]. The cue¢ design and application,
however, must be robust enough to operate at theerloend of the device
performance and specification limits. In 2004, dini8asan and the University of
lllinois [17] conducted processor RAMP modeling whniprovided FIT estimates
across 180nm to 65nm technologies for a procesgmrating at worst case
conditions. The impact of different scaling relatedrameters on intrinsic failure
mechanisms is presented in Table 1 [17]. FIT ests for TDDB, EM, Stress
Migration (SM) and Thermal Cycling (TC) related lme mechanisms, and their
relative contribution to total FIT are summarized Figure 4. On average, the
simulated failure rate (FR) of a scaled 65nm prsaesnay be as high as 316%

higher than a similarly pipelined 180nm device [17]
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Table 1. Impact of Different Scaling Related Pagters on Intrinsic Failure

Mechanisms.
Failure Major temperature Voltage Feature size
Mech. dependence dependence dependence
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Figure 4. _FIT Values for Processor W/C Conditiodgpplication for Model (a) and
Model (b) with Relative Contribution of Each Mecism.

Generally accepted models for MTTF due to EM, SNRDB and TC used in
Srinivasan’s model have been published in JEDEdi¢ailon JEP122-A [18] and

are recapitulated here for completeness:
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EaEM

tew oc(J) " exp T (1.7)

whereJ is the current density in the interconnecig\Eis the activation energy for
electromigrationk is Boltzmann's constant, aiidis absolute temperature in Kelvin.

n and Egv are constants that depend on the interconnect ostd.

EaSM

T,-T [ exp* (1.8)

tism €

whereT is the absolute temperature in Kelvi,is the stress free temperature of the
metal (the metal deposition temperature), aménd Esv are material dependent
constants.

[ X+X+ZTJ
T

1 a-bT
Lirope [Vj exp 7 (1.9

whereT is the absolute temperature in Kelvdn,b, X, YandZ are fitting parameters,

andV is the voltage.

T, T,

average | ambient

meL 1 ] (1.10)
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where Tambient 1S the ambient temperature in Kelvifherage— TambientiS the average
large thermal cycle experienced by a structure ohig, and q is the Coffin-Manson

exponent, an empirically determined material-depehdonstant.

Srinivasan makes two specific contributions. Fih&,describes an architecture-level
model and its implementation, called RAMP, whicin aiynamically track lifetime
reliability responding to changes in applicatiomde&or. RAMP is based on state-of-
the-art device models for different wearout mechans. Second, he proposes
dynamic reliability management (DRM) - a techniquigere a processor can respond
to changing application behavior to maintain itstime reliability target. Contrary to
current worst-case behavior based reliability dicaliion methodologies, DRM
allows processors to be qualified for reliabilitylawer (but more likely) operating

points than the worst case.

1.1.6 Circuit-Level Reliability Modeling and Simulation

There has been work over the years that has foauséiae impact of intrinsic failure
mechanisms on the circuit. Kumar, et al. [19] eled NBTI degradation of
threshold voltage and static noise margin (SNM)166nm and 70nm SRAM cells.
In 2002, Reddy, et al. [20] demonstrated that SNMaon SRAM memory cell

degrades on an 130nm CMOS process by NBTI andthiearelative degradation
increases as the operating voltage decreases. wHsionfirmed by measuring an

increase in the relative frequency degradationmoN8TI stressed ring oscillator as
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the operating voltage dropped. Jha, et al. [2&} lattempted to quantify circuit level

degradation due to NBTI by simulating a varietyaoflog/mixed signal circuits.

In addition to hot carrier effects on circuit leweliability, thin oxide reliability in
scaled CMOS devices has been modeled to prediakdogvn at the device level and
to determine the impact on circuit performance Stathis describes this approach in
[22] and explains how soft breakdown is the mosnmomn mode for a constant-
current stress, while hard breakdown generally cduring constant-voltage stress.
Rosenbaum, et al. [23] also developed a circuigbdity simulator oxide breakdown

module.

Khin, et al. [24] worked on a circuit reliabilitynsulator for interconnects and contact

electromigration.

1.1.7 Deep Submicron CMOS VLSI Circuit Reliability Modedj and Simulation

A new SPICE reliability simulation methodology thgttifts the focus of reliability
analysis from device wearout to circuit functioalvas developed in 2005 by X. Li
[25]. A set of accelerated lifetime models antufe equivalent circuit models were
proposed for the most common MOSFET intrinsic watammechanisms, including
hot carrier injection (HCI), negative bias temparatinstability (NBTI), and TDDB.
The accelerated lifetime models help to identifg thost degraded transistors in a

circuit in terms of the device's terminal voltagenda current waveforms.
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Corresponding failure equivalent circuit models tren incorporated into the circuit
to substitute the identified transistors. FinaBRICE simulation is performed again
to check circuit functionality and analyze the immpaf device wearout on circuit
operation. Device wearout effects are lumped intery limited number of failure

equivalent circuit model parameters, and circuitrfgrenance degradation and

functionality are determined by the magnitude efthparameters.

In Li's approach, it is unnecessary to perform @danumber of small-step SPICE
simulation iterations, making simulation time musiorter in comparison to other
tools. In addition, a reduced set of failure eqléaa circuit model parameters, rather
than a large number of device SPICE model parasieteged to be accurately
characterized at each interim wearout process. ,Téhesice testing and parameter
extraction work are also significantly simplifiedThe Maryland Circuit Reliability

Oriented (MaCRO) SPICE simulation methodology flsnssummarized in Figure 5

[25].
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1.1.8 Physics-of-Failure Based VLSI Circuits Reliabil®ymulation and Prediction

Most recently, J. Qin [26] proposed a physics-adlfifa based statistical reliability

prediction methodology to simplify the modeling asithulation complexity of the

effect of multiple intrinsic failure mechanisms samiconductor devices. Dynamic
stress modeling utilizing PoF models for each failsmechanism with the best-fit
lifetime distribution provided a reliability predion for a 90nm SRAM module case
study. With a specified application profile, silaion results revealed that TDDB
was the most serious reliability concern for theASRbit cell, NBTI was the second

dominating mechanism, and HCI had a negligible aégtion effect. The memory
core’s reliability prediction showed that the megoore had a constant failure rate
up to 60,000 hours, and an increasing failure batgond 60,000 hours. Figure 6
provides a graphical representation of how intanfilure mechanisms may be

modeled as a function of operating stresses.

The MaCRO simulation models proposed by Li and @iay become useful to
properly derate device and operating parameteispoove reliability and predict
reliability trends in scaled technologies. Thid=Rapproach to derating can become
an important framework for hi-rel application uséwsderate product level voltages
and temperatures to achieve the desired reliabiity current scaled COTS

microelectronics.
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Figure 6. _Intrinsic Failure Mechanism Models guaction of Operating Stress.

1.1.9 Product Reliability

There has been a limited amount of product religbdata and studies published
driving the need for independent assessment of wkarout and degradation
characteristics of scaled technologies from a RaRdpoint. Most product reliability
data is kept proprietary by the manufacturers ieffort to maintain their competitive
edge. However, understanding the product religb#ind performance metrics
throughout the useful life and how best to mitigtte effects of degradation and

failure in the application is essential.
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One approach to product lifetime reliability accated testing is described by
Mazzuchi and Soyer [27] in their Bayes method fesessing product reliability. In
their approach, relevant information on both falyrobabilities and the reliability
growth process is used to develop the prior joistritbution for the probability of
failure type over the testing range. The resuksthen used at a particular test stage
to update the knowledge of the probability of edalure type and the product
reliability of the current test stage and subsetuest stages. Jee, et al. [28]
developed an approach to optimize test coveragetestdapplication time of an
embedded SRAM using a defect-based approach,sbaayts and opens in a memory
cell array. In their approach, faults are extrdaed analyzed from a representative
portion of the array, and the results are replatdte the entire memory array to

reduce test time.

Estimating long-term performance of scaled micrctedanic products can be difficult
because accelerated life testing (ALT) involvingvalted stresses can often result in
either too few or no failures to make realisticgpegions or inferences. Tang, et al.
[29] describes a methodology to overcome this mmmblby using accelerated
degradation testing (ADT) as a means to predictopmance in such cases. By
identifying key performance measures which are etqokto degrade over time,
product reliability can be inferred by the degramatpaths without observing actual

physical failures. Using this approach, the usfings a failure as the first time a key
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performance measure exceeds a pre-specified thdesod then the degradation

path is correlated to product reliability.

Krasich [30] and Turner [31] discuss product raliagband accelerated testing in
their work, and Turner addresses failure mitigatiand challenges as
microelectronics scale to 90nm and beyond. Otl¢able accelerated degradation
modeling methodologies include: the statistical hnds of using degradation
measures to estimate the time-to-fail distributiona variety of degradation models
developed by Lu and Meeker [32]; a model for analyzinear degradation data
proposed by Lu, et al. [33]; and the method to ladegradation failures developed
by Guo and Mettas [34] by applying amplificatiorctiars with control factors to

model the degradation process.
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1.2 CMOS Technology Scaling and Impact

Over the past three decades, CMOS technology gchéis been a primary driver of
the electronics industry and has provided a pathatd both denser and faster
integration [35-47]. The transistors manufacturedaly are twenty times faster and
occupy less than 1% of the area of those built tywgears ago. Predictions of size
reduction limits have proven to elude the mostgihtul scientists and researchers.
The predicted ‘limit’ has been dropping at neatte tsame rate as the size of the

transistors.

The number of devices per chip and the system padioce has been improving
exponentially over the last two decades. As thenobhlength is reduced, the
performance improves, the power per switching ewetreases, and the density
improves. But the power density, total circuits phip, and the total chip power
consumption have been increasing. The need for per®rmance and integration
has accelerated the scaling trends in almost edewice parameter, such as
lithography, effective channel length, gate diglecthickness, supply voltage, and
device leakage. Some of these parameters are apprgalundamental limits, and
alternatives to the existing material and structurey need to be identified in order

to continue scaling.
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1.2.1 MOS Scaling Theory

During the early 1970s, both Mead [35] and Denrjd@f] noted that the basic MOS
transistor structure could be scaléal smaller physical dimensions. One could
postulate a “scaling factor” of, the fractional size reduction from one generatmn
the next generation, and this scaling factor cahlen be directly applied to the
structure and behavior of the MOS transistor intraightforward multiplicative
fashion. For example, a CMOS technology generatmrd have a minimum channel
length Lnin, along with technology parameters such as theeoiicknesd,,, the
substrate dopindla, the junction depth;xthe power supply voltagéq, the threshold
voltageVy, etc. The basic “mapping” to the next procdsg,— ALmin, iINVolved the
concurrent mappings dfx— Atox, Na— ANa, X— A%, Vaa— AVaa, and \o— AVin.
Thus, the structure of the next generation proces#d be known beforehand, and
the behavior of circuits in that next generationldde predicted in a straightforward
fashion from the behavior in the present generafitie scaling theory developed by
Mead and Dennard is solidly grounded in the babiss and behavior of the MOS
transistor. Scaling theory allows a “photocopy men” approach to feature size
reduction in CMOS technology, and while the dimensi shrink, scaling theory
causes the field strengths in the MOS transistaetoain the same across different
process generations. Thus, the “original’ form o&élsg theory is constant field

scaling
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Constant field scaling requires a reduction of plosver supply voltage with each
technology generation. In the 1980s, CMOS adoptedV power supply, which was
compatible with the power supply of bipolar TTL logConstant field scaling was
replaced with constant voltage scaling, and ins@&aemaining constant, the fields
inside the device increased from generation to ige¢io@ until the early 1990s, when
excessive power dissipation and heating, gate aigde TDDB, and channel hot
carrier aging caused serious problems with theeaming electric field. As a result,

constant field scaling was applied to technologlisg in the 1990s.

Constant field scaling requires that the threshalfiage be scaled in proportion to
the feature size reduction. However, ultimatelesfold voltage scaling is limited by
the sub-threshold slope of the MOS transistor, wiiiself is limited by the thermal
voltage kT/g where the Boltzmann constark, and the electron charge are
fundamental constants of nature and cannot be eldarithe choice of the threshold
voltage in a particular technology is determinedtbg off-state current goal per
transistor and the sub-threshold slope. With offent requirements remaining the
same (or even tightening) and the sub-thresholgeslonited by basic physics, the
difficulty with scaling the threshold voltage iseal. Because of this, the power
supply voltage decreased corresponding with thesteoh field scaling, but the
threshold voltage was unable to scale as aggrégsivVais situation worsens as
feature sizes and power supply voltages continusctde. This is a fundamental

problem with further CMOS technology scaling.
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1.2.2 Moore’s Law

It was the realization of scaling theory and iteiges in practice which has made

possible the better-known “Moore’s Law.” Moore’'swvias a phenomenological

observation that the number of transistors on nattegl circuits doubles every two

years, as shown in Figure 7. It is intuitive thabdve’s Law cannot be sustained

forever. However, predictions of size reduction iféndue to material or design

constraints, or even the pace of size reductionge haroven to elude the most

insightful scientists. The predicted ‘limit’ hasdredropping at nearly the same rate as

the size of the transistors.
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1.2.3 Scaling to Its limits

There does not seem to be any fundamental phyigisishtion that would prevent
Moore’s Law from characterizing the trends of imtggd circuits. However,

sustaining this rate of progress is not straightéod [39].

Figure 8 shows the trends of power supply voltélgesshold voltage, and gate oxide
thickness versus channel length for high perforrea@®1OS logic technologies [40].
Sub-threshold non-scaling and stangloyver limitations bound the threshold voltage
to a minimum of 0.2V at the operating temperatdifeus, a significant reduction in
performance gains is predicted below 1.5V due éof#lct that the threshold voltage
decreases more slowly than the historical treraklitey to more aggressive device

designs at higher electric fields.
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Technologies

Further technology scaling requires major changesnany areas, including: 1)
improved lithography techniques and non-opticalosxpe technologies; 2) improved
transistor design to achieve higher performanceh vamaller dimensions; 3)
migration from current bulk CMOS devices to novehtarials and structures,
including silicon-on-insulator, strained Si and abwdielectric materials; 4) circuit
sensitivity to soft errors from radiation; 5) snealiviring for on-chip interconnection
of the circuits; 6) stable circuits; fhore productive design automation tools; 8)

denser memory cells, and 9) manageable capitas.chittal gate and high-k gate
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dielectrics were introduced into production in 2Q@7maintain technology scaling

trends [48].

In addition, packaging technology needs to progaéssrate consistent with on-going
CMOS technology scaling at sustainable cost/perdmca levels. This requires
advances in 1/O density, bandwidth, power distidoutand heat extraction. System
architecture will also be required to maximize fherformance gains achieved in

advanced CMOS and packaging technologies.

1.2.4 Scaling Impact on Circuit Performance

Transistor scaling is the primary factor in achmyvi high-performance
microprocessors and memories. Each 30% reductiddM®S IC technology node
scaling has [41, 49]: 1) reduced the gate delay3®% allowing an increase in
maximum clock frequency of 43%; 2) doubled the dewulensity; 3) reduced the
parasitic capacitance by 30%; and 4) reduced eremgyactive power per transition
by 65% and 50%, respectively. Figure 9 shows CM@8opmance, power density
and circuit density trends, indicating a linearcait performance as a result of

technology scaling [41].
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1.2.5 Scaling Impact on Power Consumption

Dynamic power and leakage current are the majorcesuwf power consumption in
CMOS circuits. Leakage related power consumpticslecome more significant as
threshold voltage scales with technology. Theresaneeral studies that deal with the
impact of technology scaling in various aspect€bOS VLSI design [39, 47, 50-

52].
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Figure 10 [51] illustrates how the dynamic and &gk power consumption vary
across technologies, wheRg.; is the dynamic power consumption aBga is the

leakage power consumption. The estimates have eagfured the influence of sub-
threshold currents since they are the dominantalgakmechanism. For sub-100nm
technologies, temperature has a much greater impactthe leakage power
consumption than the active power consumptionHersame technology. In addition,

the leakage power consumption increases almosmnexpially.
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1.2.6 Scaling Impact on Circuit Design

With continuing aggressive technology scaling siincreasingly difficult to sustain
supply and threshold voltage scaling to provide rimguired performance increase,
limit energy consumption, control power dissipatiand maintain reliability. These
requirements pose several difficulties across geani disciplines. On the technology
front, the question arises whether we can contialeng the traditional CMOS
scaling path — reducing effective oxide thicknasgproving channel mobility, and
minimizing parasitics. On the design front, reskars are exploring various circuit

design techniques to deal with process variateakdge and soft errors [41, 47].

For CMOS technologies beyond 90nm, leakage powemes of the most crucial
design components which must be efficiently cotecblin order to utilize the
performance advantages of these technologies.rtpsrtant to analyze and control
all components of leakage power, placing particelaphasis on sub-threshold and
gate leakage power. A number of issues must beeasiell, including low voltage
circuit design under high intrinsic leakage, leakagonitoring and control, effective
transistor stacking, multi-threshold CMOS, dynartiiceshold CMOS, well biasing

techniques, and design of low leakage data-paith€arhes.

While supply voltage scaling becomes less effectiveroviding power savings as

leakage power becomes larger due to scaling, suggyested that the goal is to no

longer have simply the highest performance, bueas have the highest performance
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within a particular power budget by considering pigsical aspects of the design. In
some cases, it may be possible to balance theibeheking high threshold devices
from a low leakage process running at the highesibte frequency at a fullyg, as

opposed to using faster but leakier devices wheduire more voltage scaling in

order to reach the desired power budget.

Nanometer design technologies must work under tapgrating margins, and are
therefore highly susceptible to any process andr@mwmental variability. Traditional

sources of variation due to circuit and environraérflactors, such as cross
capacitance, power supply integrity, multiple irgpgwitching, and errors arising due
to tools and flows, affect circuit performance sigantly. To address environmental
variation, it is important to build circuits thaave well-distributed thermal properties,
and to carefully design supply networks to providéable V4 and ground levels

throughout the chip.

With technology scaling, process variation has becanore of a concern and has
received an increased amount of attention fromddsign automation community.

Several research efforts have addressed the i$queaess variation and its impact
on circuit performance [49, 53-55]. A worst-cas@ra@ach was first used to develop
the closed form models for sensitivity due to difet parameter variations for a
clock tree [53], and was further developed to ideluinterconnect and device
variation impact on timing delay due to technologpaling [49]. The impact of

systematic variation sources was then considerefb4h Finally, an integrated
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variation analysis technique was developed in [58jich considers the effects of
both systematic and random variation in both imenect and devices
simultaneously. The design community has realizemt in order to address the
process-induced variations and to ensure the dinalit reliability, instead of treating
timing in a worst-case manner, as is conventionddiye in static timing analysis,
statistical techniques need to be employed thactyr predict the percentage of
circuits that are likely to meet a timing specifioa. The effects of uncertainties in
process variables must be modeled using statistézdiniques, and they must be

utilized to determine variations in the performapeeameters of a circuit.

1.2.7 Scaling Impact on Parts Burn-in

Power supply voltage in scaled technologies mudbwered for two main reasons
[56]: 1) to reduce the device internal electriddgeand 2) to reduce active power
consumption since it is proportional . As Vgq scales, theny, must also be
scaled to maintain drain current overdrive to ashibigher performance. Low&f,
leads to higher off-state leakage current, whicthésmajor problem with burn-in of

scaled nanometer technologies.

The total power consumption of high-performancerapcocessors increases with
scaling. Off-state leakage current is a higher gatiage of the total current at the sub-
100nm nodes under nominal conditions. The ratioleakage to active power

becomes worse under burn-in conditions and the mlmipower consumption is
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from the off-state leakage. Typically, clock freques are kept in the tens of
megahertz range during burn-in, resulting in a ®i&l reduction in active power.
Conversely, the voltage and temperature stressese ¢he off-state leakage to be the

dominant power component.

Stress during burn-in accelerates the defect mesinanresponsible for early-life
failures. Thermal and voltage stresses increasgutigtion temperature resulting in
accelerated aging. Elevated junction temperaturéurnn, causes leakages to further
increase. In many situations, this may result isifpee feedback leading to thermal
runaway. Such situations are more likely to ocaartexhnology is scaled into the
nanometer region. Thermal runaway increases theafosurn-in dramatically. To
avoid thermal runaway, it is crucial to understaadd predict the junction
temperature under normal and stress conditionsctiduntemperature, in turn, is a
function of ambient temperature, package to ambibatmal resistance, package
thermal resistance, and static power dissipatiamsiering these parameters, one
can optimize the burn-in environment to minimize grobability of thermal runaway

while maintaining the effectiveness of burn-in test
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1.2.8 Scaling Impact on Long Term Microelectroriediability

The major long-term reliability concerns includes timtrinsic wear-out mechanisms
of time dependent dielectric breakdown (TDDB) oftegalielectrics, hot carrier
injection (HCI), negative bias temperature instgpi{NBTI), and electromigration
(EM). For microelectronics, the primary intrinsieearout failure mechanisms are

illustrated in Figure 11.

Electromigration
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Figure 11._CMOS Intrinsic Wearout Failure Mechargs

The drivers & effects of the primary intrinsic fae mechanisms of concern are as

follows:
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Hot Carrier Injection (HCE)

Drivers: Channel length & width, oxide thicknespeaating voltage, and low
temperature.

Effect: Increased substrate currehtyf, saturation drain current degradation
(Ipsap, and increase iy,

Impact of Scaling: The rate of hot carrier degraxats directly related to the
length of the channel, the oxide thickness, andviiage of the device. Hot

carrier effects are expected to be a growing cancer

Electromigration (EM)

Drivers: High temperature and current density inahmterconnects.

Effect: Metal migration leading to increased remise and open or short
circuit.

Impact of Scaling: Energy densities within interneats are expected to grow

as device features become smaller.

Negative Bias Temperature Instability (NBTI)

Drivers: Oxide thickness and high temperature.

Effect: Degradedlfsay) and transconductancg.), and an increase igs and
Vin.

Impact of Scaling: NBTI is a growing concern asides continue to scale. As
feature sizes scaled through 0.13um, devices mdjumnuch thinner gate

oxides and introduced nitrides in the SiO
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Time-Dependent-Dielectric-Breakdown (TDDB)

» Drivers: Oxide thickness, gate voltage, and higicteic field.
» Effect: Anode to cathode short through the dielectr
* Impact of Scaling: TDDB is expected to accelemdayate oxide thicknesses

decrease with continued device scaling.

The physics and the reliability characterizatiord anodeling of each mechanism
have been major research topics for the past tlemades. There has been an

abundant amount of research in this area, inclufbig

Among the wear-out mechanisms, TDDB and NBTI seetpet the major reliability
concerns as devices scale. The gate oxiddéas scaled down to only a few atomic
layers thick with significant tunneling leakage. Wglthe gate leakage current may be
at a negligible level compared with the on-stateent of a device, it will first have
an effect on the overall standby power. For a tataive gate area of 0.1 éncthip
standby power limits the maximum tolerable gat&adg@ current to approximately 1-

10 A/cnf, which occurs for gate oxides in the range of 88-]40].

Scaling impact of TDDB and NBTI on digital, analagd RF circuit reliability has
been an important topic during past years [58-Ef2#her TDDB, NBTI, or both were
found to contribute to digital circuit speed degrtiah [58, 62], FPGA delay increase

[65], SRAM minimum operating voltag€min shift measurement [64, 66, 67], RF
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circuit parametric drifts [60, 61], and analog aitanismatch [59, 63]. It appears that
SRAM minimum operating voltag€mi, shift due to TDDB and NBTI is one of the
effects that has been tested and characterized Farsexample, it is shown [66] that
transistor shifts due to NBTI manifest themselvepapulation tails in the product’s
minimum operating voltage distribution. TDDB maisife itself as single-bit or logic

failures that constitute a separate sub-populatdBill failures are characterized by
Log-normal statistics combined with a slower degtaxh rate, which is in contrast to
TDDB failures that follow extreme-value statistieed exhibit a faster degradation
rate. Most of the studies seem to indicate thatattheanced technology parts may
experience intrinsic or wear-out mechanisms indugezlit parametric shifts during

operating life time, especially at higher operatingltages and temperature

conditions.

40



1.3  Physics-of-Failure (PoF) Methodology

The PoF methodology may be summarized as follows:

* Identify potential failure mechanisms (e.g., wheal, electrical, physical,
mechanical, structural, or thermal processes lgattirfailure) and the likely
failure sites on each device.

» Expose the product to highly accelerated steefsdind the dominant root-
cause of failure.

* ldentify the dominant failure mechanism as tlealest link.

* Model the dominant mechanism (what and why #ilere takes place).

« Combine the data gathered from the acceleratests and statistical
distributions, e.g., Weibull, lognormal distributi

* Develop an equation for the dominant failure haadsm at the site and its
time-to-failure (TTF).

» Extrapolate to use conditions.

This process is used to assess the retention tatebility of three progressive

DRAM technologies described in Chapter Three.
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1.3.1 Competing Mechanism Theory

While the failure rate qualification has not impeov over the years, the
semiconductor industry understanding of reliabiptyysics of semiconductor devices
has increased tremendously. Failure mechanismswalé understood and the
manufacturing and design processes are so tightiptralled that electronic
components are designed to perform with reasoniéblend with no single dominant
failure mechanism. In practice, however, highlgederated stress testing is used to

determine the life limiting failure mechanism ahe tveakest link.

1.3.2 Intrinsic Failure Mechanism Overview

The potential intrinsic wearout failure mechanisocesidered include Hot Carrier
Injection (HCI), Electromigration (EM), Negative & Temperature Instability
(NBTI), and Time-Dependent-Dielectric-Breakdown [@B). Much work has been
done on the physics of these failure mechanisntserpast including [70], a primary
deliverable for the Aerospace Vehicles Space listi{AVSI) Consortium Project
17: Methods to Account for Accelerated Semicondugt@arout. Therefore; only a

brief overview will be presented here.
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1.3.3 Hot Carrier Injection and Statistical Model

The switching characteristics of a MOSFET can degrand exhibit instabilities due
to the charge that is injected into the gate oxidee typical effect of hot carrier, or
hot electron, degradation is to reduce the on-stateent in an n-channel MOSFET
and increase the off-state current in a p-chann®iSHFET. The rate of hot carrier
degradation is directly related to the length &f tthannel, the oxide thickness, and
the voltage of the device. A measure of transiddegradation or lifetime is
commonly defined in terms of percentage shift afeshold voltage, change in
transconductance, or variation in drive or sataratiurrent [71]. Several approaches
to minimize HCI effects include: thermo-chemicabpessing to reduce the Si-SiO
interfacial trap density; introducing ion implanteggions of lighter doping between
the channel and heavily doped drain regions toebatistribute the electric field,
reducing its peak value; adding nitride to the gatiele so that it is more resistant to

interface-trap generation; and reducing the trémsgperating voltage [71].

There are three main types of hot carrier injectimues according to Takeda [72]:
1. Channel hot electron (CHE) injection.
2. Drain avalanche hot carrier (DAHC) injection.

3. Secondary generated hot electron (SGHE) injection.

CHE injection is due to the escape of “lucky” eteas from the channel, causing a

significant degradation of the oxide and t8e-SiG, interface, especially at low
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temperature (77K) [73]. Alternatively, DAHC injeati results in both electron and
hole gate currents due to impact ionization, givisg to the most severe degradation
around room temperature. SGHE injection is due itwnity carriers from secondary
impact ionization or, more likely, bremsstrahluragliation, and becomes a problem

in ultra-small MOS devices.

The lognormal distribution is generally used to eidabt carrier degradation [74]:

1 “1fInt-u\’
f(t)_—ot(zn)m ex;{ , [—6 j } (1.12)

Hot carrier effects are enhanced at low temperaitre primary reason for this is an
increase in electron mean free path and impactabion rate at low temperature. As
was shown in [75], substrate current at 77K is fivees greater than that at room
temperature, and CHE gate current is approximdté&yorders of magnitude greater
than that at room temperature. At low temperatthe,electron trapping efficiency
increases and the effect of fixed charges becoarge I[76]. This accelerates the
degradation ofG,, at low temperature. The degradation @ and G, at low
temperatures is more severely accelerated for Gldieed effects than for DAHC.
Hu [77] showed the temperature coefficient of CHifegand substrate current to be

negative. The lifetime model for HCI is commonkpeessed as:

ty = Ay ( I\/S\l;b] exr{%] , (1.12)




whereE, has a value of approximately —-0.1 eV ~ -0.2 e\8].[7

1.3.4 Electromigration and Statistical Model

Passage of high current densities through intemcisncauses time-dependent mass
transport effects that manifest as surface morghcdd changes. The resulting metal
conductor degradation includes mass pileups indkf and whiskers, void formation
and thinning, localized heating, and cracking o$gpaating dielectrics [71]. The
scaling of interconnects to keep up with semicotmuscaling increases current
densities and temperature, reducing median lifeer& are three properties having an

immediate impact on EM reliability models:

e The orientation of the boundary with respect todleetric field.
e The angles of the grain boundaries with respeetti other.

o Changes in the number of the grains per unit area-density.

Each of these properties can give rise to the ie@rgences necessary to create voids in

metal strips and interconnects.

The lognormal failure distribution is often usedctwaracterize EM lifetime [79]. The
bimodal lognormal distribution is often seen in pep via EM tests. Lai [80]

described two EM failure mechanisms: via related aretal-stripe related. Ogawa
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[81] reported two distinct failure modes in duahtescene Cu/oxide interconnects.
One model described void formation within the ddathascene via; the other
reflected voiding that occurs in the dual-damasdeeech. These models formed a

bimodal lognormal distribution.

The temperature acceleration factor is calculatethfBlack’'s equation and may be

expressed as:

N2
MITE_ L[] E(i_ij | (1.13)
t., AF j. k\T: T2

wheret, = test time to failurej = current density]; and T, are stress operating
temperatures, andE, is the activation energy for electromigration. pBeed
activation energies for EM range from approximat@gseV ~ 0.9eV depending on

conductor grain size and metal alloy [82].

1.3.5 Negative Bias Temperature Instability and Statstidodel

NBTI occurs to p-channel MOS (PMOS) devices undegative gate voltages at
elevated temperatures. Bias temperature stress aadstant voltage (DC) causes the
generation of interface trapsl{) between the gate oxide and silicon substrate;hwhi
causes device threshold voltag®) (to increase, and drain currenlysf{) and

transconductancey{) to decrease. The NBTI effect is more severe OB than
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NMOS devices due to the presence of holes in th©8Nhversion layer that are
known to interact with the oxide states. The degtiad of device performance is a
significant reliability concern for current ultrath gate oxides where there are
indications that NBTI worsens exponentially withnthing gate oxide. Degradation
is commonly modeled with power-law time dependeand Arrhenius temperature
acceleration. Degradation partially recovers ostress is removed [83]. Major
drivers for NBTI degradation in PMOS devices areathin gate oxide thickness and

high temperature.

The lognormal failure distribution is often used dbaracterize NBTI lifetime and
frequency degradation over time is best descriteed power law of time (Tinfie
with g values ranging from 0.25 to 0.4 [84, 85]. Actieattienergies for NBTI have

been reported to be in the range of 0.18eV to .86, 87].

Improved models have been proposed after the sinpoever-law model.
Considering temperature and gate voltage, thamigetmodel for NBTI is commonly

expressed as:

21 1 1 1
t = ANBTIVgsﬂ[ ] / ) (1.14)

+
E, E,
1+2 ~ 1) 142 — 2
+ 2exp( kT) + 2exp( kT)

whereA andp are constants andys is the applied gate voltage.
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1.3.6 Time-Dependent Dielectric Breakdown and Statistiatiel

TDDB is a wearout phenomenon of $jQhe thin insulating layer between the
control “gate” and the conducting “channel” of ttiansistor. Si@ has a very high
bandgap (approximately 9eV) and excellent scalingd grocess integration
capabilities, which makes it the key factor in gwecess of MOS-technology [88].
Dielectric layers as thin as 1.5 nm can be obtainefiilly functioning MOSFETs
with gate lengths of only 40 nm [89]. Although $Si®as many extraordinary
properties, it is not perfect and suffers degrasataused by stress factors, such as a
high oxide field. Oxide degradation has been thaest of numerous studies that
were published over the past four decades. Eveaytalcomplete understanding of
TDDB has not yet been reached. Basic models, sséhraodel and 1/E model, have
been proposed and are still debated in the ratylmibmmunity. Percolation theory
has been successfully applied to the statisticacriggion of TDDB. As oxide
continues to scale down, new findings will help esmghers gain a better

understanding of this complicated process.

The statistical nature of TDDB is well described thg Weibull distribution, since
TDDB is a “weakest link” type of failure mechanisiihe activation energy fd,x <

10nm ranges from 0.6 to 0.9 eV.

Several lifetime models have been proposed for TDD®se include: thermo-

chemical model, anode hole injection model, IBM elodnd two voltage driven
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models, including exponential and power law. Thietiine model commonly

expressed for TDDB is:

1 1
B —p c d
t _AT — ﬁFﬁVéHbTeXp +—). 1.15
f DDB( Q) gs % TZ) ( )

1.3.7 Multiple Failure Mechanism Model

Standard High Temperature Operating Life (HTOL)}gesan reveal multiple failure
mechanisms during testing, which suggests that ingles failure mechanism
dominates the FIT rate in the field. Therefore,omler to make a more accurate
model for FIT, a preferable approximation is thhtfalures are equally likely and
the resulting overall failure distribution resengke constant failure rate process that
is consistent with the mil-handbook, FIT rate agato The acceleration of a single
failure mechanism is a highly non-linear functidnt@mperature and/or voltage. The
temperature acceleration factgkR;) and voltage acceleration factokR,) can be
calculated separately and are the subject of ntasties of reliability physics. The
total acceleration factor of the different stressnbinations are the product of the

acceleration factors of temperature and voltage:

_AT2V2) _exd B2fL_ 1 .
AF = ATV AFr . AFv _ex;{ - (Tl TZDexp(yl(vz Vi1)).  (1.16)
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This acceleration factor model is widely used as itidustry standard for device
gualification. However, it only approximates a danglielectric breakdown type of
failure mechanism and does not correctly prediot thcceleration of other

mechanisms [90].

To be even approximately accurate, electronic @svghould be considered to have
several failure modes degrading simultaneously.hBaechanism ‘competes’ with

the others to cause an eventual failure. When rieae one mechanism exists in a
system, then the relative acceleration of eachnaoungt be defined and averaged under
the applied condition. Every potential failure macism should be identified and its

unique AF should then be calculated for each mashaat a given temperature and
voltage so the FIT rate can be approximated foh eaechanism separately. Then,

the final FIT is the sum of the failure rates pecmanism, as described by:

FlTow = FIT, + FIT, + ... + FIT, (1.17)

where each mechanism leads to an expected failoite pger mechanism, FIT

Unfortunately, individual failure mechanisms aret nmiformly accelerated by a

standard HTOL test, and the manufacturer is fotcedhodel a single acceleration

factor that cannot be combined with known physic&iture models [90].
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1.3.8 Acceleration Factor

The qualification of device reliability, as repaitby a FIT rate, must be based on an
acceleration factor, which represents the failucdeh for the tested device. If we
assume that there is no failure analysis (FA) efdekvices after the HTOL test, or
that the manufacturer does not report FA resultheocustomer, then a model should
be made for the acceleration facté{f, based on a combination of competing

mechanisms [90].

Suppose there are two identifiable, constant rabepeting failure modes (assume an
exponential distribution). One failure mode is deraed only by temperature. We
denote its failure rate &s(T). The other failure mode is only accelerated byag#,
and the corresponding failure rate is denoteth@8. By performing the acceleration
tests for temperature and voltage separately, vmeged the failure rates of both
failure modes at their corresponding stress caiti Then we can calculate the
acceleration factor of the mechanisms. If for thst ffailure mode we havé (T1),
41(T2), and for the second failure mode, we hax®), 12(V>), then the temperature
acceleration factor is:

3 ll(T 2)

AFr =
ll(T 1)

,T1<T2, (1.18)

and the voltage acceleration factor is:

lz(V 2)

AR =
/12(V1)

Vi1-Va. (1.19)
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The system acceleration factor between the stasditons of(T1,V1) and(T,,Vs) is:

= ﬂ,l(Tz,Vz)-i- lz(Tz,Vz) ﬂ,l(Tz)—i- ﬂ,z(Vz)

= - . 1.20
/11(T1,Vl)+ ﬂ,z(Tl,Vl) ﬂ,l(Tl)—i- /12(V1) ( )
The above equation can be transformed to the falipwwo expressions:
B ll(T 2)+ ﬂ,z(Vz)
AF = ﬂ,l(Tz) N ﬂ,z(Vz) ’ (1.21)
AFr AFv
or
AF:i@OAHAwhWQAH. (1.22)
ﬂ,l(Tl)—i- ﬂ,z(Vl)

These two equations can be simplified based oeréift assumptions. Wheg(T;) =

A2(V1) where there is an equal probability under noroperating conditions:

_ AFr+ AFv
—

AF (1.23)

Therefore, unless the temperature and voltageréfdly chosen so tha&kF andAR,
are very close, within a factor of about 2, thee anceleration factor will overwhelm
the failures at the accelerated conditions. Sityilavheni,(T,) =Ax(Vo) i.e., an equal

probability during accelerated test condition, thies AF will take the form:
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AF = ————, (1.24)

+
AFr AR

and the acceleration factor applied to normal dpegaconditions will be dominated
by the individual factor with the greatest accedlera In either situation, the
accelerated test does not accurately reflect thheecio proportion of acceleration

factors based on the understood physics of fatheehanisms.

Suppose a device has n independent failure mechanandi rrv represents thieh
failure mode at accelerated conditiotysey; represents theth failure mode at

normal condition, then the AF can be expressedforms [90].

If the device is designed, such that the failuredeso have equal frequency of

occurrence during normal operating conditions:

AF

USEM1 @ USEM 2 ® USEMn o n n AF
_ Ausowse AF1+ Ausauze AF2+ ...+ Ausorn s AR :Z,; | (1.25)

Ausens + Ausemz + ...+ Ausewn

If the device is designed, such that the failuredeso have equal frequency of

occurrence during the test conditions:

. Z/LTFM 1+ Z/LTFM 2+ ..t Z/LTFMn . n
ALTrmi e IA\F{1 + ALTemz o IA\F;1 + .o ALTrwne IA\n;1 Zn 1

AF (1.26)

=1 AF
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From these relations, it is clear that only if Hezeleration factors for each mode are
almost equal, i.e AF; ~ AR, the total acceleration factor will b&F = AF; = AF,,
and certainly not the product of the two (as igently the model used by industry).
If, however, the acceleration of one failure moslenuch greater than the second, the

standard FIT calculation may be incorrect by seva@ders of magnitude.
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1.4 Motivation and Objectives

1.4.1 Motivation

The motivation for further research of scaling effeon microelectronics reliability

stems from industry scaling trends and the assatialiability implications:

» As devices are scaled down, they become more sensa defects and
statistical process variations.

» The number of processing steps is increasing dreafigt with each new
generation (approximately 50 more steps per generahd a new metal level
every two generations).

* New materials are being introduced with each newegsion, replacing
proven materials, e.g. Cu and low K inter-leveleti¢rics for Al and SiQ@

 There is less time to characterize new materiaé tin the past, e.g.,
reliability issues with new materials and new ptigdriailure modes.

* Manufacturers are trending toward providing ‘jushoegh’ lifetime,
reliability, and environmental specifications famnemercial applications, e.g.,
< five year product lifetimes, trading off ‘excesgliability margins for
performance.

* There is a significant rise in the amount of prefaiy technology and data

developed by manufacturers, and there is a reloetato share that
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information with hi-rel customers, e.g., processipes, process controls,
process flows, design margins, MTTF.

* There is a focus on the commercial customer, \tile br no emphasis on the
needs of the space customer, e.g., extended kfeeree environments, high
reliability.

* There are increasingly difficult testability chad@ges due to part complexity.

Modern reliability approaches, including a PoF basdiability modeling strategy,

are needed to better predict long term productldily, operating margins, and
performance of progressively scaled technologiedSASA applications. NASA and

other hi-rel users must be able to reliably prediud-of-life characteristics and time-
to-failure of these advanced scaled technologiestiie next generation of flight

avionics systems. Further research, modeling,l@@ted testing, and failure analysis
are needed to better understand the impact of netesreemiconductor scaling on
microelectronics reliability. The relationship eien smaller technology feature
sizes, device failure mechanisms, and activati@rgies must be further investigated
to quantifiably assess the reliability of currenicroelectronic products across
different stress conditions for hi-rel NASA spagepkcations. Better predictive

models explaining the anticipated behavior of adednscaled microelectronic
technologies, and the expected performance degvadater time are desired.
Physics-of-failure derating guidance for advancealesl microelectronics is needed.

A qualification plan, based upon analysis fromitgstat multiple stress conditions
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and the failure mechanism process rates, is soafget to better design for high

reliability and long life.

While earlier AVSI sponsored work has produced sawhehe empirical models
needed for a PoF based derating approach, and kettelation models have been
developed to predict device wearout under varidtesss conditions, there has been
little experimental verification and validation die outputs of these models. This
work will include a series of experiments to evédusome of the more recent
memory technologies to substantiate and validatpgeed acceleration models for
temperature and voltage life-stress relationship®ss scaled technologies. The
purpose of this work is to develop a better unéading of the impact of nanometer
technology scaling on microelectronics reliabiliagsess current trends, and provide
an independent assessment of some of the propeseter@tion models so that we
are able to better predict the reliability of scateicroelectronic technologies in hi-rel

systems, and eventually apply PoF based deratingisio

Empirical and computer-based modeling, simulatiamd analyses are being
employed to build PoF based FR estimation modeBsgess the impact of various
failure mechanisms on product reliability, and eptilate bathtub curves across
progressively technologies, e.g., 180nm, 130nmnafGnd 90nm. This work may
lead to more accurate prediction of device lifeegiva range of mission operating
conditions, and may become particularly benefid@al predicting device life of

progressive technologies outside of normal opayatonditions. It is the goal of this
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work to investigate and validate reliability trerals a function of technology scaling
by conducting independent accelerated stress gestinthe product level, data
analysis of the results, modeling, and failure wsial of several scaled device
technologies. Testing at multiple conditions t@uofify the rate processes of different
failure mechanisms will be attempted. Memory deviege excellent choices for
product reliability experimentation because of thkigh density of transistors,

memory cells, and repetitive layout of memory beckCurrent SRAM and SDRAM

products are available in >512Mb density per sendoator chip.

Predicting long-term performance of scaled micrctetsmic memory products can be
difficult because ALT involving elevated stressas often result in either too few or
no failures to make realistic predictions or infezes. It is also possible to overstress
the part during accelerated stress testing to et @f thermal runaway where the
device goes into catastrophic failure. Manufacsu@ten report product FIT rates
based on zero failures over a fixed amount of tinie.overcome this problem, ADT
can be used as a means to predict performancecinses. By identifying key
performance measures which are expected to degnagtetime, product reliability
can be inferred by the degradation paths withosenling actual physical failures.
Using this approach, the engineer defines a fadréhe first time a key performance
measure exceeds a pre-specified threshold andetiradhtion path is then correlated
to product reliability. Manufacturers will develogpecification minimum and
maximum limits on key operating parameters for rtheioducts and establish

acceptable ranges for key characteristics. Throuaggrnal process controls and
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reliability and qualification testing, manufactuwewill create acceptable parameter
limits to achieve a target reliability FIT. Oftémes, however, the user does not have
access to the actual failure data, failure distidvuor confidence level bounds for a

given product.

1.4.2 Objectives

The main objectives of the research are to: tesalyae, and model competing
intrinsic failure mechanisms of scaled microelesitgoroducts involving both hard
catastrophic and soft degradation failures underelacated conditions; validate
existing models and/or propose new models desgrilearout and performance
degradation of several scaled technologies from dgkgerimental baseline; and

develop conclusions and predictions for the neatipct generation.

The objectives will first be met by surveying majmicrocircuit suppliers to the
military/aerospace market. The purpose of theesursy to solicit feedback on current
product regarding targeted product lifetime, prddutifetime validation
methodologies, activation energies, life limitingildre mechanisms, and the
preferred, or most effective, screening regimentémtify weak devices, i.e., burn-in
or high voltage stress test. Secondly, a seriesxpériments using scaled volatile
Static Random Access Memory (SRAM) and Synchrorayrsamic Random Access
Memory (SDRAM) technologies will be performed, aheé performance degradation

and failure characteristics over a range of stmssditions will be studied and
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analyzed. Both step-stress and matrix stress apipesavill be employed to stress the
candidate devices. SRAM and SDRAM are two of daling memory technologies

in micro-architectures today.

Underlying goals of the first SRAM experiment ave t

» Calculate the FIT rate based on the test statistid®ut the physical models.

* Validate the models and parameters upon failurestigation.

* Perform data analysis.

» Calculate the FIT using those models.

» Compare and contrast to the manufacturer’s repdifed

 Determine if experimental results support lifetimeliability predictions
across scaled technologies.

» Conduct failure analysis to identify root causdadliire.

A comparison of the results will then introduce maccurate statistical models
and/or data fitting into existing physical failuraodel approaches, e.g., Inverse

Power, Exponential, etc.

The goal of a second SDRAM experiment is to ingeda failure mechanism induced

degradation on scaled microelectronics to determhitteey are random (constant rate

process) or degrade over time (increasing failate)r Additionally, characterization
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of part sensitivities to temperature, voltage ameqdency of different failure

mechanisms across different technologies is desired

Based upon observations from the experiments, rewmdations and conclusions

will be developed and presented.

Specific contributions include:

Assess and summarize reliability issues and tresldsed to device scaling of
CMOS technologies.

Develop a prediction methodology to determine thkability and defect
density of newer generation scaled memories.

Add to the experimental testing base (using AST) sefveral MOS
technologies to better understand, validate anddewelop improved
performance degradation and reliability models.

Analyze established reliability methodologies (D@ and Reliability
Prediction) and make recommendations as to thecajdlty/appropriateness
of those methodologies to emerging scaled techieddgr NASA missions;
Participate in AVSI Reliability initiatives.

Revise and release the prime AVSI Project 17 dedivie: Microelectronics

Reliability and Lifetime Evaluation Handbook.
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Chapter 2: Scaling Impact on SRAM

2.1 Impact of Junction Temperature on Microelectroriediability and
Considerations for Space Applications

Established industry derating guidelines publistiigd NASA JPL [1] and RAC
(Reliability Analysis Center) [91] provide users @aimmercial, as well as mil-spec
microelectronics, derating factors for critical devparameters intended to reduce the
occurrence of stress related failures in the imtendapplication. Complex
microcircuits with improved functionality, highepeed and lower core voltages
continue to be sought after for characterizatiasting and product infusion in high
reliability space applications. As feature sizesdme smaller, there are a number of
intrinsic failure mechanisms, those that are inhiefe the design and/or materials,
and extrinsic failure mechanisms, or process reéldefects, that the user must remain
cognizant of in their reliability assessment of adsed technologies. The primary
known intrinsic wearout failure mechanisms of cancare: 1) Electromigration
(EM) — a mass transport induced wearout mechanismwhich metal atoms are
diffused along an interconnect; 2) Time-dependeelkedtiric breakdown (TDDB) —
wearout damage to the silicon dioxide dielectrimfin a device through constant
applied voltage and high, but still within speaifieperating range, electric field; and
3) Hot carrier aging — the degradation of MOS dewbaracteristics due to charge
trapping in the gate dielectric. Limiting stresgdis on semiconductor devices in the

application can extend the useful life and delayiakewearout.
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2.1.1 Microelectronic Supplier Industry Survey (23D0

An industry survey was performed with eight majoicnocircuit suppliers to the
military/aerospace market in 2003 [92]. The syrgeestions and supplier responses
are summarized in Appendix A. The objective & furvey was to solicit feedback
on current product regarding targeted productififet product lifetime validation
methodologies, activation energies, life limitingildre mechanisms, and the
preferred, or most effective, screening regimentémtify weak devices, i.e., burn-in
or high voltage stress test. Data is reflectivsibdon process feature sizes as small

as 0.18 micron technology.

All suppliers in the survey rely on the Arrheniugthiodology for their product lines
to determine acceleration factors for failure resédculations and equivalent stress
testing protocols. Through accelerated testing,user is able to reduce the time to
failure and obtain data in a shorter time than woatherwise be required. This
technique remains widely used throughout the semdigctor industry. The rate at
which many diffusion based chemical processes falkee is governed by the

Arrhenius equation:

—Ea
R= Aex;{ T j (2.1)
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where,R = rate of the proces8, = a proportional multiplierfz, = activation energy in
electron volts,k = Boltzmann's constant, 8.6x20(eV/K), and T = Absolute

temperature in Kelvin.

Experimental data obtained from accelerated téstéesated temperatures are based
on the Arrhenius equation to obtain a model of dewnehavior at normal operating
temperatures. Rearranging the Arrhenius equatiowslthe temperature dependence

of device failure to be modeled as follows:

|nE:E 1 1 (2.2)
tr k\T2 Ti

wheret ; > = time to failure E, = activation energy in electron volis= Boltzmann’s

constant, 8.6x10(eV/K), andT = absolute temperature in Kelvin.

Activation energies that are empirically represewaof established technologies
reported in the 2003 survey ranged from 0.7eV fe\L.for bipolar processes and
0.5eV to 0.7eV for CMOS processes, hence many ledapted 0.7eV for all
diffusion-based failure mechanisms combined. Saheur survey respondents,
however, have experimentally and empirically dem@ted E, of 0.4eV for metal
migration with ASP/DSP CMOS 0.18-micron processesl 0.3eV for DRAM gate
oxide integrity [93]. Users should be cautiousewhapplying generic activation
energy standards to new technologies, as they rmoape representative of current

failure mechanism processes.
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Other stresses used to accelerate device failuokhanesms include voltage, current,
humidity, and temperature cycling. Elevated vadtegiress testing at wafer level
probe is recognized as a more effective technitpa@ temperature acceleration to
detect oxide related defects. However, most sumplia the survey relied on

temperature acceleration in conjunction with vadtagfress testing to provide a
comprehensive assessment of their product. Voléageleration is based upon the
McPherson model and the corresponding voltage a@te&ln factorf, is empirically

derived for each device family or technology.

Product life limiting failure mechanisms are highlyechnology dependent.
Electromigration and TDDB were reported to be tleesihcommonly experienced life
limiting failure mechanisms in the study; hot carreffects are becoming more of a

concern with smaller feature sizes.

Most suppliers in the survey used product lifeibgsat, or near, maximum junction
temperature of the device to validate productififiet this is typically performed at
125°C to 150°C. Target product lifetimes for mibguct are generally ten years at
maximum rated junction temperature, however, soorgoen military and space
designs are customer driven and reflect a fiftéementy or twenty five year target
product lifetime. There were varying product lifie¢ definitions from the suppliers
in the survey, therefore, the user should requestspecific test conditions and

confidence level associated with a given FIT ra®&ipplier responses for target FIT
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rates ranged from 50 FIT (0.5% cumulative failusgej at ten years and 60%
confidence level, to 0.76 FIT at fifteen years &6 confidence level. One (1) FIT
over 10 years for intrinsic failure mechanisms {®0cumulative failure rate) at ten
years and 60% confidence level is the historicaichenark. We consider typical
microelectronic lifetime for mil-products to be tgears at maximum rated junction
temperature unless otherwise defined. FIT rateutations and targeted product
lifetimes should be considered when using new telclyies in high reliability

applications. It is assumed that these failuresle\are acceptable in electronic

systems.

2.1.2 TjBaseline Calculations and Temperature Stresatidgy Curves

Historically, junction temperatureljj derating for silicon microcircuits in ceramic
hermetic packages has been limited to between 1208C115°C. The basis of this

calculation can be described as follows:

MTTF oc e 5/*T (2.3)

Assume a product lifetime of ten years. Addingagety margin of two, the target
product lifetime in space is twenty years minimwn,twice the product’s designed
lifetime. In order to achieve twice the lifetimejet junction temperature must be

lowered such that MTTF is twice the nominal valugsing the Arrhenius equation:
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e_ Ea /KTgerated / e_ Ea /KTominal — 2

or

- Ea Ik (1/Tderated_1/TnominaI) =In2=0.693

YT, q-UT, . =-596x10°/Ea

For Thominai= 125°C, Thomina = 398°K

The worst case derating represents the lowestadictivenergy in the range. In the

past, 0.6eV to 0.7eV has been widely used.

Assuming arE; = 0.6 eV,
1Tderated— LMnominal= - 9.93 x 10
or
1/ Tderated= -9.93 x 1¢ + 2.51 x 1G = 2.61 x 10°
Tderated= 1/2.61 x 10 = 383°K
or

Tderatea= 110°C (Current JPL D-854KF Value)

Historical linear and digital microcircuit tempeuwat stress derating curves are
described in Figure 12 [91]. A correspondinguel rate may be obtained at each
temperature for established technologies, whidielpful to the user in determining

an acceptable failure rate for established teclyiesoin a given application.
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Figure 12._Linear/Digital Microcircuit Temperatusgress Derating Curves.

Many of JPL’s current programs are operating, dr @gerate, in the six months to
fifteen years mission life range. Microelectronaggplications in these missions vary
in criticality, operating environment, and opergticonditions. Therefore, it is
appropriate to consider these variables, in addit® current device technology
trends, feature size, and failure mechanism a@iatnergies when establishing a
safe, adequate, operating junction temperatureafomtended mission application.

Additional Tj calculations are presented in Table 2.
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Table 2. Junction Temperature Calculations.

Device Max Rated| Activation Energy Years of Derated Tj
T] Operation

0.3 10 125
0.3 15 107
0.3 20 96
0.5 10 125

125°C 0.5 15 114
0.5 20 107
0.6 20 110
0.7 10 125
0.7 15 117
0.7 20 112
0.3 10 150
0.3 15 130
0.3 20 117

150°C 0.5 10 150
0.5 15 138
0.5 20 130
0.7 10 150
0.7 15 141
0.7 20 135

While additional safety margin may be realized wdlver operating temperatures,
voltages and frequencies, the user should takecmmsideration the supplier's basis
for FIT rate calculations, the product lifetime ggs and failure mechanism

developments and trends in new technology produoes lin the overall reliability

69



assessment. Users of commercial-off-the-shelf (§80Tomponents in high
reliability applications utilizing plastic packagntechniques must also take in to
consideration limitations of the glass transitimmperature Ty) of the packaging
material itself, as well as the flame retardantcjmation effect in the mold
compound. Either one of these factors may overtige safe operating junction
temperature limit in a given application. Additaly, COTS designed lifetime may
vary greatly depending on device type and the agdnapplication. Hence, the user
should not necessarily assume a ten year desgnmd at maximum rated operating

temperatures for COTS products without verification

Further research, modeling, accelerated testind)failure analysis are recommended
to better understand the correlation relationsbipsmaller feature sizes and device
failure mechanism activation energies to more dfiably assess the reliability of

current device technology trends. In general, h@wnethe results from the 2003
supplier survey indicated that the general activagnergies reported in Table 3 are

conservative values for determining derafedalues for a given application.
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Table 3. _Conservativig; reported from Industry Survey.

Technology Conservative Ea Value
Bipolar 0.7 eV
MOS - General 0.5 eV
ASP/DSP 0.5eV
DRAM 0.3 eV

(Data is only reflective of silicon process feataizes as small as 0.18 micron)

2.2 Impact of Device Scaling on Deep Sub-micron TramsReliability — A Study
of Reliability Trends using SRAM

In 2005, a reliability study was conducted thatized Step-Stress techniques to
evaluate scaled SRAM technologies (0.25um, 0.15ama 0.13um) embedded in
many of today’s high-reliability space/aerospacpliaptions to substantiate current
acceleration models for temperature and voltageslifess relationships [94]. The
purpose of this study was to develop a better wtdeding of the impact of deep sub-
micron technology scaling trends on microelectrsnieliability and to provide an

independent assessment and validation of curresglexation models for users of
scaled CMOS devices. The elevated parameters snetkperiment were ambient
temperature T,) and the component operating voltagés. The models for

evaluating the acceleration factors include Arrbenfor temperature, and Inverse
Power or Exponential for voltage [95]. The accdleramodels and parameters for
various failure mechanisms remain uncertain for aaded technology CMOS

devices, e.g., linearity and interactions betwéenstresses.
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2.2.1 Static Random Access Memory (SRAM)

With SRAM, static indicates that the memory retaiasontents as long as the power
remains applied. SRAM is a type of volatile memorfigandom access means that
locations in the memory can be written to, or r&adn, in any order, regardless of
the memory location that was last accessed. E#ah bn SRAM is stored on four
transistors that form two cross-coupled invertdisis storage cell has two stable
states, which are used to denote either a O orTava. additional access transistors
serve to control the access to a storage cell gur@ad and write operations. It
typically takes six MOSFETS to store one memory litcess to the cell is enabled
by the word line (WL in Figure 13) which controlettwo access transistors M5 and
M6 which, in turn, control whether the cell sholle connected to the bit lines: BL
and BL-Not. They are used to transfer data for betld and write operations. While
it is not strictly necessary to have two bit linésth the signal and its inverse are
typically provided to improve noise margins. Theesof an SRAM with m address
lines and n data lines is 2m words, or 2m x n BRAM, while slightly more
expensive, is faster and significantly less powergny (especially idle) than DRAM.

SRAM is used where either speed or low power, o are of prime interest.

72



WL

Vdd

|||—

Figure 13._A Six-Transistor CMOS SRAM Cell.

2.2.2 Experimentation

SRAM devices were chosen for experimentation to alestnate the accuracy and
appropriateness of analytical models that have pe@nosed to characterize the life-
stress relationship of present-day microelectrolezices. The devices are arranged
in a matrix array and storage of data occurs withe@mory cells. Because the matrix
array is designed for repetitive write-read cycleEsge amounts of performance
reliability data may be obtained through experiméaoh with relatively small
guantities of commercial SRAM devices; technologmsy be compared and

contrasted with experimentation across a rangeatintology nodes.
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A step-stress accelerated test techniqgue was ingpitsd to evaluate 1Mb (0.25um),
4Mb (0.15um) and 16Mb (0.13um) SRAM devices of famcell designs configured
in 128K x 8b, 256K x 16b, and 1M x 16b words respety. Refer to Tables 4 and 5.
Devices were subjected to repetitive write/reades/consisting of four data values
for each memory cell or address at each stress sté&gitage was held constant while
temperature was stepped up, and then temperatigen@d constant while voltage
was stepped-up. As stress conditions increasdthgeand temperature), bit failure

times were read and recorded until devices catastrally failed.

Underlying goals of this experiment were to:

» Calculate the FIT based on the test statisticsawitbhe physical models.

* Validate the models and parameters upon failurestigation.

» Perform data analysis.

» Calculate the FIT using those models.

» Compare and contrast to the manufacturer’s puldisiie

 Determine if experimental results support lifetimeliability predictions

across scaled technologies.

A comparison of the results were intended to intied more accurate statistical

models and/or data fitting into existing physicaildire model approaches, e.g.,

Inverse Power, Exponential, etc.
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Table 4. _Step-Stress Conditions (a).

Stress Temp Time
Conditions [°C] | VIVhom | [hrs]
stress level 1 125 1.3 96
stress level 2 140 1.3 96
stress level 3 140 1.4 96
stress level 4 155 1.4 96
stress level 5 155 1.5 96
stress level 6 165 1.5 96
stress level 7 165 1.6 96
stress level 8 165 1.7 96

Table 5. _Step-Stress Conditions (b).

Stress Temp Time

Conditions [°C] | VIVhom | [hrs]
stress level 1 155 1.3 288
stress level 2 165 1.3 288
stress level 3 155 1.4 288
stress level 4 165 1.4 288
stress level 5 155 1.5 288
stress level 6 165 1.5 288
stress level 7 165 1.6 288

2.2.3 Discussion & Results

Table 6 shows the expected bit failure rates comgatnverse Power and
Exponential Voltage acceleration models and the ufsmturer’s life test data.
Cumulative weighted test times were calculatedafbstress operation levels. Total
equivalent operating times were calculated for bB#ponential and Power Law

Models, and failure ratel was calculated at 55°C at nominal operating geta
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Evaluation of the failure rate was conducted at G@fidence using Reliasoft Alta

6.5 software for maximum likelihood estimation witte assumption of a constant
failure rate. Cumulative weighted times were calted to represent all the stress
operation levels. Two basic assumptions were m@dse 1 reflects the assumption
that there is only one dominating failure mechanamd the others are neglected;
Case 2 reflects the assumption that there is nargaimg failure mechanism, and that

all are equally likely.

Table 6. Step-Stress Accelerated Test Results @amdgo Manufacturer’'s Data

Test level Cumulated Equivalent op. time @55deg&nominal voltage
test time
Casel (Multiplication) Case2 (Weighted Sum)
AFv Exg). Model AFv P%ver law | AFv Exg). Model | AFv P(?zv)ver law
stress level 1 576 32464923.04 237589693.1 310353.6276 2170970.594
stress level 2 384 43090951.76 315354698.1 217390.3382 1457801.649
stress level 3 384 434116546.9 3918127282 1998870.897 17871738.22
stress level 4 384 824942335.4 7445532987 2017841.11 17890708.43
stress level 5 384 8310819403 77740152267 19965232.78 186422071.3
stress level 6 384 12452806266 1.16485E+11 19985188.96 186442027.5
stress level 7 335.8 1.09721E+11 9.14211E+11 175611815.3 1462841979
stress level 8 133.6 4.39858E+11 2.85782E+12 703819229.5 4572690225
Total equiv. time: 5.71677E+11 3.97817E+12 923925922.4 6447787521
Failure rate @55C
&Vnom (FIT) 0.031 0.004 19.482 2.792
Failure rate reported by Manuf: 7 — 20 FIT

Case 1 - refers to assumption a.
Case 2 — refers to assumption b.
(1) - Voltage Acceleration Factor according to Exponential. Model®)

(2) - Voltage Acceleration Factor according to Power Law Model (k=34)
(3) — Mfr's FIT reported at 60% CL. ALT comparison also at 60% CL.

According to the assumptions outlined in Case 1 @ade 2, two models were
applied: (a) Multiplication of AF's (temp. and va$je) using both Exponential and

Power Law Models: AF; = AFt * AFv(e) and AF, = AFt * AFv(p), and (b) A
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proposed weighted sum model of the AF’'s whéie; = (AFt + AFv(e))/2andAF, =

(AFt + AFv(p))/2. These equations are expanded as follows:

_AMNVe) AR AR —exd B2l -1 -
AR = ﬂ,(Tl,Vl) B AFT AFV eXF{ K [Tl TZ]}eXdyl(vz Vl)) (24)

INIRECUD NN :eXﬁ{E[i—iD(Vz IV)¥) (2.5)
(T, V1) k\T, T,

3:/1(T2’V2): - Bl 1 _ 2.6
AF TR (AF, + AF,)/2 (ex;{kKTl Tznwxp(yl(\/2 v))/2  (2.6)

4—1(T2’V2) = = E. i_i k 2.7
AF4= oA = (AF, +AFV)/2_(exp{ 5 [T = D+(\/2/vl) )12 (2.7)

Equations (2.6) and (2.7) may be expandednfandependent failure mechanisms
where thel remi represents the" failure mode at accelerated conditions, angdew

represents thd' failure mode at normal conditions. The AF then rbayexpressed as
Equation (2.8) assuming the failure modes haveldpguency of occurrence during

the use conditionf96]:

AF = Zuse L = (2.8)
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The data analysis supports that the proposed welghim Exponential Model (Eq.
2.6) best correlated the manufacturer’s publishetd §7-20 FIT) to the experimental
data (19.482 FIT), normalized to 55°C and nomMaloperating conditions. Refer
to Table 6. The accuracy of an estimate is glweiis standard error and confidence
interval. The estimates approximate the true patamvalues, and the confidence
intervals for model parameters indicate the ungdstan the statistical estimates by
their width.  Statistical confidence bounds do actount for model uncertainty.
Therefore, sensitivity analysis is important in agyantitative analysis involving
uncertainty and for assessing the effects of modekrtainty. In this experiment,
model uncertainty was addressed by analyzing differmodel assumptions and
different models to determine the best fit scendm@dween the test results, prior
SRAM test results, and the manufacturer’s faillaee qualification data. Maximum
Likelihood methods were used to provide the estsand confidence limits for the

model parameters.

Examination of the component failure times showt tha specific times, large
numbers of bit failures were recorded. The fasutieat were recorded at the same
time represent a single failure event which wasecééd on multiple addresses and
therefore, counted as a single failure for religb#valuation. Hard and soft failures
were treated equally in this reliability evaluatitlecause once a soft failure has
occurred in a high-reliability, remote applicatiaag., an un-repairable system, the

address corresponding to the failure are genecaltymvented and not used in future
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write cycles. Table 7 shows technology node anesstconditions vs. accumulated

time to failure of 0.1% of the bits in a device.

Table 7. Technology Node and Stress Conditions vs.
Time-to-Failure of 0.1% of the Bits in a Device

Time (Hrs)
to 0.1%
Tech. Vratio Temp | Device-Bit
Node | (Vapp/Vnom) C Failures
0.13 1.4 165/15% 588
1.5

0.15 1.6 165 528
0.25 1.7 165 768

2.2.4 Experimental Conclusions

An experimental based reliability study of industgrade SRAMs consisting of three
different technology nodes was conducted to subatarcurrent acceleration models
for temperature and voltage life-stress relatigmshi Two different acceleration
models were tested to relate experimental FIT ¢aticuns to the manufacturer’s
gualification data; the weighted sum exponentialeidest correlated. While time-
to-fail across technology nodes were generallyiafilar magnitudes, the V stress
ratio (increased V dependency) appears to be apyifailure mechanism driver with
smaller technology nodes. Experimental results support reduced lifetime
reliability predictions as technologies are scaledess adequate internal voltage

regulator circuitry is not employed.

79



2.2.5 Failure Analysis

Upon functional failure, units were submitted foaildre analysis. I-V curve
measurements using a Digital Curve Tektronix 37&cdr revealed a 120-ohm

resistive short in the input buffer circuitry beeve/.c andVss[97]. See Figure 14.
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Figure 14._256K X 16 Static RAM Functional Diagram

Devices were then chemically decapsulated and sigojeto internal optical
examination. See Figure 15. Photon emission nmioms (EMMI) was implemented
to pinpoint the failure site. See Figure 16. OCgdtitesting of advanced CMOS
circuits exploits the near-infrared photon emissioy hot-carriers in transistor

channels. However, due to the continuous scalinigatiure size and supply voltage,
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spontaneous emission is becoming fainter and dpticeuit diagnostics becomes
ever more challenging [98]. EMMI revealed emissionthe area between thg.and

Vss buses. The EMMI findings correspond with the I-\ivaa measurements. One
device was subjected to Focused lon Beam FIB/SEdeiction to determine root
cause of the failure. See Figures 17 and 18. Ttiereinces in metal appearance in
the upper and lower portions of the image reflaffeinces in stress conditions.

Stress induced metal migration is evident in theeloregion of Figure 18.

Failure Locale

T~

Memory Cells

Figure 15._Decapsulated Optical Overview of SRAMIEe.
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Figure 16._Photon Emission Image Showing Emissimt&een
Pin 11 (Vcc) and Pin 12 (Vss)
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Figure 17._Close-up of the Defective Region Milieth the FIB Instrument
Directly Over the Area that Produced Photons inEhd@ssion Microscope.
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Figure 18._SEM of the Defective Region Milled witie FIB Instrument

2.2.6 Discussion

Devices in this accelerated stress test experiraeahtually succumbed to thermal
runaway upon reaching critical temperature andagatthresholds. The failures were
caused by electrical overstress applied directlyween V.. and Vss pins (input
circuitry transistors). Additional dielectric danegvas identified in Figure 17. No
damage was found in the memory cells as a resldMyf TDDB or HCD. FIB/SEM
inspections show evidence of dielectric damagethadmnal/electrical stress induced
metal migration damage. Buffer/voltage regulatiarcuitry protected the actual
memory cells as damage was concentrated on thé¢ trgnsistors of the memories.

The observed failure mode of a sudden large inereasnemory cells (bit failures)
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was actually a result of the failure of the inpircaitry (low resistance 120-Ohm
short betweeV,. andVsg of the device. These results demonstrate thesséy to
conduct FA on accelerated stress test failures dofiren the actual failure
mechanism(s) and, as in this case study, to aheidalse conclusion of catastrophic

memory bank failure.

2.2.7 Summary

The stress test and failure analysis on 0.25umbudnl and 0.13um SRAM
technologies demonstrate that root cause of faihamre be attributable to multiple,
simultaneous failure mechanisms. Furthermores inot practical to assume no
interdependency of the effect of voltage and tewupee stresses on the wearout
failure mechanisms. Different failure mechanismis also be accelerated by certain
voltage and temperature stress combinations. melasion, additional experiments
are needed to refine and validate the models destearlier. Future work includes
accelerated stress testing and modeling with 13@M and 90nm bulk CMOS
technologies using frequency, temperature and geltas the principal stress
variables. The objective is to establish time-tbdaithe product level from either the
dominant or multiple failure mechanism(s), and waHer investigate product level

performance degradation as a function of technosogying.
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Chapter 3: Scaling Impact on SDRAM

3.1 Overview

Dynamic RAM is a type of volatile memory that ne¢dde periodically refreshed to
retain its contents. SDRAM has a synchronous faxter meaning that it waits for a
clock signal before responding to its control irgult is synchronized with the
computer's system bus, and thus with the proceB$0AM is the most common kind
of random access memory for personal computersstations and flight computers,
such as the one that will be used in the upcomiA$A JUNO mission. DRAMs
use charge storage on a capacitor in each membityp cepresent stored binary data
values of a logic “1” or a logic “0”. A DRAM celtonsists of a transfer device, a
MOSFET that acts like a switch and a storage ctmaas is displayed in Figure 19
[99]. The absence of a charge on the capacitoresepts a logic “0” and the
presence of a charge indicates a logic “1” in eaxgmory cell. Millions of these

memory cells are populated in high density arrays.

The clock is used to drive an internal finite statachine that pipelines incoming
instructions. This allows the chip to have a mooenplex pattern of operation than
DRAM which does not have synchronizing control gits. Pipelining means that the
chip can accept a new instruction before it hasHied processing the previous one.

In a pipelined write, the write command can be irdiatly followed by another
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instruction without waiting for the data to be weit to the memory array. In a
pipelined read, the requested data appears afteecanumber of clock pulses after
the read instruction, and then cycles, during whadtitional instructions can be sent;

this delay is called the latency [100].
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Figure 19._1T1C DRAM Cell.
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While the access latency of DRAM is fundamentaiigited by the DRAM array,
DRAM has very high potential bandwidth because eatginal read is actually a row
of many thousands of bits. To make more of thisdbadth available to users, a
Double Data Rate (DDR) interface was developeds Tisies the same commands,
accepted once per cycle, but reads or writes twalsvof data per clock cycle. Some
minor changes to the Single Data Rate (SDR) intertaming were made and the
supply voltage was reduced from 3.3 to 2.5 V. DBBRAM (also called "DDR1")
doubles the minimum read or write unit; every asceefers to at least two
consecutive words. DDR2 SDRAM was originally seena minor enhancement
based on the industry standard single-core CPU OIRD SDRAM. It mainly
allowed higher clock speeds and somewhat deepelimipg better suited for the
rapid acceptance of the multi-core CPU in 2006. hwibhe development and
introduction of DDR3 SDRAM in 2007, it is anticipgat that DDR3 will quickly
replace the more limited DDR and newer DDR2 iningttedge multi-core CPU
architectures. The popularity of DRAM for such bggtions as PCs, wireless access,
MP3 players, digital televisions and DVD video reg®rs makes this type of memory
a leading technology driver, with ever increasimgsgure to reduce cost per bit with
higher densities. DRAM makes up over 50% of the esded memory market.

Figures 20a-c display current commercial DRAM tiefitD1].
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Figure 20a-b._Current DRAM Trends.
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Figure 20c._Current DRAM Trends.

3.2 Design of Experiments

Because manufacturers are generally not willingshare specific design margins,
process recipes and steps, and detailed produabitiy information with the user,
who may use their products in highly reliable apgions, the user may use several
approaches to assess the reliability the producthese include empirical
methodologies or standards-based prediction approlfe or accelerated stress
testing approach, and physics-of-failure methodplbgsed on the understanding of
the failure mechanism and applying the appropnutgsics-of-failure model to the
data. Stress testing combined with PoF was usethisnstudy to determine the
relative degradation and reliability of three preggive technologies using the same

type and size of product for each technology.
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Commercial 512Mb DDR SDRAMSs (three progressive hedbgies — 130nm, 110nm
and 90nm) were selected for the experimental basdb investigate failure and
degradation trends as a function of scaling. 65rRABIS have only recently been
released and were not available at the commencedfetitis study. Furthermore,
DDR2 and DDR3 SDRAM architectures become much noagtly and timely to
evaluate at the product level due to their compjexi Table 8 outlines the
experimental baseline. Table 9 explains the stiestsmatrix approach to stress the
parts. The test approach consisted of three expatsnthe design of experiments

included an accelerated stress test to 1000 hours:

e Experiment 1 forced accelerated stress conditiohsdifferent clock
frequencies and temperatures, while voltage wasfkega (1.5 XVyq).

e Experiment 2 forced accelerated stress conditardifferent voltages (1.4,
1.5 & 1.6 xVqq), while the clock frequency and temperature wespt Kixed
(i.e., Fmax, Tmax).

e Experiment 3 included evaluation of the retentiamet performance and

degradation of the DRAM array.

Parts were dynamically stimulated with addresseingad operations and monitored
for fail or degradation during testing. In additjomnctional characterization tests,
including address write/read/verify and access tneasurements were conducted at

-70°C, -55°C, +25°C and +125°C at periodic intesval Data analysis of the
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performance degradation was conducted from theltsesd the three technology

experiment.
Table 8. _Experimental Baseline
Product | Technology| Memory | Vnom Fmin Fmax | Temp. No.
Capacity Range | Samples
DDR 90nm 512Mb 25V | 77MHz 133MHg Oto 36
SDRAM +70°C
DDR 110nm 512Mb 2.5V | 125MHE200MHz| Oto 36
SDRAM +70°C
DDR 130nm 512Mb 25V | 84MHZ 166MHz Oto 36
SDRAM +70°C
Table 9. _Experimental Stress Test Matrix.
Temp. Freg. Voltage
Stress | 25°C 125°C Min M ax 3.51V 3.78V 4.05Vv
(1.4xVvdd) | (1.5xVvdd) | (1.6xVdd)

S1 X X X

S2 X X X

S3 X X X

S4 X X X

S5 X X X

S6 X X X

Experiment 1 allows accelerated stress test camditat different clock frequencies

and temperatures, while the voltage is kept steady.

e (5 pieces) Max Clock Freg @ 25°C and 4.05V
e (5 pieces) Min Clock Freqg @ 25°C and 4.05V (5 p&#ddin Clock Freq @

125°C and 4.0V

Experiment 2 allows accelerated stress test camditat different voltages, while the

clock frequency and temperature is kept steady.
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e (5 pieces) Max Clock Freg @ 125°C and 3.51V
e (5 pieces) Max Clock Freg @ 125°C and 3.78V

e (5 pieces) Max Clock Freg @ 125°C and 4.05V

Burn-in boards were developed; each board correBpgrio one of the stress test
conditions in each experiment. Each board allowedhe testing of fifteen devices
(five specimens of each technology per board).tiigsvas carried out at maximum
clock frequencies using Credence Sapphire S ausalriast equipment (ATE). The
Sapphire S features 96 programmable I/Os (400 Me) 8 digital power supplies

(DPS). See Figure 21.

Sapphire ATE

Figure 21._Sapphire S ATE.

National Instruments test boards (National Instmisi®Cl-6542) were used for the
low frequency (Fmin) stress tests. See FigurelB2.NI test boards features
100MHz maximum clock rate, programmable input lsyahd 64 Mb/channel on-

board memory.
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NI PCI-6542

Figure 22._National Instruments PCI-6542.

Thirty components of each technology were submittethe stress matrix test. Six
different Burn-In boards with fifteen positions bawere designed to accommodate

the stress matrix conditions. Refer to Figure 28 &able 10.
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Figure 23._Stress Burn-in Boards.
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Table 10. Test Conditions and Bl Board Layout.

Fre Voltage Serial number Bl
STRESS Min | Max 3.51V 3.78%/ 4.05V (parts) Board
S1 X X X #21 to #25 #5
S2 X X X #26 to #30 #6
S3 X X X #16 to #20 #4
S4 X X X #11 to #15 #3
S5 X X X #6 to #10 #2
S6 X X X #1 to #5 #1

3.2.1 Electrical Test Flow

For each memory device, electrical test softwarcklardware were developed. Tests
were performed using an EXA 3000 digital tester.e@dch electrical test step the

following tests were conducted:
DC TESTS:

e Continuity Tests (Viwd).

e Input leakage current test (liL/liH).

e Output leakage current test (lozL/lozH).

e Low/High output current (loL/loH).

e Operating current (ACT-PRE) (Iddo0).

e Operating current (ACT-READ-PRE) (Iddo1l).
e Idle power down standby current (Iddo2P).

e Floating idle standby current (Iddo2F).

e Active power down standby current (Iddo3P).

94



e Active standby current (Iddo3N).

e Operating current (Burst Read Operation) (Iddo4R).
e Operating current (Burst Write Operation) (Iddo4W).
e Auto-Refresh Burst Current (Iddo5).

e Self refresh current (1ddo6).

e Operating current (4 banks interleaving) (lddo7).

FUNCTIONAL TESTS:

e Functional test at 133MHz and nomin&}.
e Functional test at 133MHz and minimuvyy .

e Functional test at 133MHz and maximiyy .

DYNAMIC TESTS:

e DQ output access time from CK, CK/ (tAC).

3.2.2 Electrical Test Conditions and Limits

The electrical test conditions, limits and patteiorseach parameter are described in

Table 11 where:

Device D1 (90nm): 512Mb DDR SDRAM
Device D2 (110nm): 512Mb DDR SDRAM

Device D3 (130nm): 512Mb DDR SDRAM
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Table 11. DC Tests, Conditions and Limits.

Limits

Test conditions )
Min Max

Continuity Tests Viwd Iforce : -100uA -800mV
Input leakage current test liL/liH VDBVin > VSS -2uA 2uA
Output leakage current test lozL/lozH  VDDQ/OUT > VSS -5pA 5uA
Low output current VOUT = 0.35V D1:16.8mA
loL D2 :15.2mA -
D3 :15.2mA
High output current VOUT =1.95V D1:-16.8mA
loH D2 :-15.2mA -
D3 :-15.2mA
Operating current (ACT-PRE) VDD = 2.5V - D1:115mA
IddoO D2 : 160mA
D3 : 150mA
Operating current VDD = 2.5V - D1 :145mA
(ACT-READ-PRE) lddol D2 : 220mA
D3 : 180mA
Idle power down standby current VDD = 2.5V D1 :5mA
Iddo2P - D2 :3mA
D3 :3mA
Floating idle standby current VDD = 2.5V - D1 :40mA
lddo2F D2 : 35mA
D3 : 40mA
Active power down standby VDD = 2.5V - D1 : 30mA
current Iddo3P D2 : 30mA
D3 : 20mA
Active standby current VDD = 2.5V - D1 :45mA
[ddo3N D2 : 70mA
D3 : 70mA
Operating current VDD = 2.5V - D1 :145mA
(Burst Read Operation) Iddo4R D2 : 310mA
D3 :210mA
Operating current VDD = 2.5V - D1:135mA
(Burst Write Operation) Iddo4w D2 : 310mA
D3 :210mA
Auto refresh current VDD = 2.5V - D1 : 280mA
Iddo5 D2 : 330mA
D3 : 290mA
Self refresh current VDD = 2.5V - D1 :5mA
Iddo6 D2 : 4mA
D3 : 4mA
Operating current VDD = 2.5V - D1 :350mA
(4 banks interleaving) Iddo7 D2 : 550mA
D3 : 430mA
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FUNCTIONAL TESTS:

All functional patterns were written in mode:
- CAS LATENCY: 2

- BURST: 8

All test patterns were written and performed infieowing sequences:

ZEROS Pattern:
Symbol: ZEROS

addr 0 1 1FFF
data | #0000| #0000 #0000
ONES Pattern:
Symbol: ONES
addr 0 1 1FFF
data | #FFFF| #FFFF #FFFF

CHECKERBOARD Pattern

Symbol: CHECK

addr

0

1

1FFF

data

#5555

#AAAA

#5555

INVERTED CHECKERBOARD Pattern

Symbol: CHECK/

addr 0 1 1FFF
data | #AAAA | #5555 #AAAA
RANDOM Pattern
Symbol: RDM
addr 0 1 1FFF
data | #1234 | #ABCD #0A5B
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DYNAMIC TESTS:

The dynamic measurements with test conditions mmitslare as follows:

Name Test conditions

DQ output access Time Vdd : 2.5V D1 : 700ps
D2 : 700ps
D3 :700ps

Data Retention Time Tret Vdd: 2.5V 64mSec

TEST CAPABILITY AND ACCURACY:

The test capability and accuracy of the SCHLUMBERIEREDENCE) Model:

EXA3000 is as follows:

- General overview:

800 Mbps channel 375
High speed channel (up to 3.2Gbps) 8
High accuracy analog channel 4
+ 30V analog channel 4

- Static characteristics:

Voltage measurements Accuracy
1V 0.2% of measured value *
6221V
8V 0.2% of measured value *
1.4766mV
0.2% of measured value *
30V 4.16mV
Current measurements Range Accuracy
1uA 0.2% of measured value = 5.1nA
8uA 0.2% of measured value £ 6nAA
64uA 0.2% of measured value + 13nA
0.2% of measured value *
S1AA 68.5nA
4mA 0.2% of measured value +
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513.6nA
32mA 0.2% of measured value p/Al
0.2% of measured value *
256mA 32.5A
1A 0.2% of measured value *
588uA
- Dynamic characteristics:
Impedance 45Q + 5Q
Maximum capacitive load 60pF
Overall time accuracy 8ps
Drivers accuracy + (0.2% + 10 mV) of programmecdueal
Comparators accuracy + (0.2% +10 mV) of programnadde

Experiment 3 included further memory characteraainf the three technologies in
Table 8. Data retention testing was performed byximaing the device refresh
commands. Weak bit failures, distributions andufai times were recorded as a

function of temperature.

Memory devices from each SDRAM technology (130ntQrim, and 90nm) were
characterized for data retention under nomidgl as a function of temperature.
Initial data retention characterization was conddcto determine the approximate
refresh time range of data retention failures (endd by 10% of the memory bit
fails) by extending the refresh time. Data retamitharacterization on eight devices
of each technology was performed at -55°C, +25°C5°€ and +125°C under
nominal Vg4, by extending the refresh time. Bit fails and easswere then recorded

until all bits failed.
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3.3 Technology and Construction Analysis

Each of the 512Mb DRAM parts representing the thpexgressive technologies in
the experiment (130nm, 110nm and 90nm), considbwf memory banks, BBs.
Each memory bank contains an array of 128Mb of DRAMII three technologies
run on an external 2.5Vyq. Each part consists of 567 million transistord aach
memory cell is configured in a 1-Transistor, 1-Gaja configuration (Ref. Figure
19). There are 512 million 1T1C memory cells iclepart. The rest of the active
transistors comprise the periphery, voltage corarad regulation, and input-output
circuitry. The periphery, voltage control and rkgion, input-output interface,
control logic, and sense amps are CMOS, and eaatonyecell consists of an nMOS
transistor and a stacked technology capacitor (ST®arlier trench capacitor
configurations were phased out below the 180nm ge®alesigns due to scaling
limitations. As DRAM has scaled down, the amouhtloarge needed for reliable
memory operation has basically remained the salRwe. current generation DRAM,
the capacitance is typically 30#cell. Although the external power supply is 2.5V
for each part, internal on-chip voltage regulatocwtry subdivides this voltage as

follows:

130nm Technology Parts

- Peripheral Circuitry Voltage: 2.2V

- Memory Core Voltage: 1.8V

100



110nm Technology Parts

- Peripheral Circuitry Voltage: 1.8V
- Memory Core Voltage: 1.4V

90nm Technology Parts

- Peripheral Circuitry Voltage: 1.4V

- Memory Core Voltage: 1.0V

The memory cell capacitor dielectric material o# tharts is T#gDs. The gate oxide
thickness for the larger peripheral circuitry thaters is approximately 7nm, and the
gate oxide thickness for the nMOS memory cell tistoss is approximately 4.2 nm.

A basic functional block diagram of the 512Mb SDRAdvshown if Figure 24 [102].
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Figure 24._512Mb SDRAM Functional Block Diagram
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3.4 Device Characterization

3.4.1 Voltage Breakdown

Two devices from each technology were used foragaltbreakdown characterization
to determine the point of breakdown. The followirgproach was used to

characterize the breakdown voltage:

RampVyq from 2.7V to 8V
- Continuity I/O test
- Continuity Vyq /Vddo test

- Measure Standblyg

For the three technologies, the breakdown voltage migher than 6V for each of the
2.5V nominal parts (130nm, 110 and 90nm). The #iGmnd 130nm samples

exhibited breakdown at >7V.

3.4.2 Minimum Frequency Operation Characterization

Two devices from each technology were used to oeter the actual minimum
operating frequency for each technology. Devicesevedectrically tested at 125°C to
determine the breakdown voltage for each technol@ggh temperature, ramp
voltage to device breakdown). All three technodsgiemained functional to 50MHz

and the 130nm and 110nm parts remained functiomé@5MHz, well below the
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specified minimum operating frequency. The lowgfrency used for electrical stress

in the experimentation, Fmin, was 50MHz.

3.5 Stress Test Results

Most importantly, there were no hard functionalusgs of any of the devices after
being subjected to the stress conditions in expartsone and two. Although there
were no failures from the stress conditions appfrean the stress test matrikyqo

degradation was observed on some parameters aft@d hours. Analyses of the

results indicate the following parameters were nadisticted by the stress conditions:

» Operating current: lddoo
e Auto refresh current : l ddos
+ Data Retention Time: Tret

A scaling factor was observed; the smaller thereldgy, the greater thigq, drifts.
The -70°C cold temperature results are misleadimd) @o not represent the actual
current measurements. At this cold temperature,athount of moisture and frost
build-up on the parts and test fixture distorts dloeual measurementsqq, drifts are

plotted in Figures 25a-b.

There was nd',c degradation after 1,000 hours. This can be atedlto no Fmax

degradation under the stress conditions.

103



3.5.1 Stress Test Resultggl)

Operating Current (Iddo0) Degradation at 1,000 hrs.
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Figures 25a-b. Operating Current and Refresh Gufdegradation.

104



The operating current and refresh current degrawla¢(magnitude increase) are
noteworthy because they reflect increased leakhgrugh one or multiple points
within the complex array of internal circuitry. both casesl{q4o andlgqo5) the 90nm

technology measurements were an order of magnitugher than the 130nm
technology devices. Because leakage current sréely proportional to retention

time, further investigation is warranted.

Tables 12a and 12b summarize khg performance degradation after 1,000 hours.

Table 12a._lddo Performance Summary.

Stress
Condition Temperature Erequency | Voltage* | Effect on Iddo
1 High High High Moderate
2 High High Medium Moderate
3 High High Low Moderate
4 High Low High Moderate
5 Low High High Negligible
6 Low Low High Negligible

*HV=1.6 X Vgg, MV=1.5 xVyq, LV=1.4 XVqyqg

105



Table 12b. Iddo Performance Characterization 8rift

Stressed at Fmax, 4.05V, 125C
130nm Avg. 110nm Avg. 90nm Avg.
1,000 hr. Drift 1,000 hr. Drift 1,000 hr. Drift
-70C Iddo0 0.44% -70C Iddo0 0.72% -70C Iddo0 5.55%
Measure |lddol 0.12% Measure |lddol 1.26% Measure |lddol 4.87%
lddo2P 0.19% lddo2P 3.98% lddo2P 14.23%
lddo5 0.32% Iddo5 3.14% Iddo5 4.97%
Iddo6 0.39% Iddo6 1.86% lddo6 10.99%
Avg. 0.29% Avg. 2.19% Avg. 8.12%
+25C Iddo0 0.32% +25C Iddo0 0.27% +25C Iddo0 2.81%
Measure |lddol 0.06% Measure |lddol 0.34% Measure |lddol 4.22%
lddo2P 0.17% lddo2P 1.70% lddo2P 5.23%
Iddo5 0.14% Iddo5 1.88% Iddo5 3.89%
Iddo6 0.24% Iddo6 0.68% Iddo6 3.08%
Avg. 0.19% Avg. 0.97% Avg. 3.85%
+125C Iddo0 0.58% +125C Iddo0 2.12% +125C Iddo0 5.98%
Measure |lddol 0.29% Measure |lddol 3.34% Measure |lddol 5.14%
Iddo2P 1.09% Iddo2P 4.17% lddo2P 17.87%
Iddo5 0.79% Iddo5 3.21% Iddo5 5.87%
Iddo6 0.83% Iddo6 3.27% lddo6 13.45%
Avg. 0.72% Avg. 3.22% Avg. 9.66%

An unexpected finding was that there werelgp degradation differences across the
different voltage conditions. Degradation appeatedbe strictly temperature
dependent and the relative differences in the geltinputs in this experiment
exhibited no difference in performance. Samplesmfreach technology were
decapsulated and subjected to construction analgsgs emission microscopy,
internal probing, and SEM analysis, to determing wis is. All three technologies
had voltage regulator and over-voltage protectiocudry, limiting the actual voltage
applied to the internal memory cells. This cirguis capable of maintaining constant
voltage to the memory core up to an externally i@dpbV Vyq. Thus, there was no

voltage acceleration to the memory core as a reduthe product level testing.
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Voltage stress acceleration must be applied toesgmtative memory cell test

structures; it cannot be applied at the productllev

3.5.2 Retention Time Degradation (Tret)

There were no functional bit failures observed ratemparing the data retention
characteristics to the JEDEC specification (maxin@dmSec). In general, the data
retention is much better at lower temperatures @e® to higher temperature
measurements. Data retention time measurements better than 6 seconds at -
55°C, 5 seconds at +25°C, 0.9 second at +75°C,180dhs at +125°C. Retention

time did degrade, however, over the 1,000 hour test

A scale factor was evident; the more integrateddéeice, generally the better the
retention time across temperature and the tighterstandard deviation. The scale
factor may be explained by a difference of the exidyers used in smaller
technologies (advanced high-K processes) and ingonewnts in cell design and

geometry, i.e., vertical/horizontal staked capasitmaterials, dimensions, etc.

Figures 26a-f show the data retention time cumgafailed bits for each technology
as a function of temperature. Parts were takerobtlie auto refresh mode (refresh
every 64mSec), and the cumulative failures for e@dhnology are plotted at the
initial time=0, and 1,000 hour points. The plot®w how much data retention

degrades as a function of temperature at fixechgelt
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Effect of Temperature on Retention Time - 90nm, 512  Mb (Initial)
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Figure 26a-b. Effect of Temperature on Data Retenor 90nm Technology
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Cummulative Failed Bits

Effect of Temperature on Retention Time - 110nm, 51  2Mb (Initial)
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Effect of Temperature on Retention Time - 110nm,51 2Mb (1,000hr Degradation)
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Figure 26c¢-d. Effect of Temperature on Data Rebentor 110nm Technology

109




Cummulative Failed Bits

Effect of Temperature on Retention Time - 130nm, 51  2Mb (Initial)
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Figure 26e-f. Effect of Temperature on Data Retenfor 130nm Technology
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Chapter 4: SDRAM Degradation and Predictive Model

4.1 Acceleration Model

Physical acceleration models based upon the pHysicachemical theory that
describes the failure causing process over theerahdgata may be employed for well
understood failure mechanisms. Usually, individiest structures are utilized in the
DOE to more accurately measure threshold voltage @rain current Igsa), and
transconductancegy) shifts, as well as dielectric breakdown over ageof stress
conditions. At the complex product level, suchlas 512Mb SDRAM, it is difficult
to identify the exact physical mechanism causingiuta@ physical characteristic
changes embedded deep within the internal circiribon product level data. Often
we are constrained by the product performance deatjom to develop empirical-

based acceleration models that fit the observeal dat

Data retention Tret) characteristics were determined to be the besisurable

indicator of the performance degradation of the DiAas the storage cell’s critical
function is to retain a charge representing ittesttEach DRAM was tested until each
memory cell lost its ability to store a ‘1’ in timemory bit locale. Since all bits were
run to failure, the data is said to be completénwi right-censoring. Due to the high
number of repetitive bits of information in eachmmy product, a significant sample

size was examined from a limited number of produbata retention tests at 100
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hour increments, up to 1,000 hours, revealed hawrétention time degrades over
time. The performance data was analyzed by fithrdegradation model to the data

showing the relationship between performance, stgess and technology.

4.1.1 Life Distribution

A likelihood test was conducted at each test irtetey determine the appropriate life
distribution for each data set. The Weibull dmition had the highest likelihood
value, followed by Lognormal and Exponential dimitions. The Weibull

probability density function is described as:

B[t p-1 _%ﬁ
f(t)—n(nj ali) | @)

where the parameter Eta)(or o is the scale parameter which influences the
distribution and is equal to the characteristie,lif.e., life at which 63.2% of the

population will have failed, and parameter Befa i6 the shape parameter [103].
Depending on the value of)( the Weibull function can take the form of the

following distributions:

B < 1: Gamma
B = 1: Exponential
B = 2: Lognormal

B =3.5: Normal
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The Lognormal probability density function is a twarameter distribution described

as:

1 -1 2
f(t) = Int—
X att@{&nz(n “ } 9

where g = E (It) and 7 = var (Int). The failure rate initially increases with time

and then decreases depending on the values of gamanp and; [103].

The Exponential probability density function is deised as:

fty=41g ", (4.3)

where the parameter Lambda is the rate of occurrence in time intervd (

4.1.2 Multivariable Life-Stress Relationship

In the case where there is more than one accelgratriable, both should be
considered in the life-stress relationship. Terapee and voltage are the two stress
factors in this experiment, therefore, the Arrhenand the Inverse Power Law
models may be combined to yield the Temperatureon-RKhermal (T-NT) Model

[104]:
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LU.V) = 5, (4.4)

where,
* L represents a quantifiable life measure, sucheanntife, characteristic life,
median life or B(x) life, etc.
* U is the non-thermal stress (voltage),
* Vs the temperature in absolute units,
* B is one of the model parameters to be determieedeatl from the

relationship:

B Ea _ activatiorenergy
K  862%°eVK™

« Cand n are the"2and 3 model parameters to be determined, (C > 0).

This relationship can be linearized by taking tidaf both sides:
B
In(LU,V))=In(C)- nIn(U)+v, (4.5)

The acceleration factor for the T-NT relationstggxplained by:

L. 1 j
n Bl -
Ao _ _Luse _ Uy _[Va) [Vu Va
oL B U
Accelerated C VA u
n
Ya , (4.6)
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where,
* Lyseis one life at use stress level,
* LacceleratedS the life at the accelerated stress level,
* V,is the use temperature,
* V is the accelerated temperature,
* Ua is the accelerated voltage,
* Uy is the use voltage,

* B is one of the model parameters to be determieedeatl from the

relationship:

_ Ea _ activationenergy

K 8.62%e °eVK ™

« Cand n are the"2and 3 model parameters to be determined, (C > 0).

Combining the joint distribution of stress and lifike Weibull life pdf becomes:

f(t, U, V) = : e

(4.7)

by settingn ora = L(U,V) from Equation (4.4).
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Expanding upon the statistical properties of thBITTWeibull Model, the Mean or

MTTF is:

= C 1
P i) o
U'ev

where r(%-ﬁ-lj is the Gamma function evaluated at the valu%trlj.

The standard deviatiowr, is given by:

C 2 1 Y
= TS+ |- T = +1]| _
7 - \/£ﬁ+] [[ﬂJFD (4.9)

The Reliability function of the T-NT Weibull Modé&d described as:

RT.UV)=@| ¢ , (4.10)

and the Conditional Reliability function as speifistress levet, is given by:
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RT +t,U,V))
RTUV) *

R(T,t,UV) = 2 (4.11)

The T-NT Weibull failure rate functioi(T), is described as:

aruw - fuv) pue” 1Tue @.12)
Y R(T,U,V) C C ’ '

and Reliable Life, &, of a unit for a specified reliability starting atje zero is given

by:

T, = c *{—In[R(TR,U,V)]}%_ (4.13)

B

urgv

The Maximum Likelihood Estimation for parameter efetination is given by

substituting the T-NT Model into the Weibull LogKalihood function, yielding:
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_ N 5 ]
n_ Vi
B IR R S
F BUMe Vi |Ule Vi ¢
InL) = A = N; In 1 1 T; e
(L) Z i C C i
1=1
B \P
S Ule Vi
_ zNi 1 Tlr
. C

where,

, (4.14)

F is the number of groups of exact times-to-failtiata points,

N; is the number of times-to-failure data pointshia {" time-to-failure data

group,
B is the Weibull shape parameter (unknown, thefifour parameters to be
estimated),

B is the first T-NT parameter (unknown, th8&f four parameters to be
estimated),

C is the second T-NT parameter (unknown, tAef¥our parameters to be
estimated),

n is the third T-NT parameter (unknown, tH&od four parameters to be
estimated),

V; is the temperature stress level of thgroup,

Ui is the voltage stress level of tiHegiroup,

Ti is the exact failure time of th8 group,
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* Sis the number of groups of suspension data points
« N'iis the number of suspensions in tAgioup of suspension data points, and

« T'iis the running time of thd'isuspension data group.

The parameter estimate solutions are found byrsplfar the parameters B, C, n and

B so that:

A _0 A _0 A _gand -0
B oC  on 08

Finally, the Maximum Likelihood Estimation for stard deviation parameter

determination is given by:

(L) = A = ¥ N, 1{L by (m(T,.) — In(C) + nln(U,) — VBH .

o T (o

1

L (D(ln(T,.) — In(C) + nn(U,) - gﬂ

or (4.15)

where,

* Fis the number of groups of exact times-to-failtiata points,

 Njis the number of times-to-failure data pointshie {" time-to-failure data

group,
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* o7 is the standard deviation of the natural logaritfrithe time-to-failure

(unknown, the ¥ of four parameters to be estimated),

« B is the first T-NT parameter (unknown, th8&f four parameters to be
estimated),

« Cis the second T-NT parameter (unknown, tAef¥our parameters to be
estimated),

* nis the third T-NT parameter (unknown, tHo4 four parameters to be
estimated),

Vi is the temperature stress level of theioup,

« U is the voltage stress level of tiegiroup,

« T is the exact failure time of th& group,

* Sis the number of groups of suspension data points

« N'iis the number of suspensions in tAgioup of suspension data points, and

« T'iis the running time of thd'isuspension data group.

and,

1w
#(x) = -er .
(4.16)
1 v
D(x)=—* [@ 2dt.
M=-7-"le
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A N

The parameter estimate solutions are found byrsglidr the parameters,., B, C,

n so that:

O\ g O O g gng
06+, B aC o

:O.
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4.2 Data Analysis

Data from the accelerated test of each of the tteebnologies were analyzed and
plotted using Reliasoft’'s Alta 6.5 and Weibull ++7.First, combining the joint
distribution of life with temperature and voltageesses, the Weibull life pdf (Eq.
4.7) was used to model the behavior and relativgrattation over 1,000 hours.
Comparative multi-plots showing both the initialdad,000 hour data retention
degradation properties using the T-NT Model ar@ldiged in the following Figures.
Figures 27a and 27b show comparative multi-ploth@k the failure distribution
changes over time. Figure 27a shows the 90nm \gfeStress relationship across
temperature at the worst-case voltage stress aomdit.05V (1.6 X4q¢) and the 95%
confidence level. Figure 27b shows the 90nm Life Stress relationship across
voltage at the worst-case temperature stress @ondiB98.15K, and at the 95%
confidence level. By analyzing both stress fagtorarying temperature while
keeping voltage fixed, and varying voltage whileefgmg temperature fixed, the
relative contribution of each stress on the ovefdil can be determined for each
technology bit-cell. Similarly, the modeling appolh was applied to the 110nm
technology data - refer to Figures 28a and 28b,ta@d 30nm technology data - refer
to Figures 29a and 29b. For the modeling, datan filmur 512Mb SDRAMs (2048 x
10° bits of information) from each technology (90nmi,0hm, and 130nm) were

analyzed.
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Figure 27a. 90nm T-NT/Weibull Initial and 1,000 firet Stress Plots at Fixed Voltage
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Life vs Stress
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Figure 28a. 110nm T-NT/Weibull Initial and 1,000 fret Stress Plots at Fixed Voltage
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Life vs Stress
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Figure 29a. 130nm T-NT/Weibull Initial and 1,000 fret Stress Plots at Fixed Voltage
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Life vs Stress
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Model parameters for the T-NT Weibull Model werdcatated for each technology
up to the end of the time terminated stress te8Q0Lhour point. Model parameters
and statistics for each technology and stress tiondare summarized in Tables 13a
and b. The retention time Mean (Eq. 4.8) and ®dviation (Eqg. 4.9) were
calculated for each technology at both stress geiaand at four temperatures. Other
temperature and voltage stress combinations may kascalculated for the desired

use condition.

A Use-Level Weibull Probability plot showing theartging Beta slope of the 90nm
technology parts at worst-case test conditions,I¥8and 4.05V, is shown in Figure
30. Likewise, equivalent plots may be createdaioy of the combinations of stress
temperatures and voltages. The plot shows a daecgeBeta slope over time. The
Beta slopes of the 110nm and 130nm technology peat®it similar characteristics.
Figure 30 shows a decreasif@ver time, 3.9654 initially vs. 2.7609 at the 0.
point.  All three regions of the bath-tub curvee aepresented by the Weibull
distribution as determined by the value of the shagrameterg. The Weibull
distribution is appropriate for complex componemsystems composed of a number
of constituent components whose failure is goverbgdhe most severe defect or
weakest link. For 0 ¥ < 1, the distribution indicates an early or infanbrtality
behavior with a decreasing failure rate. Bor 1, the distribution reduces to the
exponential distribution reflecting CFR region aetbath-tub curve. Fgt > 1, the
distribution reflects an increasing failure rated anodels the wearout region of the

bath-tub curve [105].
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Figure 31 shows the changing reliability vs. timé tbe data retention time
degradation after 1,000 hours at worst-case textitons, 398.15K and 4.05V. The
Reliability vs. Time plots using Eq. 4.10 for theOhm and 130nm technology parts

reveal a comparable shift over time.

The impact of stress on data retention failure cater time is shown in Figure 32 for
the 90nm technology parts. Eq. 4.12 was used fercddculation. The impact on FR
over time from the changing Beta is evident in fhigure. Comparable shifts were

revealed for the 110nm and 130nm technology parts.

Figure 33 shows the Standard Deviation Plot for@8am technology parts across
temperature at worst-case voltage conditions, 4,.G&Mnitial and 1,000 hr. points.
Using Eg. 4.9, one can see in Figure 33 the inergastandard deviation over time.

Comparable shifts were observed for the 110nm &drh technology parts.

130



Table 13a. Thermal — Non-Thermal Weibull Model Bimition Paramaters (4.05V)

Thermal - Non-Thermal/Weibull Model Distributions

90nm-Initial Parameters

110nm-Initial Parameters

130nm-Initial Parameters

Parameter Bounds

Parameter Bounds

Parameter Bounds

Lower = 3.9624 Beta =3.9654 Upper = 3.9685 Lower = 3.6984 Beta =3.7014 Upper = 3.7044 Lower = 3.6687 Beta =3.6716 Upper = 3.6746

Lower = 389.9964 B =390.4031 Upper = 390.8098 Lower = 375.2421 B =375.6892 Upper = 376.1363 Lower = B =367.7282  Upper

Lower = 3.9179 C =3.9247 Upper = 3.9315 Lower = 4.0449 C =4.0526 Upper = 4.0603 Lower = C=4.1288 Upper

Lower = 0.4597 n =0.4607 Upper = 0.4617 Lower = 0.4725 n=0.4736 Upper = 0.4747 Lower = 0.4784 n =0.4795 Upper = 0.4806

Eta =5.4930 Eta = 5.3639 Eta=5.3168

Ea = 0.0336 Ea =0.0324 Ea=0.0317

[Temperature (K) = 398.15 [Temperature (K) = 398.15 [Temperature (K) = 398.15

Voltage (V) = 4.05 Voltage (V) = 4.05 Voltage (V) = 4.05

Confidence Bounds =  2-Sided @ 95% CL Std Dev Confidence Bounds = 2-Sided @ 95% CL Std Dev Confidence Bounds = 2-Sided @ 95% CL Std Dev

Upper Limit = 4.979 Upper Limit = 4.8436 Upper Limit = 4.7989

Mean Life (Secs.) = 4.9764 1.42|Mean Life (Secs.) = 4.8408 1.46]Mean Life (Secs.) = 4.7961 1.49

Lower Limit = 4.9737 Lower Limit = 4.8379 Lower Limit = 4.7933

[Temperature (K) = 348.15 [Temperature (K) = 348.15 [Temperature (K) = 348.15

Voltage (V) = 4.05 Voltage (V) = 4.05 Voltage (V) = 4.05

Confidence Bounds =  2-Sided @ 95% CL Confidence Bounds = 2-Sided @ 95% CL Confidence Bounds = 2-Sided @ 95% CL

Upper Limit = 5.7315 Upper Limit = 5.5445 Upper Limit = 5.4791

Mean Life (Secs.) = 5.7289 1.63|Mean Life = 5.5419 1.65|Mean Life (Secs.) = 5.4764 1.67

Lower Limit = 5.7263 Lower Limit = 5.5392 Lower Limit = 5.4738

[Temperature (K) = 298.15 [Temperature (K) = 298.15 [Temperature (K) = 298.15

Voltage (V) = 4.05 Voltage (V) = 4.05 Voltage (V) = 4.05

Confidence Bounds =  2-Sided @ 95% CL Confidence Bounds = 2-Sided @ 95% CL Confidence Bounds = 2-Sided @ 95% CL

Upper Limit = 6.9169 Upper Limit = 6.6413 Upper Limit = 6.5404

Mean Life (Secs.) = 6.9142 1.95|Mean Life = 6.6386 2.01|Mean Life (Secs.) = 6.5377 1.98

Lower Limit = 6.9115 Lower Limit = 6.6359 Lower Limit = 6.535

[Temperature (K) = 218.15 [Temperature (K) = 218.15 [Temperature (K) = 218.15

Voltage (V) = 4.05 Voltage (V) = 4.05 Voltage (V) = 4.05

Confidence Bounds =  2-Sided @ 95% CL Confidence Bounds = 2-Sided @ 95% CL Confidence Bounds = 2-Sided @ 95% CL

Upper Limit = 11.1827 Upper Limit = 10.5315 Upper Limit = 10.2836

Mean Life (Secs.) = 11.176 3.24|Mean Life = 10.5246 3.27|Mean Life (Secs.) = 10.2767 3.15

Lower Limit = 11.1692 Lower Limit = 10.5177 Lower Limit = 10.2699

Fisher Var/Cov Matrix Fisher Var/Cov Matrix Fisher Var/Cov Matrix

VarBeta CovBetaB CovBetaC CovBetan VarBeta CovBetaB CovBetaC CovBetan VarBeta CovBetaB CovBetaC CovBetan
2.45E-06 -4.03E-05 5.40E-07 -5.22E-08 2.33E-06 -4.79E-05 6.82E-07 -4.76E-08| 2.31E-06 -5.28E-05 7.58E-07 -4.90E-08

CovBetaB VarB CovBC CovBn CovBetaB VarB CovBC CovBn CovBetaB VarB CovBC CovBn
-4.03E-05 4.30E-02 -5.21E-04 1.02E-05 -4.79E-05 5.20E-02 -6.58E-04 1.05E-05 -5.28E-05 5.30E-02 -6.85E-04 1.05E-05

CovBetaC CovBC VarC CovCn CovBetaC CovBC VarC CovCn CovBetaC CovBC VarC CovCn
5.40E-07 -5.21E-04 1.20E-05 1.09E-06 6.82E-07 -6.58E-04 1.54E-05 1.30E-06 7.58E-07 -6.85E-04 1.63E-05 1.35E-06

CovBetan CovBn CovCn Varn CovBetan CovBn CovCn Varn CovBetan CovBn CovCn Varn
-5.22E-08 1.02E-05 1.09E-06 2.70E-07 -4.76E-08 1.05E-05 1.30E-06 3.09E-07 -4.90E-08 1.05E-05 1.35E-06 3.14E-07

Thermal - Non-Thermal/Weibull Model Distributions

90nm-Final Parameters 110nm-Final Parameters 130nm-Final Parameters

Parameter Bounds Parameter Bounds Parameter Bounds

Lower = 2.7586 Beta =2.7609  Upper = 2.7632 Lower = 2.5976 Beta = 2.5998 Upper = 2.6019 Lower = 2.4134 Beta = 2.4152 Upper = 2.4171

Lower = 480.7776 B =481.3743 Upper = 481.9710 Lower = 463.0570 B =463.7186  Upper = 464.3802 Lower = 609.9189 B =610.6267 Upper = 611.3345

Lower = 2.7759 C=2.7830 Upper = 2.7901 Lower = 2.9045 C=2.9125 Upper = 2.9206 Lower = 1.7264 C=1.7314 Upper = 1.7364

Lower = 0.4844 n =0.4859 Upper = 0.4873 Lower = 0.5032 n =0.5048 Upper = 0.5063 Lower = 0.5917 n =0.5934 Upper = 0.5951

Eta =4.7255 Eta = 4.6027 Eta = 3.4993

Ea =0.0415 Ea = 0.0400 Ea = 0.0526

[Temperature (K) = 398.15 [Temperature (K) = 398.15 [Temperature (K) = 398.15

Voltage (V) = 4.05 Voltage (V) = 4.05 Voltage (V) = 4.05

Confidence Bounds =  2-Sided @ 95% CL Std Dev Confidence Bounds = 2-Sided @ 95% CL Std Dev Confidence Bounds = 2-Sided @ 95% CL Std Dev

Upper Limit = 4.2089 Upper Limit = 4.0915 Upper Limit = 3.1053

Mean Life (Secs.) = 4.2056 1.59|Mean Life (Secs.) = 4.0881 1.63|Mean Life (Secs.) = 3.1024 1.42

Lower Limit = 4.2024 Lower Limit = 4.0847 Lower Limit = 3.0996

[Temperature (K) = 348.15 [Temperature (K) = 348.15 [Temperature (K) = 348.15

Voltage (V) = 4.05 Voltage (V) = 4.05 Voltage (V) = 4.05

Confidence Bounds =  2-Sided @ 95% CL Confidence Bounds = 2-Sided @ 95% CL Confidence Bounds = 2-Sided @ 95% CL

Upper Limit = 5.0063 Upper Limit = 4.8342 Upper Limit = 3.8698

Mean Life (Secs.) = 5.0031 2.01|Mean Life (Secs.) = 4.8309 1.99]Mean Life (Secs.) = 3.8669 1.72

Lower Limit = 4.9999 Lower Limit = 4.8276 Lower Limit = 3.864

[Temperature (K) = 298.15 [Temperature (K) = 298.15 [Temperature (K) = 298.15

Voltage (V) = 4.05 Voltage (V) = 4.05 Voltage (V) = 4.05

Confidence Bounds =  2-Sided @ 95% CL Confidence Bounds = 2-Sided @ 95% CL Confidence Bounds = 2-Sided @ 95% CL

Upper Limit = 6.3122 Upper Limit = 6.0406 Upper Limit = 5.1925

Mean Life (Secs.) = 6.3087 2.49|Mean Life (Secs.) = 6.0371 2.52|Mean Life (Secs.) = 5.1892 2.35

Lower Limit = 6.3053 Lower Limit = 6.0336 Lower Limit = 5.1859

[Temperature (K) = 218.15 [Temperature (K) = 218.15 [Temperature (K) = 218.15

Voltage (V) = 4.05 Voltage (V) = 4.05 Voltage (V) = 4.05

Confidence Bounds =  2-Sided @ 95% CL Confidence Bounds = 2-Sided @ 95% CL Confidence Bounds = 2-Sided @ 95% CL

Upper Limit = 11.4145 Upper Limit = 10.6723 Upper Limit = 11.0083

Mean Life (Secs.) = 11.4046 4.39|Mean Life (Secs.) = 10.6622 4.42]Mean Life (Secs.) = 10.9972 4.82

Lower Limit = 11.3947 Lower Limit = 10.6521 Lower Limit = 10.986

Fisher Var/Cov Matrix Fisher Var/Cov Matrix Fisher Var/Cov Matrix

VarBeta CovBetaB CovBetaC CovBetan VarBeta CovBetaB CovBetaC CovBetan VarBeta CovBetaB CovBetaC CovBetan
1.35E-06 -7.06E-05 6.73E-07 -4.90E-08 1.23E-06 -6.76E-05 -5.92E-08] 8.90E-07 -5.14E-05 2.24E-07 -9.17E-08

CovBetaB VarB CovBC CovBn CovBetaB VarB CovBC CovBn CovBetaB VarB CovBC CovBn
-7.06E-05 9.27E-02 -8.10E-04 1.80E-05 -6.76E-05 1.14E-01 2.16E-05 -5.14E-05 1.30E-01 -6.75E-04 4.13E-05

CovBetaC CovBC VarC CovCn CovBetaC CovBC VarC CovCn CovBetaC CovBC VarC CovCn
6.73E-07 -8.10E-04 1.30E-05 1.61E-06 6.41E-07 -1.04E-03 1.89E-06 2.24E-07 -6.75E-04 6.52E-06 1.23E-06

CovBetan CovBn CovCn Varn CovBetan CovBn CovCn Varn CovBetan CovBn CovCn Varn
-4.90E-08 1.80E-05 1.61E-06 5.55E-07 -5.92E-08 2.16E-05 6.27E-07 -9.17E-08 4.13E-05 1.23E-06 7.39E-07
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Table 13b. Thermal — Non-Thermal WidiModel Distribution Paramaters (2.5V)

Thermal - Non-Thermal/Weibull Model Distributions

90nm-Initial Parameters

110nm-Initial Parameters

130nm-Initial Parameters

Parameter Bounds

Parameter Bounds

Parameter Bounds

Lower = 3.9624 Beta = 3.9654 Upper = 3.9685 Lower = 3.6984 Beta =3.7014 Upper = 3.7044 Lower = 3.6687 Beta=3.6716 Upper =3.6746

Lower = 389.9964 B =390.4031 Upper = 390.8098 Lower = 375.2421 B =375.6892  Upper = 376.1363 Lower = 367.2766 B =367.7282  Upper =368.1797

Lower = 3.9179 C=3.9247 Upper = 3.9315 Lower = 4.0449 Upper = 4.0603 Lower = 4.1209 Upper =

Lower = 0.4597 n=0.4607 Upper = 0.4617 Lower = 0.4725 Upper = 0.4747 Lower = 0.4784 Upper = 0.4806

Eta=6.86 Eta = 6.7407 Eta = 6.7006

Ea = 0.0336 Ea =0.0324 Ea=0.0317

[Temperature (K) = 398.15 [Temperature (K) = 398.15 [Temperature (K) = 398.15

Voltage (V) = 25 Voltage (V) = 25 Voltage (V) = 25

Confidence Bounds =  2-Sided @ 95% CL Std Dev Confidence Bounds = 2-Sided @ 95% CL Std Dev Confidence Bounds = 2-Sided @ 95% CL Std Dev

Upper Limit = 6.218 Upper Limit = 6.0866 Upper Limit = 6.0478

Mean Life (Secs.) = 6.2149 1.75|Mean Life (Secs.) = 6.0833 1.81|Mean Life (Secs.) = 6.0444 1.81

Lower Limit = 6.2118 Lower Limit = 6.08 Lower Limit = 6.0411

[Temperature (K) = 348.15 [Temperature (K) = 348.15 [Temperature (K) = 348.15

Voltage (V) = 25 Voltage (V) = 25 Voltage (V) = 25

Confidence Bounds =  2-Sided @ 95% CL Confidence Bounds = 2-Sided @ 95% CL Confidence Bounds = 2-Sided @ 95% CL

Upper Limit = 7.1576 Upper Limit = 6.9675 Upper Limit = 6.9049

Mean Life (Secs.) = 7.1547 2.06|Mean Life = 6.9644 2.23|Mean Life (Secs.) = 6.9018 2.18

Lower Limit = 7.1517 Lower Limit = 6.9612 Lower Limit = 6.8987

[Temperature (K) = 298.15 [Temperature (K) = 298.15 [Temperature (K) = 298.15

Voltage (V) = 25 Voltage (V) = 25 Voltage (V) = 25

Confidence Bounds =  2-Sided @ 95% CL Confidence Bounds = 2-Sided @ 95% CL Confidence Bounds = 2-Sided @ 95% CL

Upper Limit = 8.6382 Upper Limit = 8.346 Upper Limit = 8.2426

Mean Life (Secs.) = 8.635 2.41|Mean Life = 8.3426 2.5|Mean Life (Secs.) = 8.2393 2.48

Lower Limit = 8.6317 Lower Limit = 8.3393 Lower Limit = 8.236

[Temperature (K) = 218.15 [Temperature (K) = 218.15 [Temperature (K) = 218.15

Voltage (V) = 25 Voltage (V) = 25 Voltage (V) = 25

Confidence Bounds =  2-Sided @ 95% CL Confidence Bounds = 2-Sided @ 95% CL Confidence Bounds = 2-Sided @ 95% CL

Upper Limit = 13.9663 Upper Limit = 13.2351 Upper Limit = 12.9605

Mean Life (Secs.) = 13.9574 3.9|Mean Life = 13.2261 4.01|Mean Life (Secs.) = 12.9515 3.96

Lower Limit = 13.9485 Lower Limit = 13.217 Lower Limit = 12.9426

Fisher Var/Cov Matrix Fisher Var/Cov Matrix Fisher Var/Cov Matrix

VarBeta CovBetaB CovBetaC CovBetan VarBeta CovBetaB CovBetaC CovBetan VarBeta CovBetaB CovBetaC CovBetan
2.45E-06 -4.03E-05 5.40E-07 -5.22E-08 2.33E-06 -4.79E-05 6.82E-07 -4.76E-08 2.31E-06 -5.28E-05 -4.90E-08|

CovBetaB VarB CovBC CovBn CovBetaB VarB CovBC CovBn CovBetaB VarB CovBC CovBn
-4.03E-05 4.30E-02 -5.21E-04 1.02E-05 -4.79E-05 5.20E-02 -6.58E-04 1.05E-05 -5.28E-05 5.30E-02 1.05E-05

CovBetaC CovBC VarC CovCn CovBetaC CovBC VarC CovCn CovBetaC CovBC VarC CovCn
5.40E-07 -5.21E-04 1.20E-05 1.09E-06 6.82E-07 -6.58E-04 1.54E-05 1.30E-06 7.58E-07 -6.85E-04 1.35E-06

CovBetan CovBn CovCn Varn CovBetan CovBn CovCn Varn CovBetan CovBn CovCn Varn
-5.22E-08 1.02E-05 1.09E-06 2.70E-07 -4.76E-08 1.05E-05 1.30E-06 3.09E-07 -4.90E-08 1.05E-05 3.14E-07

Thermal - Non-Thermal/Weibull Model Distributions

90nm-Final Parameters 110nm-Final Parameters 130nm-Final Parameters

Parameter Bounds Parameter Bounds Parameter Bounds

Lower = 2.7586 Beta = 2.7609 Upper = 2.7632 Lower = 2.5976 Beta =2.5998 Upper = 2.6019 Lower = 2.4134 Beta=2.4152 Upper =2.4171

Lower = 480.7776 B =481.3743 Upper = 481.9710 Lower = 463.0570 B =463.7186 Upper = 464.3802 Lower = 609.9189 B =610.6267 Upper = 611.3345

Lower = 2.7759 C=2.7830 Upper = 2.7901 Lower = 2.9045 Upper = 2.9206 Lower = 1.7264 Upper =

Lower = 0.4844 n =0.4859 Upper = 0.4873 Lower = 0.5032 n=0.5048 Upper = 0.5063 Lower = 0.5917 Upper = 0.5951

Eta=5.9737 Eta=5.8778 Eta=5.8072

Ea = 0.0415 Ea = 0.0400 Ea = 0.0526

[Temperature (K) = 398.15 [Temperature (K) = 398.15 [Temperature (K) = 398.15

Voltage (V) = 25 Voltage (V) = 25 Voltage (V) = 25

Confidence Bounds =  2-Sided @ 95% CL Std Dev Confidence Bounds = 2-Sided @ 95% CL Std Dev Confidence Bounds = 2-Sided @ 95% CL Std Dev

Upper Limit = 5.3204 Upper Limit = 5.2248 Upper Limit = 4.1342

Mean Life (Secs.) = 5.3165 2.08|Mean Life (Secs.) = 5.2207 2.18|Mean Life (Secs.) = 4.1308 1.81

Lower Limit = 5.3126 Lower Limit = 5.2166 Lower Limit = 4.1274

[Temperature (K) = 348.15 [Temperature (K) = 348.15 [Temperature (K) = 348.15

Voltage (V) = 25 Voltage (V) = 25 Voltage (V) = 25

Confidence Bounds =  2-Sided @ 95% CL Confidence Bounds = 2-Sided @ 95% CL Confidence Bounds = 2-Sided @ 95% CL

Upper Limit = 6.3284 Upper Limit = 6.1752 Upper Limit = 5.1521

Mean Life (Secs.) = 6.3246 2.5|Mean Life (Secs.) = 6.1712 2.57|Mean Life (Secs.) = 5.1486 237

Lower Limit = 6.3208 Lower Limit = 6.1673 Lower Limit = 5.1452

[Temperature (K) = 298.15 [Temperature (K) = 298.15 [Temperature (K) = 298.15

Voltage (V) = 25 Voltage (V) = 25 Voltage (V) = 25

Confidence Bounds =  2-Sided @ 95% CL Confidence Bounds = 2-Sided @ 95% CL Confidence Bounds = 2-Sided @ 95% CL

Upper Limit = 7.9793 Upper Limit = 7.7201 Upper Limit = 6.9134

Mean Life (Secs.) = 7.9751 3.12|Mean Life (Secs.) = 7.7158 3.34|Mean Life (Secs.) = 6.9092 3

Lower Limit = 7.9709 Lower Limit = 7.7114 Lower Limit = 6.9051

[Temperature (K) = 218.15 [Temperature (K) = 218.15 [Temperature (K) = 218.15

Voltage (V) = 25 Voltage (V) = 25 Voltage (V) = 25

Confidence Bounds =  2-Sided @ 95% CL Confidence Bounds = 2-Sided @ 95% CL Confidence Bounds = 2-Sided @ 95% CL

Upper Limit = 14.4301 Upper Limit = 13.6621 Upper Limit = 14.6583

Mean Life (Secs.) = 14.417 5.61|Mean Life (Secs.) = 13.6485 5.67|Mean Life (Secs.) = 14.6424 6.5

Lower Limit = 14.404 Lower Limit = 13.635 Lower Limit = 14.6265

Fisher Var/Cov Matrix Fisher Var/Cov Matrix Fisher Var/Cov Matrix

VarBeta CovBetaB CovBetaC CovBetan VarBeta CovBetaB CovBetaC CovBetan VarBeta CovBetaB CovBetaC CovBetan
1.35E-06 -7.06E-05 6.73E-07 -4.90E-08 1.23E-06 -6.76E-05 6.41E-07 -5.92E-08 8.90E-07 -5.14E-05 -9.17E-08]

CovBetaB VarB CovBC CovBn CovBetaB VarB CovBC CovBn CovBetaB VarB CovBC CovBn
-7.06E-05 9.27E-02 -8.10E-04 1.80E-05 -6.76E-05 1.14E-01 -1.04E-03 2.16E-05 -5.14E-05 1.30E-01 4.13E-05|

CovBetaC CovBC VarC CovCn CovBetaC CovBC VarC CovCn CovBetaC CovBC VarC CovCn
6.73E-07 -8.10E-04 1.30E-05 1.61E-06 6.41E-07 -1.04E-03 1.69E-05 1.89E-06 2.24E-07 -6.75E-04 1.23E-06

CovBetan CovBn CovCn Varn CovBetan CovBn CovCn Varn CovBetan CovBn CovCn Varn
-4.90E-08 1.80E-05 1.61E-06 5.55E-07 -5.92E-08 2.16E-05 1.89E-06 6.27E-07 -9.17E-08 4.13E-05 7.39E-07
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Figure 30. 90nm T-NT/Weibull Initial and 1,000 hise Level Plots at Fixed 398.15K and 4.05V
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Reliability vs Time
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Figure 31. 90nm T-NT/Weibull Initial and 1,000 Reliability Plots at at Fixed 398.15K and 4.Q5V
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4.3 Degradation Model

Given that the data retention measurements weogded at 100 hour increments up
to 1,000 hours, degradation analysis is implememnbe@dredict how data retention
degrades over time under different stress conditi®etention time degradation was
analyzed by fitting the appropriate degradation ehdd the data using the Mean
Square Error (MSE) method. This model describesréiationship between data
retention properties over time for several stresglg¢ions and technologies. As with
conventional reliability data, the amount of unaerty in the results is directly
related to the number of units or bits of informattested and one must be cautious
of extrapolation error. The following models wenealyzed and ranked for the best
fit to the observed degradation: Linear, ExponénBawer, Logarithmic, Gompertz
and Lloyd-Lipow. The Exponential relationship vthe highest ranked model for the

observed data:

(=bx)

y=a*g -, (4.17)

where y represents the performance stress conditioepresents time-to-fail, and a
and b are the unknown model parameters to be eddmlfor different stress
conditions. Model parameters for t 0.1 (99.9% &wlity) are calculated in Table 14
using non-linear regression analysis for each ef ttiree technologies. The cold
temperature (218K) data retention properties owvee tlo not follow any degradation

model over the tested period. Therefore, the adklgian model can only be applied
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at >298K. Statistical nonlinear regression analysesults and 95% Confidence

Levels at each condition are summarized in Appefdix

Table 14. Exponential Model Parameters.

Data ID Parameter a Parameter b
90nm: 298.15K, 2.5V 8.5506 8.331E-05
90nm: 348.15K, 2.5V 7.1762 1.354E-04
90nm: 398.15K, 2.5V 6.1696 1.625E-04
90nm: 298.15K, 4.05V 6.8529 9.116E-05
90nm: 348.15K, 4.05V 5.4943 7.289E-05
90nm: 398.15K, 4.05V 4.8682 1.567E-04
110nm: 298.15K, 2.5V 8.3135 8.168E-05
110nm: 348.15K, 2.5V 6.8425 1.203E-04
110nm: 398.15K, 2.5V 6.0345 1.540E-04
110nm: 298.15K, 4.05V 6.6194 9.737E-05
110nm: 348.15K, 4.05V 5.5363 1.322E-04
110nm: 398.15K, 4.05V 4.8036 1.639E-04
130nm: 298.15K, 2.5V 8.3441 1.929E-04
130nm: 348.15K, 2.5V 6.7430 3.071E-04
130nm: 398.15K, 2.5V 5.4443 3.194E-04
130nm: 298.15K, 4.05V 6.5241 2.498E-04
130nm: 348.15K, 4.05V 5.4715 3.727E-04
130nm: 398.15K, 4.05V 4.7582 4.386E-04

The critical degradation value of data retentiometi for the devices is 64
milliseconds, the point at which bit-cells are am&dically refreshed in auto-refresh
mode. Once cell retention time degrades below ttiisshold, data is likely to be

lost, i.e., a logic-1 changes states to logic-@ata retention capability falls below the
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auto-refresh time of the devices. Figure 34 shthesTret degradation prediction of
the three technologies at accelerated conditidiiee 130nm technology is the worst
performer compared to both the 110nm and 90nm tdobg parts. As was initially

noted in Chapter Four, a scale factor is evidemt; more integrated the device,
generally the better the retention time across &atpre and the tighter the standard
deviation. The scale factor is most likely expédnby a difference of the oxide

layers used in smaller technologies (advanced Kigitocesses) and improvements
in cell design, processing and geometry, i.e.,ic@fhorizontal staked capacitors,

materials, dimensions, etc.

Based on the 64 milliseconds critical threshold amldstituting the parameter values
into the Exponential degradation model and soiMomgx, the t 0.1 time when data
retention drops to 99.9% reliability at differemtess levels are summarized in Table

15. Times were calculated at the 95% CL.

Table 15._Data Retention TTF (t 0.1 Point).

Data 1D t 0.1 Time-to-Fail (Hours)
90nm: 298.15K, 2.5V 67920.4
90nm: 348.15K, 2.5V 40067.5
90nm: 398.15K, 2.5V 32852.2
90nm: 298.15K, 4.05V 51730.2
90nm: 348.15K, 4.05V 42329.7
90nm: 398.15K, 4.05V 28027.1
110nm: 298.15K, 2.5V 68404.7
110nm: 348.15K, 2.5V 45485.3
110nm: 398.15K, 2.5V 34222.4
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Figure 34. Tret Degradation Prediction at Accelglgfonditions

140



4.4  Application Case Study

For an upcoming NASA mission, 512Mbit SDRAMs wik lnsed on two redundant
Data Telemetry and Command Interface Cards in aonas module. Since the
SDRAMs are volatile (loses data after the power lteesn turned off then back on),
volatile memory is not typically used to store nasscritical information. Volatile
memory has very fast access times and is “randoresat (any address can be
accessed when required) in both read and write modénese qualities are highly
desirable for collecting science data in any spacssion. Retention time
degradation is a concern for the mission. Retantime is also influenced by
radiation effects, which is beyond the scope of gtudy and is considered separately.
For the expected flight conditions, data retentelability characteristics are sought
after for each of the three technologies for thesin application. Parts will be
operated in a relatively benign environment at mahirequency (100MHz), =
75°C, and nominal operating Vdd (2.5V). Parts will auto-refreshed every 64
milliseconds in the application, which is the maauifirer’s standard refresh rate. In
the application, parts will be off (dormant) fob3/ears, followed by a 2 year (17,520

hrs) on-state mission life.

Using the approach in Section 4.3, the predictede-io-failure t 0.1 (99.9%

Reliability) degradation model is given in Figure f&r each of the three technologies

at benign conditions.
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Figure 35. Tret t 0.1 Degradation Prediction atiBerConditions

At the benign use conditions, the 110nm technoloayys are expected to survive the
longest, with retention time-to-failure t 0.1 (9% %9Reliability) occurring at 45,485
hours; while the 90nm technology parts are expeteslirvive until 40,067 hours of
operation at t 0.1. The 130nm technology partsaremmarginal for the case study

application with retention time-to-failure t 0.1aering at 17,977 hours.
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4.5 Extrapolation Error

Extrapolation error becomes a concern when degoadatodels extend significantly
beyond the tested time of the devices in the riitiplstudy. Although time-to-failure
predictions can be generated based upon the daa taom the reliability study, the

uncertainty of the prediction grows over time adigplayed in Figure 35.
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Chapter 5: Physics-of-Failure & Systems Approach

51 Overview

Retention time margin may also be measured usi@ratio of the time-to-first-
failure distribution {;) to the maximum specified refresh timdy) This ratio

provides insight into the tolerance of each tecbgplgeneration to degradation with
respect to voltage and temperature stresses. dfleealso provides a quality factor

demonstrating the amount of margin between actodi breakdown and the
manufacturer’s specified refresh time. Table 16nshthe {1)/(fm) Q-ratios for each

technology and stress condition. A high Q-rationber represents a high operating

margin; a low number represents low margin.

Data retention characteristics are most robustvattémperature, 218K, and nominal
operating voltage, 2.5V. The Q-ratio also reveh# 90nm devices are more robust
across the full stress profile range than the 11@maeh 130nm devices. While all

three technologies reveal diminishing margin witbreasing temperature and voltage
stresses, Table 16 shows that the temperature scwmnmpof the stress profile has a

greater effect on data retention margin.
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Table 16._Q-Ratiot()/(ty) at Initial Test Point

90nm 110nm | 130nm

Test (t)/(tm) | (t)/(tw) | (t0)/(tm)
Conditions| Q-Ratio [ Q-Ratio | Q-Ratio

2190 | 1406 | 1406 | 1406

20 | 1250 | 1250 1250
ey | 1| e25 | 625
32?25’ 46.9 | 313 | 313
241_35' 109.4 | 109.4 | 109.4
o | 938 | 938 | o938
efg\}j, 46.9 | 313 | 313
Sov | 16 | a7 | sa

After passing of a memory cell's retention timegclzarged cell has lost a certain
threshold charge such that the remaining chardetiscted as a logic zero. This fixed
threshold charge equals the average leakage cutimes the retention time.

Therefore, the retention time is inversely proporél to the average leakage current,

and the distribution of cell leakage currents maydetermined by measuring the
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distribution of retention times. Three leakage pathould be considered: first, sub-
threshold leakage through the access transistecsing, leakage from the storage
node of the transistor to the substrate; and theakage through the dielectric of the
storage capacitor. Newer DRAM designs generalds lihe cell plate avyd/2 in
order to reduce the electric field in the thin deattic of the storage capacitor. The
leakage of the dielectric of the storage capacigdrsuld be increased by charge
injection under stress before breakdown of theedtelc. Low temperature testing,
218K, was included in the stress profile in anratieto identify this effect. Thermal
carrier generation is based on tunneling throughdielectric, from leakage to the

substrate and through the access transistor.

5.2 Failure Mechanisms

The data retention time breakdown failure distridmg are similar to the time-to-
failure distributions of the breakdown of thin dietrics. Therefore, dielectric leakage
may be a precursor to breakdown, and increasedudhrelectrical and thermal
stresses before breakdown or other loss of funalitynoccurs. This effect would
show up as a shift in the retention time distribatimeasured after stressing the

devices. This will be shown graphically later.

The three paths for storage capacitor charge tio ¢esd are through the capacitor
dielectric, through the substrate, and throughtthasistor channel. The two latter

effects on the time to first-bit failure can be mdgd by either increasing or
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decreasing the substrate bias as was shown by 8hal[106]. For an n-channel
transistor, negative substrate biasing decreases s$hb-threshold current
exponentially. However, at a very large negativashisubstantial current may be
generated in the depletion region of the storagkeisgp-n junction. This current may
be generated by thermal activation of electronsuph near mid-gap centers and is
proportional to the depletion width. At temperatuhggh enough to overcome the full
bandgap of silicon, diffusion of minority carriemsay also be a factor. Earlier work
shows that a small negative substrate bias mayehergted on-chip, which in effect

suppresses both the sub-threshold and the substraigat [106].

53 Discussion

Model distributions were fitted to the failure dibtitions for each of the technologies
studied. The data supports and fits the Thermal on-lNhermal (T-NT) Model
comprised of the Arrhenius relationship for therthal stress, and the Inverse Power
Law for the voltage stress. Using this model de\Weibull distribution for plotting,

it is shown that thg slope decreases over time for each stress condifidhere are
two distinct breakdown failure modes as are showthe Weibull distributions in
Figures 36 and 37. The first observed breakdowuarés in each distribution appear
to be caused by random defects, considered to tmsa& in nature, and generally
process induced. These failures may be causecdehit areas or defects in the oxide

film, contaminants, fine cracks, or pin holes. [Sulefects can cause increases in
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leakage within the memory cell and early breakdowhe randomness of the defect

related first failures lends itself well for furthstatistical analysis.

Figure 36 shows that for the 130nm products initiedings at elevated stress
conditions, approximately 0.34% of the early retamtime failures are attributable to
randomly distributed weak bits. Similarly, afte0Q0 hour stress, Figure 37 shows
that at elevated stress conditions a higher peagentapproximately 0.58% of the
early retention time failures, is attributable emdomly distributed weak bits. At the
other end of the spectrum, colder temperature andmal operating voltage, the data

retention characteristics are much better.

Figure 38 shows that for the 110nm products inithdings at elevated stress
conditions, approximately 0.052% of the early rétentime failures are attributable
to randomly distributed weak bits. Similarly, afte000 hour stress, Figure 39 shows
that at elevated stress conditions a higher pesigentapproximately 0.5% of the early
retention time failures, is attributable to randgmdistributed weak bits. Likewise
with the 130nm products, at colder temperature ramahinal operating voltage, the

data retention characteristics are much better.

Figures 40 and 41 show that for the 90nm produntsal and 1,000 readings at
elevated stress conditions correlate much betmodistrating that approximately
0.32% of the early retention time failures areiladtiable to randomly distributed

weak bits.
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The second distinct failure breakdown mode congistthe main population of the
distribution. The soft breakdown related failureahanism may be related to the
robustness of the oxide processing. Although detiantion soft errors are plotted, a

hard degradation is observed over time. Similstridutions with two distinct
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populations, randomly distributed weak bits witl= 1, and a main population with
increasing failure rate with > 1 were also observed with the 110nm and 90nm and

product technologies. Refer to Figures 38 — 41.
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5.3.1 Randomness

The early failures were confirmed to be random bynparing the address locations
to the physical memory block locations; clusterargsystemic patterns of the failure
locales were not observed. The first early failuses identified by yellow blocks in

90nm SN 2 memory layout map in Figure 42.

64 blocks

66 blocks

Figure 42. Optical Overview of Memory Block Layout
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54 Retention Time Early Breakdown

The Weibull distribution takes the form of the Exgeatial distribution af = 1. This

greatly simplifies the predictive model, and enaldemore straightforward approach
in predicting the behavior and TTF of the next texdbgy generation. Table 17
shows the retention time soft error rates, caledaat 95% CL, of the randomly

distributed weak bits at the 512Mb product (systeawgl at each stress condition.

Table 17. 512Mb Product Level Retention Time $wfor Rate Calculations

90nm SSSIT 110nm 1E1qOurI|\:n 130nm 1E3;10ur|'\:n
Stress (;/Fliﬁr)s FIT/512 02 /F1F:<%r)s FIT/512 02 /F1F:<%r)s FIT/512
Conditions Mb Mb Mb
22135 0.0287 | 287 | 003025 3025 002895 2895
2% | oosoes | e06.5| 006219 6214 0.06845 6845
S | oos13s| 8135| 008249 8244 009635 9675
32?25' 01013 | 1013 | o0.1018§ 10185 0.124p 1240
210 | 0.03865| 386.5| 00420 420| 0042p 42
% | 008175| 817.5| 00863 83| o101y  101f
St | 0100 | 1006 | 011445 11445 0.1425 143
:«fgs, 0.13645 | 1364.5| 0.1414| 1414 0183 187
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It is important to note that these calculationdetfthe soft error rate of the early
retention time breakdown at the 1,000 hour teshtp@nd do not reflect the hard
failure breakdown of the memory product. Up to 1h@00 hour test point, even the
first retention time breakdowns for all three prodwechnologies are above the
specified 64mSec refresh rate, the time one woeld data loss in an actual
application. Refer to Figures 36-41. The resulisTable 17 reveal that a

combination of high voltage and high temperaturesst yields the largest SER and is
the best way to identify weak bits in DRAM devicds.is shown that for each of the
three memory technologies studied, there is a trehdincreasing reliability

(decreasing FR) for the same density of memory uedeivalent stress conditions as

the size of the memory cell and feature size dse®a

We can approximate a complex integrated circuitabgompeting failure or series
failure system. It is shown that the early failyrdge most important failures, are
random and that they are well approximated by groeential distribution with a
constant failure rate at different stress level®r a constant failure rate system, the

FIT is interchangeable with MTTF according to itfidition such that:

10°

FIT, =———
* MTTFR, (5-1)

Furthermore, the FIT or CFR may be broken down atemperature stress element
and a voltage stress element. Figures 43a-c shewelative impact of the voltage

and temperature stresses on product (system) éamy retention time soft error
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rates, calculated at 95% CL, of the randomly distied weak bits. There is a clear

trend of decreasing FR with each product technotpgeration for the same density

memory under equivalent stress conditions.
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Figure 43a. 130nm System Retention Time Soft HRates (95% CL, 1,000hrs)
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The product or system level FR results yield thpant of temperature and voltage on
the acceleration factor for each of the produchnetogies. A test matrix with the
corresponding influences of both temperature arithge follows for each product
technology. The test matrices show the actual Acagbn Factor or Derating Factor

for each stress condition to yield the early faakior defects.

Table 18a. 130nm Retention Time Soft Error Ratst Matrix for Early Failures.

130nm 218K 298K 348K 398K
CFR @)
%/1Khrs
2.5V 0.02895 | 0.06865( 0.09625 | 0.1240
4.0V 0.0429 0.1017 0.1426 0.1837
130nm 218K 298K 348K 398K
AFsys
2.5V 0.42 1 1.40 1.81
4.0V 0.62 1.48 2.1 2.68
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Table 18b. 110nm Retention Time Soft Error Ratst Matrix for Early Failures.

110nm 218K 298K 348K 398K
CFR @)
%/1Khrs
2.5V 0.03025 | 0.06215( 0.08245 | 0.10185
4.0V 0.0420 0.0863 | 0.11445 | 0.1414
110nm 218K 298K 348K 398K
AFsys
2.5V 0.49 1 1.33 1.64
4.0V 0.67 1.39 1.84 2.28
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Table 18c. 90nm Retention Time Soft Error Rate Metrix for Early Failures.

90nm 218K 298K 348K 398K
CFR @)
%/1Khrs
2.5V 0.0287 | 0.06065( 0.08135| 0.1013
4.0V 0.03865 | 0.08175( 0.1096 | 0.13645
90nm 218K 298K 348K 398K
AFsys
2.5V 0.47 1 1.34 1.67
4.0V 0.64 1.34 1.81 2.25
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5.5 Power Relationship as a Function of Scaling

As was described earlier in Section 1.1.2, a semdigotor device’s lifetime is affected by
changing its operating parameters, specificallycijiom temperature, because of heat
activated mechanisms as well as supply voltage. deéhace’s operating voltageVdy)
directly affects many of its parameters, includaugrent densityj{ and the electric field
(E.) across the gate dielectric. Supply voltage alss & significant effect on junction
temperature ) which is dependent on the power dissipated frbendevice ), the
ambient operating temperaturg)( and the sum of the thermal impedances betwesn th
die and ambient environmerty). The power dissipated of the device is the surnath

dynamic and static power dissipation, such that:

Pp = CI*vdd? *f +i,vdd (5.2)

whereCl is the total capacitance loadyq is the supply voltagd, is the frequency,

andi, is the load current in the static mode. The dasig power of the device is then

used to calculate the junction temperature sudh tha

Tj=0ja*PDp + Ta (5.3)

where 0 is the junction-to-ambient thermal resistance andis the ambient

temperature.
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An analysis and comparison of tRg and T, for the products in this data retention

study follows:

90nm producP; andT; calculations

P, = (CI*Vdd? *f) + Max(loh DCmax*(Vdd-Voh), lol DCmax*Vol))
Po 25v)= (5x10™% * 6.25 * 133 x16)+(16.8mA(2.5V-1.927V))=13.78mW
Ticssc) = 48.4°C/W * 13.78mW + -55°C = -54.3°C
Ti2sc) = 48.4°C/W * 13.78mW + 25°C = +25.67°C
Ti7sc) = 48.4°C/W * 13.78mW + 75°C = +75.67°C
Ti125c) = 48.4°C/W *13.78mW + 125°C = +125.67°C
Po .ov)= (5x10%2 * 16 * 133 x16 )+(16.8mA(4.0V-1.927V))=45.47TmW
Ticssc) = 48.4°C/W * 45.47mW + -55°C = -52.8°C
Tizsc) = 48.4°C/W * 45.47mW + 25°C = +27.2°C
Tiw7sc) = 48.4°C/W * 45.47mW + 75°C = +77.2°C

Ti12s0) = 48.4°C/W * 45.47mW + 125°C = +127.2°C

110nm producPp andTj calculations

P, = (CI*Vdd? *f) + Max(loh DCmax*(Vdd-Voh), lol DCmax*Vol))
Po 25v)=( 5x10%? * 6.25 * 200 x16 )+(15.2mA(2.5V-1.95V))=14.61mW
Ticssc) = 48.4°C/W * 14.61mW + -55°C = -54.3°C
Tizsc) = 48.4°C/W * 14.61mW + 25°C = +25.7°C
Ti7sc) = 48.4°C/W * 14.61mW + 75°C = +75.7°C

Ti+125¢) = 48.4°C/W * 14.61mW + 125°C = +125.7°C
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Po 4.ovy= ( 5x10%%* 16 * 200 x10 )+(15.2mA(4.0V-1.95V))=41.16mW
Ticssc) = 48.4°C/W * 41.16mW + -55°C = -53.0°C
Tisasc) = 48.4°C/W * 41.16mW + 25°C = +27.0°C
Tis750) = 48.4°C/W * 41.16mW + 75°C = +77.0°C

Ti12s0) = 48.4°C/W * 41.16mW + 125°C = +127.0°C

130nm producPp andTj calculations

Po 25v)=( 5x10%? * 6.25 * 166 x16)+(15.2mA(2.5V-1.95V))=13.55mW
Ticssc) = 48.4°C/W * 13.55mW + -55°C = -54.3°C
Tisasc) = 48.4°C/W * 13.55mW + 25°C = +25.6°C
Ti7sc) = 48.4°C/W * 13.55mW + 75°C = +75.6°C
Ti125c) = 48.4°C/W * 13.55mW + 125°C = +125.6°C
Po .ovy= ( 5x10%%* 16 * 166 x10 )+(15.2mA(4.0V-1.95V))=44.44mW
Ticssc) = 48.4°C/W * 44.44mW + -55°C = -52.8°C
Tisasc) = 48.4°C/W * 44.44mW + 25°C = +27.2°C
Tis7sc) = 48.4°C/W * 44.44mW + 75°C = +75.2°C

Tiw12sc) = 48.4°C/W * 44.44mW + 125°C = +125.2°C

It is important to note that with these produchtemogies, the power dissipation is rather
low as SDRAM is not considered to be a power devi@ecause of this, the junction

temperature remains close to the ambient temperand in this study, comparable stress
conditions closely correlate to comparable junctiemperatures across the product

technologies. This is not the case with leadingeepgower processors where the power
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density is increasing exponentially and junctiomperature is increasing ~1.45x with

each new product generation.

5.6 Physical Failure Model

The soft errors and acceleration factors from eafcthe different temperature and
voltage conditions were analyzed against existongpeting and multiple mechanism
physical failure models, e.g. Arrhenius, InversevBig Exponential. The models were
described earlier in Equations 2.4-2.7 and are sanmmaed again here. First, two
multiple failure mechanism models were applied: ItMiication of AF's
(temperature and voltage) using both Exponentidl BRawer Law Models: AfF=
AFt * AFv(e) (Eg. 5.4) and A= AFt * AFv(p) (Eg. 5.5) ; secondly, two competing
failure mechanism models were applied: A weighteoh snodel of the AF’'s where
AF3; = (AFt + AFv(e))/2 (Eq. 5.6) and A= (AFt + AFv(p))/2 (Eq. 5.7). The data
was analyzed and the model parameters were cadulat each of the models. The

model equations are expanded as follows:

_AMVD) AR AF —exd Baf 1oL -
AR = ﬂ,(Tl,Vl) B AFT AFV eXF{ K [Tl TZ]}eXdyl(Vz Vl)) (54)

AFz:M:AFT - AF, :exg{i[i—in(vz IV,)*) (5.5)
A(T,,V,) kT, T,
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E

(1 1 _
= (AR, +AF\,)/2:(ex;{k[Tl T n+eXp(n(Vz V) /2

e ATV,)
ATV

_AT,,V,)

AF4=
A(T,Vy)

— (AF, +AFV)/2:(exr{ia [Tl—lej+(\/z V) D12

1 2
The calculated,, y, andk parameters are as follows:

E, for 130nm = 0.06
E, for 110nm = 0.05

E, for 90nm = 0.052

(5.6)

(5.7)

Applying the Power Law model for AFv, the derivietbr each technology node is:

k for 130nm: 0.84

k for 110nm: 0.693

k for 90nm: 0.637

Applying the Exponential model for AFv, the derivetbr each technology node is:

y for 130nm: 0.263
y for 110nm: 0.216

vy for 130nm: 0.1997
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The multiple failure mechanism acceleration modsfer to Equation 5.5 (product of
AF's using the Power Law for AFv) best fits the DRRAetention time data and
suggests a single temperature and voltage activiateakdown mechanism. The
relative contribution of T and V on the system le##R is shown pictorially in
Figures 43a-c. The thermal element is the maintrdmor to Tret breakdown
degradation, the voltage element contributes tdhieemally activated mechanism by

slightly increasing the junction temperature.

As was discussed earlier, for current generatioiMRthe capacitance is typically
30-40F/cell and although the external power supply is 2.5V for each part,

internal on-chip voltage regulator circuitry subdes this voltage as follows:

130nm Technology Parts

- Peripheral Circuitry Voltage: 2.2V
- Memory Core Voltage: 1.8V

110nm Technology Parts

- Peripheral Circuitry Voltage: 1.8V
- Memory Core Voltage: 1.4V

90nm Technology Parts

- Peripheral Circuitry Voltage: 1.4V

- Memory Core Voltage: 1.0V
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The memory cell capacitor dielectric material isda The gate oxide thickness for
the larger peripheral circuitry transistors is aximately 7nm, and the gate oxide

thickness for the nMOS memory cell transistorgisraximately 4.2 nm.

Due to the over-voltage protection circuitry in lead the products, highéVqq stress
is not applied directly to the memory cores and tvoltage is maintained at the
specified amount. Therefore, the impact of highgg stress corresponds to an

increase in power dissipation for each of the patsiuthese are summarized Section
5.5. There is no feasible method of bypassingawer-voltage protection at the
product level for product level testing; howevdr,isi important to see the overall
impact has on the overall product level power gesson and contribution to the

product, or system level FR.

The activation energies are very small for theyegetention time breakdown errors,
up to the 1,000 hour test measurement. As for ghtre population of Tret

breakdown, the activation energies are in the saange. Refer to Tables 13a and
13b. The slow degradation of Tret over time arellttw activation energies suggest

that hot carrier injection may be the intrinsic wed mechanism at work.

The switching characteristics of a MOSFET can degrand exhibit instabilities due
to the charge that is injected into the gate oxidee typical effect of hot carrier, or
hot electron degradation, is an increase in thestatie current of a p-channel

MOSFET, and a reduction in the on-state currenarofn-channel MOSFET, e.g.,
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those that comprise each memory cell. The ratebtarrier degradation is directly
related to the length of the channel, the oxidekiiness, and the voltage of the device.
A measure of transistor degradation or lifetimecasnmonly defined in terms of
percentage shift of threshold voltage, change amsronductance, or variation in
drive or saturation current [71]. These paramsiéts, however, were not confirmed

in this experiment.

Gradual time-dependent dielectric breakdown oDRAM stacked storage capacitor
cell is another possible intrinsic wearout mechaniexplanation. The stacked
capacitor cell (STC) relies heavily on the quaktyd the storage capacity of the
dielectric film between two heavily doped polysilic electrodes. Silicon nitride

(SkNy) films have a high dielectric constant and arevikmdo contain many trap

levels which may cause leakage current shifts.in&rease in memory capacitor cell
leakage current over time as a result of trappedgeh or lacking or inconsistent
guality of the capacitor dielectric film, could dam the degradation in critical charge

threshold levels.

5.7 DRAM Scaling and Defect Density

For DRAM, the product technology represents thé path of metal 1 (M1). See
Figure 44 [107]. As the half pitch of M1 decreassth each technology generation,

so does the physical transistor gate lengif). ( The gate length is driven by the
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necessity to improve transistor speed and is géynerad.5x the DRAM half pitch.
With a 0.7x reduction each technology generatio@,5x linear scaling reduction is

realized every two generations.

DRAM ¥4 Pitch
= DRAM Metal Pitch/2
MPU/ASIC M1 % Pitch
= MPU/ASIC M1 Pitch/2
Metal
Pitch

Typical DRAM/MPU/ASIC
Metal Bit Line

Figure 44. DRAM Metal Bit Line

The DRAM product technology scaling trend of M1 dhe transistor gate length has
historically been 0.7x/3 year cycle. However, sir007, DRAM function size,

function density, and chip size scaling rate han@dased to a 2.5-year cycle with
both geometric and equivalent scaling design erdrarats. Table 19 shows chip and

cell characteristics for 130nm to 65nm DRAMs [107].
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Table 19. DRAM Chip and Cell Characteristics

DRAM Half Pitch Product 110nm

_ 130nm 90nm 65nm
Generation (1/2 node)
Physical Gate Length 65nm 50nm 37nm 25nm
Cell Area Factord) 8 8 6 6
Cell Area (CA =af’) pnf 0.130 0.90 .049 0.024
Cell Array Area (% of chig
_ 71.3% 72% 72.6% 73.5%
size)
Chip Size (mr) 390/2Ghits| 312/2Gbits| 287/4Gbits| 568/16Gbits
Gbits/cnf 0.55 0.90 1.49 3.03

If defects are randomly distributed over surfaceagh, and a Poisson distribution is

assumed given the random distribution of the fegt time-to-fails, the defect density

D (number of weak defective bits/éntan be calculated for each product generation,

and extrapolated to the next generation, in thée &bnm.

The probability of n defects (D) in cell array af@d is described as:

»_ DA

n

n
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(5.8)



and the probability of a cell array area withouedés (n=0) is:

P = exp[-DA] (5.9)

The vyield defect density is measured before steeapplied; defect density at t = 0.
The reliability defect density is the latent defdehsity and is measured at some time
t > 0. These defects may pass the manufacturgesnal screening and then fail in
the field at a later time, t > 0, at some giveesdrlevel. Approximately 99.5% of the
retention time failures of each product technologgde up the main population with
Weibull g slope ranging from 2.4 to 3.9, while the first sppmately 0.5% retention
failures were attributed to random defects. Figdke shows the percentage of
manufacturing defects causing the early retentime tbit failures for each stressed

memory product at the 95% CL.
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Random Defective Bits per Product Generation (512Mb Product)
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Figure 45. Random Defective Bits per Product Geimra

Observed 512Mb, 130nm product technology: 0.58%daandefective bits
Observed 512Mb, 110nm product technology: 0.50%daandefective bits
Observed 512Mb, 90nm product technology: 0.328daan defective bits

Predicted 512Mb, 65nm product technology: 0.0&%om defective bits

Each smaller technology generation exhibited fenmadom defects than the previous
generation. Trend analysis predicts the next tdolgyogeneration, 65nm, to exhibit
0.08% random defective bits assuming the trendimoes. Given the option between

a 512Mb 130nm product and a 512Mb 65nm product uretpiivalent stress
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conditions, the data suggests the 512Mb 65nm ptoalilichave fewer defects. This
trend is likely to continue due to tighter processntrols needed for smaller
geometries, and the desire to maintain constardyatolevel failure rates for ever

increasing Gb size memory products.

In actuality, with each new product generation ark bit factor for each progressive
full node, the standard DRAM product size at tharsode is no longer 512 Mbits,
but 8 Gbits. Given this trend, the random numbetedective bits per cfrmust also

be considered.
By incorporating the defect rates for each repredg&ve technology and the cell
characteristics in Table 19, the defect density pef of DRAM memory is
calculated as follows:

130nm product generation: DD = 3.19%b@s/cnf (0.55 Gb)

110nm product generation: DD = 4.5%His/cnf (0.90 Gb)

90nm product generation: DD = 4.768%Hits/cnf (1.49 Gb)

Using the predicted random defective bits with tledl characteristics of the 65nm

DRAM, the defect density per Gbit of DRAM for thext product generation is:

Predicted 65nm product generation: DD = 2.424° xdi/cnf (3.03 Gb)
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Note that while there is only a marginal increasdéfect density per ciper DRAM

generation (130nm to 90nm), the number of Gbitsnemory per criper DRAM

generation is increasing significantly. The 65nRAM standard product contains 8
Gbits of memory. Therefore, normalizing the def@ensity to the standard products,
the 512Mb 130nm standard product had 2.9696%w&ak bits and an 8 Gbit 65nm
product is expected to have 6.5536 X W@ak bits. A 16x increase in memory size
from a 130nm 512Mb standard product to an 8 Ghiné%roduct, corresponds to a
disproportional 2.2x increase in defective weak,kdt much better product in terms of

proportion of weak bits.

5.8 Soft Error Failure Rate

The defect density and the soft error failure rafethe random bits must be
considered in tandem to effectively assess theitguaid the reliability of the scaled
products. Data was normalized to FIT/Gb of memamg analyses of the soft error
failure rate of the random bits are presented guié 46 and Table 20. The graph
shows how the soft error failure rate of retentiome behaves for scaled DRAM at
multiple stress conditions. Curves were fit to tth@ta which reveal a power
relationship as a function of scaling for the higb&esses, 848K and 2.5V, or >
298K and 4.0V; a linear relationship exists for éwstress levels across product
generations, e.g., 298K and 2.5V, or <18K and 4.0V. The lowest failure rates

across product generations is observed at stamajahtingVyq = 2.5V and 218K.
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The linear and power functions showing the ratehainge at each stress condition for

each of the three scaled DRAMs and a predicti@xtsapolated to the 65nm node.

FIT

Normalized Soft Error Failure Rate (FIT/GBIt)
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Figure 46. Normalized Soft Error Failure Rate feated DRAM (FIT/Gb)

Given the normalized curves, one can derive theeea soft error failure rate per

Gb of memory from Figure 46 and Table 20.
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Table 20. Normalized Soft Error Failure Rate foalsd DRAM (FIT/Gb)

110nm
Stress 1/2 1/2 | Predicted
Condition| 130nm| Node | 90nm Node| 65nm | Relation Function =

218K,
2.5V 579 605 574 581 579 Linegry = -2.5x + 591 0.9456

298K,

2.5V 1373 | 1243| 1213 111 1036 Lineary = -80x + 1436.3 | 0.8848

)

348K,
2.5V 1925 | 1649 1627 152p 1470 Pwi y = 1902.6x°** | 0.9117
398K,
2.5V 2480 | 2037| 2026 186D 1774 Pwi y = 2439.1x°"* | 0.8824
218K,

4.0V 858 840 773| 739 696 Linegry = -42.5x + 908.6 | 0.9003

298K,

4.0V 2034 | 1726| 163% 1525 1458 Pwf y = 2021.1x%%* | 0.9824
348K,
4.0V 2852 | 2289| 2192 1998 1892 Pwif y = 2815.3x***"° | 0.9526
398K,
4.0V 3674 2828 2729 244p 2297 Pwi y = 3609.1x°?** | 0.9321

A generalized model of the scaling effect relatiopson the SER of scaled DRAM

product may be expressed as a power function:

y=121.79 d (X°°% (5.10)

where d is the density factor (product density in) @ndx is the technology node.

Reference Figure 47.
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Figure 47. Generalized Soft Error Failure Rate MdoleScaled DRAM (FIT/Gh)

Data was also normalized to FIT/cand analyses of the soft error failure rate of the
random bits are presented in Figure 48 and TahleT2ie graph shows how the soft
error failure rate of retention time behaves foalsd DRAM at multiple stress
conditions per area of memory in €tmCurves were fit to the data with a power

function.
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Figure 48, Normalized Soft Error Failure Rate foa®d DRAM (FIT/cr).

Table 21. Normalized Soft Error Failure Rate foal®d DRAM (FIT/cm).

Stress Predicted
Condition | 130nm| 90nm| 65nm | Relation Function R

218K, 2.5V 318 855 1753 Pwr | y=311.77x">% 0.9965

298K, 2.5V
755 1807 3140 Pwr [y=750.37x"%" 0.9996

K, 2.5V
398K, 2.5 1364 3019 5375 Pwr |y =1341x"2%" 0.9966
218K, 4.0V 472 1152 2109 Pwr [y =465.98x"%* 0.9984
298K, 4.0V 1119 2436 4418 Pwr | y = 1095.2x*%%¢® 0.9946

348K, 4.0V
1569 3266 5733 Pwr |y =1537.1x""%® 0.9945
398K, 4.0V 2021 4066 6960 Pwr | y=1981.7x*"** 0.9944
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A generalized model of the scaling effect relatiopson the SER of scaled DRAM in

FIT/cnf may be expressed as a power function:

y = 1IE+07x-8714 (5.11)

wherex is the technology node. Reference Figure 49.

Generalized Soft Error Failure Rate (FIT/cm”2)
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Figure 49. Generalized Soft Error Failure Rate MdaieScaled DRAM (FIT/cr).

The SER FIT/crhis increasing at a greater rate per generation it T/Gb. For
each full node generation, e.g., 130nm to 90nmyevtiee density doubles as the area
per transistor is reduced by §0% if S = 0.707), Figure 48 confirms that thisran

approximate doubling of FIT/cmAs scaling progresses further, however, e.gl, rea
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world scaling as opposed to ideal scaling, gateages are scaled more slowly
(approximately 0.85x/generation) than gate oxidektiess in order to maintain

transistor saturation currents and signal speedgeheral, the ITRS roadmap shows
the density progression for each successive teagpand should be considered in

future generation projections.

The reliability (FIT/Gb) and quality (DD) of the D®M parts with respect to
retention time characteristics is improving withcleaechnology generation under
equivalent stress conditions. The observed difisgein soft error failure rate,
however, is more pronounced at higher stress dondit The normalized SER
(FIT/cnf) is increasing with each progressive generatberetfore. the SER FIT for
the product, or system has to take this into adgce@ug. the density factor in Eq. 5.10.
The user should consider these trends in the smfeat a scaled DRAM product for
a given application and the anticipated operatimgddions. Increases in operating
frequency, power dissipation, and junction tempegtvill each have a detrimental
effect in determining the product reliability forgaven application. The user must
also consider the impact of SER on the increashoglyct density with each newer

generation.
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Chapter 6: Conclusion

6.1 Background

This dissertation began with a description of tigadnical and modern approaches in
assessing and predicting microelectronics religbilincluding the motivation for
further investigation into this important field study, particularly for high reliability
applications such as NASA spacecraft avionics. yAopsis of microelectronics
derating and reliability modeling and simulation psesented. CMOS technology
scaling has an impact on circuit performance, powiecuit design, burn-in and long
term reliability in modern day microelectronics;etle effects and trends on
microelectronics reliability are discussed. In idd, the Physics-of-Failure
methodology, competing mechanism theory, commonnsit failure mechanisms
and statistical models, and the multiple failurechmmism model, are discussed and

different approaches to calculate acceleratiorofacire summarized.

6.2 Contribution

My contributions begin with a microelectronics sligp industry survey that was
conducted to gather information on targeted scadmthnology product lifetimes,

product lifetime validation methodologies, actieati energies, and life limiting
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failure mechanisms. Derating methodologies inclgdiaseline junction temperature
calculations for NASA missions are presented. lmbdity study utilizing step-stress
techniques to evaluate several scaled SRAM tecgresdowas conducted. The

underlying goals of this experiment were to:

» Calculate the FIT based on the test statisticsawitthe physical models.

* Validate the models and parameters upon failurestigation.

* Perform data analysis.

» Calculate the FIT using those models.

» Compare and contrast to the manufacturer’s puldisiie

* Determine if experimental results support lifetimeliability predictions

across scaled technologies.

Analysis of the catastrophic failures was condu@ed the results are summarized.
Data analysis suggests that the proposed weighied Exponential Model best
correlated the manufacturer's published data (#ED) to the experimental data
(19.482 FIT), normalized to 55°C and nominély operating conditions. The
accuracy of an estimate is given by its standardremnd confidence interval. The
estimates approximate the true parameter values,tl@n confidence intervals for
model parameters indicate the uncertainty in théissical estimates by their width.
Statistical confidence bounds do not account fordehouncertainty. Therefore,
sensitivity analysis is important in any quantitatanalysis involving uncertainty and

to assess the effects of model uncertainty. ks éRperiment, model uncertainty was
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addressed by analyzing different model assumptiand different models to
determine the best fit scenario between thesedsstts, prior SRAM test results, and
the manufacturer’s failure rate qualification datdlaximum Likelihood methods

were used to provide the estimates and confidenuts lfor the model parameters.

Examination of the SRAM study component failuredsmshow that at specific times,
large numbers of bit failures were recorded. Tduturfes that were recorded at the
same time represent a single failure event whick negflected on multiple addresses
and, therefore, counted as a single failure foebdity evaluation. Hard and soft

failures were treated equally in this reliabilityaduation because once a soft failure
has occurred in a high-reliability, remote appi@at e.g., an un-repairable system,
the address corresponding to the failure is gelyecalcumvented and not used in

future write cycles.

My contribution continues with a design of expenmseand an accelerated stress test
on scaled commercial SDRAMs. The goal of the SDR&kperiment was to
investigate failure mechanism induced degradationthe product level, and
determine if long term performance is random (camistate process) or degrades
over time (increasing failure rate). Additionallgharacterization of product
sensitivities to temperature and voltage at thedpeb level across different scaled

technologies was performed.
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Technology and construction analysis, device charaation, and data analysis led
to a degradation and predictive model, reliabiiysessment and defect density
calculations of three current SDRAM technologies dufferent stress conditions.
Product, or system level soft error rates for adatantion were calculated, and an AF
test matrix with the acceleration factors for difist combinations of temperature and
voltage stresses is proposed. A methodology terawte the density of random
defects per cimof DRAM memory, and a forecast for the next tedbgy generation

of scaled DRAM is included.

Retention time margin of several product generatisnrmeasured using a Q-ratio of
the time-to-first-failure distributiont{) to the maximum specified refresh timéy)

This ratio provides insight into the tolerance aicle technology generation to
degradation with respect to voltage and temperatiesses. The ratio also provides
a quality factor demonstrating the amount of matggtween actual soft breakdown

of a memory cell, and the manufacturer’s specifefcesh time.

A direct comparison of the data retention charasties across three DRAM product
technologies reveals that a recoverable soft ebreakdown occurs with each
memory cell, and that memory retention time gralgudégrades over time. Two
distinct populations are evident with data retentiveakdown; the main population
soft error rate of each product generation folla&/eibull distribution with $ slope

> 2.4, while early failures are randomly distributeith a p slope ~ 1.0. Data

retention breakdown is accelerated by both temperatind voltage stresses as is
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shown in Chapter 5. The study shows that up t8%.6f the 130nm memory cells in
the scaled DRAM products studied are statisticalydom defective bits, and that the
percentage of random defective bits decreases3g%®©for the 90nm memory cells.
A prediction is made for the number of random dedec bits for the 65nm
technology node given the ever tighter processronheeded for nanometer scaled
semiconductors and memory products. By incorpagathe defect rates for each
representative technology with the cell charadiessthe defect density per rof
DRAM memory ranges from 3.19x46its/cnf for the 130nm product technology, to
4.768x10 bits/cnf for the 90nm product technology. A defect dengitgdiction is

made for the next generation 65nm technology node.

Early soft errors and acceleration factors fromheaicthe different temperature and
voltage conditions were analyzed against existongmeting and multiple mechanism
physical failure models. The multiple failure mexisan AF model using the Power
Law for AFv best fits the DRAM retention time datnd suggests a single

temperature and voltage activated breakdown mesimani

Data was normalized to FIT/Gb and FITfcfor the soft error rates to compare
technology generations, and a generalized modélec$caling effect relationship was
developed. It was shown that the reliability in b and quality (defect density) of
the DRAM parts with respect to retention time clégastics is improving with each

technology generation under equivalent stress tondi The observed difference in

soft error failure rate, however, is more pronowhee higher stress conditions. The
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normalized SER (FIT/cf is increasing with each progressive generatioexefore,

the SER FIT for the product, or system must be idensd. The user must balance
this knowledge with the anticipated application @p@g conditions. Increases in
operating frequency, power dissipation, and jumctiemperature will each have a

detrimental effect in determining the product reiliy for a given application.

The data and the derived acceleration and derdactprs demonstrate that a
combination of temperature and voltage stressedetter for screening out and/or
qualification of scaled DRAM products for defedisit may lead to premature failure

in the application.

Additional contributions include a major revisiondapublished release of the prime
AVSI Reliability Project 17 deliverable: Microeleohics Reliability: Physics-of-
Failure Based Modeling and Lifetime Evaluation Hamok [70].

A summary of the supplier survey results is incthde Appendix A, the AVSI
reliability project 17 roadmap is presented in Apghie B, and nonlinear regression
analysis for the SDRAM study is included in AppenGi

The DRAM experimental results are particularly intpat for several reasons:

1) For the same density memory chip and equivaleasstconditions, the product or

system reliability should increase for each sudgestechnology generation as
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2)

3)

4)

5)

6)

manufacturers strive to maintain product FIT rdteshigher density memories.

The DRAM results support this trend.

NASA and the aerospace industry have historicaflgdutemperature only as a
stress driver to screen and qualify parts. Thia dapports that a combination of
temperature and voltage stresses better acceldmathsthermally and voltage
driven mechanisms that could impact long term peglisbility. This method

also better identifies the weak memory cells thadlto early breakdown.

A temperature and voltage stress test matrix apgpraghows the expected
acceleration factor or derating factor for differé@mperature and voltage stress
combinations on the data retention soft error fatel30nm, 110nm and 90nm
SDRAM product technologies. A similar screening/andjualification approach

may be adapted for other parts and newer produerggons.

Results show that early failures are dominated IBRCBeta = 1, for each

technology in the study.

Results show that the reliability is improving afailure rate (FIT/Gb) is

decreasing with each new technology under equivale@ss conditions.

Results show that for the same size memory, e.gMb]1 the quality (defect

density) is improving with each new technology gatien. Therefore, the 90nm
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products exhibit better retention time charactiessand fewer defects/énthan

the larger 110nm and 130nm technologies.

7) Results show that the normalized soft error rat®/@fv) is increasing with each

new technology generations.
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6.3 Future Work

Ongoing research, accelerated stress testing, avaklimg of scaling effects on
microelectronics reliability continues throughoubet industry. New product
technologies, including 65nm and soon 45nm, neebletstudied to determine if
developments in materials, design, layout, and gssiag will inherently affect the

reliability of next generation microelectronics.
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Appendix A

Appendix A

Supplier Survey Results - Anonymous

Questions/Responses

Supplier A

Supplier B

Supplier C

Supplier D

Supplier E

Supplier F

Supplier G

Supplier H

1. Does your product line's e testing at various
ltemperatures follow the Arthenius Equation?

ves, but we havent proven
this at the product level.
instead, we perform reliabilty
tests at various temperatures
Jon device structures for EM
and TDDB.

Yes. We use the Arrhenius
equation to estimate the failure rate
based on operating life testing at
accelerated temperatures

[we use in-line monitoring program to measure ea|
[and long term failure rates, and look for defetat
reiiabiity problems. We do not consider the inei
[moritoring program (at typically 125C, 1MHz
clocking, over-vokage) as a measure of howlong

ves, we use Arrhenius, typically 110 degrees
[Celsius to 125 degrees Celsius data. However,

Jdevice lasts before it
ine monitoring program or burrv-in follow Artheniuf
Specific mechanisms (TDDB and electromigration
can be more compiicated

do see some phenomena.

Lite testing performed on military and commercial product lines uses the
|arthenius equation to determine acceleration factors when calculating
[failure rates and aternate tem peratures for stress. This model is only valid
Jfor failure modes that are chemically induced (ionic contamination, gate
Joxide rupture, etc.). The Arrhenius is not used for failures that are specific
events in time (EOS, ESD, etc).

2. 1s lfe testing used at your company to validate
product ltetime? Can you share information as to
how this is done? At what temperatures have you
performed your burn-in or lfe testing?

For new technologies we perform life test
Jto fail and typically use Weibull analysis
[and other tools to determine failure rates.
[Burn-in and ife testing s typically
performed at 125C to 150C

Burn-in and ife testing is lyp\caHy
performed at 125C to

Processes and New Pa:kages are
laualified using a minimum 3 lot (77

uni
er lo testing for

Early Failure Testing (915 samples)

Operating Life Test

‘Temp and Humidity Biased Test

Temperature Cycling

Auto-Clave

ESD/Latch-Up

Board Level Temp Cycle (for
packages) Exponential

ves. we perform lite psing a1

Ohrs) vith and acceptireject
criteria of 071 to validate
productifetimes

we perform operating ife, usually at

+125°C, by using burn-in boards
 Jwhich have a typical appication
circuit. The circut is designed to
stress the device close to the
[maximum junction temperature
specification.

Life-testing s performed to assess product religtriot only for the]
anticipated mission life, but to assess the longrgerformance of
Jthe product family.  The actual stress conditioary based on
|device design and wafer foundry. Burr-in and €etis normally
|conducted at +12€ but a few products are run at +160 Stress
conditions for burrvin, life-test and long-termekest are the same]
Jfor a given device being stressed. A dynamicsstmtern is used
Jtypicaly this will be a vector set looped througidevice using
[various frequencies to exercise the parts for thieeestress period.
Parts are stressed at either a6r 156C. We employa DSCC
lapproved QML accelerated votage appmach IDnEHand Long-

fterm LT, The Arthenius equation is used to

acceleration factor using and actvation enevgy afz

Jwe verify product ffetime (e.g. product will hase
failure rate below a certain amount at 10 years) b
looking at specific faiure mechanisms, such as
electromigration, and setting design rules and
technologies to meet these requirements. Thesse
are done at very high temperatures (e.g. 250C fo
electromigration). Bum-in and our in-line mornitay
program are done typically between 125C and 15
unction temperatures. The in-ine monitoring
[program can not supply the maximum current
densities on the device to measure litetimes. ]
increased operating junction temperatures, itss e
able to give much temperature acceleration as wel

es
Yes, we use Arrhenius, typically 110 degrees
Celsius to 125 degrees Celsius data. However,
e do see some non-Arrhenius phenomena.

Life testing is not used to vaidate product ffetime. This would take too long,
Life testing is used to validate that the infant mortalty of a product have
[been reduced to an acceptable low level so the probabiliy of early lfe
[failures is very small. Wearout is evaluated by highly accelerated testing on
specitic stuctures to look at specific wearout mechanisms. An example of
Jthis is the wearout mechanism of electromigration. Highly accelerated
stress consisting of high current densities and high temperatures are used
lto develop a degradation/failure model. This model then is translated into
|design rules for a specific maximum operating condiion. The design rules
Jfor this type of mechanism typically are a maximum current per unit width of
[metal line. When higher current are required in a line, the line is made
Jwider

3. What is your definition of product lfetime? We
have heard that operating time until accumulated
Jailure rate is 0.01%. What is your confidence lev
Jor the lifetime projection?

el

[The goal for electromigration reliability is
less than 0.5% cumulative failures during
10 years ata maximum junction
ltemperature of 105C. Effectively 50 FIT
Jwith 60% confidence level. If you want to
|define it at 0.019 (1 FIT) the answer is

000 hours. For product rated above
[105C junction, we perform EM
calculations on a case by case basis with
Jthe above targets.

[The qualification target is 100 FITS
(Failure in Time). FITS depends on
Jthe device hours, acceleration factor,
activation energy and # of failures.
[The MTBF (Mean Time Between
Fail) is UFITS

101

Criteria for device level
characterization is < 0.1%
failure for 10yr equivalent at
125C

[ The operating lfe testing is usually
performed for 1000 hours at

[+125C. The confidence level is
normally 60%, based on the
exponental distribution, and is
useful for comparing the reliabilty of
similar products. Some customers
request other confidence level such
as 90% or even 95% and so we
always offer to calculate FIT rates
land MTBF for these requests.

QML v requirements for space level appiicationgeserally
considered 15 years. - We typically demonstratdmblitetimes af

Jor below the 0.019 failure rate at 15 years

usEGDSCY

approved QML accelerated iie-test approach. Baseour Long-
Jterm lite-test testing of each product and fourfdiyily we have
Jda at1s

Lifetime definition is the average failure ratetle
fetime (e.g. 10 years) is less than 1 FIT. Tilitor
intrinsic failure mechanisms such as TDDB and
electromigraton. 1 FIT over 10 years i the same

INormally, our FIT rate calculations are performedre 60%

confidence level.

failure 0f 0.01% at 10 years. 1.1 FIT]
o. u1%'1Eg/(10's7suh) Some people use 0.1%

[Depends on type of products.

[This question is related to #2 above. Life testing does not validate product
ietime. Most semiconductors today have intrnsic lfetimes that are
significantly long. The wearout point for a process/product is set by the
|wearout mechanisms: (electromigration, dielectric breakdown, hot carrier
|degradation, device stabilty, etc.). These are set based on the process and
|design parameters. As told above the EM requirements are set by design
rules. Earlylife failures are typically what s seen in Life testing, These are
|defects caused by wafer fabrication or assembly that accelerates the aging
process. The purpose of burn-in is to age these defects sufficiently to
remove them from the shipping population thereby improving the reiabilty
[The PDA's (percent defecive allowable) are also imposed on burm-in to
screen lots that have an abnormally high infant mortality. ~ The failure
rate we publish on our WEB site is based on estimating the constant faikure.
rate assumed after bum-in. 1t is typically calculated for a family of products
buitt on the same water fab process. As with any estimate there is an upper |

l4. What is the range of Arrhenius activation
energies that are empirically representative of
[various technologies made by your company?

[No Response.

No Response.

No Response.

[Based on empirically obtained data,
Jwe use 1.0 eV for Bipolar processes
land 0.7 ev for CMOS processes
Jagain, these are useful for
Jcomparison purposes. A review of

For gate oxide ey the activation energydise0.32.
that this is a validber for

industry publications
these assumptions, however, some
Jcustomers request other energies of
activation such as 0.5 eV which we
similarly offer to provide in out FIT
and MTBF calculations.

Joxides.
08

Formetl migration, the activation egeagiges from 0.4|

[we do not have good data on the more recent
technologies. We have data for TDDB and
electromigration and other known intrinsic wearouf
[mechanisms (e.g. NBTI). However, since most
refiabilty failures are defect related, theseiisic
[numbers are ot all that useful. We have measan

activation energy of 0.5eV in the past for the e
defect mechanisms (back end metal partcies), an|
vottage acceleration also. For long term ffetime
failure rates, we use 0.7eV, for all mechanisms
lumped together.

| realy varies with our products - definition,
testing, exrapolation and even confident level.

a

|activation energies are tied back to the physical process underlying the
[failure and how temperature affects this process. In the case of
electromigration, temperature accelerates the damage done to the metal
ine. In the case of Hot Carrier Injection, temperature decreases the rate of
ltrapping. HCI has negative activation energy. Its worst-case condition is
|cold temperature. We use actvation energies in the range of ~0.06eV to
1.0ev depending on the dominate mechanism causing the failure.

5. Whatis your target product ifetimes of the
ltechnologies made by your company?

see item 3.

MIL Aerois 10 years.

[10yrs - while this is the criteria
Jwe have more headroom on
Jour processes and have
characterized some
mechanism for > 100yrs

[These are usually customer driven
and 20 years seems to be the
current consensus. Our product will
Jtypically far surpass s target
because of the conservative design
rules and mature processes which
e employ.

[The QML V product life-time target s typically ¥@ars, but can b
lareater or less depending upon the customer'sremnts for

mission lifetime.

Target lifetimes are 10 years mr typical produats]
years for telecommunicatior

[From 7 years to 25 years

[This question must be referenced back to #2 and #3. The target lfetime is
lthe wearout point. The market for the process drives this wearout point
(itetime). Products that are going into consumer products (PC, handhelds,

we a shorter market lfetime. These may be targeted at 310 5
[years lifetime. Miltary products would have a longer lfetime target, typically
10 years. These targets assume worst-case conditions also. In reality the
actual product itetime may be significantly longer than this because it
[would not operate at the worst-case conditions for its entire lfetime.

6. wnatis the life limiting failure mechanism, fo
example, electro-migration, time dependent
|dielectric breakdown, or hot carriers?

[That depends on the technology.
Primarily EM and TDDB. Hot carrier
effects are becoming more of a concern
s geometies shrink such as the current
l027 micron process.

[Technology dependent. 1am
attempting further clarification.

[ s is very dependent on the
specific product design and
process technology.

Jagain, based on actual data, we
Jobserve mobile ionic contamination
failure mechanisms for both Bipolar
and CMOS processes and gate
Joxide related mechanisms for
(CMOS processes. Electromigration,
ot carriers and other potential
failure mechanisms are usually
addressed during wafer fabrication
by parametric analysis of special
test structures on every wafer

Electromigration s typically the limiting falusmechanism. Ifa
Jeircuit is designed to operate at the maximum aumensit
allowed based on Aerofiex UTMC and the specificardbundry
|design rules, EM will imit the product ife morkatn the other

Jfailure mechanisms,

it depends on the technology. In the mature
technologies (i.e. non Culow-K) the imit is
etectromigration in the vias.

[EM and oxide, both.

[These are all examples of wearout mechanisms. Anyone of them could
lcause the part to fail. The key is to make sure these mechanisms are not
active until well after the product's useful e has been expended. New PC
ltypically have a 3o 5 year lite before they are replaced. Designing a
process with 30 year life would not allow you to be cost competitive with the
lcompetiion.

7. Wnatis the most effective screen or burn-in
|elevated temperature or higher voltage?

For newer technologies we believe that
accelerated voltage gives us the most
leffective screen, however, for new
[product technologies it is a combination
Jof B/ at 125C for a short

duration, say 8 hours, combined with
higher voliage. 1 know you are aware of
lother techniques such as IDDQ and V-
[STRESS testing to weed out potential

[We use both depending on the
[failure mechanism. e.g.. For Oxide
related failures it be high voltage
and for lonic contamination 'l be

high temperature.

[his depends on the
technology. Generally, voltage
provides more acceleration for
Joxides (i the process permits)
while temperature will
accelerate other failure

[we do not recommend burn-in
screening because the designs are
[conservative and processes are
[controlled. Likewise, the 100%
electrical screens performed at
water sort testing always include
Jvoltage stressing of suscepible
structures. Additionally, 100% Class
test screening and QA sample
electrical testing using properly

Higher voliage is a much more effective screerofode defects

Jthan temperature.

[We rarely use burn-in screening, as the failuresrat|

e fairly low, and bum-in screening can do some
Jdamage (E0S, bent leads, etc. from handing). Hf
Jvottage stressing during test is the best, follod
high voliage at burn-in. Temperature is importast|
Jvottage is more so.

fise use both and s we have apply not too high
temperature or bias on the circuits.

it would not be reasonable to pick only one screen as the only screen to
use. It really takes a battery of screens to evaluate a products relabilty. An
integrated circuit is a complex mixture of siicon/plastic/metals/ceramic. The
[package technology used to package and mount the die is as important as
lthe die itself. Bipolar circuits would require different screens compared to
MOS. Bipolar circuits are primariy a current based device where MOS are
[voltage-based devices. A combination of higher voltage and higher
ltemperature provide a good screen for MOS devices provided you can

reliabiity defects. For example, mechanisms. apply the bias across allinternal nodes (functional testing). Package related
Jguard banded test limit ATE

post burn-in IDDQ is a much better ragrame sesures the Gualty and failures are mainly caused by the thermal expansion mismatch between the
indicator of some defect mechanisms lcomponents and may require temperature cycling to accelerate the failure.
[ihan goo-go o datasheet [Relabilty of product.

[Technology A lﬂpomn 07 30 [TTL Bipolar >04 [Bipolar

[Technology B [MOS “GENERAL 05 3.0 [cmos > 07 o5t009ev cmos [Activation enerq for gate oxides 032

[Technology C JaspiDSP 0.5 3.0 Linear & Transistor > 0.9 [

[Fechnology o Ioram 03 25 1
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Appendix B
Scaled CMOS Reliability
AVSI Roadmap
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Appendix C

Nonlinear Regression: 90nm, 298.15K, 2.5V

[Variables]

x = col(2)

y = col(3)

reciprocal_y = 1/abs(y)

reciprocal_ysquare = 1/y"2

'‘Automatic Initial Parameter Estimate Functions
xnear0(q) = max(abs(q))-abs(q)

yatxnear0(q,r) = xatymax(q,xnearO(r))
[Parameters]

a = yatxnearO(y,x) "Auto {{previous: 8.55057}}
b = if(x50(x,y)-min(x)=0, 1, -In(.5)/(x50(x,y)-mix))) "Auto {{previous: 8.3314e-005}}
[Equation]

f = a*exp(-b*x)

fitftoy

"fit f to y with weight reciprocal_y

"fit f to y with weight reciprocal_ysquare
[Constraints]

b>0

[Options]

tolerance=0.0001

stepsize=100

iterations=100

R =0.96296200 Rsqgr =0.92729580 Adj Rsqr = 0.97981

Standard Error of Estimate = 0.0667

Coefficient Std. Error t P
a 8.5506 0.0383 223.3188 <0.0001
b 0.0001 0.0000 10.7438 <0.0001
Analysis of Variance:

DF SS MS F
Regression 1 0.5105 0.5105 114.7893
Residual 9 0.0400 0.0044
Total 10 0.5506 0.0551

PRESS =0.0689

Durbin-Watson Statistic = 0.3805

Normality Test: K-S Statistic = 0.1884 Significanicevel = 0.7865
Constant Variance Test: Passed (P =0.7755)

Power of performed test with alpha = 0.0500: 0.9999

Regression Diagnostics:

Row Predicted Residual Std. Res. Stud. Res.
4 8.5505 0.0845 1.2671 1.5474
5 8.4796 0.0504 0.7553 0.8663
6 8.4093 0.0007 0.0109 0.0120
7 8.3395 -0.0395 -0.5923 -0.6334
8 8.2703 -0.0603 -0.9044 -0.9526
9 8.2017 -0.0717 -1.0750 -1.1276
10 8.1336 -0.0536 -0.8044 -0.8486
11 8.0662 -0.0562 -0.8422 -0.9024
12 7.9992 -0.0092 -0.1386 -0.1524
13 7.9329 0.0471 0.7066 0.8067
14 7.8671 0.1080 1.6201 1.9459
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P
<0.0001

StudeDRes.
1.7029
0.8531
0.0113
-0.6110
-0.9472
-1.1472
-0.8342
-0.8921
-0.1439

0.7896

2.4105



Influence Diagnostics:

Row Cook'sDist Leverage DFFITS

4 0.5884 0.3295 1.1938

5 0.1184 0.2399 0.4793

6 0.0000 0.1722 0.0051

7 0.0288 0.1255 -0.2314

8 0.0497 0.0987 -0.3135

9 0.0637 0.0910 -0.3631

10 0.0407 0.1015 -0.2803

11 0.0604 0.1291 -0.3435

12 0.0024 0.1731 -0.0658

13 0.0986 0.2326 0.4347

14 0.8382 0.3069 1.6039

95% Confidence:

Row Predicted Regr. 5% Regr. 95% Pop. 5% Pop. 95%
4 8.5505 8.4639 8.6371 8.3765 8.7245
5 8.4796 8.4057 8.5535 8.3116 8.6476
6 8.4093 8.3467 8.4719 8.2459 8.5726
7 8.3395 8.2861 8.3929 8.1795 8.4996
8 8.2703 8.2229 8.3177 8.1122 8.4285
9 8.2017 8.1562 8.2472 8.0441 8.3593
10 8.1336 8.0856 8.1817 7.9753 8.2920
11 8.0662 8.0120 8.1204 7.9059 8.2265
12 7.9992 7.9365 8.0620 7.8358 8.1626
13 7.9329 7.8601 8.0056 7.7654 8.1004
14 7.8671 7.7835 7.9506 7.6946 8.0395

Nonlinear Regression: 90nm, 348.15K, 2.5V

[Variables]

x = col(6)

y = col(7)

reciprocal_y = 1/abs(y)

reciprocal_ysquare = 1/y"2

'‘Automatic Initial Parameter Estimate Functions
xnear0(q) = max(abs(q))-abs(q)

yatxnear0(q,r) = xatymax(q,xnearO(r))
[Parameters]

a = yatxnearO(y,x) "Auto {{previous: 7.17615}}
b = if(x50(x,y)-min(x)=0, 1, -In(.5)/(x50(x,y)-m{x))) "Auto {{previous: 0.000135366}}
[Equation]

f = a*exp(-b*x)

fitftoy

"fit f to y with weight reciprocal_y

"fit f to y with weight reciprocal_ysquare
[Constraints]

b>0

[Options]

tolerance=0.0001

stepsize=100

iterations=100

R =0.99126396 Rsqgr =0.98260423  Adj Rsqr = 0.983667

Standard Error of Estimate = 0.0422

Coefficient Std. Error t P
a 7.1762 0.0245 292.7811 <0.0001
b 0.0001 0.0000 22.5331 <0.0001
Analysis of Variance:

DF SS MS F P
Regression 1 0.9069 0.9069 508.3672 <0.0001
Residual 9 0.0161 0.0018
Total 10 0.9229 0.0923

PRESS = 0.0236
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Durbin-Watson Statistic = 1.2438

Normality Test: K-S Statistic = 0.1407 Significanicevel = 0.9710
Constant Variance Test: Passed (P =0.1987)

Power of performed test with alpha = 0.0500: 1.0000

Regression Diagnostics:

Row Predicted Residual Std. Res. Stud. Res. StudeDRes.
4 7.1761 -0.0214 -0.5056 -0.6208 -0.5982
5 7.0797 0.0203 0.4815 0.5530 0.5305
6 6.9845 -0.0045 -0.1060 -0.1165 -0.1099
7 6.8906 0.0194 0.4601 0.4917 0.4699
8 6.7979 0.0321 0.7595 0.7997 0.7823
9 6.7065 0.0435 1.0295 1.0799 1.0913
10 6.6163 -0.0663 -1.5709 -1.6581 -1.8759
11 6.5274 -0.0574 -1.3588 -1.4569 -1.5714
12 6.4396 -0.0296 -0.7014 -0.7714 -0.7526
13 6.3530 0.0070 0.1647 0.1878 0.1774
14 6.2676 0.0570 1.3490 1.6122 1.8024
Influence Diagnostics:

Row Cook'sDist Leverage DFFITS

4 0.0978 0.3367 -0.4262

5 0.0488 0.2420 0.2997

6 0.0014 0.1718 -0.0500

7 0.0172 0.1244 0.1771

8 0.0348 0.0980 0.2579

9 0.0585 0.0912 0.3458

10 0.1569 0.1024 -0.6338

11 0.1589 0.1302 -0.6080

12 0.0623 0.1732 -0.3445

13 0.0053 0.2302 0.0970

14 0.5566 0.2998 1.1795

95% Confidence:

Row Predicted Regr. 5% Regr. 95% Pop. 5% Pop. 95%
4 7.1761 7.1206 7.2315 7.0656 7.2865
5 7.0797 7.0327 7.1267 6.9732 7.1861
6 6.9845 6.9449 7.0241 6.8811 7.0879
7 6.8906 6.8569 6.9243 6.7893 6.9919
8 6.7979 6.7680 6.8278 6.6978 6.8980
9 6.7065 6.6777 6.7354 6.6067 6.8063
10 6.6163 6.5858 6.6469 6.5160 6.7167
11 6.5274 6.4929 6.5619 6.4258 6.6290
12 6.4396 6.3999 6.4794 6.3361 6.5431
13 6.3530 6.3072 6.3989 6.2471 6.4590
14 6.2676 6.2153 6.3199 6.1587 6.3766

Nonlinear Regression: 90nm, 398.15K, 2.5V

[Variables]

x = col(10)

y = col(11)

reciprocal_y = 1/abs(y)

reciprocal_ysquare = 1/y"2

'‘Automatic Initial Parameter Estimate Functions
xnear0(q) = max(abs(q))-abs(q)

yatxnear0(q,r) = xatymax(q,xnearO(r))
[Parameters]

a = yatxnearO(y,x) "Auto {{previous: 6.16959}}
b = if(x50(x,y)-min(x)=0, 1, -In(.5)/(x50(x,y)-m{x))) "Auto {{previous: 0.00016254}}
[Equation]

f = a*exp(-b*x)

fitftoy

"fit f to y with weight reciprocal_y
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"fit f to y with weight reciprocal_ysquare
[Constraints]

b>0

[Options]

tolerance=0.0001

stepsize=100

iterations=100

R =0.98318715 Rsqr = 0.96665697

Standard Error of Estimate = 0.0599

Coefficient Std. Error
a 6.1696 0.0349
b 0.0002 0.0000
Analysis of Variance:

DF SS
Regression 1 0.9351
Residual 9 0.0323
Total 10 0.9674

PRESS = 0.0510
Durbin-Watson Statistic = 0.6007
Normality Test:

Constant Variance Test: Passed

Adj Rsqr = 0.98295

t P
176.6067 <0.0001
16.1867 <0.0001
MS F
0.9351 260.9215
0.0036
0.0967

K-S Statistic = 0.1920 Significanicevel = 0.7668

(P=0.6731)

Power of performed test with alpha = 0.0500: 1.0000

Regression Diagnostics:

Row Predicted Residual
4 6.1695 0.0454
5 6.0701 0.0799
6 5.9723 0.0177
7 5.8760 -0.0760
8 5.7812 -0.0712
9 5.6880 -0.0380
10 5.5963 -0.0463
11 5.5061 -0.0361
12 5.4173 0.0027
13 5.3300 0.0500
14 5.2440 0.0725
Influence Diagnostics:

Row Cook'sDist Leverage
4 0.2251 0.3404
5 0.3776 0.2430
6 0.0110 0.1715
7 0.1298 0.1238
8 0.0849 0.0977
9 0.0223 0.0914
10 0.0383 0.1030
11 0.0315 0.1308
12 0.0003 0.1733
13 0.1344 0.2289
14 0.4380 0.2962
95% Confidence:

Row Predicted Regr. 5%
4 6.1695 6.0905
5 6.0701 6.0034
6 5.9723 5.9162
7 5.8760 5.8283
8 5.7812 5.7389
9 5.6880 5.6471
10 5.5963 5.5529
11 5.5061 5.4571

Std. Res. Stud. Res.
0.7586 0.9340
1.3344 1.5337
0.2965 0.3257
-1.2689 -1.3556
-1.1898 -1.2525
-0.6351 -0.6662
-0.7736 -0.8168
-0.6028 -0.6465
0.0449 0.0494
0.8357 0.9516
1.2104 1.4428
DFFITS

0.6657

0.9534

0.1406

-0.5385

-0.4277

-0.2043

-0.2712

-0.2422

0.0213

0.5154

1.0065

Regr. 95% Pop. 5%
6.2485 6.0127
6.1369 5.9191
6.0283 5.8257
5.9236 5.7324
5.8236 5.6393
5.7290 5.5465
5.6398 5.4541
5.5551 5.3621
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P
<0.0001

StudeDRes.
0.9267
1.6824
0.3089

-1.4326
-1.2996
-0.6442
-0.8003
-0.6242
0.0465
0.9461
1.5515

Pop. 95%
6.3263
6.2211
6.1188
6.0195
5.9231
5.8295
5.7385
5.6501



12 5.4173 5.3609 5.4737 5.2706
13 5.3300 5.2652 5.3948 5.1798
14 5.2440 5.1703 5.3177 5.0899

Nonlinear Regression: 90nm, 298.15K, 4.05V

[Variables]

x = col(2)

y = col(3)

reciprocal_y = 1/abs(y)

reciprocal_ysquare = 1/y"2

'‘Automatic Initial Parameter Estimate Functions
xnear0(q) = max(abs(q))-abs(q)

yatxnear0(q,r) = xatymax(q,xnearO(r))
[Parameters]

a = yatxnearO(y,x) "Auto {{previous: 6.85286}}

b = if(x50(x,y)-min(x)=0, 1, -In(.5)/(x50(x,y)-m{x))) "Auto {{previous: 9.11558e-005}}

[Equation]

f = a*exp(-b*x)

fitftoy

"fit f to y with weight reciprocal_y
"fit f to y with weight reciprocal_ysquare
[Constraints]

b>0

[Options]

tolerance=0.0001

stepsize=100

iterations=100

R =0.98384944 Rsqgr =0.96795972  Adj Rsqr = 0.964839

Standard Error of Estimate = 0.0379

Coefficient Std. Error t P
a 6.8529 0.0218 314.5287 <0.0001
b 0.0001 0.0000 16.5178 <0.0001
Analysis of Variance:

DF SS MS F
Regression 1 0.3903 0.3903 271.8964
Residual 9 0.0129 0.0014
Total 10 0.4033 0.0403

PRESS =0.0228

Durbin-Watson Statistic = 0.4847

Normality Test: K-S Statistic = 0.2474 Significanicevel = 0.4524
Constant Variance Test: Passed (P =0.2569)

Power of performed test with alpha = 0.0500: 1.0000

Regression Diagnostics:

Row Predicted Residual Std. Res. Stud. Res.
4 6.8529 0.0613 1.6189 1.9788
5 6.7907 0.0293 0.7740 0.8879
6 6.7291 -0.0191 -0.5029 -0.5527
7 6.6680 -0.0380 -1.0028 -1.0722
8 6.6075 -0.0275 -0.7255 -0.7641
9 6.5475 -0.0375 -0.9905 -1.0390
10 6.4881 -0.0281 -0.7421 -0.7829
11 6.4292 -0.0192 -0.5079 -0.5443
12 6.3709 0.0091 0.2401 0.2640
13 6.3131 0.0169 0.4462 0.5093
14 6.2558 0.0529 1.3960 1.6755

Influence Diagnostics:
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5.5640
5.4801
5.3982

P
<0.0001

StudeDRes.
2.4822
0.8764

-0.5302
-1.0823
-0.7450
-1.0442
-0.7646
-0.5218
0.2499
0.4872
1.9043



Row Cook'sDist Leverage DFFITS

4 0.9672 0.3307 1.7446

5 0.1246 0.2402 0.4928

6 0.0318 0.1721 -0.2418

7 0.0823 0.1253 -0.4096

8 0.0319 0.0986 -0.2464

9 0.0541 0.0911 -0.3305

10 0.0347 0.1016 -0.2571

11 0.0220 0.1293 -0.2010

12 0.0073 0.1731 0.1143

13 0.0392 0.2323 0.2680

14 0.6183 0.3058 1.2639

95% Confidence:

Row Predicted Regr. 5% Regr. 95% Pop. 5%
4 6.8529 6.8036 6.9021 6.7540
5 6.7907 6.7487 6.8327 6.6952
6 6.7291 6.6935 6.7646 6.6363
7 6.6680 6.6377 6.6983 6.5771
8 6.6075 6.5806 6.6344 6.5176
9 6.5475 6.5217 6.5734 6.4580
10 6.4881 6.4608 6.5154 6.3982
11 6.4292 6.3984 6.4601 6.3382
12 6.3709 6.3352 6.4066 6.2781
13 6.3131 6.2718 6.3544 6.2179
14 6.2558 6.2084 6.3032 6.1579

Nonlinear Regression: 90nm, 348.15K, 4.05V

[Variables]

x = col(6)

y = col(7)

reciprocal_y = 1/abs(y)

reciprocal_ysquare = 1/y"2

'‘Automatic Initial Parameter Estimate Functions
xnear0(q) = max(abs(q))-abs(q)

yatxnear0(q,r) = xatymax(q,xnearO(r))
[Parameters]

a = yatxnearO(y,x) "Auto {{previous: 5.49431}}

b = if(x50(x,y)-min(x)=0, 1, -In(.5)/(x50(x,y)-m{x))) "Auto {{previous: 7.28894e-005}}

[Equation]

f = a*exp(-b*x)

fitftoy

"fit f to y with weight reciprocal_y
"fit f to y with weight reciprocal_ysquare
[Constraints]

b>0

[Options]

tolerance=0.0001

stepsize=100

iterations=100

R =0.98239160 Rsqgr =0.96509326  Adj Rsqr = 0.9721

Standard Error of Estimate = 0.0257

Coefficient Std. Error t P
a 5.4943 0.0147 373.8763 <0.0001
b 0.0001 0.0000 15.7850 <0.0001
Analysis of Variance:

DF SS MS F
Regression 1 0.1638 0.1638 248.8299
Residual 9 0.0059 0.0007
Total 10 0.1697 0.0170

PRESS = 0.0099
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6.5203
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6.4082
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P
<0.0001



Durbin-Watson Statistic = 0.8447

Normality Test: K-S Statistic = 0.1741 Significanicevel = 0.8587
Constant Variance Test: Passed (P =0.2096)

Power of performed test with alpha = 0.0500: 1.0000

Regression Diagnostics:

Row Predicted Residual Std. Res. Stud. Res. StudeDRes.
4 5.4943 0.0457 1.7808 2.1726 2.9703
5 5.4544 0.0056 0.2178 0.2497 0.2363
6 5.4148 -0.0248 -0.9667 -1.0625 -1.0712
7 5.3755 -0.0255 -0.9930 -1.0620 -1.0706
8 5.3364 -0.0264 -1.0305 -1.0855 -1.0979
9 5.2977 -0.0177 -0.6892 -0.7229 -0.7022
10 5.2592 0.0008 0.0309 0.0326 0.0308
11 5.2210 0.0090 0.3504 0.3754 0.3567
12 5.1831 0.0369 1.4386 1.5819 1.7553
13 5.1455 0.0045 0.1773 0.2024 0.1913
14 5.1081 -0.0081 -0.3151 -0.3789 -0.3601
Influence Diagnostics:

Row Cook'sDist Leverage DFFITS

4 1.1526 0.3281 2.0758

5 0.0098 0.2395 0.1326

6 0.1175 0.1723 -0.4887

7 0.0811 0.1257 -0.4059

8 0.0647 0.0989 -0.3637

9 0.0262 0.0910 -0.2222

10 0.0001 0.1013 0.0103

11 0.0104 0.1289 0.1372

12 0.2619 0.1731 0.8030

13 0.0062 0.2331 0.1054

14 0.0320 0.3083 -0.2404

95% Confidence:

Row Predicted Regr. 5% Regr. 95% Pop. 5% Pop. 95%
4 5.4943 5.4611 5.5276 5.4274 5.5612
5 5.4544 5.4260 5.4828 5.3898 5.5190
6 5.4148 5.3907 5.4389 5.3520 5.4776
7 5.3755 5.3549 5.3961 5.3139 5.4370
8 5.3364 5.3182 5.3547 5.2756 5.3973
9 5.2977 5.2802 5.3152 5.2371 5.3583
10 5.2592 5.2407 5.2777 5.1983 5.3201
11 5.2210 5.2002 5.2418 5.1594 5.2827
12 5.1831 5.1590 5.2072 5.1202 5.2460
13 5.1455 5.1174 5.1735 5.0810 5.2099
14 5.1081 5.0759 5.1403 5.0417 5.1745

Nonlinear Regression: 90nm, 398.15K, 4.05V

[Variables]

x = col(10)

y = col(11)

reciprocal_y = 1/abs(y)

reciprocal_ysquare = 1/y"2

'‘Automatic Initial Parameter Estimate Functions
xnear0(q) = max(abs(q))-abs(q)

yatxnear0(q,r) = xatymax(q,xnearO(r))
[Parameters]

a = yatxnearO(y,x) "Auto {{previous: 4.86817}}
b = if(x50(x,y)-min(x)=0, 1, -In(.5)/(x50(x,y)-m{x))) "Auto {{previous: 0.000156699}}
[Equation]

f = a*exp(-b*x)

fitftoy

"fit f to y with weight reciprocal_y

"fit f to y with weight reciprocal_ysquare
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[Constraints]

b>0

[Options]
tolerance=0.0001
stepsize=100
iterations=100

R =0.98191836 Rsqgr =0.96416367 Adj Rsqr = 0.96868

Standard Error of Estimate = 0.0474

Coefficient Std. Error t P
a 4.8682 0.0276 176.1274 <0.0001
b 0.0002 0.0000 15.5904 <0.0001
Analysis of Variance:

DF SS MS F P
Regression 1 0.5446 0.5446 242.1418 <0.0001
Residual 9 0.0202 0.0022
Total 10 0.5649 0.0565
PRESS = 0.0381
Durbin-Watson Statistic = 0.8096
Normality Test: K-S Statistic = 0.2390 Significanicevel = 0.4974
Constant Variance Test: Passed (P=0.3241)
Power of performed test with alpha = 0.0500: 1.0000
Regression Diagnostics:
Row Predicted Residual Std. Res. Stud. Res. StudeDRes.
4 4.8682 0.1018 2.1472 2.6424 5.2617
5 4.7925 -0.0025 -0.0522 -0.0600 -0.0566
6 4.7180 -0.0380 -0.8005 -0.8795 -0.8673
7 4.6446 -0.0446 -0.9407 -1.0050 -1.0056
8 45724 -0.0624 -1.3157 -1.3852 -1.4723
9 45013 -0.0113 -0.2384 -0.2501 -0.2366
10 4.4313 -0.0013 -0.0279 -0.0294 -0.0277
11 4.3624 -0.0024 -0.0511 -0.0548 -0.0517
12 4.2946 -0.0046 -0.0969 -0.1066 -0.1006
13 4.2278 0.0222 0.4676 0.5325 0.5102
14 4.1621 0.0435 0.9174 1.0941 1.1078
Influence Diagnostics:
Row Cook'sDist Leverage DFFITS
4 1.7959 0.3397 3.7738
5 0.0006 0.2428 -0.0321
6 0.0801 0.1716 -0.3947
7 0.0714 0.1239 -0.3782
8 0.1040 0.0978 -0.4847
9 0.0031 0.0914 -0.0750
10 0.0000 0.1029 -0.0094
11 0.0002 0.1307 -0.0200
12 0.0012 0.1733 -0.0460
13 0.0421 0.2291 0.2781
14 0.2528 0.2970 0.7200
95% Confidence:
Row Predicted Regr. 5% Regr. 95% Pop. 5% Pop. 95%
4 4.8682 4.8056 4.9307 4.7440 4.9923
5 4.7925 4.7396 4.8453 4.6729 49121
6 4.7180 4.6735 4.7624 4.6018 4.8341
7 4.6446 4.6068 4.6824 4.5309 4.7583
8 45724 4.5389 4.6059 4.4600 4.6848
9 45013 4.4689 45337 4.3892 4.6134
10 4.4313 4.3969 4.4657 4.3187 4.5440
11 4.3624 4.3236 4.4012 4.2483 4.4765
12 4.2946 4.2499 4.3393 4.1784 4.4108
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13 4.2278 4.1765 4.2792
14 4.1621 4.1036 4.2206

Nonlinear Regression: 110nm, 298.15K, 2.5V

[Variables]

x = col(2)

y = col(3)

reciprocal_y = 1/abs(y)

reciprocal_ysquare = 1/y"2

'‘Automatic Initial Parameter Estimate Functions
xnear0(q) = max(abs(q))-abs(q)

yatxnear0(q,r) = xatymax(q,xnearO(r))
[Parameters]

a = yatxnearO(y,x) "Auto {{previous: 8.31352}}

b = if(x50(x,y)-min(x)=0, 1, -In(.5)/(x50(x,y)-m{x))) "Auto {{previous: 8.16831e-005}}

[Equation]

f = a*exp(-b*x)

fitftoy

"fit f to y with weight reciprocal_y
"fit f to y with weight reciprocal_ysquare
[Constraints]

b>0

[Options]

tolerance=0.0001

stepsize=100

iterations=100

R =0.99297544 Rsqgr =0.98600023  Adj Rsqr = 0.98204

Standard Error of Estimate = 0.0271

Coefficient Std. Error t
a 8.3135 0.0156 533.9676
b 0.0001 0.0000 25.1983
Analysis of Variance:

DF SS MS
Regression 1 0.4665 0.4665
Residual 9 0.0066 0.0007
Total 10 0.4731 0.0473

PRESS =0.0117

Durbin-Watson Statistic = 0.5723

Normality Test: K-S Statistic = 0.1620 Significanicevel = 0.9102

Constant Variance Test: Passed (P =0.7965)
Power of performed test with alpha = 0.0500: 1.0000

Regression Diagnostics:

Row Predicted Residual Std. Res.
4 8.3135 0.0291 1.0720
5 8.2459 0.0141 0.5202
6 8.1788 0.0112 0.4126
7 8.1123 -0.0123 -0.4524
8 8.0463 -0.0263 -0.9686
9 7.9808 -0.0208 -0.7675
10 7.9159 -0.0259 -0.9546
11 7.8515 -0.0215 -0.7925
12 7.7876 -0.0076 -0.2812
13 7.7243 0.0057 0.2110
14 7.6614 0.0544 2.0038

Influence Diagnostics:
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4.1089
4.0399

p
<0.0001
<0.0001

F
633.8679

Stud. Res.

1.3090
0.5966
0.4535
-0.4837
-1.0203
-0.8050
-1.0070
-0.8492
-0.3092
0.2409
2.4072

4.3468
4.2843

P
<0.0001

StudeDRes.
1.3716
0.5740
0.4325
-0.4621
-1.0230
-0.7879
-1.0079
-0.8348
-0.2931

0.2278

3.8029



Row Cook'sDist Leverage DFFITS

4 0.4207 0.3294 0.9612

5 0.0562 0.2398 0.3224

6 0.0214 0.1722 0.1973

7 0.0168 0.1255 -0.1751

8 0.0570 0.0988 -0.3386

9 0.0324 0.0910 -0.2493

10 0.0572 0.1014 -0.3386

11 0.0534 0.1291 -0.3214

12 0.0100 0.1731 -0.1341

13 0.0088 0.2327 0.1255

14 1.2840 0.3071 2.5316

95% Confidence:

Row Predicted Regr. 5% Regr. 95% Pop. 5% Pop. 95%
4 8.3135 8.2783 8.3487 8.2428 8.3843
5 8.2459 8.2158 8.2759 8.1776 8.3142
6 8.1788 8.1533 8.2043 8.1124 8.2453
7 8.1123 8.0905 8.1340 8.0472 8.1774
8 8.0463 8.0270 8.0656 7.9819 8.1106
9 7.9808 7.9623 7.9993 7.9167 8.0449
10 7.9159 7.8964 7.9354 7.8515 7.9803
11 7.8515 7.8295 7.8735 7.7863 7.9167
12 7.7876 7.7621 7.8132 7.7212 7.8541
13 7.7243 7.6947 7.7539 7.6561 7.7924
14 7.6614 7.6274 7.6954 7.5913 7.7316

Nonlinear Regression: 110nm, 348.15K, 2.5V

[Variables]

x = col(6)

y = col(7)

reciprocal_y = 1/abs(y)

reciprocal_ysquare = 1/y"2

'‘Automatic Initial Parameter Estimate Functions
xnear0(q) = max(abs(q))-abs(q)

yatxnear0(q,r) = xatymax(q,xnearO(r))
[Parameters]

a = yatxnearO(y,x) "Auto {{previous: 6.84254}}
b = if(x50(x,y)-min(x)=0, 1, -In(.5)/(x50(x,y)-m{x))) "Auto {{previous: 0.000120308}}
[Equation]

f = a*exp(-b*x)

fitftoy

"fit f to y with weight reciprocal_y

"fit f to y with weight reciprocal_ysquare
[Constraints]

b>0

[Options]

tolerance=0.0001

stepsize=100

iterations=100

R =0.95758184 Rsqgr =0.91696299 Adj Rsqr = 0.96833

Standard Error of Estimate = 0.0812

Coefficient Std. Error t P
a 6.8425 0.0470 145.6813 <0.0001
b 0.0001 0.0000 10.0099 <0.0001
Analysis of Variance:

DF SS MS F P
Regression 1 0.6552 0.6552 99.3854 <0.0001
Residual 9 0.0593 0.0066
Total 10 0.7145 0.0714

PRESS = 0.1004
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Durbin-Watson Statistic = 0.3621

Normality Test: K-S Statistic = 0.1456 Significanicevel = 0.9606
Constant Variance Test: Passed (P =0.8601)

Power of performed test with alpha = 0.0500: 0.9997

Regression Diagnostics:

Row Predicted Residual Std. Res. Stud. Res. StudeDRes.
4 6.8425 0.1219 1.5009 1.8400 2.1965
5 6.7607 0.0493 0.6070 0.6970 0.6756
6 6.6799 0.0001 0.0017 0.0018 0.0017
7 6.6000 -0.0600 -0.7388 -0.7896 -0.7717
8 6.5211 -0.1011 -1.2447 -1.3107 -1.3738
9 6.4431 -0.0831 -1.0232 -1.0733 -1.0836
10 6.3660 -0.0760 -0.9363 -0.9882 -0.9867
11 6.2899 -0.0299 -0.3682 -0.3947 -0.3754
12 6.2147 0.0153 0.1888 0.2076 0.1962
13 6.1404 0.0596 0.7346 0.8377 0.8225
14 6.0669 0.1043 1.2843 1.5371 1.6875
Influence Diagnostics:

Row Cook'sDist Leverage DFFITS

4 0.8515 0.3347 1.5578

5 0.0773 0.2414 0.3811

6 0.0000 0.1719 0.0008

7 0.0444 0.1247 -0.2912

8 0.0936 0.0982 -0.4534

9 0.0578 0.0912 -0.3432

10 0.0555 0.1022 -0.3328

11 0.0116 0.1299 -0.1450

12 0.0045 0.1732 0.0898

13 0.1053 0.2309 0.4506

14 0.5108 0.3019 1.1096

95% Confidence:

Row Predicted Regr. 5% Regr. 95% Pop. 5% Pop. 95%
4 6.8425 6.7363 6.9488 6.6304 7.0547
5 6.7607 6.6705 6.8510 6.5561 6.9654
6 6.6799 6.6037 6.7560 6.4810 6.8787
7 6.6000 6.5351 6.6648 6.4052 6.7948
8 6.5211 6.4635 6.5786 6.3286 6.7135
9 6.4431 6.3876 6.4985 6.2512 6.6349
10 6.3660 6.3073 6.4247 6.1732 6.5588
11 6.2899 6.2237 6.3561 6.0947 6.4851
12 6.2147 6.1382 6.2911 6.0157 6.4136
13 6.1404 6.0521 6.2286 5.9366 6.3441
14 6.0669 5.9660 6.1678 5.8574 6.2765

Nonlinear Regression: 110nm, 398.15K, 2.5V

[Variables]

x = col(10)

y = col(11)

reciprocal_y = 1/abs(y)

reciprocal_ysquare = 1/y"2

'‘Automatic Initial Parameter Estimate Functions
xnear0(q) = max(abs(q))-abs(q)

yatxnear0(q,r) = xatymax(q,xnearO(r))
[Parameters]

a = yatxnearO(y,x) "Auto {{previous: 6.03454}}
b = if(x50(x,y)-min(x)=0, 1, -In(.5)/(x50(x,y)-m{x))) "Auto {{previous: 0.000153988}}
[Equation]

f = a*exp(-b*x)

fitftoy

"fit f to y with weight reciprocal_y

"fit f to y with weight reciprocal_ysquare
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[Constraints]

b>0

[Options]
tolerance=0.0001
stepsize=100
iterations=100

R =0.99286227 Rsqr = 0.98577550

Standard Error of Estimate = 0.0361

Coefficient Std. Error t
a 6.0345 0.0210 286.8718
b 0.0002 0.0000 24.9744
Analysis of Variance:

DF SS MS
Regression 1 0.8134 0.8134
Residual 9 0.0117 0.0013
Total 10 0.8252 0.0825
PRESS =0.0194
Durbin-Watson Statistic = 1.2077
Normality Test: K-S Statistic = 0.1836 Significanicevel = 0.8119
Constant Variance Test: Passed (P =0.7755)

Adj Rsqr = 0.98009

Power of performed test with alpha = 0.0500: 1.0000

Regression Diagnostics:

Row Predicted Residual
4 6.0345 0.0488
5 5.9423 -0.0123
6 5.8515 -0.0315
7 5.7621 -0.0121
8 5.6741 0.0259
9 5.5874 0.0226
10 5.5020 -0.0520
11 5.4179 -0.0379
12 5.3351 -0.0151
13 5.2536 0.0164
14 5.1733 0.0474
Influence Diagnostics:

Row Cook'sDist Leverage
4 0.7085 0.3393
5 0.0247 0.2427
6 0.0953 0.1716
7 0.0091 0.1240
8 0.0310 0.0978
9 0.0218 0.0913
10 0.1323 0.1028
11 0.0952 0.1306
12 0.0222 0.1733
13 0.0399 0.2293
14 0.5186 0.2973
95% Confidence:

Row Predicted Regr. 5%
4 6.0345 5.9870
5 5.9423 5.9021
6 5.8515 5.8177
7 5.7621 5.7333
8 5.6741 5.6485
9 5.5874 5.5627
10 5.5020 5.4758
11 5.4179 5.3884
12 5.3351 5.3011

Std. Res.
1.3502
-0.3414
-0.8729
-0.3353
0.7184
0.6271
-1.4392
-1.0495
-0.4184
0.4546
1.3124

DFFITS
1.3477
-0.2112
-0.4344
-0.1280
0.2426
0.2016
-0.5624
-0.4438
-0.2010
0.2703
1.1256

Regr. 95%
6.0821
5.9826
5.8854
5.7909
5.6996
5.6120
5.5282
5.4474
5.3691
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<0.0001
<0.0001

F
623.7110

Stud. Res.

1.6611
-0.3923
-0.9591
-0.3582

0.7563

0.6579
-1.5194
-1.1256
-0.4601

0.5178

1.5656

Pop. 5%
5.9400
5.8513
5.7631
5.6755
5.5885
5.5020
5.4162
5.3310
5.2466

P
<0.0001

StudeDRes.
1.8807
-0.3730
-0.9543
-0.3402
0.7368
0.6357
-1.6614
-1.1448
-0.4390
0.4956
1.7304

Pop. 95%
6.1291
6.0334
5.9399
5.8487
5.7597
5.6727
5.5878
5.5048
5.4236



13 5.2536 5.2145 5.2927 5.1630
14 5.1733 5.1288 5.2179 5.0803

Nonlinear Regression: 110nm, 298.15K, 4.05V

[Variables]

x = col(2)

y = col(3)

reciprocal_y = 1/abs(y)

reciprocal_ysquare = 1/y"2

'‘Automatic Initial Parameter Estimate Functions
xnear0(q) = max(abs(q))-abs(q)

yatxnear0(q,r) = xatymax(q,xnearO(r))
[Parameters]

a = yatxnearO(y,x) "Auto {{previous: 6.61935}}

b = if(x50(x,y)-min(x)=0, 1, -In(.5)/(x50(x,y)-m{x))) "Auto {{previous: 9.73741e-005}}

[Equation]

f = a*exp(-b*x)

fitftoy

"fit f to y with weight reciprocal_y
"fit f to y with weight reciprocal_ysquare
[Constraints]

b>0

[Options]

tolerance=0.0001

stepsize=100

iterations=100

R =0.99404435 Rsqgr =0.98812417  Adj Rsqr = 0.98680

Standard Error of Estimate = 0.0235

Coefficient Std. Error t P
a 6.6194 0.0135 489.0502 <0.0001
b 0.0001 0.0000 27.3844 <0.0001
Analysis of Variance:

DF SS MS F
Regression 1 0.4138 0.4138 748.8418
Residual 9 0.0050 0.0006
Total 10 0.4188 0.0419

PRESS =0.0081

Durbin-Watson Statistic = 0.6441

Normality Test: K-S Statistic = 0.1696 Significanicevel = 0.8791
Constant Variance Test: Passed (P =0.2209)

Power of performed test with alpha = 0.0500: 1.0000

Regression Diagnostics:

Row Predicted Residual Std. Res. Stud. Res.
4 6.6194 0.0192 0.8188 1.0015
5 6.5552 0.0248 1.0546 1.2101
6 6.4917 -0.0017 -0.0718 -0.0789
7 6.4288 -0.0188 -0.7990 -0.8542
8 6.3665 -0.0065 -0.2759 -0.2906
9 6.3048 -0.0148 -0.6293 -0.6601
10 6.2437 -0.0237 -1.0081 -1.0637
11 6.1832 -0.0332 -1.4122 -1.5135
12 6.1233 -0.0033 -0.1396 -0.1535
13 6.0639 0.0261 1.1083 1.2647
14 6.0052 0.0319 1.3576 1.6285

Influence Diagnostics:
Row Cook'sDist Leverage DFFITS
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5.3442
5.2664

P
<0.0001

StudeDRes.
1.0017
1.2468
-0.0744
-0.8401
-0.2753
-0.6380
-1.0725
-1.6526
-0.1449

1.3149

1.8281



4 0.2487 0.3315 0.7054

5 0.2318 0.2405 0.7015

6 0.0006 0.1721 -0.0339

7 0.0522 0.1252 -0.3178

8 0.0046 0.0985 -0.0910

9 0.0218 0.0911 -0.2020

10 0.0641 0.1017 -0.3609

11 0.1702 0.1294 -0.6371

12 0.0025 0.1731 -0.0663

13 0.2415 0.2320 0.7226

14 0.5818 0.3050 1.2109

95% Confidence:

Row Predicted Regr. 5% Regr. 95% Pop. 5% Pop. 95%
4 6.6194 6.5887 6.6500 6.5580 6.6807
5 6.5552 6.5291 6.5813 6.4960 6.6144
6 6.4917 6.4696 6.5137 6.4341 6.5493
7 6.4288 6.4100 6.4476 6.3724 6.4852
8 6.3665 6.3498 6.3832 6.3107 6.4222
9 6.3048 6.2887 6.3208 6.2492 6.3603
10 6.2437 6.2267 6.2607 6.1879 6.2995
11 6.1832 6.1641 6.2023 6.1267 6.2397
12 6.1233 6.1012 6.1454 6.0657 6.1809
13 6.0639 6.0383 6.0896 6.0049 6.1230
14 6.0052 5.9758 6.0346 5.9444 6.0659

Nonlinear Regression: 110nm, 348.15K, 4.05V

[Variables]

x = col(6)

y = col(7)

reciprocal_y = 1/abs(y)

reciprocal_ysquare = 1/y"2

'‘Automatic Initial Parameter Estimate Functions
xnear0(q) = max(abs(q))-abs(q)

yatxnear0(q,r) = xatymax(q,xnearO(r))
[Parameters]

a = yatxnearO(y,x) "Auto {{previous: 5.53632}}
b = if(x50(x,y)-min(x)=0, 1, -In(.5)/(x50(x,y)-m{x))) "Auto {{previous: 0.000132161}}
[Equation]

f = a*exp(-b*x)

fitftoy

"fit f to y with weight reciprocal_y

"fit f to y with weight reciprocal_ysquare
[Constraints]

b>0

[Options]

tolerance=0.0001

stepsize=100

iterations=100

R =0.98683279 Rsqr =0.97383896 Adj Rsqr = 0.92093

Standard Error of Estimate = 0.0393

Coefficient Std. Error t P
a 5.5363 0.0228 242.6812 <0.0001
b 0.0001 0.0000 18.2529 <0.0001
Analysis of Variance:

DF SS MS F P
Regression 1 0.5185 0.5185 335.0230 <0.0001
Residual 9 0.0139 0.0015
Total 10 0.5324 0.0532

PRESS = 0.0206

Durbin-Watson Statistic = 1.0134
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Normality Test: K-S Statistic = 0.1706 Significanicevel = 0.8749
Constant Variance Test: Passed (P =0.0762)
Power of performed test with alpha = 0.0500: 1.0000

Regression Diagnostics:

Row Predicted Residual Std. Res. Stud. Res. StudeDRes.
4 5.5363 0.0056 0.1418 0.1740 0.1644
5 5.4636 -0.0336 -0.8550 -0.9819 -0.9797
6 5.3919 -0.0119 -0.3026 -0.3325 -0.3154
7 5.3211 -0.0211 -0.5366 -0.5735 -0.5509
8 5.2513 0.0087 0.2224 0.2342 0.2215
9 5.1823 0.0177 0.4498 0.4718 0.4504
10 5.1143 0.0557 1.4167 1.4953 1.6262
11 5.0471 0.0729 1.8525 1.9863 2.4989
12 4.9809 -0.0209 -0.5302 -0.5831 -0.5604
13 4.9155 -0.0255 -0.6472 -0.7378 -0.7176
14 4.8509 -0.0478 -1.2160 -1.4537 -1.5668
Influence Diagnostics:

Row Cook'sDist Leverage DFFITS

4 0.0077 0.3363 0.1170

5 0.1538 0.2418 -0.5533

6 0.0115 0.1718 -0.1436

7 0.0234 0.1244 -0.2077

8 0.0030 0.0981 0.0730

9 0.0112 0.0912 0.1427

10 0.1275 0.1024 0.5492

11 0.2952 0.1302 0.9666

12 0.0356 0.1732 -0.2565

13 0.0814 0.2303 -0.3926

14 0.4534 0.3003 -1.0263

95% Confidence:

Row Predicted Regr. 5% Regr. 95% Pop. 5% Pop. 95%
4 5.5363 5.4847 5.5879 5.4334 5.6392
5 5.4636 5.4199 5.5074 5.3645 5.5628
6 5.3919 5.3550 5.4288 5.2956 5.4882
7 5.3211 5.2897 5.3525 5.2267 5.4155
8 5.2513 5.2234 5.2791 5.1580 5.3445
9 5.1823 5.1554 5.2092 5.0893 5.2753
10 5.1143 5.0858 5.1427 5.0208 5.2077
11 5.0471 5.0150 5.0792 4.9525 5.1417
12 4.9809 4.9438 5.0179 4.8845 5.0773
13 4.9155 4.8728 4.9582 4.8168 5.0142
14 4.8509 4.8022 4.8997 4.7494 4.9524

Nonlinear Regression: 110nm, 398.15K, 4.05V

[Variables]

x = col(10)

y = col(11)

reciprocal_y = 1/abs(y)

reciprocal_ysquare = 1/y"2

'‘Automatic Initial Parameter Estimate Functions
xnear0(q) = max(abs(q))-abs(q)

yatxnear0(q,r) = xatymax(q,xnearO(r))
[Parameters]

a = yatxnearO(y,x) "Auto {{previous: 4.80363}}
b = if(x50(x,y)-min(x)=0, 1, -In(.5)/(x50(x,y)-m{x))) "Auto {{previous: 0.000163859}}
[Equation]

f = a*exp(-b*x)

fitftoy

"fit f to y with weight reciprocal_y

"fit f to y with weight reciprocal_ysquare
[Constraints]

b>0

[Options]
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tolerance=0.0001
stepsize=100
iterations=100

R =0.99731150 Rsqr = 0.99463023

Standard Error of Estimate = 0.0186

Coefficient Std. Error t
a 4.8036 0.0109 441.6168
b 0.0002 0.0000 40.7878
Analysis of Variance:

DF SS MS
Regression 1 0.5790 0.5790
Residual 9 0.0031 0.0003
Total 10 0.5821 0.0582
PRESS = 0.0057
Durbin-Watson Statistic = 1.4607
Normality Test: K-S Statistic = 0.2475 Significanicevel = 0.4523
Constant Variance Test: Passed (P =0.0883)

Adj Rsqr = 0.98503

Power of performed test with alpha = 0.0500: 1.0000

Regression Diagnostics:

Row Predicted
4 4.8036
5 4.7256
6 4.6488
7 45732
8 4.4989
9 4.4258
10 4.3538
11 4.2831
12 4.2135
13 4.1450
14 4.0776
Influence Diagnostics:
Row Cook'sDist
4 1.5582
5 0.1480
6 0.1266
7 0.0405
8 0.0136
9 0.0053
10 0.0482
11 0.0714
12 0.0662
13 0.0138
14 0.0944
95% Confidence:
Row Predicted
4 4.8036
5 4.7256
6 4.6488
7 45732
8 4.4989
9 4.4258
10 4.3538
11 4.2831
12 4.2135
13 4.1450
14 4.0776

Residual
0.0372
-0.0156
-0.0188
-0.0132
-0.0089
-0.0058
0.0162
0.0169
-0.0135
-0.0050
0.0105

Leverage
0.3407
0.2431
0.1715
0.1237
0.0977
0.0914
0.1030
0.1308
0.1733
0.2288
0.2960

Regr. 5%
4.7790
4.7048
4.6313
4.5584
4.4857
4.4130
4.3403
4.2678
4.1959
4.1248
4.0547

Std. Res.
1.9942
-0.8352
-1.0068
-0.7088
-0.4767
-0.3094
0.8672
0.9080
-0.7226
-0.2677
0.5622

DFFITS
2.8982
-0.5413
-0.5104
-0.2773
-0.1579
-0.0976
0.3072
0.3767
-0.3557
-0.1573
0.4202

Regr. 95%
4.8282
4.7463
4.6662
4.5880
45121
4.4385
4.3674
4.2983
4.2310
4.1652
4.1006
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p
<0.0001
<0.0001

F
1667.0493

Stud. Res.

2.4560
-0.9599
-1.1061
-0.7572
-0.5019
-0.3246

0.9157

0.9740
-0.7948
-0.3048

0.6700

Pop. 5%
4.7548
4.6786
4.6031
4.5285
4.4547
4.3817
4.3096
4.2382
4.1678
4.0983
4.0296

P
<0.0001

StudeDRes.
4.0320
-0.9553
-1.1219
-0.7378
-0.4799
-0.3079
0.9066
0.9709
-0.7771
-0.2889
0.6481

Pop. 95%
4.8524
47726
4.6944
4.6179
4.5431
4.4698
4.3981
4.3279
4.2591
4.1917
4.1256



Nonlinear Regression: 130nm, 298.15K, 2.5V

[Variables]

x = col(2)

y = col(3)

reciprocal_y = 1/abs(y)

reciprocal_ysquare = 1/y"2

'‘Automatic Initial Parameter Estimate Functions
xnear0(q) = max(abs(q))-abs(q)

yatxnear0(q,r) = xatymax(q,xnearO(r))
[Parameters]

a = yatxnearO(y,x) "Auto {{previous: 8.34415}}
b = if(x50(x,y)-min(x)=0, 1, -In(.5)/(x50(x,y)-m{x))) "Auto {{previous: 0.000192898}}
[Equation]

f = a*exp(-b*x)

fitftoy

"fit f to y with weight reciprocal_y

"fit f to y with weight reciprocal_ysquare
[Constraints]

b>0

[Options]

tolerance=0.0001

stepsize=100

iterations=100

R =0.97546068 Rsqgr =0.95152354  Adj Rsqr = 0.94@13

Standard Error of Estimate = 0.1159

Coefficient Std. Error t P
a 8.3441 0.0681 122.6069 <0.0001
b 0.0002 0.0000 13.2135 <0.0001
Analysis of Variance:

DF SS MS F P
Regression 1 2.3740 2.3740 176.6571 <0.0001
Residual 9 0.1209 0.0134
Total 10 2.4950 0.2495

PRESS =0.1766

Durbin-Watson Statistic = 0.8093

Normality Test: K-S Statistic = 0.0966 Significanicevel = 0.9999
Constant Variance Test: Passed (P =0.9676)

Power of performed test with alpha = 0.0500: 1.0000

Regression Diagnostics:

Row Predicted Residual Std. Res. Stud. Res. StudeDRes.
4 8.3441 -0.1048 -0.9044 -1.1172 -1.1350
5 8.1847 -0.0647 -0.5584 -0.6423 -0.6199
6 8.0284 -0.0184 -0.1584 -0.1740 -0.1643
7 7.8750 0.0550 0.4746 0.5068 0.4848
8 7.7245 0.1155 0.9961 1.0484 1.0550
9 7.5770 0.1830 1.5790 1.6567 1.8735
10 7.4322 0.0878 0.7574 0.8000 0.7826
11 7.2902 0.0098 0.0845 0.0907 0.0855
12 7.1509 -0.1909 -1.6470 -1.8114 -2.1424
13 7.0143 -0.1023 -0.8825 -1.0040 -1.0045
14 6.8803 0.0289 0.2493 0.2963 0.2807
Influence Diagnostics:

Row Cook'sDist Leverage DFFITS

4 0.3282 0.3447 -0.8231

5 0.0666 0.2442 -0.3523
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6 0.0031 0.1712
7 0.0180 0.1231
8 0.0593 0.0974
9 0.1384 0.0916
10 0.0370 0.1036
11 0.0006 0.1315
12 0.3439 0.1733
13 0.1483 0.2274
14 0.0181 0.2921
95% Confidence:

Row Predicted Regr. 5%
4 8.3441 8.1902
5 8.1847 8.0551
6 8.0284 7.9198
7 7.8750 7.7830
8 7.7245 7.6427
9 7.5770 7.4976
10 7.4322 7.3478
11 7.2902 7.1951
12 7.1509 7.0418
13 7.0143 6.8893
14 6.8803 6.7386

-0.0747

0.1817

0.3465

0.5949

0.2661

0.0333

-0.9809

-0.5449

0.1803

Regr. 95% Pop. 5%
8.4981 8.0401
8.3143 7.8922
8.1369 7.7446
7.9670 7.5971
7.8064 7.4498
7.6563 7.3030
7.5166 7.1567
7.3853 7.0113
7.2601 6.8669
7.1394 6.7238
7.0220 6.5822

Nonlinear Regression: 130nm, 348.15K, 2.5V

[Variables]

x = col(6)

y = col(7)

reciprocal_y = 1/abs(y)
reciprocal_ysquare = 1/y"2

'Automatic Initial Parameter Estimate Functions

xnear0(q) = max(abs(q))-abs(q)
yatxnear0(q,r) = xatymax(q,xnearO(r))
[Parameters]

a = yatxnearO(y,x) "Auto {{previous: 6.74299}}

b = if(x50(x,y)-min(x)=0, 1, -In(.5)/(x50(x,y)-m{x))) "Auto {{previous: 0.000307091}}

[Equation]

f = a*exp(-b*x)

fitftoy

"fit f to y with weight reciprocal_y
"fit f to y with weight reciprocal_ysquare
[Constraints]

b>0

[Options]

tolerance=0.0001

stepsize=100

iterations=100

R =0.98137920 Rsqr =0.96310513

Standard Error of Estimate = 0.1210

Adj Rsqr = 0.95300

Coefficient Std. Error t P
a 6.7430 0.0726 92.8213 <0.0001
b 0.0003 0.0000 15.3632 <0.0001
Analysis of Variance:

DF SS MS F
Regression 1 3.4393 3.4393 234.9363
Residual 9 0.1318 0.0146
Total 10 3.5711 0.3571
PRESS = 0.2217
Durbin-Watson Statistic = 0.4790
Normality Test: K-S Statistic = 0.1130 Significanicevel = 0.9979

211

Pop. 95%
8.6482
8.4772
8.3122
8.1529
7.9992
7.8509
7.7077
7.5692
7.4350
7.3048
7.1784

P
<0.0001



Constant Variance Test: Passed (P =0.6531)
Power of performed test with alpha = 0.0500: 1.0000

Regression Diagnostics:

Row Predicted Residual Std. Res. Stud. Res. StudeDRes.
4 6.7430 0.1588 1.3126 1.6414 1.8487
5 6.5391 0.0609 0.5037 0.5809 0.5582
6 6.3413 -0.0313 -0.2587 -0.2840 -0.2690
7 6.1495 -0.0195 -0.1614 -0.1721 -0.1626
8 5.9636 -0.1136 -0.9385 -0.9873 -0.9857
9 5.7832 -0.1832 -1.5141 -1.5895 -1.7670
10 5.6083 -0.0983 -0.8125 -0.8593 -0.8456
11 5.4387 -0.0587 -0.4851 -0.5212 -0.4990
12 5.2742 0.0258 0.2131 0.2344 0.2216
13 5.1147 0.0753 0.6223 0.7053 0.6841
14 4.9600 0.1886 1.5585 1.8328 2.1827
Influence Diagnostics:

Row Cook'sDist Leverage DFFITS

4 0.7593 0.3605 1.3880

5 0.0557 0.2482 0.3208

6 0.0083 0.1700 -0.1217

7 0.0020 0.1208 -0.0603

8 0.0520 0.0963 -0.3219

9 0.1289 0.0926 -0.5645

10 0.0438 0.1061 -0.2914

11 0.0210 0.1339 -0.1962

12 0.0057 0.1731 0.1014

13 0.0708 0.2215 0.3649

14 0.6432 0.2769 1.3507

95% Confidence:

Row Predicted Regr. 5% Regr. 95% Pop. 5% Pop. 95%
4 6.7430 6.5787 6.9073 6.4237 7.0622
5 6.5391 6.4027 6.6754 6.2333 6.8449
6 6.3413 6.2285 6.4542 6.0452 6.6374
7 6.1495 6.0544 6.2447 5.8598 6.4393
8 5.9636 5.8786 6.0485 5.6770 6.2501
9 5.7832 5.6999 5.8665 5.4971 6.0693
10 5.6083 5.5191 5.6975 5.3204 5.8962
11 5.4387 5.3385 5.5388 5.1472 5.7301
12 5.2742 5.1603 5.3881 4.9778 5.5707
13 5.1147 4.9859 5.2435 4.8122 5.4172
14 4.9600 4.8160 5.1041 4.6507 5.2693

Nonlinear Regression: 130nm, 398.15K, 2.5V

[Variables]

x = col(10)

y = col(11)

reciprocal_y = 1/abs(y)

reciprocal_ysquare = 1/y"2

'‘Automatic Initial Parameter Estimate Functions
xnear0(q) = max(abs(q))-abs(q)

yatxnear0(q,r) = xatymax(q,xnearO(r))
[Parameters]

a = yatxnearO(y,x) "Auto {{previous: 5.44426}}
b = if(x50(x,y)-min(x)=0, 1, -In(.5)/(x50(x,y)-mix))) "Auto {{previous: 0.000319428}}
[Equation]

f = a*exp(-b*x)

fitftoy

"fit f to y with weight reciprocal_y

"fit f to y with weight reciprocal_ysquare
[Constraints]

b>0

[Options]
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tolerance=0.0001

stepsize=100

iterations=100

R =0.89745925 Rsgr =0.80543310 Adj Rsqr = 0.78381

Standard Error of Estimate = 0.2520

Coefficient Std. Error t P
a 5.4443 0.1517 35.8959 <0.0001
b 0.0003 0.0001 6.1554 0.0002
Analysis of Variance:

DF SS MS F P
Regression 1 2.3663 2.3663 37.2566 0.0002
Residual 9 0.5716 0.0635
Total 10 2.9379 0.2938

PRESS = 1.2230

Durbin-Watson Statistic = 1.3834

Normality Test: K-S Statistic = 0.2084 Significanicevel = 0.6724
Constant Variance Test: Failed (P =0.0290)

Power of performed test with alpha = 0.0500: 0.9849

Regression Diagnostics:

Row Predicted Residual Std. Res. Stud. Res. StudeDRes.
4 5.4443 0.6001 2.3813 2.9817 25.4908
5 5.2731 -0.2731 -1.0837 -1.2502 -1.2966
6 5.1073 -0.2073 -0.8227 -0.9029 -0.8927
7 4.9468 -0.1668 -0.6617 -0.7056 -0.6845
8 4.7912 -0.1212 -0.4811 -0.5061 -0.4841
9 4.6406 -0.0606 -0.2405 -0.2525 -0.2389
10 4.4947 -0.0447 -0.1775 -0.1878 -0.1774
11 4.3534 -0.0434 -0.1723 -0.1852 -0.1749
12 4.2166 0.0434 0.1724 0.1895 0.1791
13 4.0840 0.1060 0.4206 0.4765 0.4550
14 3.9556 0.1752 0.6952 0.8166 0.8001
Influence Diagnostics:

Row Cook'sDist Leverage DFFITS

4 2.5241 0.3622 19.2085

5 0.2586 0.2486 -0.7458

6 0.0834 0.1698 -0.4038

7 0.0341 0.1206 -0.2535

8 0.0136 0.0963 -0.1580

9 0.0033 0.0927 -0.0764

10 0.0021 0.1064 -0.0612

11 0.0027 0.1341 -0.0688

12 0.0038 0.1731 0.0819

13 0.0322 0.2208 0.2422

14 0.1267 0.2753 0.4931

95% Confidence:

Row Predicted Regr. 5% Regr. 95% Pop. 5% Pop. 95%
4 5.4443 5.1012 5.7874 4.7789 6.1097
5 5.2731 4.9888 5.5574 4.6361 5.9102
6 5.1073 4.8724 5.3423 4.4907 5.7240
7 4.9468 4.7488 5.1447 4.3433 5.5503
8 4.7912 4.6144 4.9681 4.1943 5.3882
9 4.6406 4.4670 4.8142 4.0447 5.2366
10 4.4947 4.3087 4.6807 3.8951 5.0944
11 4.3534 4.1446 4.5622 3.7463 4.9606
12 4.2166 3.9794 4.4537 3.5991 4.8340
13 4.0840 3.8161 4.3519 3.4541 4.7139
14 3.9556 3.6565 4.2547 3.3118 4.5994
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Nonlinear Regression: 130nm, 298.15K, 4.05V

[Variables]

x = col(2)

y = col(3)

reciprocal_y = 1/abs(y)

reciprocal_ysquare = 1/y"2

'‘Automatic Initial Parameter Estimate Functions
xnear0(q) = max(abs(q))-abs(q)

yatxnear0(q,r) = xatymax(q,xnearO(r))
[Parameters]

a = yatxnearO(y,x) "Auto {{previous: 6.52409}}
b = if(x50(x,y)-min(x)=0, 1, -In(.5)/(x50(x,y)-mix))) "Auto {{previous: 0.000249826}}
[Equation]

f = a*exp(-b*x)

fitftoy

"fit f to y with weight reciprocal_y

"fit f to y with weight reciprocal_ysquare
[Constraints]

b>0

[Options]

tolerance=0.0001

stepsize=100

iterations=100

R =0.99420186 Rsqgr =0.98843734  Adj Rsqr = 0.92805

Standard Error of Estimate = 0.0544

Coefficient Std. Error t P
a 6.5241 0.0323 202.0870 <0.0001
b 0.0002 0.0000 27.7099 <0.0001
Analysis of Variance:

DF SS MS F
Regression 1 2.2745 2.2745 769.3677
Residual 9 0.0266 0.0030
Total 10 2.3011 0.2301

PRESS = 0.0437

Durbin-Watson Statistic = 0.8986

Normality Test: K-S Statistic = 0.1885 Significanicevel = 0.7860
Constant Variance Test: Passed (P =0.9676)

Power of performed test with alpha = 0.0500: 1.0000

Regression Diagnostics:

Row Predicted Residual Std. Res. Stud. Res.
4 6.5241 0.0136 0.2502 0.3110
5 6.3631 0.0469 0.8621 0.9930
6 6.2061 0.0539 0.9908 1.0880
7 6.0530 -0.0430 -0.7909 -0.8440
8 5.9037 -0.0537 -0.9868 -1.0384
9 5.7580 -0.0380 -0.6988 -0.7334
10 5.6159 -0.0159 -0.2929 -0.3096
11 5.4774 -0.0474 -0.8711 -0.9354
12 5.3422 -0.0322 -0.5926 -0.6518
13 5.2104 0.0096 0.1763 0.2002
14 5.0819 0.1073 1.9743 2.3340
Influence Diagnostics:

Row Cook'sDist Leverage DFFITS

4 0.0263 0.3525 0.2175

5 0.1611 0.2462 0.5671

6 0.1218 0.1706 0.4993
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P
<0.0001

StudeDRes.
0.2948
0.9922
1.1007
-0.8293
-1.0435
-0.7130
-0.2935
-0.9282
-0.6295

0.1892

3.5025



7 0.0495 0.1220 -0.3091

8 0.0578 0.0968 -0.3416

9 0.0273 0.0920 -0.2270

10 0.0056 0.1048 -0.1004

11 0.0669 0.1327 -0.3630

12 0.0445 0.1733 -0.2882

13 0.0058 0.2245 0.1018

14 1.0830 0.2845 2.2086

95% Confidence:

Row Predicted Regr. 5% Regr. 95% Pop. 5%
4 6.5241 6.4511 6.5971 6.3810
5 6.3631 6.3021 6.4242 6.2258
6 6.2061 6.1553 6.2569 6.0730
7 6.0530 6.0100 6.0960 5.9227
8 5.9037 5.8654 5.9419 5.7748
9 5.7580 5.7207 5.7953 5.6295
10 5.6159 5.5761 5.6558 5.4866
11 5.4774 5.4326 5.56222 5.3465
12 5.3422 5.2910 5.3934 5.2090
13 5.2104 5.1521 5.2687 5.0743
14 5.0819 5.0163 5.1475 4.9425

Nonlinear Regression: 130nm, 348.15K, 4.05V

[Variables]

x = col(6)

y = col(7)

reciprocal_y = 1/abs(y)

reciprocal_ysquare = 1/y"2

'‘Automatic Initial Parameter Estimate Functions
xnear0(q) = max(abs(q))-abs(q)

yatxnear0(q,r) = xatymax(q,xnearO(r))
[Parameters]

a = yatxnearO(y,x) "Auto {{previous: 5.47147}}
b = if(x50(x,y)-min(x)=0, 1, -In(.5)/(x50(x,y)-m{x))) "Auto {{previous: 0.000372677}}
[Equation]

f = a*exp(-b*x)

fitftoy

"fit f to y with weight reciprocal_y

"fit f to y with weight reciprocal_ysquare
[Constraints]

b>0

[Options]

tolerance=0.0001

stepsize=100

iterations=100

R =0.99709819 Rsqgr =0.99420480 Adj Rsqr = 0.99856

Standard Error of Estimate = 0.0453

Coefficient Std. Error t P
a 5.4715 0.0276 198.5888 <0.0001
b 0.0004 0.0000 39.0512 <0.0001
Analysis of Variance:

DF SS MS F
Regression 1 3.1710 3.1710 1544.0089
Residual 9 0.0185 0.0021
Total 10 3.1895 0.3190

PRESS = 0.0305
Durbin-Watson Statistic = 1.1364
Normality Test: K-S Statistic = 0.2382 Significanicevel = 0.5019

Constant Variance Test: Passed (P=0.1017)
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Pop. 95%
6.6671
6.5004
6.3392
6.1833
6.0325
5.8865
5.7452
5.6083
5.4754
5.3465
5.2213

P
<0.0001



Power of performed test with alpha = 0.0500: 1.0000

Regression Diagnostics:

Row Predicted Residual Std. Res. Stud. Res. StudeDRes.
4 5.4715 0.0049 0.1087 0.1369 0.1292
5 5.2713 0.0087 0.1916 0.2213 0.2092
6 5.0785 0.0415 0.9161 1.0050 1.0057
7 4.8927 -0.0027 -0.0597 -0.0636 -0.0600
8 4.7137 -0.0137 -0.3027 -0.3184 -0.3019
9 4.5413 -0.0313 -0.6903 -0.7250 -0.7044
10 4.3752 -0.0252 -0.5551 -0.5876 -0.5649
11 4.2151 -0.0151 -0.3333 -0.3584 -0.3403
12 4.0609 -0.0709 -1.5646 -1.7203 -1.9798
13 3.9124 0.0076 0.1688 0.1909 0.1803
14 3.7692 0.0977 2.1552 2.5195 4.3758
Influence Diagnostics:

Row Cook'sDist Leverage DFFITS

4 0.0055 0.3696 0.0989

5 0.0082 0.2503 0.1209

6 0.1028 0.1692 0.4538

7 0.0003 0.1196 -0.0221

8 0.0054 0.0960 -0.0984

9 0.0271 0.0934 -0.2261

10 0.0208 0.1077 -0.1963

11 0.0100 0.1352 -0.1346

12 0.3092 0.1728 -0.9050

13 0.0051 0.2179 0.0952

14 1.1637 0.2683 2.6495

95% Confidence:

Row Predicted Regr. 5% Regr. 95% Pop. 5% Pop. 95%
4 5.4715 5.4091 5.5338 5.3515 5.5915
5 5.2713 5.2200 5.3226 5.1567 5.3860
6 5.0785 5.0363 5.1206 4.9676 5.1893
7 4.8927 4.8573 4.9282 4.7842 5.0012
8 4.7137 4.6820 4.7455 4.6064 4.8210
9 45413 4.5100 45726 4.4341 4.6485
10 4.3752 4.3415 4.4088 4.2673 4.4831
11 4.2151 4.1774 4.2528 4.1059 4.3243
12 4.0609 4.0183 4.1035 3.9499 4.1719
13 3.9124 3.8645 3.9602 3.7992 4.0255
14 3.7692 3.7161 3.8223 3.6538 3.8847

Nonlinear Regression: 130nm, 398.15K, 4.05V

[Variables]

x = col(10)

y = col(11)

reciprocal_y = 1/abs(y)

reciprocal_ysquare = 1/y"2

'‘Automatic Initial Parameter Estimate Functions
xnear0(q) = max(abs(q))-abs(q)

yatxnear0(q,r) = xatymax(q,xnearO(r))
[Parameters]

a = yatxnearO(y,x) "Auto {{previous: 4.75819}}
b = if(x50(x,y)-min(x)=0, 1, -In(.5)/(x50(x,y)-m{x))) "Auto {{previous: 0.000438572}}
[Equation]

f = a*exp(-b*x)

fitftoy

"fit f to y with weight reciprocal_y

"fit f to y with weight reciprocal_ysquare
[Constraints]

b>0

[Options]

tolerance=0.0001

stepsize=100
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iterations=100
R =0.99727239 Rsqgr =0.99455223  Adj Rsqr = 0.98324

Standard Error of Estimate = 0.0436

Coefficient Std. Error t P
a 4.7582 0.0268 177.3685 <0.0001
b 0.0004 0.0000 40.1613 <0.0001
Analysis of Variance:

DF SS MS F P
Regression 1 3.1216 3.1216 1643.0509 <0.0001
Residual 9 0.0171 0.0019
Total 10 3.1387 0.3139
PRESS = 0.0267
Durbin-Watson Statistic = 1.3963
Normality Test: K-S Statistic = 0.1552 Significanicevel = 0.9339
Constant Variance Test: Failed (P =0.0234)
Power of performed test with alpha = 0.0500: 1.0000
Regression Diagnostics:
Row Predicted Residual Std. Res. Stud. Res. StudeDRes.
4 4.7582 0.0407 0.9339 1.1849 1.2160
5 4.5540 0.0560 1.2843 1.4852 1.6117
6 4.3586 -0.0586 -1.3447 -1.4745 -1.5962
7 4.1716 -0.0516 -1.1835 -1.2605 -1.3096
8 3.9926 -0.0426 -0.9770 -1.0274 -1.0310
9 3.8213 -0.0213 -0.4879 -0.5127 -0.4906
10 3.6573 0.0527 1.2091 1.2811 1.3358
11 3.5004 -0.0004 -0.0084 -0.0091 -0.0085
12 3.3502 -0.0002 -0.0039 -0.0042 -0.0040
13 3.2064 -0.0064 -0.1472 -0.1660 -0.1568
14 3.0688 0.0336 0.7702 0.8951 0.8842
Influence Diagnostics:
Row Cook'sDist Leverage DFFITS
4 0.4281 0.3788 0.9496
5 0.3722 0.2523 0.9363
6 0.2199 0.1683 -0.7180
7 0.1067 0.1184 -0.4799
8 0.0559 0.0957 -0.3354
9 0.0137 0.0943 -0.1583
10 0.1007 0.1093 0.4680
11 0.0000 0.1365 -0.0034
12 0.0000 0.1724 -0.0018
13 0.0038 0.2143 -0.0819
14 0.1405 0.2597 0.5237
95% Confidence:
Row Predicted Regr. 5% Regr. 95% Pop. 5% Pop. 95%
4 4.7582 4.6975 4.8189 4.6424 4.8740
5 4.5540 4.5045 4.6036 4.4437 4.6644
6 4.3586 4.3182 4.3991 4.2520 4.4652
7 4.1716 4.1377 4.2055 4.0673 4.2759
8 3.9926 3.9621 4.0231 3.8894 4.0958
9 3.8213 3.7910 3.8516 3.7181 3.9244
10 3.6573 3.6247 3.6899 3.5534 3.7612
11 3.5004 3.4639 3.5368 3.3953 3.6055
12 3.3502 3.3092 3.3911 3.2434 3.4569
13 3.2064 3.1608 3.2521 3.0978 3.3151
14 3.0688 3.0186 3.1191 2.9582 3.1795
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