191 research outputs found

    Registry composition in ambient networks

    Get PDF
    Ambient Networks (AN) is a new networking concept for beyond 3G. It is a product of the European Union's Sixth Framework Program (FP6). Network composition is a core concept of ANs. It allows dynamic, scalable and uniform cooperation between heterogeneous networks. ANs can host various registries. These registries may be of different types (e.g. centralized, distributed), store heterogeneous types of information (e.g. raw data vs. aggregated data), and rely on different interfaces to access the stored information (i.e. protocols or programming interfaces). When ANs compose, the hosted registries need to compose. Registry composition is a sub-process of network composition. It provides seamless and autonomous access to the content of all of the registries in the composed network. This thesis proposes a new architecture for registry composition in ANs. This overall architecture is made up of four components: interface interworking, data interworking, negotiation and signaling. Interface interworking enables dynamic intercommunication between registries with heterogeneous interfaces. Data interworking involves dynamically overcoming data heterogeneity (e.g. format and granularity). Interface and data interworking go beyond static interworking using gateways, as done today. The negotiation component allows the negotiation of the composition agreement. Signaling coordinates and regulates the negotiation and the execution of the composition agreement. Requirements are derived and related work is reviewed. We propose a new functional entity and a new procedure to orchestrate the composition process. We also propose a new architecture for interface interworking, based on a peer to peer overlay network. We have built a proof-of-concept prototype. The interface-interworking component is used as the basis of our new architecture to data interworking. This architecture reuses mechanisms and algorithms from the federated data base area. The thesis proposes as well a new architecture for on-line negotiation. The architecture includes a template for composition agreement proposals, and a negotiation protocol that was validated using SPIN. A new signaling framework is also proposed. It is based on the IETF Next Step in Signaling (NSIS) framework and was validated using OPNET. Most of these contributions are now part of the AN concept, as defined by the European Union's Sixth Framework Progra

    Middleware for Internet of Things: A Survey

    Get PDF

    Distributed coordination in unstructured intelligent agent societies

    Get PDF
    Current research on multi-agent coordination and distributed problem solving is still not robust or scalable enough to build large real-world collaborative agent societies because it relies on either centralised components with full knowledge of the domain or pre-defined social structures. Our approach allows overcoming these limitations by using a generic coordination framework for distributed problem solving on totally unstructured environments that enables each agent to decompose problems into sub-problems, identify those which it can solve and search for other agents to delegate the sub-problems for which it does not have the necessary knowledge or resources. Regarding the problem decomposition process, we have developed two distributed versions of the Graphplan planning algorithm. To allow an agent to discover other agents with the necessary skills for dealing with unsolved sub-problems, we have created two peer-to-peer search algorithms that build and maintain a semantic overlay network that connects agents relying on dependency relationships, which improves future searches. Our approach was evaluated using two different scenarios, which allowed us to conclude that it is efficient, scalable and robust, allowing the coordinated distributed solving of complex problems in unstructured environments without the unacceptable assumptions of alternative approaches developed thus far.As abordagens actuais de coordenação multi-agente e resolução distribuída de problemas não são suficientemente robustas ou escaláveis para criar sociedades de agentes colaborativos uma vez que assentam ou em componentes centralizados com total conhecimento do domínio ou em estruturas sociais pré-definidas. A nossa abordagem permite superar estas limitações através da utilização de um algoritmo genérico de coordenação de resolução distribuída de problemas em ambientes totalmente não estruturados, o qual permite a cada agente decompor problemas em sub-problemas, identificar aqueles que consegue resolver e procurar outros agentes a quem delegar os subproblemas para os quais não tem conhecimento suficiente. Para a decomposição de problemas, criámos duas versões distribuídas do algoritmo de planeamento Graphplan. Para procurar os agentes com as capacidades necessárias à resolução das partes não resolvidas do problema, criámos dois algoritmos de procura que constroem e mantêm uma camada de rede semântica que relaciona agentes dependentes com o fim de facilitar as procuras. A nossa abordagem foi avaliada em dois cenários diferentes, o que nos permitiu concluir que ´e uma abordagem eficiente, escalável e robusta, possibilitando a resolução distribuída e coordenada de problemas complexos em ambientes não estruturados sem os pressupostos inaceitáveis em que assentava o trabalho feito até agora

    A service based approach for future internet architectures

    Get PDF
    Doktorgradsavhandling i informasjons- og kommunikasjonsteknologi, Universitetet i Agder, Grimstad, 201

    Service Oriented Mobile Computing

    Get PDF
    La diffusione di concetti quali Pervasive e Mobile Computing introduce nell'ambito dei sistemi distribuiti due aspetti fondamentali: la mobilità dell'utente e l'interazione con l'ambiente circostante, favorite anche dal crescente utilizzo di dispositivi mobili dotati di connettività wireless come prodotti di consumo. Per estendere le funzionalità introdotte nell'ambito dei sistemi distribuiti dalle Architetture Orientate ai Servizi (SOA) e dal paradigma peer-to-peer anche a dispositivi dalle risorse limitate (in termini di capacità computazionale, memoria e batteria), è necessario disporre di un middleware leggero e progettato tenendo in considerazione tali caratteristiche. In questa tesi viene presentato NAM (Networked Autonomic Machine), un formalismo che descrive in modo esaustivo un sistema di questo tipo; si tratta di un modello teorico per la definizione di entità hardware e software in grado di condividere le proprie risorse in modo completamente altruistico. In particolare, il lavoro si concentra sulla definizione e gestione di un determinato tipo di risorse, i servizi, che possono essere offerti ed utilizzati da dispositivi mobili, mediante meccanismi di composizione e migrazione. NSAM (Networked Service-oriented Autonomic Machine) è una specializzazione di NAM per la condivisione di servizi in una rete peer-to-peer, ed è basato su tre concetti fondamentali: schemi di overlay, composizione dinamica di servizi e auto-configurazione dei peer. Nella tesi vengono presentate anche diverse attività applicative, che fanno riferimento all'utilizzo di due middleware sviluppati dal gruppo di Sistemi Distribuiti (DSG) dell'Università di Parma: SP2A (Service Oriented Peer-to-peer Architecture), framework per lo sviluppo di applicazioni distribuite attraverso la condivisione di risorse in una rete peer-to-peer, e Jxta-Soap che consente la condivisione di Web Services in una rete peer-to-peer JXTA. Le applicazioni realizzate spaziano dall'ambito della logistica, alla creazione di comunità per l'e-learning, all'Ambient Intelligence alla gestione delle emergenze, ed hanno come denominatore comune la creazione di reti eterogenee e la condivisione di risorse anche tra dispositivi mobili. Viene inoltre messo in evidenza come tali applicazioni possano essere ottimizzate mediante l'introduzione del framework NAM descritto, per consentire la condivisione di diversi tipi di risorse in modo efficiente e proattivo

    CHOReOS Middleware Specification (D3.1)

    Get PDF
    This deliverable specifies the main concepts of the CHOReOS middleware architecture. Starting from the Future Internet (FI) challenges for scalability, heterogeneity, mobility, awareness, and adaptation that have been investigated in prior work done in WP1, we introduce the aforementioned concepts to deal with the requirements derived from the FI challenges. In particular, we propose an extensible and scalable service discovery approach for the organization and discovery of services that relies on multiple service discovery protocols. Moreover, we introduce an extensible and scalable approach, based on the service bus paradigm, for service access that features the integration and adaptation of multiple interaction protocols. Furthermore, we propose solutions that enable the execution of FI service compositions that range from compositions of choreographed services, developed according to the CHOReOS development process, to massive compositions of things. Finally, we detail the Cloud & Grid middleware facilities that support the overall middleware and the choreographies that are built on it, via a unified API that provides access to multiple cloud infrastructures (e.g., Amazon EC2, HP Open Cirrus, private clouds)

    Designing and experimenting coordination primitives for service oriented computing

    Get PDF
    Service Oriented Architecture (SOA) and Web Services (WS) are becoming a widely accepted device for designing and implementing distributed systems. SOAs have given an important contribution to software engineering providing a model where applications are defined by assembling together certain functionalities, called services, possibly provided by remote suppliers. The characterizing issue of SOAs consists of defining common principles to make services accessible and usable regardless their execution context. Nevertheless, the architectural specification is far from giving a complete reference application model on which systems should rely on. The specification just includes principles for achieving interoperability and reusability of services; other aspects are left to the implementing platforms. As a consequence, it is understood how services are specified in isolation and how their functionalities are made available to the requesters, but the definition of languages for describing service composition are far from being widely accepted and reveals to be an impelling challenge. In the last years, several solutions have been proposed for describing aggregated services. However, they often lack a formally defined semantics. Moreover, these solutions are often specific for a platform (e.g. WSs) and are difficult to adapt to other platforms since they rely on low level assumptions that are out of the SOA specifications. This thesis aims at providing new methodologies for implementing the coordination of services. Our framework proposes to be flexible enough to support high level languages and to provide reliable tools for testing correctness of implementation. Our approach relies on a formal model that takes the form of a process calculus specifically designed to deal with services and their coordination. The process calculus has been the main tool driving the specification issues as well the implementation issues. Indeed, it acts as a bridge between the high level specification language and the run-time environment. A distinguished feature of our proposal is that our formal model, i.e. the process calculus, describes distributed processes relying on an event notification mechanism as machinery for interactions. Services are represented by certain components that embody local computations and react to changes of the overall environment in which they are involved. The adoption of event notification results particularly fashionable for tackling service coordination. The principles studied at specification level are from one side understood within a theoretical framework that provides instruments for checking correctness of interaction policies and from the other side offers the core model for implementing and experimenting a programming middleware

    An interoperability framework for pervasive computing systems

    Full text link
    Communication and interaction between smart devices is the foundation for pervasive computing and the Internet of Things. Pervasive platforms, that support developers in building new services and applications, have been extensively researched in the past. Nowadays, a multitude of heterogeneous pervasive platforms exist. In real-world deployments, this leads to the formation of platform-specific silos. Therefore, the need for interoperability between such platforms arises. This thesis presents a framework which addresses all elaborated issues preventing co-operation between different platforms and allows for extension and customisation of different aspects, including platforms and transformation mechanisms. The framework bases on uniform abstractions that support translations of different features. The transformation model provides an automatic as well as a manual transformation mechanism. For evaluation, a prototype is implemented and assessed, providing support for six distinct platforms. Particularly, the framework’s feasibility is demonstrated with three realistic scenario implementations, an effort evaluation, and a cost evaluation

    Engineering Self-Adaptive Collective Processes for Cyber-Physical Ecosystems

    Get PDF
    The pervasiveness of computing and networking is creating significant opportunities for building valuable socio-technical systems. However, the scale, density, heterogeneity, interdependence, and QoS constraints of many target systems pose severe operational and engineering challenges. Beyond individual smart devices, cyber-physical collectives can provide services or solve complex problems by leveraging a “system effect” while coordinating and adapting to context or environment change. Understanding and building systems exhibiting collective intelligence and autonomic capabilities represent a prominent research goal, partly covered, e.g., by the field of collective adaptive systems. Therefore, drawing inspiration from and building on the long-time research activity on coordination, multi-agent systems, autonomic/self-* systems, spatial computing, and especially on the recent aggregate computing paradigm, this thesis investigates concepts, methods, and tools for the engineering of possibly large-scale, heterogeneous ensembles of situated components that should be able to operate, adapt and self-organise in a decentralised fashion. The primary contribution of this thesis consists of four main parts. First, we define and implement an aggregate programming language (ScaFi), internal to the mainstream Scala programming language, for describing collective adaptive behaviour, based on field calculi. Second, we conceive of a “dynamic collective computation” abstraction, also called aggregate process, formalised by an extension to the field calculus, and implemented in ScaFi. Third, we characterise and provide a proof-of-concept implementation of a middleware for aggregate computing that enables the development of aggregate systems according to multiple architectural styles. Fourth, we apply and evaluate aggregate computing techniques to edge computing scenarios, and characterise a design pattern, called Self-organising Coordination Regions (SCR), that supports adjustable, decentralised decision-making and activity in dynamic environments.Con lo sviluppo di informatica e intelligenza artificiale, la diffusione pervasiva di device computazionali e la crescente interconnessione tra elementi fisici e digitali, emergono innumerevoli opportunità per la costruzione di sistemi socio-tecnici di nuova generazione. Tuttavia, l'ingegneria di tali sistemi presenta notevoli sfide, data la loro complessità—si pensi ai livelli, scale, eterogeneità, e interdipendenze coinvolti. Oltre a dispositivi smart individuali, collettivi cyber-fisici possono fornire servizi o risolvere problemi complessi con un “effetto sistema” che emerge dalla coordinazione e l'adattamento di componenti fra loro, l'ambiente e il contesto. Comprendere e costruire sistemi in grado di esibire intelligenza collettiva e capacità autonomiche è un importante problema di ricerca studiato, ad esempio, nel campo dei sistemi collettivi adattativi. Perciò, traendo ispirazione e partendo dall'attività di ricerca su coordinazione, sistemi multiagente e self-*, modelli di computazione spazio-temporali e, specialmente, sul recente paradigma di programmazione aggregata, questa tesi tratta concetti, metodi, e strumenti per l'ingegneria di ensemble di elementi situati eterogenei che devono essere in grado di lavorare, adattarsi, e auto-organizzarsi in modo decentralizzato. Il contributo di questa tesi consiste in quattro parti principali. In primo luogo, viene definito e implementato un linguaggio di programmazione aggregata (ScaFi), interno al linguaggio Scala, per descrivere comportamenti collettivi e adattativi secondo l'approccio dei campi computazionali. In secondo luogo, si propone e caratterizza l'astrazione di processo aggregato per rappresentare computazioni collettive dinamiche concorrenti, formalizzata come estensione al field calculus e implementata in ScaFi. Inoltre, si analizza e implementa un prototipo di middleware per sistemi aggregati, in grado di supportare più stili architetturali. Infine, si applicano e valutano tecniche di programmazione aggregata in scenari di edge computing, e si propone un pattern, Self-Organising Coordination Regions, per supportare, in modo decentralizzato, attività decisionali e di regolazione in ambienti dinamici

    Self-managed Workflows for Cyber-physical Systems

    Get PDF
    Workflows are a well-established concept for describing business logics and processes in web-based applications and enterprise application integration scenarios on an abstract implementation-agnostic level. Applying Business Process Management (BPM) technologies to increase autonomy and automate sequences of activities in Cyber-physical Systems (CPS) promises various advantages including a higher flexibility and simplified programming, a more efficient resource usage, and an easier integration and orchestration of CPS devices. However, traditional BPM notations and engines have not been designed to be used in the context of CPS, which raises new research questions occurring with the close coupling of the virtual and physical worlds. Among these challenges are the interaction with complex compounds of heterogeneous sensors, actuators, things and humans; the detection and handling of errors in the physical world; and the synchronization of the cyber-physical process execution models. Novel factors related to the interaction with the physical world including real world obstacles, inconsistencies and inaccuracies may jeopardize the successful execution of workflows in CPS and may lead to unanticipated situations. This thesis investigates properties and requirements of CPS relevant for the introduction of BPM technologies into cyber-physical domains. We discuss existing BPM systems and related work regarding the integration of sensors and actuators into workflows, the development of a Workflow Management System (WfMS) for CPS, and the synchronization of the virtual and physical process execution as part of self-* capabilities for WfMSes. Based on the identified research gap, we present concepts and prototypes regarding the development of a CPS WFMS w.r.t. all phases of the BPM lifecycle. First, we introduce a CPS workflow notation that supports the modelling of the interaction of complex sensors, actuators, humans, dynamic services and WfMSes on the business process level. In addition, the effects of the workflow execution can be specified in the form of goals defining success and error criteria for the execution of individual process steps. Along with that, we introduce the notion of Cyber-physical Consistency. Following, we present a system architecture for a corresponding WfMS (PROtEUS) to execute the modelled processes-also in distributed execution settings and with a focus on interactive process management. Subsequently, the integration of a cyber-physical feedback loop to increase resilience of the process execution at runtime is discussed. Within this MAPE-K loop, sensor and context data are related to the effects of the process execution, deviations from expected behaviour are detected, and compensations are planned and executed. The execution of this feedback loop can be scaled depending on the required level of precision and consistency. Our implementation of the MAPE-K loop proves to be a general framework for adding self-* capabilities to WfMSes. The evaluation of our concepts within a smart home case study shows expected behaviour, reasonable execution times, reduced error rates and high coverage of the identified requirements, which makes our CPS~WfMS a suitable system for introducing workflows on top of systems, devices, things and applications of CPS.:1. Introduction 15 1.1. Motivation 15 1.2. Research Issues 17 1.3. Scope & Contributions 19 1.4. Structure of the Thesis 20 2. Workflows and Cyber-physical Systems 21 2.1. Introduction 21 2.2. Two Motivating Examples 21 2.3. Business Process Management and Workflow Technologies 23 2.4. Cyber-physical Systems 31 2.5. Workflows in CPS 38 2.6. Requirements 42 3. Related Work 45 3.1. Introduction 45 3.2. Existing BPM Systems in Industry and Academia 45 3.3. Modelling of CPS Workflows 49 3.4. CPS Workflow Systems 53 3.5. Cyber-physical Synchronization 58 3.6. Self-* for BPM Systems 63 3.7. Retrofitting Frameworks for WfMSes 69 3.8. Conclusion & Deficits 71 4. Modelling of Cyber-physical Workflows with Consistency Style Sheets 75 4.1. Introduction 75 4.2. Workflow Metamodel 76 4.3. Knowledge Base 87 4.4. Dynamic Services 92 4.5. CPS-related Workflow Effects 94 4.6. Cyber-physical Consistency 100 4.7. Consistency Style Sheets 105 4.8. Tools for Modelling of CPS Workflows 106 4.9. Compatibility with Existing Business Process Notations 111 5. Architecture of a WfMS for Distributed CPS Workflows 115 5.1. Introduction 115 5.2. PROtEUS Process Execution System 116 5.3. Internet of Things Middleware 124 5.4. Dynamic Service Selection via Semantic Access Layer 125 5.5. Process Distribution 126 5.6. Ubiquitous Human Interaction 130 5.7. Towards a CPS WfMS Reference Architecture for Other Domains 137 6. Scalable Execution of Self-managed CPS Workflows 141 6.1. Introduction 141 6.2. MAPE-K Control Loops for Autonomous Workflows 141 6.3. Feedback Loop for Cyber-physical Consistency 148 6.4. Feedback Loop for Distributed Workflows 152 6.5. Consistency Levels, Scalability and Scalable Consistency 157 6.6. Self-managed Workflows 158 6.7. Adaptations and Meta-adaptations 159 6.8. Multiple Feedback Loops and Process Instances 160 6.9. Transactions and ACID for CPS Workflows 161 6.10. Runtime View on Cyber-physical Synchronization for Workflows 162 6.11. Applicability of Workflow Feedback Loops to other CPS Domains 164 6.12. A Retrofitting Framework for Self-managed CPS WfMSes 165 7. Evaluation 171 7.1. Introduction 171 7.2. Hardware and Software 171 7.3. PROtEUS Base System 174 7.4. PROtEUS with Feedback Service 182 7.5. Feedback Service with Legacy WfMSes 213 7.6. Qualitative Discussion of Requirements and Additional CPS Aspects 217 7.7. Comparison with Related Work 232 7.8. Conclusion 234 8. Summary and Future Work 237 8.1. Summary and Conclusion 237 8.2. Advances of this Thesis 240 8.3. Contributions to the Research Area 242 8.4. Relevance 243 8.5. Open Questions 245 8.6. Future Work 247 Bibliography 249 Acronyms 277 List of Figures 281 List of Tables 285 List of Listings 287 Appendices 28
    corecore