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The desire to assess the reliability of emerging scaled microelectronics technologies 

through faster reliability trials and more accurate acceleration models is the precursor 

for further research and experimentation in this relevant field.  The effect of 

semiconductor scaling on microelectronics product reliability is an important aspect 

to the high reliability application user.  From the perspective of a customer or user, 

who in many cases must deal with very limited, if any, manufacturer’s reliability data 

to assess the product for a highly-reliable application, product-level testing is critical 

in the characterization and reliability assessment of advanced nanometer 

semiconductor scaling effects on microelectronics reliability. This dissertation 

provides a methodology on how to accomplish this and provides techniques for 

deriving the expected product-level reliability on commercial memory products.  

 



   

Competing mechanism theory and the multiple failure mechanism model are applied 

to two separate experiments; scaled SRAM and SDRAM products. Accelerated stress 

testing at multiple conditions is applied at the product level of several scaled memory 

products to assess the performance degradation and product reliability.  Acceleration 

models are derived for each case. For several scaled SDRAM products, retention time 

degradation is studied and two distinct soft error populations are observed with each 

technology generation: early breakdown, characterized by randomly distributed weak 

bits with Weibull slope β=1, and a main population breakdown with an increasing 

failure rate. Retention time soft error rates are calculated and a multiple failure 

mechanism acceleration model with parameters is derived for each technology. 

Defect densities are calculated and reflect a decreasing trend in the percentage of 

random defective bits for each successive product generation.   

 

A normalized soft error failure rate of the memory data retention time in FIT/Gb and 

FIT/cm2 for several scaled SDRAM generations is presented revealing a power 

relationship.  General models describing the soft error rates across scaled product 

generations are presented. The analysis methodology may be applied to other scaled 

microelectronic products and key parameters.  
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Chapter 1: Introduction 

 

1.1 Background 

   

Two major upcoming missions for NASA include the Jet Propulsion Laboratory 

(JPL) Mars Science Laboratory (MSL) and the Jupiter Polar Orbiter (Juno); both are 

planned for launch in 2011.  There are major technological, environmental and 

semiconductor scaling trend challenges with respect to the electronics required for the 

systems in these missions.  The systems will incorporate some of the latest scaled 

microelectronic technologies, some of which must meet long life operating 

requirements and perform in extreme temperatures in a space environment. See 

Figure 1. 

 

Building on the success of the two Mars Exploration Rovers, Spirit and Opportunity, 

that arrived at Mars in early 2004, NASA's next rover mission is planned to travel to 

Mars in 2011. Twice as long and three times as heavy as the first two rovers, the Mars 

Science Laboratory will collect martian soil samples and rock cores and analyze them 

for organic compounds and environmental conditions that could have supported 

microbial life now or in the past. The mission is anticipated to have international 

collaboration, with a neutron-based hydrogen detector for locating water provided by 

the Russian Federal Space Agency, a meteorological package provided by the 

Spanish Ministry of Education and Science, and a spectrometer provided by the 

Canadian Space Agency with participation by the Max Planck Institute for Chemistry 
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in Germany. Like the twin rovers now on the surface of Mars, Mars Science 

Laboratory will have six wheels and cameras mounted on a mast. Unlike the twin 

rovers, it will carry a laser for vaporizing a thin layer from the surface of a rock and 

analyzing the elemental composition of the underlying materials. It will also collect 

and crush rock and soil samples and distribute them to on-board test chambers for 

chemical analysis. Its design includes a suite of scientific instruments for identifying 

organic compounds such as proteins, amino acids, and other acids and bases that 

attach themselves to carbon backbones and are essential to life as we know it. It could 

also identify features such as atmospheric gases that may be associated with 

biological activity.  

 

Figure 1.  MSL and Juno Spacecraft Illustrations. 

 

The Jupiter Polar Orbiter mission will conduct a first-time, in-depth study of the giant 

planet. This mission proposes to place a spacecraft in a polar orbit around Jupiter to 

investigate the existence of an ice-rock core; determine the amount of global water 

and ammonia present in the atmosphere; study convection and deep wind profiles in 

the atmosphere; investigate the origin of the Jovian magnetic field; and explore the 
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polar magnetosphere. See Figure 2. The mission's primary science goal is to 

significantly improve our understanding of the formation and structure of Jupiter.   

The spacecraft will have an onboard suite of seven science instruments. In addition, a 

camera called JunoCam will be used by student participants in the Juno Education 

and Public Outreach program to take the first images of Jupiter's Polar Regions. 

 

 

 

 

 

 

 

 

 

 

Figure 2.  Juno Mission Overview. 

 

NASA, the aerospace community, and other high reliability (hi-rel) users of advanced 

microelectronic products face many challenges as technology scales into deep sub-

micron feature sizes.  90nm and 65nm technologies are now being assessed for 

product reliability as the desire for higher performance, lower operating power, and 

lower stand-by power characteristics continue to be sought after in hi-rel space 

systems.  International Technology Roadmap for Semiconductors (ITRS) predictions 
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over the next few years will drive manufacturers to reach both physical and material 

limitations as technology continues to scale.  As a result, new materials, designs and 

processes will be employed to keep up with the performance demands of the industry.  

While target product lifetimes for mil-product have generally been ten years at 

maximum rated junction temperature, leading edge commercial-off-the-shelf (COTS) 

microelectronics may be somewhat less due to reduced cost consumer electronics and 

reduced safety and reliability margins, including design life. Therefore, reliability 

uncertainties through the introduction of new materials, processes and architectures, 

coupled with the economic pressures to design for ‘reasonable life,’ pose a concern to 

the hi-rel user of advanced scaled microelectronics technologies.  These aspects, in 

addition to higher power and thermal densities, increase the risk of introducing new 

failure mechanisms and accelerating known failure mechanisms. 

 

The desire to assess the reliability of emerging technologies through faster reliability 

trials and more accurate acceleration models is the precursor for further research and 

experimentation in this field.  Semiconductor scaling effects on microelectronics 

reliability prediction, qualification strategies and derating criteria for space 

applications is an area where ongoing research is warranted.  Ramp-voltage and 

constant-voltage stress tests to determine voltage-to-breakdown and time-to-

breakdown, coupled with temperature acceleration, can be effective methods to 

identify and model critical stress levels and the reliability of emerging deep-sub 

micron microelectronics.   Here, an overview of product reliability trends, emerging 

issues with scaling, derating approaches and physics-of-failure (PoF) considerations 
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for reliability assessment of advanced scaled microelectronics technologies for hi-rel 

space applications will be presented. 

 

Derating microelectronic devices and their critical stress parameters in aerospace 

applications has been common practice for decades to improve device reliability and 

extend operating life in critical missions.  Derating is the intentional reduction of key 

parameters, e.g., supply voltage and junction temperature, to reduce internal stresses 

and increase device lifetime and reliability. Semiconductor technology scaling and 

process improvements, however, compel us to reevaluate common failure 

mechanisms, application and stress conditions, reliability trends, and common 

derating principles to provide affirmation that adequate derating criteria is applied to 

current technologies destined for high reliability space systems.  It is incumbent upon 

the user to develop an understanding of advanced technology failure mechanisms 

through modeling, accelerated testing, and failure analysis prior to the infusion of 

new nano-scale CMOS products in critical high reliability environments.  NASA 

needs PoF based derating guidance for advanced scaled microelectronic technologies 

for long-term critical missions. Semiconductor manufacturers in general do not 

publish their reliability reports for fear of losing their competitive edge, and 

customers are often forced into making assumptions with the performance and 

reliability trade-offs.  JPL Derating Guidelines D-8545 [1] provide recommendations 

for the derating of electronic parts used in JPL spaceflight hardware.  Many of the 

current derating methodologies are based on assumptions that have not changed in 

20-30 years. Examples of this include passive components requiring a derating factor 
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of 0.6 and generic failure mechanism activation energies of ~0.7 for reliability 

predictions. The rationale to continue to support such guidelines may not be 

applicable to current technology.  Violation of the current D-8545 guidelines occurs 

frequently on a variety of missions and is a major waiver generator for JPL.  More 

technically sound derating criteria are needed for the reliable application of current 

device technologies.  Such an improvement in derating criteria can be obtained by an 

approach based more rigorously on the physics of device failure. 

 

There has been steady progress over the years in the development of a physics-of-

failure understanding of the effect that various stress drivers have on semiconductor 

structure performance and wearout.  This has resulted in better modeling and 

prediction capabilities.  Applying a PoF approach to reliability prediction and 

derating of EEE parts for NASA/JPL flight projects is an improvement in device 

reliability assessment on the basis of environmental and operating stresses. The 

benefits to NASA flight projects as a result of this work include: 

 

1) More technically sound predictive reliability models and derating guidance for 

the reliable application of flight electronic parts based on a PoF derating 

approach, particularly emerging scaled microelectronic technologies; 

2) Fewer parts waivers; and  

3) Less evaluation time. 
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1.1.1 Aerospace Vehicle Systems Institute (AVSI) Consortium 

 

Some of the more relevant work in this area of research was initiated by the 

Aerospace Vehicle Systems Institute (AVSI) Consortium in 2002.  AVSI Project #17 

– Methods to Account for Accelerated Semiconductor Device Wearout was 

established to investigate, understand and address the impacts of microelectronic 

nanometer technology and its implication on device lifetime as a result of device 

wearout.  The project was oriented toward avionics applications, however, all high-

reliability users of scaled microelectronics will benefit from this work.  In his thesis, 

Methods to Account for Accelerated Semiconductor Device Wearout in Long life 

Aerospace Applications [2], J. Walter supported some of the primary objectives of the 

AVSI project, including: 

 

1) Determination of likely failure mechanisms of future semiconductor devices 

in avionics applications; 

2) Development of models to estimate expected lifetimes of future avionics; and 

3) Development of device assessment methods and avionics system design 

guidelines. 

 

Walter discussed failure mechanism lifetime models and derating modeling 

approaches with an emphasis on systems engineering methodologies, impact of 

scaling, and mitigating the impact of decreasing device reliability in aerospace 

applications. 
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1.1.2 Lifetime Enhancement through Derating 

 

A semiconductor device’s lifetime may be affected by changing its operating 

parameters, specifically junction temperature, because of heat activated mechanisms 

and supply voltage. A semiconductor device’s operating voltage (Vdd) directly affects 

many of its parameters. These include current density (je) and the electric field (Eox) 

across the gate dielectric. Supply voltage also has a significant effect on junction 

temperature (Tj).  Junction temperature is the internal operating temperature of a 

device. It is dependent on the power dissipated from the device (PD), the ambient 

operating temperature (Ta), and the sum of the thermal impedances between the die 

and ambient environment (θja). An engineer can exercise some control over each of 

these factors in a system design. 

 

The relationship for determining the junction temperature is [3]:  

 

Tj = θja*PD + Ta (1.1) 

 

The power dissipated in the Tj equation is determined by [4]:  

 

PD = K*C*Vdd2 *f  + i lVdd (1.2) 

 

where Vdd is the supply voltage, f is the switching frequency, K is the switching factor 

and C is the average node capacitance. The power dissipated is the sum of both 
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dynamic and static power dissipation. In CMOS circuits, dynamic power is the 

dominant factor, accounting for at least 90% of the power dissipation [5]. Therefore a 

first order approximation of the power dissipation is given by: 

 

PD ~ Pdynamic  = Ceff*Vdd2 *f (1.3) 

 

where Ceff combines the physical capacitance and activity (number of active nodes) to 

account for the average capacitance charged during each 1/ f  period.  While the 

above equation shows that Vdd has a direct impact on junction temperature, Vdd has a 

further impact in that frequency is proportional to it as well. In a CMOS circuit, a 

reduction in Vdd results in a near linear reduction in circuit delay [6].  

 

1.1.3 Derating Factor 

 

The term Derating Factor (Df ) is synonymous with Acceleration Factor (Af ), but is 

defined as the ratio of measured MTTF of a semiconductor at its manufacturer rated 

operating conditions to the measured MTTF of identical devices operating at derated 

conditions.  This is described as: 

 




=
rated

derated

f MTTF

MTTF
D  (1.4) 

 
The desired values for Df are greater than zero (Df > 0), with larger values providing a 

longer operational life. Therefore, the derated lifetime is described as: 
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MTTFderated = Df ×MTTFrated  (1.5) 

 

Walter [2] went on to model the individual and combined electromigration (EM), hot 

carrier degradation (HCD), time-dependent-dielectric-breakdown (TDDB), and 

derating factor vs. derated voltage while keeping operating temperature and 

frequency constant in Figure 3.  In the case of the three intrinsic wearout mechanisms 

discussed, the combined total derating factor is described by Walter as: 

 

fTDDB

TDDB

fHCD

HCD

fEM

EM
f

DDD

D λλλ
λ

++
=  (1.6) 

 
where λ can represent either the total failure rate or the sum of the failure rates of the 

wearout mechanisms. This will result in two different answers, the total derating 

factor and wearout derating factor respectively.  
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Figure 3.  Df  versus Dvoltage with Constant Operating Temperature and Frequency. 
λEM = λTDDB =λHCD, Tj = 85°C, Ta = 20°C, Vdd,max = 3.3V, Vth = 0.8V, EaEM = 0.8 eV, 
n = 2, B = 70, EaTDDB = 0.75 eV, Eox = 4 MV/cm, g = 3 Naperians per MV/cm. 
 
 

Due to the low failure rates of semiconductor devices, a device’s failure rate is 

normally determined through accelerated life testing and then extrapolated back to at-

use conditions, using an acceleration factor, in order to approximate an MTTF. When 

accelerated life testing is used to determine the rated lifetime of a device, care must 

be taken to ensure that all the relevant failure mechanisms are accelerated in order to 

make a reasonable extrapolation of the device’s failure rate. 
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1.1.4 Failure Mechanism Simulation 

 

Over the years, there has been a significant amount of simulation work that focuses 

on individual failure mechanisms and their impact on semiconductor reliability.  Of 

note, Hsu, et al. [7] and Chun, et al. [8] developed CAD tools for hot carrier induced 

damage effects in VLSI circuits; Alam, et. al. [9] developed models to simulate 

microelectronic reliability from electromigration damage; and P.C. Li, et al. [10] 

studied the effect of oxide failure on microelectronic reliability using simulation.  

Electromigration and hot-carrier effects on performance degradation of a 2-stage op-

amp were simulated on a CAD reliability tool integrated with a Cadence Spectre 

simulator by Xuan and Chatterjee [11].   

 

Attempts have been made over the years to simulate multiple failure mechanisms in 

microelectronics. Some of the earlier ones include Lathrop, et al. [12] who provided 

an investigative program using a CAD tool to improve microelectronic reliability by 

generating failure information due to electromigration, charge injection and 

electrostatic discharge; in 1992, Hu [13] developed a circuit reliability simulation 

model called BERT, that simulates the hot electron effect, oxide time-dependent 

breakdown, electromigration, bipolar transistor gain degradation, and radiation effects 

on microelectronics as part of the design process.  As simulators became more 

advanced, more sophisticated approaches to modeling device performance and 

reliability were developed. 
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1.1.5 Micro-Architectural Level Reliability Modeling 

 

While junction temperature reduction has traditionally been the primary derating 

focus, various SRAM field studies of commercial devices, and experimental research 

and modeling of the effects of duty cycle and Vdd stresses on the device, suggest that 

derating these elements with Tj can provide an order of magnitude or more 

improvement in reliability (FIT) [14-16].  The circuit design and application, 

however, must be robust enough to operate at the lower end of the device 

performance and specification limits. In 2004, J. Srinivasan and the University of 

Illinois [17] conducted processor RAMP modeling which provided FIT estimates 

across 180nm to 65nm technologies for a processor operating at worst case 

conditions. The impact of different scaling related parameters on intrinsic failure 

mechanisms is presented in Table 1 [17].  FIT estimates for TDDB, EM, Stress 

Migration (SM) and Thermal Cycling (TC) related failure mechanisms, and their 

relative contribution to total FIT are summarized in Figure 4. On average, the 

simulated failure rate (FR) of a scaled 65nm processor may be as high as 316% 

higher than a similarly pipelined 180nm device [17].  
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Table 1.  Impact of Different Scaling Related Parameters on Intrinsic Failure 
Mechanisms.  

 

 

 

 

 
 

 
Figure 4.  FIT Values for Processor W/C Conditions.  Application for Model (a) and 

Model (b) with Relative Contribution of Each Mechanism.  
 

 

Generally accepted models for MTTF due to EM, SM, TDDB and TC used in 

Srinivasan’s model have been published in JEDEC Publication JEP122-A [18] and 

are recapitulated here for completeness: 
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where Tambient  is the ambient temperature in Kelvin, Taverage – Tambient is the average 

large thermal cycle experienced by a structure on a chip, and q is the Coffin-Manson 

exponent, an empirically determined material-dependent constant. 

 

Srinivasan makes two specific contributions. First, he describes an architecture-level 

model and its implementation, called RAMP, which can dynamically track lifetime 

reliability responding to changes in application behavior. RAMP is based on state-of-

the-art device models for different wearout mechanisms. Second, he proposes 

dynamic reliability management (DRM) - a technique where a processor can respond 

to changing application behavior to maintain its lifetime reliability target. Contrary to 

current worst-case behavior based reliability qualification methodologies, DRM 

allows processors to be qualified for reliability at lower (but more likely) operating 

points than the worst case.  

 

1.1.6 Circuit-Level Reliability Modeling and Simulation 

 

There has been work over the years that has focused on the impact of intrinsic failure 

mechanisms on the circuit.   Kumar, et al. [19] modeled NBTI degradation of 

threshold voltage and static noise margin (SNM) on 100nm and 70nm SRAM cells.  

In 2002, Reddy, et al. [20] demonstrated that SNM of an SRAM memory cell 

degrades on an 130nm CMOS process by NBTI and that the relative degradation 

increases as the operating voltage decreases.  This was confirmed by measuring an 

increase in the relative frequency degradation of an NBTI stressed ring oscillator as 
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the operating voltage dropped.  Jha, et al. [21] later attempted to quantify circuit level 

degradation due to NBTI by simulating a variety of analog/mixed signal circuits. 

 

In addition to hot carrier effects on circuit level reliability, thin oxide reliability in 

scaled CMOS devices has been modeled to predict breakdown at the device level and 

to determine the impact on circuit performance.  J. Stathis describes this approach in 

[22] and explains how soft breakdown is the most common mode for a constant-

current stress, while hard breakdown generally occurs during constant-voltage stress. 

Rosenbaum, et al. [23] also developed a circuit reliability simulator oxide breakdown 

module. 

 

Khin, et al. [24] worked on a circuit reliability simulator for interconnects and contact 

electromigration. 

 

1.1.7 Deep Submicron CMOS VLSI Circuit Reliability Modeling and Simulation 

 

A new SPICE reliability simulation methodology that shifts the focus of reliability 

analysis from device wearout to circuit functionality was developed in 2005 by X. Li 

[25].   A set of accelerated lifetime models and failure equivalent circuit models were 

proposed for the most common MOSFET intrinsic wearout mechanisms, including 

hot carrier injection (HCI), negative bias temperature instability (NBTI), and TDDB. 

The accelerated lifetime models help to identify the most degraded transistors in a 

circuit in terms of the device's terminal voltage and current waveforms. 
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Corresponding failure equivalent circuit models are then incorporated into the circuit 

to substitute the identified transistors. Finally, SPICE simulation is performed again 

to check circuit functionality and analyze the impact of device wearout on circuit 

operation. Device wearout effects are lumped into a very limited number of failure 

equivalent circuit model parameters, and circuit performance degradation and 

functionality are determined by the magnitude of these parameters. 

 

In Li’s approach, it is unnecessary to perform a large number of small-step SPICE 

simulation iterations, making simulation time much shorter in comparison to other 

tools. In addition, a reduced set of failure equivalent circuit model parameters, rather 

than a large number of device SPICE model parameters, need to be accurately 

characterized at each interim wearout process. Thus, device testing and parameter 

extraction work are also significantly simplified.  The Maryland Circuit Reliability 

Oriented (MaCRO) SPICE simulation methodology flow is summarized in Figure 5 

[25]. 
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Figure 5.  MaCRO Flow of Lifetime, Failure Rate and Reliability Trend Prediction.  
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1.1.8 Physics-of-Failure Based VLSI Circuits Reliability Simulation and Prediction 

 

Most recently, J. Qin [26] proposed a physics-of-failure based statistical reliability 

prediction methodology to simplify the modeling and simulation complexity of the 

effect of multiple intrinsic failure mechanisms on semiconductor devices. Dynamic 

stress modeling utilizing PoF models for each failure mechanism with the best-fit 

lifetime distribution provided a reliability prediction for a 90nm SRAM module case 

study.   With a specified application profile, simulation results revealed that TDDB 

was the most serious reliability concern for the SRAM bit cell, NBTI was the second 

dominating mechanism, and HCI had a negligible degradation effect. The memory 

core’s reliability prediction showed that the memory core had a constant failure rate 

up to 60,000 hours, and an increasing failure rate beyond 60,000 hours.  Figure 6 

provides a graphical representation of how intrinsic failure mechanisms may be 

modeled as a function of operating stresses. 

 

The MaCRO simulation models proposed by Li and Qin may become useful to 

properly derate device and operating parameters to improve reliability and predict 

reliability trends in scaled technologies.  This PoF approach to derating can become 

an important framework for hi-rel application users to derate product level voltages 

and temperatures to achieve the desired reliability of current scaled COTS 

microelectronics. 
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Figure 6.  Intrinsic Failure Mechanism Models as a Function of Operating Stress. 
 
 
 

1.1.9 Product Reliability 

 

There has been a limited amount of product reliability data and studies published 

driving the need for independent assessment of the wearout and degradation 

characteristics of scaled technologies from a PoF standpoint.  Most product reliability 

data is kept proprietary by the manufacturers in an effort to maintain their competitive 

edge.  However, understanding the product reliability and performance metrics 

throughout the useful life and how best to mitigate the effects of degradation and 

failure in the application is essential.  

(a) TDDB failure percentage (b) HCI failure percentage

(d) NBTI failure percentage(c) EM failure percentage
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One approach to product lifetime reliability accelerated testing is described by 

Mazzuchi and Soyer [27] in their Bayes method for assessing product reliability. In 

their approach, relevant information on both failure probabilities and the reliability 

growth process is used to develop the prior joint distribution for the probability of 

failure type over the testing range.  The results are then used at a particular test stage 

to update the knowledge of the probability of each failure type and the product 

reliability of the current test stage and subsequent test stages.  Jee, et al. [28] 

developed an approach to optimize test coverage and test application time of an 

embedded SRAM using a defect-based approach, e.g., shorts and opens in a memory 

cell array.  In their approach, faults are extracted and analyzed from a representative 

portion of the array, and the results are replicated for the entire memory array to 

reduce test time. 

 

Estimating long-term performance of scaled microelectronic products can be difficult 

because accelerated life testing (ALT) involving elevated stresses can often result in 

either too few or no failures to make realistic predictions or inferences.  Tang, et al. 

[29] describes a methodology to overcome this problem by using accelerated 

degradation testing (ADT) as a means to predict performance in such cases.  By 

identifying key performance measures which are expected to degrade over time, 

product reliability can be inferred by the degradation paths without observing actual 

physical failures.  Using this approach, the user defines a failure as the first time a key 
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performance measure exceeds a pre-specified threshold, and then the degradation 

path is correlated to product reliability. 

 

Krasich [30] and Turner [31] discuss product reliability and accelerated testing in 

their work, and Turner addresses failure mitigation and challenges as 

microelectronics scale to 90nm and beyond.  Other notable accelerated degradation 

modeling methodologies include: the statistical methods of using degradation 

measures to estimate the time-to-fail distribution for a variety of degradation models 

developed by Lu and Meeker [32]; a model for analyzing linear degradation data 

proposed by Lu, et al. [33]; and the method to handle degradation failures developed 

by Guo and Mettas [34] by applying amplification factors with control factors to 

model the degradation process. 
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1.2 CMOS Technology Scaling and Impact 

 

Over the past three decades, CMOS technology scaling has been a primary driver of 

the electronics industry and has provided a path toward both denser and faster 

integration [35-47]. The transistors manufactured today are twenty times faster and 

occupy less than 1% of the area of those built twenty years ago. Predictions of size 

reduction limits have proven to elude the most insightful scientists and researchers. 

The predicted ‘limit’ has been dropping at nearly the same rate as the size of the 

transistors. 

 

The number of devices per chip and the system performance has been improving 

exponentially over the last two decades. As the channel length is reduced, the 

performance improves, the power per switching event decreases, and the density 

improves. But the power density, total circuits per chip, and the total chip power 

consumption have been increasing. The need for more performance and integration 

has accelerated the scaling trends in almost every device parameter, such as 

lithography, effective channel length, gate dielectric thickness, supply voltage, and 

device leakage. Some of these parameters are approaching fundamental limits, and 

alternatives to the existing material and structures may need to be identified in order 

to continue scaling. 
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1.2.1 MOS Scaling Theory 

 

During the early 1970s, both Mead [35] and Dennard [36] noted that the basic MOS 

transistor structure could be scaled to smaller physical dimensions. One could 

postulate a “scaling factor” of λ, the fractional size reduction from one generation to 

the next generation, and this scaling factor could then be directly applied to the 

structure and behavior of the MOS transistor in a straightforward multiplicative 

fashion. For example, a CMOS technology generation could have a minimum channel 

length Lmin, along with technology parameters such as the oxide thickness tox, the 

substrate doping NA, the junction depth xj, the power supply voltage Vdd, the threshold 

voltage Vth, etc. The basic “mapping” to the next process, Lmin→ λLmin, involved the 

concurrent mappings of tox→ λtox, NA→ λNA, xj→ λxj, Vdd→ λVdd, and Vth→ λVth. 

Thus, the structure of the next generation process could be known beforehand, and 

the behavior of circuits in that next generation could be predicted in a straightforward 

fashion from the behavior in the present generation. The scaling theory developed by 

Mead and Dennard is solidly grounded in the basic physics and behavior of the MOS 

transistor. Scaling theory allows a “photocopy reduction” approach to feature size 

reduction in CMOS technology, and while the dimensions shrink, scaling theory 

causes the field strengths in the MOS transistor to remain the same across different 

process generations. Thus, the “original” form of scaling theory is constant field 

scaling. 
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Constant field scaling requires a reduction of the power supply voltage with each 

technology generation. In the 1980s, CMOS adopted the 5V power supply, which was 

compatible with the power supply of bipolar TTL logic. Constant field scaling was 

replaced with constant voltage scaling, and instead of remaining constant, the fields 

inside the device increased from generation to generation until the early 1990s, when 

excessive power dissipation and heating, gate dielectrics TDDB, and channel hot 

carrier aging caused serious problems with the increasing electric field. As a result, 

constant field scaling was applied to technology scaling in the 1990s.  

 

Constant field scaling requires that the threshold voltage be scaled in proportion to 

the feature size reduction. However, ultimately threshold voltage scaling is limited by 

the sub-threshold slope of the MOS transistor, which itself is limited by the thermal 

voltage kT/q, where the Boltzmann constant, k and the electron charge, q are 

fundamental constants of nature and cannot be changed. The choice of the threshold 

voltage in a particular technology is determined by the off-state current goal per 

transistor and the sub-threshold slope. With off-current requirements remaining the 

same (or even tightening) and the sub-threshold slope limited by basic physics, the 

difficulty with scaling the threshold voltage is clear. Because of this, the power 

supply voltage decreased corresponding with the constant field scaling, but the 

threshold voltage was unable to scale as aggressively. This situation worsens as 

feature sizes and power supply voltages continue to scale. This is a fundamental 

problem with further CMOS technology scaling.  
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1.2.2 Moore’s Law 

 

It was the realization of scaling theory and its usage in practice which has made 

possible the better-known “Moore’s Law.” Moore’s Law is a phenomenological 

observation that the number of transistors on integrated circuits doubles every two 

years, as shown in Figure 7. It is intuitive that Moore’s Law cannot be sustained 

forever. However, predictions of size reduction limits due to material or design 

constraints, or even the pace of size reduction, have proven to elude the most 

insightful scientists. The predicted ‘limit’ has been dropping at nearly the same rate as 

the size of the transistors. 

 

 

 
Figure 7. Moore’s Law. 
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1.2.3 Scaling to Its limits 

 

There does not seem to be any fundamental physical limitation that would prevent 

Moore’s Law from characterizing the trends of integrated circuits. However, 

sustaining this rate of progress is not straightforward [39].  

 

Figure 8 shows the trends of power supply voltage, threshold voltage, and gate oxide 

thickness versus channel length for high performance CMOS logic technologies [40]. 

Sub-threshold non-scaling and standby power limitations bound the threshold voltage 

to a minimum of 0.2V at the operating temperature. Thus, a significant reduction in 

performance gains is predicted below 1.5V due to the fact that the threshold voltage 

decreases more slowly than the historical trend, leading to more aggressive device 

designs at higher electric fields.   
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Figure 8. Trends of Power Supply Voltage Vdd, Threshold Voltage Vth, and Gate 

Oxide Thickness tox, versus Channel Length for CMOS Logic 
Technologies. 

 

Further technology scaling requires major changes in many areas, including: 1) 

improved lithography techniques and non-optical exposure technologies; 2) improved 

transistor design to achieve higher performance with smaller dimensions; 3) 

migration from current bulk CMOS devices to novel materials and structures, 

including silicon-on-insulator, strained Si and novel dielectric materials; 4) circuit 

sensitivity to soft errors from radiation; 5) smaller wiring for on-chip interconnection 

of the circuits; 6) stable circuits; 7) more productive design automation tools; 8) 

denser memory cells, and 9) manageable capital costs. Metal gate and high-k gate 
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dielectrics were introduced into production in 2007 to maintain technology scaling 

trends [48]. 

 

In addition, packaging technology needs to progress at a rate consistent with on-going 

CMOS technology scaling at sustainable cost/performance levels. This requires 

advances in I/O density, bandwidth, power distribution, and heat extraction. System 

architecture will also be required to maximize the performance gains achieved in 

advanced CMOS and packaging technologies. 

 

1.2.4 Scaling Impact on Circuit Performance  

 

Transistor scaling is the primary factor in achieving high-performance 

microprocessors and memories. Each 30% reduction in CMOS IC technology node 

scaling has [41, 49]:  1) reduced the gate delay by 30% allowing an increase in 

maximum clock frequency of 43%; 2) doubled the device density; 3) reduced the 

parasitic capacitance by 30%; and 4) reduced energy and active power per transition 

by 65% and 50%, respectively. Figure 9 shows CMOS performance, power density 

and circuit density trends, indicating a linear circuit performance as a result of 

technology scaling [41]. 
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Figure 9. CMOS Performance, Power Density and Circuit Density Trends. 

 

1.2.5 Scaling Impact on Power Consumption 

 

Dynamic power and leakage current are the major sources of power consumption in 

CMOS circuits. Leakage related power consumption has become more significant as 

threshold voltage scales with technology. There are several studies that deal with the 

impact of technology scaling in various aspects of CMOS VLSI design [39, 47, 50-

52].  
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Figure 10 [51] illustrates how the dynamic and leakage power consumption vary 

across technologies, where Pact is the dynamic power consumption and Pleak is the 

leakage power consumption. The estimates have only captured the influence of sub-

threshold currents since they are the dominant leakage mechanism. For sub-100nm 

technologies, temperature has a much greater impact on the leakage power 

consumption than the active power consumption for the same technology. In addition, 

the leakage power consumption increases almost exponentially.   

 

 

 

 

Figure 10. Active and Leakage Power for a Constant Die Size. 
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1.2.6 Scaling Impact on Circuit Design 

 

With continuing aggressive technology scaling, it is increasingly difficult to sustain 

supply and threshold voltage scaling to provide the required performance increase, 

limit energy consumption, control power dissipation, and maintain reliability. These 

requirements pose several difficulties across a range of disciplines. On the technology 

front, the question arises whether we can continue along the traditional CMOS 

scaling path – reducing effective oxide thickness, improving channel mobility, and 

minimizing parasitics. On the design front, researchers are exploring various circuit 

design techniques to deal with process variation, leakage and soft errors [41, 47].  

 

For CMOS technologies beyond 90nm, leakage power is one of the most crucial 

design components which must be efficiently controlled in order to utilize the 

performance advantages of these technologies. It is important to analyze and control 

all components of leakage power, placing particular emphasis on sub-threshold and 

gate leakage power. A number of issues must be addressed, including low voltage 

circuit design under high intrinsic leakage, leakage monitoring and control, effective 

transistor stacking, multi-threshold CMOS, dynamic threshold CMOS, well biasing 

techniques, and design of low leakage data-paths and caches.  

 

While supply voltage scaling becomes less effective in providing power savings as 

leakage power becomes larger due to scaling, it is suggested that the goal is to no 

longer have simply the highest performance, but instead have the highest performance 
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within a particular power budget by considering the physical aspects of the design. In 

some cases, it may be possible to balance the benefit of using high threshold devices 

from a low leakage process running at the higher possible frequency at a full Vdd, as 

opposed to using faster but leakier devices which require more voltage scaling in 

order to reach the desired power budget.  

 

Nanometer design technologies must work under tight operating margins, and are 

therefore highly susceptible to any process and environmental variability. Traditional 

sources of variation due to circuit and environmental factors, such as cross 

capacitance, power supply integrity, multiple inputs switching, and errors arising due 

to tools and flows, affect circuit performance significantly. To address environmental 

variation, it is important to build circuits that have well-distributed thermal properties, 

and to carefully design supply networks to provide reliable Vdd and ground levels 

throughout the chip. 

 

With technology scaling, process variation has become more of a concern and has 

received an increased amount of attention from the design automation community. 

Several research efforts have addressed the issue of process variation and its impact 

on circuit performance [49, 53-55]. A worst-case approach was first used to develop 

the closed form models for sensitivity due to different parameter variations for a 

clock tree [53], and was further developed to include interconnect and device 

variation impact on timing delay due to technology scaling [49]. The impact of 

systematic variation sources was then considered in [54]. Finally, an integrated 
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variation analysis technique was developed in [55], which considers the effects of 

both systematic and random variation in both interconnect and devices 

simultaneously. The design community has realized that in order to address the 

process-induced variations and to ensure the final circuit reliability, instead of treating 

timing in a worst-case manner, as is conventionally done in static timing analysis, 

statistical techniques need to be employed that directly predict the percentage of 

circuits that are likely to meet a timing specification. The effects of uncertainties in 

process variables must be modeled using statistical techniques, and they must be 

utilized to determine variations in the performance parameters of a circuit.  

 

1.2.7 Scaling Impact on Parts Burn-in 

  

Power supply voltage in scaled technologies must be lowered for two main reasons 

[56]: 1) to reduce the device internal electric fields and 2) to reduce active power 

consumption since it is proportional to Vdd
2. As Vdd scales, then Vth must also be 

scaled to maintain drain current overdrive to achieve higher performance. Lower Vth 

leads to higher off-state leakage current, which is the major problem with burn-in of 

scaled nanometer technologies.  

 

The total power consumption of high-performance microprocessors increases with 

scaling. Off-state leakage current is a higher percentage of the total current at the sub-

100nm nodes under nominal conditions. The ratio of leakage to active power 

becomes worse under burn-in conditions and the dominant power consumption is 



 36 
 

from the off-state leakage. Typically, clock frequencies are kept in the tens of 

megahertz range during burn-in, resulting in a substantial reduction in active power. 

Conversely, the voltage and temperature stresses cause the off-state leakage to be the 

dominant power component. 

 

Stress during burn-in accelerates the defect mechanisms responsible for early-life 

failures. Thermal and voltage stresses increase the junction temperature resulting in 

accelerated aging. Elevated junction temperature, in turn, causes leakages to further 

increase. In many situations, this may result in positive feedback leading to thermal 

runaway. Such situations are more likely to occur as technology is scaled into the 

nanometer region. Thermal runaway increases the cost of burn-in dramatically. To 

avoid thermal runaway, it is crucial to understand and predict the junction 

temperature under normal and stress conditions. Junction temperature, in turn, is a 

function of ambient temperature, package to ambient thermal resistance, package 

thermal resistance, and static power dissipation. Considering these parameters, one 

can optimize the burn-in environment to minimize the probability of thermal runaway 

while maintaining the effectiveness of burn-in test. 
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1.2.8 Scaling Impact on Long Term Microelectronics Reliability 

 

The major long-term reliability concerns include the intrinsic wear-out mechanisms 

of time dependent dielectric breakdown (TDDB) of gate dielectrics, hot carrier 

injection (HCI), negative bias temperature instability (NBTI), and electromigration 

(EM).  For microelectronics, the primary intrinsic wearout failure mechanisms are 

illustrated in Figure 11.  

 

 

 

Figure 11.  CMOS Intrinsic Wearout Failure Mechanisms. 

 

The drivers & effects of the primary intrinsic failure mechanisms of concern are as 

follows: 
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Hot Carrier Injection (HCI): 

• Drivers: Channel length & width, oxide thickness, operating voltage, and low 

temperature. 

• Effect: Increased substrate current (Isub), saturation drain current degradation 

(IDSAT), and increase in Vth. 

• Impact of Scaling: The rate of hot carrier degradation is directly related to the 

length of the channel, the oxide thickness, and the voltage of the device.  Hot 

carrier effects are expected to be a growing concern. 

 

Electromigration (EM): 

• Drivers: High temperature and current density in metal interconnects. 

• Effect: Metal migration leading to increased resistance and open or short 

circuit. 

• Impact of Scaling: Energy densities within interconnects are expected to grow 

as device features become smaller. 

 

Negative Bias Temperature Instability (NBTI): 

• Drivers: Oxide thickness and high temperature. 

• Effect: Degraded (IDSAT) and transconductance (gm), and an increase in Ioff and 

Vth. 

• Impact of Scaling: NBTI is a growing concern as devices continue to scale. As 

feature sizes scaled through 0.13um, devices required much thinner gate 

oxides and introduced nitrides in the SiO2. 
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Time-Dependent-Dielectric-Breakdown (TDDB): 

• Drivers: Oxide thickness, gate voltage, and high electric field. 

• Effect: Anode to cathode short through the dielectric. 

• Impact of Scaling:  TDDB is expected to accelerate as gate oxide thicknesses 

decrease with continued device scaling. 

  
 
The physics and the reliability characterization and modeling of each mechanism 

have been major research topics for the past three decades.  There has been an 

abundant amount of research in this area, including [57].  

 

Among the wear-out mechanisms, TDDB and NBTI seem to be the major reliability 

concerns as devices scale. The gate oxide has been scaled down to only a few atomic 

layers thick with significant tunneling leakage. While the gate leakage current may be 

at a negligible level compared with the on-state current of a device, it will first have 

an effect on the overall standby power. For a total active gate area of 0.1 cm2, chip 

standby power limits the maximum tolerable gate leakage current to approximately 1-

10 A/cm2, which occurs for gate oxides in the range of 15-18A [40].  

 

Scaling impact of TDDB and NBTI on digital, analog and RF circuit reliability has 

been an important topic during past years [58-69]. Either TDDB, NBTI, or both were 

found to contribute to digital circuit speed degradation [58, 62], FPGA delay increase 

[65], SRAM minimum operating voltage Vmin shift measurement [64, 66, 67], RF 
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circuit parametric drifts [60, 61], and analog circuit mismatch [59, 63]. It appears that 

SRAM minimum operating voltage Vmin shift due to TDDB and NBTI is one of the 

effects that has been tested and characterized most. For example, it is shown [66] that 

transistor shifts due to NBTI manifest themselves as population tails in the product’s 

minimum operating voltage distribution. TDDB manifests itself as single-bit or logic 

failures that constitute a separate sub-population. NBTI failures are characterized by 

Log-normal statistics combined with a slower degradation rate, which is in contrast to 

TDDB failures that follow extreme-value statistics and exhibit a faster degradation 

rate. Most of the studies seem to indicate that the advanced technology parts may 

experience intrinsic or wear-out mechanisms induced circuit parametric shifts during 

operating life time, especially at higher operating voltages and temperature 

conditions. 
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1.3 Physics-of-Failure (PoF) Methodology 

 

The PoF methodology may be summarized as follows: 

 

•  Identify potential failure mechanisms (e.g., chemical, electrical, physical, 

mechanical, structural, or thermal processes leading to failure) and the likely 

failure sites on each device. 

•  Expose the product to highly accelerated stresses to find the dominant root-

cause of failure. 

•  Identify the dominant failure mechanism as the weakest link. 

•  Model the dominant mechanism (what and why the failure takes place). 

•  Combine the data gathered from the acceleration tests and statistical 

distributions, e.g., Weibull, lognormal distributions. 

•  Develop an equation for the dominant failure mechanism at the site and its 

time-to-failure (TTF). 

• Extrapolate to use conditions. 

 

This process is used to assess the retention time reliability of three progressive 

DRAM technologies described in Chapter Three. 
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1.3.1 Competing Mechanism Theory 

 

While the failure rate qualification has not improved over the years, the 

semiconductor industry understanding of reliability physics of semiconductor devices 

has increased tremendously. Failure mechanisms are well understood and the 

manufacturing and design processes are so tightly controlled that electronic 

components are designed to perform with reasonable life and with no single dominant 

failure mechanism.  In practice, however, highly accelerated stress testing is used to 

determine the life limiting failure mechanism and the weakest link. 

 

1.3.2 Intrinsic Failure Mechanism Overview 

 

The potential intrinsic wearout failure mechanisms considered include Hot Carrier 

Injection (HCI), Electromigration (EM), Negative Bias Temperature Instability 

(NBTI), and Time-Dependent-Dielectric-Breakdown (TDDB).  Much work has been 

done on the physics of these failure mechanisms in the past including [70], a primary 

deliverable for the Aerospace Vehicles Space Institute (AVSI) Consortium Project 

17: Methods to Account for Accelerated Semiconductor Wearout.  Therefore; only a 

brief overview will be presented here. 
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1.3.3 Hot Carrier Injection and Statistical Model 

 

The switching characteristics of a MOSFET can degrade and exhibit instabilities due 

to the charge that is injected into the gate oxide. The typical effect of hot carrier, or 

hot electron, degradation is to reduce the on-state current in an n-channel MOSFET 

and increase the off-state current in a p-channel MOSFET.  The rate of hot carrier 

degradation is directly related to the length of the channel, the oxide thickness, and 

the voltage of the device. A measure of transistor degradation or lifetime is 

commonly defined in terms of percentage shift of threshold voltage, change in 

transconductance, or variation in drive or saturation current [71]. Several approaches 

to minimize HCI effects include: thermo-chemical processing to reduce the Si-SiO2 

interfacial trap density; introducing ion implanted regions of lighter doping between 

the channel and heavily doped drain regions to better distribute the electric field, 

reducing its peak value; adding nitride to the gate oxide so that it is more resistant to 

interface-trap generation; and reducing the transistor operating voltage [71].   

 

There are three main types of hot carrier injection modes according to Takeda [72]:  

 

1. Channel hot electron (CHE) injection.  

2. Drain avalanche hot carrier (DAHC) injection. 

3. Secondary generated hot electron (SGHE) injection.  

 

CHE injection is due to the escape of “lucky” electrons from the channel, causing a 

significant degradation of the oxide and the Si−SiO2 interface, especially at low 
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temperature (77K) [73]. Alternatively, DAHC injection results in both electron and 

hole gate currents due to impact ionization, giving rise to the most severe degradation 

around room temperature. SGHE injection is due to minority carriers from secondary 

impact ionization or, more likely, bremsstrahlung radiation, and becomes a problem 

in ultra-small MOS devices. 

 

The lognormal distribution is generally used to model hot carrier degradation [74]: 
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Hot carrier effects are enhanced at low temperature. The primary reason for this is an 

increase in electron mean free path and impact ionization rate at low temperature. As 

was shown in [75], substrate current at 77K is five times greater than that at room 

temperature, and CHE gate current is approximately 1.5 orders of magnitude greater 

than that at room temperature. At low temperature, the electron trapping efficiency 

increases and the effect of fixed charges becomes large [76]. This accelerates the 

degradation of Gm at low temperature. The degradation of Vth and Gm at low 

temperatures is more severely accelerated for CHE-induced effects than for DAHC. 

Hu [77] showed the temperature coefficient of CHE gate and substrate current to be 

negative.  The lifetime model for HCI is commonly expressed as: 
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where Ea has a value of approximately −0.1 eV ~ −0.2 eV  [78].  

 

1.3.4 Electromigration and Statistical Model 

 

Passage of high current densities through interconnects causes time-dependent mass 

transport effects that manifest as surface morphological changes.  The resulting metal 

conductor degradation includes mass pileups in hillocks and whiskers, void formation 

and thinning, localized heating, and cracking of passivating dielectrics [71]. The 

scaling of interconnects to keep up with semiconductor scaling increases current 

densities and temperature, reducing median life.  There are three properties having an 

immediate impact on EM reliability models: 

 

• The orientation of the boundary with respect to the electric field.  

• The angles of the grain boundaries with respect to each other.  

• Changes in the number of the grains per unit area–grain density.  

 

Each of these properties can give rise to the ion divergences necessary to create voids in 

metal strips and interconnects.  

 

The lognormal failure distribution is often used to characterize EM lifetime [79]. The 

bimodal lognormal distribution is often seen in copper via EM tests. Lai [80] 

described two EM failure mechanisms: via related and metal-stripe related. Ogawa 
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[81] reported two distinct failure modes in dual-damascene Cu/oxide interconnects. 

One model described void formation within the dual-damascene via; the other 

reflected voiding that occurs in the dual-damascene trench. These models formed a 

bimodal lognormal distribution.  

 
 
The temperature acceleration factor is calculated from Black’s equation and may be 

expressed as:  
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where tm = test time to failure, j = current density, T1 and T2 are stress operating 

temperatures, and Ea is the activation energy for electromigration.  Reported 

activation energies for EM range from approximately 0.35eV ~ 0.9eV depending on 

conductor grain size and metal alloy [82]. 

 

1.3.5 Negative Bias Temperature Instability and Statistical Model 

 

NBTI occurs to p-channel MOS (PMOS) devices under negative gate voltages at 

elevated temperatures. Bias temperature stress under constant voltage (DC) causes the 

generation of interface traps (NIT) between the gate oxide and silicon substrate, which 

causes device threshold voltage (Vt) to increase, and drain current (Idsat) and 

transconductance (gm) to decrease. The NBTI effect is more severe for PMOS than 
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NMOS devices due to the presence of holes in the PMOS inversion layer that are 

known to interact with the oxide states. The degradation of device performance is a 

significant reliability concern for current ultrathin gate oxides where there are 

indications that NBTI worsens exponentially with thinning gate oxide.  Degradation 

is commonly modeled with power-law time dependence and Arrhenius temperature 

acceleration.  Degradation partially recovers once stress is removed [83]. Major 

drivers for NBTI degradation in PMOS devices are ultrathin gate oxide thickness and 

high temperature. 

 

The lognormal failure distribution is often used to characterize NBTI lifetime and 

frequency degradation over time is best described as a power law of time (Timeβ) 

with β values ranging from 0.25 to 0.4 [84, 85]. Activation energies for NBTI have 

been reported to be in the range of 0.18eV to 0.84eV [86, 87].  

 
 
Improved models have been proposed after the simple power-law model.  

Considering temperature and gate voltage, the lifetime model for NBTI is commonly 

expressed as: 

 

ββ
1

21

1

]
)exp(21

1

)exp(21

1
[

−−

−+
+

−+
=

kT

E

kT

E
VAt gsNBTIf , (1.14) 

 

where A and β are constants and Vgs is the applied gate voltage. 
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1.3.6 Time-Dependent Dielectric Breakdown and Statistical Model 

 

TDDB is a wearout phenomenon of SiO2, the thin insulating layer between the 

control “gate” and the conducting “channel” of the transistor. SiO2 has a very high 

bandgap (approximately 9eV) and excellent scaling and process integration 

capabilities, which makes it the key factor in the success of MOS-technology [88].  

Dielectric layers as thin as 1.5 nm can be obtained in fully functioning MOSFETs 

with gate lengths of only 40 nm [89]. Although SiO2 has many extraordinary 

properties, it is not perfect and suffers degradation caused by stress factors, such as a 

high oxide field. Oxide degradation has been the subject of numerous studies that 

were published over the past four decades. Even today, a complete understanding of 

TDDB has not yet been reached. Basic models, such as E model and 1/E model, have 

been proposed and are still debated in the reliability community. Percolation theory 

has been successfully applied to the statistical description of TDDB. As oxide 

continues to scale down, new findings will help researchers gain a better 

understanding of this complicated process. 

 

The statistical nature of TDDB is well described by the Weibull distribution, since 

TDDB is a “weakest link” type of failure mechanism.  The activation energy for Tox < 

10nm ranges from 0.6 to 0.9 eV. 

 
Several lifetime models have been proposed for TDDB, these include: thermo- 

chemical model, anode hole injection model, IBM model, and two voltage driven 
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models, including exponential and power law. The lifetime model commonly 

expressed for TDDB is: 
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1.3.7 Multiple Failure Mechanism Model 

 
 
Standard High Temperature Operating Life (HTOL) tests can reveal multiple failure 

mechanisms during testing, which suggests that no single failure mechanism 

dominates the FIT rate in the field. Therefore, in order to make a more accurate 

model for FIT, a preferable approximation is that all failures are equally likely and 

the resulting overall failure distribution resembles a constant failure rate process that 

is consistent with the mil-handbook, FIT rate approach. The acceleration of a single 

failure mechanism is a highly non-linear function of temperature and/or voltage. The 

temperature acceleration factor (AFT) and voltage acceleration factor (AFV) can be 

calculated separately and are the subject of most studies of reliability physics. The 

total acceleration factor of the different stress combinations are the product of the 

acceleration factors of temperature and voltage: 
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This acceleration factor model is widely used as the industry standard for device 

qualification. However, it only approximates a single dielectric breakdown type of 

failure mechanism and does not correctly predict the acceleration of other 

mechanisms [90]. 

 

To be even approximately accurate, electronic devices should be considered to have 

several failure modes degrading simultaneously. Each mechanism ‘competes’ with 

the others to cause an eventual failure. When more than one mechanism exists in a 

system, then the relative acceleration of each one must be defined and averaged under 

the applied condition. Every potential failure mechanism should be identified and its 

unique AF should then be calculated for each mechanism at a given temperature and 

voltage so the FIT rate can be approximated for each mechanism separately. Then, 

the final FIT is the sum of the failure rates per mechanism, as described by: 

 

FITtotal = FIT1  +  FIT2  + …. + FITi (1.17) 

 

where each mechanism leads to an expected failure unit per mechanism, FITi. 

Unfortunately, individual failure mechanisms are not uniformly accelerated by a 

standard HTOL test, and the manufacturer is forced to model a single acceleration 

factor that cannot be combined with known physics of failure models [90]. 
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1.3.8  Acceleration Factor 

 

The qualification of device reliability, as reported by a FIT rate, must be based on an 

acceleration factor, which represents the failure model for the tested device. If we 

assume that there is no failure analysis (FA) of the devices after the HTOL test, or 

that the manufacturer does not report FA results to the customer, then a model should 

be made for the acceleration factor, AF, based on a combination of competing 

mechanisms [90].  

 

Suppose there are two identifiable, constant rate competing failure modes (assume an 

exponential distribution). One failure mode is accelerated only by temperature. We 

denote its failure rate as λ1(T). The other failure mode is only accelerated by voltage, 

and the corresponding failure rate is denoted as λ2(V). By performing the acceleration 

tests for temperature and voltage separately, we can get the failure rates of both 

failure modes at their corresponding stress conditions. Then we can calculate the 

acceleration factor of the mechanisms. If for the first failure mode we have λ1(T1), 

λ1(T2), and for the second failure mode, we have λ2(V1), λ2(V2), then the temperature 

acceleration factor is: 
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and the voltage acceleration factor is: 

( )
( ) 21

12

22
, VV

V

V
AFV <=

λ
λ

. (1.19) 

 



 52 
 

The system acceleration factor between the stress conditions of (T1,V1) and (T2,V2) is: 
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The above equation can be transformed to the following two expressions: 
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These two equations can be simplified based on different assumptions. When λ1(T1) = 

λ2(V1) where there is an equal probability under normal operating conditions: 
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Therefore, unless the temperature and voltage is carefully chosen so that AFT and AFV 

are very close, within a factor of about 2, then one acceleration factor will overwhelm 

the failures at the accelerated conditions. Similarly, when λ1(T2) = λ2(V2) i.e., an equal 

probability during accelerated test condition, then the AF will take the form: 
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and the acceleration factor applied to normal operating conditions will be dominated 

by the individual factor with the greatest acceleration. In either situation, the 

accelerated test does not accurately reflect the correct proportion of acceleration 

factors based on the understood physics of failure mechanisms.  

 

Suppose a device has n independent failure mechanisms, and λLTFMi represents the ith 

failure mode at accelerated condition, λuseFMi represents the ith failure mode at 

normal condition, then the AF can be expressed in two forms [90]. 

 

If the device is designed, such that the failure modes have equal frequency of 

occurrence during normal operating conditions: 
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If the device is designed, such that the failure modes have equal frequency of 

occurrence during the test conditions: 
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From these relations, it is clear that only if the acceleration factors for each mode are 

almost equal, i.e., AF1 ~ AF2, the total acceleration factor will be AF = AF1 = AF2, 

and certainly not the product of the two (as is currently the model used by industry). 

If, however, the acceleration of one failure mode is much greater than the second, the 

standard FIT calculation may be incorrect by several orders of magnitude.  
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1.4 Motivation and Objectives 

 

1.4.1  Motivation 

 

The motivation for further research of scaling effects on microelectronics reliability 

stems from industry scaling trends and the associated reliability implications: 

 

• As devices are scaled down, they become more sensitive to defects and 

statistical process variations. 

• The number of processing steps is increasing dramatically with each new 

generation (approximately 50 more steps per generation and a new metal level 

every two generations). 

• New materials are being introduced with each new generation, replacing 

proven materials, e.g. Cu and low K inter-level dielectrics for Al and SiO2. 

• There is less time to characterize new materials than in the past, e.g., 

reliability issues with new materials and new potential failure modes. 

• Manufacturers are trending toward providing ‘just enough’ lifetime, 

reliability, and environmental specifications for commercial applications, e.g., 

< five year product lifetimes, trading off ‘excess’ reliability margins for 

performance. 

• There is a significant rise in the amount of proprietary technology and data 

developed by manufacturers, and there is a reluctance to share that 
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information with hi-rel customers, e.g., process recipes, process controls, 

process flows, design margins, MTTF. 

• There is a focus on the commercial customer, with little or no emphasis on the 

needs of the space customer, e.g., extended life, extreme environments, high 

reliability. 

• There are increasingly difficult testability challenges due to part complexity. 
 

 

Modern reliability approaches, including a PoF based reliability modeling strategy, 

are needed to better predict long term product reliability, operating margins, and 

performance of progressively scaled technologies in NASA applications.  NASA and 

other hi-rel users must be able to reliably predict end-of-life characteristics and time-

to-failure of these advanced scaled technologies for the next generation of flight 

avionics systems.  Further research, modeling, accelerated testing, and failure analysis 

are needed to better understand the impact of nanometer semiconductor scaling on 

microelectronics reliability.  The relationship between smaller technology feature 

sizes, device failure mechanisms, and activation energies must be further investigated 

to quantifiably assess the reliability of current microelectronic products across 

different stress conditions for hi-rel NASA space applications.  Better predictive 

models explaining the anticipated behavior of advanced scaled microelectronic 

technologies, and the expected performance degradation over time are desired. 

Physics-of-failure derating guidance for advanced scaled microelectronics is needed.  

A qualification plan, based upon analysis from testing at multiple stress conditions 
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and the failure mechanism process rates, is sought after to better design for high 

reliability and long life. 

 

While earlier AVSI sponsored work has produced some of the empirical models 

needed for a PoF based derating approach, and better simulation models have been 

developed to predict device wearout under various stress conditions, there has been 

little experimental verification and validation of the outputs of these models.  This 

work will include a series of experiments to evaluate some of the more recent 

memory technologies to substantiate and validate proposed acceleration models for 

temperature and voltage life-stress relationships across scaled technologies.  The 

purpose of this work is to develop a better understanding of the impact of nanometer 

technology scaling on microelectronics reliability, assess current trends, and provide 

an independent assessment of some of the proposed acceleration models so that we 

are able to better predict the reliability of scaled microelectronic technologies in hi-rel 

systems, and eventually apply PoF based derating models. 

 
 
Empirical and computer-based modeling, simulation, and analyses are being 

employed to build PoF based FR estimation models to assess the impact of various 

failure mechanisms on product reliability, and extrapolate bathtub curves across 

progressively technologies, e.g., 180nm, 130nm, 110nm, and 90nm.  This work may 

lead to more accurate prediction of device life given a range of mission operating 

conditions, and may become particularly beneficial for predicting device life of 

progressive technologies outside of normal operating conditions.  It is the goal of this 
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work to investigate and validate reliability trends as a function of technology scaling 

by conducting independent accelerated stress testing at the product level, data 

analysis of the results, modeling, and failure analysis of several scaled device 

technologies.  Testing at multiple conditions to quantify the rate processes of different 

failure mechanisms will be attempted. Memory devices are excellent choices for 

product reliability experimentation because of their high density of transistors, 

memory cells, and repetitive layout of memory blocks.  Current SRAM and SDRAM 

products are available in >512Mb density per semiconductor chip.  

 
 
Predicting long-term performance of scaled microelectronic memory products can be 

difficult because ALT involving elevated stresses can often result in either too few or 

no failures to make realistic predictions or inferences.  It is also possible to overstress 

the part during accelerated stress testing to the point of thermal runaway where the 

device goes into catastrophic failure.  Manufacturers often report product FIT rates 

based on zero failures over a fixed amount of time.  To overcome this problem, ADT 

can be used as a means to predict performance in such cases.  By identifying key 

performance measures which are expected to degrade over time, product reliability 

can be inferred by the degradation paths without observing actual physical failures.  

Using this approach, the engineer defines a failure as the first time a key performance 

measure exceeds a pre-specified threshold and the degradation path is then correlated 

to product reliability.  Manufacturers will develop specification minimum and 

maximum limits on key operating parameters for their products and establish 

acceptable ranges for key characteristics.  Through internal process controls and 
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reliability and qualification testing, manufacturers will create acceptable parameter 

limits to achieve a target reliability FIT.  Often times, however, the user does not have 

access to the actual failure data, failure distribution or confidence level bounds for a 

given product. 

 

1.4.2  Objectives 

 

The main objectives of the research are to: test, analyze, and model competing 

intrinsic failure mechanisms of scaled microelectronic products involving both hard 

catastrophic and soft degradation failures under accelerated conditions; validate 

existing models and/or propose new models describing wearout and performance 

degradation of several scaled technologies from the experimental baseline; and 

develop conclusions and predictions for the next product generation. 

  

The objectives will first be met by surveying major microcircuit suppliers to the 

military/aerospace market.  The purpose of the survey is to solicit feedback on current 

product regarding targeted product lifetime, product lifetime validation 

methodologies, activation energies, life limiting failure mechanisms, and the 

preferred, or most effective, screening regiment to identify weak devices, i.e., burn-in 

or high voltage stress test.  Secondly, a series of experiments using scaled volatile 

Static Random Access Memory (SRAM) and Synchronous Dynamic Random Access 

Memory (SDRAM) technologies will be performed, and the performance degradation 

and failure characteristics over a range of stress conditions will be studied and 
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analyzed. Both step-stress and matrix stress approaches will be employed to stress the 

candidate devices.  SRAM and SDRAM are two of the leading memory technologies 

in micro-architectures today.   

 

Underlying goals of the first SRAM experiment are to: 

 

• Calculate the FIT rate based on the test statistics without the physical models. 

• Validate the models and parameters upon failure investigation. 

• Perform data analysis.  

• Calculate the FIT using those models. 

• Compare and contrast to the manufacturer’s reported FR. 

• Determine if experimental results support lifetime reliability predictions 

across scaled technologies. 

• Conduct failure analysis to identify root cause of failure. 

 

A comparison of the results will then introduce more accurate statistical models 

and/or data fitting into existing physical failure model approaches, e.g., Inverse 

Power, Exponential, etc.  

 

The goal of a second SDRAM experiment is to investigate failure mechanism induced 

degradation on scaled microelectronics to determine if they are random (constant rate 

process) or degrade over time (increasing failure rate).  Additionally, characterization 
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of part sensitivities to temperature, voltage and frequency of different failure 

mechanisms across different technologies is desired. 

 

Based upon observations from the experiments, recommendations and conclusions 

will be developed and presented. 

 

Specific contributions include: 

 
• Assess and summarize reliability issues and trends related to device scaling of 

CMOS technologies. 

• Develop a prediction methodology to determine the reliability and defect 

density of newer generation scaled memories. 

• Add to the experimental testing base (using AST) of several MOS 

technologies to better understand, validate and/or develop improved 

performance degradation and reliability models. 

• Analyze established reliability methodologies (Derating and Reliability 

Prediction) and make recommendations as to the applicability/appropriateness 

of those methodologies to emerging scaled technologies for NASA missions;  

• Participate in AVSI Reliability initiatives.  

• Revise and release the prime AVSI Project 17 deliverable: Microelectronics 

Reliability and Lifetime Evaluation Handbook. 
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 Chapter 2: Scaling Impact on SRAM 

  

2.1 Impact of Junction Temperature on Microelectronics Reliability and 
Considerations for Space Applications 

 
 

Established industry derating guidelines published by NASA JPL [1] and RAC 

(Reliability Analysis Center) [91] provide users of commercial, as well as mil-spec 

microelectronics, derating factors for critical device parameters intended to reduce the 

occurrence of stress related failures in the intended application.  Complex 

microcircuits with improved functionality, higher speed and lower core voltages 

continue to be sought after for characterization testing and product infusion in high 

reliability space applications.  As feature sizes become smaller, there are a number of 

intrinsic failure mechanisms, those that are inherent in the design and/or materials, 

and extrinsic failure mechanisms, or process related defects, that the user must remain 

cognizant of in their reliability assessment of advanced technologies.  The primary 

known intrinsic wearout failure mechanisms of concern are: 1) Electromigration 

(EM) – a mass transport induced wearout mechanism in which metal atoms are 

diffused along an interconnect; 2) Time-dependent dielectric breakdown (TDDB) – 

wearout damage to the silicon dioxide dielectric film in a device through constant 

applied voltage and high, but still within specified operating range, electric field; and 

3) Hot carrier aging – the degradation of MOS device characteristics due to charge 

trapping in the gate dielectric. Limiting stress levels on semiconductor devices in the 

application can extend the useful life and delay device wearout. 
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2.1.1 Microelectronic Supplier Industry Survey (2003) 

 

An industry survey was performed with eight major microcircuit suppliers to the 

military/aerospace market in 2003 [92].   The survey questions and supplier responses 

are summarized in Appendix A.   The objective of the survey was to solicit feedback 

on current product regarding targeted product lifetime, product lifetime validation 

methodologies, activation energies, life limiting failure mechanisms, and the 

preferred, or most effective, screening regiment to identify weak devices, i.e., burn-in 

or high voltage stress test.  Data is reflective of silicon process feature sizes as small 

as 0.18 micron technology.    

 

All suppliers in the survey rely on the Arrhenius methodology for their product lines 

to determine acceleration factors for failure rate calculations and equivalent stress 

testing protocols.  Through accelerated testing, the user is able to reduce the time to 

failure and obtain data in a shorter time than would otherwise be required. This 

technique remains widely used throughout the semiconductor industry.  The rate at 

which many diffusion based chemical processes take place is governed by the 

Arrhenius equation: 
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where, R = rate of the process, A = a proportional multiplier, Ea = activation energy in 

electron volts, k = Boltzmann’s constant, 8.6x10-5 (eV/K), and T = Absolute 

temperature in Kelvin. 

 

Experimental data obtained from accelerated tests at elevated temperatures are based 

on the Arrhenius equation to obtain a model of device behavior at normal operating 

temperatures. Rearranging the Arrhenius equation allows the temperature dependence 

of device failure to be modeled as follows: 
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where t 1,2 = time to failure, Ea = activation energy in electron volts, k = Boltzmann’s 

constant, 8.6x10-5 (eV/K), and T = absolute temperature in Kelvin. 

 

Activation energies that are empirically representative of established technologies 

reported in the 2003 survey ranged from 0.7eV to 1.0eV for bipolar processes and 

0.5eV to 0.7eV for CMOS processes, hence many have adopted 0.7eV for all 

diffusion-based failure mechanisms combined.  Some of our survey respondents, 

however, have experimentally and empirically demonstrated Ea of 0.4eV for metal 

migration with ASP/DSP CMOS 0.18-micron processes, and 0.3eV for DRAM gate 

oxide integrity [93].   Users should be cautious when applying generic activation 

energy standards to new technologies, as they may not be representative of current 

failure mechanism processes. 
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Other stresses used to accelerate device failure mechanisms include voltage, current, 

humidity, and temperature cycling.  Elevated voltage stress testing at wafer level 

probe is recognized as a more effective technique than temperature acceleration to 

detect oxide related defects. However, most suppliers in the survey relied on 

temperature acceleration in conjunction with voltage stress testing to provide a 

comprehensive assessment of their product.  Voltage acceleration is based upon the 

McPherson model and the corresponding voltage acceleration factor, β, is empirically 

derived for each device family or technology. 

 

Product life limiting failure mechanisms are highly technology dependent.  

Electromigration and TDDB were reported to be the most commonly experienced life 

limiting failure mechanisms in the study; hot carrier effects are becoming more of a 

concern with smaller feature sizes. 

 

Most suppliers in the survey used product life testing at, or near, maximum junction 

temperature of the device to validate product lifetime; this is typically performed at 

125°C to 150°C.  Target product lifetimes for mil-product are generally ten years at 

maximum rated junction temperature, however, some custom military and space 

designs are customer driven and reflect a fifteen, twenty or twenty five year target 

product lifetime.  There were varying product lifetime definitions from the suppliers 

in the survey, therefore, the user should request the specific test conditions and 

confidence level associated with a given FIT rate.  Supplier responses for target FIT 
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rates ranged from 50 FIT (0.5% cumulative failure rate) at ten years and 60% 

confidence level, to 0.76 FIT at fifteen years and 60% confidence level.  One (1) FIT 

over 10 years for intrinsic failure mechanisms (0.01% cumulative failure rate) at ten 

years and 60% confidence level is the historical benchmark. We consider typical 

microelectronic lifetime for mil-products to be ten years at maximum rated junction 

temperature unless otherwise defined. FIT rate calculations and targeted product 

lifetimes should be considered when using new technologies in high reliability 

applications.  It is assumed that these failure levels are acceptable in electronic 

systems. 

 

2.1.2 Tj Baseline Calculations and Temperature Stress Derating Curves 

 

Historically, junction temperature (Tj) derating for silicon microcircuits in ceramic 

hermetic packages has been limited to between 110°C and 115°C. The basis of this 

calculation can be described as follows: 

 

kTEaeMTTF /−∝  (2.3) 

Assume a product lifetime of ten years.  Adding a safety margin of two, the target 

product lifetime in space is twenty years minimum, or twice the product’s designed 

lifetime. In order to achieve twice the lifetime, the junction temperature must be 

lowered such that MTTF is twice the nominal value.  Using the Arrhenius equation: 
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2/ min//
=

−− alnoaderateda kTEkTE ee  

or 

693.02ln)/1/1(/ min ==−×− alnoderateda TTkE  

 

EaTT alnoderated /1096.5/1/1 5
min

−×−=−  

 

For  Tnominal = 125°C, Tnominal = 398°K  

 

The worst case derating represents the lowest activation energy in the range.  In the 

past, 0.6eV to 0.7eV has been widely used. 

 

Assuming an Ea = 0.6 eV, 

1/Tderated – 1/Tnominal = - 9.93 x 10-5  

or 

1/ Tderated = -9.93 x 10-5 + 2.51 x 10-3  = 2.61 x 10-3 

Tderated = 1/2.61 x 10-3 = 383°K 

or 

Tderated = 110°C (Current JPL D-8545 Tj Value)  

 

Historical linear and digital microcircuit temperature stress derating curves are 

described in Figure 12 [91].   A corresponding failure rate may be obtained at each 

temperature for established technologies, which is helpful to the user in determining 

an acceptable failure rate for established technologies in a given application. 
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Figure 12.  Linear/Digital Microcircuit Temperature Stress Derating Curves. 

 

Many of JPL’s current programs are operating, or will operate, in the six months to 

fifteen years mission life range.  Microelectronics applications in these missions vary 

in criticality, operating environment, and operating conditions.  Therefore, it is 

appropriate to consider these variables, in addition to current device technology 

trends, feature size, and failure mechanism activation energies when establishing a 

safe, adequate, operating junction temperature for an intended mission application.   

Additional Tj  calculations are presented in Table 2. 

Bipolar 
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Table 2.  Junction Temperature Calculations. 
 

 
Device Max Rated 

Tj 
 

 
Activation Energy 

 
Years of 

Operation 

 
Derated Tj 

0.3 10 125 
0.3 15 107 
0.3 20 96 

   
0.5 10 125 
0.5 15 114 
0.5 20 107 

   
0.6 20 110 

   
0.7 10 125 
0.7 15 117 

  
  
  
 
  

125°C 
  
  
  

0.7 20 112 
   

0.3 10 150 
0.3 15 130 
0.3 20 117 

   
0.5 10 150 
0.5 15 138 
0.5 20 130 

   
0.7 10 150 
0.7 15 141 

  
  
  
  
 

150°C 
  
  
  
  

0.7 20 135 
 
 

While additional safety margin may be realized with lower operating temperatures, 

voltages and frequencies, the user should take into consideration the supplier’s basis 

for FIT rate calculations, the product lifetime design, and failure mechanism 

developments and trends in new technology product lines in the overall reliability 
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assessment.  Users of commercial-off-the-shelf (COTS) components in high 

reliability applications utilizing plastic packaging techniques must also take in to 

consideration limitations of the glass transition temperature (Tg) of the packaging 

material itself, as well as the flame retardant precipitation effect in the mold 

compound.  Either one of these factors may override the safe operating junction 

temperature limit in a given application.  Additionally, COTS designed lifetime may 

vary greatly depending on device type and the intended application. Hence, the user 

should not necessarily assume a ten year design lifetime at maximum rated operating 

temperatures for COTS products without verification.  

 

Further research, modeling, accelerated testing, and failure analysis are recommended 

to better understand the correlation relationships of smaller feature sizes and device 

failure mechanism activation energies to more quantifiably assess the reliability of 

current device technology trends.  In general, however, the results from the 2003 

supplier survey indicated that the general activation energies reported in Table 3 are 

conservative values for determining derated Tj values for a given application. 
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Table 3.  Conservative Ea reported from Industry Survey.  
 

 
Technology 

 

 
Conservative Ea Value 

Bipolar 0.7 eV 
MOS - General 0.5 eV 
ASP/DSP 0.5 eV 
DRAM 0.3 eV 

 

(Data is only reflective of silicon process feature sizes as small as 0.18 micron) 

 

2.2 Impact of Device Scaling on Deep Sub-micron Transistor Reliability – A Study 
of Reliability Trends using SRAM 

 
 

In 2005, a reliability study was conducted that utilized Step-Stress techniques to 

evaluate scaled SRAM technologies (0.25um, 0.15um, and 0.13um) embedded in 

many of today’s high-reliability space/aerospace applications to substantiate current 

acceleration models for temperature and voltage life-stress relationships [94]. The 

purpose of this study was to develop a better understanding of the impact of deep sub-

micron technology scaling trends on microelectronics reliability and to provide an 

independent assessment and validation of current acceleration models for users of 

scaled CMOS devices. The elevated parameters in this experiment were ambient 

temperature (Ta) and the component operating voltage (Vdd).  The models for 

evaluating the acceleration factors include Arrhenius for temperature, and Inverse 

Power or Exponential for voltage [95]. The acceleration models and parameters for 

various failure mechanisms remain uncertain for advanced technology CMOS 

devices, e.g., linearity and interactions between the stresses. 
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2.2.1 Static Random Access Memory (SRAM) 

 

With SRAM, static indicates that the memory retains its contents as long as the power 

remains applied.  SRAM is a type of volatile memory.  Random access means that 

locations in the memory can be written to, or read from, in any order, regardless of 

the memory location that was last accessed.  Each bit in an SRAM is stored on four 

transistors that form two cross-coupled inverters. This storage cell has two stable 

states, which are used to denote either a 0 or a 1. Two additional access transistors 

serve to control the access to a storage cell during read and write operations. It 

typically takes six MOSFETs to store one memory bit.  Access to the cell is enabled 

by the word line (WL in Figure 13) which controls the two access transistors M5 and 

M6 which, in turn, control whether the cell should be connected to the bit lines: BL 

and BL-Not. They are used to transfer data for both read and write operations. While 

it is not strictly necessary to have two bit lines, both the signal and its inverse are 

typically provided to improve noise margins.  The size of an SRAM with m address 

lines and n data lines is 2m words, or 2m × n bits. SRAM, while slightly more 

expensive, is faster and significantly less power hungry (especially idle) than DRAM. 

SRAM is used where either speed or low power, or both, are of prime interest.  
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Figure 13.  A Six-Transistor CMOS SRAM Cell. 
 

 

2.2.2 Experimentation   

 

SRAM devices were chosen for experimentation to demonstrate the accuracy and 

appropriateness of analytical models that have been proposed to characterize the life-

stress relationship of present-day microelectronic devices.  The devices are arranged 

in a matrix array and storage of data occurs within memory cells.  Because the matrix 

array is designed for repetitive write-read cycles, large amounts of performance 

reliability data may be obtained through experimentation with relatively small 

quantities of commercial SRAM devices; technologies may be compared and 

contrasted with experimentation across a range of technology nodes. 
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A step-stress accelerated test technique was implemented to evaluate 1Mb (0.25um), 

4Mb (0.15um) and 16Mb (0.13um) SRAM devices of similar cell designs configured 

in 128K x 8b, 256K x 16b, and 1M x 16b words respectively. Refer to Tables 4 and 5.   

Devices were subjected to repetitive write/read cycles consisting of four data values 

for each memory cell or address at each stress step.   Voltage was held constant while 

temperature was stepped up, and then temperature was held constant while voltage 

was stepped-up.  As stress conditions increased (voltage and temperature), bit failure 

times were read and recorded until devices catastrophically failed. 

 

Underlying goals of this experiment were to: 

 

• Calculate the FIT based on the test statistics without the physical models. 

• Validate the models and parameters upon failure investigation. 

• Perform data analysis. 

• Calculate the FIT using those models. 

• Compare and contrast to the manufacturer’s published FR. 

• Determine if experimental results support lifetime reliability predictions 

across scaled technologies. 

 

A comparison of the results were intended to introduce more accurate statistical 

models and/or data fitting into existing physical failure model approaches, e.g., 

Inverse Power, Exponential, etc. 
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Table 4.  Step-Stress Conditions (a). 
 

 
Stress 

Conditions 
Temp 
[°C] V/Vnom 

Time 
[hrs] 

stress level 1 125 1.3 96 
stress level 2 140 1.3 96 
stress level 3 140 1.4 96 
stress level 4 155 1.4 96 
stress level 5 155 1.5 96 
stress level 6 165 1.5 96 
stress level 7 165 1.6 96 
stress level 8 165 1.7 96 

 
 
 

Table 5.  Step-Stress Conditions (b). 
 
 

Stress 
Conditions 

Temp 
[°C] V/Vnom 

Time 
[hrs] 

stress level 1 155 1.3 288 
stress level 2 165 1.3 288 
stress level 3 155 1.4 288 
stress level 4 165 1.4 288 
stress level 5 155 1.5 288 
stress level 6 165 1.5 288 
stress level 7 165 1.6 288 

 

 

2.2.3 Discussion & Results 

 

Table 6 shows the expected bit failure rates comparing Inverse Power and 

Exponential Voltage acceleration models and the manufacturer’s life test data. 

Cumulative weighted test times were calculated for all stress operation levels.  Total 

equivalent operating times were calculated for both Exponential and Power Law 

Models, and failure rate (λ) was calculated at 55°C at nominal operating voltage.   
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Evaluation of the failure rate was conducted at 60% confidence using Reliasoft Alta 

6.5 software for maximum likelihood estimation with the assumption of a constant 

failure rate. Cumulative weighted times were calculated to represent all the stress 

operation levels. Two basic assumptions were made: Case 1 reflects the assumption 

that there is only one dominating failure mechanism and the others are neglected; 

Case 2 reflects the assumption that there is no dominating failure mechanism, and that 

all are equally likely. 

 

Table 6.  Step-Stress Accelerated Test Results Compared to Manufacturer’s Data. 

 

Test level  Equivalent op. time @55deg&nominal voltage 

  

Cumulated 
test time  

Case1 (Multiplication) Case2 (Weighted Sum) 

    
AFv Exp. Model 

(1) 
AFv Power law 

(2) 
AFv Exp. Model 

(1) 
AFv Power law 

(2) 
stress level 1 576 32464923.04 237589693.1 310353.6276 2170970.594 
stress level 2 384 43090951.76 315354698.1 217390.3382 1457801.649 
stress level 3 384 434116546.9 3918127282 1998870.897 17871738.22 
stress level 4 384 824942335.4 7445532987 2017841.11 17890708.43 
stress level 5 384 8310819403 77740152267 19965232.78 186422071.3 
stress level 6 384 12452806266 1.16485E+11 19985188.96 186442027.5 
stress level 7 335.8 1.09721E+11 9.14211E+11 175611815.3 1462841979 
stress level 8 133.6 4.39858E+11 2.85782E+12 703819229.5 4572690225 
Total equiv. time:  5.71677E+11 3.97817E+12 923925922.4 6447787521 
Failure rate @55C 
&Vnom (FIT) 0.031 0.004 19.482 2.792 
Failure rate reported by Manuf: 7 – 20 FIT    

 
Case 1 – refers to assumption a. 
Case 2 – refers to assumption b. 
(1) - Voltage Acceleration Factor according to Exponential. Model (γ = 7) 
(2) - Voltage Acceleration Factor according to Power Law Model (k=34) 
(3) – Mfr’s FIT reported at 60% CL.  ALT comparison also at 60% CL.   

 

According to the assumptions outlined in Case 1 and Case 2, two models were 

applied:  (a) Multiplication of AF’s (temp. and voltage) using both Exponential and 

Power Law Models:  AF1 = AFt * AFv(e) and AF2 = AFt * AFv(p); and (b) A 
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proposed weighted sum model of the AF’s where  AF3 = (AFt + AFv(e))/2 and AF4 = 

(AFt + AFv(p))/2.  These equations are expanded as follows: 
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Equations (2.6) and (2.7) may be expanded for n independent failure mechanisms 

where the λLTFMi represents the i th failure mode at accelerated conditions, and λuseFMi 

represents the i th failure mode at normal conditions. The AF then may be expressed as 

Equation (2.8) assuming the failure modes have equal frequency of occurrence during 

the use conditions [96]:  
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The data analysis supports that the proposed weighted sum Exponential Model (Eq. 

2.6) best correlated the manufacturer’s published data (7-20 FIT) to the experimental 

data (19.482 FIT), normalized to 55°C and nominal Vdd operating conditions.  Refer 

to Table 6.   The accuracy of an estimate is given by its standard error and confidence 

interval.  The estimates approximate the true parameter values, and the confidence 

intervals for model parameters indicate the uncertainty in the statistical estimates by 

their width.   Statistical confidence bounds do not account for model uncertainty. 

Therefore, sensitivity analysis is important in any quantitative analysis involving 

uncertainty and for assessing the effects of model uncertainty.  In this experiment, 

model uncertainty was addressed by analyzing different model assumptions and 

different models to determine the best fit scenario between the test results, prior 

SRAM test results, and the manufacturer’s failure rate qualification data.  Maximum 

Likelihood methods were used to provide the estimates and confidence limits for the 

model parameters.   

 

Examination of the component failure times show that at specific times, large 

numbers of bit failures were recorded.  The failures that were recorded at the same 

time represent a single failure event which was reflected on multiple addresses and 

therefore, counted as a single failure for reliability evaluation.  Hard and soft failures 

were treated equally in this reliability evaluation because once a soft failure has 

occurred in a high-reliability, remote application, e.g., an un-repairable system, the 

address corresponding to the failure are generally circumvented and not used in future 
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write cycles.  Table 7 shows technology node and stress conditions vs. accumulated 

time to failure of 0.1% of the bits in a device. 

 
 

Table 7.  Technology Node and Stress Conditions vs.  
Time-to-Failure of 0.1% of the Bits in a Device. 

 
 

Tech. 
Node 

Vratio 
(Vapp/Vnom) 

Temp  
C 

Time (Hrs) 
to 0.1% 

Device-Bit 
Failures  

0.13 1.4 165/155 588 
  1.5     

0.15 1.6 165 528 
0.25 1.7 165 768 

 

 

2.2.4 Experimental Conclusions 

 

An experimental based reliability study of industrial grade SRAMs consisting of three 

different technology nodes was conducted to substantiate current acceleration models 

for temperature and voltage life-stress relationships.  Two different acceleration 

models were tested to relate experimental FIT calculations to the manufacturer’s 

qualification data; the weighted sum exponential model best correlated. While time-

to-fail across technology nodes were generally of similar magnitudes, the V stress 

ratio (increased V dependency) appears to be a primary failure mechanism driver with 

smaller technology nodes.  Experimental results do support reduced lifetime 

reliability predictions as technologies are scaled unless adequate internal voltage 

regulator circuitry is not employed.   
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2.2.5 Failure Analysis 

 

Upon functional failure, units were submitted for failure analysis. I-V curve 

measurements using a Digital Curve Tektronix 370 tracer revealed a 120-ohm 

resistive short in the input buffer circuitry between Vcc and Vss [97]. See Figure 14.   

 

 
 

 
Figure 14.  256K X 16 Static RAM Functional Diagram. 

 

 

Devices were then chemically decapsulated and subjected to internal optical 

examination.  See Figure 15. Photon emission microscopy (EMMI) was implemented 

to pinpoint the failure site.  See Figure 16.  Optical testing of advanced CMOS 

circuits exploits the near-infrared photon emission by hot-carriers in transistor 

channels. However, due to the continuous scaling of feature size and supply voltage, 
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spontaneous emission is becoming fainter and optical circuit diagnostics becomes 

ever more challenging [98]. EMMI revealed emissions in the area between the Vcc and 

Vss buses. The EMMI findings correspond with the I-V curve measurements.  One 

device was subjected to Focused Ion Beam FIB/SEM inspection to determine root 

cause of the failure. See Figures 17 and 18. The differences in metal appearance in 

the upper and lower portions of the image reflect differences in stress conditions. 

Stress induced metal migration is evident in the lower region of Figure 18. 

 

 
          

 
Figure 15.  Decapsulated Optical Overview of SRAM Failure. 
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Figure 16.  Photon Emission Image Showing Emissions between 

Pin 11 (Vcc) and Pin 12 (Vss). 
 
 
 

 
 

 
 

 
Figure 17.  Close-up of the Defective Region Milled with the FIB Instrument 
Directly Over the Area that Produced Photons in the Emission Microscope. 

 
 
 

Leakage 
Site 

Dielectric 
punch-
through 
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Figure 18.  SEM of the Defective Region Milled with the FIB Instrument. 

 

 

2.2.6 Discussion 

 

Devices in this accelerated stress test experiment eventually succumbed to thermal 

runaway upon reaching critical temperature and voltage thresholds. The failures were 

caused by electrical overstress applied directly between Vcc and Vss pins (input 

circuitry transistors). Additional dielectric damage was identified in Figure 17.  No 

damage was found in the memory cells as a result of EM, TDDB or HCD. FIB/SEM 

inspections show evidence of dielectric damage and thermal/electrical stress induced 

metal migration damage. Buffer/voltage regulation circuitry protected the actual 

memory cells as damage was concentrated on the input transistors of the memories. 

The observed failure mode of a sudden large increase in memory cells (bit failures) 

Stress 
Migration 
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was actually a result of the failure of the input circuitry (low resistance 120-Ohm 

short between Vcc and Vss) of the device.  These results demonstrate the necessity to 

conduct FA on accelerated stress test failures to confirm the actual failure 

mechanism(s) and, as in this case study, to avoid the false conclusion of catastrophic 

memory bank failure. 

 

2.2.7 Summary 

 

The stress test and failure analysis on 0.25um, 0.15um and 0.13um SRAM 

technologies demonstrate that root cause of failure can be attributable to multiple, 

simultaneous failure mechanisms.  Furthermore, it is not practical to assume no 

interdependency of the effect of voltage and temperature stresses on the wearout 

failure mechanisms.  Different failure mechanisms will also be accelerated by certain 

voltage and temperature stress combinations.  In conclusion, additional experiments 

are needed to refine and validate the models described earlier.  Future work includes 

accelerated stress testing and modeling with 130, 110 and 90nm bulk CMOS 

technologies using frequency, temperature and voltage as the principal stress 

variables. The objective is to establish time-to-fail at the product level from either the 

dominant or multiple failure mechanism(s), and to further investigate product level 

performance degradation as a function of technology scaling.  
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Chapter 3: Scaling Impact on SDRAM  

 

3.1 Overview 

 

Dynamic RAM is a type of volatile memory that needs to be periodically refreshed to 

retain its contents.  SDRAM has a synchronous interface, meaning that it waits for a 

clock signal before responding to its control inputs. It is synchronized with the 

computer's system bus, and thus with the processor. DRAM is the most common kind 

of random access memory for personal computers, workstations and flight computers, 

such as the one that will be used in the upcoming NASA JUNO mission.  DRAMs 

use charge storage on a capacitor in each memory cell to represent stored binary data 

values of a logic “1” or a logic “0”.  A DRAM cell consists of a transfer device, a 

MOSFET that acts like a switch and a storage capacitor as is displayed in Figure 19 

[99].  The absence of a charge on the capacitor represents a logic “0” and the 

presence of a charge indicates a logic “1” in each memory cell.  Millions of these 

memory cells are populated in high density arrays. 

 

The clock is used to drive an internal finite state machine that pipelines incoming 

instructions. This allows the chip to have a more complex pattern of operation than 

DRAM which does not have synchronizing control circuits. Pipelining means that the 

chip can accept a new instruction before it has finished processing the previous one. 

In a pipelined write, the write command can be immediately followed by another 
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instruction without waiting for the data to be written to the memory array. In a 

pipelined read, the requested data appears after a fixed number of clock pulses after 

the read instruction, and then cycles, during which additional instructions can be sent; 

this delay is called the latency [100].  

 

  

 

 

Figure 19.  1T1C DRAM Cell. 
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While the access latency of DRAM is fundamentally limited by the DRAM array, 

DRAM has very high potential bandwidth because each internal read is actually a row 

of many thousands of bits. To make more of this bandwidth available to users, a 

Double Data Rate (DDR) interface was developed. This uses the same commands, 

accepted once per cycle, but reads or writes two words of data per clock cycle. Some 

minor changes to the Single Data Rate (SDR) interface timing were made and the 

supply voltage was reduced from 3.3 to 2.5 V.  DDR SDRAM (also called "DDR1") 

doubles the minimum read or write unit; every access refers to at least two 

consecutive words.  DDR2 SDRAM was originally seen as a minor enhancement 

based on the industry standard single-core CPU on DDR1 SDRAM. It mainly 

allowed higher clock speeds and somewhat deeper pipelining better suited for the 

rapid acceptance of the multi-core CPU in 2006. With the development and 

introduction of DDR3 SDRAM in 2007, it is anticipated that DDR3 will quickly 

replace the more limited DDR and newer DDR2 in cutting edge multi-core CPU 

architectures.  The popularity of DRAM for such applications as PCs, wireless access, 

MP3 players, digital televisions and DVD video recorders makes this type of memory 

a leading technology driver, with ever increasing pressure to reduce cost per bit with 

higher densities. DRAM makes up over 50% of the embedded memory market. 

Figures 20a-c display current commercial DRAM trends [101].  
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Figure 20a-b.  Current DRAM Trends. 
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Figure 20c.  Current DRAM Trends. 

 
 

3.2 Design of Experiments 

 

Because manufacturers are generally not willing to share specific design margins, 

process recipes and steps, and detailed product reliability information with the user, 

who may use their products in highly reliable applications, the user may use several 

approaches to assess the reliability the product.  These include empirical 

methodologies or standards-based prediction approach, life or accelerated stress 

testing approach, and physics-of-failure methodology based on the understanding of 

the failure mechanism and applying the appropriate physics-of-failure model to the 

data.  Stress testing combined with PoF was used in this study to determine the 

relative degradation and reliability of three progressive technologies using the same 

type and size of product for each technology. 
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Commercial 512Mb DDR SDRAMs (three progressive technologies – 130nm, 110nm 

and 90nm) were selected for the experimental baseline to investigate failure and 

degradation trends as a function of scaling. 65nm DRAMs have only recently been 

released and were not available at the commencement of this study. Furthermore, 

DDR2 and DDR3 SDRAM architectures become much more costly and timely to 

evaluate at the product level due to their complexity.   Table 8 outlines the 

experimental baseline.  Table 9 explains the stress test matrix approach to stress the 

parts. The test approach consisted of three experiments; the design of experiments 

included an accelerated stress test to 1000 hours:   

 

• Experiment 1 forced accelerated stress conditions at different clock 

frequencies and temperatures, while voltage was kept fixed (1.5 x Vdd). 

•  Experiment 2 forced accelerated stress conditions at different voltages (1.4, 

1.5 & 1.6 x Vdd), while the clock frequency and temperature were kept fixed 

(i.e., Fmax, Tmax).  

• Experiment 3 included evaluation of the retention time performance and 

degradation of the DRAM array. 

 

Parts were dynamically stimulated with address write/read operations and monitored 

for fail or degradation during testing. In addition, functional characterization tests, 

including address write/read/verify and access time measurements were conducted at 

-70°C, -55°C, +25°C and +125°C at periodic intervals.  Data analysis of the 
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performance degradation was conducted from the results of the three technology 

experiment. 

Table 8.  Experimental Baseline. 
 

Product Technology Memory 
Capacity 

Vnom Fmin Fmax 
 

Temp. 
Range 

No. 
Samples 

DDR 
SDRAM 

90nm 512Mb 2.5V 77MHz 133MHz 0 to 
+70°C 

36 

DDR 
SDRAM 

110nm 512Mb 2.5V 125MHz 200MHz 0 to 
+70°C 

36 

DDR 
SDRAM 

130nm 512Mb 2.5V 84MHz 166MHz 0 to 
+70°C 

36 

  
 
 

Table 9.  Experimental Stress Test Matrix. 
 

 
 

 
Experiment 1 allows accelerated stress test conditions at different clock frequencies 

and temperatures, while the voltage is kept steady. 

 
• (5 pieces) Max Clock Freq @ 25°C and 4.05V  

• (5 pieces) Min Clock Freq @ 25°C and 4.05V (5 pieces) Min Clock Freq @ 

125°C and 4.0V  

 

Experiment 2 allows accelerated stress test conditions at different voltages, while the 

clock frequency and temperature is kept steady. 

Temp . F req.   Voltage     
Stress   25 ° C  1 25 ° C   Min   M  ax  3.51V 

(1.4xVdd)   
3.78V  

(1.5xVdd)   
4 .05V 

(1.6xVdd)  
S1  X     X      X  
S2  X    X      X  
S3    X   X      X  
S4    X    X  X      
S5    X    X    X    
S6    X    X      X  
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• (5 pieces) Max Clock Freq @ 125°C and 3.51V  

• (5 pieces) Max Clock Freq @ 125°C and 3.78V  

• (5 pieces) Max Clock Freq @ 125°C and 4.05V  

 
Burn-in boards were developed; each board corresponding to one of the stress test 

conditions in each experiment.  Each board allowed for the testing of fifteen devices 

(five specimens of each technology per board).  Testing was carried out at maximum 

clock frequencies using Credence Sapphire S automated test equipment (ATE).   The 

Sapphire S features 96 programmable I/Os (400 MHz) and 8 digital power supplies 

(DPS). See Figure 21. 

 

 
Sapphire ATE 

 
Figure 21.  Sapphire S ATE. 

 
 
National Instruments test boards (National Instruments PCI-6542) were used for the 

low frequency (Fmin) stress tests.  See Figure 22. The NI test boards features 

100MHz maximum clock rate, programmable input levels, and 64 Mb/channel on-

board memory. 
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NI PCI-6542 

 

Figure 22.  National Instruments PCI-6542. 

 
Thirty components of each technology were submitted to the stress matrix test. Six 

different Burn-In boards with fifteen positions each were designed to accommodate 

the stress matrix conditions.  Refer to Figure 23 and Table 10. 

 

BI -BOARD 15 positions 

 
 

Figure 23.  Stress Burn-in Boards. 
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Table 10.  Test Conditions and BI Board Layout. 
 

 
T°C Freq Voltage STRESS 

25°C 125°C Min Max 3.51V 3.78V 4.05V 
Serial number  

(parts) 
BI  

Board 
S1 X   X   X #21 to #25 #5 
S2 X  X    X #26 to #30 #6 

S3  X X    X #16 to #20 #4 
S4  X  X X   #11 to #15 #3 

S5  X  X  X  #6 to #10 #2 

S6  X  X   X #1 to #5 #1 

 
 

3.2.1 Electrical Test Flow 

 

For each memory device, electrical test software and hardware were developed. Tests 

were performed using an EXA 3000 digital tester. At each electrical test step the 

following tests were conducted: 

DC TESTS:  

• Continuity Tests (Vfwd). 

• Input leakage current test (IiL/IiH). 

• Output leakage current test (IozL/IozH). 

• Low/High output current (IoL/IoH). 

• Operating current (ACT-PRE) (Iddo0). 

• Operating current (ACT-READ-PRE) (Iddo1). 

• Idle power down standby current (Iddo2P). 

• Floating idle standby current (Iddo2F). 

• Active power down standby current (Iddo3P). 
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• Active standby current (Iddo3N). 

• Operating current (Burst Read Operation) (Iddo4R). 

• Operating current (Burst Write Operation) (Iddo4W). 

• Auto-Refresh Burst Current (Iddo5). 

• Self refresh current (Iddo6). 

• Operating current (4 banks interleaving) (Iddo7). 

 

FUNCTIONAL TESTS:  

• Functional test at 133MHz and nominal Vdd . 

• Functional test at 133MHz and minimum Vdd . 

• Functional test at 133MHz and maximum Vdd . 

DYNAMIC TESTS: 

• DQ output access time from CK, CK/ (tAC). 

 

3.2.2 Electrical Test Conditions and Limits 

 
The electrical test conditions, limits and patterns for each parameter are described in 

Table 11 where: 

 
Device D1 (90nm): 512Mb DDR SDRAM 

Device D2 (110nm): 512Mb DDR SDRAM 

Device D3 (130nm): 512Mb DDR SDRAM 
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Table 11.  DC Tests, Conditions and Limits. 
 

Limits 
Test Name Test conditions 

Min Max 
Continuity Tests Vfwd Iforce : -100uA -800mV -200mV 
Input leakage current test IiL/IiH VDD ≥Vin ≥ VSS -2µA 2µA 
Output leakage current test IozL/IozH VDDQ ≥ VOUT ≥ VSS -5µA 5µA 
Low output current   

IoL 
VOUT = 0.35V    D1 : 16.8mA 

D2 : 15.2mA 
D3 : 15.2mA 

 
- 

High output current   
IoH 

VOUT = 1.95V D1 : -16.8mA 
D2 : -15.2mA 
D3 : -15.2mA 

 
- 

Operating current (ACT-PRE) 
Iddo0 

VDD = 2.5V - D1 : 115mA 
D2 : 160mA 
D3 : 150mA 

Operating current  
(ACT-READ-PRE) Iddo1 

VDD = 2.5V - D1 : 145mA 
D2 : 220mA 
D3 : 180mA 

Idle power down standby current 
Iddo2P 

VDD = 2.5V 
- 

D1 : 5mA 
D2 : 3mA 
D3 : 3mA 

Floating idle standby current 
Iddo2F 

VDD = 2.5V - D1 : 40mA 
D2 : 35mA 
D3 : 40mA 

Active power down standby 
current Iddo3P 

VDD = 2.5V - D1 : 30mA 
D2 : 30mA 
D3 : 20mA 

Active standby current 
Iddo3N 

VDD = 2.5V - D1 : 45mA 
D2 : 70mA 
D3 : 70mA 

Operating current  
(Burst Read Operation) Iddo4R 

VDD = 2.5V - D1 : 145mA 
D2 : 310mA 
D3 : 210mA 

Operating current  
(Burst Write Operation) Iddo4W 

VDD = 2.5V - D1 : 135mA 
D2 : 310mA 
D3 : 210mA 

Auto refresh current 
Iddo5 

VDD = 2.5V - D1 : 280mA 
D2 : 330mA 
D3 : 290mA 

Self refresh current 
Iddo6 

VDD = 2.5V - D1 : 5mA 
D2 : 4mA 
D3 : 4mA 

Operating current  
(4 banks interleaving) Iddo7 

VDD = 2.5V - D1 : 350mA 
D2 : 550mA 
D3 : 430mA 
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FUNCTIONAL TESTS:  

 
All functional patterns were written in mode: 

     - CAS LATENCY: 2 

     - BURST: 8 

All test patterns were written and performed in the following sequences: 

 

ZEROS Pattern: 
Symbol: ZEROS 

addr 0 1 .. 1FFF 
data #0000 #0000  #0000 

 
 

ONES Pattern: 
Symbol: ONES 

addr 0 1 .. 1FFF 
data #FFFF #FFFF  #FFFF 

 
 

CHECKERBOARD Pattern 
Symbol: CHECK 

addr 0 1 .. 1FFF 
data #5555 #AAAA   #5555 

 
 

INVERTED CHECKERBOARD Pattern 
Symbol: CHECK/ 

addr 0 1 .. 1FFF 
data #AAAA  #5555  #AAAA 

 
 

RANDOM Pattern 
Symbol: RDM 

addr 0 1 .. 1FFF 
data #1234 #ABCD  #0A5B 
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DYNAMIC TESTS: 

The dynamic measurements with test conditions and limits are as follows: 

 
 

Limits 
Test Name Test conditions 

Min Max 
DQ output access Time Tac Vdd : 2.5V  D1 : 700ps 

D2 : 700ps 
D3 :700ps 

Data Retention Time Tret Vdd: 2.5V  64mSec 

 

TEST CAPABILITY AND ACCURACY: 

The test capability and accuracy of the SCHLUMBERGER (CREDENCE) Model:  

EXA3000 is as follows:  

- General overview: 
     

800 Mbps channel 375 
High speed channel (up to 3.2Gbps) 8 
High accuracy analog channel 4 
± 30V analog channel 4 
 

- Static characteristics: 
 
Voltage measurements Range Accuracy 

 1V 
0.2% of measured value ± 

622µV 

 8V 
0.2% of measured value ± 

1.4766mV 

 30V 
0.2% of measured value ± 

4.16mV 
Current measurements Range Accuracy 

 1µA 0.2% of measured value ± 5.1nA 
 8µA 0.2% of measured value ± 6nA 
 64µA 0.2% of measured value ± 13nA 

 512µA 
0.2% of measured value ± 

68.5nA 
 4mA 0.2% of measured value ± 
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513.6nA 
 32mA 0.2% of measured value ± 4µA 

 256mA 
0.2% of measured value ± 

32.5µA 

 1A 
0.2% of measured value ± 

588µA 
 

- Dynamic characteristics: 
 
Impedance 45Ω ± 5Ω 
Maximum capacitive load 60pF 
Overall time accuracy 8ps 
Drivers accuracy ± (0.2% + 10 mV) of programmed value 
Comparators accuracy ± (0.2% +10 mV) of programmed value 
 

 
Experiment 3 included further memory characterization of the three technologies in 

Table 8. Data retention testing was performed by maximizing the device refresh 

commands.  Weak bit failures, distributions and failure times were recorded as a 

function of temperature.   

 

Memory devices from each SDRAM technology (130nm, 110nm, and 90nm) were 

characterized for data retention under nominal Vdd as a function of temperature.  

Initial data retention characterization was conducted to determine the approximate 

refresh time range of data retention failures (as defined by 10% of the memory bit 

fails) by extending the refresh time.  Data retention characterization on eight devices 

of each technology was performed at -55°C, +25°C, +75°C and +125°C under 

nominal Vdd, by extending the refresh time.  Bit fails and passes were then recorded 

until all bits failed. 
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3.3 Technology and Construction Analysis 

 
 

Each of the 512Mb DRAM parts representing the three progressive technologies in 

the experiment (130nm, 110nm and 90nm), consist of four memory banks, B0-B3.  

Each memory bank contains an array of 128Mb of DRAM.  All three technologies 

run on an external 2.5V Vdd.  Each part consists of 567 million transistors and each 

memory cell is configured in a 1-Transistor, 1-Capacitor configuration (Ref. Figure 

19).  There are 512 million 1T1C memory cells in each part. The rest of the active 

transistors comprise the periphery, voltage control and regulation, and input-output 

circuitry.  The periphery, voltage control and regulation, input-output interface, 

control logic, and sense amps are CMOS, and each memory cell consists of an nMOS 

transistor and a stacked technology capacitor (STC).  Earlier trench capacitor 

configurations were phased out below the 180nm process designs due to scaling 

limitations.  As DRAM has scaled down, the amount of charge needed for reliable 

memory operation has basically remained the same.  For current generation DRAM, 

the capacitance is typically 30-40fF/cell.  Although the external power supply is 2.5V 

for each part, internal on-chip voltage regulator circuitry subdivides this voltage as 

follows: 

 

130nm Technology Parts: 

- Peripheral Circuitry Voltage: 2.2V 

- Memory Core Voltage: 1.8V  
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110nm Technology Parts: 

- Peripheral Circuitry Voltage: 1.8V 

- Memory Core Voltage: 1.4V  

90nm Technology Parts: 

- Peripheral Circuitry Voltage: 1.4V 

- Memory Core Voltage: 1.0V  

 

The memory cell capacitor dielectric material of the parts is Ta2O5.  The gate oxide 

thickness for the larger peripheral circuitry transistors is approximately 7nm, and the 

gate oxide thickness for the nMOS memory cell transistors is approximately 4.2 nm. 

A basic functional block diagram of the 512Mb SDRAM is shown if Figure 24 [102]. 

 

Figure 24.  512Mb SDRAM Functional Block Diagram. 
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3.4 Device Characterization 

 

3.4.1 Voltage Breakdown 

 

Two devices from each technology were used for voltage breakdown characterization 

to determine the point of breakdown. The following approach was used to 

characterize the breakdown voltage: 

 
Ramp Vdd  from 2.7V to 8V 

-  Continuity I/O test 

-  Continuity  Vdd /VddQ test 

-  Measure Standby Idd 

 
For the three technologies, the breakdown voltage was higher than 6V for each of the 

2.5V nominal parts (130nm, 110 and 90nm).  The 110nm and 130nm samples 

exhibited breakdown at >7V.  

 

3.4.2 Minimum Frequency Operation Characterization 

 

Two devices from each technology were used to determine the actual minimum 

operating frequency for each technology. Devices were electrically tested at 125°C to 

determine the breakdown voltage for each technology (high temperature, ramp 

voltage to device breakdown).  All three technologies remained functional to 50MHz 

and the 130nm and 110nm parts remained functional to 25MHz, well below the 
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specified minimum operating frequency.  The low frequency used for electrical stress 

in the experimentation, Fmin, was 50MHz.  

 

3.5 Stress Test Results 

 

Most importantly, there were no hard functional failures of any of the devices after 

being subjected to the stress conditions in experiments one and two. Although there 

were no failures from the stress conditions applied from the stress test matrix, Iddo 

degradation was observed on some parameters after 1,000 hours.   Analyses of the 

results indicate the following parameters were most affected by the stress conditions: 

 

• Operating current: Iddo0 

• Auto refresh current : Iddo5 

• Data Retention Time:    Tret 

 

A scaling factor was observed; the smaller the technology, the greater the Iddo drifts.  

The -70°C cold temperature results are misleading and do not represent the actual 

current measurements.  At this cold temperature, the amount of moisture and frost 

build-up on the parts and test fixture distorts the actual measurements.  Iddo drifts are 

plotted in Figures 25a-b. 

 

There was no Tac degradation after 1,000 hours.  This can be correlated to no Fmax 

degradation under the stress conditions. 
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3.5.1 Stress Test Results (Iddo) 
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Figures 25a-b.  Operating Current and Refresh Current Degradation. 
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The operating current and refresh current degradation (magnitude increase) are 

noteworthy because they reflect increased leakage through one or multiple points 

within the complex array of internal circuitry.  In both cases (Iddo and Iddo5) the 90nm 

technology measurements were an order of magnitude higher than the 130nm 

technology devices.  Because leakage current is inversely proportional to retention 

time, further investigation is warranted. 

 

Tables 12a and 12b summarize the Iddo performance degradation after 1,000 hours. 

 
 

Table 12a.  Iddo Performance Summary. 

Stress 
Condition  Temperature  Frequency  Voltage*  Effect on Iddo  

1 High High High Moderate 
2 High High Medium Moderate 
3 High High Low Moderate 
4 High Low High Moderate 
5 Low High High Negligible 
6 Low Low High Negligible 

 *HV=1.6 x Vdd, MV=1.5 x Vdd, LV=1.4 x Vdd 
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Table 12b.  Iddo Performance Characterization Drifts. 

Stressed at Fmax, 4.05V, 125C
130nm Avg. 110nm Avg. 90nm Avg.

1,000 hr. Drift 1,000 hr. Drift 1,000 hr. Drift
-70C Iddo0 0.44% -70C Iddo0 0.72% -70C Iddo0 5.55%

Measure Iddo1 0.12% Measure Iddo1 1.26% Measure Iddo1 4.87%

Iddo2P 0.19% Iddo2P 3.98% Iddo2P 14.23%

Iddo5 0.32% Iddo5 3.14% Iddo5 4.97%

Iddo6 0.39% Iddo6 1.86% Iddo6 10.99%

Avg. 0.29% Avg. 2.19% Avg. 8.12%

+25C Iddo0 0.32% +25C Iddo0 0.27% +25C Iddo0 2.81%
Measure Iddo1 0.06% Measure Iddo1 0.34% Measure Iddo1 4.22%

Iddo2P 0.17% Iddo2P 1.70% Iddo2P 5.23%
Iddo5 0.14% Iddo5 1.88% Iddo5 3.89%
Iddo6 0.24% Iddo6 0.68% Iddo6 3.08%

Avg. 0.19% Avg. 0.97% Avg. 3.85%

+125C Iddo0 0.58% +125C Iddo0 2.12% +125C Iddo0 5.98%
Measure Iddo1 0.29% Measure Iddo1 3.34% Measure Iddo1 5.14%

Iddo2P 1.09% Iddo2P 4.17% Iddo2P 17.87%
Iddo5 0.79% Iddo5 3.21% Iddo5 5.87%
Iddo6 0.83% Iddo6 3.27% Iddo6 13.45%

Avg. 0.72% Avg. 3.22% Avg. 9.66%

 

 

An unexpected finding was that there were no Iddo degradation differences across the 

different voltage conditions.  Degradation appeared to be strictly temperature 

dependent and the relative differences in the voltage inputs in this experiment 

exhibited no difference in performance.  Samples from each technology were 

decapsulated and subjected to construction analysis, e.g. emission microscopy, 

internal probing, and SEM analysis, to determine why this is.  All three technologies 

had voltage regulator and over-voltage protection circuitry, limiting the actual voltage 

applied to the internal memory cells.  This circuitry is capable of maintaining constant 

voltage to the memory core up to an externally applied 6V Vdd.  Thus, there was no 

voltage acceleration to the memory core as a result of the product level testing.  
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Voltage stress acceleration must be applied to representative memory cell test 

structures; it cannot be applied at the product level. 

 

3.5.2 Retention Time Degradation (Tret) 

 

There were no functional bit failures observed after comparing the data retention 

characteristics to the JEDEC specification (maximum 64mSec).  In general, the data 

retention is much better at lower temperatures compared to higher temperature 

measurements.  Data retention time measurements were better than 6 seconds at -

55°C, 5 seconds at +25°C, 0.9 second at +75°C, and 100ms at +125°C.  Retention 

time did degrade, however, over the 1,000 hour test. 

 

A scale factor was evident; the more integrated the device, generally the better the 

retention time across temperature and the tighter the standard deviation. The scale 

factor may be explained by a difference of the oxide layers used in smaller 

technologies (advanced high-K processes) and improvements in cell design and 

geometry, i.e., vertical/horizontal staked capacitors, materials, dimensions, etc.   

 

Figures 26a-f show the data retention time cumulative failed bits for each technology 

as a function of temperature.  Parts were taken out of the auto refresh mode (refresh 

every 64mSec), and the cumulative failures for each technology are plotted at the 

initial time=0, and 1,000 hour points.  The plots show how much data retention 

degrades as a function of temperature at fixed voltage. 
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Effect of Temperature on Retention Time - 90nm, 512 Mb (Initial)
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Effect of Temperature on Retention Time - 90nm, 512 Mb (1,000hr Degradation)
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Figure 26a-b. Effect of Temperature on Data Retention for 90nm Technology. 
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Effect of Temperature on Retention Time - 110nm, 51 2Mb (Initial)
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Effect of Temperature on Retention Time - 110nm, 51 2Mb (1,000hr Degradation)
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Figure 26c-d. Effect of Temperature on Data Retention for 110nm Technology. 
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Effect of Temperature on Retention Time - 130nm, 51 2Mb (Initial)
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Effect of Temperature on Retention Time - 130nm, 51 2Mb (1,000hr Degradation)
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Figure 26e-f. Effect of Temperature on Data Retention for 130nm Technology. 
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Chapter 4: SDRAM Degradation and Predictive Model  

 

4.1 Acceleration Model 

 

Physical acceleration models based upon the physical or chemical theory that 

describes the failure causing process over the range of data may be employed for well 

understood failure mechanisms.  Usually, individual test structures are utilized in the 

DOE to more accurately measure threshold voltage (Vt), drain current (Idsat), and 

transconductance (gm) shifts, as well as dielectric breakdown over a range of stress 

conditions.  At the complex product level, such as the 512Mb SDRAM, it is difficult 

to identify the exact physical mechanism causing minute physical characteristic 

changes embedded deep within the internal circuitry from product level data.  Often 

we are constrained by the product performance degradation to develop empirical-

based acceleration models that fit the observed data. 

 

Data retention (Tret) characteristics were determined to be the best measurable 

indicator of the performance degradation of the DRAMs, as the storage cell’s critical 

function is to retain a charge representing its state.  Each DRAM was tested until each 

memory cell lost its ability to store a ‘1’ in the memory bit locale.  Since all bits were 

run to failure, the data is said to be complete with no right-censoring.  Due to the high 

number of repetitive bits of information in each memory product, a significant sample 

size was examined from a limited number of products. Data retention tests at 100 
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hour increments, up to 1,000 hours, revealed how the retention time degrades over 

time.  The performance data was analyzed by fitting a degradation model to the data 

showing the relationship between performance, age, stress and technology. 

 

4.1.1   Life Distribution 

 

A likelihood test was conducted at each test interval to determine the appropriate life 

distribution for each data set.  The Weibull distribution had the highest likelihood 

value, followed by Lognormal and Exponential distributions.  The Weibull 

probability density function is described as: 

 
β
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where the parameter Eta (η) or α is the scale parameter which influences the 

distribution and is equal to the characteristic life, i.e., life at which 63.2% of the 

population will have failed, and parameter Beta (β) is the shape parameter [103]. 

Depending on the value of (β), the Weibull function can take the form of the 

following distributions: 

 

β < 1: Gamma 

β = 1: Exponential 

β = 2: Lognormal 

β = 3.5: Normal 
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The Lognormal probability density function is a two-parameter distribution described 

as: 
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where µ = E (ln t) and 2
tσ  = var (ln t).  The failure rate initially increases with time 

and then decreases depending on the values of parameters µ and σt [103].  

 

The Exponential probability density function is described as: 
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where the parameter Lambda (λ) is the rate of occurrence in time interval (t). 

 

4.1.2   Multivariable Life-Stress Relationship 

 

In the case where there is more than one accelerating variable, both should be 

considered in the life-stress relationship.  Temperature and voltage are the two stress 

factors in this experiment, therefore, the Arrhenius and the Inverse Power Law 

models may be combined to yield the Temperature – Non-Thermal (T-NT) Model 

[104]: 
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where, 

• L represents a quantifiable life measure, such as mean life, characteristic life, 

median life or B(x) life, etc. 

• U is the non-thermal stress (voltage),  

• V is the temperature in absolute units, 

• B is one of the model parameters to be determined derived from the 

relationship:  

15623.8 −−
==

eVKe

energyactivation

K

Ea
B  

• C and n are the 2nd and 3rd model parameters to be determined, (C > 0). 

 

This relationship can be linearized by taking the LN of both sides: 

 

( ) ( ) ( )
V

B
UnCVUL +−= lnln),(ln . (4.5) 

 

The acceleration factor for the T-NT relationship is explained by: 

 

, (4.6) 
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where, 

• Luse is one life at use stress level,  

• LAccelerated is the life at the accelerated stress level, 

• Vu is the use temperature, 

• VA is the accelerated temperature, 

• UA is the accelerated voltage,  

• Uu is the use voltage, 

• B is one of the model parameters to be determined derived from the 

relationship:  

15623.8 −−
==

eVKe

energyactivation

K

Ea
B  

• C and n are the 2nd and 3rd model parameters to be determined, (C > 0). 

 

Combining the joint distribution of stress and life, the Weibull life pdf becomes: 

 

 (4.7) 

 
 

by setting η or α = L(U,V) from Equation (4.4). 

 



 116 
 

Expanding upon the statistical properties of the T-NT Weibull Model, the Mean or 

MTTF is: 
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where 


 +Γ 1
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β  is the Gamma function evaluated at the value of 
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β . 

 

The standard deviation, σT, is given by: 
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The Reliability function of the T-NT Weibull Model is described as: 
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and the Conditional Reliability function as specified stress level, t, is given by: 
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The T-NT Weibull failure rate function, λ(T), is described as: 
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and Reliable Life, TR, of a unit for a specified reliability starting at age zero is given 

by: 
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The Maximum Likelihood Estimation for parameter determination is given by 

substituting the T-NT Model into the Weibull Log-Likelihood function, yielding: 
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, (4.14) 

 

where, 

• F is the number of groups of exact times-to-failure data points,  

• Ni is the number of times-to-failure data points in the ith time-to-failure data 

group, 

• β is the Weibull shape parameter (unknown, the 1st of four parameters to be 

estimated), 

• B is the first T-NT parameter (unknown, the 2nd of four parameters to be 

estimated), 

• C is the second T-NT parameter (unknown, the 3rd of four parameters to be 

estimated), 

• n is the third T-NT parameter (unknown, the 4th of four parameters to be 

estimated), 

• V i is the temperature stress level of the ith group, 

• Ui is the voltage stress level of the ith group, 

• Ti is the exact failure time of the ith group, 
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• S is the number of groups of suspension data points, 

• N’ i is the number of suspensions in the ith group of suspension data points, and 

• T’ i is the running time of the ith suspension data group. 

 

The parameter estimate solutions are found by solving for the parameters B, C, n and 

β so that: 
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Finally, the Maximum Likelihood Estimation for standard deviation parameter 

determination is given by: 

 

 

, (4.15) 

 

where, 

• F is the number of groups of exact times-to-failure data points,  

• Ni is the number of times-to-failure data points in the ith time-to-failure data 

group, 
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• σT is the standard deviation of the natural logarithm of the time-to-failure 

(unknown, the 1st of four parameters to be estimated), 

• B is the first T-NT parameter (unknown, the 2nd of four parameters to be 

estimated), 

• C is the second T-NT parameter (unknown, the 3rd of four parameters to be 

estimated), 

• n is the third T-NT parameter (unknown, the 4th of four parameters to be 

estimated), 

• V i is the temperature stress level of the ith group, 

• Ui is the voltage stress level of the ith group, 

• Ti is the exact failure time of the ith group, 

• S is the number of groups of suspension data points, 

• N’ i is the number of suspensions in the ith group of suspension data points, and 

• T’ i is the running time of the ith suspension data group. 

 

and, 
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The parameter estimate solutions are found by solving for the parameters 'ˆTσ , B̂ , Ĉ , 

n̂  so that: 
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4.2 Data Analysis 

 

Data from the accelerated test of each of the three technologies were analyzed and 

plotted using Reliasoft’s Alta 6.5 and Weibull ++7.   First, combining the joint 

distribution of life with temperature and voltage stresses, the Weibull life pdf (Eq. 

4.7) was used to model the behavior and relative degradation over 1,000 hours.  

Comparative multi-plots showing both the initial and 1,000 hour data retention 

degradation properties using the T-NT Model are displayed in the following Figures. 

Figures 27a and 27b show comparative multi-plots of how the failure distribution 

changes over time.  Figure 27a shows the 90nm Life vs. Stress relationship across 

temperature at the worst-case voltage stress condition, 4.05V (1.6 x Vdd) and the 95% 

confidence level.  Figure 27b shows the 90nm Life vs. Stress relationship across 

voltage at the worst-case temperature stress condition, 398.15K, and at the 95% 

confidence level.  By analyzing both stress factors, varying temperature while 

keeping voltage fixed, and varying voltage while keeping temperature fixed, the 

relative contribution of each stress on the overall AF can be determined for each 

technology bit-cell.  Similarly, the modeling approach was applied to the 110nm 

technology data - refer to Figures 28a and 28b, and the 130nm technology data - refer 

to Figures 29a and 29b.  For the modeling, data from four 512Mb SDRAMs (2048 x 

106 bits of information) from each technology (90nm, 110nm, and 130nm) were 

analyzed. 
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Figure 27a. 90nm T-NT/Weibull Initial and 1,000 hr. Tret Stress Plots at Fixed Voltage. 
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Figure 27b. 90nm T-NT/Weibull Initial and 1,000 hr. Tret Stress Plots at Fixed Temp. 
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Figure 28a. 110nm T-NT/Weibull Initial and 1,000 hr. Tret Stress Plots at Fixed Voltage. 
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Figure 28b. 110nm T-NT/Weibull Initial and 1,000 hr. Tret Stress Plots at Fixed Temp. 
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Figure 29a. 130nm T-NT/Weibull Initial and 1,000 hr. Tret Stress Plots at Fixed Voltage. 
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Figure 29b. 130nm T-NT/Weibull Initial and 1,000 hr. Tret Stress Plots at Fixed Temp. 
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Model parameters for the T-NT Weibull Model were calculated for each technology 

up to the end of the time terminated stress test, 1,000 hour point.  Model parameters 

and statistics for each technology and stress condition are summarized in Tables 13a 

and b.  The retention time Mean (Eq. 4.8) and Std. Deviation (Eq. 4.9) were 

calculated for each technology at both stress voltages and at four temperatures. Other 

temperature and voltage stress combinations may also be calculated for the desired 

use condition. 

 

A Use-Level Weibull Probability plot showing the changing Beta slope of the 90nm 

technology parts at worst-case test conditions, 398.15K and 4.05V, is shown in Figure 

30.  Likewise, equivalent plots may be created for any of the combinations of stress 

temperatures and voltages. The plot shows a decreasing Beta slope over time.  The 

Beta slopes of the 110nm and 130nm technology parts exhibit similar characteristics.  

Figure 30 shows a decreasing β over time, 3.9654 initially vs. 2.7609 at the 1,000 hr. 

point.   All three regions of the bath-tub curve are represented by the Weibull 

distribution as determined by the value of the shape-parameter, β.  The Weibull 

distribution is appropriate for complex components or systems composed of a number 

of constituent components whose failure is governed by the most severe defect or 

weakest link.  For 0 < β < 1, the distribution indicates an early or infant mortality 

behavior with a decreasing failure rate.  For β = 1, the distribution reduces to the 

exponential distribution reflecting CFR region of the bath-tub curve.  For β > 1, the 

distribution reflects an increasing failure rate and models the wearout region of the 

bath-tub curve [105].  
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Figure 31 shows the changing reliability vs. time of the data retention time 

degradation after 1,000 hours at worst-case test conditions, 398.15K and 4.05V.  The 

Reliability vs. Time plots using Eq. 4.10 for the 110nm and 130nm technology parts 

reveal a comparable shift over time.  

 

The impact of stress on data retention failure rate over time is shown in Figure 32 for 

the 90nm technology parts. Eq. 4.12 was used for this calculation.  The impact on FR 

over time from the changing Beta is evident in this Figure.  Comparable shifts were 

revealed for the 110nm and 130nm technology parts. 

 

Figure 33 shows the Standard Deviation Plot for the 90nm technology parts across 

temperature at worst-case voltage conditions, 4.05V, at initial and 1,000 hr. points. 

Using Eq. 4.9, one can see in Figure 33 the increase in standard deviation over time. 

Comparable shifts were observed for the 110nm and 130nm technology parts. 
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Table 13a. Thermal – Non-Thermal Weibull Model Distribution Paramaters (4.05V). 

Thermal - Non-Thermal/Weibull Model Distributions
90nm-Initial Parameters  110nm-Initial Parameters  130nm-Initial Parameters  

Parameter Bounds Parameter Bounds Parameter Bounds
Lower = 3.9624 Beta = 3.9654 Upper = 3.9685 Lower = 3.6984 Beta = 3.7014 Upper = 3.7044 Lower = 3.6687 Beta = 3.6716 Upper = 3.6746
Lower = 389.9964 B = 390.4031 Upper = 390.8098 Lower = 375.2421 B = 375.6892 Upper = 376.1363 Lower = 367.2766 B = 367.7282 Upper = 368.1797
Lower = 3.9179 C = 3.9247 Upper = 3.9315 Lower = 4.0449 C = 4.0526 Upper = 4.0603 Lower = 4.1209 C = 4.1288 Upper = 4.1367
Lower = 0.4597 n = 0.4607 Upper = 0.4617 Lower = 0.4725 n = 0.4736 Upper = 0.4747 Lower = 0.4784 n = 0.4795 Upper = 0.4806
Eta = 5.4930 Eta = 5.3639 Eta = 5.3168
Ea = 0.0336 Ea = 0.0324  Ea = 0.0317
Temperature (K) = 398.15 Temperature (K) = 398.15 Temperature (K) = 398.15
Voltage (V) = 4.05 Voltage (V) = 4.05 Voltage (V) = 4.05
Confidence Bounds = 2-Sided @ 95% CL Std Dev Confidence Bounds = 2-Sided @ 95% CL Std Dev Confidence Bounds = 2-Sided @ 95% CL Std Dev
Upper Limit = 4.979 Upper Limit = 4.8436 Upper Limit = 4.7989
Mean Life (Secs.) = 4.9764 1.42 Mean Life (Secs.) = 4.8408 1.46 Mean Life (Secs.) = 4.7961 1.49
Lower Limit = 4.9737 Lower Limit = 4.8379 Lower Limit = 4.7933
Temperature (K) = 348.15 Temperature (K) = 348.15 Temperature (K) = 348.15
Voltage (V) = 4.05 Voltage (V) = 4.05 Voltage (V) = 4.05
Confidence Bounds = 2-Sided @ 95% CL Confidence Bounds = 2-Sided @ 95% CL Confidence Bounds = 2-Sided @ 95% CL
Upper Limit = 5.7315 Upper Limit = 5.5445 Upper Limit = 5.4791
Mean Life (Secs.) = 5.7289 1.63 Mean Life = 5.5419 1.65 Mean Life (Secs.) = 5.4764 1.67
Lower Limit = 5.7263 Lower Limit = 5.5392 Lower Limit = 5.4738
Temperature (K) = 298.15 Temperature (K) = 298.15 Temperature (K) = 298.15
Voltage (V) = 4.05 Voltage (V) = 4.05 Voltage (V) = 4.05
Confidence Bounds = 2-Sided @ 95% CL Confidence Bounds = 2-Sided @ 95% CL Confidence Bounds = 2-Sided @ 95% CL
Upper Limit = 6.9169 Upper Limit = 6.6413 Upper Limit = 6.5404
Mean Life (Secs.) = 6.9142 1.95 Mean Life = 6.6386 2.01 Mean Life (Secs.) = 6.5377 1.98
Lower Limit = 6.9115 Lower Limit = 6.6359 Lower Limit = 6.535
Temperature (K) = 218.15 Temperature (K) = 218.15 Temperature (K) = 218.15
Voltage (V) = 4.05 Voltage (V) = 4.05 Voltage (V) = 4.05
Confidence Bounds = 2-Sided @ 95% CL Confidence Bounds = 2-Sided @ 95% CL Confidence Bounds = 2-Sided @ 95% CL
Upper Limit = 11.1827 Upper Limit = 10.5315 Upper Limit = 10.2836
Mean Life (Secs.) = 11.176 3.24 Mean Life = 10.5246 3.27 Mean Life (Secs.) = 10.2767 3.15
Lower Limit = 11.1692 Lower Limit = 10.5177 Lower Limit = 10.2699

Fisher Var/Cov Matrix Fisher Var/Cov Matrix Fisher Var/Cov Matrix

VarBeta CovBetaB CovBetaC CovBetan VarBeta CovBetaB CovBetaC CovBetan VarBeta CovBetaB CovBetaC CovBetan
2.45E-06 -4.03E-05 5.40E-07 -5.22E-08 2.33E-06 -4.79E-05 6.82E-07 -4.76E-08 2.31E-06 -5.28E-05 7.58E-07 -4.90E-08

CovBetaB VarB CovBC CovBn CovBetaB VarB CovBC CovBn CovBetaB VarB CovBC CovBn
-4.03E-05 4.30E-02 -5.21E-04 1.02E-05 -4.79E-05 5.20E-02 -6.58E-04 1.05E-05 -5.28E-05 5.30E-02 -6.85E-04 1.05E-05

CovBetaC CovBC VarC CovCn CovBetaC CovBC VarC CovCn CovBetaC CovBC VarC CovCn
5.40E-07 -5.21E-04 1.20E-05 1.09E-06 6.82E-07 -6.58E-04 1.54E-05 1.30E-06 7.58E-07 -6.85E-04 1.63E-05 1.35E-06

CovBetan CovBn CovCn Varn CovBetan CovBn CovCn Varn CovBetan CovBn CovCn Varn
-5.22E-08 1.02E-05 1.09E-06 2.70E-07 -4.76E-08 1.05E-05 1.30E-06 3.09E-07 -4.90E-08 1.05E-05 1.35E-06 3.14E-07

Thermal - Non-Thermal/Weibull Model Distributions
90nm-Final Parameters 110nm-Final Parameters  130nm-Final Parameters

Parameter Bounds Parameter Bounds Parameter Bounds
Lower = 2.7586 Beta = 2.7609 Upper = 2.7632 Lower = 2.5976 Beta = 2.5998 Upper = 2.6019 Lower = 2.4134 Beta = 2.4152 Upper = 2.4171
Lower = 480.7776 B = 481.3743 Upper = 481.9710 Lower = 463.0570 B = 463.7186 Upper = 464.3802 Lower = 609.9189 B = 610.6267 Upper = 611.3345
Lower = 2.7759 C = 2.7830 Upper = 2.7901 Lower = 2.9045 C = 2.9125 Upper = 2.9206 Lower = 1.7264 C = 1.7314 Upper = 1.7364
Lower = 0.4844 n = 0.4859 Upper = 0.4873 Lower = 0.5032 n = 0.5048 Upper = 0.5063 Lower = 0.5917 n = 0.5934 Upper = 0.5951
Eta = 4.7255 Eta = 4.6027 Eta = 3.4993
Ea = 0.0415 Ea = 0.0400  Ea = 0.0526
Temperature (K) = 398.15 Temperature (K) = 398.15 Temperature (K) = 398.15
Voltage (V) = 4.05 Voltage (V) = 4.05 Voltage (V) = 4.05
Confidence Bounds = 2-Sided @ 95% CL Std Dev Confidence Bounds = 2-Sided @ 95% CL Std Dev Confidence Bounds = 2-Sided @ 95% CL Std Dev
Upper Limit = 4.2089 Upper Limit = 4.0915 Upper Limit = 3.1053
Mean Life (Secs.) = 4.2056 1.59 Mean Life (Secs.) = 4.0881 1.63 Mean Life (Secs.) = 3.1024 1.42
Lower Limit = 4.2024 Lower Limit = 4.0847 Lower Limit = 3.0996
Temperature (K) = 348.15 Temperature (K) = 348.15 Temperature (K) = 348.15
Voltage (V) = 4.05 Voltage (V) = 4.05 Voltage (V) = 4.05
Confidence Bounds = 2-Sided @ 95% CL Confidence Bounds = 2-Sided @ 95% CL Confidence Bounds = 2-Sided @ 95% CL
Upper Limit = 5.0063 Upper Limit = 4.8342 Upper Limit = 3.8698
Mean Life (Secs.) = 5.0031 2.01 Mean Life (Secs.) = 4.8309 1.99 Mean Life (Secs.) = 3.8669 1.72
Lower Limit = 4.9999 Lower Limit = 4.8276 Lower Limit = 3.864
Temperature (K) = 298.15 Temperature (K) = 298.15 Temperature (K) = 298.15
Voltage (V) = 4.05 Voltage (V) = 4.05 Voltage (V) = 4.05
Confidence Bounds = 2-Sided @ 95% CL Confidence Bounds = 2-Sided @ 95% CL Confidence Bounds = 2-Sided @ 95% CL
Upper Limit = 6.3122 Upper Limit = 6.0406 Upper Limit = 5.1925
Mean Life (Secs.) = 6.3087 2.49 Mean Life (Secs.) = 6.0371 2.52 Mean Life (Secs.) = 5.1892 2.35
Lower Limit = 6.3053 Lower Limit = 6.0336 Lower Limit = 5.1859
Temperature (K) = 218.15 Temperature (K) = 218.15 Temperature (K) = 218.15
Voltage (V) = 4.05 Voltage (V) = 4.05 Voltage (V) = 4.05
Confidence Bounds = 2-Sided @ 95% CL Confidence Bounds = 2-Sided @ 95% CL Confidence Bounds = 2-Sided @ 95% CL
Upper Limit = 11.4145 Upper Limit = 10.6723 Upper Limit = 11.0083
Mean Life (Secs.) = 11.4046 4.39 Mean Life (Secs.) = 10.6622 4.42 Mean Life (Secs.) = 10.9972 4.82
Lower Limit = 11.3947 Lower Limit = 10.6521 Lower Limit = 10.986

Fisher Var/Cov Matrix Fisher Var/Cov Matrix Fisher Var/Cov Matrix

VarBeta CovBetaB CovBetaC CovBetan VarBeta CovBetaB CovBetaC CovBetan VarBeta CovBetaB CovBetaC CovBetan
1.35E-06 -7.06E-05 6.73E-07 -4.90E-08 1.23E-06 -6.76E-05 6.41E-07 -5.92E-08 8.90E-07 -5.14E-05 2.24E-07 -9.17E-08

CovBetaB VarB CovBC CovBn CovBetaB VarB CovBC CovBn CovBetaB VarB CovBC CovBn
-7.06E-05 9.27E-02 -8.10E-04 1.80E-05 -6.76E-05 1.14E-01 -1.04E-03 2.16E-05 -5.14E-05 1.30E-01 -6.75E-04 4.13E-05

CovBetaC CovBC VarC CovCn CovBetaC CovBC VarC CovCn CovBetaC CovBC VarC CovCn
6.73E-07 -8.10E-04 1.30E-05 1.61E-06 6.41E-07 -1.04E-03 1.69E-05 1.89E-06 2.24E-07 -6.75E-04 6.52E-06 1.23E-06

CovBetan CovBn CovCn Varn CovBetan CovBn CovCn Varn CovBetan CovBn CovCn Varn
-4.90E-08 1.80E-05 1.61E-06 5.55E-07 -5.92E-08 2.16E-05 1.89E-06 6.27E-07 -9.17E-08 4.13E-05 1.23E-06 7.39E-07
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              Table 13b. Thermal – Non-Thermal Weibull Model Distribution Paramaters (2.5V). 

Thermal - Non-Thermal/Weibull Model Distributions
90nm-Initial Parameters  110nm-Initial Parameters  130nm-Initial Parameters  

Parameter Bounds Parameter Bounds Parameter Bounds
Lower = 3.9624 Beta = 3.9654 Upper = 3.9685 Lower = 3.6984 Beta = 3.7014 Upper = 3.7044 Lower = 3.6687 Beta = 3.6716 Upper = 3.6746
Lower = 389.9964 B = 390.4031 Upper = 390.8098 Lower = 375.2421 B = 375.6892 Upper = 376.1363 Lower = 367.2766 B = 367.7282 Upper = 368.1797
Lower = 3.9179 C = 3.9247 Upper = 3.9315 Lower = 4.0449 C = 4.0526 Upper = 4.0603 Lower = 4.1209 C = 4.1288 Upper = 4.1367
Lower = 0.4597 n = 0.4607 Upper = 0.4617 Lower = 0.4725 n = 0.4736 Upper = 0.4747 Lower = 0.4784 n = 0.4795 Upper = 0.4806
Eta = 6.86 Eta = 6.7407 Eta = 6.7006
Ea = 0.0336 Ea = 0.0324  Ea = 0.0317
Temperature (K) = 398.15 Temperature (K) = 398.15 Temperature (K) = 398.15
Voltage (V) = 2.5 Voltage (V) = 2.5 Voltage (V) = 2.5
Confidence Bounds = 2-Sided @ 95% CL Std Dev Confidence Bounds = 2-Sided @ 95% CL Std Dev Confidence Bounds = 2-Sided @ 95% CL Std Dev
Upper Limit = 6.218 Upper Limit = 6.0866 Upper Limit = 6.0478
Mean Life (Secs.) = 6.2149 1.75 Mean Life (Secs.) = 6.0833 1.81 Mean Life (Secs.) = 6.0444 1.81
Lower Limit = 6.2118 Lower Limit = 6.08 Lower Limit = 6.0411
Temperature (K) = 348.15 Temperature (K) = 348.15 Temperature (K) = 348.15
Voltage (V) = 2.5 Voltage (V) = 2.5 Voltage (V) = 2.5
Confidence Bounds = 2-Sided @ 95% CL Confidence Bounds = 2-Sided @ 95% CL Confidence Bounds = 2-Sided @ 95% CL
Upper Limit = 7.1576 Upper Limit = 6.9675 Upper Limit = 6.9049
Mean Life (Secs.) = 7.1547 2.06 Mean Life = 6.9644 2.23 Mean Life (Secs.) = 6.9018 2.18
Lower Limit = 7.1517 Lower Limit = 6.9612 Lower Limit = 6.8987
Temperature (K) = 298.15 Temperature (K) = 298.15 Temperature (K) = 298.15
Voltage (V) = 2.5 Voltage (V) = 2.5 Voltage (V) = 2.5
Confidence Bounds = 2-Sided @ 95% CL Confidence Bounds = 2-Sided @ 95% CL Confidence Bounds = 2-Sided @ 95% CL
Upper Limit = 8.6382 Upper Limit = 8.346 Upper Limit = 8.2426
Mean Life (Secs.) = 8.635 2.41 Mean Life = 8.3426 2.5 Mean Life (Secs.) = 8.2393 2.48
Lower Limit = 8.6317 Lower Limit = 8.3393 Lower Limit = 8.236
Temperature (K) = 218.15 Temperature (K) = 218.15 Temperature (K) = 218.15
Voltage (V) = 2.5 Voltage (V) = 2.5 Voltage (V) = 2.5
Confidence Bounds = 2-Sided @ 95% CL Confidence Bounds = 2-Sided @ 95% CL Confidence Bounds = 2-Sided @ 95% CL
Upper Limit = 13.9663 Upper Limit = 13.2351 Upper Limit = 12.9605
Mean Life (Secs.) = 13.9574 3.9 Mean Life = 13.2261 4.01 Mean Life (Secs.) = 12.9515 3.96
Lower Limit = 13.9485 Lower Limit = 13.217 Lower Limit = 12.9426

Fisher Var/Cov Matrix Fisher Var/Cov Matrix Fisher Var/Cov Matrix

VarBeta CovBetaB CovBetaC CovBetan VarBeta CovBetaB CovBetaC CovBetan VarBeta CovBetaB CovBetaC CovBetan
2.45E-06 -4.03E-05 5.40E-07 -5.22E-08 2.33E-06 -4.79E-05 6.82E-07 -4.76E-08 2.31E-06 -5.28E-05 7.58E-07 -4.90E-08

CovBetaB VarB CovBC CovBn CovBetaB VarB CovBC CovBn CovBetaB VarB CovBC CovBn
-4.03E-05 4.30E-02 -5.21E-04 1.02E-05 -4.79E-05 5.20E-02 -6.58E-04 1.05E-05 -5.28E-05 5.30E-02 -6.85E-04 1.05E-05

CovBetaC CovBC VarC CovCn CovBetaC CovBC VarC CovCn CovBetaC CovBC VarC CovCn
5.40E-07 -5.21E-04 1.20E-05 1.09E-06 6.82E-07 -6.58E-04 1.54E-05 1.30E-06 7.58E-07 -6.85E-04 1.63E-05 1.35E-06

CovBetan CovBn CovCn Varn CovBetan CovBn CovCn Varn CovBetan CovBn CovCn Varn
-5.22E-08 1.02E-05 1.09E-06 2.70E-07 -4.76E-08 1.05E-05 1.30E-06 3.09E-07 -4.90E-08 1.05E-05 1.35E-06 3.14E-07

Thermal - Non-Thermal/Weibull Model Distributions
90nm-Final Parameters 110nm-Final Parameters  130nm-Final Parameters

Parameter Bounds Parameter Bounds Parameter Bounds
Lower = 2.7586 Beta = 2.7609 Upper = 2.7632 Lower = 2.5976 Beta = 2.5998 Upper = 2.6019 Lower = 2.4134 Beta = 2.4152 Upper = 2.4171
Lower = 480.7776 B = 481.3743 Upper = 481.9710 Lower = 463.0570 B = 463.7186 Upper = 464.3802 Lower = 609.9189 B = 610.6267 Upper = 611.3345
Lower = 2.7759 C = 2.7830 Upper = 2.7901 Lower = 2.9045 C = 2.9125 Upper = 2.9206 Lower = 1.7264 C = 1.7314 Upper = 1.7364
Lower = 0.4844 n = 0.4859 Upper = 0.4873 Lower = 0.5032 n = 0.5048 Upper = 0.5063 Lower = 0.5917 n = 0.5934 Upper = 0.5951
Eta = 5.9737 Eta = 5.8778 Eta = 5.8072
Ea = 0.0415 Ea = 0.0400  Ea = 0.0526
Temperature (K) = 398.15 Temperature (K) = 398.15 Temperature (K) = 398.15
Voltage (V) = 2.5 Voltage (V) = 2.5 Voltage (V) = 2.5
Confidence Bounds = 2-Sided @ 95% CL Std Dev Confidence Bounds = 2-Sided @ 95% CL Std Dev Confidence Bounds = 2-Sided @ 95% CL Std Dev
Upper Limit = 5.3204 Upper Limit = 5.2248 Upper Limit = 4.1342
Mean Life (Secs.) = 5.3165 2.08 Mean Life (Secs.) = 5.2207 2.18 Mean Life (Secs.) = 4.1308 1.81
Lower Limit = 5.3126 Lower Limit = 5.2166 Lower Limit = 4.1274
Temperature (K) = 348.15 Temperature (K) = 348.15 Temperature (K) = 348.15
Voltage (V) = 2.5 Voltage (V) = 2.5 Voltage (V) = 2.5
Confidence Bounds = 2-Sided @ 95% CL Confidence Bounds = 2-Sided @ 95% CL Confidence Bounds = 2-Sided @ 95% CL
Upper Limit = 6.3284 Upper Limit = 6.1752 Upper Limit = 5.1521
Mean Life (Secs.) = 6.3246 2.5 Mean Life (Secs.) = 6.1712 2.57 Mean Life (Secs.) = 5.1486 2.37
Lower Limit = 6.3208 Lower Limit = 6.1673 Lower Limit = 5.1452
Temperature (K) = 298.15 Temperature (K) = 298.15 Temperature (K) = 298.15
Voltage (V) = 2.5 Voltage (V) = 2.5 Voltage (V) = 2.5
Confidence Bounds = 2-Sided @ 95% CL Confidence Bounds = 2-Sided @ 95% CL Confidence Bounds = 2-Sided @ 95% CL
Upper Limit = 7.9793 Upper Limit = 7.7201 Upper Limit = 6.9134
Mean Life (Secs.) = 7.9751 3.12 Mean Life (Secs.) = 7.7158 3.34 Mean Life (Secs.) = 6.9092 3
Lower Limit = 7.9709 Lower Limit = 7.7114 Lower Limit = 6.9051
Temperature (K) = 218.15 Temperature (K) = 218.15 Temperature (K) = 218.15
Voltage (V) = 2.5 Voltage (V) = 2.5 Voltage (V) = 2.5
Confidence Bounds = 2-Sided @ 95% CL Confidence Bounds = 2-Sided @ 95% CL Confidence Bounds = 2-Sided @ 95% CL
Upper Limit = 14.4301 Upper Limit = 13.6621 Upper Limit = 14.6583
Mean Life (Secs.) = 14.417 5.61 Mean Life (Secs.) = 13.6485 5.67 Mean Life (Secs.) = 14.6424 6.5
Lower Limit = 14.404 Lower Limit = 13.635 Lower Limit = 14.6265

Fisher Var/Cov Matrix Fisher Var/Cov Matrix Fisher Var/Cov Matrix

VarBeta CovBetaB CovBetaC CovBetan VarBeta CovBetaB CovBetaC CovBetan VarBeta CovBetaB CovBetaC CovBetan
1.35E-06 -7.06E-05 6.73E-07 -4.90E-08 1.23E-06 -6.76E-05 6.41E-07 -5.92E-08 8.90E-07 -5.14E-05 2.24E-07 -9.17E-08

CovBetaB VarB CovBC CovBn CovBetaB VarB CovBC CovBn CovBetaB VarB CovBC CovBn
-7.06E-05 9.27E-02 -8.10E-04 1.80E-05 -6.76E-05 1.14E-01 -1.04E-03 2.16E-05 -5.14E-05 1.30E-01 -6.75E-04 4.13E-05

CovBetaC CovBC VarC CovCn CovBetaC CovBC VarC CovCn CovBetaC CovBC VarC CovCn
6.73E-07 -8.10E-04 1.30E-05 1.61E-06 6.41E-07 -1.04E-03 1.69E-05 1.89E-06 2.24E-07 -6.75E-04 6.52E-06 1.23E-06

CovBetan CovBn CovCn Varn CovBetan CovBn CovCn Varn CovBetan CovBn CovCn Varn
-4.90E-08 1.80E-05 1.61E-06 5.55E-07 -5.92E-08 2.16E-05 1.89E-06 6.27E-07 -9.17E-08 4.13E-05 1.23E-06 7.39E-07  
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Figure 30. 90nm T-NT/Weibull Initial and 1,000 hr. Use Level Plots at Fixed 398.15K and 4.05V. 

 



 134 
 

 

0

1.00

0.20

0.40

0.60

0.80

0 10.002.00 4.00 6.00 8.00

Reliability vs Time

Time (Seconds)

R
e

lia
b

ili
ty

T-NT/Weib
1,000 hr. 90nm Tret

398.15 / 4.05
F=2048e6 | S=0
T-NT/Weib
Initial 90nm Tret

398.15 / 4.05
F=2048e6 | S=0
CL: 95.00%
2 Sided-B
[TB]

1,000 hr. Beta1=2.7609, B1=481.3743, C1=2.7830, n1=0.4859
Initial Beta2=3.9654, B2=390.4031, C2=3.9247, n2=0.4607  

 

 

Figure 31. 90nm T-NT/Weibull Initial and 1,000 hr. Reliability Plots at at Fixed 398.15K and 4.05V. 
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Figure 32. 90nm T-NT/Weibull Initial and 1,000 hr. FR Plots at Fixed 398.15K and 4.05V. 
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Figure 33. 90nm T-NT/Weibull Initial and 1,000 hr. SD Plots at Fixed 4.05V. 
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4.3 Degradation Model 

 

Given that the data retention measurements were recorded at 100 hour increments up 

to 1,000 hours, degradation analysis is implemented to predict how data retention 

degrades over time under different stress conditions. Retention time degradation was 

analyzed by fitting the appropriate degradation model to the data using the Mean 

Square Error (MSE) method. This model describes the relationship between data 

retention properties over time for several stress conditions and technologies.  As with 

conventional reliability data, the amount of uncertainty in the results is directly 

related to the number of units or bits of information tested and one must be cautious 

of extrapolation error.  The following models were analyzed and ranked for the best 

fit to the observed degradation: Linear, Exponential, Power, Logarithmic, Gompertz 

and Lloyd-Lipow.  The Exponential relationship was the highest ranked model for the 

observed data: 

 

e
bx

ay
)(

*
−

= , (4.17) 

 

where y represents the performance stress condition, x represents time-to-fail, and a 

and b are the unknown model parameters to be calculated for different stress 

conditions.  Model parameters for t 0.1 (99.9% Reliability) are calculated in Table 14 

using non-linear regression analysis for each of the three technologies.  The cold 

temperature (218K) data retention properties over time do not follow any degradation 

model over the tested period.  Therefore, the degradation model can only be applied 
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at > 298K.   Statistical nonlinear regression analysis, results and 95% Confidence 

Levels at each condition are summarized in Appendix C. 

 

Table 14.  Exponential Model Parameters. 

  

Data ID   Parameter a Parameter b 

90nm:  298.15K, 2.5V 8.5506  8.331E-05 

90nm:  348.15K, 2.5V 7.1762  1.354E-04 

90nm:  398.15K, 2.5V 6.1696  1.625E-04 

90nm:  298.15K, 4.05V 6.8529  9.116E-05 

90nm:  348.15K, 4.05V 5.4943  7.289E-05 

90nm:  398.15K, 4.05V 4.8682  1.567E-04 

110nm:  298.15K, 2.5V 8.3135  8.168E-05 

110nm:  348.15K, 2.5V 6.8425  1.203E-04 

110nm:  398.15K, 2.5V 6.0345  1.540E-04 

110nm:  298.15K, 4.05V 6.6194  9.737E-05 

110nm:  348.15K, 4.05V 5.5363  1.322E-04 

110nm:  398.15K, 4.05V 4.8036  1.639E-04 

130nm:  298.15K, 2.5V 8.3441  1.929E-04 

130nm:  348.15K, 2.5V 6.7430  3.071E-04 

130nm:  398.15K, 2.5V 5.4443  3.194E-04 

130nm:  298.15K, 4.05V 6.5241  2.498E-04 

130nm:  348.15K, 4.05V 5.4715  3.727E-04 

130nm:  398.15K, 4.05V 4.7582  4.386E-04 

 

The critical degradation value of data retention time for the devices is 64 

milliseconds, the point at which bit-cells are automatically refreshed in auto-refresh 

mode.  Once cell retention time degrades below this threshold, data is likely to be 

lost, i.e., a logic-1 changes states to logic-0 as data retention capability falls below the 
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auto-refresh time of the devices.  Figure 34 shows the Tret degradation prediction of 

the three technologies at accelerated conditions.  The 130nm technology is the worst 

performer compared to both the 110nm and 90nm technology parts. As was initially 

noted in Chapter Four, a scale factor is evident; the more integrated the device, 

generally the better the retention time across temperature and the tighter the standard 

deviation.  The scale factor is most likely explained by a difference of the oxide 

layers used in smaller technologies (advanced high-K processes) and improvements 

in cell design, processing and geometry, i.e., vertical/horizontal staked capacitors, 

materials, dimensions, etc. 

 
Based on the 64 milliseconds critical threshold and substituting the parameter values 

into the Exponential degradation model and solving for x, the t 0.1 time when data 

retention drops to 99.9% reliability at different stress levels are summarized in Table 

15.  Times were calculated at the 95% CL. 

 

Table 15.  Data Retention TTF  (t 0.1 Point). 

 

Data ID   t 0.1 Time-to-Fail (Hours) 

90nm:  298.15K, 2.5V  67920.4 

90nm:  348.15K, 2.5V  40067.5 

90nm:  398.15K, 2.5V  32852.2    

90nm:  298.15K, 4.05V  51730.2 

90nm:  348.15K, 4.05V  42329.7 

90nm:  398.15K, 4.05V  28027.1   

110nm:  298.15K, 2.5V  68404.7 

110nm:  348.15K, 2.5V  45485.3 

110nm:  398.15K, 2.5V  34222.4   
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Data ID   t 0.1 Time-to-Fail (Hours) 

110nm:  298.15K, 4.05V  47881.2 

110nm:  348.15K, 4.05V  33500.9 

110nm:  398.15K, 4.05V  26417.9   

130nm:  298.15K, 2.5V  28425.5 

130nm:  348.15K, 2.5V  17977.6 

130nm:  398.15K, 2.5V  17161.8   

130nm:  298.15K, 4.05V  18716.5 

130nm:  348.15K, 4.05V  12044.3 

130nm:  398.15K, 4.05V  9912.3    
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Figure 34. Tret Degradation Prediction at Accelerated Conditions. 
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4.4  Application Case Study 

 

For an upcoming NASA mission, 512Mbit SDRAMs will be used on two redundant 

Data Telemetry and Command Interface Cards in an avionics module.  Since the 

SDRAMs are volatile (loses data after the power has been turned off then back on), 

volatile memory is not typically used to store mission critical information.  Volatile 

memory has very fast access times and is “random access” (any address can be 

accessed when required) in both read and write modes.  These qualities are highly 

desirable for collecting science data in any space mission.  Retention time 

degradation is a concern for the mission.  Retention time is also influenced by 

radiation effects, which is beyond the scope of this study and is considered separately.  

For the expected flight conditions, data retention reliability characteristics are sought 

after for each of the three technologies for the mission application.  Parts will be 

operated in a relatively benign environment at nominal frequency (100MHz), Tc = 

75˚C, and nominal operating Vdd (2.5V).  Parts will be auto-refreshed every 64 

milliseconds in the application, which is the manufacturer’s standard refresh rate.  In 

the application, parts will be off (dormant) for 2.5 years, followed by a 2 year (17,520 

hrs) on-state mission life. 

 

Using the approach in Section 4.3, the predicted time-to-failure t 0.1 (99.9% 

Reliability) degradation model is given in Figure 35 for each of the three technologies 

at benign conditions. 
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Figure 35. Tret t 0.1 Degradation Prediction at Benign Conditions. 
 

 

At the benign use conditions, the 110nm technology parts are expected to survive the 

longest, with retention time-to-failure t 0.1 (99.9% Reliability) occurring at 45,485 

hours; while the 90nm technology parts are expected to survive until 40,067 hours of 

operation at t 0.1.  The 130nm technology parts remain marginal for the case study 

application with retention time-to-failure t 0.1 occurring at 17,977 hours.  
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4.5  Extrapolation Error 

 

Extrapolation error becomes a concern when degradation models extend significantly 

beyond the tested time of the devices in the reliability study.  Although time-to-failure 

predictions can be generated based upon the data taken from the reliability study, the 

uncertainty of the prediction grows over time as is displayed in Figure 35. 
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Chapter 5: Physics-of-Failure & Systems Approach 

 

 

5.1  Overview 

 

Retention time margin may also be measured using a Q-ratio of the time-to-first-

failure distribution (t1) to the maximum specified refresh time, (tM).  This ratio 

provides insight into the tolerance of each technology generation to degradation with 

respect to voltage and temperature stresses.  The ratio also provides a quality factor 

demonstrating the amount of margin between actual soft breakdown and the 

manufacturer’s specified refresh time. Table 16 shows the (t1)/(tM) Q-ratios for each 

technology and stress condition.  A high Q-ratio number represents a high operating 

margin; a low number represents low margin. 

 

Data retention characteristics are most robust at low temperature, 218K, and nominal 

operating voltage, 2.5V.  The Q-ratio also reveals that 90nm devices are more robust 

across the full stress profile range than the 110nm and 130nm devices.  While all 

three technologies reveal diminishing margin with increasing temperature and voltage 

stresses, Table 16 shows that the temperature component of the stress profile has a 

greater effect on data retention margin.  
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Table 16.  Q-Ratio (t1)/(tM) at Initial Test Point. 
 
 

 

Test 
Conditions 

90nm 
(t1)/(tM) 
Q-Ratio 

110nm 
(t1)/(tM) 
Q-Ratio 

130nm 
(t1)/(tM) 
Q-Ratio 

218K, 
2.5V 

140.6 140.6 140.6 

298K, 
2.5V 

125.0 125.0 125.0 

348K, 
2.5V 

78.1 62.5 62.5 

398K, 
2.5V 

46.9 31.3 31.3 

218K, 
4.0V 

109.4 109.4 109.4 

298K, 
4.0V 

93.8 93.8 93.8 

348K, 
4.0V 

46.9 31.3 31.3 

398K, 
4.0V 

15.6 4.7 3.1 

 

 

After passing of a memory cell’s retention time, a charged cell has lost a certain 

threshold charge such that the remaining charge is detected as a logic zero. This fixed 

threshold charge equals the average leakage current times the retention time. 

Therefore, the retention time is inversely proportional to the average leakage current, 

and the distribution of cell leakage currents may be determined by measuring the 
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distribution of retention times. Three leakage paths should be considered: first, sub-

threshold leakage through the access transistors; second, leakage from the storage 

node of the transistor to the substrate; and third, leakage through the dielectric of the 

storage capacitor.  Newer DRAM designs generally bias the cell plate at Vdd/2 in 

order to reduce the electric field in the thin dielectric of the storage capacitor.   The 

leakage of the dielectric of the storage capacitors should be increased by charge 

injection under stress before breakdown of the dielectric. Low temperature testing, 

218K, was included in the stress profile in an attempt to identify this effect. Thermal 

carrier generation is based on tunneling through the dielectric, from leakage to the 

substrate and through the access transistor.  

 

5.2  Failure Mechanisms 

 

The data retention time breakdown failure distributions are similar to the time-to-

failure distributions of the breakdown of thin dielectrics. Therefore, dielectric leakage 

may be a precursor to breakdown, and increased through electrical and thermal 

stresses before breakdown or other loss of functionality occurs. This effect would 

show up as a shift in the retention time distribution measured after stressing the 

devices.  This will be shown graphically later. 

 

The three paths for storage capacitor charge to leak out are through the capacitor 

dielectric, through the substrate, and through the transistor channel. The two latter 

effects on the time to first-bit failure can be magnified by either increasing or 
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decreasing the substrate bias as was shown by Shaw et al [106].  For an n-channel 

transistor, negative substrate biasing decreases the sub-threshold current 

exponentially. However, at a very large negative bias, substantial current may be 

generated in the depletion region of the storage node’s p-n junction. This current may 

be generated by thermal activation of electrons through near mid-gap centers and is 

proportional to the depletion width. At temperatures high enough to overcome the full 

bandgap of silicon, diffusion of minority carriers may also be a factor. Earlier work 

shows that a small negative substrate bias may be generated on-chip, which in effect 

suppresses both the sub-threshold and the substrate current [106]. 

  

5.3  Discussion 

 

Model distributions were fitted to the failure distributions for each of the technologies 

studied. The data supports and fits the Thermal – Non-Thermal (T-NT) Model 

comprised of the Arrhenius relationship for the thermal stress, and the Inverse Power 

Law for the voltage stress.  Using this model and the Weibull distribution for plotting, 

it is shown that the β slope decreases over time for each stress condition.  There are 

two distinct breakdown failure modes as are shown in the Weibull distributions in 

Figures 36 and 37.  The first observed breakdown failures in each distribution appear 

to be caused by random defects, considered to be extrinsic in nature, and generally 

process induced.  These failures may be caused by weak areas or defects in the oxide 

film, contaminants, fine cracks, or pin holes.  Such defects can cause increases in 
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leakage within the memory cell and early breakdown.  The randomness of the defect 

related first failures lends itself well for further statistical analysis.   

 

Figure 36 shows that for the 130nm products initial readings at elevated stress 

conditions, approximately 0.34% of the early retention time failures are attributable to 

randomly distributed weak bits.  Similarly, after 1,000 hour stress, Figure 37 shows 

that at elevated stress conditions a higher percentage, approximately 0.58% of the 

early retention time failures, is attributable to randomly distributed weak bits.  At the 

other end of the spectrum, colder temperature and nominal operating voltage, the data 

retention characteristics are much better.  

 

Figure 38 shows that for the 110nm products initial readings at elevated stress 

conditions, approximately 0.052% of the early retention time failures are attributable 

to randomly distributed weak bits.  Similarly, after 1,000 hour stress, Figure 39 shows 

that at elevated stress conditions a higher percentage, approximately 0.5% of the early 

retention time failures, is attributable to randomly distributed weak bits.  Likewise 

with the 130nm products, at colder temperature and nominal operating voltage, the 

data retention characteristics are much better.  

 

Figures 40 and 41 show that for the 90nm products, initial and 1,000 readings at 

elevated stress conditions correlate much better, demonstrating that approximately 

0.32% of the early retention time failures are attributable to randomly distributed 

weak bits.   
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Figure 36. 130nm Bit Failure Distribution at Initial Time (t1), 125°C/4.0V. 

 

The second distinct failure breakdown mode consists of the main population of the 

distribution.  The soft breakdown related failure mechanism may be related to the 

robustness of the oxide processing.  Although data retention soft errors are plotted, a 

hard degradation is observed over time.   Similar distributions with two distinct 
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Figure 37. 130nm Bit Failure Distribution at Time (t2). 
 
 
populations, randomly distributed weak bits with β = 1, and a main population with 

increasing failure rate with β > 1 were also observed with the 110nm and 90nm and 

product technologies.  Refer to Figures 38 – 41.   
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Figure 38. 110nm Bit Failure Distribution at Initial Time (t1), 125°C/4.0V. 
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Figure 39. 110nm Bit Failure Distribution at Time (t2). 
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Figure 40. 90nm Bit Failure Distribution at Initial Time (t1), 125°C/4.0V. 
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Figure 41. 90nm Bit Failure Distribution at Time (t2). 
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5.3.1  Randomness 

 

The early failures were confirmed to be random by comparing the address locations 

to the physical memory block locations; clustering or systemic patterns of the failure 

locales were not observed. The first early failures are identified by yellow blocks in 

90nm SN 2 memory layout map in Figure 42. 

 

 

 

 

Figure 42. Optical Overview of Memory Block Layout. 
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5.4  Retention Time Early Breakdown 

 

The Weibull distribution takes the form of the Exponential distribution at β = 1.  This 

greatly simplifies the predictive model, and enables a more straightforward approach 

in predicting the behavior and TTF of the next technology generation.  Table 17 

shows the retention time soft error rates, calculated at 95% CL, of the randomly 

distributed weak bits at the 512Mb product (system) level at each stress condition. 

 
Table 17.  512Mb Product Level Retention Time Soft Error Rate Calculations. 

 

Stress 
Conditions 

90nm 
CFR (λ) 
%/1Khrs 

90nm 
Equiv. 

FIT/512
Mb 

110nm 
CFR (λ) 
%/1Khrs 

110nm 
Equiv. 

FIT/512
Mb 

130nm 
CFR (λ) 
%/1Khrs 

130nm 
Equiv. 

FIT/512
Mb 

218K, 
2.5V 

0.0287 287 0.03025 302.5 0.02895 289.5 

298K, 
2.5V 

0.06065 606.5 0.06215 621.5 0.06865 686.5 

348K, 
2.5V 

0.08135 813.5 0.08245 824.5 0.09625 962.5 

398K, 
2.5V 

0.1013 1013 0.10185 1018.5 0.1240 1240 

218K, 
4.0V 

0.03865 386.5 0.0420 420 0.0429 429 

298K, 
4.0V 

0.08175 817.5 0.0863 863 0.1017 1017 

348K, 
4.0V 

0.1096 1096 0.11445 1144.5 0.1426 1426 

398K, 
4.0V 

0.13645 1364.5 0.1414 1414 0.1837 1837 
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It is important to note that these calculations reflect the soft error rate of the early 

retention time breakdown at the 1,000 hour test point, and do not reflect the hard 

failure breakdown of the memory product. Up to the 1,000 hour test point, even the 

first retention time breakdowns for all three product technologies are above the 

specified 64mSec refresh rate, the time one would see data loss in an actual 

application.  Refer to Figures 36-41.  The results in Table 17 reveal that a 

combination of high voltage and high temperature stress yields the largest SER and is 

the best way to identify weak bits in DRAM devices.  It is shown that for each of the 

three memory technologies studied, there is a trend of increasing reliability 

(decreasing FR) for the same density of memory under equivalent stress conditions as 

the size of the memory cell and feature size decreases. 

 

We can approximate a complex integrated circuit by a competing failure or series 

failure system. It is shown that the early failures, the most important failures, are 

random and that they are well approximated by an exponential distribution with a 

constant failure rate at different stress levels.  For a constant failure rate system, the 

FIT is interchangeable with MTTF according to its definition such that: 

 

s
s MTTF

FIT
910

=  (5.1) 

 

Furthermore, the FIT or CFR may be broken down into a temperature stress element 

and a voltage stress element.  Figures 43a-c show the relative impact of the voltage 

and temperature stresses on product (system) level early retention time soft error 
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rates, calculated at 95% CL, of the randomly distributed weak bits.  There is a clear 

trend of decreasing FR with each product technology generation for the same density 

memory under equivalent stress conditions. 
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Figure 43a. 130nm System Retention Time Soft Error Rates (95% CL, 1,000hrs) 
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Figure 43b. 110nm System Retention Time Soft Error Rates (95% CL, 1,000hrs) 
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Figure 43c. 90nm System Retention Time Soft Error Rates (95% CL, 1,000hrs) 
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The product or system level FR results yield the impact of temperature and voltage on 

the acceleration factor for each of the product technologies.  A test matrix with the 

corresponding influences of both temperature and voltage follows for each product 

technology. The test matrices show the actual Acceleration Factor or Derating Factor 

for each stress condition to yield the early failures or defects. 

 

Table 18a.  130nm Retention Time Soft Error Rate Test Matrix for Early Failures. 

 

 

130nm 
CFR (λ) 
%/1Khrs 

218K 298K 348K 398K 

 

2.5V 

 

0.02895 

 

0.06865 

 

0.09625 

 

0.1240 

 

4.0V 

 

0.0429  

 

0.1017 

 

0.1426 

 

0.1837 

 

 

130nm  
AFsys 

218K 298K 348K 398K 

 

2.5V 

 

0.42 

 

1 

 

1.40 

 

1.81 

 

4.0V 

 

0.62  

 

1.48 

 

2.1 

 

2.68 
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Table 18b.  110nm Retention Time Soft Error Rate Test Matrix for Early Failures. 

 

 

 

110nm 
CFR (λ) 
%/1Khrs 

218K 298K 348K 398K 

 

2.5V 

 

0.03025 

 

0.06215 

 

0.08245 

 

0.10185 

 

4.0V 

 

0.0420  

 

0.0863 

 

0.11445 

 

0.1414 

 

 

110nm  
AFsys 

218K 298K 348K 398K 

 

2.5V 

 

0.49 

 

1 

 

1.33 

 

1.64 

 

4.0V 

 

0.67  

 

1.39 

 

1.84 

 

2.28 
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Table 18c.  90nm Retention Time Soft Error Rate Test Matrix for Early Failures. 

 

 

 

90nm  
CFR (λ) 
%/1Khrs 

218K 298K 348K 398K 

 

2.5V 

 

0.0287 

 

0.06065 

 

0.08135 

 

0.1013 

 

4.0V 

 

0.03865  

 

0.08175 

 

0.1096 

 

0.13645 

 

 

90nm  
AFsys 

218K 298K 348K 398K 

 

2.5V 

 

0.47 

 

1 

 

1.34 

 

1.67 

 

4.0V 

 

0.64  

 

1.34 

 

1.81 

 

2.25 
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5.5  Power Relationship as a Function of Scaling 

 

As was described earlier in Section 1.1.2, a semiconductor device’s lifetime is affected by 

changing its operating parameters, specifically junction temperature, because of heat 

activated mechanisms as well as supply voltage. The device’s operating voltage (Vdd) 

directly affects many of its parameters, including current density (je) and the electric field 

(Eox) across the gate dielectric. Supply voltage also has a significant effect on junction 

temperature (Tj) which is dependent on the power dissipated from the device (PD), the 

ambient operating temperature (Ta), and the sum of the thermal impedances between the 

die and ambient environment (θja). The power dissipated of the device is the sum of both 

dynamic and static power dissipation, such that: 

 

PD = Cl*Vdd2 *f  + i lVdd (5.2) 

 

where Cl is the total capacitance load, Vdd is the supply voltage, f is the frequency, 

and il is the load current in the static mode.  The dissipated power of the device is then 

used to calculate the junction temperature such that: 

 

Tj = θja*PD + Ta (5.3) 

 

where θja is the junction-to-ambient thermal resistance and Ta is the ambient 

temperature. 
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An analysis and comparison of the PD and Tj for the products in this data retention 

study follows: 

 

90nm product PD and Tj calculations: 

PD = (Cl*Vdd2 *f) + Max(Ioh DCmax*(Vdd-Voh), Iol DCmax*Vol)) 

PD (2.5V) = (5x10-12 * 6.25 * 133 x106 )+(16.8mA(2.5V-1.927V))=13.78mW 

Tj(-55C) = 48.4˚C/W * 13.78mW + -55˚C = -54.3˚C 

Tj(+25C) = 48.4˚C/W * 13.78mW + 25˚C = +25.67˚C 

Tj(+75C) = 48.4˚C/W * 13.78mW + 75˚C = +75.67˚C 

Tj(+125C) = 48.4˚C/W *13.78mW + 125˚C = +125.67˚C 

PD (4.0V) = (5x10-12 * 16 * 133 x106 )+(16.8mA(4.0V-1.927V))=45.47mW 

Tj(-55C) = 48.4˚C/W * 45.47mW + -55˚C = -52.8˚C 

Tj(+25C) = 48.4˚C/W * 45.47mW + 25˚C = +27.2˚C 

Tj(+75C) = 48.4˚C/W * 45.47mW + 75˚C = +77.2˚C 

Tj(+125C) = 48.4˚C/W * 45.47mW + 125˚C = +127.2˚C 

 

110nm product PD and Tj calculations: 

PD = (Cl*Vdd2 *f) + Max(Ioh DCmax*(Vdd-Voh), Iol DCmax*Vol)) 

PD (2.5V) =( 5x10-12 * 6.25 * 200 x106 )+(15.2mA(2.5V-1.95V))=14.61mW 

Tj(-55C) = 48.4˚C/W * 14.61mW + -55˚C = -54.3˚C 

Tj(+25C) = 48.4˚C/W * 14.61mW + 25˚C = +25.7˚C 

Tj(+75C) = 48.4˚C/W * 14.61mW + 75˚C = +75.7˚C 

Tj(+125C) = 48.4˚C/W * 14.61mW + 125˚C = +125.7˚C 
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PD (4.0V) = ( 5x10-12 * 16 * 200 x106 )+(15.2mA(4.0V-1.95V))=41.16mW 

Tj(-55C) = 48.4˚C/W * 41.16mW + -55˚C = -53.0˚C 

Tj(+25C) = 48.4˚C/W * 41.16mW + 25˚C = +27.0˚C 

Tj(+75C) = 48.4˚C/W * 41.16mW + 75˚C = +77.0˚C 

Tj(+125C) = 48.4˚C/W * 41.16mW + 125˚C = +127.0˚C 

 

130nm product PD and Tj calculations: 

PD (2.5V) =( 5x10-12 * 6.25 * 166 x106 )+(15.2mA(2.5V-1.95V))=13.55mW 

Tj(-55C) = 48.4˚C/W * 13.55mW + -55˚C = -54.3˚C 

Tj(+25C) = 48.4˚C/W * 13.55mW + 25˚C = +25.6˚C 

Tj(+75C) = 48.4˚C/W * 13.55mW + 75˚C = +75.6˚C 

Tj(+125C) = 48.4˚C/W * 13.55mW + 125˚C = +125.6˚C 

PD (4.0V) = ( 5x10-12 * 16 * 166 x106 )+(15.2mA(4.0V-1.95V))=44.44mW 

Tj(-55C) = 48.4˚C/W * 44.44mW + -55˚C = -52.8˚C 

Tj(+25C) = 48.4˚C/W * 44.44mW + 25˚C = +27.2˚C 

Tj(+75C) = 48.4˚C/W * 44.44mW + 75˚C = +75.2˚C 

Tj(+125C) = 48.4˚C/W * 44.44mW + 125˚C = +125.2˚C 

 
 

It is important to note that with these product technologies, the power dissipation is rather 

low as SDRAM is not considered to be a power device.  Because of this, the junction 

temperature remains close to the ambient temperature and in this study, comparable stress 

conditions closely correlate to comparable junction temperatures across the product 

technologies.  This is not the case with leading edge power processors where the power 
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density is increasing exponentially and junction temperature is increasing ~1.45x with 

each new product generation. 

 

5.6  Physical Failure Model 

 

The soft errors and acceleration factors from each of the different temperature and 

voltage conditions were analyzed against existing competing and multiple mechanism 

physical failure models, e.g. Arrhenius, Inverse Power, Exponential. The models were 

described earlier in Equations 2.4-2.7 and are summarized again here.  First, two 

multiple failure mechanism models were applied:  Multiplication of AF’s 

(temperature and voltage) using both Exponential and Power Law Models:  AF1 = 

AFt * AFv(e) (Eq. 5.4) and AF2 = AFt * AFv(p) (Eq. 5.5) ; secondly, two competing 

failure mechanism models were applied: A weighted sum model of the AF’s where  

AF3 = (AFt + AFv(e))/2 (Eq. 5.6) and AF4 = (AFt + AFv(p))/2 (Eq. 5.7).  The data 

was analyzed and the model parameters were calculated for each of the models. The 

model equations are expanded as follows: 
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The calculated Ea, γ, and k parameters are as follows: 

 

Ea for 130nm = 0.06 

Ea for 110nm = 0.05 

Ea for 90nm = 0.052 

 

Applying the Power Law model for AFv, the derived k for each technology node is: 

 

k for 130nm: 0.84 

k for 110nm: 0.693 

k for 90nm: 0.637 

 

Applying the Exponential model for AFv, the derived γ for each technology node is: 

 

γ for 130nm: 0.263 

γ for 110nm: 0.216 

  γ for 130nm: 0.1997 
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The multiple failure mechanism acceleration model, refer to Equation 5.5 (product of 

AF's using the Power Law for AFv) best fits the DRAM retention time data and 

suggests a single temperature and voltage activated breakdown mechanism. The 

relative contribution of T and V on the system level FR is shown pictorially in 

Figures 43a-c.  The thermal element is the main contributor to Tret breakdown 

degradation, the voltage element contributes to the thermally activated mechanism by 

slightly increasing the junction temperature. 

 

As was discussed earlier, for current generation DRAM, the capacitance is typically 

30-40fF/cell and although the external power supply Vdd is 2.5V for each part, 

internal on-chip voltage regulator circuitry subdivides this voltage as follows: 

 

130nm Technology Parts: 

- Peripheral Circuitry Voltage: 2.2V 

- Memory Core Voltage: 1.8V  

110nm Technology Parts: 

- Peripheral Circuitry Voltage: 1.8V 

- Memory Core Voltage: 1.4V  

90nm Technology Parts: 

- Peripheral Circuitry Voltage: 1.4V 

- Memory Core Voltage: 1.0V  
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The memory cell capacitor dielectric material is Ta2O5.  The gate oxide thickness for 

the larger peripheral circuitry transistors is approximately 7nm, and the gate oxide 

thickness for the nMOS memory cell transistors is approximately 4.2 nm. 

 

Due to the over-voltage protection circuitry in each of the products, higher Vdd stress 

is not applied directly to the memory cores and this voltage is maintained at the 

specified amount.  Therefore, the impact of higher Vdd stress corresponds to an 

increase in power dissipation for each of the products; these are summarized Section 

5.5.  There is no feasible method of bypassing the over-voltage protection at the 

product level for product level testing; however, it is important to see the overall 

impact has on the overall product level power dissipation and contribution to the 

product, or system level FR. 

 

The activation energies are very small for the early retention time breakdown errors, 

up to the 1,000 hour test measurement.  As for the entire population of Tret 

breakdown, the activation energies are in the same range. Refer to Tables 13a and 

13b.  The slow degradation of Tret over time and the low activation energies suggest 

that hot carrier injection may be the intrinsic wearout mechanism at work. 

 

The switching characteristics of a MOSFET can degrade and exhibit instabilities due 

to the charge that is injected into the gate oxide. The typical effect of hot carrier, or 

hot electron degradation, is an increase in the off-state current of a p-channel 

MOSFET, and a reduction in the on-state current of an n-channel MOSFET, e.g., 
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those that comprise each memory cell.  The rate of hot carrier degradation is directly 

related to the length of the channel, the oxide thickness, and the voltage of the device. 

A measure of transistor degradation or lifetime is commonly defined in terms of 

percentage shift of threshold voltage, change in transconductance, or variation in 

drive or saturation current [71].  These parameter shifts, however, were not confirmed 

in this experiment. 

 

Gradual time-dependent dielectric breakdown of the DRAM stacked storage capacitor 

cell is another possible intrinsic wearout mechanism explanation. The stacked 

capacitor cell (STC) relies heavily on the quality and the storage capacity of the 

dielectric film between two heavily doped polysilicon electrodes.  Silicon nitride 

(Si3N4) films have a high dielectric constant and are known to contain many trap 

levels which may cause leakage current shifts.  An increase in memory capacitor cell 

leakage current over time as a result of trapped charge, or lacking or inconsistent 

quality of the capacitor dielectric film, could explain the degradation in critical charge 

threshold levels. 

 

 

5.7  DRAM Scaling and Defect Density 

 

For DRAM, the product technology represents the half pitch of metal 1 (M1).  See 

Figure 44 [107].  As the half pitch of M1 decreases with each technology generation, 

so does the physical transistor gate length (Lg).  The gate length is driven by the 
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necessity to improve transistor speed and is generally < 0.5x the DRAM half pitch.  

With a 0.7x reduction each technology generation, a 0.5x linear scaling reduction is 

realized every two generations. 

 

 

 

 
Figure 44. DRAM Metal Bit Line. 

 
The DRAM product technology scaling trend of M1 and the transistor gate length has 

historically been 0.7x/3 year cycle.  However, since 2007, DRAM function size, 

function density, and chip size scaling rate have increased to a 2.5-year cycle with 

both geometric and equivalent scaling design enhancements. Table 19 shows chip and 

cell characteristics for 130nm to 65nm DRAMs [107]. 
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Table 19. DRAM Chip and Cell Characteristics. 

 

DRAM Half Pitch Product 

Generation 
130nm 

110nm  

(1/2 node) 
90nm 65nm 

Physical Gate Length 65nm 50nm 37nm 25nm 

Cell Area Factor (a) 8 8 6 6 

Cell Area (CA = af2) µm2 0.130 0.90 .049 0.024 

Cell Array Area (% of chip 

size) 
71.3% 72% 72.6% 73.5% 

Chip Size (mm2) 390/2Gbits 312/2Gbits 287/4Gbits 568/16Gbits 

Gbits/cm2 0.55 0.90 1.49 3.03 

 

 

If defects are randomly distributed over surface area, A, and a Poisson distribution is 

assumed given the random distribution of the first few time-to-fails, the defect density 

D (number of weak defective bits/cm2) can be calculated for each product generation, 

and extrapolated to the next generation, in this case 65nm.   

 

The probability of n defects (D) in cell array area (A) is described as: 

 

]exp[*
!

DA
n

DA
P

n

−=  (5.8) 
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and the probability of a cell array area without defects (n=0) is: 

 

]exp[ DAP −=  (5.9) 
 
 

The yield defect density is measured before stress is applied; defect density at t = 0.  

The reliability defect density is the latent defect density and is measured at some time 

t > 0.  These defects may pass the manufacturer’s internal screening and then fail in 

the field at a later time, t > 0, at some given stress level.  Approximately 99.5% of the 

retention time failures of each product technology made up the main population with 

Weibull β slope ranging from 2.4 to 3.9, while the first approximately 0.5% retention  

failures were attributed to random defects.  Figure 45 shows the percentage of 

manufacturing defects causing the early retention time bit failures for each stressed 

memory product at the 95% CL. 

 

 



 174 
 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 45. Random Defective Bits per Product Generation. 

 

Observed 512Mb, 130nm product technology: 0.58% random defective bits 

Observed 512Mb, 110nm product technology: 0.50% random defective bits 

Observed 512Mb, 90nm product technology:   0.32% random defective bits 

Predicted 512Mb, 65nm product technology:   0.08% random defective bits 

 

Each smaller technology generation exhibited fewer random defects than the previous 

generation. Trend analysis predicts the next technology generation, 65nm, to exhibit 

0.08% random defective bits assuming the trend continues.  Given the option between 

a 512Mb 130nm product and a 512Mb 65nm product under equivalent stress 
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conditions, the data suggests the 512Mb 65nm product will have fewer defects. This 

trend is likely to continue due to tighter process controls needed for smaller 

geometries, and the desire to maintain constant product level failure rates for ever 

increasing Gb size memory products. 

 

In actuality, with each new product generation and a 2x bit factor for each progressive 

full node, the standard DRAM product size at the 65nm node is no longer 512 Mbits, 

but 8 Gbits.  Given this trend, the random number of defective bits per cm2 must also 

be considered. 

 

 By incorporating the defect rates for each representative technology and the cell 

characteristics in Table 19, the defect density per cm2 of DRAM memory is 

calculated as follows: 

 

130nm product generation: DD = 3.19x106 bits/cm2 (0.55 Gb)  

110nm product generation: DD = 4.5x106 bits/cm2 (0.90 Gb) 

90nm product generation: DD = 4.768x106 bits/cm2 (1.49 Gb) 

 

Using the predicted random defective bits with the cell characteristics of the 65nm 

DRAM, the defect density per Gbit of DRAM for the next product generation is: 

 

Predicted 65nm product generation: DD = 2.424 x106 bits/cm2 (3.03 Gb) 
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Note that while there is only a marginal increase in defect density per cm2 per DRAM 

generation (130nm to 90nm), the number of Gbits of memory per cm2 per DRAM 

generation is increasing significantly.  The 65nm DRAM standard product contains 8 

Gbits of memory.  Therefore, normalizing the defect density to the standard products, 

the 512Mb 130nm standard product had 2.9696 x 106 weak bits and an 8 Gbit 65nm 

product is expected to have 6.5536 x 106  weak bits. A 16x increase in memory size 

from a 130nm 512Mb standard product to an 8 Gbit 65nm product, corresponds to a 

disproportional 2.2x increase in defective weak bits, a much better product in terms of 

proportion of weak bits. 

 

 

5.8  Soft Error Failure Rate 

 

The defect density and the soft error failure rate of the random bits must be 

considered in tandem to effectively assess the quality and the reliability of the scaled 

products.  Data was normalized to FIT/Gb of memory and analyses of the soft error 

failure rate of the random bits are presented in Figure 46 and Table 20.  The graph 

shows how the soft error failure rate of retention time behaves for scaled DRAM at 

multiple stress conditions.  Curves were fit to the data which reveal a power 

relationship as a function of scaling for the higher stresses, > 348K and 2.5V, or > 

298K and 4.0V; a linear relationship exists for lower stress levels across product 

generations, e.g., < 298K and 2.5V, or < 218K and 4.0V.  The lowest failure rates 

across product generations is observed at standard operating Vdd = 2.5V and 218K.  
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The linear and power functions showing the rate of change at each stress condition for 

each of the three scaled DRAMs and a prediction is extrapolated to the 65nm node. 

 

 

Normalized Soft Error Failure Rate  (FIT/GBit)

0

500

1000

1500

2000

2500

3000

3500

4000

4500

130nm 110nm 1/2 Node 90nm 1/2 Node Predicted 65nm

DRAM  Generation

F
IT

218K, 4.0V

298K, 2.5V

348K,2.5V

298K,4.0V

218K, 2.5V

398K, 2.5V

348K, 4.0V

398K, 4.0V

 

 

Figure 46. Normalized Soft Error Failure Rate for Scaled DRAM (FIT/Gb). 

 

Given the normalized curves, one can derive the expected soft error failure rate per 

Gb of memory from Figure 46 and Table 20.   
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Table 20. Normalized Soft Error Failure Rate for Scaled DRAM (FIT/Gb). 

 

Stress 
Condition 130nm 

110nm 
1/2 

Node 90nm 
1/2 

Node 
Predicted 

65nm Relation Function R2 
218K, 
2.5V 579 605 574 581 579 Linear y = -2.5x + 591 0.9456 
298K, 
2.5V 1373 1243 1213 1116 1036 Linear y = -80x + 1436.3 0.8848 
348K, 
2.5V 1925 1649 1627 1526 1470 Pwr y = 1902.6x-0.1606 0.9117 
398K, 
2.5V 2480 2037 2026 1860 1774 Pwr y = 2439.1x-0.1948 0.8824 
218K, 
4.0V 858 840 773 739 696 Linear y = -42.5x + 908.6 0.9003 
298K, 
4.0V 2034 1726 1635 1525 1458 Pwr y = 2021.1x-0.2029 0.9824 
348K, 
4.0V 2852 2289 2192 1998 1892 Pwr y = 2815.3x-0.2479 0.9526 
398K, 
4.0V 3674 2828 2729 2442 2297 Pwr y = 3609.1x-0.2822 0.9321 

 

 

A generalized model of the scaling effect relationship on the SER of scaled DRAM 

product may be expressed as a power function: 

 

y = 121.79 d (x0.5693) (5.10) 
 

where d is the density factor (product density in Gb) and x is the technology node.  

Reference Figure 47. 
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Figure 47. Generalized Soft Error Failure Rate Model for Scaled DRAM (FIT/Gb). 

 
 

Data was also normalized to FIT/cm2 and analyses of the soft error failure rate of the 

random bits are presented in Figure 48 and Table 21.  The graph shows how the soft 

error failure rate of retention time behaves for scaled DRAM at multiple stress 

conditions per area of memory in cm2.  Curves were fit to the data with a power 

function.  
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Figure 48. Normalized Soft Error Failure Rate for Scaled DRAM (FIT/cm2). 

 
Table 21. Normalized Soft Error Failure Rate for Scaled DRAM (FIT/cm2). 

 

Stress 
Condition 130nm 90nm 

Predicted 
65nm Relation Function R2 

218K, 2.5V 
318 855 1753 Pwr y = 311.77x1.5388 0.9965 

298K, 2.5V 
755 1807 3140 Pwr y = 750.37x1.2931 0.9996 

398K, 2.5V 
1364 3019 5375 Pwr y = 1341x1.2373 0.9966 

218K, 4.0V 
472 1152 2109 Pwr y = 465.98x1.3548 0.9984 

298K, 4.0V 
1119 2436 4418 Pwr y = 1095.2x1.2365 0.9946 

348K, 4.0V 
1569 3266 5733 Pwr y = 1537.1x1.1666 0.9945 

398K, 4.0V 
2021 4066 6960 Pwr y = 1981.7x1.1131 0.9944 
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A generalized model of the scaling effect relationship on the SER of scaled DRAM in 

FIT/cm2  may be expressed as a power function: 

 

y = 1E+07x-1.8714 (5.11) 
 

where x is the technology node.  Reference Figure 49. 

 
 

 

 

 

 

 

 

 

 

 

 

Figure 49. Generalized Soft Error Failure Rate Model for Scaled DRAM (FIT/cm2). 

 

The SER FIT/cm2 is increasing at a greater rate per generation than the FIT/Gb.  For 

each full node generation, e.g., 130nm to 90nm, where the density doubles as the area 

per transistor is reduced by S2 (50% if S = 0.707), Figure 48 confirms that there is an 

approximate doubling of FIT/cm2. As scaling progresses further, however, e.g., real 
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world scaling as opposed to ideal scaling, gate voltages are scaled more slowly 

(approximately 0.85x/generation) than gate oxide thickness in order to maintain 

transistor saturation currents and signal speed.  In general, the ITRS roadmap shows 

the density progression for each successive technology and should be considered in 

future generation projections. 

 

The reliability (FIT/Gb) and quality (DD) of the DRAM parts with respect to 

retention time characteristics is improving with each technology generation under 

equivalent stress conditions.  The observed difference in soft error failure rate, 

however, is more pronounced at higher stress conditions. The normalized SER 

(FIT/cm2) is increasing with each progressive generation, therefore. the SER FIT for 

the product, or system has to take this into account, e.g. the density factor in Eq. 5.10.  

The user should consider these trends in the selection of a scaled DRAM product for 

a given application and the anticipated operating conditions.   Increases in operating 

frequency, power dissipation, and junction temperature will each have a detrimental 

effect in determining the product reliability for a given application.  The user must 

also consider the impact of SER on the increasing product density with each newer 

generation. 
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Chapter 6: Conclusion 

 

 

6.1  Background 

 

This dissertation began with a description of the historical and modern approaches in 

assessing and predicting microelectronics reliability, including the motivation for 

further investigation into this important field of study, particularly for high reliability 

applications such as NASA spacecraft avionics.  A synopsis of microelectronics 

derating and reliability modeling and simulation is presented. CMOS technology 

scaling has an impact on circuit performance, power, circuit design, burn-in and long 

term reliability in modern day microelectronics; these effects and trends on 

microelectronics reliability are discussed.  In addition, the Physics-of-Failure 

methodology, competing mechanism theory, common intrinsic failure mechanisms 

and statistical models, and the multiple failure mechanism model, are discussed and 

different approaches to calculate acceleration factors are summarized. 

 

6.2  Contribution 

 

My contributions begin with a microelectronics supplier industry survey that was 

conducted to gather information on targeted scaled technology product lifetimes, 

product lifetime validation methodologies, activation energies, and life limiting 
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failure mechanisms.  Derating methodologies including baseline junction temperature 

calculations for NASA missions are presented.  A reliability study utilizing step-stress 

techniques to evaluate several scaled SRAM technologies was conducted. The 

underlying goals of this experiment were to: 

 

• Calculate the FIT based on the test statistics without the physical models. 

• Validate the models and parameters upon failure investigation. 

• Perform data analysis. 

• Calculate the FIT using those models. 

• Compare and contrast to the manufacturer’s published FR. 

• Determine if experimental results support lifetime reliability predictions 

across scaled technologies. 

 

Analysis of the catastrophic failures was conducted and the results are summarized.  

Data analysis suggests that the proposed weighted sum Exponential Model best 

correlated the manufacturer’s published data (7-20 FIT) to the experimental data 

(19.482 FIT), normalized to 55°C and nominal Vdd operating conditions.  The 

accuracy of an estimate is given by its standard error and confidence interval.  The 

estimates approximate the true parameter values, and the confidence intervals for 

model parameters indicate the uncertainty in the statistical estimates by their width.   

Statistical confidence bounds do not account for model uncertainty. Therefore, 

sensitivity analysis is important in any quantitative analysis involving uncertainty and 

to assess the effects of model uncertainty.  In this experiment, model uncertainty was 
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addressed by analyzing different model assumptions and different models to 

determine the best fit scenario between these test results, prior SRAM test results, and 

the manufacturer’s failure rate qualification data.  Maximum Likelihood methods 

were used to provide the estimates and confidence limits for the model parameters.   

 

Examination of the SRAM study component failure times show that at specific times, 

large numbers of bit failures were recorded.  The failures that were recorded at the 

same time represent a single failure event which was reflected on multiple addresses 

and, therefore, counted as a single failure for reliability evaluation.  Hard and soft 

failures were treated equally in this reliability evaluation because once a soft failure 

has occurred in a high-reliability, remote application, e.g., an un-repairable system, 

the address corresponding to the failure is generally circumvented and not used in 

future write cycles. 

 

My contribution continues with a design of experiments and an accelerated stress test 

on scaled commercial SDRAMs.  The goal of the SDRAM experiment was to 

investigate failure mechanism induced degradation at the product level, and 

determine if long term performance is random (constant rate process) or degrades 

over time (increasing failure rate).  Additionally, characterization of product 

sensitivities to temperature and voltage at the product level across different scaled 

technologies was performed. 
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Technology and construction analysis, device characterization, and data analysis led 

to a degradation and predictive model, reliability assessment and defect density 

calculations of three current SDRAM technologies for different stress conditions.  

Product, or system level soft error rates for data retention were calculated, and an AF 

test matrix with the acceleration factors for different combinations of temperature and 

voltage stresses is proposed.  A methodology to determine the density of random 

defects per cm2 of DRAM memory, and a forecast for the next technology generation 

of scaled DRAM is included. 

 

Retention time margin of several product generations is measured using a Q-ratio of 

the time-to-first-failure distribution (t1) to the maximum specified refresh time, (tM).  

This ratio provides insight into the tolerance of each technology generation to 

degradation with respect to voltage and temperature stresses.  The ratio also provides 

a quality factor demonstrating the amount of margin between actual soft breakdown 

of a memory cell, and the manufacturer’s specified refresh time. 

 

A direct comparison of the data retention characteristics across three DRAM product 

technologies reveals that a recoverable soft error breakdown occurs with each 

memory cell, and that memory retention time gradually degrades over time. Two 

distinct populations are evident with data retention breakdown; the main population 

soft error rate of each product generation follows a Weibull distribution with a β slope 

> 2.4, while early failures are randomly distributed with a β slope ~ 1.0.  Data 

retention breakdown is accelerated by both temperature and voltage stresses as is 
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shown in Chapter 5.  The study shows that up to 0.58% of the 130nm memory cells in 

the scaled DRAM products studied are statistically random defective bits, and that the 

percentage of  random defective bits decreases to 0.32% for the 90nm memory cells. 

A prediction is made for the number of random defective bits for the 65nm 

technology node given the ever tighter process controls needed for nanometer scaled 

semiconductors and memory products.  By incorporating the defect rates for each 

representative technology with the cell characteristics, the defect density per cm2 of 

DRAM memory ranges from 3.19x106 bits/cm2  for the 130nm product technology, to 

4.768x106 bits/cm2 for the 90nm product technology. A defect density prediction is 

made for the next generation 65nm technology node. 

 

Early soft errors and acceleration factors from each of the different temperature and 

voltage conditions were analyzed against existing competing and multiple mechanism 

physical failure models. The multiple failure mechanism AF model using the Power 

Law for AFv best fits the DRAM retention time data and suggests a single 

temperature and voltage activated breakdown mechanism. 

 

Data was normalized to FIT/Gb and FIT/cm2 for the soft error rates to compare 

technology generations, and a generalized model of the scaling effect relationship was 

developed. It was shown that the reliability in FIT/Gb and quality (defect density) of 

the DRAM parts with respect to retention time characteristics is improving with each 

technology generation under equivalent stress conditions.  The observed difference in 

soft error failure rate, however, is more pronounced at higher stress conditions. The 
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normalized SER (FIT/cm2) is increasing with each progressive generation, therefore, 

the SER FIT for the product, or system must be considered.   The user must balance 

this knowledge with the anticipated application operating conditions.   Increases in 

operating frequency, power dissipation, and junction temperature will each have a 

detrimental effect in determining the product reliability for a given application.  

 

The data and the derived acceleration and derating factors demonstrate that a 

combination of temperature and voltage stresses are better for screening out and/or 

qualification of scaled DRAM products for defects that may lead to premature failure 

in the application. 

 

Additional contributions include a major revision and published release of the prime 

AVSI Reliability Project 17 deliverable: Microelectronics Reliability: Physics-of-

Failure Based Modeling and Lifetime Evaluation Handbook [70]. 

 

A summary of the supplier survey results is included in Appendix A, the AVSI 

reliability project 17 roadmap is presented in Appendix B, and nonlinear regression 

analysis for the SDRAM study is included in Appendix C. 

 

The DRAM experimental results are particularly important for several reasons: 

 

1) For the same density memory chip and equivalent stress conditions, the product or 

system reliability should increase for each successive technology generation as 
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manufacturers strive to maintain product FIT rates for higher density memories. 

The DRAM results support this trend. 

 

2) NASA and the aerospace industry have historically used temperature only as a 

stress driver to screen and qualify parts.  This data supports that a combination of 

temperature and voltage stresses better accelerates both thermally and voltage 

driven mechanisms that could impact long term parts reliability.  This method 

also better identifies the weak memory cells that lead to early breakdown.  

 

3) A temperature and voltage stress test matrix approach shows the expected 

acceleration factor or derating factor for different temperature and voltage stress 

combinations on the data retention soft error rate for 130nm, 110nm and 90nm 

SDRAM product technologies. A similar screening and/or qualification approach 

may be adapted for other parts and newer product generations. 

 

4) Results show that early failures are dominated by CFR, Beta = 1, for each 

technology in the study. 

 

5) Results show that the reliability is improving and failure rate (FIT/Gb) is 

decreasing with each new technology under equivalent stress conditions. 

 

6) Results show that for the same size memory, e.g. 512Mb, the quality (defect 

density) is improving with each new technology generation. Therefore, the 90nm 
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products exhibit better retention time characteristics and fewer defects/cm2 than 

the larger 110nm and 130nm technologies. 

 

7) Results show that the normalized soft error rate (FIT/cm2) is increasing with each 

new technology generations. 
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6.3  Future Work 

 

Ongoing research, accelerated stress testing, and modeling of scaling effects on 

microelectronics reliability continues throughout the industry. New product 

technologies, including 65nm and soon 45nm, need to be studied to determine if 

developments in materials, design, layout, and processing will inherently affect the 

reliability of next generation microelectronics.  
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Appendix A 
 Appendix A
    Supplier Survey Results - Anonymous

Questions/Responses Supplier A Supplier B Supplier C Supplier D Supplier E Supplier F Supplier G Supplier H

1. Does your product line's life testing at various  
temperatures follow the Arrhenius Equation?

Yes Yes

Yes, but we haven't proven 
this at the product level.  
Instead, we perform reliability 
tests at various temperatures 
on device structures for EM 
and TDDB. 

Yes.  We use the Arrhenius 
equation to estimate the failure rate 
based on operating life testing at 
accelerated temperatures.

Yes

We use in-line monitoring program to measure early 
and long term failure rates, and look for defect related 
reliability problems.  We do not consider the in-line 
monitoring program (at typically 125C, 1MHz 
clocking, over-voltage) as a measure of how long a 
device lasts before it reaches wearout.  Roughly the in-
line monitoring program or burn-in follow Arrhenius.  
Specific mechanisms (TDDB and electromigration) 
can be more complicated.

Yes, we use Arrhenius, typically 110 degrees 
Celsius to 125 degrees Celsius data.  However, 
we do see some non-Arrhenius phenomena.

Life testing performed on military and commercial product lines uses the 
Arrhenius equation to determine acceleration factors when calculating 
failure rates and alternate temperatures for stress. This model is only valid 
for failure modes that are chemically induced (ionic contamination, gate 
oxide rupture, etc.). The Arrhenius is not used for failures that are specific 
events in time (EOS, ESD, etc).

2. Is life testing used at your company to validate  
product lifetime? Can you share information as to 
how this is done? At what temperatures have you 
performed your burn-in or life testing?

For new technologies we perform life test 
to fail and typically use Weibull analysis 
and other tools to determine failure rates.  
Burn-in and life testing is typically 
performed at 125C to 150C. 

Burn-in and life testing is typically 
performed at 125C to 150C. New 
Processes and New Packages are 
qualified using a minimum 3 lot (77 
units
per lot) testing for:
· Early Failure Testing (915 samples)
· Operating Life Test
· Temp and Humidity Biased Test
· Temperature Cycling
· Auto-Clave
· ESD/Latch-Up
· Board Level Temp Cycle (for 
packages) Exponential 

Yes.  We perform life testing at 
junction temperatures >= 125C 
for 1000hrs (or >= 150C for 
500hrs) with and accept/reject 
criteria of 0/1 to validate 
product lifetimes. �

We perform operating life, usually at 
+125°C, by using burn-in boards 
which have a typical application 
circuit.  The circuit is designed to 
stress the device close to the 
maximum junction temperature 
specification.

Life-testing is performed to assess product reliability not only for the 
anticipated mission life, but to assess the long-term performance of 
the product family.   The actual stress conditions vary based on 
device design and wafer foundry.  Burn-in and life-test is normally 

conducted at +125oC but a few products are run at +150oC.  Stress 
conditions for burn-in, life-test and long-term life-test are the same 
for a given device being stressed.   A dynamic stress pattern is used, 
typically this will be a vector set looped through a device using 
various frequencies to exercise the parts for the entire stress period.  

Parts are stressed at either 125oC or 150oC.  We employ a DSCC 
approved QML accelerated voltage approach for B/I, LT and Long-
term LT.   The Arrhenius equation is used to calculate the 
acceleration factor using and activation energy of 0.32.

We verify product lifetime (e.g. product  will have a 
failure rate below a certain amount at 10 years) by 
looking at specific failure mechanisms, such as 
electromigration, and setting design rules and 
technologies to meet these requirements.  These tests 
are done at very high temperatures (e.g. 250C for 
electromigration).  Burn-in and our in-line monitoring 
program are done typically between 125C and 150C 
junction temperatures.  The in-line monitoring 
program can not supply the maximum current 
densities on the device to measure lifetimes.  With the 
increased operating junction temperatures, it is less 
able to give much temperature acceleration as well. 

Yes, we use Arrhenius, typically 110 degrees 
Celsius to 125 degrees Celsius data.  However, 
we do see some non-Arrhenius phenomena.

Life testing is not used to validate product lifetime. This would take too long. 
Life testing is used to validate that the infant mortality of a product have 
been reduced to an acceptable low level so the probability of early life 
failures is very small. Wearout is evaluated by highly accelerated testing on 
specific structures to look at specific wearout mechanisms. An example of 
this is the wearout mechanism of electromigration. Highly accelerated 
stress consisting of high current densities and high temperatures are used 
to develop a degradation/failure model. This model then is translated into 
design rules for a specific maximum operating condition. The design rules 
for this type of mechanism typically are a maximum current per unit width of 
metal line. When higher current are required in a line, the line is made 
wider.

3. What is your definition of product lifetime?  We  
have heard that operating time until accumulated 
failure rate is 0.01%.  What is your confidence lev el 
for the lifetime projection?

The goal for electromigration reliability is 
less than 0.5% cumulative failures during 
10 years at a maximum junction 
temperature of 105C. Effectively 50 FIT 
with 60% confidence level.  If you want to 
define it at 0.01% (1 FIT) the answer is 
77,000 hours.  For product rated above 
105C junction, we perform EM 
calculations on a case by case basis with 
the above targets. 

The qualification target is 100 FITS 
(Failure in Time). FITS depends on 
the device hours, acceleration factor, 
activation energy and # of failures.  
The MTBF (Mean Time Between 
Fail) is 1/FITS.

>10yrs.                                          
    Criteria for device level 
characterization is < 0.1% 
failure for 10yr equivalent at 
125C. 

The operating life testing is usually 
performed for 1000 hours at 
+125°C.  The confidence level is 
normally 60%, based on the 
exponential distribution, and is 
useful for comparing the reliability of 
similar products.  Some customers 
request other confidence level such 
as 90% or even 95% and so we 
always offer to calculate FIT rates 
and MTBF for these requests.

QML V requirements for space level applications is generally 
considered 15 years.   We typically demonstrate product lifetimes at 
or below the  0.01% failure rate at 15 years using our DSCC 
approved QML accelerated life-test approach.   Based on our Long-
term life-test testing of each product and foundry family we have 
data that is significantly better  than the 0.01% FIT rate at 15 years.   
Normally, our FIT rate calculations are performed at the 60% 
confidence level.   

Lifetime definition is the average failure rate at the 
lifetime (e.g. 10 years) is less than 1 FIT.  This is for 
intrinsic failure mechanisms such as TDDB and 
electromigration.  1 FIT over 10 years is the same as a 
cumulative failure of 0.01% at 10 years.  1.1 FIT = 
0.01%*1E9/(10*8760h)   Some people use 0.1%.

Depends on type of products.

This question is related to #2 above. Life testing does not validate product 
lifetime. Most semiconductors today have intrinsic lifetimes that are 
significantly long. The wearout point for a process/product is set by the 
wearout mechanisms: (electromigration, dielectric breakdown, hot carrier 
degradation, device stability, etc.). These are set based on the process and 
design parameters. As told above the EM requirements are set by design 
rules.   Early life failures are typically what is seen in Life testing. These are 
defects caused by wafer fabrication or assembly that accelerates the aging 
process. The purpose of burn-in is to age these defects sufficiently to 
remove them from the shipping population thereby improving the reliability. 
The PDA’s (percent defective allowable) are also imposed on burn-in to 
screen lots that have an abnormally high infant mortality.        The failure 
rate we publish on our WEB site is based on estimating the constant failure 
rate assumed after burn-in. It is typically calculated for a family of products 
built on the same wafer fab process. As with any estimate there is an upper limit on the estimate (maximum failure rate). This is what is reported. As the sample size goes up without failures the failure rate will decrease. For a constant group of data, as

4.  What is the range of Arrhenius activation 
energies that are empirically representative of 
various technologies made by your company?

No Response. No Response. No Response.

Based on empirically obtained data, 
we use 1.0 eV for Bipolar processes 
and 0.7 eV for CMOS processes.  
Again, these are useful for 
comparison purposes.  A review of 
industry publications coincides with 
these assumptions, however, some 
customers request other energies of 
activation such as 0.5 eV which we 
similarly offer to provide in out FIT 
and MTBF calculations.

For gate oxide integrity, the activation energy used is 0.32.  
Experiments have demonstrated that this is a valid number for 
oxides.   For metal migration, the activation energy ranges from 0.4 
to 0.8.  

We do not have good data on the more recent 
technologies.  We have data for TDDB and 
electromigration and other known intrinsic wearout 
mechanisms (e.g. NBTI).  However, since most 
reliability failures are defect related, these intrinsic 
numbers are not all that useful.  We have measured an 
activation energy of 0.5eV in the past for the typical 
defect mechanisms (back end metal particles), and a 
voltage acceleration also.  For long term lifetime 
failure rates, we use 0.7eV, for all mechanisms 
lumped together.

It really varies with our products – definition, 
testing, extrapolation and even confident level. 

Activation energies are tied back to the physical process underlying the 
failure and how temperature affects this process. In the case of 
electromigration, temperature accelerates the damage done to the metal 
line. In the case of Hot Carrier Injection, temperature decreases the rate of 
trapping. HCI has negative activation energy. Its worst-case condition is 
cold temperature. We use activation energies in the range of –0.06eV to 
1.0eV depending on the dominate mechanism causing the failure.

5.  What is your target product lifetimes of the 
technologies made by your company? See item 3.  MIL Aero is 10 years.  

10yrs - while this is the criteria 
we have more headroom on 
our processes and have 
characterized some 
mechanism for > 100yrs. 

These are usually customer driven 
and 20 years seems to be the 
current consensus.  Our product will 
typically far surpass this target 
because of the conservative design 
rules and mature processes which 
we employ.

The QML V product life-time target is typically 15 years, but can be 
greater or less depending upon the customer’s requirements for 
mission lifetime.   

Target lifetimes are 10 years for typical products, and 
20 years for telecommunications. From 7 years to 25 years

This question must be referenced back to #2 and #3. The target lifetime is 
the wearout point. The market for the process drives this wearout point 
(lifetime). Products that are going into consumer products (PC, handhelds, 
etc.) may have a shorter market lifetime. These may be targeted at 3 to 5 
years lifetime. Military products would have a longer lifetime target, typically 
10 years. These targets assume worst-case conditions also. In reality the 
actual product lifetime may be significantly longer than this because it 
would not operate at the worst-case conditions for its entire lifetime.

6.  What is the life limiting failure mechanism, fo r 
example, electro-migration, time dependent 
dielectric breakdown, or hot carriers?

That depends on the technology.  
Primarily EM and TDDB.  Hot carrier 
effects are becoming more of a concern 
as geometries shrink such as the current 
0.27 micron process.

Technology dependent.  I am 
attempting further clarification.

This is very dependent on the 
specific product design and 
process technology. �

Again, based on actual data, we 
observe mobile ionic contamination 
failure mechanisms for both Bipolar 
and CMOS processes and gate 
oxide related mechanisms for 
CMOS processes.  Electromigration, 
hot carriers and other potential 
failure mechanisms are usually 
addressed during wafer fabrication 
by parametric analysis of special 
test structures on every wafer.

Electromigration is typically the limiting failure mechanism.  If a 
circuit is designed to operate at the maximum current density 
allowed based on Aeroflex UTMC and the specific wafer foundry 
design rules, EM will limit the product life more than the other 
failure mechanisms.

It depends on the technology.  In the mature 
technologies (i.e. non Cu/low-k) the limit is 
electromigration in the vias.

EM and oxide, both. 

These are all examples of wearout mechanisms. Anyone of them could 
cause the part to fail. The key is to make sure these mechanisms are not 
active until well after the product’s useful life has been expended. New PC 
typically have a 3 to 5 year life before they are replaced. Designing a 
process with 30 year life would not allow you to be cost competitive with the 
competition.

7.  What is the most effective screen or burn-in:  
elevated temperature or higher voltage?

For newer technologies we believe that 
accelerated voltage gives us the most 
effective screen, however, for new 
product technologies it is a combination 
of B/I at 125C for a short
 duration, say 8 hours, combined with 
higher voltage.  I know you are aware of 
other techniques such as IDDQ and V-
STRESS testing to weed out potential 
reliability defects.  For example,
 post burn-in IDDQ is a much better 
indicator of some defect mechanisms 
than go/no-go to datasheet.

We use both depending on the 
failure mechanism. e.g.. For Oxide 
related failures it'll be high voltage 
and for Ionic contamination it'll be 
high temperature.

This depends on the 
technology.  Generally, voltage 
provides more acceleration for 
oxides (if the process permits) 
while temperature will 
accelerate other failure 
mechanisms.

We do not recommend burn-in 
screening because the designs are 
conservative and processes are 
controlled.  Likewise, the 100% 
electrical screens performed at 
wafer sort testing always include 
voltage stressing of susceptible 
structures.  Additionally, 100% Class 
test screening and QA sample 
electrical testing using properly 
guard banded test limit ATE 
programs assures the Quality and 
Reliability of product.

Higher voltage is a much more effective screen for oxide defects 
than temperature.   

We rarely use burn-in screening, as the failure rates 
are fairly low, and burn-in screening can do some 
damage (EOS, bent leads, etc. from handling).  High 
voltage stressing during test is the best, followed by 
high voltage at burn-in.  Temperature is important but 
voltage is more so.

We use both and so we have apply not too high 
temperature or bias on the circuits.

It would not be reasonable to pick only one screen as the only screen to 
use. It really takes a battery of screens to evaluate a product’s reliability. An 
integrated circuit is a complex mixture of silicon/plastic/metals/ceramic. The 
package technology used to package and mount the die is as important as 
the die itself. Bipolar circuits would require different screens compared to 
MOS. Bipolar circuits are primarily a current based device where MOS are 
voltage-based devices. A combination of higher voltage and higher 
temperature provide a good screen for MOS devices provided you can 
apply the bias across all internal nodes (functional testing). Package related 
failures are mainly caused by the thermal expansion mismatch between the 
components and may require temperature cycling to accelerate the failure. 

Technology A BIPOLAR  0.7  3.0 TTL Bipolar  > 0.4 Bipolar = 1.0  
Technology B MOS - GENERAL 0.5  3.0  CMOS  >  0.7 CMOS = 0.7 Activation energy for gate oxides 0.32 .
Technology C ASP/DSP  0.5  3.0  Linear & Transistor   >  0.9
Technology D DRAM   0.3  2.5

0.5 to 0.9 eV

 



 193 
 

Appendix B 



 194 
 

Appendix C 
 

Nonlinear Regression: 90nm,  298.15K, 2.5V 
 
[Variables] 
x = col(2) 
y = col(3) 
reciprocal_y = 1/abs(y) 
reciprocal_ysquare = 1/y^2 
'Automatic Initial Parameter Estimate Functions 
xnear0(q) = max(abs(q))-abs(q) 
yatxnear0(q,r) = xatymax(q,xnear0(r)) 
[Parameters] 
a = yatxnear0(y,x)  ''Auto {{previous: 8.55057}} 
b = if(x50(x,y)-min(x)=0, 1,  -ln(.5)/(x50(x,y)-min(x)))  ''Auto {{previous: 8.3314e-005}} 
[Equation] 
f = a*exp(-b*x) 
fit f to y 
''fit f to y with weight reciprocal_y 
''fit f to y with weight reciprocal_ysquare 
[Constraints] 
b>0 
[Options] 
tolerance=0.0001 
stepsize=100 
iterations=100 
 
R = 0.96296200 Rsqr = 0.92729580 Adj Rsqr = 0.91921756 
 
Standard Error of Estimate = 0.0667  
 
  Coefficient Std. Error t P  
a 8.5506 0.0383 223.3188 <0.0001  
b 0.0001 0.0000 10.7438 <0.0001  
 
Analysis of Variance:  
  DF SS MS F P  
Regression 1 0.5105 0.5105 114.7893 <0.0001  
Residual 9 0.0400 0.0044  
Total 10 0.5506 0.0551  
 
PRESS = 0.0689  
 
Durbin-Watson Statistic = 0.3805  
 
Normality Test:  K-S Statistic = 0.1884 Significance Level = 0.7865 
 
Constant Variance Test:  Passed (P = 0.7755) 
 
Power of performed test with alpha = 0.0500: 0.9999 
 
Regression Diagnostics: 
Row Predicted Residual Std. Res. Stud. Res. Stud. Del. Res.  
4 8.5505 0.0845 1.2671 1.5474 1.7029  
5 8.4796 0.0504 0.7553 0.8663 0.8531  
6 8.4093 0.0007 0.0109 0.0120 0.0113  
7 8.3395 -0.0395 -0.5923 -0.6334 -0.6110  
8 8.2703 -0.0603 -0.9044 -0.9526 -0.9472  
9 8.2017 -0.0717 -1.0750 -1.1276 -1.1472  
10 8.1336 -0.0536 -0.8044 -0.8486 -0.8342  
11 8.0662 -0.0562 -0.8422 -0.9024 -0.8921  
12 7.9992 -0.0092 -0.1386 -0.1524 -0.1439  
13 7.9329 0.0471 0.7066 0.8067 0.7896  
14 7.8671 0.1080 1.6201 1.9459 2.4105  
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Influence Diagnostics:  
Row Cook'sDist Leverage DFFITS  
4 0.5884 0.3295 1.1938  
5 0.1184 0.2399 0.4793  
6 0.0000 0.1722 0.0051  
7 0.0288 0.1255 -0.2314  
8 0.0497 0.0987 -0.3135  
9 0.0637 0.0910 -0.3631  
10 0.0407 0.1015 -0.2803  
11 0.0604 0.1291 -0.3435  
12 0.0024 0.1731 -0.0658  
13 0.0986 0.2326 0.4347  
14 0.8382 0.3069 1.6039  
 
95% Confidence: 
Row Predicted Regr. 5% Regr. 95% Pop.  5% Pop.  95%  
4 8.5505 8.4639 8.6371 8.3765 8.7245  
5 8.4796 8.4057 8.5535 8.3116 8.6476  
6 8.4093 8.3467 8.4719 8.2459 8.5726  
7 8.3395 8.2861 8.3929 8.1795 8.4996  
8 8.2703 8.2229 8.3177 8.1122 8.4285  
9 8.2017 8.1562 8.2472 8.0441 8.3593  
10 8.1336 8.0856 8.1817 7.9753 8.2920  
11 8.0662 8.0120 8.1204 7.9059 8.2265  
12 7.9992 7.9365 8.0620 7.8358 8.1626  
13 7.9329 7.8601 8.0056 7.7654 8.1004  
14 7.8671 7.7835 7.9506 7.6946 8.0395  
 

Nonlinear Regression: 90nm, 348.15K, 2.5V 
 
[Variables] 
x = col(6) 
y = col(7) 
reciprocal_y = 1/abs(y) 
reciprocal_ysquare = 1/y^2 
'Automatic Initial Parameter Estimate Functions 
xnear0(q) = max(abs(q))-abs(q) 
yatxnear0(q,r) = xatymax(q,xnear0(r)) 
[Parameters] 
a = yatxnear0(y,x)  ''Auto {{previous: 7.17615}} 
b = if(x50(x,y)-min(x)=0, 1,  -ln(.5)/(x50(x,y)-min(x)))  ''Auto {{previous: 0.000135366}} 
[Equation] 
f = a*exp(-b*x) 
fit f to y 
''fit f to y with weight reciprocal_y 
''fit f to y with weight reciprocal_ysquare 
[Constraints] 
b>0 
[Options] 
tolerance=0.0001 
stepsize=100 
iterations=100 
 
R = 0.99126396 Rsqr = 0.98260423 Adj Rsqr = 0.98067137 
 
Standard Error of Estimate = 0.0422  
 
  Coefficient Std. Error t P  
a 7.1762 0.0245 292.7811 <0.0001  
b 0.0001 0.0000 22.5331 <0.0001  
 
Analysis of Variance:  
  DF SS MS F P  
Regression 1 0.9069 0.9069 508.3672 <0.0001  
Residual 9 0.0161 0.0018  
Total 10 0.9229 0.0923  
 
PRESS = 0.0236  
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Durbin-Watson Statistic = 1.2438  
 
Normality Test:  K-S Statistic = 0.1407 Significance Level = 0.9710 
 
Constant Variance Test:  Passed (P = 0.1987) 
 
Power of performed test with alpha = 0.0500: 1.0000 
 
Regression Diagnostics: 
Row Predicted Residual Std. Res. Stud. Res. Stud. Del. Res.  
4 7.1761 -0.0214 -0.5056 -0.6208 -0.5982  
5 7.0797 0.0203 0.4815 0.5530 0.5305  
6 6.9845 -0.0045 -0.1060 -0.1165 -0.1099  
7 6.8906 0.0194 0.4601 0.4917 0.4699  
8 6.7979 0.0321 0.7595 0.7997 0.7823  
9 6.7065 0.0435 1.0295 1.0799 1.0913  
10 6.6163 -0.0663 -1.5709 -1.6581 -1.8759  
11 6.5274 -0.0574 -1.3588 -1.4569 -1.5714  
12 6.4396 -0.0296 -0.7014 -0.7714 -0.7526  
13 6.3530 0.0070 0.1647 0.1878 0.1774  
14 6.2676 0.0570 1.3490 1.6122 1.8024  
 
Influence Diagnostics:  
Row Cook'sDist Leverage DFFITS  
4 0.0978 0.3367 -0.4262  
5 0.0488 0.2420 0.2997  
6 0.0014 0.1718 -0.0500  
7 0.0172 0.1244 0.1771  
8 0.0348 0.0980 0.2579  
9 0.0585 0.0912 0.3458  
10 0.1569 0.1024 -0.6338  
11 0.1589 0.1302 -0.6080  
12 0.0623 0.1732 -0.3445  
13 0.0053 0.2302 0.0970  
14 0.5566 0.2998 1.1795  
 
95% Confidence: 
Row Predicted Regr. 5% Regr. 95% Pop.  5% Pop.  95%  
4 7.1761 7.1206 7.2315 7.0656 7.2865  
5 7.0797 7.0327 7.1267 6.9732 7.1861  
6 6.9845 6.9449 7.0241 6.8811 7.0879  
7 6.8906 6.8569 6.9243 6.7893 6.9919  
8 6.7979 6.7680 6.8278 6.6978 6.8980  
9 6.7065 6.6777 6.7354 6.6067 6.8063  
10 6.6163 6.5858 6.6469 6.5160 6.7167  
11 6.5274 6.4929 6.5619 6.4258 6.6290  
12 6.4396 6.3999 6.4794 6.3361 6.5431  
13 6.3530 6.3072 6.3989 6.2471 6.4590 
14 6.2676 6.2153 6.3199 6.1587 6.3766  

 

Nonlinear Regression: 90nm, 398.15K, 2.5V 
 
[Variables] 
x = col(10) 
y = col(11) 
reciprocal_y = 1/abs(y) 
reciprocal_ysquare = 1/y^2 
'Automatic Initial Parameter Estimate Functions 
xnear0(q) = max(abs(q))-abs(q) 
yatxnear0(q,r) = xatymax(q,xnear0(r)) 
[Parameters] 
a = yatxnear0(y,x)  ''Auto {{previous: 6.16959}} 
b = if(x50(x,y)-min(x)=0, 1,  -ln(.5)/(x50(x,y)-min(x)))  ''Auto {{previous: 0.00016254}} 
[Equation] 
f = a*exp(-b*x) 
fit f to y 
''fit f to y with weight reciprocal_y 
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''fit f to y with weight reciprocal_ysquare 
[Constraints] 
b>0 
[Options] 
tolerance=0.0001 
stepsize=100 
iterations=100 
 
R = 0.98318715 Rsqr = 0.96665697 Adj Rsqr = 0.96295219 
 
Standard Error of Estimate = 0.0599  
 
  Coefficient Std. Error t P  
a 6.1696 0.0349 176.6067 <0.0001  
b 0.0002 0.0000 16.1867 <0.0001  
 
Analysis of Variance:  
  DF SS MS F P  
Regression 1 0.9351 0.9351 260.9215 <0.0001  
Residual 9 0.0323 0.0036  
Total 10 0.9674 0.0967  
 
PRESS = 0.0510  
 
Durbin-Watson Statistic = 0.6007  
 
Normality Test:  K-S Statistic = 0.1920 Significance Level = 0.7668 
 
Constant Variance Test:  Passed (P = 0.6731) 
 
Power of performed test with alpha = 0.0500: 1.0000 
 
Regression Diagnostics: 
Row Predicted Residual Std. Res. Stud. Res. Stud. Del. Res.  
4 6.1695 0.0454 0.7586 0.9340 0.9267  
5 6.0701 0.0799 1.3344 1.5337 1.6824  
6 5.9723 0.0177 0.2965 0.3257 0.3089  
7 5.8760 -0.0760 -1.2689 -1.3556 -1.4326  
8 5.7812 -0.0712 -1.1898 -1.2525 -1.2996  
9 5.6880 -0.0380 -0.6351 -0.6662 -0.6442  
10 5.5963 -0.0463 -0.7736 -0.8168 -0.8003  
11 5.5061 -0.0361 -0.6028 -0.6465 -0.6242  
12 5.4173 0.0027 0.0449 0.0494 0.0465  
13 5.3300 0.0500 0.8357 0.9516 0.9461  
14 5.2440 0.0725 1.2104 1.4428 1.5515  
 
Influence Diagnostics:  
Row Cook'sDist Leverage DFFITS  
4 0.2251 0.3404 0.6657  
5 0.3776 0.2430 0.9534  
6 0.0110 0.1715 0.1406  
7 0.1298 0.1238 -0.5385  
8 0.0849 0.0977 -0.4277  
9 0.0223 0.0914 -0.2043  
10 0.0383 0.1030 -0.2712  
11 0.0315 0.1308 -0.2422  
12 0.0003 0.1733 0.0213  
13 0.1344 0.2289 0.5154  
14 0.4380 0.2962 1.0065  
 
95% Confidence: 
Row Predicted Regr. 5% Regr. 95% Pop.  5% Pop.  95%  
4 6.1695 6.0905 6.2485 6.0127 6.3263  
5 6.0701 6.0034 6.1369 5.9191 6.2211  
6 5.9723 5.9162 6.0283 5.8257 6.1188  
7 5.8760 5.8283 5.9236 5.7324 6.0195  
8 5.7812 5.7389 5.8236 5.6393 5.9231  
9 5.6880 5.6471 5.7290 5.5465 5.8295  
10 5.5963 5.5529 5.6398 5.4541 5.7385  
11 5.5061 5.4571 5.5551 5.3621 5.6501  
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12 5.4173 5.3609 5.4737 5.2706 5.5640  
13 5.3300 5.2652 5.3948 5.1798 5.4801  
14 5.2440 5.1703 5.3177 5.0899 5.3982  
 

Nonlinear Regression: 90nm,  298.15K, 4.05V 
 
[Variables] 
x = col(2) 
y = col(3) 
reciprocal_y = 1/abs(y) 
reciprocal_ysquare = 1/y^2 
'Automatic Initial Parameter Estimate Functions 
xnear0(q) = max(abs(q))-abs(q) 
yatxnear0(q,r) = xatymax(q,xnear0(r)) 
[Parameters] 
a = yatxnear0(y,x)  ''Auto {{previous: 6.85286}} 
b = if(x50(x,y)-min(x)=0, 1,  -ln(.5)/(x50(x,y)-min(x)))  ''Auto {{previous: 9.11558e-005}} 
[Equation] 
f = a*exp(-b*x) 
fit f to y 
''fit f to y with weight reciprocal_y 
''fit f to y with weight reciprocal_ysquare 
[Constraints] 
b>0 
[Options] 
tolerance=0.0001 
stepsize=100 
iterations=100 
 
R = 0.98384944 Rsqr = 0.96795972 Adj Rsqr = 0.96439969 
 
Standard Error of Estimate = 0.0379  
 
  Coefficient Std. Error t P  
a 6.8529 0.0218 314.5287 <0.0001  
b 0.0001 0.0000 16.5178 <0.0001  
 
Analysis of Variance:  
  DF SS MS F P  
Regression 1 0.3903 0.3903 271.8964 <0.0001  
Residual 9 0.0129 0.0014  
Total 10 0.4033 0.0403  
 
PRESS = 0.0228  
 
Durbin-Watson Statistic = 0.4847  
 
Normality Test:  K-S Statistic = 0.2474 Significance Level = 0.4524 
 
Constant Variance Test:  Passed (P = 0.2569) 
 
Power of performed test with alpha = 0.0500: 1.0000 
 
Regression Diagnostics: 
Row Predicted Residual Std. Res. Stud. Res. Stud. Del. Res.  
4 6.8529 0.0613 1.6189 1.9788 2.4822  
5 6.7907 0.0293 0.7740 0.8879 0.8764  
6 6.7291 -0.0191 -0.5029 -0.5527 -0.5302  
7 6.6680 -0.0380 -1.0028 -1.0722 -1.0823  
8 6.6075 -0.0275 -0.7255 -0.7641 -0.7450  
9 6.5475 -0.0375 -0.9905 -1.0390 -1.0442  
10 6.4881 -0.0281 -0.7421 -0.7829 -0.7646  
11 6.4292 -0.0192 -0.5079 -0.5443 -0.5218  
12 6.3709 0.0091 0.2401 0.2640 0.2499  
13 6.3131 0.0169 0.4462 0.5093 0.4872  
14 6.2558 0.0529 1.3960 1.6755 1.9043  
 
Influence Diagnostics:  
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Row Cook'sDist Leverage DFFITS  
4 0.9672 0.3307 1.7446  
5 0.1246 0.2402 0.4928  
6 0.0318 0.1721 -0.2418  
7 0.0823 0.1253 -0.4096  
8 0.0319 0.0986 -0.2464  
9 0.0541 0.0911 -0.3305  
10 0.0347 0.1016 -0.2571  
11 0.0220 0.1293 -0.2010  
12 0.0073 0.1731 0.1143  
13 0.0392 0.2323 0.2680  
14 0.6183 0.3058 1.2639  
 
95% Confidence: 
Row Predicted Regr. 5% Regr. 95% Pop.  5% Pop.  95%  
4 6.8529 6.8036 6.9021 6.7540 6.9517  
5 6.7907 6.7487 6.8327 6.6952 6.8861  
6 6.7291 6.6935 6.7646 6.6363 6.8219  
7 6.6680 6.6377 6.6983 6.5771 6.7589  
8 6.6075 6.5806 6.6344 6.5176 6.6973  
9 6.5475 6.5217 6.5734 6.4580 6.6371  
10 6.4881 6.4608 6.5154 6.3982 6.5781  
11 6.4292 6.3984 6.4601 6.3382 6.5203  
12 6.3709 6.3352 6.4066 6.2781 6.4637  
13 6.3131 6.2718 6.3544 6.2179 6.4082  
14 6.2558 6.2084 6.3032 6.1579 6.3538  
 

Nonlinear Regression: 90nm,  348.15K, 4.05V 
 
[Variables] 
x = col(6) 
y = col(7) 
reciprocal_y = 1/abs(y) 
reciprocal_ysquare = 1/y^2 
'Automatic Initial Parameter Estimate Functions 
xnear0(q) = max(abs(q))-abs(q) 
yatxnear0(q,r) = xatymax(q,xnear0(r)) 
[Parameters] 
a = yatxnear0(y,x)  ''Auto {{previous: 5.49431}} 
b = if(x50(x,y)-min(x)=0, 1,  -ln(.5)/(x50(x,y)-min(x)))  ''Auto {{previous: 7.28894e-005}} 
[Equation] 
f = a*exp(-b*x) 
fit f to y 
''fit f to y with weight reciprocal_y 
''fit f to y with weight reciprocal_ysquare 
[Constraints] 
b>0 
[Options] 
tolerance=0.0001 
stepsize=100 
iterations=100 
 
R = 0.98239160 Rsqr = 0.96509326 Adj Rsqr = 0.96121474 
 
Standard Error of Estimate = 0.0257  
 
  Coefficient Std. Error t P  
a 5.4943 0.0147 373.8763 <0.0001  
b 0.0001 0.0000 15.7850 <0.0001  
 
Analysis of Variance:  
  DF SS MS F P  
Regression 1 0.1638 0.1638 248.8299 <0.0001  
Residual 9 0.0059 0.0007  
Total 10 0.1697 0.0170  
 
PRESS = 0.0099  
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Durbin-Watson Statistic = 0.8447  
 
Normality Test:  K-S Statistic = 0.1741 Significance Level = 0.8587 
 
Constant Variance Test:  Passed (P = 0.2096) 
 
Power of performed test with alpha = 0.0500: 1.0000 
 
Regression Diagnostics: 
Row Predicted Residual Std. Res. Stud. Res. Stud. Del. Res.  
4 5.4943 0.0457 1.7808 2.1726 2.9703  
5 5.4544 0.0056 0.2178 0.2497 0.2363  
6 5.4148 -0.0248 -0.9667 -1.0625 -1.0712  
7 5.3755 -0.0255 -0.9930 -1.0620 -1.0706  
8 5.3364 -0.0264 -1.0305 -1.0855 -1.0979  
9 5.2977 -0.0177 -0.6892 -0.7229 -0.7022  
10 5.2592 0.0008 0.0309 0.0326 0.0308  
11 5.2210 0.0090 0.3504 0.3754 0.3567  
12 5.1831 0.0369 1.4386 1.5819 1.7553  
13 5.1455 0.0045 0.1773 0.2024 0.1913  
14 5.1081 -0.0081 -0.3151 -0.3789 -0.3601  
 
Influence Diagnostics:  
Row Cook'sDist Leverage DFFITS  
4 1.1526 0.3281 2.0758  
5 0.0098 0.2395 0.1326  
6 0.1175 0.1723 -0.4887  
7 0.0811 0.1257 -0.4059  
8 0.0647 0.0989 -0.3637  
9 0.0262 0.0910 -0.2222  
10 0.0001 0.1013 0.0103  
11 0.0104 0.1289 0.1372  
12 0.2619 0.1731 0.8030  
13 0.0062 0.2331 0.1054  
14 0.0320 0.3083 -0.2404  
 
95% Confidence: 
Row Predicted Regr. 5% Regr. 95% Pop.  5% Pop.  95%  
4 5.4943 5.4611 5.5276 5.4274 5.5612  
5 5.4544 5.4260 5.4828 5.3898 5.5190  
6 5.4148 5.3907 5.4389 5.3520 5.4776  
7 5.3755 5.3549 5.3961 5.3139 5.4370  
8 5.3364 5.3182 5.3547 5.2756 5.3973  
9 5.2977 5.2802 5.3152 5.2371 5.3583  
10 5.2592 5.2407 5.2777 5.1983 5.3201  
11 5.2210 5.2002 5.2418 5.1594 5.2827  
12 5.1831 5.1590 5.2072 5.1202 5.2460  
13 5.1455 5.1174 5.1735 5.0810 5.2099  
14 5.1081 5.0759 5.1403 5.0417 5.1745  
 

Nonlinear Regression: 90nm, 398.15K, 4.05V 
 
[Variables] 
x = col(10) 
y = col(11) 
reciprocal_y = 1/abs(y) 
reciprocal_ysquare = 1/y^2 
'Automatic Initial Parameter Estimate Functions 
xnear0(q) = max(abs(q))-abs(q) 
yatxnear0(q,r) = xatymax(q,xnear0(r)) 
[Parameters] 
a = yatxnear0(y,x)  ''Auto {{previous: 4.86817}} 
b = if(x50(x,y)-min(x)=0, 1,  -ln(.5)/(x50(x,y)-min(x)))  ''Auto {{previous: 0.000156699}} 
[Equation] 
f = a*exp(-b*x) 
fit f to y 
''fit f to y with weight reciprocal_y 
''fit f to y with weight reciprocal_ysquare 
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[Constraints] 
b>0 
[Options] 
tolerance=0.0001 
stepsize=100 
iterations=100 
 
R = 0.98191836 Rsqr = 0.96416367 Adj Rsqr = 0.96018186 
 
Standard Error of Estimate = 0.0474  
 
  Coefficient Std. Error t P  
a 4.8682 0.0276 176.1274 <0.0001  
b 0.0002 0.0000 15.5904 <0.0001  
 
Analysis of Variance:  
  DF SS MS F P  
Regression 1 0.5446 0.5446 242.1418 <0.0001  
Residual 9 0.0202 0.0022  
Total 10 0.5649 0.0565  
 
PRESS = 0.0381  
 
Durbin-Watson Statistic = 0.8096  
 
Normality Test:  K-S Statistic = 0.2390 Significance Level = 0.4974 
 
Constant Variance Test:  Passed (P = 0.3241) 
 
Power of performed test with alpha = 0.0500: 1.0000 
 
Regression Diagnostics: 
Row Predicted Residual Std. Res. Stud. Res. Stud. Del. Res.  
4 4.8682 0.1018 2.1472 2.6424 5.2617  
5 4.7925 -0.0025 -0.0522 -0.0600 -0.0566  
6 4.7180 -0.0380 -0.8005 -0.8795 -0.8673  
7 4.6446 -0.0446 -0.9407 -1.0050 -1.0056  
8 4.5724 -0.0624 -1.3157 -1.3852 -1.4723  
9 4.5013 -0.0113 -0.2384 -0.2501 -0.2366  
10 4.4313 -0.0013 -0.0279 -0.0294 -0.0277  
11 4.3624 -0.0024 -0.0511 -0.0548 -0.0517  
12 4.2946 -0.0046 -0.0969 -0.1066 -0.1006  
13 4.2278 0.0222 0.4676 0.5325 0.5102  
14 4.1621 0.0435 0.9174 1.0941 1.1078  
 
Influence Diagnostics:  
Row Cook'sDist Leverage DFFITS  
4 1.7959 0.3397 3.7738  
5 0.0006 0.2428 -0.0321  
6 0.0801 0.1716 -0.3947  
7 0.0714 0.1239 -0.3782  
8 0.1040 0.0978 -0.4847  
9 0.0031 0.0914 -0.0750  
10 0.0000 0.1029 -0.0094  
11 0.0002 0.1307 -0.0200  
12 0.0012 0.1733 -0.0460  
13 0.0421 0.2291 0.2781  
14 0.2528 0.2970 0.7200  
 
95% Confidence: 
Row Predicted Regr. 5% Regr. 95% Pop.  5% Pop.  95%  
4 4.8682 4.8056 4.9307 4.7440 4.9923  
5 4.7925 4.7396 4.8453 4.6729 4.9121  
6 4.7180 4.6735 4.7624 4.6018 4.8341  
7 4.6446 4.6068 4.6824 4.5309 4.7583  
8 4.5724 4.5389 4.6059 4.4600 4.6848  
9 4.5013 4.4689 4.5337 4.3892 4.6134  
10 4.4313 4.3969 4.4657 4.3187 4.5440  
11 4.3624 4.3236 4.4012 4.2483 4.4765  
12 4.2946 4.2499 4.3393 4.1784 4.4108  
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13 4.2278 4.1765 4.2792 4.1089 4.3468  
14 4.1621 4.1036 4.2206 4.0399 4.2843  
 

 
Nonlinear Regression: 110nm,  298.15K, 2.5V 
 
[Variables] 
x = col(2) 
y = col(3) 
reciprocal_y = 1/abs(y) 
reciprocal_ysquare = 1/y^2 
'Automatic Initial Parameter Estimate Functions 
xnear0(q) = max(abs(q))-abs(q) 
yatxnear0(q,r) = xatymax(q,xnear0(r)) 
[Parameters] 
a = yatxnear0(y,x)  ''Auto {{previous: 8.31352}} 
b = if(x50(x,y)-min(x)=0, 1,  -ln(.5)/(x50(x,y)-min(x)))  ''Auto {{previous: 8.16831e-005}} 
[Equation] 
f = a*exp(-b*x) 
fit f to y 
''fit f to y with weight reciprocal_y 
''fit f to y with weight reciprocal_ysquare 
[Constraints] 
b>0 
[Options] 
tolerance=0.0001 
stepsize=100 
iterations=100 
 
R = 0.99297544 Rsqr = 0.98600023 Adj Rsqr = 0.98444470 
 
Standard Error of Estimate = 0.0271  
 
  Coefficient Std. Error t P  
a 8.3135 0.0156 533.9676 <0.0001  
b 0.0001 0.0000 25.1983 <0.0001  
 
Analysis of Variance:  
  DF SS MS F P  
Regression 1 0.4665 0.4665 633.8679 <0.0001  
Residual 9 0.0066 0.0007  
Total 10 0.4731 0.0473  
 
PRESS = 0.0117  
 
Durbin-Watson Statistic = 0.5723  
 
Normality Test:  K-S Statistic = 0.1620 Significance Level = 0.9102 
 
Constant Variance Test:  Passed (P = 0.7965) 
 
Power of performed test with alpha = 0.0500: 1.0000 
 
Regression Diagnostics: 
Row Predicted Residual Std. Res. Stud. Res. Stud. Del. Res.  
4 8.3135 0.0291 1.0720 1.3090 1.3716  
5 8.2459 0.0141 0.5202 0.5966 0.5740  
6 8.1788 0.0112 0.4126 0.4535 0.4325  
7 8.1123 -0.0123 -0.4524 -0.4837 -0.4621  
8 8.0463 -0.0263 -0.9686 -1.0203 -1.0230  
9 7.9808 -0.0208 -0.7675 -0.8050 -0.7879  
10 7.9159 -0.0259 -0.9546 -1.0070 -1.0079  
11 7.8515 -0.0215 -0.7925 -0.8492 -0.8348  
12 7.7876 -0.0076 -0.2812 -0.3092 -0.2931  
13 7.7243 0.0057 0.2110 0.2409 0.2278  
14 7.6614 0.0544 2.0038 2.4072 3.8029  
 
Influence Diagnostics:  
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Row Cook'sDist Leverage DFFITS  
4 0.4207 0.3294 0.9612  
5 0.0562 0.2398 0.3224  
6 0.0214 0.1722 0.1973  
7 0.0168 0.1255 -0.1751  
8 0.0570 0.0988 -0.3386  
9 0.0324 0.0910 -0.2493  
10 0.0572 0.1014 -0.3386  
11 0.0534 0.1291 -0.3214  
12 0.0100 0.1731 -0.1341  
13 0.0088 0.2327 0.1255  
14 1.2840 0.3071 2.5316  
 
95% Confidence: 
Row Predicted Regr. 5% Regr. 95% Pop.  5% Pop.  95%  
4 8.3135 8.2783 8.3487 8.2428 8.3843  
5 8.2459 8.2158 8.2759 8.1776 8.3142  
6 8.1788 8.1533 8.2043 8.1124 8.2453  
7 8.1123 8.0905 8.1340 8.0472 8.1774  
8 8.0463 8.0270 8.0656 7.9819 8.1106  
9 7.9808 7.9623 7.9993 7.9167 8.0449  
10 7.9159 7.8964 7.9354 7.8515 7.9803  
11 7.8515 7.8295 7.8735 7.7863 7.9167  
12 7.7876 7.7621 7.8132 7.7212 7.8541  
13 7.7243 7.6947 7.7539 7.6561 7.7924  
14 7.6614 7.6274 7.6954 7.5913 7.7316 
 
 
Nonlinear Regression: 110nm,  348.15K, 2.5V 
 
[Variables] 
x = col(6) 
y = col(7) 
reciprocal_y = 1/abs(y) 
reciprocal_ysquare = 1/y^2 
'Automatic Initial Parameter Estimate Functions 
xnear0(q) = max(abs(q))-abs(q) 
yatxnear0(q,r) = xatymax(q,xnear0(r)) 
[Parameters] 
a = yatxnear0(y,x)  ''Auto {{previous: 6.84254}} 
b = if(x50(x,y)-min(x)=0, 1,  -ln(.5)/(x50(x,y)-min(x)))  ''Auto {{previous: 0.000120308}} 
[Equation] 
f = a*exp(-b*x) 
fit f to y 
''fit f to y with weight reciprocal_y 
''fit f to y with weight reciprocal_ysquare 
[Constraints] 
b>0 
[Options] 
tolerance=0.0001 
stepsize=100 
iterations=100 
 
R = 0.95758184 Rsqr = 0.91696299 Adj Rsqr = 0.90773665 
 
Standard Error of Estimate = 0.0812  
 
  Coefficient Std. Error t P  
a 6.8425 0.0470 145.6813 <0.0001  
b 0.0001 0.0000 10.0099 <0.0001  
 
Analysis of Variance:  
  DF SS MS F P  
Regression 1 0.6552 0.6552 99.3854 <0.0001  
Residual 9 0.0593 0.0066  
Total 10 0.7145 0.0714  
 
PRESS = 0.1004  
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Durbin-Watson Statistic = 0.3621  
 
Normality Test:  K-S Statistic = 0.1456 Significance Level = 0.9606 
 
Constant Variance Test:  Passed (P = 0.8601) 
 
Power of performed test with alpha = 0.0500: 0.9997 
 
Regression Diagnostics: 
Row Predicted Residual Std. Res. Stud. Res. Stud. Del. Res.  
4 6.8425 0.1219 1.5009 1.8400 2.1965  
5 6.7607 0.0493 0.6070 0.6970 0.6756  
6 6.6799 0.0001 0.0017 0.0018 0.0017  
7 6.6000 -0.0600 -0.7388 -0.7896 -0.7717  
8 6.5211 -0.1011 -1.2447 -1.3107 -1.3738  
9 6.4431 -0.0831 -1.0232 -1.0733 -1.0836  
10 6.3660 -0.0760 -0.9363 -0.9882 -0.9867  
11 6.2899 -0.0299 -0.3682 -0.3947 -0.3754  
12 6.2147 0.0153 0.1888 0.2076 0.1962  
13 6.1404 0.0596 0.7346 0.8377 0.8225  
14 6.0669 0.1043 1.2843 1.5371 1.6875  
 
Influence Diagnostics:  
Row Cook'sDist Leverage DFFITS  
4 0.8515 0.3347 1.5578  
5 0.0773 0.2414 0.3811  
6 0.0000 0.1719 0.0008  
7 0.0444 0.1247 -0.2912  
8 0.0936 0.0982 -0.4534  
9 0.0578 0.0912 -0.3432  
10 0.0555 0.1022 -0.3328  
11 0.0116 0.1299 -0.1450  
12 0.0045 0.1732 0.0898  
13 0.1053 0.2309 0.4506  
14 0.5108 0.3019 1.1096  
 
95% Confidence: 
Row Predicted Regr. 5% Regr. 95% Pop.  5% Pop.  95%  
4 6.8425 6.7363 6.9488 6.6304 7.0547  
5 6.7607 6.6705 6.8510 6.5561 6.9654  
6 6.6799 6.6037 6.7560 6.4810 6.8787  
7 6.6000 6.5351 6.6648 6.4052 6.7948  
8 6.5211 6.4635 6.5786 6.3286 6.7135  
9 6.4431 6.3876 6.4985 6.2512 6.6349  
10 6.3660 6.3073 6.4247 6.1732 6.5588  
11 6.2899 6.2237 6.3561 6.0947 6.4851  
12 6.2147 6.1382 6.2911 6.0157 6.4136  
13 6.1404 6.0521 6.2286 5.9366 6.3441  
14 6.0669 5.9660 6.1678 5.8574 6.2765  
 
 
Nonlinear Regression: 110nm, 398.15K, 2.5V 
 
[Variables] 
x = col(10) 
y = col(11) 
reciprocal_y = 1/abs(y) 
reciprocal_ysquare = 1/y^2 
'Automatic Initial Parameter Estimate Functions 
xnear0(q) = max(abs(q))-abs(q) 
yatxnear0(q,r) = xatymax(q,xnear0(r)) 
[Parameters] 
a = yatxnear0(y,x)  ''Auto {{previous: 6.03454}} 
b = if(x50(x,y)-min(x)=0, 1,  -ln(.5)/(x50(x,y)-min(x)))  ''Auto {{previous: 0.000153988}} 
[Equation] 
f = a*exp(-b*x) 
fit f to y 
''fit f to y with weight reciprocal_y 
''fit f to y with weight reciprocal_ysquare 
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[Constraints] 
b>0 
[Options] 
tolerance=0.0001 
stepsize=100 
iterations=100 
 
R = 0.99286227 Rsqr = 0.98577550 Adj Rsqr = 0.98419500 
 
Standard Error of Estimate = 0.0361  
 
  Coefficient Std. Error t P  
a 6.0345 0.0210 286.8718 <0.0001  
b 0.0002 0.0000 24.9744 <0.0001  
 
Analysis of Variance:  
  DF SS MS F P  
Regression 1 0.8134 0.8134 623.7110 <0.0001  
Residual 9 0.0117 0.0013  
Total 10 0.8252 0.0825  
 
PRESS = 0.0194  
 
Durbin-Watson Statistic = 1.2077  
 
Normality Test:  K-S Statistic = 0.1836 Significance Level = 0.8119 
 
Constant Variance Test:  Passed (P = 0.7755) 
 
Power of performed test with alpha = 0.0500: 1.0000 
 
Regression Diagnostics: 
Row Predicted Residual Std. Res. Stud. Res. Stud. Del. Res.  
4 6.0345 0.0488 1.3502 1.6611 1.8807  
5 5.9423 -0.0123 -0.3414 -0.3923 -0.3730  
6 5.8515 -0.0315 -0.8729 -0.9591 -0.9543  
7 5.7621 -0.0121 -0.3353 -0.3582 -0.3402  
8 5.6741 0.0259 0.7184 0.7563 0.7368  
9 5.5874 0.0226 0.6271 0.6579 0.6357  
10 5.5020 -0.0520 -1.4392 -1.5194 -1.6614  
11 5.4179 -0.0379 -1.0495 -1.1256 -1.1448  
12 5.3351 -0.0151 -0.4184 -0.4601 -0.4390  
13 5.2536 0.0164 0.4546 0.5178 0.4956  
14 5.1733 0.0474 1.3124 1.5656 1.7304  
 
Influence Diagnostics:  
Row Cook'sDist Leverage DFFITS  
4 0.7085 0.3393 1.3477  
5 0.0247 0.2427 -0.2112  
6 0.0953 0.1716 -0.4344  
7 0.0091 0.1240 -0.1280  
8 0.0310 0.0978 0.2426  
9 0.0218 0.0913 0.2016  
10 0.1323 0.1028 -0.5624  
11 0.0952 0.1306 -0.4438  
12 0.0222 0.1733 -0.2010  
13 0.0399 0.2293 0.2703  
14 0.5186 0.2973 1.1256  
 
95% Confidence: 
Row Predicted Regr. 5% Regr. 95% Pop.  5% Pop.  95%  
4 6.0345 5.9870 6.0821 5.9400 6.1291  
5 5.9423 5.9021 5.9826 5.8513 6.0334  
6 5.8515 5.8177 5.8854 5.7631 5.9399  
7 5.7621 5.7333 5.7909 5.6755 5.8487  
8 5.6741 5.6485 5.6996 5.5885 5.7597  
9 5.5874 5.5627 5.6120 5.5020 5.6727  
10 5.5020 5.4758 5.5282 5.4162 5.5878  
11 5.4179 5.3884 5.4474 5.3310 5.5048  
12 5.3351 5.3011 5.3691 5.2466 5.4236  
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13 5.2536 5.2145 5.2927 5.1630 5.3442  
14 5.1733 5.1288 5.2179 5.0803 5.2664  
 
 
Nonlinear Regression: 110nm,  298.15K, 4.05V 
 
[Variables] 
x = col(2) 
y = col(3) 
reciprocal_y = 1/abs(y) 
reciprocal_ysquare = 1/y^2 
'Automatic Initial Parameter Estimate Functions 
xnear0(q) = max(abs(q))-abs(q) 
yatxnear0(q,r) = xatymax(q,xnear0(r)) 
[Parameters] 
a = yatxnear0(y,x)  ''Auto {{previous: 6.61935}} 
b = if(x50(x,y)-min(x)=0, 1,  -ln(.5)/(x50(x,y)-min(x)))  ''Auto {{previous: 9.73741e-005}} 
[Equation] 
f = a*exp(-b*x) 
fit f to y 
''fit f to y with weight reciprocal_y 
''fit f to y with weight reciprocal_ysquare 
[Constraints] 
b>0 
[Options] 
tolerance=0.0001 
stepsize=100 
iterations=100 
 
R = 0.99404435 Rsqr = 0.98812417 Adj Rsqr = 0.98680463 
 
Standard Error of Estimate = 0.0235  
 
  Coefficient Std. Error t P  
a 6.6194 0.0135 489.0502 <0.0001  
b 0.0001 0.0000 27.3844 <0.0001  
 
Analysis of Variance:  
  DF SS MS F P  
Regression 1 0.4138 0.4138 748.8418 <0.0001  
Residual 9 0.0050 0.0006  
Total 10 0.4188 0.0419  
 
PRESS = 0.0081  
 
Durbin-Watson Statistic = 0.6441  
 
Normality Test:  K-S Statistic = 0.1696 Significance Level = 0.8791 
 
Constant Variance Test:  Passed (P = 0.2209) 
 
Power of performed test with alpha = 0.0500: 1.0000 
 
Regression Diagnostics: 
Row Predicted Residual Std. Res. Stud. Res. Stud. Del. Res.  
4 6.6194 0.0192 0.8188 1.0015 1.0017  
5 6.5552 0.0248 1.0546 1.2101 1.2468  
6 6.4917 -0.0017 -0.0718 -0.0789 -0.0744  
7 6.4288 -0.0188 -0.7990 -0.8542 -0.8401  
8 6.3665 -0.0065 -0.2759 -0.2906 -0.2753  
9 6.3048 -0.0148 -0.6293 -0.6601 -0.6380  
10 6.2437 -0.0237 -1.0081 -1.0637 -1.0725  
11 6.1832 -0.0332 -1.4122 -1.5135 -1.6526  
12 6.1233 -0.0033 -0.1396 -0.1535 -0.1449  
13 6.0639 0.0261 1.1083 1.2647 1.3149  
14 6.0052 0.0319 1.3576 1.6285 1.8281  
 
Influence Diagnostics:  
Row Cook'sDist Leverage DFFITS  
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4 0.2487 0.3315 0.7054  
5 0.2318 0.2405 0.7015  
6 0.0006 0.1721 -0.0339  
7 0.0522 0.1252 -0.3178  
8 0.0046 0.0985 -0.0910  
9 0.0218 0.0911 -0.2020  
10 0.0641 0.1017 -0.3609  
11 0.1702 0.1294 -0.6371  
12 0.0025 0.1731 -0.0663  
13 0.2415 0.2320 0.7226  
14 0.5818 0.3050 1.2109  
 
95% Confidence: 
Row Predicted Regr. 5% Regr. 95% Pop.  5% Pop.  95%  
4 6.6194 6.5887 6.6500 6.5580 6.6807  
5 6.5552 6.5291 6.5813 6.4960 6.6144  
6 6.4917 6.4696 6.5137 6.4341 6.5493  
7 6.4288 6.4100 6.4476 6.3724 6.4852  
8 6.3665 6.3498 6.3832 6.3107 6.4222  
9 6.3048 6.2887 6.3208 6.2492 6.3603  
10 6.2437 6.2267 6.2607 6.1879 6.2995  
11 6.1832 6.1641 6.2023 6.1267 6.2397  
12 6.1233 6.1012 6.1454 6.0657 6.1809  
13 6.0639 6.0383 6.0896 6.0049 6.1230  
14 6.0052 5.9758 6.0346 5.9444 6.0659  
 
Nonlinear Regression: 110nm, 348.15K, 4.05V 
 
[Variables] 
x = col(6) 
y = col(7) 
reciprocal_y = 1/abs(y) 
reciprocal_ysquare = 1/y^2 
'Automatic Initial Parameter Estimate Functions 
xnear0(q) = max(abs(q))-abs(q) 
yatxnear0(q,r) = xatymax(q,xnear0(r)) 
[Parameters] 
a = yatxnear0(y,x)  ''Auto {{previous: 5.53632}} 
b = if(x50(x,y)-min(x)=0, 1,  -ln(.5)/(x50(x,y)-min(x)))  ''Auto {{previous: 0.000132161}} 
[Equation] 
f = a*exp(-b*x) 
fit f to y 
''fit f to y with weight reciprocal_y 
''fit f to y with weight reciprocal_ysquare 
[Constraints] 
b>0 
[Options] 
tolerance=0.0001 
stepsize=100 
iterations=100 
 
R = 0.98683279 Rsqr = 0.97383896 Adj Rsqr = 0.97093217 
 
Standard Error of Estimate = 0.0393  
 
  Coefficient Std. Error t P  
a 5.5363 0.0228 242.6812 <0.0001  
b 0.0001 0.0000 18.2529 <0.0001  
 
Analysis of Variance:  
  DF SS MS F P  
Regression 1 0.5185 0.5185 335.0230 <0.0001  
Residual 9 0.0139 0.0015  
Total 10 0.5324 0.0532  
 
PRESS = 0.0206  
 
Durbin-Watson Statistic = 1.0134  
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Normality Test:  K-S Statistic = 0.1706 Significance Level = 0.8749 
 
Constant Variance Test:  Passed (P = 0.0762) 
 
Power of performed test with alpha = 0.0500: 1.0000 
 
Regression Diagnostics: 
Row Predicted Residual Std. Res. Stud. Res. Stud. Del. Res.  
4 5.5363 0.0056 0.1418 0.1740 0.1644  
5 5.4636 -0.0336 -0.8550 -0.9819 -0.9797  
6 5.3919 -0.0119 -0.3026 -0.3325 -0.3154  
7 5.3211 -0.0211 -0.5366 -0.5735 -0.5509  
8 5.2513 0.0087 0.2224 0.2342 0.2215  
9 5.1823 0.0177 0.4498 0.4718 0.4504  
10 5.1143 0.0557 1.4167 1.4953 1.6262  
11 5.0471 0.0729 1.8525 1.9863 2.4989  
12 4.9809 -0.0209 -0.5302 -0.5831 -0.5604  
13 4.9155 -0.0255 -0.6472 -0.7378 -0.7176  
14 4.8509 -0.0478 -1.2160 -1.4537 -1.5668  
 
Influence Diagnostics:  
Row Cook'sDist Leverage DFFITS  
4 0.0077 0.3363 0.1170  
5 0.1538 0.2418 -0.5533  
6 0.0115 0.1718 -0.1436  
7 0.0234 0.1244 -0.2077  
8 0.0030 0.0981 0.0730  
9 0.0112 0.0912 0.1427  
10 0.1275 0.1024 0.5492  
11 0.2952 0.1302 0.9666  
12 0.0356 0.1732 -0.2565  
13 0.0814 0.2303 -0.3926  
14 0.4534 0.3003 -1.0263  
 
95% Confidence: 
Row Predicted Regr. 5% Regr. 95% Pop.  5% Pop.  95%  
4 5.5363 5.4847 5.5879 5.4334 5.6392  
5 5.4636 5.4199 5.5074 5.3645 5.5628  
6 5.3919 5.3550 5.4288 5.2956 5.4882  
7 5.3211 5.2897 5.3525 5.2267 5.4155  
8 5.2513 5.2234 5.2791 5.1580 5.3445  
9 5.1823 5.1554 5.2092 5.0893 5.2753  
10 5.1143 5.0858 5.1427 5.0208 5.2077  
11 5.0471 5.0150 5.0792 4.9525 5.1417  
12 4.9809 4.9438 5.0179 4.8845 5.0773  
13 4.9155 4.8728 4.9582 4.8168 5.0142  
14 4.8509 4.8022 4.8997 4.7494 4.9524  
 
Nonlinear Regression: 110nm, 398.15K, 4.05V 
 
[Variables] 
x = col(10) 
y = col(11) 
reciprocal_y = 1/abs(y) 
reciprocal_ysquare = 1/y^2 
'Automatic Initial Parameter Estimate Functions 
xnear0(q) = max(abs(q))-abs(q) 
yatxnear0(q,r) = xatymax(q,xnear0(r)) 
[Parameters] 
a = yatxnear0(y,x)  ''Auto {{previous: 4.80363}} 
b = if(x50(x,y)-min(x)=0, 1,  -ln(.5)/(x50(x,y)-min(x)))  ''Auto {{previous: 0.000163859}} 
[Equation] 
f = a*exp(-b*x) 
fit f to y 
''fit f to y with weight reciprocal_y 
''fit f to y with weight reciprocal_ysquare 
[Constraints] 
b>0 
[Options] 
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tolerance=0.0001 
stepsize=100 
iterations=100 
 
R = 0.99731150 Rsqr = 0.99463023 Adj Rsqr = 0.99403359 
 
Standard Error of Estimate = 0.0186  
 
  Coefficient Std. Error t P  
a 4.8036 0.0109 441.6168 <0.0001  
b 0.0002 0.0000 40.7878 <0.0001  
 
Analysis of Variance:  
  DF SS MS F P  
Regression 1 0.5790 0.5790 1667.0493 <0.0001  
Residual 9 0.0031 0.0003  
Total 10 0.5821 0.0582  
 
PRESS = 0.0057  
 
Durbin-Watson Statistic = 1.4607  
 
Normality Test:  K-S Statistic = 0.2475 Significance Level = 0.4523 
 
Constant Variance Test:  Passed (P = 0.0883) 
 
Power of performed test with alpha = 0.0500: 1.0000 
 
Regression Diagnostics: 
Row Predicted Residual Std. Res. Stud. Res. Stud. Del. Res.  
4 4.8036 0.0372 1.9942 2.4560 4.0320  
5 4.7256 -0.0156 -0.8352 -0.9599 -0.9553  
6 4.6488 -0.0188 -1.0068 -1.1061 -1.1219  
7 4.5732 -0.0132 -0.7088 -0.7572 -0.7378  
8 4.4989 -0.0089 -0.4767 -0.5019 -0.4799  
9 4.4258 -0.0058 -0.3094 -0.3246 -0.3079  
10 4.3538 0.0162 0.8672 0.9157 0.9066  
11 4.2831 0.0169 0.9080 0.9740 0.9709  
12 4.2135 -0.0135 -0.7226 -0.7948 -0.7771  
13 4.1450 -0.0050 -0.2677 -0.3048 -0.2889  
14 4.0776 0.0105 0.5622 0.6700 0.6481  
 
Influence Diagnostics:  
Row Cook'sDist Leverage DFFITS  
4 1.5582 0.3407 2.8982  
5 0.1480 0.2431 -0.5413  
6 0.1266 0.1715 -0.5104  
7 0.0405 0.1237 -0.2773  
8 0.0136 0.0977 -0.1579  
9 0.0053 0.0914 -0.0976  
10 0.0482 0.1030 0.3072  
11 0.0714 0.1308 0.3767  
12 0.0662 0.1733 -0.3557  
13 0.0138 0.2288 -0.1573  
14 0.0944 0.2960 0.4202  
 
95% Confidence: 
Row Predicted Regr. 5% Regr. 95% Pop.  5% Pop.  95%  
4 4.8036 4.7790 4.8282 4.7548 4.8524  
5 4.7256 4.7048 4.7463 4.6786 4.7726  
6 4.6488 4.6313 4.6662 4.6031 4.6944  
7 4.5732 4.5584 4.5880 4.5285 4.6179  
8 4.4989 4.4857 4.5121 4.4547 4.5431  
9 4.4258 4.4130 4.4385 4.3817 4.4698  
10 4.3538 4.3403 4.3674 4.3096 4.3981  
11 4.2831 4.2678 4.2983 4.2382 4.3279  
12 4.2135 4.1959 4.2310 4.1678 4.2591  
13 4.1450 4.1248 4.1652 4.0983 4.1917  
14 4.0776 4.0547 4.1006 4.0296 4.1256  
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Nonlinear Regression: 130nm,  298.15K, 2.5V 
 
[Variables] 
x = col(2) 
y = col(3) 
reciprocal_y = 1/abs(y) 
reciprocal_ysquare = 1/y^2 
'Automatic Initial Parameter Estimate Functions 
xnear0(q) = max(abs(q))-abs(q) 
yatxnear0(q,r) = xatymax(q,xnear0(r)) 
[Parameters] 
a = yatxnear0(y,x)  ''Auto {{previous: 8.34415}} 
b = if(x50(x,y)-min(x)=0, 1,  -ln(.5)/(x50(x,y)-min(x)))  ''Auto {{previous: 0.000192898}} 
[Equation] 
f = a*exp(-b*x) 
fit f to y 
''fit f to y with weight reciprocal_y 
''fit f to y with weight reciprocal_ysquare 
[Constraints] 
b>0 
[Options] 
tolerance=0.0001 
stepsize=100 
iterations=100 
 
R = 0.97546068 Rsqr = 0.95152354 Adj Rsqr = 0.94613727 
 
Standard Error of Estimate = 0.1159  
 
  Coefficient Std. Error t P  
a 8.3441 0.0681 122.6069 <0.0001  
b 0.0002 0.0000 13.2135 <0.0001  
 
Analysis of Variance:  
  DF SS MS F P  
Regression 1 2.3740 2.3740 176.6571 <0.0001  
Residual 9 0.1209 0.0134  
Total 10 2.4950 0.2495  
 
PRESS = 0.1766  
 
Durbin-Watson Statistic = 0.8093  
 
Normality Test:  K-S Statistic = 0.0966 Significance Level = 0.9999 
 
Constant Variance Test:  Passed (P = 0.9676) 
 
Power of performed test with alpha = 0.0500: 1.0000 
 
Regression Diagnostics: 
Row Predicted Residual Std. Res. Stud. Res. Stud. Del. Res.  
4 8.3441 -0.1048 -0.9044 -1.1172 -1.1350  
5 8.1847 -0.0647 -0.5584 -0.6423 -0.6199  
6 8.0284 -0.0184 -0.1584 -0.1740 -0.1643  
7 7.8750 0.0550 0.4746 0.5068 0.4848  
8 7.7245 0.1155 0.9961 1.0484 1.0550  
9 7.5770 0.1830 1.5790 1.6567 1.8735  
10 7.4322 0.0878 0.7574 0.8000 0.7826  
11 7.2902 0.0098 0.0845 0.0907 0.0855  
12 7.1509 -0.1909 -1.6470 -1.8114 -2.1424  
13 7.0143 -0.1023 -0.8825 -1.0040 -1.0045  
14 6.8803 0.0289 0.2493 0.2963 0.2807  
 
Influence Diagnostics:  
Row Cook'sDist Leverage DFFITS  
4 0.3282 0.3447 -0.8231  
5 0.0666 0.2442 -0.3523  
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6 0.0031 0.1712 -0.0747  
7 0.0180 0.1231 0.1817  
8 0.0593 0.0974 0.3465  
9 0.1384 0.0916 0.5949  
10 0.0370 0.1036 0.2661  
11 0.0006 0.1315 0.0333  
12 0.3439 0.1733 -0.9809  
13 0.1483 0.2274 -0.5449  
14 0.0181 0.2921 0.1803  
 
95% Confidence: 
Row Predicted Regr. 5% Regr. 95% Pop.  5% Pop.  95%  
4 8.3441 8.1902 8.4981 8.0401 8.6482  
5 8.1847 8.0551 8.3143 7.8922 8.4772  
6 8.0284 7.9198 8.1369 7.7446 8.3122  
7 7.8750 7.7830 7.9670 7.5971 8.1529  
8 7.7245 7.6427 7.8064 7.4498 7.9992  
9 7.5770 7.4976 7.6563 7.3030 7.8509  
10 7.4322 7.3478 7.5166 7.1567 7.7077  
11 7.2902 7.1951 7.3853 7.0113 7.5692  
12 7.1509 7.0418 7.2601 6.8669 7.4350  
13 7.0143 6.8893 7.1394 6.7238 7.3048  
14 6.8803 6.7386 7.0220 6.5822 7.1784 
 
 
Nonlinear Regression: 130nm, 348.15K, 2.5V 
 
[Variables] 
x = col(6) 
y = col(7) 
reciprocal_y = 1/abs(y) 
reciprocal_ysquare = 1/y^2 
'Automatic Initial Parameter Estimate Functions 
xnear0(q) = max(abs(q))-abs(q) 
yatxnear0(q,r) = xatymax(q,xnear0(r)) 
[Parameters] 
a = yatxnear0(y,x)  ''Auto {{previous: 6.74299}} 
b = if(x50(x,y)-min(x)=0, 1,  -ln(.5)/(x50(x,y)-min(x)))  ''Auto {{previous: 0.000307091}} 
[Equation] 
f = a*exp(-b*x) 
fit f to y 
''fit f to y with weight reciprocal_y 
''fit f to y with weight reciprocal_ysquare 
[Constraints] 
b>0 
[Options] 
tolerance=0.0001 
stepsize=100 
iterations=100 
 
R = 0.98137920 Rsqr = 0.96310513 Adj Rsqr = 0.95900570 
 
Standard Error of Estimate = 0.1210  
 
  Coefficient Std. Error t P  
a 6.7430 0.0726 92.8213 <0.0001  
b 0.0003 0.0000 15.3632 <0.0001  
 
Analysis of Variance:  
  DF SS MS F P  
Regression 1 3.4393 3.4393 234.9363 <0.0001  
Residual 9 0.1318 0.0146  
Total 10 3.5711 0.3571  
 
PRESS = 0.2217  
 
Durbin-Watson Statistic = 0.4790  
 
Normality Test:  K-S Statistic = 0.1130 Significance Level = 0.9979 
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Constant Variance Test:  Passed (P = 0.6531) 
 
Power of performed test with alpha = 0.0500: 1.0000 
 
Regression Diagnostics: 
Row Predicted Residual Std. Res. Stud. Res. Stud. Del. Res.  
4 6.7430 0.1588 1.3126 1.6414 1.8487  
5 6.5391 0.0609 0.5037 0.5809 0.5582  
6 6.3413 -0.0313 -0.2587 -0.2840 -0.2690  
7 6.1495 -0.0195 -0.1614 -0.1721 -0.1626  
8 5.9636 -0.1136 -0.9385 -0.9873 -0.9857  
9 5.7832 -0.1832 -1.5141 -1.5895 -1.7670  
10 5.6083 -0.0983 -0.8125 -0.8593 -0.8456  
11 5.4387 -0.0587 -0.4851 -0.5212 -0.4990  
12 5.2742 0.0258 0.2131 0.2344 0.2216  
13 5.1147 0.0753 0.6223 0.7053 0.6841  
14 4.9600 0.1886 1.5585 1.8328 2.1827  
 
Influence Diagnostics:  
Row Cook'sDist Leverage DFFITS  
4 0.7593 0.3605 1.3880  
5 0.0557 0.2482 0.3208  
6 0.0083 0.1700 -0.1217  
7 0.0020 0.1208 -0.0603  
8 0.0520 0.0963 -0.3219  
9 0.1289 0.0926 -0.5645  
10 0.0438 0.1061 -0.2914  
11 0.0210 0.1339 -0.1962  
12 0.0057 0.1731 0.1014  
13 0.0708 0.2215 0.3649  
14 0.6432 0.2769 1.3507  
 
95% Confidence: 
Row Predicted Regr. 5% Regr. 95% Pop.  5% Pop.  95%  
4 6.7430 6.5787 6.9073 6.4237 7.0622  
5 6.5391 6.4027 6.6754 6.2333 6.8449  
6 6.3413 6.2285 6.4542 6.0452 6.6374  
7 6.1495 6.0544 6.2447 5.8598 6.4393  
8 5.9636 5.8786 6.0485 5.6770 6.2501  
9 5.7832 5.6999 5.8665 5.4971 6.0693  
10 5.6083 5.5191 5.6975 5.3204 5.8962  
11 5.4387 5.3385 5.5388 5.1472 5.7301  
12 5.2742 5.1603 5.3881 4.9778 5.5707  
13 5.1147 4.9859 5.2435 4.8122 5.4172  
14 4.9600 4.8160 5.1041 4.6507 5.2693  
 
 
Nonlinear Regression: 130nm, 398.15K, 2.5V 
 
[Variables] 
x = col(10) 
y = col(11) 
reciprocal_y = 1/abs(y) 
reciprocal_ysquare = 1/y^2 
'Automatic Initial Parameter Estimate Functions 
xnear0(q) = max(abs(q))-abs(q) 
yatxnear0(q,r) = xatymax(q,xnear0(r)) 
[Parameters] 
a = yatxnear0(y,x)  ''Auto {{previous: 5.44426}} 
b = if(x50(x,y)-min(x)=0, 1,  -ln(.5)/(x50(x,y)-min(x)))  ''Auto {{previous: 0.000319428}} 
[Equation] 
f = a*exp(-b*x) 
fit f to y 
''fit f to y with weight reciprocal_y 
''fit f to y with weight reciprocal_ysquare 
[Constraints] 
b>0 
[Options] 



 213 
 

tolerance=0.0001 
stepsize=100 
iterations=100 
 
R = 0.89745925 Rsqr = 0.80543310 Adj Rsqr = 0.78381455 
 
Standard Error of Estimate = 0.2520  
 
  Coefficient Std. Error t P  
a 5.4443 0.1517 35.8959 <0.0001  
b 0.0003 0.0001 6.1554 0.0002  
 
Analysis of Variance:  
  DF SS MS F P  
Regression 1 2.3663 2.3663 37.2566 0.0002  
Residual 9 0.5716 0.0635  
Total 10 2.9379 0.2938  
 
PRESS = 1.2230  
 
Durbin-Watson Statistic = 1.3834  
 
Normality Test:  K-S Statistic = 0.2084 Significance Level = 0.6724 
 
Constant Variance Test:  Failed (P = 0.0290) 
 
Power of performed test with alpha = 0.0500: 0.9849 
 
Regression Diagnostics: 
Row Predicted Residual Std. Res. Stud. Res. Stud. Del. Res.  
4 5.4443 0.6001 2.3813 2.9817 25.4908  
5 5.2731 -0.2731 -1.0837 -1.2502 -1.2966  
6 5.1073 -0.2073 -0.8227 -0.9029 -0.8927  
7 4.9468 -0.1668 -0.6617 -0.7056 -0.6845  
8 4.7912 -0.1212 -0.4811 -0.5061 -0.4841  
9 4.6406 -0.0606 -0.2405 -0.2525 -0.2389  
10 4.4947 -0.0447 -0.1775 -0.1878 -0.1774  
11 4.3534 -0.0434 -0.1723 -0.1852 -0.1749  
12 4.2166 0.0434 0.1724 0.1895 0.1791  
13 4.0840 0.1060 0.4206 0.4765 0.4550  
14 3.9556 0.1752 0.6952 0.8166 0.8001  
 
Influence Diagnostics:  
Row Cook'sDist Leverage DFFITS  
4 2.5241 0.3622 19.2085  
5 0.2586 0.2486 -0.7458  
6 0.0834 0.1698 -0.4038  
7 0.0341 0.1206 -0.2535  
8 0.0136 0.0963 -0.1580  
9 0.0033 0.0927 -0.0764  
10 0.0021 0.1064 -0.0612  
11 0.0027 0.1341 -0.0688  
12 0.0038 0.1731 0.0819  
13 0.0322 0.2208 0.2422  
14 0.1267 0.2753 0.4931  
 
95% Confidence: 
Row Predicted Regr. 5% Regr. 95% Pop.  5% Pop.  95%  
4 5.4443 5.1012 5.7874 4.7789 6.1097  
5 5.2731 4.9888 5.5574 4.6361 5.9102  
6 5.1073 4.8724 5.3423 4.4907 5.7240  
7 4.9468 4.7488 5.1447 4.3433 5.5503  
8 4.7912 4.6144 4.9681 4.1943 5.3882  
9 4.6406 4.4670 4.8142 4.0447 5.2366  
10 4.4947 4.3087 4.6807 3.8951 5.0944  
11 4.3534 4.1446 4.5622 3.7463 4.9606  
12 4.2166 3.9794 4.4537 3.5991 4.8340  
13 4.0840 3.8161 4.3519 3.4541 4.7139  
14 3.9556 3.6565 4.2547 3.3118 4.5994  
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Nonlinear Regression: 130nm, 298.15K, 4.05V 
 
[Variables] 
x = col(2) 
y = col(3) 
reciprocal_y = 1/abs(y) 
reciprocal_ysquare = 1/y^2 
'Automatic Initial Parameter Estimate Functions 
xnear0(q) = max(abs(q))-abs(q) 
yatxnear0(q,r) = xatymax(q,xnear0(r)) 
[Parameters] 
a = yatxnear0(y,x)  ''Auto {{previous: 6.52409}} 
b = if(x50(x,y)-min(x)=0, 1,  -ln(.5)/(x50(x,y)-min(x)))  ''Auto {{previous: 0.000249826}} 
[Equation] 
f = a*exp(-b*x) 
fit f to y 
''fit f to y with weight reciprocal_y 
''fit f to y with weight reciprocal_ysquare 
[Constraints] 
b>0 
[Options] 
tolerance=0.0001 
stepsize=100 
iterations=100 
 
R = 0.99420186 Rsqr = 0.98843734 Adj Rsqr = 0.98715260 
 
Standard Error of Estimate = 0.0544  
 
  Coefficient Std. Error t P  
a 6.5241 0.0323 202.0870 <0.0001  
b 0.0002 0.0000 27.7099 <0.0001  
 
Analysis of Variance:  
  DF SS MS F P  
Regression 1 2.2745 2.2745 769.3677 <0.0001  
Residual 9 0.0266 0.0030  
Total 10 2.3011 0.2301  
 
PRESS = 0.0437  
 
Durbin-Watson Statistic = 0.8986  
 
Normality Test:  K-S Statistic = 0.1885 Significance Level = 0.7860 
 
Constant Variance Test:  Passed (P = 0.9676) 
 
Power of performed test with alpha = 0.0500: 1.0000 
 
Regression Diagnostics: 
Row Predicted Residual Std. Res. Stud. Res. Stud. Del. Res.  
4 6.5241 0.0136 0.2502 0.3110 0.2948  
5 6.3631 0.0469 0.8621 0.9930 0.9922  
6 6.2061 0.0539 0.9908 1.0880 1.1007  
7 6.0530 -0.0430 -0.7909 -0.8440 -0.8293  
8 5.9037 -0.0537 -0.9868 -1.0384 -1.0435  
9 5.7580 -0.0380 -0.6988 -0.7334 -0.7130  
10 5.6159 -0.0159 -0.2929 -0.3096 -0.2935  
11 5.4774 -0.0474 -0.8711 -0.9354 -0.9282  
12 5.3422 -0.0322 -0.5926 -0.6518 -0.6295  
13 5.2104 0.0096 0.1763 0.2002 0.1892  
14 5.0819 0.1073 1.9743 2.3340 3.5025  
 
Influence Diagnostics:  
Row Cook'sDist Leverage DFFITS  
4 0.0263 0.3525 0.2175  
5 0.1611 0.2462 0.5671  
6 0.1218 0.1706 0.4993  
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7 0.0495 0.1220 -0.3091  
8 0.0578 0.0968 -0.3416  
9 0.0273 0.0920 -0.2270  
10 0.0056 0.1048 -0.1004  
11 0.0669 0.1327 -0.3630  
12 0.0445 0.1733 -0.2882  
13 0.0058 0.2245 0.1018  
14 1.0830 0.2845 2.2086  
 
95% Confidence: 
Row Predicted Regr. 5% Regr. 95% Pop.  5% Pop.  95%  
4 6.5241 6.4511 6.5971 6.3810 6.6671  
5 6.3631 6.3021 6.4242 6.2258 6.5004  
6 6.2061 6.1553 6.2569 6.0730 6.3392  
7 6.0530 6.0100 6.0960 5.9227 6.1833  
8 5.9037 5.8654 5.9419 5.7748 6.0325  
9 5.7580 5.7207 5.7953 5.6295 5.8865  
10 5.6159 5.5761 5.6558 5.4866 5.7452  
11 5.4774 5.4326 5.5222 5.3465 5.6083  
12 5.3422 5.2910 5.3934 5.2090 5.4754  
13 5.2104 5.1521 5.2687 5.0743 5.3465  
14 5.0819 5.0163 5.1475 4.9425 5.2213  
 
Nonlinear Regression: 130nm, 348.15K, 4.05V 
 
[Variables] 
x = col(6) 
y = col(7) 
reciprocal_y = 1/abs(y) 
reciprocal_ysquare = 1/y^2 
'Automatic Initial Parameter Estimate Functions 
xnear0(q) = max(abs(q))-abs(q) 
yatxnear0(q,r) = xatymax(q,xnear0(r)) 
[Parameters] 
a = yatxnear0(y,x)  ''Auto {{previous: 5.47147}} 
b = if(x50(x,y)-min(x)=0, 1,  -ln(.5)/(x50(x,y)-min(x)))  ''Auto {{previous: 0.000372677}} 
[Equation] 
f = a*exp(-b*x) 
fit f to y 
''fit f to y with weight reciprocal_y 
''fit f to y with weight reciprocal_ysquare 
[Constraints] 
b>0 
[Options] 
tolerance=0.0001 
stepsize=100 
iterations=100 
 
R = 0.99709819 Rsqr = 0.99420480 Adj Rsqr = 0.99356089 
 
Standard Error of Estimate = 0.0453  
 
  Coefficient Std. Error t P  
a 5.4715 0.0276 198.5888 <0.0001  
b 0.0004 0.0000 39.0512 <0.0001  
 
Analysis of Variance:  
  DF SS MS F P  
Regression 1 3.1710 3.1710 1544.0089 <0.0001  
Residual 9 0.0185 0.0021  
Total 10 3.1895 0.3190  
 
PRESS = 0.0305  
 
Durbin-Watson Statistic = 1.1364  
 
Normality Test:  K-S Statistic = 0.2382 Significance Level = 0.5019 
 
Constant Variance Test:  Passed (P = 0.1017) 
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Power of performed test with alpha = 0.0500: 1.0000 
 
Regression Diagnostics: 
Row Predicted Residual Std. Res. Stud. Res. Stud. Del. Res.  
4 5.4715 0.0049 0.1087 0.1369 0.1292  
5 5.2713 0.0087 0.1916 0.2213 0.2092  
6 5.0785 0.0415 0.9161 1.0050 1.0057  
7 4.8927 -0.0027 -0.0597 -0.0636 -0.0600  
8 4.7137 -0.0137 -0.3027 -0.3184 -0.3019  
9 4.5413 -0.0313 -0.6903 -0.7250 -0.7044  
10 4.3752 -0.0252 -0.5551 -0.5876 -0.5649  
11 4.2151 -0.0151 -0.3333 -0.3584 -0.3403  
12 4.0609 -0.0709 -1.5646 -1.7203 -1.9798  
13 3.9124 0.0076 0.1688 0.1909 0.1803  
14 3.7692 0.0977 2.1552 2.5195 4.3758  
 
Influence Diagnostics:  
Row Cook'sDist Leverage DFFITS  
4 0.0055 0.3696 0.0989  
5 0.0082 0.2503 0.1209  
6 0.1028 0.1692 0.4538  
7 0.0003 0.1196 -0.0221  
8 0.0054 0.0960 -0.0984  
9 0.0271 0.0934 -0.2261  
10 0.0208 0.1077 -0.1963  
11 0.0100 0.1352 -0.1346  
12 0.3092 0.1728 -0.9050  
13 0.0051 0.2179 0.0952  
14 1.1637 0.2683 2.6495  
 
95% Confidence: 
Row Predicted Regr. 5% Regr. 95% Pop.  5% Pop.  95%  
4 5.4715 5.4091 5.5338 5.3515 5.5915  
5 5.2713 5.2200 5.3226 5.1567 5.3860  
6 5.0785 5.0363 5.1206 4.9676 5.1893  
7 4.8927 4.8573 4.9282 4.7842 5.0012  
8 4.7137 4.6820 4.7455 4.6064 4.8210  
9 4.5413 4.5100 4.5726 4.4341 4.6485  
10 4.3752 4.3415 4.4088 4.2673 4.4831  
11 4.2151 4.1774 4.2528 4.1059 4.3243  
12 4.0609 4.0183 4.1035 3.9499 4.1719  
13 3.9124 3.8645 3.9602 3.7992 4.0255  
14 3.7692 3.7161 3.8223 3.6538 3.8847  
 
 
Nonlinear Regression: 130nm, 398.15K, 4.05V 
 
[Variables] 
x = col(10) 
y = col(11) 
reciprocal_y = 1/abs(y) 
reciprocal_ysquare = 1/y^2 
'Automatic Initial Parameter Estimate Functions 
xnear0(q) = max(abs(q))-abs(q) 
yatxnear0(q,r) = xatymax(q,xnear0(r)) 
[Parameters] 
a = yatxnear0(y,x)  ''Auto {{previous: 4.75819}} 
b = if(x50(x,y)-min(x)=0, 1,  -ln(.5)/(x50(x,y)-min(x)))  ''Auto {{previous: 0.000438572}} 
[Equation] 
f = a*exp(-b*x) 
fit f to y 
''fit f to y with weight reciprocal_y 
''fit f to y with weight reciprocal_ysquare 
[Constraints] 
b>0 
[Options] 
tolerance=0.0001 
stepsize=100 
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iterations=100 
 
R = 0.99727239 Rsqr = 0.99455223 Adj Rsqr = 0.99394692 
 
Standard Error of Estimate = 0.0436  
 
  Coefficient Std. Error t P  
a 4.7582 0.0268 177.3685 <0.0001  
b 0.0004 0.0000 40.1613 <0.0001  
 
Analysis of Variance:  
  DF SS MS F P  
Regression 1 3.1216 3.1216 1643.0509 <0.0001  
Residual 9 0.0171 0.0019  
Total 10 3.1387 0.3139  
 
PRESS = 0.0267  
 
Durbin-Watson Statistic = 1.3963  
 
Normality Test:  K-S Statistic = 0.1552 Significance Level = 0.9339 
 
Constant Variance Test:  Failed (P = 0.0234) 
 
Power of performed test with alpha = 0.0500: 1.0000 
 
Regression Diagnostics: 
Row Predicted Residual Std. Res. Stud. Res. Stud. Del. Res.  
4 4.7582 0.0407 0.9339 1.1849 1.2160  
5 4.5540 0.0560 1.2843 1.4852 1.6117  
6 4.3586 -0.0586 -1.3447 -1.4745 -1.5962  
7 4.1716 -0.0516 -1.1835 -1.2605 -1.3096  
8 3.9926 -0.0426 -0.9770 -1.0274 -1.0310  
9 3.8213 -0.0213 -0.4879 -0.5127 -0.4906  
10 3.6573 0.0527 1.2091 1.2811 1.3358  
11 3.5004 -0.0004 -0.0084 -0.0091 -0.0085  
12 3.3502 -0.0002 -0.0039 -0.0042 -0.0040  
13 3.2064 -0.0064 -0.1472 -0.1660 -0.1568  
14 3.0688 0.0336 0.7702 0.8951 0.8842  
 
Influence Diagnostics:  
Row Cook'sDist Leverage DFFITS  
4 0.4281 0.3788 0.9496  
5 0.3722 0.2523 0.9363  
6 0.2199 0.1683 -0.7180  
7 0.1067 0.1184 -0.4799  
8 0.0559 0.0957 -0.3354  
9 0.0137 0.0943 -0.1583  
10 0.1007 0.1093 0.4680  
11 0.0000 0.1365 -0.0034  
12 0.0000 0.1724 -0.0018  
13 0.0038 0.2143 -0.0819  
14 0.1405 0.2597 0.5237  
 
95% Confidence: 
Row Predicted Regr. 5% Regr. 95% Pop.  5% Pop.  95%  
4 4.7582 4.6975 4.8189 4.6424 4.8740  
5 4.5540 4.5045 4.6036 4.4437 4.6644  
6 4.3586 4.3182 4.3991 4.2520 4.4652  
7 4.1716 4.1377 4.2055 4.0673 4.2759  
8 3.9926 3.9621 4.0231 3.8894 4.0958  
9 3.8213 3.7910 3.8516 3.7181 3.9244  
10 3.6573 3.6247 3.6899 3.5534 3.7612  
11 3.5004 3.4639 3.5368 3.3953 3.6055  
12 3.3502 3.3092 3.3911 3.2434 3.4569  
13 3.2064 3.1608 3.2521 3.0978 3.3151  
14 3.0688 3.0186 3.1191 2.9582 3.1795 
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