
Alma Mater Studiorum · Università di Bologna

DISI – Dipartimento di Informatica: Scienza e Ingegneria

Dottorato di Ricerca in
Computer Science and Engineering

Ciclo XXXII

Settore Scientifico Disciplinare: ING-INF/05
Settore Concorsuale: 09/H1

Engineering
Self-Adaptive Collective Processes
for Cyber-Physical Ecosystems

Candidato:

Dott. Roberto Casadei

Supervisore:
Chiar.mo Prof. Ing. MIRKO VIROLI

Coordinatore Dottorato:
Chiar.mo Prof. DAVIDE SANGIORGI

Esame finale anno 2020

Contents

Abstract (italiano) iii

Abstract v

1 Introduction 1

1.1 Research Context and Motivation 1

1.2 Overview and Contribution . 3

1.2.1 General problem statement 3

1.2.2 Specific problem statement 4

1.2.3 Contributions . 4

References . 5

1.3 About This Thesis . 5

1.4 List of Publications . 6

I Background and Motivation 11

2 Perspectives on Collective Adaptive Systems 13

2.1 (Complex) Systems . 16

2.1.1 Cyber-physical systems . 18

2.2 Multi-Agent Systems . 19

2.2.1 Main aspects in MASs . 20

2.3 Self-* Systems . 23

2.3.1 Autonomic computing . 23

2.3.2 Self-* properties . 23

2.4 Pervasive and Ubiquitous Computing 26

2.4.1 Ambient intelligence . 27

CONTENTS

2.4.2 Context-aware computing 28

2.5 Collective Computing . 29

2.5.1 Computational collective and swarm intelligence 29

2.5.2 Collective adaptive systems 30

2.6 Final Remarks . 32

References . 33

3 Distributed Computing and Coordination 41

3.1 Concurrency Theory, Processes, and Services 43

3.2 Shared Dataspace Coordination . 45

3.2.1 Generative communication 46

3.2.2 Programmable coordination rules 46

3.3 Distributed coordination . 47

3.4 Self-organising coordination . 49

3.4.1 Field-based coordination . 50

3.5 Final Remarks . 51

References . 51

4 Spatial and Collective Adaptive Computing 57

4.1 Spatial Computing Approaches . 59

4.1.1 Spatial pattern languages 60

4.1.2 General purpose spatial computing languages 61

4.2 Network Abstraction and Space-Oriented Macroprogramming Ap-

proaches . 62

4.3 Collective Adaptive Computing Approaches 66

4.4 Final Remarks . 68

References . 69

5 Aggregate Computing 75

5.1 Field Calculus . 76

5.1.1 Basic calculus . 76

5.1.2 Operational semantics, typing and basic properties 80

CONTENTS

5.1.3 Behavioural properties . 82

5.1.4 Language extension: the higher-order field calculus 84

5.2 From Field Calculus to Aggregate Computing 85

5.2.1 Protelis: a DSL for field calculus 86

5.2.2 Aggregate Programming . 88

5.3 Final Remarks . 92

References . 92

6 Complex Infrastructures and Deployments 97

6.1 Fundamentals . 98

6.1.1 Virtualisation . 98

6.1.2 Management platforms . 99

6.2 Cloud Computing . 100

6.3 Beyond Cloud Computing: Edge and Fog Computing 102

6.4 Application Development and Deployment on Complex Infrastructure105

6.4.1 Microservices . 105

6.4.2 Cloud-native computing . 106

6.4.3 Elasticity . 106

6.5 Application Development and Deployment for Ad-Hoc Systems . . . 107

6.6 Final Remarks . 107

References . 108

II Contribution 113

7 ScaFi: Aggregate Programming in Scala 115

7.1 Motivation and Problem . 116

7.1.1 Why ScaFi . 116

7.1.2 Embedding field computations in a host language 119

7.2 Computational Fields in Scala . 120

7.2.1 Constructs . 121

7.2.2 Examples . 124

CONTENTS

7.3 FScaFi Calculus: Syntax and Semantics 130

7.3.1 Syntax . 130

7.3.2 Typing . 134

7.3.3 Operational semantics: device semantics 137

7.3.4 Operational semantics: network semantics 146

7.4 Properties and Relation with HFC 149

7.4.1 Type Preservation in FScaFi 150

7.4.2 HFC, HFC′ and Aligned FScaFi 151

7.4.3 FScaFi expressiveness . 159

7.5 ScaFi: Library . 163

7.5.1 Fundamental building blocks 163

7.5.2 Proof of concept: library support for explicit fields 168

7.6 Case Study . 171

7.6.1 Computational trust for attack-resistant gradients 171

7.7 Final Remarks . 183

References . 183

8 Dynamic Collective Computing with Aggregate Processes 189

8.1 Aggregate Processes: Introduction 190

8.1.1 Motivation . 190

8.1.2 Requirements . 192

8.1.3 Features of aggregate processes 192

8.2 Formalisation . 193

8.2.1 On “multiple alignments” 193

8.2.2 The spawn Construct Extension 196

8.3 Aggregate Process Implementation in ScaFi 197

8.3.1 Alignment and dynamic field expressions: the align construct198

8.3.2 Aggregate processes in ScaFi 201

8.3.3 Behind-the-scenes: spawn implementation 202

8.4 Programming with Aggregate Processes: Techniques and Patterns . 203

CONTENTS

8.4.1 Process definition . 203

8.4.2 Process generation (lifecycle management 1/2) 204

8.4.3 Process expansion/shrinking (boundary management) 207

8.4.4 Process termination (lifecycle management 2/2) 208

8.4.5 Process abstraction . 210

8.4.6 Process interaction . 211

8.4.7 More expressive process definitions 212

8.5 Evaluation . 214

8.5.1 Case study: opportunistic messaging 214

8.5.2 Case study: drone swarm reconnaissance 217

8.6 Final Remarks . 220

References . 222

9 Aggregate Computing Platforms 225

9.1 Analysis of Aggregate Computing Platforms 226

9.1.1 Preliminary definitions: main entities and artefacts 226

9.1.2 Logical analysis . 228

9.1.3 Analysis: aggregate execution 228

9.2 ScaFi Platform: Design and Implementation 230

9.2.1 Situated actors abstraction 230

9.2.2 Architectural styles . 233

9.3 Final Remarks . 239

References . 239

10 Self-Organising Coordination Regions 243

10.1 Motivation . 245

10.1.1 Need for design patterns for self-* systems 245

10.1.2 Context . 245

10.1.3 Problem and forces . 246

10.1.4 Basic patterns and abstractions 247

10.1.5 Related patterns . 248

CONTENTS

10.1.6 Known Uses . 249

10.2 SCR Pattern Description . 252

10.2.1 Structure and participants 252

10.2.2 Dynamics and collaborations 253

10.2.3 Variants and extensions . 255

10.2.4 Applicability . 256

10.2.5 Consequences . 257

10.2.6 Implementation . 257

10.2.7 Sample code . 259

10.3 Evaluation . 260

10.3.1 Case study #1: dynamic area management 260

10.3.2 Case study #2: situated problem solving 265

10.3.3 Case study #3: coordinating edge computations 275

10.4 Final Remarks . 284

References . 285

11 Wrap Up 293

11.1 Conclusion . 293

11.1.1 Discussion . 294

11.2 Future Work . 296

List of Figures

2.1 Collective adaptive systems research and related fields. 15

2.2 Self-* properties. 23

3.1 Coordination is the main theme of distributed systems. 43

3.2 From coordination to aggregate computing. 44

4.1 From spatial computing and CASs to aggregate computing 58

5.1 Abstract syntax of the field calculus, as adapted from [Vir+18] . . . 77

5.2 Example field calculus code . 79

5.3 Example Protelis code showcasing a sampler of language features. . 87

5.4 Aggregate programming abstraction layers. 90

7.1 Gradient field snapshot. 128

7.2 FScaFi syntax. 131

7.3 FScaFi type rules. 135

7.4 FScaFi type schemes for built-ins. 136

7.5 FScaFi big-step operational semantics for expression evaluation. . 140

7.6 FScaFi big-step operational semantics: auxiliary rules. 141

7.7 Small-step operational semantics for network evolution. 147

7.8 Relationship between FScaFi, HFC, and their fragments. 149

7.9 Syntax of programs, values and types of HFC. 152

7.10 Bidirectional translation between HFC and FScaFi. 153

7.11 Hindley-Milner typing for Aligned FScaFi. 156

7.12 Syntax of a self-stabilising fragment of field calculus expressions. . . 160

7.13 Basic aggregate building blocks. 164

7.14 Stabilised field in a ScaFi simulation for S. 167

LIST OF FIGURES

7.15 Snapshots of a ScaFi simulation for timer. 169

7.16 ScaFi scaffolding for trust mechanisms based on beta distribution. 176

7.17 ScaFi implementation of the plain trust algorithm. 177

7.18 ScaFi implementation of the recommendations-based trust algorithm.178

7.19 Attack-resistant channel simulation. 181

7.20 Trust-based channel evaluation. 182

8.1 Aggregate processes for IoT systems. 191

8.2 FC syntax and semantics, extended with spawn. 194

8.3 Aggregate computing engineering stack extended with processes. . . 197

8.4 Simple implementation of spawn in ScaFi. 202

8.5 The role of statuses in statusSpawn. 211

8.6 Evaluation of the opportunistic chat algorithms. 218

8.7 Implementation of the gossip algorithms under comparison. 219

8.8 Snapshot of the UAV swarm case study. 220

8.9 Evaluation of gossip algorithms in the UAV scenario. 221

9.1 Analysis of aggregate systems: logical vs. physical elements. 227

9.2 Aggregate applications: high-level perspective. 229

9.3 Conceptual model of a device actor in ScaFi. 234

9.4 ScaFi platform: peer-to-peer style. 235

9.5 ScaFi platform: server mediating interactions. 235

9.6 Setup of a node in the P2P platform style. 236

9.7 Setup of a node with server mediating interactions. 237

9.8 ScaFi platform: server mediating computations. 237

9.9 ScaFi platform: cloud and hybrid styles. 238

10.1 SCR: structure. 251

10.2 SCR: phases. 254

10.3 SCR: dynamics. 255

10.4 Snapshot of the dynamic area management simulation. 260

10.5 Evaluation of the backoff parameter. 263

10.6 System correctness with and without feedback system. 264

10.7 System resilience to disruption. 265

10.8 Problem-solving ecosystem. 268

10.9 Aggregate program for decentralised situated problem solving. . . . 269

10.10Snapshot of the problem solving simulation scenario. 272

10.11Evaluation of the situated problem solving ecosystem. 273

10.12Self-organising edge-clouds: design overview. 277

10.13Aggregate specification for the edge computing ecosystem. 282

10.14Edge resource coordination: evaluation graphs. 284

List of Tables

10.1 SCR: specialised terminology for various contexts. 253

10.2 Dynamic area management: free variables. 261

10.3 Dynamic area management: measures for the case study. 262

10.4 Characteristics of the edge-cloud coordination solution. 283

Acknowledgements

To my family, for their unconditional support

To my brothers Stefano and Marco, for their example

To my beloved fiancée Valentina, for being my side in this and other journeys

I wish to express my sincere gratitude to all the great researchers that have

shared with me their time and thoughts. I especially need to mention the compo-

nents of the software engineering research group in Cesena, that, since my Bache-

lor’s studies, had a great influence on my formation as an engineer and scientist.

These, in particular, include Proff. Antonio Natali, Andrea Omicini, Alessandro

Ricci, and Mirko Viroli. They have been truly enlightening and inspirational, and

I am grateful to them. In particular, Antonio – the ultimate maestro – made

me understand engineering and the very fundamental methodological principles

of computer science; his attitude and words have been illuminating and game

changer. Andrea showed me the art of systematic conceptual development; more-

over, his seminal, spontaneous references to the behind-the-scenes of University

shed the light on the potential directions that a motivated, ambitious graduate

student like I was could pursue. Alessandro and Mirko, in addition to having been

my BEng and MEng thesis supervisors, respectively, showed me different stances

to research. I must doubly thank Mirko, for his precious guidance and teachings

(at every level) in my PhD activity. A special thanks also goes to my colleague and

friend Danilo Pianini, for our tight teamwork and interactions. I also cannot refrain

from thanking Giorgio Audrito, Ferruccio Damiani, Jacob Beal, Alessandro Aldini,

Claudio Savaglio, Giancarlo Fortino, Simon Dobson, Schahram Dustdar, Christos

Tsigkanos, Stefano Mariani, Giovanni Ciatto, Andrea Roli, Michele Braccini, An-

tonio Magnani—every one of them gave me something (teachings, discussions,

chats, examples, ideas) along this path.

Abstract (italiano)

Con lo sviluppo di informatica e intelligenza artificiale, la diffusione pervasiva di de-

vice computazionali e la crescente interconnessione tra elementi fisici e digitali, emergono

innumerevoli opportunità per la costruzione di sistemi socio-tecnici di nuova generazione.

Tuttavia, l’ingegneria di tali sistemi presenta notevoli sfide, data la loro complessità—si

pensi ai livelli, scale, eterogeneità, e interdipendenze coinvolti. Oltre a dispositivi smart

individuali, collettivi cyber-fisici possono fornire servizi o risolvere problemi complessi

con un “effetto sistema” che emerge dalla coordinazione e l’adattamento di componenti

fra loro, l’ambiente e il contesto. Comprendere e costruire sistemi in grado di esibire

intelligenza collettiva e capacità autonomiche è un importante problema di ricerca stu-

diato, ad esempio, nel campo dei sistemi collettivi adattativi. Perciò, traendo ispirazione

e partendo dall’attività di ricerca su coordinazione, sistemi multiagente e self-*, modelli

di computazione spazio-temporali e, specialmente, sul recente paradigma di program-

mazione aggregata, questa tesi tratta concetti, metodi, e strumenti per l’ingegneria di

ensemble di elementi situati eterogenei che devono essere in grado di lavorare, adat-

tarsi, e auto-organizzarsi in modo decentralizzato. Il contributo di questa tesi consiste

in quattro parti principali. In primo luogo, viene definito e implementato un linguag-

gio di programmazione aggregata (ScaFi), interno al linguaggio Scala, per descrivere

comportamenti collettivi e adattativi secondo l’approccio dei campi computazionali. In

secondo luogo, si propone e caratterizza l’astrazione di processo aggregato per rappre-

sentare computazioni collettive dinamiche concorrenti, formalizzata come estensione al

field calculus e implementata in ScaFi. Inoltre, si analizza e implementa un prototipo di

middleware per sistemi aggregati, in grado di supportare più stili architetturali. Infine,

si applicano e valutano tecniche di programmazione aggregata in scenari di edge com-

puting, e si propone un pattern, Self-Organising Coordination Regions, per supportare,

in modo decentralizzato, attività decisionali e di regolazione in ambienti dinamici.

Parole chiave — intelligenza collettiva computazionale ; processi collettivi ; sistemi

multiagente; sistemi cyber-fisici; auto-adattatività, auto-organizzazione ; coordinazione.

iii

Abstract

The pervasiveness of computing and networking is creating significant opportunities

for building valuable socio-technical systems. However, the scale, density, heterogeneity,

interdependence, and QoS constraints of many target systems pose severe operational

and engineering challenges. Beyond individual smart devices, cyber-physical collectives

can provide services or solve complex problems by leveraging a “system effect” while co-

ordinating and adapting to context or environment change. Understanding and building

systems exhibiting collective intelligence and autonomic capabilities represent a promi-

nent research goal, partly covered, e.g., by the field of collective adaptive systems. There-

fore, drawing inspiration from and building on the long-time research activity on coordi-

nation, multi-agent systems, autonomic/self-* systems, spatial computing, and especially

on the recent aggregate computing paradigm, this thesis investigates concepts, methods,

and tools for the engineering of possibly large-scale, heterogeneous ensembles of situated

components that should be able to operate, adapt and self-organise in a decentralised

fashion. The primary contribution of this thesis consists of four main parts. First,

we define and implement an aggregate programming language (ScaFi), internal to the

mainstream Scala programming language, for describing collective adaptive behaviour,

based on field calculi. Second, we conceive of a “dynamic collective computation” ab-

straction, also called aggregate process, formalised by an extension to the field calculus,

and implemented in ScaFi. Third, we characterise and provide a proof-of-concept im-

plementation of a middleware for aggregate computing that enables the development

of aggregate systems according to multiple architectural styles. Fourth, we apply and

evaluate aggregate computing techniques to edge computing scenarios, and characterise

a design pattern, called Self-organising Coordination Regions (SCR), that supports ad-

justable, decentralised decision-making and activity in dynamic environments.

Keywords — computational collective intelligence ; collective processes ; multi-agent

systems ; cyber-physical systems ; self-adaptive, self-organising systems ; coordination.

v

Chapter 1

Introduction

Nel mezzo del cammin di nostra vita

mi ritrovai per una selva oscura

ché la diritta via era smarrita

Dante Alighieri · Divina Commedia, Inferno, Canto I

Contents
1.1 Research Context and Motivation 1

1.2 Overview and Contribution . 3

1.2.1 General problem statement 3

1.2.2 Specific problem statement 4

1.2.3 Contributions . 4

References . 5

1.3 About This Thesis . 5

1.4 List of Publications . 6

1.1 Research Context and Motivation

In these years, we are witnessing huge technological advances in ICT (Informa-

tion and Communication Technology), creating disruptions at various levels: the

pervasiveness of computers and connectivity, the establishment of the paradigm

of the cloud/fog/edge computing continuum, the software-defined everything, the

1

CHAPTER 1. INTRODUCTION

culture of devops, the explosion and popularisation of artificial intelligence and ma-

chine learning, the prospective of 5g, etc. Various buzzwords are used to denote

different trends of these fervent times.

The internet of things (IoT) promises to bridge the physical world (of everydayinternet of
things

objects) with the digital world (of computers), hence extending the connectivity

that Internet granted to computers up to just everything (from ourselves to the en-

tities of our environments). Similarly, the field of cyber-physical systems is devotedcyber-
physical
systems to the study of distributed systems involving connected physical and computational

processes (often regulated through feedback loops).

As potentially everything can be seen as a producer or consumer (or both—

i.e., prosumer) of information, the problem of big data – i.e., the volume, velocity,big data

variety, veracity of data – demands for efficiency in the use of computational

power. Therefore, it becomes important to consider where computation is needed

and provided, to avoid large bandwidth usage and latency. Accordingly, the fogfog/edge
computing

and edge computing paradigms aim at providing cloud computing-like functionality

“at the edge of the network”, i.e., in close proximity to where data is generated

or resources are needed, hence supporting real-time computation (by reducing

the latency of communication with respect to remote data centres) and providing

computation and storage where cloud access is not possible.

The inexorable growth in scale, density, smart-ness, and interrelation of ar-

tificial systems is challenging the human ability of anticipating situations, un-

derstanding (the reasons behind) phenomena, and carrying out timely corrective

interventions. This prevision of an exploding complexity is not new. In 2003,

Kephart and Chess already noted that “soon systems will become too massive and

complex for even the most skilled system integrators to install, configure, optimize,

maintain, and merge” and accordingly proposed autonomic computing [KC03]autonomic
computing

as a solution, i.e., a paradigm where “computing systems can manage themselves

given high-level objectives from administrators”. Endowing self-adaptivity and self-

organisation capabilities to artificial systems is challenging, but inspiration can be

taken by looking at how natural systems implement them.

Beyond the realm of technology progress, the general goal of engineering is the

sustainable development of efficient socio-technical systems – i.e., systems made ofsocio-
technical
systems humans and machines operating in some environment – able to effectively provide

2

CHAPTER 1. INTRODUCTION

value. Effectively integrating humans and other physical or artificial entities into

synergetic, collaborative systems is a long-standing (and exciting) issue in engi-

neering. Collective computing, identified by Abowd [Abo16] as the fourth genera- collective
computing

tion in computing (after Weiser’s characterisation of the computing evolution from

mainframe to personal and ubiquitous computing [Wei91]), represents a paradigm

where heterogeneous collectives of humans and artificial components synergically

cooperate to solve complex problems.

1.2 Overview and Contribution

The technological context outlined in Section 1.1 is a source of complexity and

challenges for which traditional engineering approaches seem to fall short. Our

world is made of (possibly very-large scale) networks of (possibly heterogeneous)

artificial and natural elements, situated in one or more environments, which can be

leveraged in order to provide value; to do so, they need to coordinate, self-organise,

self-adapt to change, and so on.

Therefore, this work is mostly concerned with computational collective intelli- computational
collective
intelligencegence, i.e., “the form of intelligence that emerges from the collaboration and com-

petition of many individuals (artificial and/or natural)” [NKC09], or, similarly,

with the field of collective adaptive systems [And+13]. This work draws inspira-

tion from and builds on the long-time research activity on coordination [MC94],

multi-agent systems [Woo09], autonomic/self-* systems [KC03], spatial comput-

ing [Bea+13], collective adaptive systems [And+13], and especially on the recent

aggregate computing paradigm [BPV15].

1.2.1 General problem statement

What concepts, methods, and tools can help in the engineering of com-

putational collective intelligence? The problem comprises the analysis,

design, implementation, evaluation, and deployment of possibly large-

scale, heterogeneous collective adaptive systems, i.e., large ensembles

of situated components that should be able to operate, adapt and self-

organise in a decentralised fashion.

3

CHAPTER 1. INTRODUCTION

1.2.2 Specific problem statement

The state of the art in aggregate computing research and related fields

provides perspectives and challenges related to modelling, develop-

ment, and operation of collective cyber-physical systems. Therefore,

how to model and design heterogeneous situated collectives? How

to compositionally and declaratively specify their self-adaptive, self-

organising behaviour (in particular, providing functionality while dy-

namically exploiting opportunities arising, with “loose assumptions”

on the autonomy, reliability and connectivity of components)? Finally,

how to develop and operate such systems considering modern program-

ming environments and the emerging multi-layer architectures?

1.2.3 Contributions

This thesis illustrates four primary contributions:

1) definition and implementation of a language (ScaFi), embedded into the

mainstream Scala programming language, for describing collective adaptive

behaviour, based on field calculi;

2) conception of a “dynamic collective computation” abstraction, also called

aggregate process, formalised as an extension to the field calculus, and im-

plemented in ScaFi;

3) design and proof-of-concept implementation of a middleware for aggregate

computing, allowing development of aggregate systems according to multiple

architectural styles.

4) application and evaluation of aggregate computing techniques to edge com-

puting scenarios, and proposal of a design pattern, called Self-organising

Coordination Regions (SCR), to support adjustable, decentralised decision-

making and activity in dynamic environments.

Moreover, the reader can also find, as secondary contribution, an up-to-date liter-

ature review on collective adaptive systems and related fields from the perspective

of software engineering.

4

CHAPTER 1. INTRODUCTION

References

[Abo16] Gregory D Abowd. “Beyond weiser: From ubiquitous to collective computing”.

In: Computer 49.1 (2016), pp. 17–23.

[And+13] S Anderson, N Bredeche, AE Eiben, G Kampis, and MR van Steen. “Adaptive

collective systems: herding black sheep”. In: (2013).

[Bea+13] Jacob Beal, Stefan Dulman, Kyle Usbeck, Mirko Viroli, and Nikolaus Correll.

“Organizing the Aggregate: Languages for Spatial Computing”. In: Formal

and Practical Aspects of Domain-Specific Languages: Recent Developments. A

longer version available at: http://arxiv.org/abs/1202.5509. IGI Global,

2013. Chap. 16, pp. 436–501. isbn: 978-1-4666-2092-6. doi: 10.4018/978-1-

4666-2092-6.ch016.

[BPV15] Jacob Beal, Danilo Pianini, and Mirko Viroli. “Aggregate Programming for the

Internet of Things”. In: IEEE Computer 48.9 (2015), pp. 22–30. doi: 10.1109/

MC.2015.261.

[KC03] Jeffrey O Kephart and David M Chess. “The vision of autonomic computing”.

In: Computer 1 (2003), pp. 41–50.

[MC94] Thomas W Malone and Kevin Crowston. “The interdisciplinary study of coor-

dination”. In: ACM Computing Surveys (CSUR) 26.1 (1994), pp. 87–119.

[NKC09] Ngoc Thanh Nguyen, Ryszard Kowalczyk, and Shyi-Ming Chen. “Computa-

tional Collective Intelligence. Semantic Web, Social Networks and Multiagent

Systems”. In: Conference proceedings ICCCI. Springer. 2009, p. 269.

[Wei91] Mark Weiser. “The Computer for the 21 st Century”. In: Scientific american

265.3 (1991), pp. 94–105.

[Woo09] Michael Wooldridge. An introduction to multiagent systems. John Wiley &

Sons, 2009.

1.3 About This Thesis

This thesis is organised as follows.

Chapter 1 provides a brief introduction about the motivation, scope, struc-

ture, and results of this work.

Part I provides some background in terms of perspectives, concepts, and the

state of the art. This background and the main conceptual elements are first out-

lined in Chapter 2. Then, more detail is provided in the areas of distributed co-

5

http://arxiv.org/abs/1202.5509
https://doi.org/10.4018/978-1-4666-2092-6.ch016
https://doi.org/10.4018/978-1-4666-2092-6.ch016
https://doi.org/10.1109/MC.2015.261
https://doi.org/10.1109/MC.2015.261

CHAPTER 1. INTRODUCTION

ordination (Chapter 3), spatial and collective adaptive computing (Chapter 4),

aggregate computing (Chapter 5) – which is the core research thread of this work

–, and infrastructures and deployments for modern system (Chapter 6).

Part II provides the contribution of this thesis, which consists of four main

parts. Chapter 7 covers ScaFi, an aggregate programming language and toolkit,

internal to the Scala programming language. Chapter 8 covers aggregate pro-

cesses, an aggregate computing abstraction for describing dynamic collective com-

putations on dynamic domains of devices. Chapter 9 discusses aggregate comput-

ing platforms, and presents a middleware for building aggregate systems. Chap-

ter 10 shows application of aggregate programming techniques to edge computing

scenarios and presents a design pattern for large-scale, dynamic ecosystems.

Finally, Chapter 11 provides a final discussion, draws conclusions, and

presents perspectives for further work.

1.4 List of Publications

2016

1. Roberto Casadei and Mirko Viroli. “Towards Aggregate Programming in

Scala”. In: First Workshop on Programming Models and Languages for

Distributed Computing. ACM. 2016, p. 5

2. Roberto Casadei, Danilo Pianini, and Mirko Viroli. “Simulating large-scale

aggregate MASs with alchemist and scala”. In: Computer Science and In-

formation Systems (FedCSIS), 2016 Federated Conference on. IEEE. 2016,

pp. 1495–1504

3. Mirko Viroli, Roberto Casadei, and Danilo Pianini. “On execution plat-

forms for large-scale aggregate computing”. In: Proceedings of the 2016

ACM International Joint Conference on Pervasive and Ubiquitous Comput-

ing: Adjunct. ACM. 2016, pp. 1321–1326

4. Giorgio Audrito, Ferruccio Damiani, Mirko Viroli, and Roberto Casadei.

“Run-Time Management of Computation Domains in Field Calculus”. In:

Foundations and Applications of Self* Systems, IEEE International Work-

shops on. IEEE. 2016, pp. 192–197

6

CHAPTER 1. INTRODUCTION

2017

1. Giorgio Audrito, Roberto Casadei, Ferruccio Damiani, and Mirko Viroli.

“Compositional Blocks for Optimal Self-Healing Gradients”. In: Self-

Adaptive and Self-Organising Systems (SASO), IEEE International Confer-

ence on. IEEE. 2017

2. Roberto Casadei, Alessandro Aldini, and Mirko Viroli. “Combining Trust

and Aggregate Computing”. In: Foundations of Coordination Languages

and Self-Adaptative Systems (FOCLASA), IEEE International Workshop

on. IEEE. 2017

2018

1. Roberto Casadei, Giancarlo Fortino, Danilo Pianini, Wilma Russo, Claudio

Savaglio, et al. “Modelling and Simulation of Opportunistic IoT Services with

Aggregate Computing”. In: Future Generation Computer Systems 91 (2018),

pp. 252–262. issn: 0167-739X. doi: 10.1016/j.future.2018.09.005

2. Mirko Viroli, Jacob Beal, Ferruccio Damiani, Giorgio Audrito, Roberto

Casadei, et al. “From Field-Based Coordination to Aggregate Computing”.

In: Proceedings of the 2018 International Conference on Coordination Models

and Languages. 2018, pp. 252–279

3. Roberto Casadei and Mirko Viroli. “Programming Actor-Based Collective

Adaptive Systems”. In: Programming with Actors: State-of-the-Art and

Research Perspectives. Vol. 10789. Lecture Notes in Computer Science.

Springer, 2018, pp. 94–122. doi: 10.1007/978-3-030-00302-9_4

4. Roberto Casadei, Alessandro Aldini, and Mirko Viroli. “Towards Attack-

Resistant Aggregate Computing Using Trust Mechanisms”. In: Science of

Computer Programming 167 (2018), pp. 114–137. doi: 10.1016/j.scico.

2018.07.006

5. Danilo Pianini, Giovanni Ciatto, Roberto Casadei, Stefano Mariani, Mirko

Viroli, et al. “Transparent Protection of Aggregate Computations from

Byzantine Behaviours via Blockchain”. In: Proceedings of the 4th EAI In-

ternational Conference on Smart Objects and Technologies for Social Good.

7

https://doi.org/10.1016/j.future.2018.09.005
https://doi.org/10.1007/978-3-030-00302-9_4
https://doi.org/10.1016/j.scico.2018.07.006
https://doi.org/10.1016/j.scico.2018.07.006

CHAPTER 1. INTRODUCTION

ACM. 2018, pp. 271–276

6. Roberto Casadei and Mirko Viroli. “Collective Abstractions and Platforms

for Large-Scale Self-Adaptive IoT”. in: 2018 IEEE 3rd International Work-

shops on Foundations and Applications of Self* Systems (FAS* W). IEEE.

2018, pp. 106–111

2019

1. Roberto Casadei, Giancarlo Fortino, Danilo Pianini, Wilma Russo, Claudio

Savaglio, et al. “A development approach for collective opportunistic Edge-

of-Things services”. In: Information Sciences 498 (2019), pp. 154–169

2. Mirko Viroli, Jacob Beal, Ferruccio Damiani, Giorgio Audrito, Roberto

Casadei, et al. “From distributed coordination to field calculus and aggregate

computing”. In: Journal of Logical and Algebraic Methods in Programming

(2019), p. 100486. issn: 2352-2208. doi: https://doi.org/10.1016/j.

jlamp.2019.100486

3. Roberto Casadei, Mirko Viroli, Giorgio Audrito, Danilo Pianini, and Fer-

ruccio Damiani. “Aggregate Processes in Field Calculus”. In: Coordina-

tion Models and Languages. Ed. by Hanne Riis Nielson and Emilio Tuosto.

Cham: Springer International Publishing, 2019, pp. 200–217. isbn: 978-3-

030-22397-7

4. Roberto Casadei, Danilo Pianini, Mirko Viroli, and Antonio Natali. “Self-

organising Coordination Regions: A Pattern for Edge Computing”. In: Co-

ordination Models and Languages. Ed. by Hanne Riis Nielson and Emilio

Tuosto. Cham: Springer International Publishing, 2019, pp. 182–199. isbn:

978-3-030-22397-7

5. Roberto Casadei, Christos Tsigkanos, Mirko Viroli, and Schahram Dustdar.

“Engineering Resilient Collaborative Edge-Enabled IoT”. in: 2019 IEEE

International Conference on Services Computing (SCC). 2019, pp. 36–45.

doi: 10.1109/SCC.2019.00019

6. Roberto Casadei and Mirko Viroli. “Coordinating Computation at the Edge:

a Decentralized, Self-Organizing, Spatial Approach”. In: 2019 Fourth Inter-

8

https://doi.org/https://doi.org/10.1016/j.jlamp.2019.100486
https://doi.org/https://doi.org/10.1016/j.jlamp.2019.100486
https://doi.org/10.1109/SCC.2019.00019

CHAPTER 1. INTRODUCTION

national Conference on Fog and Mobile Edge Computing (FMEC). 2019,

pp. 60–67. doi: 10.1109/FMEC.2019.8795355

7. Danilo Pianini, Roberto Casadei, and Mirko Viroli. “Security in Collective

Adaptive Systems: A Roadmap”. In: 2019 IEEE 4th International Work-

shops on Foundations and Applications of Self* Systems (FAS* W). IEEE.

2019, pp. 86–91

8. Roberto Casadei, Danilo Pianini, Guido Salvaneschi, and Mirko Viroli. “On

Context-Orientation in Aggregate Programming”. In: 2019 IEEE 4th In-

ternational Workshops on Foundations and Applications of Self* Systems

(FAS* W). IEEE. 2019, pp. 92–97

Submitted

1. Roberto Casadei, Mirko Viroli, Giorgio Audrito, and Ferruccio Damiani.

“Aggregate Programming in Scala with ScaFi”. In: 2020. Submitted to a

journal.

9

https://doi.org/10.1109/FMEC.2019.8795355

Part I

Background and Motivation

Chapter 2

Towards Collective Adaptive

Computing: Concepts and

Perspectives

In the case of all things which have several parts and in

which the totality is not, as it were, a mere heap, but the

whole is something beside the parts, there is a cause.

Aristotle · Metaphysics

Contents
2.1 (Complex) Systems . 16

2.1.1 Cyber-physical systems 18

2.2 Multi-Agent Systems . 19

2.2.1 Main aspects in MASs 20

2.3 Self-* Systems . 23

2.3.1 Autonomic computing 23

2.3.2 Self-* properties . 23

2.4 Pervasive and Ubiquitous Computing 26

2.4.1 Ambient intelligence 27

2.4.2 Context-aware computing 28

2.5 Collective Computing . 29

2.5.1 Computational collective and swarm intelligence 29

13

CHAPTER 2. PERSPECTIVES ON COLLECTIVE ADAPTIVE SYSTEMS

2.5.2 Collective adaptive systems 30

2.6 Final Remarks . 32

References . 33

In [Abo16], Abowd identifies collective computing as the fourth generation in

computing, after mainframe, personal, and ubiquitous computing as identified by

Weiser in his seminal paper [Wei91]. In this historical and conceptual characterisa-

tion, computing generations are distinguished by the human-computer interaction

patterns they enable, the “canonical devices” involved, and the corresponding op-

portunities in terms of applications:

• 1st generation (1930s) — many operators interact with a single mainframe,

e.g., for scientific computing and data processing;

• 2nd generation (1960s) — each user has one personal computer for carrying

out a wide variety of tasks;

• 3rd generation (1980s) — each user is provided with contextual services by

many computers distributed in the environment (space becomes the device);

• 4th generation (2000s) — many-to-many human-computer ratio fostered by

the synergy of (i) cloud computing, (ii) crowd computing, and (iii) the IoT,

bridging the digital and the physical worlds through networks.

The problem of capturing, computationally, the behaviour of collectives of en-

tities is central to several research threads. At the core, the problem relates the

local with the global, the micro with the macro, individual activity with collective

activity, and to the problem of collective intelligence. To the matter of its charac-

terisation, interaction (and its ruling, i.e., coordination) is obviously crucial, since

it represents the basic mechanism by which parts can communicate with and af-

fect other parts and ultimately the whole. For instance, in Multi-Agent Systems

(MAS) research, agents are often defined as social entities [Cas98], to stress the

importance of interaction both at the individual and the system level and foster

the existence of explicit structures (e.g., enforced through norms or laws) to in-

duce order and interesting properties in the system. In this chapter, various fields

and notions related to systems, collective and adaptive computing are reviewed.

An overview of the relationships between the surveyed perspectives is provided by

Figure 2.1.

14

CHAPTER 2. PERSPECTIVES ON COLLECTIVE ADAPTIVE SYSTEMS

collective
adaptive
systems

(Section 2.5.2)

multi-agent
systems/

coordination
(Section 2.2)

autonomic
computing/

self-*
(Section 2.3)

ubiquitous/
pervasive

computing
(Section 2.4)

swarm/
collective

computing
(Section 2.5)

(complex) (cyber-physical) systems
(Section 2.1)

autonomy environment

self-organisation many computers

Figure 2.1: Collective adaptive systems research and related fields.

15

CHAPTER 2. PERSPECTIVES ON COLLECTIVE ADAPTIVE SYSTEMS

2.1 (Complex) Systems

The notion of a system, i.e., an organised whole made of a set of elements

that interact in a non-trivial way, is now mainstream in science and engineering.

Even though such a notion can be traced back in the ancient past, the paradigm

of systems thinking is a relatively recent achievement in human history, fosteredsystem
thinking

by a set of theories and research threads that started around the mid of the 20th

century, e.g., especially, Bertalanffy’s general systems theory [Ber69], Weiner’s

cybernetics [Wie65; Ash61], artificial intelligence, dynamical systems theory, and

complexity science [Wea48].

The abstract notion of system and its related concepts provide important cogni-

tive tools for scientists and engineers. In the Systems Praxis Framework [Sin+12],

system thinking bridges the foundations, theories, and representations of the inte-

grative systems science with the hard/soft systems approaches to practice [Sil12;

Che00]. Systems science [MK15] (also known as systemics or systems theory) issystems
science

the integrative, interdisciplinary field that studies systems and that fosters a per-

spective through which the world can be seen as a system of systems (SoS) [Mai98]

or a set of networked, interwoven systems [Tom+14].

A system may be defined, as e.g. in [MK15], assystem

a whole made up of interacting or interdependent elements or compo-

nents integrally related among themselves in a way that differs from the

relationships they may have with other elements.

So, as per [MK15], a system can be conceptualised as a bounded object, with con-

crete or conceptual, fuzzy or sharp, variously porous boundaries (e.g., defined as

per some boundary condition), that is organised (with a structure, or persistent

connectivity pattern among components, promoting some function or process) and

involved in the exchange of flows of matter, energy, and information with its envi-

ronment. The notion of environment is especially important in the related notions

of ecology (from Greek oikos, “house” or “environment”, and logos, “study of”) and

ecological system (or ecosystem for short) [CIMV11], i.e., a system of componentsecosystem

that interact with one another and with their surrounding environment—which

consists of living, or biotic (i.e., active), and non-living, or abiotic (i.e., passive)

components.

16

CHAPTER 2. PERSPECTIVES ON COLLECTIVE ADAPTIVE SYSTEMS

A particular class of systems that has been recently given much attention is complex
systems

that of so-called complex systems, i.e., systems that exhibit complexity. Etymo-

logically, complex means “intertwined”, hence pertaining to a situation which is complex vs.
complicated

harder to solve than another one which is simple (i.e., “without any folds”) or com-

plicated (i.e., “with folds”); in other words, whereas simple problems are onefold

and complicated problems can be unfolded, complex problems are metaphorically

knots and need to be untangled in a non-obvious way. According to [BY02],

“Complex Systems” is the new approach to science studying how rela-

tionships between parts give rise to the collective behaviors of a system,

and how the system interacts and forms relationships with its environ-

ment.

Complexity shows the limitations of reductionistic approaches , since complex sys- reductionism

tems have emergent properties which “cannot be understood or predicted simply

by analysing the structure of their components” [VR04]. This is coherent to the

old saying that “a whole is more than the sum of its parts” (Aristotle)—which

also suggests that complexity emerges from non-linear interactions (cf., nonlinear

science [NN95]). In contrast to reductionism, holism (from Greek “holos”, which holism

means “whole”) is the paradigm that focusses on the whole and its internal and

external relationships. Key properties of complex systems such as adaptation and

emergence are discussed in the rest of this chapter.

By definition, understanding, predicting, and controlling complex systems is

not easy, but what about engineering complex systems? The nature of this chal-

lenge is effectively described by Ottino in [Ott04].

The hallmarks of complex systems are adaptation, self-organization and

emergence [...] And this is where the conceptual conflict with engineer-

ing arises. Engineering is not about letting systems be. Engineering is

about making things happen, about convergence, optimum design and

consistency of operation [...] Engineering is about assembling pieces

that work in specific ways— that is, designing complicated systems.

Still, something can be done.

Engineers calculate, and calculation requires a theory, or at least an or-

ganized framework. Could there be laws governing complex systems? If

17

CHAPTER 2. PERSPECTIVES ON COLLECTIVE ADAPTIVE SYSTEMS

by ’laws’ one means something from which consequences can be derived

– as in physics – then the answer may be no. But how about a notch

below, such as discovering relationships with caveats, as in the ideal

gas ’law’, or uncovering power-law relationships? Then the answer is

clearly yes.

2.1.1 Cyber-physical systems

With the pervasiveness of computing (see Section 2.4), systems consisting of

both digital (or cyber) and physical components tend to emerge: these are called

cyber-physical systems (CPS).cyber-
physical
systems Gill defines CPSs [Gil08] as

physical, biological, and engineered systems whose operations are inte-

grated, monitored, and/or controlled by a computational core. Compo-

nents are networked at every scale. Computing is deeply embedded into

every physical component, possibly even into materials. The computa-

tional core in an embedded system, usually demands real-time response,

and is most often distributed.

Indeed, CPSs consist of three main kinds of components [Gun+14]:

1. physical elements — monitored and/or controlled;

2. interfaces — networking components and other intermediaries most notably

including sensors, actuators, analog-to-digital (ADC) and digital-to-analog

(DAC) converters;

3. cyber, embedded devices — processing information and interacting among

them and with their environment;

and are often characterised by distribution, real-time operation, and feedback

loops. Peculiar aspects such as, for instance, irreversibility and non-preemptability

of actuations, must be taken into account and are in many cases sources of chal-

lenges.

18

CHAPTER 2. PERSPECTIVES ON COLLECTIVE ADAPTIVE SYSTEMS

2.2 Multi-Agent Systems

Agents are autonomous computational entities [FG96]. The agent abstraction autonomous
agents

is a powerful one for dealing with the increasing complexity of current and future

software-based systems. It helps to fill the gap created by the very peculiar trends

of this historical period—namely the growing interconnection, pervasiveness of

computing, delegation to machines, human-orientation and intelligence endowed

to artificial systems [Woo09].

Different research fields study or consider the notion of an agent, adopting a

specific viewpoint while retaining some common concepts (fundamentally, auton-

omy and consequential features). In Artificial Intelligence (AI), the focus is on the

development of cognitive intelligent agents, with the problem of representing the

world in a symbolic way and carrying on “intelligent processes” (e.g., reasoning,

planning). In Distributed AI (DAI) [FW99], the agent is seen as a (distributed)

component of a Multi-Agent System (MAS), situated into an environment and multi-agent
system

interacting with the environment as well as with other agents. The aspect of sit-

uatedness is, together with mobility and spatial reasoning/operation, also crucial situatedness

in robotics. By a programming language (PL) perspective, since agents encapsu-

late invocation (i.e., they are autonomous), they can be thought of as the next

step of an evolution from monoliths to modules (encapsulation of behaviour), to

objects (encapsulation of state in addition to behaviour) [Par97; Ode02], to ac-

tive objects/actors (decoupling invocation from execution). By the point of view of

software engineering, agents and related abstractions are considered as useful tools

for the analysis and design of software systems—see also agent-oriented software

engineering (AOSE) [Woo97]. AOSE

The key distinguishing property of agents is autonomy . Autonomy is a com- autonomy

plex, multifaceted notion which essentially refers to the ability of an agent to

govern itself (e.g., its own activities, goals, and other aspects, depending on the

notion and degree of autonomy considered). Autonomy, together with agency (i.e., agency

the ability to act), requires some form of proactivity (i.e., the ability to take the proactivity

initiative) and context-awareness, as well as the ability of (inter)acting in some

environment and society. These characteristics are sufficient for a weak notion of weak vs.
strong agents

agent; strong agents, in addition, are intelligent in the sense that they explicitly

19

CHAPTER 2. PERSPECTIVES ON COLLECTIVE ADAPTIVE SYSTEMS

represent their goals, have mental states, and exhibit cognitive capabilities. The

Belief-Desire-Intention (BDI) model and architecture [RG95] provide a practical

support for a strong notion of agency.

There are two key problems in the use and development of agents: the design

of individual agents (micro level) and the design of a society of agents (macro

level). The focus on the macro level is natural since generally the goal of a MASmicro vs.
macro

is not just putting agents together but possibly increasing individual performance

(optimisation by collaboration) and enabling agents to accomplish tasks that go

beyond individual skills (extending capabilities).

In addition, the notion of environment is considered a fundamental abstractionenvironment

for MASs [WOO07; Vir+07]. According to [Pla+07], the two main functions

of the environment abstraction are coordination (e.g., through mechanisms for

decoupled communication, synchronisation, and overlay structures) and resource

and context management. The Agents&Artefacts (A&A) meta-model [ORV08]

fosters a first-class approach to society and environment design through the notion

of artefact, i.e., passive or reactive entities that mediate agent-to-agent and agent-

environment interactions. Artefacts can support forms of coordination based on

cognitive stigmergy and self-organisation (cf., co-fields—see Chapter 3).

When it comes to coordination in MASs, multiple approaches can be consid-coordination

ered, such as subjective coordination [OO03] via agent-to-agent communication,

objective coordination [OO03] through coordination artefacts [Omi+04], organi-

sation/normative models, and self-organisation.

2.2.1 Main aspects in MASs

Coordination As anticipated, the research line of MAS inherently acknowledges

the key role of coordination [NLJ96a] by focussing on the macro level of systems of

interacting autonomous agents. One key coordination challenge is to make agents

cooperate despite conflicting goals, e.g., through consistent multi-agent planning

and proper negotiation. In [NLJ96b], coordination techniques are classified in four

categories: (i) organisational structuring, (ii) contracting (see, e.g., Smith’s con-

tract net protocol [Smi80]), (iii) multi-agent planning, and (iv) negotiation (e.g.,

based on game theory). The survey in [Cao+13] provides an account of recent

progress in distributed multi-agent coordination in the areas of consensus, forma-

20

CHAPTER 2. PERSPECTIVES ON COLLECTIVE ADAPTIVE SYSTEMS

tion control, optimisation, task assignment, and estimation.

Historically, coordination research begins with simple coordination of parallel

activities, then moves towards increasing intelligence in coordination and distri-

bution into increasingly complex self-organising distributed coordination systems.

Chapter 3 provides a detailed account on this historical development.

Organisation Beside coordination, MAS research recognises the importance that

the organisational dimension [HL04] assumes in the realisation of system-level be-

haviour. Indeed, the function of structure and order is to regulate interactions to

achieve static or dynamic goals. In [HL04], Horling et al. survey the following

major MAS organisational paradigms at the time: (i) network organisations or

adhocracies, with complex and dynamic structures; (ii) hierarchies, with tree-like

structures; (iii) holarchies, i.e., hierarchically nested structures of holons (which

are both wholes and parts) with cross-tree interactions; (iv) coalitions, i.e., short-

lived, goal-directed groups of agents with the goal of maximising individuals’ util-

ities; (v) teams, i.e., sets of cooperative agents which have agreed to work together

towards a common goal; (vi) congregations, i.e., long-lived agent groupings, formed

with no specific goal in mind, aimed at facilitating the process of finding collab-

orators (cf., service discovery); (vii) societies, i.e., long-lived, open organisations

aimed at providing consistency through social laws to facilitate coexistence and

ordered-yet-flexible interaction; (viii) federations, i.e., groups of agents which have

ceded some autonomy to a single delegate which represents the group and mediates

interaction with other groups; (ix) markets, i.e., organisations of competitive buy-

ers, suppliers, and sellers, mainly aimed at supporting processes of allocation and

pricing; (x) matrix organisations, i.e., structures with rows of agents and columns

of managers.

The significance of the organisational aspect has motivated the emergence of

frameworks and linguistic approaches (grouped under the notion of organisation-

oriented programming [BHS06]) to model the organisational dimension of MAS,

such as e-institutions [Est+01] and Moise+ [HSB07].

The concept of institution, e.g. in human organisations, is used to denote organisation
vs. institu-
tiona set of formal and informal social rules (e.g., convention, habits, laws, etc.)

for structuring and constraining agent interaction (i.e., for coordination). While

21

CHAPTER 2. PERSPECTIVES ON COLLECTIVE ADAPTIVE SYSTEMS

organisations can be defined as “social units (or human groupings) deliberately

constructed and reconstructed to seek specific goals” [Etz64], institutions repre-

sent means for designing organisations. As a computational counterpart of insti-

tutions, electronic institutions (e-institutions) are institutionalised agent organi-electronic in-
stitutions

sations [Est+01]. In the research line of normative MASs [HW11], approaches
normative
MAS consider normative agents that are able to reason about, manipulate, and take

decisions regarding social norms in order to foster social control and cooperation

(e.g., through incentives or sanctions aimed at minimising deviance)—especially

in open, heterogeneous systems [AP08].

Coherently with the autonomic vision covered in Section 2.3, the perspective

of self-organisation is particularly relevant in MAS [SGK05], as it provides a way

to deal with change in the environment and system itself.

Other key aspects Other relevant aspects in MASs include the following:

• Communication — In order to communicate, agents need to agree upon the

syntax and semantics of messages. Ontologies, as formal definitions of bodies

of knowledge, are used for that. Then, agents may perform communicative

actions to influence other agents.

• Planning — Agents must be able to decide what to do; i.e., they should

possess decision-making capabilities directed towards activity (practical rea-

soning). Practical reasoning is a two-step process that consists of deciding

what to achieve (deliberation) and then deciding how to achieve the prefig-

ured states of affairs (means-ends reasoning).

• Learning — Choosing the “right” actions to perform can be difficult in un-

certain environments. This could be tackled by learning and, in particular,

by the approach known as reinforcement learning, which leverages trial-and-

error, reward-oriented search to improve performance while balancing explo-

ration and exploitation [RA18].

22

CHAPTER 2. PERSPECTIVES ON COLLECTIVE ADAPTIVE SYSTEMS

primitive
level

context-
aware

self-
adjusting

self-
configuring

self-
optimising

self-
protecting

self-
healing

self-adaptive
=

self-managing

self-
aware

major
”autonomic”

level

general
level

Figure 2.2: Hierarchy of self-* properties, adapted from [ST09].

2.3 Self-* Systems

2.3.1 Autonomic computing

In the seminal paper on autonomic computing [KC03], Kephart and Chess fore- autonomic
computing

see how the ability of computer-based systems to manage themselves according to

human-dictated, high-level goals could be crucial to deal with the increasing com-

plexity fuelled by recent trends (cf., massiveness, heterogeneity, dynamicity). Op-

erationally, in a fast-changing world where quick (yet thoughtful and comprehen-

sive) interventions are required, human-in-the-loop approaches tend to fall short,

and the ideas of autonomous maintenance and upgrade become more and more ap-

pealing, fostering a vision of “eternal systems” [Mul12]. Regarding the engineering eternal
systems

of self-adaptive software, it is important to define why/what/where/when change

is required, who is responsible for implementing change, and how change can be

implemented [ST09]. Architecturally, autonomic elements consist of managed ele-

ments controlled by an autonomic manager that implements monitoring, analysis,

planning, execution, and knowledge management functions (MAPE-K) [KC03]. MAPE-K

2.3.2 Self-* properties

According to [KC03], the core of autonomic computing is self-management,

which can be declined into (i) self-configuration, to cope with building and in-

tegration; (ii) self-optimisation, to improve operation; (iii) self-healing, to find,

23

CHAPTER 2. PERSPECTIVES ON COLLECTIVE ADAPTIVE SYSTEMS

diagnose and repair issues; and (iv) self-protection, to prevent and respond to

internal and external attacks. Self-management is also called self-adaptiveness.

In [Ore+99], self-adaptive software is defined as a software that

modifies its own behaviour in response to changes in its operating en-

vironment

where operating environment denotes “anything observable by the software sys-

tem”, which is also usually the definition of context as found, e.g., in the re-

search fields of context-aware systems [AAC16] and context-oriented program-

ming [HCN08]. Indeed, a system, in order to be able to adapt or manage it-operating en-
vironment =
context self, needs to be able to perceive (change in) internal and external states, and

to change itself [HS06]. That is, a self-adaptive system must be self-aware and

context-aware [ST09], in addition to self-adjusting [HS06]. Figure 2.2 provides a

hierarchical view of self-* properties.

Computationally, self-awareness and the ability to self-adjust can be achieved

through reflection mechanisms . A reflective system can be defined as a systemreflection

which “can access and manipulate a full, explicit, causally connected representa-

tion of its own state” [Mae87], where causal connection means that models and

states are synchronised in both directions (from states to models through obser-

vation and from models to states through action). The combination of ideas from

computational reflection and model-driven engineering has led to the research field

of models@runtime (MRT) [BBF09; BGS19], which aims at supporting the devel-models-at-
runtime

opment of long-lived, self-adaptive software through the use of runtime models.

In general, rigorous specification and validation of self-* systems can be sup-

ported through formal methods. According to survey [Wey+12], use of formal

methods in this research area is increasing but still somewhat limited. Formalisms

for modelling include algebra, (labelled) transition systems, process algebras, and

formal specification languages. Concerning property specification and verification,

the same modelling language may be used, or various kinds of logics (e.g., temporal

or spatial logics).

Self-adaptive vs. adaptive vs. non-adaptive How can adaptivity be de-

fined? How can one determine whether a system is adaptive or not? The verb

24

CHAPTER 2. PERSPECTIVES ON COLLECTIVE ADAPTIVE SYSTEMS

“to adapt” derives from Latin “adaptare” – which is made of “ad” (meaning “pur-

posefully”) and “aptare” (meaning “to adjust”) – which means “to adjust one

thing with respect to another thing according to convenience or proportion”. So,

adaptivity consists of an adaptation relationship between some subject and some

goal or element of comparison. Thus, an “adaptive” system is one that “relates to

adaptation” or “tends to adapt”, i.e., that adjusts something (often itself, hence

“self-adaptive”) purposefully. However, it is important to distinguish “adaptivity”

with “dynamics” or “activity”. For instance, a thermostat that, while driven by

the same rules, acts diversely based on the temperature of the moment, is not

considered an adaptive system; i.e., an adaptive system is one that changes its

control rules by experience [And+13]. Thus, a self-adaptive system can be defined

as an adaptive system where the control rules are part of the system itself.

Emergence and self-organisation How does self-adaptiveness relate to the

distinction between the micro and macro levels? Generally, self-adaptation is

considered to be carried out as a top-down process. Self-organisation is often

considered as the bottom-up counterpart of self-adaptation. In this work, however,

self-organisation is intended as a structure-oriented flavour of self-adaptiveness and

is distinguished from the bottom-up effect of emergence.

In [DWH04], emergence is defined as a property exhibited by a system emergence

when there are coherent emergents at the macro-level that dynamically

arise from the interactions between the parts at the micro-level. Such

emergents are novel w.r.t. the individual parts of the system.

That is, emergence is characterised by novel, dynamic, robust, coherent patterns

of micro-macro effects that raise when several parts interact in a decentralised

way [DWH04]. The key point of emergence, which has consequences in the engi-

neering of systems exhibiting it, is that it is hard to understand or track emergents

back to the behaviour of the parts. For instance, sometimes, emergence is charac-

terised by sensitivity to initial conditions or small parameter changes.

In [DWH04], self-organisation is defined as self-
organisation

a dynamical and adaptive process where systems acquire and maintain

structure themselves, without external control.

25

CHAPTER 2. PERSPECTIVES ON COLLECTIVE ADAPTIVE SYSTEMS

Verb “to organise” derives from Latin “organum” (i.e., “organ”) and hence its

etymology is “to build organs”, meaning “to arrange several elements into a pur-

poseful sequential or spatial (or both) order or structure” (Business Dictionary).

So, self-organisation is an autonomous, robust, flexible process that seeks an in-

crease of order [DWH04].

As suggested in [DWH04], emergence and self-organisation are different con-

cepts that may coexist or be fruitfully integrated by (i) making self-organisation

emerge or (ii) supporting emergence of properties through self-organisation.

Emergence and engineering The ability to create qualitatively new, macro-

level properties out of micro-level activity in an adaptive and robust way can be

useful in many contexts (see, e.g., Section 2.5). Therefore, it came natural to ask

whether, to what extent, and how emergence could be managed (also, steered) and

engineered [SPT06; NZ15; MDT18; RJ18], i.e., developed in a principled way. This

is a central theme of this thesis. In Chapter 5, a formal framework and toolchain

for “engineering emergence”, called aggregate programming, is presented. It pro-

vides a linguistic approach for compositionally specifying global (i.e., emergent)

behaviour—ultimately implemented through repeated context perception, compu-

tation, and neighbourhood-based interaction by a set of situated devices.

2.4 Pervasive and Ubiquitous Computing

Almost three decades ago, in his seminal paper [Wei91], Weiser foresaw the

IoT and CPS trends:

Specialized elements of hardware and software, connected by wires, ra-

dio waves and infrared, will be so ubiquitous that no one will notice

their presence.

and identified ubiquitous computing as the 3rd generation of computing (af-

ter mainframe and personal computing), characterised by an embodied virtual-

ity where countless computers are pushed into the background, fostering cyber-

physical integration, transparency, and usability:

26

CHAPTER 2. PERSPECTIVES ON COLLECTIVE ADAPTIVE SYSTEMS

When almost every object either contains a computer or can have a tab

attached to it, obtaining information will be trivial [...]

[...] machines that fit the human environment instead of forcing hu-

mans to enter theirs [...]

Ubiquitous computing and pervasive computing are similar and related ideas. ubiquitous
vs. pervasive
computingTerm “ubiquitous” means “present everywhere”, whereas “pervasive” means “ex-

isting in or spreading through every part of something”. Though, terminologically,

distinctions may be artificial, ubiquitous computing is generally intended as aiming

to transparently provide computational services everywhere through embedding

(i.e., a sort of “disappearing computing” [SN05]), whereas pervasive computing

typically refers to having computers “touch” any aspect of human life, not neces-

sarily in an invisible way.

Other perspectives or concepts related to ubiquitous computing include calm

computing [WB96],

A calm technology will move easily from the periphery of our attention,

to the center, and back.

as well as invisible computing [Nor99; Bor00] and, most notably, ambient comput-

ing/intelligence [Duc+01; Sad11].

2.4.1 Ambient intelligence

In the survey [Sad11], ambient intelligence is described as ambient in-
telligence

the vision of a future in which environments support the people inhab-

iting them. This envisaged environment is unobtrusive, interconnected,

adaptable, dynamic, embedded and intelligent. In this vision the tradi-

tional computer input and output media disappear. Instead processors

and sensors are integrated in everyday objects.

In [AM03], Aarts and Marzano suggest that ambient intelligence is characterised

by the following features: (1) embedded, (2) context-aware, (3) personalised, (4)

adaptive, and (5) anticipatory. This is quite related to the notion of spatial com-

puting, which is covered in Chapter 4.

27

CHAPTER 2. PERSPECTIVES ON COLLECTIVE ADAPTIVE SYSTEMS

Another related term is situated computing, which is described in [HNBR+97]

as an approach that

concerns the ability of computing devices to detect, interpret and re-

spond to aspects of the user’s local environment.

The point of all these notions is to recognise the prominent role of the environment

and the context for seamless service provisioning.

2.4.2 Context-aware computing

Context-aware computing is about using context (i.e., any information avail-context-
aware
computing able) to characterise the situation in order to provide (better) services to users. A

survey regarding the engineering of context-aware systems is provided in [AAC16].

The features of a context-aware system can be classified into [AAC16]: (1) pre-

senting context to stakeholders; (2) active/passive service execution1; (3) active/-

passive service configuration; and (4) mapping context to information for later

retrieval. The lifecycle of context information [AAC16] involves acquisition (from

potentially heterogeneous context sources), modelling, reasoning, and (real-time)

dissemination. Regarding the engineering of context-aware systems [AAC16], tra-

ditional paradigms include the object-oriented, aspect-oriented, feature-oriented,

and service-oriented ones, with agent-oriented and context-oriented [HCN08]

emerging.

Context-oriented programming In the survey [SGP12] on context-oriented

software engineering, context-oriented programming (COP) is described as acontext-
oriented
programming paradigm that “tackles the issue of developing context-aware systems at the

language-level, introducing ad hoc language abstractions to manage adaptations

modularization and their dynamic activation”. In other words, COP focuses on

providing mechanisms for implementing software that behaves differently accord-

ing to the context, which is loosely defined as “any information which is computa-

tionally accessible” [HCN08]. Usually, this is achieved by organising context-aware

1The active-passive degree refers to the extent of user involvement: active execution or config-
uration refers to autonomous activity by the system, whereas passivity means user involvement
is needed.

28

CHAPTER 2. PERSPECTIVES ON COLLECTIVE ADAPTIVE SYSTEMS

code into modular units called behavioural variations [HCN08] which are to be dy-

namically activated or deactivated according to context changes. Commonly, these

take the form of named layers [CH05] that group related partial method defini-

tions. So, a layer represents a certain aspect of a context, and the current context

is given by the set of all currently active layers.

COP fosters adaptation by dynamically supporting change of behaviour (possi-

bly, of multiple system components) based on change of context. The prominence

of context in emerging situated, distributed computing scenarios makes the COP

vision and, in general, the reification of context as a first-class abstraction, a signif-

icant research perspective. In [AHR08], the authors motivate COP for ubiquitous

computing.

2.5 Collective Computing

Term “collective” derives from Latin collectivus, in turn from collectus, past collectives

participle of colligere, which means “to gather together”. So, a collective is an

entity that gather multiple congeneric elements (i.e., belonging to the same genus,

namely, of related nature) together. In other words, a collective is a group of

similar individuals or entities that share something (e.g., a goal, a reason for unity,

an environment, an interface). For instance, a group of people or agents is a

collective, whereas a gathering of radically different entities such as cells, rivers,

and books is (intuitively) not.

2.5.1 Computational collective and swarm intelligence

In psychological science, collective intelligence can be defined as the property collective
intelligence

of a group of individuals that emerges from bottom-up and top-down processes

and that allows the group to perform a wide variety of tasks [WAM15]. One of the

goals in this research areas is to identify a c factor for general collective intelligence

which would be the analogue of the g factor for general individual intelligence, e.g.,

enabling prediction of group performance [WAM15].

In this thesis, we are partly concerned with computational collective intelli- computational
collective
intelligencegence (CCI), i.e., “the form of intelligence that emerges from the collaboration and

29

CHAPTER 2. PERSPECTIVES ON COLLECTIVE ADAPTIVE SYSTEMS

competition of many individuals (artificial and/or natural)” [NKC09]. The CCI re-

search area covers methodological, theoretical, and practical aspects of CCI and is

strictly related to other fields such as computational intelligence (including swarm

intelligence), semantic web, social network analysis, multi-agent systems (“as a

computational and modeling paradigm especially tailored to capture the nature of

CCI emergence in populations of autonomous individuals” [NKC09]), and theories

of group decision-making and consensus.

Term swarm intelligence (SI) was first introduced by Beni et al. in the con-swarm
intelligence

text of cellular robotics [BW89]; it refers to “a kind of problem-solving ability that

emerges in the interactions of simple information-processing units” [Ken06]. In

swarm-based systems, organisation and functionality emerge from decentralised

interaction of (usually simple) agents. SI is inspired by the way many biolog-

ical systems work [Bon+99], such as societies or groups of ants, bees, fireflies,

bats, etc [PL11]. Historically, the two main SI approaches were ant colony op-

timisation and particle swarm optimisation [PL11], paving the path for many

other techniques. SI is considered as a part of computational intelligence [Eng07],computational
intelligence

together with other bio-inspired fields (cf., bio-inspired computing [Kar16] and

organic computing [MSSU11]) like artificial neural networks, evolutionary compu-

tation, artificial immune systems, and fuzzy systems. A relevant field related to SI

is swarm robotics [Bra+13]. A swarm provides some interesting advantages overswarm
robotics

centralised systems [Ben09; Bra+13], namely (i) flexible functionality, through ca-

pabilities that go beyond those of individuals; (ii) robustness, through redundancy

of components and tolerance of the loss of few individuals; (iii) economy, through

simplicity of individuals, which can be mass produced, interchanged, and easily

disposed; and (iv) scalability, by splitting work and communication over a large

number of elements. Potential issues may include (i) efficiency, as consensus and

decision-making may negatively affect group reactivity; and (ii) consequences of

emergence (see Section 2.3.2), such as the difficulty to obtain hard guarantees or

to safely steer the system.

2.5.2 Collective adaptive systems

By definition, a collective adaptive system (CAS) is a system – i.e., a set ofcollective
adaptive
system interacting entities – that is, crucially:

30

CHAPTER 2. PERSPECTIVES ON COLLECTIVE ADAPTIVE SYSTEMS

• collective—i.e., consists of a (possibly very large) number of congeneric in-

dividuals; and

• adaptive—i.e., it is able to change its control rules as a consequence of inter-

nal or external changes.

An example of non-collective (possibly adaptive) system is one in which individuals

are of entirely different nature or are driven by unrelated goals which have no

coherence at the global level. An example of collective but non-adaptive system is

a cellular automaton, since it is driven by fixed rules.

As for MASs, key for a characterisation of a collective system is the definition

of at least two levels—the micro level of the units, and the macro level of the

whole. Of course, a collective may consist of multiple (transient or permanent)

sub-collectives and may be part of super-collectives. Like for systems, boundaries

and containment of collectives essentially depend on the perspective, for both

analysis and synthesis.

As for MASs, CASs often consist of autonomous agents. Autonomy, generally

intended as the ability of “self-government”, is a complex notion that can have

multiple characterisations and may exist in degrees (i.e., it is not a black or white

feature). Autonomy is usually a source for unpredictability, as behaviours and

responses may vary depending on an individual’s self-determination. The challenge

in MASs and CASs is to promote collaboration between components, such that

they can together carry out tasks that none of them, as a single entity, would be

able to do [CPZ11]. This is especially hard in competitive settings, where each

component is fully self-interested, but has to interact with other components to

achieve its goal [Kep+17]; this may involve negotiation and trust.

The other key source for unpredictability is the environment, for it usually has

complex dynamics. CASs are essentially situated, i.e., they are made of components

that are immersed into some (logical and/or physical) environment and are engaged

in non-trivial interactions with it. Indeed, such (eco-)systems are adaptive just

because they need to evolve in order to respond to changes in the environment or

in the input patterns.

By a structural point of view, a CAS may exhibit various and possibly dynamic

structures, often constructed and sustained through a self-organisation process,

i.e., a robust, internal process by which internal order is continually sought, often

31

CHAPTER 2. PERSPECTIVES ON COLLECTIVE ADAPTIVE SYSTEMS

in an emergent way [DWH04]. Indeed, the presence of several (autonomous) com-

ponents requires an appropriate organisation to be enforced so as to assign roles

and responsibilities to the components themselves [ZJW05] and promote ordered

development of collective behaviour. Tightly related to organisation is coordina-

tion, namely, the enaction of rules to constrain interaction.

Also, crucially, CASs often feature emergence, whereby macro-level properties

and behaviours spring out from decentralised, micro-level activity. The key point

is that the global properties arising from the interaction of the parts cannot be

easily traced back to properties and behaviours of the parts. This poses significant

challenges regarding understanding, designing, and controlling CASs. However,

emergence is typical because CASs often consist of partially autonomous compo-

nents and feature decentralised control—i.e., there is no single component which

governs the collective behaviour. Decentralisation is fundamental for systems to

scale (as adding more components is less susceptible to overloading functionality)

and achieve robustness (as functionality is not confined to few, critical compo-

nents). Indeed, decentralisation of control, non-synchronised operation, and op-

portunistic interaction are often essential in certain contexts to deal with the scale

and changes in both the system structure and environment.

CASs exist in the world, in our minds (cf., mental models), in theory (cf., math-

ematical models), and in software [MK+15]. The nature has indeed been a great

source of inspiration for mechanisms used by engineers to endow artificial systems

with features like self-organisation and resilience (i.e., the ability to recover from

failure). CAS-oriented features are especially useful in scenarios characterised by

high dynamicity (i.e., where the environment or the inputs have complex dynam-

ics), openness (i.e., where components can dynamically enter or leave the system),

and (very) large scale.

2.6 Final Remarks

This chapter introduces a set of concepts related to collective adaptive systems

research. It does so by describing multiple inter-related perspectives and corre-

sponding research threads: multi-agent systems (with emphasis on coordination

and organisations), autonomic computing (with emphasis on self-* properties),

32

CHAPTER 2. PERSPECTIVES ON COLLECTIVE ADAPTIVE SYSTEMS

pervasive/ubiquitous computing (with emphasis on context-awareness and ambient

intelligence), and collective computing (with emphasis on collective intelligence).

As we will see, this thesis is particularly concerned with the problem of modelling

the computational behaviour of situated collectives that need to self-adapt to the

environment and coordinate to resiliently produce interesting global features.

References

[AAC16] Unai Alegre, Juan Carlos Augusto, and Tony Clark. “Engineering context-

aware systems and applications: A survey”. In: Journal of Systems and Software

117 (2016), pp. 55–83.

[Abo16] Gregory D Abowd. “Beyond weiser: From ubiquitous to collective computing”.

In: Computer 49.1 (2016), pp. 17–23.

[AHR08] Malte Appeltauer, Robert Hirschfeld, and Tobias Rho. “Dedicated program-

ming support for context-aware ubiquitous applications”. In: 2008 The Second

International Conference on Mobile Ubiquitous Computing, Systems, Services

and Technologies. IEEE. 2008, pp. 38–43.

[AM03] Emile Aarts and Stefano Marzano. The new everyday: Views on ambient in-

telligence. 010 Publishers, 2003.

[And+13] S Anderson, N Bredeche, AE Eiben, G Kampis, and MR van Steen. “Adaptive

collective systems: herding black sheep”. In: (2013).

[AP08] Alexander Artikis and Jeremy Pitt. “Specifying open agent systems: A sur-

vey”. In: International Workshop on Engineering Societies in the Agents World.

Springer. 2008, pp. 29–45.

[Ash61] W Ross Ashby. An introduction to cybernetics. Chapman & Hall Ltd, 1961.

[BBF09] Gordon Blair, Nelly Bencomo, and Robert B France. “Models@ run. time”. In:

Computer 42.10 (2009), pp. 22–27.

[Ben09] Gerardo Beni. “Swarm intelligence”. In: Encyclopedia of Complexity and Sys-

tems Science (2009), pp. 1–32.

[Ber69] Ludwig von Bertalanffy. General system theory : foundations, development,

applications. New York: G. Braziller, 1969. url: http://opac.inria.fr/

record=b1078794.

[BGS19] Nelly Bencomo, Sebastian Götz, and Hui Song. “Models@run.time: a guided

tour of the state of the art and research challenges”. In: Software & Systems

Modeling 18.5 (2019), pp. 3049–3082. issn: 1619-1374. doi: 10.1007/s10270-

018-00712-x.

33

http://opac.inria.fr/record=b1078794
http://opac.inria.fr/record=b1078794
https://doi.org/10.1007/s10270-018-00712-x
https://doi.org/10.1007/s10270-018-00712-x

CHAPTER 2. PERSPECTIVES ON COLLECTIVE ADAPTIVE SYSTEMS

[BHS06] Olivier Boissier, Jomi Fred Hübner, and Jaime Simão Sichman. “Organiza-

tion oriented programming: From closed to open organizations”. In: Interna-

tional Workshop on Engineering Societies in the Agents World. Springer. 2006,

pp. 86–105. doi: 10.1007/978-3-540-75524-1_5.

[Bon+99] Eric Bonabeau, Directeur de Recherches Du Fnrs Marco, Marco Dorigo, Guy

Théraulaz, Guy Theraulaz, et al. Swarm intelligence: from natural to artificial

systems. 1. ¿ 8000 cits. Oxford university press, 1999.

[Bor00] Gaetano Borriello. “The challenges to invisible computing”. In: Computer 33.11

(2000), pp. 123–125.

[Bra+13] Manuele Brambilla, Eliseo Ferrante, Mauro Birattari, and Marco Dorigo.

“Swarm robotics: a review from the swarm engineering perspective”. In: Swarm

Intelligence 7.1 (2013), pp. 1–41.

[BW89] G Beni and J Wang. “Swarm Intelligence in Cellular Robotic Systems, Proceed.

NATO Advanced Workshop on Robots and Biological Systems, Tuscany, Italy,

June 26-30”. In: Y.: NATO (1989).

[BY02] Yaneer Bar-Yam. “General features of complex systems”. In: Encyclopedia of

Life Support Systems (EOLSS), UNESCO, EOLSS Publishers, Oxford, UK 1

(2002).

[Cao+13] Yongcan Cao, Wenwu Yu, Wei Ren, and Guanrong Chen. “An overview of

recent progress in the study of distributed multi-agent coordination”. In: IEEE

Transactions on Industrial informatics 9.1 (2013), pp. 427–438. doi: 10.1109/

TII.2012.2219061.

[Cas98] Cristiano Castelfranchi. “Modelling social action for AI agents”. In: Artificial

intelligence 103.1-2 (1998), pp. 157–182.

[CH05] Pascal Costanza and Robert Hirschfeld. “Language constructs for context-

oriented programming: an overview of ContextL”. In: Proceedings of the 2005

symposium on Dynamic languages. ACM. 2005, pp. 1–10.

[Che00] Peter Checkland. “Systems thinking, systems practice: includes a 30-year retro-

spective”. In: Journal-Operational Research Society 51.5 (2000), pp. 647–647.

[CIMV11] F Stuart Chapin III, Pamela A Matson, and Peter Vitousek. Principles of

terrestrial ecosystem ecology. Springer Science & Business Media, 2011.

[CPZ11] Giacomo Cabri, Mariachiara Puviani, and Franco Zambonelli. “Towards a tax-

onomy of adaptive agent-based collaboration patterns for autonomic service

ensembles”. In: 2011 International Conference on Collaboration Technologies

and Systems, CTS 2011, Philadelphia, Pennsylvania, USA, May 23-27, 2011.

2011, pp. 508–515.

34

https://doi.org/10.1007/978-3-540-75524-1_5
https://doi.org/10.1109/TII.2012.2219061
https://doi.org/10.1109/TII.2012.2219061

CHAPTER 2. PERSPECTIVES ON COLLECTIVE ADAPTIVE SYSTEMS

[Duc+01] Ken Ducatel, Union européenne. Technologies de la société de l’information,

Union européenne. Institut d’études de prospectives technologiques, and Union

européenne. Société de l’information conviviale. “Scenarios for ambient intelli-

gence in 2010”. In: (2001).

[DWH04] Tom De Wolf and Tom Holvoet. “Emergence versus self-organisation: Differ-

ent concepts but promising when combined”. In: International workshop on

engineering self-organising applications. Springer. 2004, pp. 1–15.

[Eng07] Andries P Engelbrecht. Computational intelligence: an introduction. John Wi-

ley & Sons, 2007.

[Est+01] Marc Esteva, Juan-Antonio Rodriguez-Aguilar, Carles Sierra, Pere Garcia, and

Josep L Arcos. “On the formal specification of electronic institutions”. In: Agent

mediated electronic commerce. Springer, 2001, pp. 126–147.

[Etz64] Amitai Etzioni. “Modern organizations, 1964”. In: NJ: Englewood Cliffs (1964).

[FG96] Stan Franklin and Art Graesser. “Is it an Agent, or just a Program?: A Taxon-

omy for Autonomous Agents”. In: International Workshop on Agent Theories,

Architectures, and Languages. Springer. 1996, pp. 21–35.

[FW99] Jacques Ferber and Gerhard Weiss. Multi-agent systems: an introduction to

distributed artificial intelligence. Vol. 1. Addison-Wesley Reading, 1999.

[Gil08] Helen Gill. “From vision to reality: cyber-physical systems”. In: HCSS national

workshop on new research directions for high confidence transportation CPS:

automotive, aviation, and rail. 2008.

[Gun+14] Volkan Gunes, Steffen Peter, Tony Givargis, and Frank Vahid. “A survey on

concepts, applications, and challenges in cyber-physical systems.” In: KSII

Transactions on Internet & Information Systems 8.12 (2014).

[HCN08] Robert Hirschfeld, Pascal Costanza, and Oscar Marius Nierstrasz. “Context-

oriented programming”. In: Journal of Object technology 7.3 (2008), pp. 125–

151.

[HL04] Bryan Horling and Victor Lesser. “A survey of multi-agent organizational

paradigms”. In: The Knowledge engineering review 19.4 (2004), pp. 281–316.

[HNBR+97] Richard Hull, Philip Neaves, James Bedford-Roberts, et al. Towards situated

computing. Hewlett Packard Laboratories, 1997.

[HS06] Michael G Hinchey and Roy Sterritt. “Self-managing software”. In: Computer

39.2 (2006), pp. 107–109.

[HSB07] Jomi F Hübner, Jaime S Sichman, and Olivier Boissier. “Developing organised

multiagent systems using the MOISE+ model: programming issues at the sys-

tem and agent levels”. In: International Journal of Agent-Oriented Software

Engineering 1.3/4 (2007), pp. 370–395. doi: 10.1504/IJAOSE.2007.016266.

35

https://doi.org/10.1504/IJAOSE.2007.016266

CHAPTER 2. PERSPECTIVES ON COLLECTIVE ADAPTIVE SYSTEMS

[HW11] Christopher D Hollander and Annie S Wu. “The current state of normative

agent-based systems”. In: Journal of Artificial Societies and Social Simulation

14.2 (2011), p. 6.

[Kar16] Arpan Kumar Kar. “Bio inspired computing–a review of algorithms and scope

of applications”. In: Expert Systems with Applications 59 (2016), pp. 20–32.

[KC03] Jeffrey O Kephart and David M Chess. “The vision of autonomic computing”.

In: Computer 1 (2003), pp. 41–50.

[Ken06] James Kennedy. “Swarm intelligence”. In: Handbook of nature-inspired and

innovative computing. ¿ 9600 cits. Springer, 2006, pp. 187–219.

[Kep+17] Jeffrey O Kephart, Ada Diaconescu, Holger Giese, Anders Robertsson, Tarek

Abdelzaher, Peter Lewis, Antonio Filieri, Lukas Esterle, and Sylvain Frey.

“Self-adaptation in collective self-aware computing systems”. In: Self-Aware

Computing Systems. Springer, 2017, pp. 401–435.

[Mae87] Pattie Maes. “Concepts and experiments in computational reflection”. In: ACM

Sigplan Notices. Vol. 22. 12. ACM. 1987, pp. 147–155.

[Mai98] Mark W. Maier. “Architecting principles for systems-of-systems”. In: Systems

Engineering 1.4 (1998), pp. 267–284. doi: 10.1002/(sici)1520-6858(1998)

1:4<267::aid-sys3>3.0.co;2-d. url: https://doi.org/10.1002/(sici)

1520-6858(1998)1:4<267::aid-sys3>3.0.co;2-d.

[MDT18] Saurabh Mittal, Saikou Diallo, and Andreas Tolk. Emergent behavior in com-

plex systems engineering: a modeling and simulation approach. John Wiley &

Sons, 2018.

[MK15] George E. Mobus and Michael C. Kalton. Principles of Systems Science.

Springer, 2015. isbn: 9781493919208.

[MK+15] George E Mobus, Michael C Kalton, et al. Principles of systems science.

Springer, 2015.

[MSSU11] Christian Müller-Schloer, Hartmut Schmeck, and Theo Ungerer. Organic com-

puting—a paradigm shift for complex systems. Springer Science & Business

Media, 2011.

[Mul12] Robert Mullins. “The EternalS Roadmap–Defining a Research Agenda for Eter-

nal Systems”. In: International Workshop on Eternal Systems. Springer. 2012,

pp. 135–147.

[NKC09] Ngoc Thanh Nguyen, Ryszard Kowalczyk, and Shyi-Ming Chen. “Computa-

tional Collective Intelligence. Semantic Web, Social Networks and Multiagent

Systems”. In: Conference proceedings ICCCI. Springer. 2009, p. 269.

36

https://doi.org/10.1002/(sici)1520-6858(1998)1:4<267::aid-sys3>3.0.co;2-d
https://doi.org/10.1002/(sici)1520-6858(1998)1:4<267::aid-sys3>3.0.co;2-d
https://doi.org/10.1002/(sici)1520-6858(1998)1:4<267::aid-sys3>3.0.co;2-d
https://doi.org/10.1002/(sici)1520-6858(1998)1:4<267::aid-sys3>3.0.co;2-d

CHAPTER 2. PERSPECTIVES ON COLLECTIVE ADAPTIVE SYSTEMS

[NLJ96a] Hyacinth S Nwana, Lyndon C Lee, and Nicholas R Jennings. “Coordination

in software agent systems”. In: British Telecom Technical Journal 14.4 (1996),

pp. 79–88.

[NLJ96b] Hyacinth S Nwana, Lyndon C Lee, and Nicholas R Jennings. “Coordination

in software agent systems”. In: British Telecom Technical Journal 14.4 (1996),

pp. 79–88.

[NN95] Grégoire Nicolis and G Nicolis. Introduction to nonlinear science. Cambridge

University Press, 1995.

[Nor99] Donald A Norman. The invisible computer: why good products can fail, the

personal computer is so complex, and information appliances are the solution.

MIT press, 1999.

[NZ15] Victor Noël and Franco Zambonelli. “Methodological Guidelines for Engineer-

ing Self-organization and Emergence”. In: Software Engineering for Collec-

tive Autonomic Systems - The ASCENS Approach. 2015, pp. 355–378. doi:

10.1007/978-3-319-16310-9_10. url: https://doi.org/10.1007/978-

3-319-16310-9_10.

[Ode02] James Odell. “Objects and agents compared”. In: Journal of object technology

1.1 (2002), pp. 41–53.

[Omi+04] Andrea Omicini, Alessandro Ricci, Mirko Viroli, Cristiano Castelfranchi, and

Luca Tummolini. “Coordination artifacts: Environment-based coordination for

intelligent agents”. In: Proceedings of the Third International Joint Conference

on Autonomous Agents and Multiagent Systems-Volume 1. IEEE Computer

Society. 2004, pp. 286–293.

[OO03] Andrea Omicini and Sascha Ossowski. “Objective versus subjective coordina-

tion in the engineering of agent systems”. In: Intelligent information agents.

Springer, 2003, pp. 179–202.

[Ore+99] Peyman Oreizy, Michael M Gorlick, Richard N Taylor, Dennis Heimhigner,

Gregory Johnson, Nenad Medvidovic, Alex Quilici, David S Rosenblum, and

Alexander L Wolf. “An architecture-based approach to self-adaptive software”.

In: IEEE Intelligent Systems and Their Applications 14.3 (1999), pp. 54–62.

[ORV08] Andrea Omicini, Alessandro Ricci, and Mirko Viroli. “Artifacts in the A&A

meta-model for multi-agent systems”. In: Autonomous agents and multi-agent

systems 17.3 (2008), pp. 432–456.

[Ott04] Julio M Ottino. “Engineering complex systems”. In: Nature 427.6973 (2004),

p. 399.

[Par97] H Van Dyke Parunak. “”Go to the ant”: Engineering principles from natural

multi-agent systems”. In: Annals of Operations Research 75 (1997), pp. 69–101.

37

https://doi.org/10.1007/978-3-319-16310-9_10
https://doi.org/10.1007/978-3-319-16310-9_10
https://doi.org/10.1007/978-3-319-16310-9_10

CHAPTER 2. PERSPECTIVES ON COLLECTIVE ADAPTIVE SYSTEMS

[PL11] Rafael S Parpinelli and Heitor S Lopes. “New inspirations in swarm intelligence:

a survey”. In: International Journal of Bio-Inspired Computation 3.1 (2011),

pp. 1–16.

[Pla+07] Eric Platon, Marco Mamei, Nicolas Sabouret, Shinichi Honiden, and H Van

Dyke Parunak. “Mechanisms for environments in multi-agent systems: Sur-

vey and opportunities”. In: Autonomous Agents and Multi-Agent Systems 14.1

(2007), pp. 31–47.

[RA18] Sutton Richard and Barto Andrew. Reinforcement learning: an introduction.

MIT Press, 2018.

[RG95] Anand S. Rao and Michael P. Georgeff. “BDI Agents: From Theory to Prac-

tice”. In: Proceedings of the First International Conference on Multiagent Sys-

tems, June 12-14, 1995, San Francisco, California, USA. 1995, pp. 312–319.

[RJ18] Larry B Rainey and Mo Jamshidi. Engineering emergence: A modeling and

simulation approach. CRC Press, 2018.

[Sad11] Fariba Sadri. “Ambient intelligence: A survey”. In: ACM Computing Surveys

(CSUR) 43.4 (2011), p. 36.

[SGK05] Giovanna Di Marzo Serugendo, Marie-Pierre Gleizes, and Anthony Karageor-

gos. “Self-organization in multi-agent systems”. In: The Knowledge Engineering

Review 20.2 (2005), pp. 165–189. doi: 10.1017/S0269888905000494.

[SGP12] Guido Salvaneschi, Carlo Ghezzi, and Matteo Pradella. “Context-oriented pro-

gramming: A software engineering perspective”. In: Journal of Systems and

Software 85.8 (2012), pp. 1801–1817. issn: 01641212. doi: 10.1016/j.jss.

2012.03.024.

[Sil12] Hillary Sillitto. “4.3. 2 Integrating Systems Science, Systems Thinking, and

Systems Engineering: understanding the differences and exploiting the syner-

gies”. In: INCOSE International Symposium. Vol. 22. 1. Wiley Online Library.

2012, pp. 532–547.

[Sin+12] A Singer, H Sillitto, J Bendz, G Chroust, D Hybertson, HB Lawson, J Martin,

R Martin, M Singer, and T Takaku. “The Systems Praxis Framework”. In:

Proceedings of the IFSR Conversation (2012).

[Smi80] Reid G Smith. “The contract net protocol: High-level communication and con-

trol in a distributed problem solver”. In: IEEE Transactions on computers 12

(1980). ¿4900 cits, pp. 1104–1113.

[SN05] Norbert Streitz and Paddy Nixon. “The disappearing computer”. In:

Communications-ACM 48.3 (2005), pp. 32–35.

38

https://doi.org/10.1017/S0269888905000494
https://doi.org/10.1016/j.jss.2012.03.024
https://doi.org/10.1016/j.jss.2012.03.024

CHAPTER 2. PERSPECTIVES ON COLLECTIVE ADAPTIVE SYSTEMS

[SPT06] Susan Stepney, Fiona Polack, and Heather R. Turner. “Engineering Emer-

gence”. In: 11th International Conference on Engineering of Complex Com-

puter Systems (ICECCS 2006), 15-17 August 2006, Stanford, California, USA.

2006, pp. 89–97. doi: 10 . 1109 / ICECCS . 2006 . 55. url: http : / / doi .

ieeecomputersociety.org/10.1109/ICECCS.2006.55.

[ST09] Mazeiar Salehie and Ladan Tahvildari. “Self-adaptive software: Landscape and

research challenges”. In: ACM transactions on autonomous and adaptive sys-

tems (TAAS) 4.2 (2009), p. 14.

[Tom+14] Sven Tomforde, Jörg Hähner, Hella Seebach, Wolfgang Reif, Bernhard Sick,

Arno Wacker, and Ingo Scholtes. “Engineering and Mastering Interwoven Sys-

tems”. In: ARCS 2014 - 27th International Conference on Architecture of Com-

puting Systems, Workshop Proceedings, February 25-28, 2014, Luebeck, Ger-

many, University of Luebeck, Institute of Computer Engineering. 2014, pp. 1–8.

url: http://ieeexplore.ieee.org/document/6775093/.

[Vir+07] Mirko Viroli, Tom Holvoet, Alessandro Ricci, Kurt Schelfthout, and Franco

Zambonelli. “Infrastructures for the environment of multiagent systems”. In:

Autonomous Agents and Multi-Agent Systems 14.1 (2007), pp. 49–60. doi: 10.

1007/s10458-006-9001-6. url: https://doi.org/10.1007/s10458-006-

9001-6.

[VR04] Marc HV Van Regenmortel. “Reductionism and complexity in molecular biol-

ogy”. In: EMBO reports 5.11 (2004), pp. 1016–1020.

[WAM15] Anita Williams Woolley, Ishani Aggarwal, and Thomas W Malone. “Collective

intelligence and group performance”. In: Current Directions in Psychological

Science 24.6 (2015), pp. 420–424.

[WB96] Mark Weiser and John Seely Brown. “Designing calm technology”. In: Power-

Grid Journal 1.1 (1996), pp. 75–85.

[Wea48] Warren Weaver. “Science and Complexity”. In: American Scientist 36.536–544

(1948).

[Wei91] Mark Weiser. “The Computer for the 21 st Century”. In: Scientific american

265.3 (1991), pp. 94–105.

[Wey+12] Danny Weyns, M Usman Iftikhar, Didac Gil De La Iglesia, and Tanvir Ah-

mad. “A survey of formal methods in self-adaptive systems”. In: Proceedings

of the Fifth International C* Conference on Computer Science and Software

Engineering. ACM. 2012, pp. 67–79.

[Wie65] Norbert Wiener. Cybernetics or Control and Communication in the Animal

and the Machine. Vol. 25. MIT press, 1965.

39

https://doi.org/10.1109/ICECCS.2006.55
http://doi.ieeecomputersociety.org/10.1109/ICECCS.2006.55
http://doi.ieeecomputersociety.org/10.1109/ICECCS.2006.55
http://ieeexplore.ieee.org/document/6775093/
https://doi.org/10.1007/s10458-006-9001-6
https://doi.org/10.1007/s10458-006-9001-6
https://doi.org/10.1007/s10458-006-9001-6
https://doi.org/10.1007/s10458-006-9001-6

CHAPTER 2. PERSPECTIVES ON COLLECTIVE ADAPTIVE SYSTEMS

[WOO07] Danny Weyns, Andrea Omicini, and James Odell. “Environment as a first class

abstraction in multiagent systems”. In: Autonomous agents and multi-agent

systems 14.1 (2007), pp. 5–30.

[Woo09] Michael Wooldridge. An introduction to multiagent systems. John Wiley &

Sons, 2009.

[Woo97] Michael Wooldridge. “Agent-based software engineering”. In: IEE Proceedings-

software 144.1 (1997), pp. 26–37.

[ZJW05] Franco Zambonelli, Nicholas R Jennings, and Michael Wooldridge. “Multi-

agent systems as computational organizations: the Gaia methodology”. In:

Agent-oriented methodologies. IGI Global, 2005, pp. 136–171.

40

Chapter 3

Distributed Computing and

Coordination

Order. Let all your things have their places; let each part

of your business have its time.

Benjamin Franklin

Contents
3.1 Concurrency Theory, Processes, and Services 43

3.2 Shared Dataspace Coordination 45

3.2.1 Generative communication 46

3.2.2 Programmable coordination rules 46

3.3 Distributed coordination . 47

3.4 Self-organising coordination . 49

3.4.1 Field-based coordination 50

3.5 Final Remarks . 51

References . 51

This thesis is mostly concerned with distributed computing. A distributed sys- distributed
computing

tem can be defined as a computer system comprising multiple processors exchang-

ing messages over a communication network [Gar02]. Having distributed com-

ponents inherently leads to concurrency, lack of global clock, and independent

(and often frequent) failure or unavailability of components [CDK05]—with corre-

sponding implications. Therefore, the research area of distributed computing aims

41

CHAPTER 3. DISTRIBUTED COMPUTING AND COORDINATION

at addressing the uncertainty emerging when the spatio-temporal unit of systems

is lost, with issues including handling communication, naming, synchronisation

of activities, consistency, replication, and failure [TVS07]. While distributed al-

gorithms [Lyn96] are used to perform specific input/output tasks in distributed

systems (e.g., related to consensus, leader election, snapshotting, etc.), coordi-

nation is used to support functionality by “managing dependencies between ac-

tivites” [MC94].

In fact, in interactive systems, there are at least two independent dimensions:

computation and interaction. Coordination consists of ruling the “interaction

space”, i.e., determining and fostering admissible interaction. Ciancarini describes

a meta-model for coordination systems [Cia96] which consists of three classes of

entities:

1. coordinables — the entities to coordinate;

2. coordination media — the abstractions that support coordination; and

3. coordination laws — the rules constraining coordinables, the media, and

their interaction.

Then, coordination models define these elements and coordination languages pro-

vide a way to express them in a formal way by defining syntax and semantics of the

primitives of interaction. According to [PA98], coordination models and languages

can be classified into :

1. data-driven (or task-oriented) — where interaction is based on information

exchange (e.g., through a shared dataspace);

2. control-driven (or process-oriented) — where events and not what data is

handled within a process are of interest to the coordination media, which

consists of input and output communication ports connecting processes (con-

sidered as black boxes).

In this chapter, as outlined in Figure 3.2, we review and discuss the conceptual,

but also technical and technological, path that has brought traditional coordination

models for concurrent systems, step-by-step to address the complexity of self-

organising, large-scale deployed systems.

42

CHAPTER 3. DISTRIBUTED COMPUTING AND COORDINATION

distribution

concurrency

coordination

implies

mainly concerned with

Figure 3.1: Coordination is the main theme of distributed systems.

3.1 Concurrency Theory, Processes, and Ser-

vices

As distributed systems are essentially concurrent, tools for modelling and ver- concurrency
theory

ifying them are provided in the context of concurrency theory [BG06], i.e., the

mathematical study of interacting and simultaneously evolving processes. This

field originated in the 1960s with the pioneering work of Carl Petri that launched

Net theory [Pet66] as a framework for specifying and analysing communicating

concurrent systems. Another main class of approaches is given process algebras or

process calculi, whose research line originated between the end of the 1970s and

the beginning of 1980s with the independent formulation of the three classic formal

languages: Hoare’s Communicating Sequential Processes (CSP) [Hoa78], Milner’s

Calculus of Communicating Systems (CCS) [Mil89], and the Algebra of Commu-

nicating Processes (ACP) [BK84] by Bergstra and Klop. Historical treatments of

the development of process algebras can be found, e.g., in [Bae05; AG05].

A significant representative of this research line is the π-calculus [Mil99], which

models concurrent computation as a set of processes that interact by reading from

and writing to shared channels. With respect to its predecessors, the π-calculus

also attempts to model mobility : it does so by supporting dynamic reconfiguration

43

CHAPTER 3. DISTRIBUTED COMPUTING AND COORDINATION

Generative

communication

Tuple-based

coordination models

Programmable

coordination rules

Distributed,

mobile

coordination

Self-organising

coordination

Field-based

coordination

Spatial

Computing

(Chapter 4)

Aggregate

Computing

(Chapter 5)

Chemistry

Biology

Ecology

Physics

Collective adaptive

systems

(Chapter 4)

Linda [Gel85]

JavaSpaces [FHA99]

TSpaces [Wyc+98]

Shared Prolog [BC91]

Law-Gov. Inter. [MU00]

MARS [CLZ00]

ReSpecT [OD01]

LogOp [MS03], Scope [MW00]

Klaim [DNFP98], Lime [MPR06]

JION [BLG15]

στ -Linda [VPB12]

SwarmLinda [TM04a]

Biochemical TSs [Vir+11]

TOTA [MZ09]

Figure 3.2: Overview of research threads leading from coordination to field calcu-
lus and aggregate computing, with some representative bibliographic references.
This summary—by no means exhaustive—provides key highlights mainly from the
perspective of Chapter 2.

44

CHAPTER 3. DISTRIBUTED COMPUTING AND COORDINATION

of the system topology by exchanging channel names over channels themselves. In

this framework, an important enquiry concerns semantic equivalence between two

processes. An equivalence notion is given by bisimilarity, which captures whether

two processes are able to mimic one another; a procedure for checking bisimilarity

is bisimulation. Another relevant related work is bigraphs [Mil09], a formalism for

ubiquitous systems where nested graphs are used to model the notions of agent,

locality, connectivity, motion, and interaction.

Another, related paradigm for describing communicating, distributed systems service-
oriented
computingis service-oriented computing (SOC) [BZ07]. In SOC, applications are built

through a set of collaborating services, i.e., “autonomous platform-independent

elements that can be described, published and discovered using interoperable stan-

dards” [BZ07]. This approach took momentum in the 1990s with the advent of

Web Services, a set of technologies to building applications as sets of services

interacting through Web standards. The main standards include WSDL (Web

Services Description Language) for describing the interfaces of services, Simple

Object Access Protocol (SOAP) for describing message formats and exchange pat-

terns, and Universal Description, Discovery, and Integration (UDDI) for service

discovery. Regarding service composition [LDB15], two main styles exist: orches-

tration, where coordination is supported by a centralised entity (called the orches-

trator) from a local perspective, and choreography [Pel03], whereby decentralised

interaction among multiple parties unfolds from an interaction protocol defined by

a global perspective.

3.2 Shared Dataspace Coordination

Coordination models are rooted in the idea that interaction among multiple,

independent, and autonomous software systems (e.g., processes, components, and

so on, somewhat generically called agents henceforth) could be conceived and

designed as a space orthogonal to pure computation. Historically, many coor-

dination models reify this idea into a concept of shared dataspace, working as a

whiteboard, where processes of a parallel computing system can write and read

information [Cor91], enabling so-called generative communication [Gel85]. In gen- generative
communica-
tionerative communication, the “life” of generated data is independent of the “life” of

45

CHAPTER 3. DISTRIBUTED COMPUTING AND COORDINATION

the generator; this, crucially, enables space decoupling (two processes do not need

to be spatially co-located to interact), time decoupling (two processes do not need

to be temporally co-located to interact).

3.2.1 Generative communication

The Linda coordination model [Gel85] is broadly recognised as the ancestor ofLinda

a number of approaches to generative communication falling under the umbrella of

tuple-based coordination models. The foundational idea of Linda was to have pro-tuple-based
coordination

cesses (on a centralised system) share information and synchronise by writing and

retrieving, with a suspensive semantics (the requester is blocked until the query

is satisfiable), data in the form of an ordered collection of possibly heterogeneous

knowledge chunks, i.e., tuples, from a shared (tuple-)space. Such data could be re-

trieved associatively, by querying through partial representations of the structure

and content matching the desired piece of data (tuple template). The consequence

is twofold: (i) decoupling in communication is strongly promoted, since no infor-

mation about the sender, the space itself, and the tuple insertion time is required

in order for communication to happen; and (ii) coordination is still possible in

environments where information is vague, incomplete, inaccurate, or not entirely

specified, due to the possibility of synchronising over a partial representation of

knowledge.

3.2.2 Programmable coordination rules

The vision of tuple-based coordination as a shared knowledge repository used

for agent coordination is further promoted by logical tuple-space models, wheretuple spaces

software agents coordinate through first-order logic tuples, and tuple spaces can

be programmed as first-order logic theories. A prominent example of such approach

is Shared Prolog [BC91], a framework for writing multi-processor Prolog systems.

More generally, this view promotes the idea of equipping the shared space with

some form of “intelligence”, e.g., in the form of an application logic that can

manipulate data in the shared space and the way that it can be accessed. Several

Linda-inspired approaches tackle this issue by enabling programmability at the

tuple-space level in order to express rules of coordination, and hence, pushing

46

CHAPTER 3. DISTRIBUTED COMPUTING AND COORDINATION

forward a notion of expressiveness of the coordination media [Bus+01]. Examples

include the following.

Law-Governed Interaction [MU00] — It structures the coordination logic

within groups of agents by explicit “rules of engagement”.

MARS (Mobile Agent Reactive Spaces) [CLZ00] — In MARS, tuple spaces

can be programmed with stateful “reaction objects” triggered upon access patterns

ReSpecT (Reaction Specification Tuples) [OD01] — In this framework,

logic specification tuples map events to transactional sequences of reactions, which

are primitive invocations of logic-based computations.

3.3 Distributed coordination

Many of the approaches outlined before, however, do not explicitly focus on

distributed systems, but on the coordination of centralised local components. As

software components become spread across the system network, so multiple tu-

ple spaces can be distributed across the system environment, enabling distributed

coordination abstractions, featuring mechanisms for event-based interactions, tim-

ing, and advanced data representation. This is the case with industrial systems

like JavaSpaces [FHA99], an API for distributed coordination through persistent,

shared spaces of objects, and TSpaces [Wyc+98], which combines Linda-like spaces

with asynchronous messaging.

Some middlewares take the approach a step further, by dealing with loca-

tion and mobility, and enabling expression of dynamic environment topologies in

a distributed setting, thus paving the way towards application of coordination

models to pervasive computing system scenarios. Indeed, tuple-based coordina-

tion approaches have been also used in the context of peer-to-peer (P2P) and

mobile ad-hoc networks (MANETs), where there is no pre-existing infrastructure

and devices interact opportunistically via short-range wireless technology. These

scenarios share various characteristics – mobility, dynamicity, locality, openness

– and can be considered a special case of physical deployment of situated multi-

47

CHAPTER 3. DISTRIBUTED COMPUTING AND COORDINATION

agent systems [BMS02], where the aforementioned features are not just issues

but also opportunities that can be exploited to construct collective intelligence

(cf., naturally-inspired systems like SwarmLinda [TM04b]). Systems for tuple-

based coordination in these contexts usually come with a middleware, dealing

with certain issues related to distribution and mobility, and extensions to the ba-

sic tuple-space model and Linda language to support specific aspects, e.g., related

to location management. Moreover, since networks of devices can be physically

situated (cf., MANETs), it comes natural to consider nodes as representatives of

space-time locations, and hence extend coordination models for such contexts with

first-class space and time abstractions (as covered in Chapter 4).

JION (JavaSpaces Implementation For Opportunistic Networks)

[BLG15] — JION is a P2P JavaSpace implementation specifically designed for

disconnected MANETS where connectivity is unstable.

LogOp [MS03] — LogOp extends basic Linda with coordination primitives for

dynamically accessing multiple distributed tuple spaces based on logic expressions.

Scope [MW00] — The concept of scope is introduced by Merrick et al. to

regulate visibility of tuples. This approach leverages distributed broadcasts for

tuple placement and migration.

Lime (Linda In a Mobile Environment) [MPR06] — Lime mobile agents

communicate with each other through “transiently shared tuple spaces” whose

content is dynamically reconfigured based on the set of co-located agents. That

is, Lime deals with both physical mobility of hosts (changing the actual network

topology) and logical mobility of agents across hosts. Each agent holds a local

tuple space. Agents are connected, forming a group, when they are co-located in

the same host or when they are located in connected hosts. Through transient

sharing, each agent in the group sees a tuple space given by the merging of all the

tuple spaces in the group.

Klaim (Kernel Language for Agent Interaction and Mobility) [DNFP98]

— In Klaim, tuples and operations are situated at specific physical localities called

48

CHAPTER 3. DISTRIBUTED COMPUTING AND COORDINATION

sites, whereas programs leverage Linda primitives referring to logical localities to

basically abstract from actual allocations. A system in Klaim consists of a network

of nodes, each located at some site, hosting processes. Processes are hence also

situated at a site, and issue operations whose target sites depend on an allocation

environment of the node, which provides a local view of how logical localities map

to sites.

3.4 Self-organising coordination

As coordination abstractions of various sorts (e.g., tuple spaces, channels, co-

ordination artefacts [VOR05; Omi+04]) are available in distributed settings, one is

directly faced with the problem of dealing with openness (hence, unexpectedness of

environment changes, faults, and interactions), large scale (possibly a huge number

of agents and coordination abstractions to be managed), and intrinsic adaptiveness

(such as the ability to intercept relevant events and react to them to guarantee

overall system resilience). This calls for an approach of self-organising coordina-

tion [VCO09], where coordination abstractions handle “local” interactions only

(and typically use stochastic mechanisms to keep the coordination process always

“up and running”), such that global and robust patterns of correct coordination

behaviour can emerge—achieved by trading off by-design adaptiveness with inher-

ent, automatic forms of adaptiveness.

Coordination models following this approach typically take their inspiration

from complex natural systems (from physics through chemistry, all the way to

ethology) and attempt to reuse the foundational mechanisms of such systems. A

primary source of inspiration for these systems is to be found in biology (social

animals, and insects in particular), whose foraging techniques inspire mechanisms

to regulate coordination [CVG09; TM04a; Pia+10].

SwarmLinda [TM04a] — SwarmLinda is a tuple-based middleware that brings

the collective intelligence displayed by swarms of ants to computational mecha-

nisms aimed at guaranteeing efficient retrieval of tuples. Tuples are handled as

forms of pheromones or items that ants (agents) continuously and opportunisti-

cally relocate.

49

CHAPTER 3. DISTRIBUTED COMPUTING AND COORDINATION

Biochemical tuple spaces — Chemical inspiration is used in [VC09; Vir+11]

to regulate the “activity level” of tuples, which drives the likelihood of their re-

trieval as well as their propagation rate. Similarly, ecological inspiration is used in

[Vir13] to inject competition, composition, and disposal behaviour in the context

of coordination of pervasive computing services.

3.4.1 Field-based coordination

Another important natural source of inspiration comes from physics: a num-

ber of physics-inspired self-organising coordination systems rely on the notion of

“field” (cf., gravitational field, electromagnetic field), which essentially provides a

framework to handle (create, manipulate, combine) global-level, distributed data

structures.

A notion of coordination field (or co-field) was initially proposed in [MZL03]

as a means to support self-organisation patterns of agent movement in complex

environments: it was used as an abstraction over the actual environment, spread

by both agents and the environment itself, and used by agents (able to locally

perceive the value of fields) to properly navigate the environment. Based on this

idea, the TOTA (Tuples On The Air) tuple-based middleware [MZ09] was proposed

to support field-based coordination for pervasive-computing applications.

TOTA [MZ09] — In TOTA, tuples are associated with propagation rules that

describe how tuples should be propagated (hop-by-hop) in a network and how the

content of tuples should change during propagation. So, these rules determine

the scope and transformation of tuples as they are automatically propagated to

neighbour nodes. Moreover, maintenance rules are used to define how tuple should

evolve by reacting to environmental events. In other words, TOTA enables the

specification of dynamic tuple fields. A derived middleware, TOTAM (Tuples On

The AMbient) [Boi+14], extends TOTA by evaluating the scope of tuples also

before transmitting them to neighbour nodes, and including a best-effort leasing

model.

Evolving tuples [SJ07] — The evolving tuples model is an extension to tra-

ditional Linda tuple spaces with the goal of supporting resource discovery in a

50

CHAPTER 3. DISTRIBUTED COMPUTING AND COORDINATION

pervasive system, relying on ideas similar to those of TOTA. Evolution is firstly

embedded in tuples by adding, to each field of the tuple, a name and a formula that

specifies the field behaviour over time. Formulas support the if-then-else construct

and arithmetic and boolean operators. Secondly, a new operation evolve() is in-

troduced in the tuple space, which is responsible for applying formulas to tuples

using contextual information.

στ-Linda [VPB12] — One of the first works connecting field-based coordina-

tion with formalisation tools typical of coordination models and languages (e.g.,

process algebras and transition systems) is the στ -Linda model, where agents can

inject into the space “processes” that spread, collect and decay tuples, ultimately

sustaining fields of tuples.

3.5 Final Remarks

This chapter provides a brief and focussed account on research in distributed

computing and coordination. Interaction, as an orthogonal dimension to compu-

tation, is indeed a crucial aspect of systems, able to give rise to complex behaviour

even out of simple processes (as can be observed in many natural systems). Self-

organising and field-based coordination, in particular, have largely contributed to

spatial and collective adaptive computing approaches (as covered in Chapter 4)

and, in turn, to aggregate computing (Chapter 5), the main topic of this thesis.

References

[AG05] Luca Aceto and Andrew D Gordon. “Algebraic process calculi: The first

twenty five years and beyond”. In: Process Algebra. http://www. brics.

dk/NS/05/3/BRICS-NS-05-3. pdf (2005).

[Bae05] Jos CM Baeten. “A brief history of process algebra”. In: Theoretical Computer

Science 335.2-3 (2005), pp. 131–146.

[BC91] Antonio Brogi and Paolo Ciancarini. “The Concurrent Language, Shared

Prolog”. In: ACM Transactions on Programming Languages and Systems

(TOPLAS) 13.1 (1991), pp. 99–123. issn: 0164-0925. doi: 10.1145/114005.

102807.

51

https://doi.org/10.1145/114005.102807
https://doi.org/10.1145/114005.102807

CHAPTER 3. DISTRIBUTED COMPUTING AND COORDINATION

[BG06] Howard Bowman and Rodolfo Gomez. Concurrency theory: calculi an automata

for modelling untimed and timed concurrent systems. Springer Science & Busi-

ness Media, 2006.

[BK84] Jan A Bergstra and Jan Willem Klop. “Process algebra for synchronous com-

munication”. In: Information and control 60.1-3 (1984), pp. 109–137.

[BLG15] Abdulkader Benchi, Pascale Launay, and Frédéric Guidec. “A P2P tuple space

implementation for disconnected MANETs”. In: Peer-to-Peer Networking and

Applications 8.1 (2015), pp. 87–102.

[BMS02] Stefania Bandini, Sara Manzoni, and Carla Simone. “Dealing with space in

multi–agent systems: a model for situated MAS”. In: Proceedings of the first

international joint conference on Autonomous agents and multiagent systems:

part 3. 2002, pp. 1183–1190.

[Boi+14] Elisa Gonzalez Boix, Christophe Scholliers, Wolfgang De Meuter, and Theo

D’Hondt. “Programming mobile context-aware applications with TOTAM”.

In: Journal of Systems and Software 92 (2014), pp. 3–19.

[Bus+01] Nadia Busi, Paolo Ciancarini, Roberto Gorrieri, and Gianluigi Zavattaro. “Co-

ordination Models: A Guided Tour”. In: Coordination of Internet Agents: Mod-

els, Technologies, and Applications. Springer, 2001. Chap. 1, pp. 6–24. isbn:

3-540-41613-7. doi: 10.1007/978-3-662-04401-8_1.

[BZ07] Mario Bravetti and Gianluigi Zavattaro. “Service oriented computing from a

process algebraic perspective”. In: J. Log. Algebr. Program. 70.1 (2007), pp. 3–

14. doi: 10.1016/j.jlap.2006.05.002. url: https://doi.org/10.1016/j.

jlap.2006.05.002.

[CDK05] George F Coulouris, Jean Dollimore, and Tim Kindberg. Distributed systems:

concepts and design. Pearson Education, 2005.

[Cia96] Paolo Ciancarini. “Coordination models and languages as software integrators”.

In: ACM Computing Surveys (CSUR) 28.2 (1996), pp. 300–302.

[CLZ00] Giacomo Cabri, Letizia Leonardi, and Franco Zambonelli. “MARS: A Pro-

grammable Coordination Architecture for Mobile Agents”. In: IEEE Internet

Computing 4.4 (2000), pp. 26–35. doi: 10.1109/4236.865084.

[Cor91] Daniel Corkill. “Blackboard Systems”. In: Journal of AI Expert 9.6 (1991),

pp. 40–47.

[CVG09] Matteo Casadei, Mirko Viroli, and Luca Gardelli. “On the collective sort prob-

lem for distributed tuple spaces”. In: Science of Computer Programming 74.9

(2009), pp. 702–722. doi: 10.1016/j.scico.2008.09.018.

52

https://doi.org/10.1007/978-3-662-04401-8_1
https://doi.org/10.1016/j.jlap.2006.05.002
https://doi.org/10.1016/j.jlap.2006.05.002
https://doi.org/10.1016/j.jlap.2006.05.002
https://doi.org/10.1109/4236.865084
https://doi.org/10.1016/j.scico.2008.09.018

CHAPTER 3. DISTRIBUTED COMPUTING AND COORDINATION

[DNFP98] Rocco De Nicola, Gianluigi Ferrari, and Rosario Pugliese. “KLAIM: A Ker-

nel Language for Agent Interaction and Mobility”. In: IEEE Transaction on

Software Engineering (TOSE) 24.5 (1998), pp. 315–330. issn: 0098-5589. doi:

10.1109/32.685256.

[FHA99] Eric Freeman, Susanne Hupfer, and Ken Arnold. JavaSpaces Principles, Pat-

terns, and Practice: Principles, Patterns and Practices. The Jini Technology

Series. Addison-Wesley Longman, 1999. isbn: 0201309556.

[Gar02] Vijay K. Garg Ph.D. Elements of Distributed Computing. New York, NY, USA:

John Wiley & Sons, Inc., 2002. isbn: 0-471-03600-5.

[Gel85] David Gelernter. “Generative communication in Linda”. In: ACM Transactions

on Programming Languages and Systems (TOPLAS) 7.1 (1985), pp. 80–112.

doi: 10.1145/2363.2433.

[Hoa78] Charles Antony Richard Hoare. “Communicating sequential processes”. In: The

origin of concurrent programming. Springer, 1978, pp. 413–443.

[LDB15] Angel Lagares Lemos, Florian Daniel, and Boualem Benatallah. “Web service

composition: a survey of techniques and tools”. In: ACM Computing Surveys

(CSUR) 48.3 (2015), pp. 1–41.

[Lyn96] Nancy Lynch. Distributed Algorithms. San Francisco, USA: Morgan Kaufmann,

1996.

[MC94] Thomas W Malone and Kevin Crowston. “The interdisciplinary study of coor-

dination”. In: ACM Computing Surveys (CSUR) 26.1 (1994), pp. 87–119.

[Mil09] Robin Milner. The space and motion of communicating agents. Cambridge Uni-

versity Press, 2009.

[Mil89] Robin Milner. Communication and concurrency. Vol. 84. Prentice hall New

York etc., 1989.

[Mil99] Robin Milner. Communicating and Mobile Systems: The &Pgr;-calculus. New

York, NY, USA: Cambridge University Press, 1999. isbn: 0-521-65869-1.

[MPR06] Amy L. Murphy, Gian Pietro Picco, and Gruia-Catalin Roman. “Lime: A co-

ordination model and middleware supporting mobility of hosts and agents”. In:

ACM Transactions on Software Engineering and Methodology (TOSEM) 15.3

(2006), pp. 279–328. issn: 1049-331X. doi: 10.1145/1151695.1151698.

[MS03] Ronaldo Menezes and Jim Snyder. “Coordination of Distributed Components

Using LogOp”. In: International Conference on Parallel and Distributed Pro-

cessing Techniques and Applications (PDPTA). Vol. 1. CSREA Press, 2003,

pp. 109–114. isbn: 1-892512-41-6.

53

https://doi.org/10.1109/32.685256
https://doi.org/10.1145/2363.2433
https://doi.org/10.1145/1151695.1151698

CHAPTER 3. DISTRIBUTED COMPUTING AND COORDINATION

[MU00] Naftaly H. Minsky and Victoria Ungureanu. “Law-Governed Interaction: A

Coordination and Control Mechanism for Heterogeneous Distributed Systems”.

In: ACM Transactions on Software Engineering and Methodology (TOSEM) 9.3

(2000), pp. 273–305. issn: 1049-331X. doi: 10.1145/352591.352592.

[MW00] Iain Merrick and Alan Wood. “Scoped coordination in open distributed sys-

tems”. In: International Conference on Coordination Languages and Models.

Springer, 2000, pp. 311–316. doi: 10.1007/3-540-45263-X_21.

[MZ09] Marco Mamei and Franco Zambonelli. “Programming pervasive and mobile

computing applications: The TOTA approach”. In: ACM Transactions on Soft-

ware Engineering Methodologies (TOSEM) 18.4 (2009), pp. 1–56. issn: 1049-

331X. doi: 10.1145/1538942.1538945.

[MZL03] Marco Mamei, Franco Zambonelli, and Letizia Leonardi. “Co-Fields: Towards

a Unifying Approach to the Engineering of Swarm Intelligent Systems”. In:

Engineering Societies in the Agents World III. Springer, 2003, pp. 68–81. isbn:

978-3-540-39173-9. doi: 10.1007/3-540-39173-8_6.

[OD01] Andrea Omicini and Enrico Denti. “From Tuple Spaces to Tuple Centres”. In:

Science of Computer Programming 41.3 (2001), pp. 277–294. issn: 0167-6423.

doi: 10.1016/S0167-6423(01)00011-9.

[Omi+04] Andrea Omicini, Alessandro Ricci, Mirko Viroli, Cristiano Castelfranchi, and

Luca Tummolini. “Coordination Artifacts: Environment-Based Coordination

for Intelligent Agents”. In: 3rd International Joint Conference on Autonomous

Agents and Multiagent Systems (AAMAS). IEEE Computer Society, 2004,

pp. 286–293. isbn: 1-58113-864-4.

[PA98] George A Papadopoulos and Farhad Arbab. “Coordination models and lan-

guages”. In: Advances in computers. Vol. 46. Elsevier, 1998, pp. 329–400.

[Pel03] Chris Peltz. “Web services orchestration and choreography”. In: Computer

36.10 (2003), pp. 46–52.

[Pet66] Carl Adam Petri. “Communication with automata”. In: (1966).

[Pia+10] Danilo Pianini, Sascia Virruso, Ronaldo Menezes, Andrea Omicini, and

Mirko Viroli. “Self Organization in Coordination Systems Using a WordNet-

Based Ontology”. In: 4th International Conference on Self-Adaptive and Self-

Organizing Systems (SASO). IEEE, 2010. doi: 10.1109/saso.2010.35.

[SJ07] Drew Stovall and Christine Julien. “Resource discovery with evolving tuples”.

In: Int. Workshop on Engineering of software services for pervasive environ-

ments. ESSPE. New York, NY, USA: ACM, 2007, pp. 1–10. isbn: 978-1-59593-

798-8. doi: 10.1145/1294904.1294905.

54

https://doi.org/10.1145/352591.352592
https://doi.org/10.1007/3-540-45263-X_21
https://doi.org/10.1145/1538942.1538945
https://doi.org/10.1007/3-540-39173-8_6
https://doi.org/10.1016/S0167-6423(01)00011-9
https://doi.org/10.1109/saso.2010.35
https://doi.org/10.1145/1294904.1294905

CHAPTER 3. DISTRIBUTED COMPUTING AND COORDINATION

[TM04a] Robert Tolksdorf and Ronaldo Menezes. “Using Swarm Intelligence in Linda

Systems”. In: Engineering Societies in the Agents World IV. Vol. 3071. Lec-

ture Notes in Computer Science. Springer, 2004, pp. 519–519. isbn: 978-3-540-

22231-6. doi: 10.1007/978-3-540-25946-6_3.

[TM04b] Robert Tolksdorf and Ronaldo Menezes. “Using Swarm Intelligence in Linda

Systems”. In: Engineering Societies in the Agents World IV. Vol. 3071. Lecture

Notes in Computer Science. Springer, 2004, pp. 49–65. isbn: 3-540-22231-6.

doi: 10.1007/978-3-540-25946-6_3.

[TVS07] Andrew S Tanenbaum and Maarten Van Steen. Distributed systems: principles

and paradigms. Prentice-Hall, 2007.

[VC09] Mirko Viroli and Matteo Casadei. “Biochemical Tuple Spaces for Self-

organising Coordination”. In: Lecture Notes in Computer Science. Springer,

2009, pp. 143–162. doi: 10.1007/978-3-642-02053-7_8.

[VCO09] Mirko Viroli, Matteo Casadei, and Andrea Omicini. “A framework for mod-

elling and implementing self-organising coordination”. In: ACM Symposium on

Applied Computing (SAC). 2009, pp. 1353–1360. isbn: 978-1-60558-166-8. doi:

10.1145/1529282.1529585.

[Vir+11] Mirko Viroli, Matteo Casadei, Sara Montagna, and Franco Zambonelli. “Spatial

Coordination of Pervasive Services through Chemical-inspired Tuple Spaces”.

In: ACM Transactions on Autonomous and Adaptive Systems (TAAS) 6.2

(2011), 14:1 –14:24. issn: 1556-4665. doi: 10.1145/1968513.1968517.

[Vir13] Mirko Viroli. “On competitive self-composition in pervasive services”. In: Sci-

ence of Computer Programming 78.5 (2013), pp. 556 –568. issn: 0167-6423.

doi: 10.1016/j.scico.2012.10.002.

[VOR05] Mirko Viroli, Andrea Omicini, and Alessandro Ricci. “Engineering MAS en-

vironment with artifacts”. In: 2nd International Workshop “Environments for

Multi-Agent Systems”(E4MAS 2005). AAMAS. 2005, pp. 62–77.

[VPB12] Mirko Viroli, Danilo Pianini, and Jacob Beal. “Linda in Space-Time: An Adap-

tive Coordination Model for Mobile Ad-Hoc Environments”. In: 14th Interna-

tional Conference on Coordination Models and Languages. 2012, pp. 212–229.

doi: 10.1007/978-3-642-30829-1_15.

[Wyc+98] Peter Wyckoff, Stephen W. McLaughry, Tobin J. Lehman, and Daniel A.

Ford. “T Spaces”. In: IBM Journal of Research and Development 37.3 – Java

Techonology (1998), pp. 454–474. issn: 0018-8670. doi: 10.1147/sj.373.0454.

55

https://doi.org/10.1007/978-3-540-25946-6_3
https://doi.org/10.1007/978-3-540-25946-6_3
https://doi.org/10.1007/978-3-642-02053-7_8
https://doi.org/10.1145/1529282.1529585
https://doi.org/10.1145/1968513.1968517
https://doi.org/10.1016/j.scico.2012.10.002
https://doi.org/10.1007/978-3-642-30829-1_15
https://doi.org/10.1147/sj.373.0454

Chapter 4

Spatial and Collective Adaptive

Computing: State of the Art

An abstraction is one thing that represents several real

things equally well.

Edsger W. Dijkstra

Contents
4.1 Spatial Computing Approaches 59

4.1.1 Spatial pattern languages 60

4.1.2 General purpose spatial computing languages 61

4.2 Network Abstraction and Space-Oriented Macroprogramming
Approaches . 62

4.3 Collective Adaptive Computing Approaches 66

4.4 Final Remarks . 68

References . 69

More or less independently of the problem of finding suitable coordination

models for distributed and situated systems, a number of other works investigated

the relationship between (local) interaction and global system properties by di-

rectly focussing on the space-time structure of systems or by directly addressing

ensembles and collective behaviour. Different research communities shared this

orientation, often using different terminology, as witnessed by various surveys fo-

57

CHAPTER 4. SPATIAL AND COLLECTIVE ADAPTIVE COMPUTING

Field-based

coordination

(Chapter 3)

Spatial

Computing

Aggregate

Computing

(Chapter 5)

MAS

coordination

(Section 2.2.1)

Collective

adaptive

systems

Spatial

pattern

languages

Spatial

streams

languages

Network

abstraction

languages

Proto [BB06]

MGS [Gia+02; Gia+05]

GPL [Coo99a]

OSL [Nag01]

Paintable comp. [But02]

Pieces [Liu+03]

Spidey [MP06]

Hood [Whi+04]

Abstract Regions [WM04]

AmbientTalk [VC+14]

Sense2P [CPI12]

Kairos [GGG05]

SpatialViews [Ni+05]

Pleiades [Bou+18]

CAST [RHS06]

GeoLinda [Pau+07]

SCEL [De +14]

AErlang/AbC [DN+18]

Carma [LH16]

Helena [HK14]

DEECo [Bur+13]

GCM/ProActive [BHR15]

Meld [AR+07]

Comingle [LCF15]

Buzz [PB16]

SmartSociety [Sce+17]

TinyDB [Mad+02]

Cougar [YG02]

TinyLime [Cur+05]

Regiment [NW04]

SOSNA [KC08]

STOP [WBS07]

Chronus [WBS10]

Field Calculus [Aud+19]

Figure 4.1: Overview of research threads leading from spatial computing and
CASs to field calculus and aggregate computing, with some representative biblio-
graphic references. This summary—by no means exhaustive—provides key high-
lights mainly from the perspective of Chapter 2.

58

CHAPTER 4. SPATIAL AND COLLECTIVE ADAPTIVE COMPUTING

cussing on organisation of aggregates of devices [Bea+13; Vir+19], abstractions

for programming WSNs [MP11], or autonomic features [Dob+06; OV11; MT04].

4.1 Spatial Computing Approaches

In [Bea+13], spatial computing languages have found to be used in many do-

mains.

• Amorphous computing — This category includes computational approaches

focussing on controlling large-scale systems of locally interacting, unreliable

devices; these target “amorphous computers”, i.e., networks of devices that

approximate continuous physical space.

• Biological modelling and design — Since biological systems often leverage

spatial locality and structure to form or accomplish their functions, ap-

proaches in synthetic biology tend to capture such notions for design pur-

poses.

• Agent-based models — Since agents are situated entities operating within

some environment and organising into structures, multi-agent system mod-

elling and simulation frameworks sometimes provide explicit support for spa-

tial features.

• Wireless sensor/actuator networks (WSAN) — These systems are laid on

physical environments to gather data, perceive events, and possibly apply lo-

cal interventions through effectors. As a consequence, languages for WSANs

tend to provide mechanisms for controlling topology as well as moving and

aggregating data, considering various aspects such as, e.g., energy consump-

tion.

• Pervasive computing — Pervasive and ubiquitous systems are inherently in-

tegrated into environments and intended to provide contextual services in a

seamless way.

• Swarm and modular robotics — Swarm robotics leverages locality of interac-

tion to coordinate collective activity in spatial environments, whereas modu-

lar robotics approaches address formation and re-configuration of morpholo-

gies, often through incremental modifications based on physical contact.

59

CHAPTER 4. SPATIAL AND COLLECTIVE ADAPTIVE COMPUTING

• Parallel and reconfigurable computing — In this field, researches focus on

hardware architectures and arrangements for efficient computation. Space is

relevant because it directly affects communication delays and hence perfor-

mance.

• Formal calculi — Process algebras are used to formally model systems of

communicating processes; sometimes, spatial abstractions are provided to

deal with issues like communication, situatedness, and mobility.

By neglecting the domains in which spatial abstractions have been used and in-

stead adopting an engineering and programming viewpoint, in the following, an

excerpt of relevant spatial computing approaches is provided, by summarising and

extending the collection found in the survey [Bea+13]. Works that abstract net-

works, by using global or spatial abstractions, are covered separately in Section 4.2,

whereas those dealing with dynamic collectives are covered in Section 4.3.

4.1.1 Spatial pattern languages

Another class of related approaches falls under the umbrella of languages for

expressing geometric constructs and topological patterns. In fact, in several ap-

plication contexts concerning environment sensing and control, what is key is the

physical (geometric, topological) shape that coalitions of mobile agents take, or

that certain data items create while diffusing in the environment.

Growing Point Language (GPL) [Coo99b] — In GPL, an amorphous

medium [Bea05] (essentially defined by an ad-hoc network) can be programmed

by a nature-inspired approach of “botanical computing”, where computational

processes are seen as “growing points” increasingly expanding across neighbours

until reaching a fixpoint shape defined by declarative constraints; more specifically,

topological structures are formed through attraction and repulsion forces working

on growing points (like tropisms in plants or insects), driven by simulated chemical

signals.

Origami Shape Language (OSL) [Nag08] — OSL is used to achieve simi-

lar goals of GPL, though focussing on programming a “computational surface”,

60

CHAPTER 4. SPATIAL AND COLLECTIVE ADAPTIVE COMPUTING

intended as a set of small devices working independently of their density in the

surface: this language defines geometrical constructs to create basic regions and

compose them.

Paintable computing [But02] — A paintable computer is essentially an amor-

phous medium consisting of a large number of tiny computing particles that in-

teract with neighbour particles and run asynchronously. Inspired by material self-

assembly, this paintable programming model consists of defining a set of process

fragments (pfrags) that autonomously migrate across the particles and aggregate.

Examples of process fragments include gradients, multi-gradients, tessellation pro-

cesses (creation of Voronoi regions through a multi-gradient from anchor points),

diffusion processes, channels, coordinate system formation processes, etc.

4.1.2 General purpose spatial computing languages

General-purpose spatial computing languages address the problem of engineer-

ing distributed, concurrent computations by providing mechanisms to manipu-

late data structures diffused in space and evolving in time. Examples include

StarLisp [Las+88], the systolic computing programming system SDEF [EC89]

and, most notably, the following ones.

MGS [Gia+05] — Following a topological computing approach, MGS defines

computations over manifolds, the goal of which being to alter the manifold itself

as a way to represent input-output transformation.

Computational fields [MZL03; Aud+19] — A computational field is a (dy-

namic) map from a domain of devices to computational objects. The field cal-

culus [Aud+18] is a universal core calculus based on computational fields that

underlies the aggregate computing paradigm [Vir+19] (see Chapter 5). Specific

programming languages to work with computational fields have been introduced

as well, with the Proto [BB06] programming language as common ancestor, Pro-

telis [PVB15] as its Java-oriented DSL version, and ScaFi as presented in this

thesis (Chapter 7).

61

CHAPTER 4. SPATIAL AND COLLECTIVE ADAPTIVE COMPUTING

4.2 Network Abstraction and Space-Oriented

Macroprogramming Approaches

In this category, there are several approaches, often targetting mobile ad-hoc

(MANET) or sensor networks (WSN), that abstract the network of devices itself

to simplify various network-wide operations like data collection and event detec-

tion. For instance, many of these provide the abstraction of a region to capture a

collective of nodes through the logical or physical space they occupy; this notion

can be defined diversely, e.g.:

• geometrically, based on distance metrics;

• topologically, based on network links or graph connectivity;

• logically, through a matching predicate (cf., logical neighbourhoods in

Spidey [MP06]).

Other approaches use spatio-temporal or macro abstractions to support data gath-

ering and processing in distributed systems.

GeoLinda [Pau+07] — GeoLinda provides geometry-aware distributed tuple

spaces where both tuples and reading operations have a spatial extension, or vol-

ume, called tuple shape or addressing shape, respectively. Shapes can take various

geometric forms (spheres, cones, etc.) and are expressed relatively to a device’s

location and orientation.

CAST (Coordination Across Space and Time) [RHS06] — CAST is a

coordination model aimed at MANETs that leverages mobility to enable opera-

tions across space and time. Like other Linda approaches to MANETs, CAST

assumes each host has an associated tuple space; moreover, it assumes that hosts

move autonomously according to a motion profile, advertised through a gossiping

protocol. The idea is to leverage knowledge about the motion of other hosts to

support operations despite disconnected routes. Operations can refer to remote

hosts or spatiotemporal locations: these become operation requests which are also

associated to a motion profile (scoped on the host network space) and routed to

the destination (which may include multiple target hosts) through possibly discon-

62

CHAPTER 4. SPATIAL AND COLLECTIVE ADAPTIVE COMPUTING

nected communication. Write operations (outs) are actively performed by sending

copies of tuples to hosts entering an area where such tuples are situated. Removal

operations (ins) are 4-phase: (1) the operation is routed to the targets, (2) an out

to the originator is issued for each matching tuple in the targets, (3) the originator

non-deterministically chooses one tuple, and (4) the host owning the chosen tuple

destroys the tuple.

SpatialViews [Ni+05] — This approach works by abstracting a MANET into

spatial views (i.e., collections of virtual nodes) of a configurable space granularity,

that can be iterated on to visit nodes and request services. A virtual node is the

digital twin of a physical device that has a spatio-temporal location and a set of

provided services.

AmbientTalk [VC+14] — It is an ambient-oriented programming language for

MANETs based on active objects that provides a classless, prototype-based ob-

ject model, reified communication traces, ambient acquaintance discovery/failover

mechanisms, as well as support for resilience against transient network partitions

by automatically buffering asynchronously sent messages.

Hood [Whi+04] — It defines data types to model an agent’s neighbourhood and

attributes, with operations to read/modify such attributes across neighbours, and

a platform optimising execution of such operations by proper caching techniques.

Abstract Regions [WM04] — It provides a “region-based collective commu-

nication interface [...] to hide the details of data dissemination and aggregation

within regions” [WM04]. Supported classes of operators include those for neigh-

bour discovery, enumeration of nodes in a region, data sharing, and data aggrega-

tion (or reduction).

Regiment [NW04] — It is a functional reactive, spatiotemporal, macropro-

gramming language, which models network state as time-varying signals and re-

gions as spatially distributed signals (i.e., computational fields). Regiment pro-

vides functional primitives to work with regions. These global operations abstract

data acquisition, storage, and communication: it is the job of the compiler to map

63

CHAPTER 4. SPATIAL AND COLLECTIVE ADAPTIVE COMPUTING

these to local operations on the network nodes. Region formation primitives are

grouped into two categories: functions for growing regions from “source” points

(implemented using spanning trees) and gossip-based functions (based on one-hop

broadcasts).

Pieces (Programming and Interaction Environment for Collaborative

Embedded Systems) [Liu+03] — Pieces is a state-centric programming model

where

programmers think in terms of dividing the global state of physical phe-

nomena into a hierarchical set of independently updatable pieces with

one computational entity (called a principal) maintaining each piece.

That is, a principal is a (possibly mobile) agent that interacts with other principals

to update its piece of state. Pieces leverages the notion of collaboration group,

i.e., a scoped set of principals playing different roles that collaborate to a state

update, to abstract communication and resource allocation patterns. Examples of

groups include geographically constrained groups (a set of nodes located in some

geographical region), n-hop neighbourhood groups (a set of nodes within n hops

from a given anchor node), and publish/subscribe groups (a set of consumer and

producer nodes on certain topics).

SpaceTime Oriented Programming (STOP) [WBS07] — This WSN

macroprogramming system exposes a spacetime abstraction to support collection

and processing of past or future data in arbitrary spatio-temporal resolutions. Ar-

chitecturally, it consists of a network of battery-powered sensors (where data is

gathered) and base stations (where data is processed) linked to a gateway con-

nected to the STOP server, which holds network data in the so-called spatiotem-

poral database. Operationally, the system is implemented through mobile agents

carrying data to the STOP server (which in turn updates the database): event

agents detect events and replicate themselves to move hop-by-hop towards a base

station, where they finally push data; by contrast, query agents move across a spa-

tial region in order to pull relevant data. The STOP language is an object-oriented,

Ruby DSL enabling on-command and on-demand data collection.

64

CHAPTER 4. SPATIAL AND COLLECTIVE ADAPTIVE COMPUTING

Chronus [WBS10] — Defined as a spatiotemporal macroprogramming lan-

guage, Chronus is a Ruby DSL, evolved from STOP, for expressing activities of

data gathering and event detection in WSNs. A macroprogram in Chronus can

specify multiple one-time or periodic queries upon objects representing spacetime

regions; instead, event detection is performed against a set of spaces captured

through an event specification (predicate); event handlers are functions from the

space and time of event occurrences.

Sense2P [CPI12] — It is a logic macroprogramming system for WSNs, based

on LogicQ [CI08], a system that abstracts sensor networks as relational databases

and supports collecting data and spreading logic queries. In Sense2P, programs

are expressed in a Prolog-like language: facts represent sensor data, and are sent

when needed to more powerful nodes (such as base stations) to infer increasingly

non-local facts (through rules) and answer queries.

SOSNA [KC08] — SOSNA is a stream-based, macroprogramming languages

for WSANs where programs operate on streams of spatial values. Spatial values

are essentially like the regions in Regiment and are called fields ; the other kind of

spatial value is given by clusters, which are spatially-limited fields with a singleton

node (cluster head) holding cluster field data. Execution of SOSNA programs is

round-wise and synchronous: a round consists of an application-specific number of

steps ; in each step, neighbours exchange a protocol packet. Any network operator

requires a fixed number of execution steps, and the compiler can statically infer

the maximum number of steps of each round. In summary, SOSNA is very similar

to Proto [BB06], but requires synchronisation and is limited to WSANs.

Kairos [GGG05] — It is a procedural macroprogramming language for WSNs

that assumes loose synchrony (it leverages eventual consistency to keep low over-

head) and exposes three main abstractions: named nodes, (one-hop) neighbours,

and remote data access.

Pleiades [Bou+18] — It is a topology programming framework leveraging self-

organising overlays and assembly-based modularity [Bru+06] to construct and en-

force self-stabilising structural invariants in large-scale distributed systems. Shapes

65

CHAPTER 4. SPATIAL AND COLLECTIVE ADAPTIVE COMPUTING

are described through templates specifying positions and neighbours for nodes;

configurations of shapes are disseminated in the system and used by nodes for

joining shapes; shape formation is regulated through protocols. However, these

features are not captured linguistically.

4.3 Collective Adaptive Computing Approaches

In this research area, very related to spatial computing (since systems are of-

ten situated and space represents a foundational structure for coordination), it is

common to consider large, dynamic groups of devices as first-class abstractions

– sometimes called ensembles, collectives, or aggregates – and support interaction

between (sub-)groups of devices by abstracting certain details away (e.g., network-

ing, or individual logical connections). With respect to the network abstraction

and macroprogramming approaches summarised in Section 4.2, in this section the

focus is more on works addressing the specification of dynamic ensembles, that do

not take an explicit, spatial space or that are not limited to data gathering and

processing.

Helena [HK14] — In Helena (“Handling massively distributed systems with

ELaborate ENsemble Architectures”), components can dynamically participate in

multiple ensembles and adapt according to different roles whose behaviour is given

by a process expression.

Distributed Emergent Ensembles of Components (DEECo) [Bur+13]

— DEECo is another CAS model where components can only communicate by

dynamically binding together through ensembles. A DEECo ensemble is formed

according to a membership condition and consists of one coordinator and mul-

tiple members interacting by implicit knowledge exchange. DEECo has a Java

implementation called jDEECo which enables the definition of components and

ensembles through Java annotations.

GCM/ProActive [BHR15] — This framework supports the development of

large-scale ensembles of adaptable autonomous devices through a hierarchical com-

66

CHAPTER 4. SPATIAL AND COLLECTIVE ADAPTIVE COMPUTING

ponent model where components have a non-functional membrane and “collective

interfaces”, and a programming model based on active objects.

Service Component Ensemble Language (SCEL) [De +14] — SCEL is a

kernel language to specify the behaviour of autonomic components, the logic of

ensemble formation, as well interaction through attribute-based communication

(which enables implicit selection of a group of recipients).

AErlang/AbC [Alr+15; DN+18] — SCEL is a rich language. A simpler pro-

cess calculus inspired by SCEL is AbC (Attribute-based Communication) [Alr+15].

AbC has been implemented for the Erlang programming language through the

AErlang library [DN+18].

CARMA [LH16] — CARMA (acronym for Collective Adaptive Resource-

sharing Markovian Agents) is a stochastic process algebra and language that mod-

els collective of components that may dynamically aggregate into ensembles. It

uses attribute-based communication (uni- or multi-cast) to coordinate large en-

sembles of devices via local broadcast operations.

Meld [AR+07] — Meld is a logic programming language for modular robotics.

It abstracts low-level coordination in robot ensembles by taking a global perspec-

tive to programming. Production rules are used to generate new facts from existing

ones to possibly enable other rules (forward chaining); facts that are invalidated

will be eventually deleted; aggregate rules are used to collapse multiple facts into

one.

Comingle [LCF15] — Inspired by Meld, Comingle is a distributed, logic pro-

gramming framework for systems of mobile devices. In this model, devices are

identified through a location and contribute to the system through located facts ;

the set of all located facts is called a rewriting state; rules operate on rewriting

states. The rewriting semantics is global: it operates on a distributed data struc-

ture of located facts (contributed by the locations participating in the ensemble).

67

CHAPTER 4. SPATIAL AND COLLECTIVE ADAPTIVE COMPUTING

Buzz [PB16] — Buzz is a swarm-oriented programming system. In Buzz, a

swarm consists of a set of robots equipped with the Buzz virtual machine and run-

ning the same Buzz script in a step-by-step fashion. In each step, a robot (i) collects

sensor readings and incoming messages; (ii) executes a portion of the Buzz script;

(iii) sends output messages; and (iv) applies actuators on actuator values hold in

the state. Robots can share information through virtual stigmergy [PLBB16] or by

querying neighbours. The language comprises both single-robot and swarm-based

primitives.

SmartSociety platform — In [Sce+17], a programming model of SmartSoci-

ety for hybrid collaborative adaptive systems is proposed in which the designer

specifies an environment where collectives—i.e., persistent or transient teams of

peers (humans and machines)—are involved in collective tasks.

In the above approaches, the ensemble abstraction is dynamic—in order to cope

with change—and hence provides a way to adapt the coordination logic.

4.4 Final Remarks

As the complexity of computer-based artificial systems increases – because of

more (heterogeneous) components, more interconnections, and more abstraction

layers – so is the need for techniques capturing collective behaviour, adaptivity,

and global aspects of systems. The approaches surveyed in this chapter contribute

to this quest by leveraging space-time and macro abstractions. However, they

generally target only specific domains (cf. query languages for WSNs, or swarm

programming languages), provide only basic mechanisms (e.g., ensemble mem-

bership, collective communication interfaces), lack the ability to compose simple

collective behaviours together to build more complex ones, or are too abstract (pro-

viding only a core calculus that does not easily map to effective implementations).

Among the approaches consider, the field calculus seems particularly suitable as

a general-purpose, “scalable” model for expressing how local activity turns into

collective adaptive behaviour. A more in-depth presentation of this framework and

the corresponding programming paradigm, called aggregate computing, is provided

68

CHAPTER 4. SPATIAL AND COLLECTIVE ADAPTIVE COMPUTING

in Chapter 5. The rest of the thesis builds on aggregate computing research to

provide contributions – in terms of model extensions, tools, and patterns – for the

development complex collective adaptive (eco-)systems.

References

[Alr+15] Yehia Abd Alrahman, Rocco De Nicola, Michele Loreti, Francesco Tiezzi, and

Roberto Vigo. “A calculus for attribute-based communication”. In: Proceedings

of the 30th Annual ACM Symposium on Applied Computing. 2015, pp. 1840–

1845.

[AR+07] Michael P Ashley-Rollman, Seth Copen Goldstein, Peter Lee, Todd C Mowry,

and Padmanabhan Pillai. “Meld: A Declarative Approach to Programming

Ensembles”. In: International Conference on Intelligent Robots and Systems

(IROS). IEEE. 2007, pp. 2794–2800. doi: 10.1109/IROS.2007.4399480.

[Aud+18] Giorgio Audrito, Jacob Beal, Ferruccio Damiani, and Mirko Viroli. “Space-time

universality of field calculus”. In: International Conference on Coordination

Languages and Models. Springer. 2018, pp. 1–20.

[Aud+19] Giorgio Audrito, Mirko Viroli, Ferruccio Damiani, Danilo Pianini, and Jacob

Beal. “A Higher-Order Calculus of Computational Fields”. In: ACM Transac-

tions on Computational Logic 20.1 (2019), pp. 1–55. doi: 10.1145/3285956.

[BB06] Jacob Beal and Jonathan Bachrach. “Infrastructure for Engineered Emer-

gence in Sensor/Actuator Networks”. In: IEEE Intelligent Systems 21 (2 2006),

pp. 10–19. doi: 10.1109/MIS.2006.29.

[Bea05] J. Beal. “Amorphous medium language”. In: Large-Scale Multi-Agent Systems

Workshop (LSMAS). Available at http://jakebeal.com/. 2005, pp. 1–7.

[Bea+13] Jacob Beal, Stefan Dulman, Kyle Usbeck, Mirko Viroli, and Nikolaus Correll.

“Organizing the Aggregate: Languages for Spatial Computing”. In: Formal

and Practical Aspects of Domain-Specific Languages: Recent Developments. A

longer version available at: http://arxiv.org/abs/1202.5509. IGI Global,

2013. Chap. 16, pp. 436–501. isbn: 978-1-4666-2092-6. doi: 10.4018/978-1-

4666-2092-6.ch016.

[BHR15] Françoise Baude, Ludovic Henrio, and Cristian Ruz. “Programming distributed

and adaptable autonomous components—the GCM/ProActive framework”. In:

Software: Practice and Experience 45.9 (2015), pp. 1189–1227. doi: 10.1002/

spe.2270.

69

https://doi.org/10.1109/IROS.2007.4399480
https://doi.org/10.1145/3285956
https://doi.org/10.1109/MIS.2006.29
http://arxiv.org/abs/1202.5509
https://doi.org/10.4018/978-1-4666-2092-6.ch016
https://doi.org/10.4018/978-1-4666-2092-6.ch016
https://doi.org/10.1002/spe.2270
https://doi.org/10.1002/spe.2270

CHAPTER 4. SPATIAL AND COLLECTIVE ADAPTIVE COMPUTING

[Bou+18] Simon Bouget, Yérom-David Bromberg, Adrien Luxey, and François Taiani.

“Pleiades: Distributed structural invariants at scale”. In: 2018 48th Annual

IEEE/IFIP International Conference on Dependable Systems and Networks

(DSN). IEEE. 2018, pp. 542–553.

[Bru+06] Eric Bruneton, Thierry Coupaye, Matthieu Leclercq, Vivien Quéma, and Jean-

Bernard Stefani. “The fractal component model and its support in java”. In:

Software: Practice and Experience 36.11-12 (2006), pp. 1257–1284.

[Bur+13] Tomas Bures, Ilias Gerostathopoulos, Petr Hnetynka, Jaroslav Keznikl, Michal

Kit, and Frantisek Plasil. “DEECO: an ensemble-based component system”. In:

Proceedings of the 16th International ACM Sigsoft symposium on Component-

based software engineering. ACM. 2013, pp. 81–90. doi: 10.1145/2465449.

2465462.

[But02] William Butera. “Programming a Paintable Computer”. PhD thesis. Cam-

bridge, USA: MIT, 2002.

[CI08] Supasate Choochaisri and Chalermek Intanagonwiwat. “A system for using

wireless sensor networks as globally deductive databases”. In: 2008 IEEE In-

ternational Conference on Wireless and Mobile Computing, Networking and

Communications. IEEE. 2008, pp. 649–654.

[Coo99a] Daniel Coore. “Botanical Computing: A Developmental Approach to Generat-

ing Inter connect Topologies on an Amorphous Computer”. PhD thesis. Cam-

bridge, MA, USA: MIT, 1999.

[Coo99b] Daniel Coore. “Botanical computing: a developmental approach to generat-

ing interconnect topologies on an amorphous computer”. PhD thesis. Mas-

sachusetts Institute of Technology, 1999.

[CPI12] Supasate Choochaisri, Nuttanart Pornprasitsakul, and Chalermek In-

tanagonwiwat. “Logic macroprogramming for wireless sensor networks”. In:

International Journal of Distributed Sensor Networks 8.4 (2012), p. 171738.

[Cur+05] Carlo Curino, Matteo Giani, Marco Giorgetta, Alessandro Giusti, Amy L. Mur-

phy, and Gian Pietro Picco. “Mobile data collection in sensor networks: The

TinyLime middleware”. In: Elsevier Pervasive and Mobile Computing Journal

4 (2005), pp. 446–469. doi: 10.1016/j.pmcj.2005.08.003.

[De +14] Rocco De Nicola, Michele Loreti, Rosario Pugliese, and Francesco Tiezzi. “A

Formal Approach to Autonomic Systems Programming: The SCEL Language”.

In: ACM Transactions on Autonomous and Adaptive Systems (TAAS) 9.2

(2014), 7:1–7:29. doi: 10.1145/2619998.

70

https://doi.org/10.1145/2465449.2465462
https://doi.org/10.1145/2465449.2465462
https://doi.org/10.1016/j.pmcj.2005.08.003
https://doi.org/10.1145/2619998

CHAPTER 4. SPATIAL AND COLLECTIVE ADAPTIVE COMPUTING

[DN+18] Rocco De Nicola, Tan Duong, Omar Inverso, and Catia Trubiani. “AErlang:

empowering Erlang with attribute-based communication”. In: Science of Com-

puter Programming 168 (2018), pp. 71–93.

[Dob+06] Simon Dobson, Spyros Denazis, Antonio Fernández, Dominique Gäıti, Erol

Gelenbe, Fabio Massacci, Paddy Nixon, Fabrice Saffre, Nikita Schmidt, and

Franco Zambonelli. “A survey of autonomic communications”. In: ACM Trans-

actions on Autonomous and Adaptive Systems (TAAS) 1.2 (2006), pp. 223–259.

doi: 10.1145/1186778.1186782.

[EC89] Bradley R. Engstrom and Peter R. Cappello. “The SDEF programming sys-

tem”. In: Journal of Parallel and Distributed Computing 7.2 (1989), pp. 201

–231. doi: 10.1016/0743-7315(89)90018-X.

[GGG05] Ramakrishna Gummadi, Omprakash Gnawali, and Ramesh Govindan. “Macro-

programming wireless sensor networks using Kairos”. In: International Confer-

ence on Distributed Computing in Sensor Systems. Springer. 2005, pp. 126–140.

[Gia+02] Jean-Louis Giavitto, Christophe Godin, Olivier Michel, and Przemyslaw

Prusinkiewicz. Computational models for integrative and developmental biol-

ogy. Tech. rep. 72-2002. Univerite d’Evry, LaMI, 2002.

[Gia+05] Jean-Louis Giavitto, Olivier Michel, Julien Cohen, and Antoine Spicher. “Com-

putations in Space and Space in Computations”. In: Unconventional Pro-

gramming Paradigms. Vol. 3566. Lecture Notes in Computer Science. Berlin:

Springer, 2005, pp. 137–152. isbn: 978-3-540-27884-9. doi: 10.1007/11527800_

11.

[HK14] Rolf Hennicker and Annabelle Klarl. “Foundations for ensemble modeling—

the Helena approach”. In: Specification, Algebra, and Software. Springer, 2014,

pp. 359–381. doi: 10.1007/978-3-642-54624-2_18.

[KC08] Marcin Karpiński and Vinny Cahill. “Stream-based macro-programming of

wireless sensor, actuator network applications with SOSNA”. In: Proceedings

of the 5th workshop on Data management for sensor networks. ACM. 2008,

pp. 49–55.

[Las+88] C. Lasser, J.P. Massar, J. Miney, and L. Dayton. Starlisp Reference Manual.

Thinking Machines Corporation, 1988.

[LCF15] Edmund Soon Lee Lam, Iliano Cervesato, and Nabeeha Fatima. “Comingle:

Distributed logic programming for decentralized mobile ensembles”. In: Inter-

national Conference on Coordination Languages and Models. Springer. 2015,

pp. 51–66.

71

https://doi.org/10.1145/1186778.1186782
https://doi.org/10.1016/0743-7315(89)90018-X
https://doi.org/10.1007/11527800_11
https://doi.org/10.1007/11527800_11
https://doi.org/10.1007/978-3-642-54624-2_18

CHAPTER 4. SPATIAL AND COLLECTIVE ADAPTIVE COMPUTING

[LH16] Michele Loreti and Jane Hillston. “Modelling and Analysis of Collective Adap-

tive Systems with CARMA and its Tools”. In: Formal Methods for the Quan-

titative Evaluation of Collective Adaptive Systems - 16th International School

on Formal Methods for the Design of Computer, Communication, and Software

Systems, SFM 2016, Bertinoro, Italy, June 20-24, 2016, Advanced Lectures. Ed.

by Marco Bernardo, Rocco De Nicola, and Jane Hillston. Vol. 9700. Lecture

Notes in Computer Science. Springer, 2016, pp. 83–119. isbn: 978-3-319-34095-

1. doi: 10.1007/978-3-319-34096-8_4. url: https://doi.org/10.1007/

978-3-319-34096-8_4.

[Liu+03] Jie Liu, Maurice Chu, J Reich, and F Zhao. “State-centric programming for

sensor-actuator network systems”. In: IEEE Pervasive Computing 2.4 (2003),

pp. 50–62.

[Mad+02] Samuel Madden, Michael J. Franklin, Joseph M. Hellerstein, and Wei Hong.

“TAG: A Tiny AGgregation Service for Ad-hoc Sensor Networks”. In: SIGOPS

Operating System Review 36.SI (2002), pp. 131–146. issn: 0163-5980. doi: 10.

1145/844128.844142.

[MP06] Luca Mottola and Gian Pietro Picco. “Logical neighborhoods: A programming

abstraction for wireless sensor networks”. In: International Conference on Dis-

tributed Computing in Sensor Systems. Springer. 2006, pp. 150–168.

[MP11] Luca Mottola and Gian Pietro Picco. “Programming wireless sensor networks:

Fundamental concepts and state of the art”. In: ACM Computing Surveys

(CSUR) 43.3 (2011), p. 19.

[MT04] Ronaldo Menezes and Robert Tolksdorf. “Adaptiveness in Linda-Based Co-

ordination Models”. In: Engineering Self-Organising Systems: Nature-Inspired

Approaches to Software Engineering. Vol. 2977. LNAI. Springer, 2004, pp. 212–

232. isbn: 3-540-21201-9. doi: 10.1007/b95863.

[MZL03] Marco Mamei, Franco Zambonelli, and Letizia Leonardi. “Co-Fields: Towards

a Unifying Approach to the Engineering of Swarm Intelligent Systems”. In:

Engineering Societies in the Agents World III. Springer, 2003, pp. 68–81. isbn:

978-3-540-39173-9. doi: 10.1007/3-540-39173-8_6.

[Nag01] Radhika Nagpal. “Programmable Self-Assembly: Constructing Global Shape

using Biologically-inspired Local Interactions and Origami Mathematics”. PhD

thesis. Cambridge, MA, USA: MIT, 2001.

[Nag08] Radhika Nagpal. “Programmable pattern-formation and scale-independence”.

In: Unifying themes in complex systems IV. Springer, 2008, pp. 275–282.

[Ni+05] Yang Ni, Ulrich Kremer, Adrian Stere, and Liviu Iftode. “Programming ad-

hoc networks of mobile and resource-constrained devices”. In: ACM SIGPLAN

Notices 40.6 (2005), pp. 249–260.

72

https://doi.org/10.1007/978-3-319-34096-8_4
https://doi.org/10.1007/978-3-319-34096-8_4
https://doi.org/10.1007/978-3-319-34096-8_4
https://doi.org/10.1145/844128.844142
https://doi.org/10.1145/844128.844142
https://doi.org/10.1007/b95863
https://doi.org/10.1007/3-540-39173-8_6

CHAPTER 4. SPATIAL AND COLLECTIVE ADAPTIVE COMPUTING

[NW04] Ryan Newton and Matt Welsh. “Region Streams: Functional Macroprogram-

ming for Sensor Networks”. In: Workshop on Data Management for Sensor

Networks. Toronto, Canada, 2004, pp. 78–87. doi: 10.1145/1052199.1052213.

[OV11] Andrea Omicini and Mirko Viroli. “Coordination Models and Languages:

From Parallel Computing To Self-Organisation”. In: The Knowledge Engi-

neering Review 26.1 (2011), pp. 53–59. issn: 0269-8889. doi: 10 . 1017 /

S026988891000041X.

[Pau+07] Julien Pauty, Paul Couderc, Michel Banatre, and Yolande Berbers. “Geo-linda:

a geometry aware distributed tuple space”. In: 21st International Conference on

Advanced Information Networking and Applications (AINA’07). IEEE. 2007,

pp. 370–377.

[PB16] Carlo Pinciroli and Giovanni Beltrame. “Buzz: An extensible programming

language for heterogeneous swarm robotics”. In: 2016 IEEE/RSJ International

Conference on Intelligent Robots and Systems (IROS). IEEE. 2016, pp. 3794–

3800.

[PLBB16] Carlo Pinciroli, Adam Lee-Brown, and Giovanni Beltrame. “A tuple space

for data sharing in robot swarms”. In: Proceedings of the 9th EAI Interna-

tional Conference on Bio-inspired Information and Communications Technolo-

gies (formerly BIONETICS). 2016, pp. 287–294.

[PVB15] Danilo Pianini, Mirko Viroli, and Jacob Beal. “Protelis: practical aggregate

programming”. In: Symposium on Applied Computing. ACM. 2015, pp. 1846–

1853. doi: 10.1145/2695664.2695913.

[RHS06] Gruia-Catalin Roman, Radu Handorean, and Rohan Sen. “Tuple space coor-

dination across space and time”. In: International Conference on Coordination

Languages and Models. Springer. 2006, pp. 266–280.

[Sce+17] Ognjen Scekic, Tommaso Schiavinotto, Svetoslav Videnov, Michael Rovatsos,

Hong-Linh Truong, Daniele Miorandi, and Schahram Dustdar. “A Program-

ming Model for Hybrid Collaborative Adaptive Systems”. In: IEEE Transac-

tions on Emerging Topics in Computing (2017).

[VC+14] Tom Van Cutsem, Elisa Gonzalez Boix, Christophe Scholliers, Andoni Lom-

bide Carreton, Dries Harnie, Kevin Pinte, and Wolfgang De Meuter. “Am-

bientTalk: programming responsive mobile peer-to-peer applications with ac-

tors”. In: Computer Languages, Systems & Structures 40.3-4 (2014), pp. 112–

136.

73

https://doi.org/10.1145/1052199.1052213
https://doi.org/10.1017/S026988891000041X
https://doi.org/10.1017/S026988891000041X
https://doi.org/10.1145/2695664.2695913

CHAPTER 4. SPATIAL AND COLLECTIVE ADAPTIVE COMPUTING

[Vir+19] Mirko Viroli, Jacob Beal, Ferruccio Damiani, Giorgio Audrito, Roberto

Casadei, and Danilo Pianini. “From distributed coordination to field calcu-

lus and aggregate computing”. In: Journal of Logical and Algebraic Methods in

Programming (2019), p. 100486. issn: 2352-2208. doi: https://doi.org/10.

1016/j.jlamp.2019.100486.

[WBS07] Hiroshi Wada, Pruet Boonma, and Junichi Suzuki. “A spacetime oriented

macroprogramming paradigm for push-pull hybrid sensor networking”. In: 2007

16th International Conference on Computer Communications and Networks.

IEEE. 2007, pp. 868–875.

[WBS10] Hiroshi Wadaa, Pruet Boonmab, and Junichi Suzukic. “Chronus: A spatiotem-

poral macroprogramming language for autonomic wireless sensor networks”.

In: Autonomic Network Management Principles: From Concepts to Applica-

tions (2010), p. 167.

[Whi+04] Kamin Whitehouse, Cory Sharp, Eric Brewer, and David Culler. “Hood: a

neighborhood abstraction for sensor networks”. In: 2nd International Confer-

ence on Mobile systems, applications, and services. Boston, MA, USA: ACM,

2004. doi: 10.1145/990064.990079.

[WM04] Matt Welsh and Geoffrey Mainland. “Programming Sensor Networks Using

Abstract Regions.” In: NSDI. Vol. 4. 2004, pp. 3–3.

[YG02] Yong Yao and Johannes Gehrke. “The Cougar Approach to In-Network Query

Processing in Sensor Networks”. In: ACM Sigmod record 31.3 (2002), pp. 9–18.

doi: 10.1145/601858.601861.

74

https://doi.org/https://doi.org/10.1016/j.jlamp.2019.100486
https://doi.org/https://doi.org/10.1016/j.jlamp.2019.100486
https://doi.org/10.1145/990064.990079
https://doi.org/10.1145/601858.601861

Chapter 5

Aggregate Computing

Strength lies in union.

Aesop · The Old Man and his Sons

Contents
5.1 Field Calculus . 76

5.1.1 Basic calculus . 76

5.1.2 Operational semantics, typing and basic properties . . 80

5.1.3 Behavioural properties 82

5.1.4 Language extension: the higher-order field calculus . . 84

5.2 From Field Calculus to Aggregate Computing 85

5.2.1 Protelis: a DSL for field calculus 86

5.2.2 Aggregate Programming 88

5.3 Final Remarks . 92

References . 92

Aggregate programming is a paradigm for developing collective adaptive sys-

tems by a global perspective that emerged from the amorphous programming

language Proto [BB06] and previous work covered in Chapter 4. In this chapter,

we review the mathematical core of aggregate computing, i.e., the field calculus

(Section 5.1), together with its most relevant formalisations and properties. Then,

we cover additional ingredients needed to evolve a basic field calculus implementa-

tion to a full aggregate computing support (Section 5.2), and accordingly present

75

CHAPTER 5. AGGREGATE COMPUTING

the Protelis programming language [PVB15] and a set of aggregate functions rep-

resenting a foundational library for collective adaptive behaviour.

5.1 Field Calculus

In this section, we describe a formal framework based on the notion of computa-

tional field (see Section 4.1.2), i.e., a “collective data structure” that maps elements

of a domain (e.g., space-time localities, or devices) to computational values. By

distributing devices and making them compute over time, the computational field

abstraction takes the form of a distributed, dynamic data structure capturing the

result of collective behaviour. Therefore, the idea for compositional specification of

increasingly complex collective behaviour lies in the ability to functionally manip-

ulate such collective results. The operational idea, instead, involves bridging the

local with the global: this is achieved through neighbourhood-based interaction,

whereby local results affect increasingly non-local results and vice versa. Finally,

adaptivity stems from an execution model whereby devices repeatedly (i) sample

their local context, (ii) locally interpret the field specification against that con-

text, and (iii) propagate up-to-date results (called exports) to their neighbours.

In other words, field programs generally describe continuous, collectively-coherent

manipulations of “context fields” to obtain “output fields” with useful global-level

properties—by controlled emergence.

5.1.1 Basic calculus

The field calculus (FC) was introduced in [VDB13] as a minimal core calculus

meant to capture the key ingredients of languages that make use of computational

fields:1 functions over fields, functional composition with fields, evolution of fields

over time, construction of fields of values from neighbours, and restriction of a field

computation to a sub-region of the network.

The field calculus is based on the idea of specifying the aggregate system be-

haviour of a network of devices, where a dynamic neighbouring relation (which

is application-dependent and represents physical or logical proximity) is used to

1This is similar to how λ-calculus [Chu32] captures the essence of functional computation and
FJ [IPW01] the essence of class-based object-oriented programming.

76

CHAPTER 5. AGGREGATE COMPUTING

P ::= F e program

F ::= def d(x) {e} function declaration

e ::= x
∣∣ v

∣∣ f(e)
∣∣ if(e){e}{e}

∣∣ expression

nbr{e}
∣∣ rep(e){(x)=>{e}}

f ::= d
∣∣ b function name

v ::= `
∣∣ φ value

` ::= c(`) local value

φ ::= δ 7→ ` neighbouring field value

Figure 5.1: Abstract syntax of the field calculus, as adapted from [Vir+18]

indicate the devices with which one can directly communicate2—e.g., in a sensor

network, those within the range of a broadcast communication. One such spec-

ification is structured as a functional composition of operators that manipulate

(evolve, combine, restrict) computational fields.

A key feature of the approach is that a specification can be interpreted either

locally or globally. Locally, it can be seen as describing a computation on an indi-

vidual device, iteratively executed in asynchronous computation rounds compris- computation
rounds

ing reception of messages from neighbours, perception of contextual information

through sensors, storing local state of computation, computing the local value of

fields, and spreading messages to neighbours. Globally, a field calculus expression

e specifies a mapping (i.e., the computational field) associating each computation

round of each device to the value that e assumes at that space-time event. This

duality intrinsically supports the reconciliation between the local behaviour of each

device and the emerging global behaviour of the whole network of devices [DVB16;

VDB13], as proved by the computational adequacy and abstraction properties in

[Aud+19b], which relate operational and denotational semantics.

Figure 5.1 gives an abstract syntax for field calculus, as presented in recent

works [Vir+18]. In this syntax, the overbar notation e indicates a sequence of

elements (i.e., e stands for e1, e2, . . . , en), and multiple overbars are expanded

together (e.g., δ 7→ ` stands for δ1 7→ `1, δ2 7→ `2, . . . , δn 7→ `n which is a map

associating local values to device identifiers). There are four keywords in this

2A device with no neighbours, e.g., would be one isolated (temporarily or permanently) from
the rest of the system.

77

CHAPTER 5. AGGREGATE COMPUTING

syntax: def for function definition; if for (the field-based variation of) branching

expression; and rep and nbr for the two peculiar constructs of field calculus,

respectively responsible for evolution of state over time and for sharing information

between neighbours.

A field calculus program P consists of a sequence of function declarations F

followed by the main expression e, defining global (and also local) behaviour of

the aggregate system. An expression e can be:

• A variable x, e.g., a function parameter.

• A value v, which can be of the following two kinds:

– a local value `, defined via data constructor c and arguments `, such as

a Boolean, number, string, pair, tuple, etc;

– a neighbouring (field) value φ representing a collection of values from

nearby devices, in the form of a function that associates, for each device,

the set of neighbour devices δ (including the device itself) to local values

`, e.g., a map of neighbours to the distances to those neighbours.

• A function call f(e) to either a user-declared function d (declared with the

def keyword) or a built-in function b, such as a mathematical or logical

operator, a data structure operation, or a function returning the value of a

sensor.

• A branching expression if(e1){e2}{e3}, used to split a computation into

isolated sub-regions where (and when) e1 evaluates to True or False: the

result is computation of e2 in the former area, and e3 in the latter.

• The nbr{e} construct, which creates a neighbouring value mapping neigh-

bours to their latest available result of evaluating e. In particular, each

device δ:

1. shares its value of e with its neighbours, and

2. evaluates the expression into a neighbouring value φ, where φ is a func-

tion that maps each neighbour δ′ of δ to the latest evaluation of e that

has been shared from δ′.

For instance, nbr{temperature()} (where temperature is a built-in sensor

estimating local temperature) would produce a neighbouring value φ associ-

78

CHAPTER 5. AGGREGATE COMPUTING

// distance from source region with nbrRange metric
def distanceTo(source) {
rep (Infinity) { (dist) =>

mux (source, 0, minHood(nbr{dist} + nbrRange()))
}

}
// distance from source region, avoiding obstacle region
def distanceToWithObs(source, obstacle) {
if (obstacle) { Infinity }{ distanceTo(source) }

}
// main expression
distanceToWithObs(deviceId() == 0, senseObs())

Figure 5.2: Example field calculus code

ating to each neighbour the temperature measured by that neighbour. Note

that in an if, sharing is restricted to occur between devices within the same

subspace of the branch (since devices in a different subspace do not execute

the same nbr{e} constructs).

• The rep(e1){(x)=>{}e2} construct, which models state evolution over time.

This construct retrieves the value v computed for the whole rep expression in

the last evaluation round (the value produced by evaluating the expression e1

is used at the first evaluation round) and updates it with the value produced

by evaluating the expression obtained from e2 by replacing the occurrences

of x by v.

Within this collection of operations, the nbr and rep constructs are special, han-

dling message exchanges respectively between devices and within rounds of a single

device. These constructs are assumed to be backed by a data gathering mechanism

accomplished through a process called alignment [Aud+16], which ensures appro- alignment

priate message matching, i.e., that no two different instances of a nbr expression

can inadvertently “swap” their respective messages, nor can two different instances

of a rep expression “swap” their state memory. This has the notable consequence

that the two branches of an if statement in field calculus are executed in isolation:

a device computing the “then” branch cannot communicate with the “else” branch

of a neighbour, and vice versa.

79

CHAPTER 5. AGGREGATE COMPUTING

Example 5.1 (Distance Avoiding Obstacles). Consider Figure 5.2. Function

distanceTo takes as argument a field of Booleans source, associating true to

source nodes, and produces as result a field of reals, mapping each device to its

minimum distance to a source node, as computed by relaxation of the triangle

inequality; namely: repetitively, and starting from infinity (construct rep) ev-

erywhere, the distance on any node gets updated to 0 on source nodes (function

mux(c, t, e) is a purely functional multiplexer which chooses t if c is true, or

e otherwise), and elsewhere to the minimum (built-in minHood) of neighbours’

distance (construct nbr) added with nbrRange, a sensor for estimated distances.

Function distanceToWithObs takes an additional argument, a field of Booleans

obstacle, associating true to obstacle nodes; it partitions the space of devices:

on obstacle nodes it gives the field of infinity values, elsewhere it uses compu-

tation of distanceTo. Because of alignment, the set of neighbours considered

for distanceTo automatically discards nodes that evaluate the other branch of

if, effectively making computation of distances circumvent obstacles. Finally, the

main expression calls distanceToWithObs to compute distances from the node with

deviceId equal to 0, circumventing the devices where senseObs gives true.

Example 5.2 (Monitor). Consider the following field calculus expression.

if (fail()) { rep (0) {(x) => x-1} } { sumHood(nbr{1}) }

This expression represents a simple monitor, for which higher values indicate a

good situation, while lower (negative) values signal problematic situations. In de-

vices where fail is true, the number of consecutive rounds of failure is counted

with negative numbers by the rep expression. Non-failing devices instead compute

sumHood(nbr{1}) (isolated from failing devices) which (i) builds a neighbouring

field φ mapping each non-failing neighbour to 1; (ii) sums every value in the range

of φ (except that for the current device) with built-in sumHood, obtaining the (non-

negative) total number of non-failing neighbours.

5.1.2 Operational semantics, typing and basic properties

The distinguished interaction model of this approach has been first formalised

in [VDB13] (see also [DVB16]) by means of a small-step operational semanticssmall-step
operational
semantics

80

CHAPTER 5. AGGREGATE COMPUTING

modelling single device computation (which is ultimately responsible for the whole

network execution). The main technical novelty in this formalisation is that device

state and message content are represented in a unified way as an annotated evalua-

tion tree θ. Field construction, propagation, and restriction are then supported by

local evaluation “against” the collection Θ of evaluation trees received from neigh-

bours. The alignment mechanism to ensure appropriate message matching is then

implemented by operations navigating these trees, and discarding them whenever

different branches are taken (to prevent unwanted communication between nbr

constructs in different branches of an if expression).

Recent work models single device computation by a big-step operational se- big-step op-
erational se-
manticsmantics [Vir+18], expressed by the judgement δ; Θ;σ ` emain ⇓ θ, to be read

“expression emain evaluates to θ on device δ with respect to environment Θ and

sensor state σ”. The overall network evolution is then formalised by a small-step

operational semantics as a transition system N
act−→ N on network configurations

N , in which actions act can either be environment changes or single device com-

putations (in turn modelled by the big-step semantics).

The work in [DVB16] presents a type system, used to intercept ill-formed field- field calculus
type system

calculus programs, which builds on the Hindley-Milner type system [DM82] for ML-

like functional languages, as a set of syntax-directed type inference rules. Being

syntax-directed, the rules straightforwardly specify a variant of the Hindley-Milner

type inference algorithm [DM82]. Namely, an algorithm that, given a field calculus

expression and type assumptions for its free variables, either fails (if the expression

cannot be typed under the given type assumptions) or returns its principal type,

i.e., a type such that all the types that can be assigned to an expression by the

type inference rules can be obtained from the principal type by substituting type

variables with types. This type system is proved to guarantee the following two

valuable properties for field calculus:

• Domain alignment: On each device, the domain of every neighbouring value

arising during the reduction of a well-typed expression consists of the iden-

tifiers of the aligned neighbours and of the identifier of the device itself.

In other words, information sharing is scoped to precisely implement the

aggregate abstraction.

• Type soundness: The reduction of a well-typed expression does not get stuck.

81

CHAPTER 5. AGGREGATE COMPUTING

Example 5.3 (Typing). Consider the Examples 5.1 and 5.2. The type system

assigns the following types to the involved built-in functions, user-defined functions,

and main expressions.

// minHood, sumHood : (bool) -> num

// nbrRange : () -> field(num)

def distanceTo(source) ... // (bool) -> num

def distanceToWithObs(source, obstacle) ... // (bool, bool) -> num

distanceToWithObs(deviceId() == 0, senseObs()) // num

if (fail()) { rep (0) {(x) => x-1} } { sumHood(nbr{1}) } // num

5.1.3 Behavioural properties

The field calculus is designed as a general-purpose language for spatially dis-

tributed computations.

Thus, regularity properties have been isolated and studied for subsets of the

core language. Among them, the established notion of self-stabilisation to correctself-
stabilisation

states for distributed systems [Dol00; LLM17; LLM15] plays a central role. This

notion, defined in terms of properties of the transition system N
act−→ N of network

evolution (cf. Section 5.1.2), ensures that both (i) the evaluation of a program on

an eventually constant input converges to a limit value in each device in finite time;

(ii) this limit only depends on the input values (i.e., sensor values and neighbouring

links), and not on the transitory input values that may have happened before

that. When applied in a dynamically evolving system, a self-stabilising algorithm

guarantees that whenever the input changes, the output reacts accordingly without

spurious influences from past values.

In [DV15] (an extended version of [VD14]), a first self-stabilising fragment isself-
stabilising
fragments isolated through a spreading operator, which minimises neighbour values as they

are monotonically updated by a diffusion function. This pattern can be composed

arbitrarily with local operations, but no explicit rep and nbr expressions are al-

lowed: nonetheless, several building blocks can be expressed inside this fragment,

such as classic distance estimation and broadcast (specific instances of operator G

in Figure 5.4).

More self-stabilising programs and existing “building block” implementations

are covered by the larger self-stabilising fragment introduced in [Vir+18] (an ex-

82

CHAPTER 5. AGGREGATE COMPUTING

tended version of [Vir+15]). This fragment restricts the usage of rep statements

to three specific patterns: converging, acyclic, and minimising rep. They roughly

correspond to the three main building blocks proposed, G, C and T: G is a general-

isation of distance estimation, which spreads a spanning tree from a source region

based on a given metric, and use it to compute values outward; C conversely col-

lects values inward a spanning tree (typically produced by G) aggregating them

“en route” so as to summarise a final result into a target node; and finally T

is a local operator to temporally evolve a value until reaching a fixpoint—see

Figure 5.4). Furthermore, a notion of equivalence and substitutability for self- equivalence
and substitu-
tionstabilising programs is examined: on the one hand, this notion allows for practical

optimisation of distributed programs by substitution of routines with equivalent

but better-performing alternatives; on the other hand, this equivalence relation

naturally induces a limit viewpoint for self-stabilising programs, complementing

and integrating the two general (local and global) viewpoints by abstracting away

the transitory characteristics and isolating the input-output mapping correspond-

ing to the distributed algorithm. These viewpoints effectively constitute different

semantic interpretations of the same program: operational semantics (local view-

point), denotational semantics (global viewpoint), and eventual behaviour (limit

viewpoint).

A fourth “continuous” viewpoint is considered in [Bea+17]: as the density of space-time
consistency

computing devices in a given area increases, assuming that each device takes in-

puts from a single continuous function on a space-time manifold, the output values

may converge towards a limit continuous output. Programs with this property are

called consistent, and have a “continuous” semantic interpretation as a transfor-

mation of continuous functions on space-time manifolds. Taking inspiration from

self-stabilisation, this notion is relaxed for eventually consistent programs, which

are only required to continuously converge to a limit except for a transitory initial

period, provided that the inputs are constant (except for a transitory initial pe-

riod). Eventual consistency can then be proved for all programs expressible in the

GPI (gradient-following path integral) calculus, which is a restriction of the field GPI calculus

calculus where the only coordination mechanism allowed is the GPI operator, a

generalised variant of the distance estimation building block.

Finally, a recent thread of work [Aud+18] has begun considering the transient real-time
guarantees

83

CHAPTER 5. AGGREGATE COMPUTING

behaviour of field calculus programs, by providing real-time guarantees on program

performance. In these results, a bounded amount of error with respect to ideal

values is proved to hold after a predictable set-up (or reconfiguration) time.

Up to this point, hence, validation of behavioural properties is mostly addressed

“by construction”, namely, proving properties on simple building blocks or restrict-

ing the calculus to fragments. It is a future work to consider the applicability of

techniques such as the formal basis in [LLM17], or model-based analysis such as

[Bak+11].

5.1.4 Language extension: the higher-order field calculus

The higher-order field calculus (HFC) [Aud+19b; Dam+15] is an extension ofhigher-order
field calculus
(HFC) the field calculus with first-class functions. Its primary goal is to allow program-

mers to handle functions just like any other value, so that code can be dynamically

injected, moved, and executed in network (sub)domains. Namely, in HFC:

• Functions can take functions as arguments and return a function as re-

sult (higher-order functions). This is key to define highly reusable building

block functions, which can then be fully parametrised with various functional

strategies.

• Functions can be created “on the fly” (anonymous functions). Among other

applications, such functions can be passed into a system from the external

environment, as a field of functions considered as input coming from a sensor

modelling addition of new code into a device while the system is operating.

• Functions can be moved between devices (via the nbr construct) and the

function to be executed can be remembered and changed over time (via

the rep construct), which allows one to express complex patterns of code

deployment across space and time.

• A field of functions (possibly created on the fly and then shared by movement

to all devices) can be used as an “aggregate function” operating over a whole

spatial domain.

In considering fields of function values, HFC takes an approach in which making a

function call acts as a branch, with each function in the range of the field applied

only on the subspace of devices that hold that function. When the field of functions

84

CHAPTER 5. AGGREGATE COMPUTING

is constant, this implicit branch reduces to be precisely equivalent to a standard

function call. This means that we can view ordinary evaluation of a function name

(or anonymous function) as equivalent to creating a function-valued field with a

constant value, then making a function call applying that field to its argument

fields. This elegant transformation is one of the key insights of HFC, enabling

first-class functions to be implemented with relatively minimal complexity.

In [Dam+15] the operational semantics of HFC is formalised, for computation

within a single device, by a big-step operational semantics where each expression

evaluates to an ordered tree of values tracking the results of all evaluated sub-

expressions. Moreover, [Dam+15] also presents a formalisation of network evolu-

tion, by a transition system on network configurations—transitions can either be

firings of a device or network configuration changes, while network configurations

model environmental conditions (i.e., network topology and inputs of sensors on

each device) and the overall status of devices in the network at a given time. In the

extension of this work in [Aud+19b] the formalisation of HFC is carried on by pro-

viding a denotational semantics, which is proved to correspond to the operational

semantics through computational adequacy and abstraction results. Furthermore,

a refined type system is presented that is able to guarantee domain alignment, i.e.,

that the domain of any expression of field type equals the set of neighbours that

computed the same expression.

5.2 From Field Calculus to Aggregate Comput-

ing

In this section, we discuss the current state of the art in practical aggregate

computing. We begin by discussing the construction of implementations of field

calculus as supported by the domain specific language Protelis (Section 5.2.1). We

then discuss the layered abstractions of aggregate programming built upon these

foundations, from resilient operators to pragmatic libraries (Section 5.2.2). Note

that as far as current implementations are concerned, field calculus is supported

in its higher-order version, hence in the following we sometimes generally refer to

field calculus even if higher-order capabilities are concerned.

85

CHAPTER 5. AGGREGATE COMPUTING

5.2.1 Protelis: a DSL for field calculus

The concrete usage of field calculus in application development is dependent

on the availability of practical languages, which provide an interpreter or compiler,

as well as handling runtime aspects such as communication, interfacing with the

operating system, and integration with existing software. Protelis [PVB15] pro-

vides one such implementation, including: (i) a concrete syntax; (ii) an interpreter

and a virtual machine; (iii) a device interface abstraction and API; and (iv) a

communication interface abstraction and API.

In Protelis, the parser translates a Protelis source code file into a valid rep-

resentation of HFC semantics. This translated program, along with an execution

context, is fed to a virtual machine that executes the Protelis interpreter at regular

intervals. The execution context API defines the interface towards the operating

system, including (with ancillary APIs) an abstraction of the device’s capabilities

and communication system. This architecture has been demonstrated to make the

language easy to port across diverse contexts, both simulated (Alchemist[PMV13]

and NASA World Wind [Bel+07]) and real-world [CBP15].

The entire Protelis infrastructure is developed in Java and hosted on the Java

Virtual Machine (JVM). The motivation behind this choice is twofold: first, the

JVM is highly portable, being available on a variety of architectures and operating

systems; second, the Java world is rich in libraries that can be directly used within

Protelis, with little or no need for writing new libraries for common tasks.

The model-to-model translation between the Protelis syntax and the HFC in-

terpreter is implemented using the Xtext framework [Bet16]. Along with the parser

machinery, this framework is also able to generate most of the code required for

implementing Eclipse plug-ins: one such plug-in is available for Protelis, assisting

the developer through code highlighting, completion suggestions, and early error

detection.

The language syntax is designed with the goal of lowering the learning curve

for the majority of developers, and as such it is inspired by languages of the C-

family (C, C++, Java, C#, ...), with some details borrowed from Python. Code

can be organised in modules (or namespaces) whose name must reflect the di-

rectory structure and the file name. Modules can contain functions and a main

script. The code snippet in Figure 5.3 offers a sampler of both the ordinary and

86

CHAPTER 5. AGGREGATE COMPUTING

import protelis:coord:spreading // Import other modules
import java.lang.Math.sqrt // Import static Java methods
def privateFun(my, params) {
my + params // Infix operators, duck typing

}
public def availableOutside() { // externally visible
privateFun(1, 2); // Function call
let aFun = privateFun; // Variable definition, function ref
aFun.apply("a", "str"); // String literals, application
let tup = [NaN, pi, e]; // Tuple literals, built-in numbers
// lambda expressions, closures, method invocation:
let inc3 = v -> {privateFun(v, tup.size())}

}
// MAIN SCRIPT
let myid = self.getDeviceUID(); // Access to device info
if (myid < 1000) { // Domain separation
rep (x <- self.nextRandomDouble()) {// Stateful computation
// Java static method call
mux (sqrt(x) < 0.5) { // mux executes both branches
// Library call, field gathering and reduction
minHood(nbr(env.has("source")))

} else { Infinity }
} < 10

} else { // Mandatory else: every expression returns a value
false // Booleans

}

Figure 5.3: Example Protelis code showcasing a sampler of language features.

field-calculus-specific features of Protelis, including importing libraries and static

methods, using functions as higher-order values in let constructs and by apply,

tuple and string literals, lambdas, built-ins (e.g., minHood, and mux), and the field

calculus constructs rep and nbr.

Function definitions are prefixed by the def keyword, and they are visible by

default only in the local module. In order for other modules to access them, the

keyword public must be explicitly specified. Other modules can be imported, as

well as Java static methods. Types are not specified explicitly: in fact, Protelis

is duck-typed—namely, type-checked at run-time through reflection mechanisms.

The language offers literals for commonly used numeric values, tuples, and strings.

Instance methods can be invoked on any expression with the same “dot” syn-

87

CHAPTER 5. AGGREGATE COMPUTING

tax used in Java. Higher order support includes a compact syntax for lambda

expressions, closures, function references, functions as parameters, and function

application. Lastly, context properties, including device capabilities, are accessi-

ble through the self keyword. Environment variables can be accessed via the

short syntax env.

Another relevant asset of Protelis is its library protelis-lang [Fra+17],

streamlining the implementation of a number of algorithms found in the dis-

tributed systems literature. Among others, it includes several implementations

of self-stabilising building block functions [BV14; Vir+18], such as distanceTo to

estimate distances, broadcast to send alerts, summarize to perform distributed

sensing, and so on. Notably, the library also includes meta-machinery for “align-

ing” aggregate computing programs along arbitrary keys, separating and mixing

domains in a finer way than the if construct allows. These constructs, based on

the alignedMap primitive of Protelis, enable highly dynamic meta-algorithms to

be written, that open up new possibilities such as multiInstance [Fra+17], or

allow for increased resilience and adaptation as in the case of timeReplicated

[PBV16].

5.2.2 Aggregate Programming

Building upon these theoretical and pragmatic foundations, aggregate pro-

gramming [BPV15] elaborates a layered architecture that aims to dramatically

simplify the design, creation, and maintenance of complex distributed systems.

This approach is motivated by three key observations about engineering complex

coordination patterns:

• composition of modules and subsystems must be simple and transparent;

• different subsystems need different coordination mechanisms for different re-

gions and times;

• mechanisms for robust coordination should be hidden by abstractions, such

that programmers are not required to interact with the details of their im-

plementation.

Field calculus (along with its language incarnations) provides mechanisms for the

first two, but is too general to guarantee resilience and too mathematical and

88

CHAPTER 5. AGGREGATE COMPUTING

succinct in its syntax for direct programming to be simple: some methodology is

needed to properly scale with complexity.

Aggregate programming thus proposes two additional abstraction layers, as il-

lustrated in Figure 5.4, for hiding the complexity of distributed coordination in

complex networked environments. First, the “resilient coordination operators”

layer plays a crucial role both in hiding the complexity and in supporting effi-

cient engineering of distributed coordination systems. First proposed in [BV14],

it is inspired by the approach of combinatory logic [CF58], the catalogue of self-

organisation primitives in [FM+13], and work on self-stabilising fragments of the

field calculus [DV15; Vir+18; VD14]. Notably, three key operators within this G-C-T

self-stabilising fragment cover a broad range of distributed coordination patterns:

operator G is a highly general information spreading and “outward computation”

operation; C is its inverse, a general information collection operation; and T imple-

ments bounded state evolution and short-term memory.

Above the resilience layer, aggregate programming libraries [Fra+17; Vir+15]

capture common patterns of usage and more specialised and efficient variants of

resilient operators to provide a more user-friendly interface for programming. This

definition of well-organised layers of abstractions with predictable compositional

semantics thus aims to foster (i) reusability, through generic components; (ii)

productivity, through application-specific components; (iii) declarativity, through

high-level functionality and patterns; (iv) flexibility, through low-level and fine-

grained functions; and (v) efficiency, through multiple components with coherent

substitution semantics [Vir+18; Vir+15].

Within these two layers, development has progressed from an initial model

built only around the spreading of information to a growing system of composable

operators and variants. The first of these operator/variant families to be devel-

oped centred around the problems of spreading information, since interaction in

aggregate computing is often structured in terms of information flowing through

collectives of devices. A major problem thus lies in regulating such spreading, in

order to take into account context variation, and in rapidly adapting the spreading

structure in reaction to changes in the environment and in the system topology.

Here, the gradient (i.e., the field of minimum distances from source nodes) in its

generalised form in the G operator is what captures, in a distributed way, a no-

89

CHAPTER 5. AGGREGATE COMPUTING

sensors

local functions

actuators

Application
Code

Developer
APIs

Field Calculus
Constructs

Resilient
Coordination

Operators

Device
Capabilities

functions repnbr

TGCfunctions

communication state

PerceptionPerception

summarize
average
regionMax
…

ActionAction StateState

Collective BehaviorCollective Behavior

distanceTo
broadcast
partition
…

timer
lowpass
recentTrue
…

collectivePerception
collectiveSummary
managementRegions
…

Crowd ManagementCrowd Management
dangerousDensity crowdTracking
crowdWarning safeDispersal

restriction

Figure 5.4: Aggregate programming abstraction layers. The software and hardware
capabilities of particular devices are used to implement aggregate-level field calcu-
lus constructs. These constructs are used to implement a limited set of building-
block coordination operations with provable resilience properties, which are then
wrapped and combined together to produce a user-friendly API for developing
situated IoT (Internet-of-Things) systems. Figure adapted from [BPV15].

90

CHAPTER 5. AGGREGATE COMPUTING

tion of “contextual distance” instrumental for calculating information diffusion,

and forms the basis for key interaction patterns, such as outward/inward bounded

broadcasts and dynamic group formation, as well as higher-level components built

upon these.

The widespread adoption of gradient structures in algorithms stresses the im-

portance of fast self-healing gradients [Bea+08], which are able to quickly recover

good distance estimates after disruptive perturbations, and more “dependable”

gradient algorithms in which stability is favoured by enacting a smoother self-

healing behaviour [Bea09]. Several other alternative gradient algorithms have also

been developed, addressing two main issues. Firstly, the recovery speed after an in-

put discontinuity, which has first been bounded to O(diameter) time by the CRF

(constraint and restoring force) gradient algorithm [Bea+08], further improved

to optimal for algorithms with a single-path communication pattern by the BIS

(bounded information speed) gradient algorithm [ADV18], and refined to optimal-

ity for algorithms with a multi-path communication pattern by the

SVD (stale values detection) gradient algorithm [Aud+17]. Secondly, the smooth-

ness and resilience to noise in inputs, first addressed by the FLEX (flexible) gra-

dient algorithm [Bea09] and then refined and combined with improved recovery

speed by the ULT (ultimate) gradient algorithm [Aud+17].

To empower the aggregate programming tool-chain, other building blocks have

been proposed and refined in addition to gradients: consensus algorithms [Bea16],

centrality measures [ADV17], leader election and partitioning [BV14], and most

notably, collection [Vir+18; Vir+15]. The collection building block C progressively

aggregates and summarises values spread throughout a network into a single value,

e.g., their sum or other meaningful statistics. Based itself on distance estimation

through gradients, a general single-path collection algorithm has been proposed

in [BV14] granting self-stabilisation to a correct value, then multi-path collection

has been developed for improved resiliency in sum estimations [Vir+18], and fi-

nally refined to weighted multi-path collection [AB17] and its parametric extension

[Aud+19a], which is able to maintain acceptable whole-network sums and max-

ima even in highly volatile environments. A different approach to collection has

also proved to be effective for minimum/maximum estimates: overlapping repli-

cas of non-self-stabilising gossip algorithms [PBV16] (with an appropriately tuned

91

CHAPTER 5. AGGREGATE COMPUTING

interval of replication), thus combining the resiliency of these algorithms with

self-stabilisation requirements.

In sum, the current state of aggregate computing features pragmatic imple-

mentations of field calculus supporting an expanding library of resilient building

blocks with various trade-offs in their dynamical behaviour, and which can be used

as the basis for implementation of a wide variety of distributed applications.

5.3 Final Remarks

Aggregate computing is a macro-paradigm enabling functional composition of

collective adaptive behaviour, based on the field calculus. At the current state,

there are four main issues:

• implementations do not seamlessly integrate with mainstream programming

environments (though Protelis made progress through JVM interoperability);

• by a programming model perspective, there is a lack of mechanisms able to

effectively capture concurrent, dynamic field computations;

• there is no aggregate computing middleware to support the development and

deployment of distributed aggregate applications; and

• there is still little experience and guidance regarding the design of aggregate

systems.

This work aims to fill such a gap, as covered in Part II (Chapters 7 to 10).

References

[AB17] Giorgio Audrito and Sergio Bergamini. “Resilient Blocks for Summarising Dis-

tributed Data”. In: Proceedings of the First Workshop on Architectures, Lan-

guages and Paradigms for IoT, ALP4IoT@iFM 2017. Ed. by Danilo Pianini

and Guido Salvaneschi. Vol. 264. EPTCS. 2017, pp. 23–26. doi: 10.4204/

EPTCS.264.3.

[ADV17] Giorgio Audrito, Ferruccio Damiani, and Mirko Viroli. “Aggregate Graph

Statistics”. In: Proceedings of the First Workshop on Architectures, Languages

and Paradigms for IoT, ALP4IoT@iFM 2017. Ed. by Danilo Pianini and Guido

Salvaneschi. Vol. 264. EPTCS. 2017, pp. 18–22. doi: 10.4204/EPTCS.264.2.

92

https://doi.org/10.4204/EPTCS.264.3
https://doi.org/10.4204/EPTCS.264.3
https://doi.org/10.4204/EPTCS.264.2

CHAPTER 5. AGGREGATE COMPUTING

[ADV18] Giorgio Audrito, Ferruccio Damiani, and Mirko Viroli. “Optimal single-path

information propagation in gradient-based algorithms”. In: Sci. Comput. Pro-

gram. 166 (2018), pp. 146–166. doi: 10.1016/j.scico.2018.06.002.

[Aud+16] Giorgio Audrito, Ferruccio Damiani, Mirko Viroli, and Roberto Casadei. “Run-

Time Management of Computation Domains in Field Calculus”. In: Founda-

tions and Applications of Self* Systems, IEEE International Workshops on.

IEEE. 2016, pp. 192–197.

[Aud+17] Giorgio Audrito, Roberto Casadei, Ferruccio Damiani, and Mirko Viroli. “Com-

positional Blocks for Optimal Self-Healing Gradients”. In: Self-Adaptive and

Self-Organising Systems (SASO), IEEE International Conference on. IEEE.

2017.

[Aud+18] Giorgio Audrito, Ferruccio Damiani, Mirko Viroli, and Enrico Bini. “Dis-

tributed Real-Time Shortest-Paths Computations with the Field Calculus”.

In: 2018 IEEE Real-Time Systems Symposium (RTSS). IEEE, 2018, pp. 23–

34. doi: 10.1109/rtss.2018.00013.

[Aud+19a] Giorgio Audrito, Sergio Bergamini, Ferruccio Damiani, and Mirko Viroli. “Ef-

fective Collective Summarisation of Distributed Data in Mobile Multi-Agent

Systems”. In: Proceedings of the 18th International Conference on Autonomous

Agents and MultiAgent Systems, AAMAS ’19. 2019, pp. 1618–1626. url: http:

//dl.acm.org/citation.cfm?id=3331882.

[Aud+19b] Giorgio Audrito, Mirko Viroli, Ferruccio Damiani, Danilo Pianini, and Jacob

Beal. “A Higher-Order Calculus of Computational Fields”. In: ACM Transac-

tions on Computational Logic 20.1 (2019), pp. 1–55. doi: 10.1145/3285956.

[Bak+11] Rena Bakhshi, Lucia Cloth, Wan Fokkink, and Boudewijn R. Haverkort.

“Mean-field framework for performance evaluation of push–pull gossip pro-

tocols”. In: Performance Evaluation 68.2 (2011). Advances in Quantitative

Evaluation of Systems, pp. 157 –179. issn: 0166-5316. doi: 10.1016/j.peva.

2010.08.025.

[BB06] Jacob Beal and Jonathan Bachrach. “Infrastructure for Engineered Emer-

gence in Sensor/Actuator Networks”. In: IEEE Intelligent Systems 21 (2 2006),

pp. 10–19. doi: 10.1109/MIS.2006.29.

[Bea+08] Jacob Beal, Jonathan Bachrach, Dan Vickery, and Mark Tobenkin. “Fast self-

healing gradients”. In: Proceedings of the 2008 ACM symposium on Applied

computing. ACM. 2008, pp. 1969–1975.

[Bea09] Jacob Beal. “Flexible self-healing gradients”. In: Proceedings of the 2009 ACM

symposium on Applied Computing. ACM. 2009, pp. 1197–1201.

93

https://doi.org/10.1016/j.scico.2018.06.002
https://doi.org/10.1109/rtss.2018.00013
http://dl.acm.org/citation.cfm?id=3331882
http://dl.acm.org/citation.cfm?id=3331882
https://doi.org/10.1145/3285956
https://doi.org/10.1016/j.peva.2010.08.025
https://doi.org/10.1016/j.peva.2010.08.025
https://doi.org/10.1109/MIS.2006.29

CHAPTER 5. AGGREGATE COMPUTING

[Bea16] Jacob Beal. “Trading accuracy for speed in approximate consensus”. In: The

Knowledge Engineering Review 31.4 (2016), pp. 325–342.

[Bea+17] Jacob Beal, Mirko Viroli, Danilo Pianini, and Ferruccio Damiani. “Self-

adaptation to Device Distribution in the Internet of Things”. In: ACM Trans-

actions on Autonomous and Adaptive Systems (TAAS) 12.3 (2017), p. 12. doi:

10.1145/3105758.

[Bel+07] David G. Bell, Frank Kuehnel, Chris Maxwell, Randy Kim, Kushyar Kasraie,

Tom Gaskins, Patrick Hogan, and Joe Coughlan. “NASA World Wind: Open-

source GIS for Mission Operations”. In: Aerospace Conference. IEEE, 2007.

doi: 10.1109/aero.2007.352954.

[Bet16] Lorenzo Bettini. Implementing Domain-Specific Languages with Xtext and

Xtend, 2E. Packt Publishing, 2016. isbn: 1786464969, 9781786464965.

[BPV15] Jacob Beal, Danilo Pianini, and Mirko Viroli. “Aggregate Programming for the

Internet of Things”. In: IEEE Computer 48.9 (2015), pp. 22–30. doi: 10.1109/

MC.2015.261.

[BV14] Jacob Beal and Mirko Viroli. “Building Blocks for Aggregate Programming

of Self-Organising Applications”. In: 8th International Conference on Self-

Adaptive and Self-Organizing Systems Workshops (SASOW). 2014, pp. 8–13.

doi: 10.1109/SASOW.2014.6.

[CBP15] Shane S Clark, Jacob Beal, and Partha Pal. “Distributed recovery for enter-

prise services”. In: 9th International Conference on Self-Adaptive and Self-

Organizing Systems (SASO). IEEE. 2015, pp. 111–120. doi: 10.1109/SASO.

2015.19.

[CF58] H.B. Curry and R. Feys. Combinatory logic. North-Holland, 1958.

[Chu32] Alonzo Church. “A Set of Postulates for the Foundation of Logic”. In: Annals of

Mathematics. Second Series 33.2 (1932), pp. 346–366. doi: 10.2307/1968337.

[Dam+15] Ferruccio Damiani, Mirko Viroli, Danilo Pianini, and Jacob Beal. “Code Mo-

bility Meets Self-organisation: A Higher-Order Calculus of Computational

Fields”. English. In: Formal Techniques for Distributed Objects, Components,

and Systems. Vol. 9039. Lecture Notes in Computer Science. Springer, 2015,

pp. 113–128. isbn: 978-3-319-19194-2. doi: 10.1007/978-3-319-19195-9_8.

[DM82] Luis Damas and Robin Milner. “Principal Type-schemes for Functional Pro-

grams”. In: Symposium on Principles of Programming Languages. POPL ’82.

Albuquerque, New Mexico: ACM, 1982, pp. 207–212. isbn: 0-89791-065-6. doi:

10.1145/582153.582176.

[Dol00] Shlomi Dolev. Self-Stabilization. MIT Press, 2000.

94

https://doi.org/10.1145/3105758
https://doi.org/10.1109/aero.2007.352954
https://doi.org/10.1109/MC.2015.261
https://doi.org/10.1109/MC.2015.261
https://doi.org/10.1109/SASOW.2014.6
https://doi.org/10.1109/SASO.2015.19
https://doi.org/10.1109/SASO.2015.19
https://doi.org/10.2307/1968337
https://doi.org/10.1007/978-3-319-19195-9_8
https://doi.org/10.1145/582153.582176

CHAPTER 5. AGGREGATE COMPUTING

[DV15] Ferruccio Damiani and Mirko Viroli. “Type-based Self-stabilisation for Com-

putational Fields”. In: Logical Methods in Computer Science 11.4 (2015).

[DVB16] Ferruccio Damiani, Mirko Viroli, and Jacob Beal. “A type-sound calculus of

computational fields”. In: Science of Computer Programming 117 (2016), pp. 17

–44. issn: 0167-6423. doi: 10.1016/j.scico.2015.11.005.

[FM+13] Jose Luis Fernandez-Marquez, Giovanna Di Marzo Serugendo, Sara Montagna,

Mirko Viroli, and Josep Lluis Arcos. “Description and composition of bio-

inspired design patterns: a complete overview”. In: Natural Computing 12.1

(2013), pp. 43–67. issn: 1572-9796. doi: 10.1007/s11047-012-9324-y.

[Fra+17] Matteo Francia, Danilo Pianini, Jacob Beal, and Mirko Viroli. “Towards a

Foundational API for Resilient Distributed Systems Design”. In: International

Workshops on Foundations and Applications of Self* Systems (FAS*W). IEEE,

2017. doi: 10.1109/fas-w.2017.116.

[IPW01] Atsushi Igarashi, Benjamin C. Pierce, and Philip Wadler. “Featherweight Java:

A Minimal Core Calculus for Java and GJ”. In: ACM Transactions on Pro-

gramming Languages and Systems 23.3 (2001), pp. 396–450.

[LLM15] Alberto Lluch-Lafuente, Michele Loreti, and Ugo Montanari. “A Fixpoint-

Based Calculus for Graph-Shaped Computational Fields”. In: 17th Inter-

national Conference on Coordination Models and Languages (COORDINA-

TION). 2015, pp. 101–116. doi: 10.1007/978-3-319-19282-6_7.

[LLM17] Alberto Lluch-Lafuente, Michele Loreti, and Ugo Montanari. “Asynchronous

Distributed Execution Of Fixpoint-Based Computational Fields”. In: Logical

Methods in Computer Science 13.1 (2017). doi: 10.23638/LMCS-13(1:13)

2017. url: https://doi.org/10.23638/LMCS-13(1:13)2017.

[PBV16] Danilo Pianini, Jacob Beal, and Mirko Viroli. “Improving Gossip Dynamics

Through Overlapping Replicates”. In: Proceedings of the 18th International

Conference on Coordination Models and Languages. Vol. 9686. Lecture Notes

in Computer Science. Springer, 2016, pp. 192–207. doi: 10.1007/978-3-319-

39519-7_12.

[PMV13] Danilo Pianini, Sara Montagna, and Mirko Viroli. “Chemical-oriented Simu-

lation of Computational Systems with Alchemist”. In: Journal of Simulation

(2013). issn: 1747-7778. doi: 10.1057/jos.2012.27.

[PVB15] Danilo Pianini, Mirko Viroli, and Jacob Beal. “Protelis: practical aggregate

programming”. In: Symposium on Applied Computing. ACM. 2015, pp. 1846–

1853. doi: 10.1145/2695664.2695913.

95

https://doi.org/10.1016/j.scico.2015.11.005
https://doi.org/10.1007/s11047-012-9324-y
https://doi.org/10.1109/fas-w.2017.116
https://doi.org/10.1007/978-3-319-19282-6_7
https://doi.org/10.23638/LMCS-13(1:13)2017
https://doi.org/10.23638/LMCS-13(1:13)2017
https://doi.org/10.23638/LMCS-13(1:13)2017
https://doi.org/10.1007/978-3-319-39519-7_12
https://doi.org/10.1007/978-3-319-39519-7_12
https://doi.org/10.1057/jos.2012.27
https://doi.org/10.1145/2695664.2695913

CHAPTER 5. AGGREGATE COMPUTING

[VD14] Mirko Viroli and Ferruccio Damiani. “A Calculus of Self-stabilising Computa-

tional Fields”. In: 16th International Conference on Coordination Models and

Languages (COORDINATION). Vol. 8459. Lecture Notes in Computer Science.

Springer, 2014, pp. 163–178. doi: 10.1007/978-3-662-43376-8_11.

[VDB13] Mirko Viroli, Ferruccio Damiani, and Jacob Beal. “A Calculus of Compu-

tational Fields”. In: Advances in Service-Oriented and Cloud Computing.

Vol. 393. Communications in Computer and Information Science. Springer,

2013, pp. 114–128. isbn: 978-3-642-45363-2. doi: 10.1007/978-3-642-45364-

9_11.

[Vir+15] Mirko Viroli, Jacob Beal, Ferruccio Damiani, and Danilo Pianini. “Efficient

Engineering of Complex Self-Organising Systems by Self-Stabilising Fields”.

In: 9th International Conference on Self-Adaptive and Self-Organizing Systems

(SASO). 2015, pp. 81–90. doi: 10.1109/SASO.2015.16.

[Vir+18] Mirko Viroli, Giorgio Audrito, Jacob Beal, Ferruccio Damiani, and Danilo

Pianini. “Engineering Resilient Collective Adaptive Systems by Self-

Stabilisation”. In: ACM Transaction on Modelling and Computer Simulation

28.2 (2018), 16:1–16:28. issn: 1049-3301. doi: 10.1145/3177774.

96

https://doi.org/10.1007/978-3-662-43376-8_11
https://doi.org/10.1007/978-3-642-45364-9_11
https://doi.org/10.1007/978-3-642-45364-9_11
https://doi.org/10.1109/SASO.2015.16
https://doi.org/10.1145/3177774

Chapter 6

Complex Infrastructures and

Deployments

We shape our buildings, thereafter they shape us.

Winston Churchill

Contents
6.1 Fundamentals . 98

6.1.1 Virtualisation . 98

6.1.2 Management platforms 99

6.2 Cloud Computing . 100

6.3 Beyond Cloud Computing: Edge and Fog Computing 102

6.4 Application Development and Deployment on Complex Infras-
tructure . 105

6.4.1 Microservices . 105

6.4.2 Cloud-native computing 106

6.4.3 Elasticity . 106

6.5 Application Development and Deployment for Ad-Hoc Systems 107

6.6 Final Remarks . 107

References . 108

The evolution of the science and practice of computers and networks has always

been characterised by an increase in terms of abstraction—with the sporadic reval-

uation and re-adjustment of important details that were abstracted away. Think

97

CHAPTER 6. COMPLEX INFRASTRUCTURES AND DEPLOYMENTS

of the role of operating systems, the “write once, run everywhere” motto of Java,

the ISO/OSI networking layers, the conceptual/logical/physical levels in database

management systems, and cluster/cloud management software. Think also of the

problems with the remote procedure call paradigm [TR88], or the issues of cloud

computing for latency-sensitive applications.

A related, key concept in modern software-based system engineering is DevOps .

As a contraction of Development and Operations, this term refers to the shortening

of the gap between these two engineering aspects in order to improve reliability and

agility in deployment. DevOps is strongly based on automation and programma-

bility of operational processes.

In this chapter, the current trends in computing and application deployment

are highlighted, together with the perspectives most related to collective and per-

vasive computing. These themes are prominent in this thesis, since (i) aggregate

computing, through its declarative model, fosters operational flexibility in terms of

both targets and adaptivity of execution plans; (ii) distinction between logical and

physical systems fosters separation of concerns (cf. Chapter 9); and (iii) aggregate

techniques are shown to be useful to program the “infrastructure” – modelled as

a physical computational space – and to enable collective adaptive behaviour on

various levels and kinds of infrastructural support (cf. Chapter 10).

6.1 Fundamentals

6.1.1 Virtualisation

Virtualisation is the practice of creating virtual counterparts for physical re-virtualisation

sources. This is related but different from emulation and simulation, whose goal

is to accurately reproduce or approximate the behaviour of the emu-/simu-lated

entity, respectively.

Virtual machines Things that could be useful to virtualise include computers:

their virtual counterparts are called virtual machines (VMs). Virtual machines

can be run as guest machines on physical, host machines through a hypervisor .hypervisor

Hypervisors can be distinguished between [PG74]:

98

CHAPTER 6. COMPLEX INFRASTRUCTURES AND DEPLOYMENTS

• Type-1, native, or bare-metal hypervisors, which run directly on the host’s

hardware — Examples include Xen or Microsoft Hyper-V.

• Type-2, or hosted hypervisors, which run on the host operating system —

Examples include VMware, VirtualBox, and QEMU.

In full virtualisation, hardware is replicated (hardware virtualisation) so that the full virtuali-
sation

guest OS can run unaware of the abstraction involved. Hardware-assisted or ac-

celerated virtualisation leverages certain hardware capabilities to improve the effi-

ciency of full virtualisation. Paravirtualisation, by contrast, is a technique where

the guest OS is modified to perform (hyper-)calls on the hypervisor.

A tool for creating, running, managing VMs in a reproducible and portable way

is Vagrant : it uses Vagrantfiles to declaratively describe VM configuration and

provisioning, possibly reusing other VMs (boxes), and supports multiple providers

(e.g., VirtualBox, Hyper-V, etc.).

Containers In application or process virtualisation, an application is run in an

isolated fashion on the underlying OS. This is supported by OS-level or lightweight

virtualisation, whereby kernel mechanisms are used to enable user-space isolation.

Also known as containerisation, this technique helps to run isolated applications, containers
and con-
tainerisationcalled containers, without incurring in the overhead of virtual machines, where

hardware has to be virtualised and a full guest OS run.

A prominent toolkit for working with containers is Docker. It provides, among

others, a notion of image (a template for creating containers), easy construction

of images via Dockerfile, registries for storing images, support for networking

between containers, volumes for data sharing, and tools, e.g., for defining and

running multi-container applications (Docker Compose) and managing a cluster

of Docker hosts (Docker Swarm).

6.1.2 Management platforms

Platforms exist to manage heterogeneous systems composed of multiple servers,

networks, storage, and application resources.

99

CHAPTER 6. COMPLEX INFRASTRUCTURES AND DEPLOYMENTS

Mesos [Ign16] — Mesos is a cluster management system that abstracts physical

resources in order to enable multiple frameworks to share resources in a fine-grained

fashion (cf. static partitioning), improving cluster utilisation. The architecture of

Mesos consists of a master node (among a set of candidate masters coordinating

through ZooKeeper) interacting with a set of agents, i.e., cluster nodes that adver-

tise the resources they offer to the master and are available for running tasks. One

or more frameworks register with the master to be offered resources; the master

uses an allocation module to decide how many resources to offer frameworks; the

frameworks can reject resource offers until they receive satisfactory ones; it is the

framework’s scheduler component that takes decisions about whether accepting or

rejecting offers (e.g., based on workload). When a framework accepts a resource

offer, it sends a description of the tasks to run to the master, which in turn launches

the tasks on the agents (these are executed by a framework executor process).

6.2 Cloud Computing

Cloud computing [EPM13] is an ICT environment for remote, elastic provision-cloud com-
puting

ing of resources and services. Cloud environments are characterised by on-demand
cloud char-
acteristics usage (i.e., quick self-provisioning), elasticity (i.e., the ability to automatically

scale in/out), multi-tenancy (resource pooling and virtualisation are used to serve

multiple tenants in a more-or-less isolated way), pay-per-use (resource usage is

measured for monitoring and billing), resilience (i.e., reliability and availability

through replication of resources), and remote, ubiquitous access (e.g., through

global connectivity). Enabling technologies include networks, virtualisation, ser-

vice technology and the Web, and data centre technology (for consolidating and

managing resources). Cloud services are commonly classified according to three

main delivery models :cloud deliv-
ery models

• Infrastructure-as-a-Service (IaaS) — the provider makes available to sub-

scribers networking, storage, and server resources.

• Platform-as-a-Service (PaaS) — in addition to IaaS, the provider also makes

available OS and runtime platform to subscribers, which only need to provide

applications on top;

100

CHAPTER 6. COMPLEX INFRASTRUCTURES AND DEPLOYMENTS

• Software-as-a-Service (SaaS) — the cloud provides a full stack from infras-

tructure to applications.

Since more things can be provided “as a service”, cloud computing is often re-

ferred to as Everything-as-a-Service (XaaS). For instance, modern delivery models

include Container-as-a-Service (CaaS) (where the cloud enables deployment of

containerised microservices), and Function-as-a-Service (FaaS) (the cloud enables

deployment and activation, through configurable triggers, of functions—this is also

known as a “serverless architecture”, since “servers are abstracted away”), where

pricing is based on actual usage of resource (at a fine granularity).

Example: Google Cloud Platform (GCP) GCP is Google’s cloud comput-

ing platform. Users can interact with GCP via four main modalities: (i) the Cloud

Console (a Web interface), (ii) the REST API, (iii) the command line tool gcloud,

or (iv) programmatically, through client libraries (with bindings for multiple pro-

gramming languages) that use the REST API. The set of tools for building software

that uses GCP is known as the Google Cloud Software Development Kit (SDK). An

account can group resources into isolated containers known as projects. Cloud re-

sources are consolidated into so-called data centers (DC). The locations of DCs can

be important for latency and isolation. A zone denotes a single physical facility: it

is the smallest unit in which a resource can exist. If two resources are localised in

the same zone, it means that zone-level failures can affect them at the same time.

A region denotes a collection of zones; it has the approximate extension of a city.

Depending on how services are deployed across zones and regions, increasing levels

of isolation can be considered: zonal (services in a single zone), regional (services

in a single region), multi-regional (services in different regions), and global (ser-

vices spread around the world, for maximal isolation). GCP provides a plethora

of services spanning the categories of computing, storage, networking, security,

etc. Examples include: Compute Engine, for on-demand deployment of virtual

machines; Kubernetes Engine, for Kubernetes clusters; App Engine, a PaaS for

managed applications; Cloud Functions, for serverless applications; Cloud SQL,

for managed relational databases (MySQL or PostgreSQL); Cloud Datastore, for

managed document storage; Cloud Storage, for managed object-into-bucket stor-

age. The cost of use of services depends on the specific service considered; however,

101

CHAPTER 6. COMPLEX INFRASTRUCTURES AND DEPLOYMENTS

typical cost components include how much data is stored, how much data is trans-

ferred (ingress and egress), how much computation and memory is used per time,

how many requests or invocations are performed, etc.

Cloud management: OpenStack [SAE12] — OpenStack is an open-source

platform that supports the management of heterogeneous, physical and virtual

resources through a common API. In other words, it is sort of “cloud OS” that

provides a management layer for data centres, enabling the creation of private and

public clouds. OpenStack consists of various components that focus on specific

cloud features: OpenStack Compute (Nova) manages infrastructure and provides

virtual machines; OpenStack Networking (Neutron) manages all aspects related to

networking; OpenStack Orchestration (Heat) provides an orchestration platform

for template-based cloud applications; etc.

6.3 Beyond Cloud Computing: Edge and Fog

Computing

Recently, the Cloud Computing paradigm [MG+11] has become mainstream,

reliably providing elastic, virtually unlimited, on-demand resources (i.e., services,

processing power, storage) to users through Internet connectivity and large data

centres sparse around the globe. Together with the progress in data centre man-

agement, early efforts were directed at exploiting one such model for disparate

scenarios, leading to fields such as Mobile Cloud Computing (MCC) [FLR13]. Inmobile cloud
computing

MCC, the goal is to give a support to mobile devices for offloading data and

computations to the cloud [MB17]. However, such an approach requires com-

municating with distant data centres, leading to high latency, energy, and band-

width consumption, and additional load on mobile networks. In order to solve

these issues, the idea is to bring cloud-like functionality closer to where resources

are needed. Several concepts (with similar or overlapping meanings) emerged in

this direction, including cyber foraging [SKK12], cloudlets [Sat+09], as well as

ad-hoc [Yaq+16], peer-to-peer [BMT12], and mobile edge-clouds [FLR16]. These

efforts have been somewhat subsumed by fog [Bon+12; VRM14] and (mobile) edge

102

CHAPTER 6. COMPLEX INFRASTRUCTURES AND DEPLOYMENTS

computing [Hu+15; Shi+16] paradigms, whose goal is indeed to support compu-

tation at the edge of the network.

Fog and Mobile Edge Computing (FMEC) leverage dense geographical de- fog comput-
ing, edge
computingployments of resource providers and infrastructural elements, as well as the cor-

responding proximity to users, to both enable new scenarios and improve the

efficiency of the system itself and the Quality of Service (QoS) of applications run-

ning atop. Indeed, FMEC is not to be intended as a replacement for traditional

Cloud Computing but rather as a complementary paradigm, providing options to

system designers when, e.g.: the cloud is (temporarily or permanently) not avail-

able; the cloud is available but undesirable or incompatible with cost, latency or

other non-functional requirements; or when the kind of services to be provided

operate inherently at the edge (cf., mobile crowdsensing [GYL11]). Accordingly,

FMEC represents a facilitator for Internet of Things (IoT) and smart city appli-

cations [DB16], where humans, intelligence, and control are largely in the edge

(edge-centrism [GL+15]), locality plays a fundamental role, and global connectiv-

ity and centralisation fall short. However, to realize the FMEC vision, multiple

challenges need to be addressed, including programmability, mobility support, re-

source management, service management, adaptivity, reliability, as well as security

and privacy [RLM18; Shi+16].

In other words, the recurring theme in FMEC is the smart exploitation of re-

sources, i.e., the utilisation of idle resources from devices that were not usually

fully considered for computational or storage purposes (e.g., networking and end

devices), and the coordination of resources and tasks to both extend the possibil-

ities of individual components and attain non-functional advantage in system as

well as user processes.

Computation offloading and cyber-foraging Computation offloading

is the practice of delegating computation from one device to another.

CloneCloud [Chu+11] was a prototype system that could automatically partition

applications and migrate executions from a mobile device to the corresponding

“clone” in the cloud. In cyber foraging [SKK12], devices look for offloading oppor-

tunities to surrogates, i.e., other nearby devices with idle resources. The process

consists of five steps: (i) surrogate discovery; (ii) context monitoring, for local and

103

CHAPTER 6. COMPLEX INFRASTRUCTURES AND DEPLOYMENTS

surrogate resource usage; (iii) task partitioning into sub-tasks, manually or auto-

matically; (iv) offloading, i.e., scheduling of tasks on surrogate devices; and (v)

remote execution control, exchanging control data with surrogates as well as in-

puts and outputs of the tasks. MAUI [Cue+10] enables fine-grained, energy-aware

offloading of mobile code to remote servers, without requiring the programmer

to deal with application partitioning and avoiding process/VM migration over-

head by automatically deciding what methods should be executed remotely. Scav-

enger [Kri10] was another, Python-based, cyber-foraging system.

Mobile cloud computing (MCC) and cloudlets MCC aims to support de-

velopment of mobile applications without the limitations of the computational

resources of mobile devices. It does so by combining cloud computing, mobile

computing, and wireless networks. In this paradigm, mobile devices become thin

clients that offload computations to the cloud. Clouds can be distant (remote

clouds), requiring WAN-connectivity, or nearby cloudlets [Sat+09; Ver+12], ac-

cessible through LAN-connectivity.

Volunteer computing In volunteer computing [And10], computer owners or

users can provide their spare resources to various “projects”. BOINC (Berke-

ley Open Infrastructure for Network Computing) [And04] is a well-known, open-

source, client-server middleware for volunteer computing. Volunteer and cloud

computing can be combined into volunteer cloud computing [CSD11], whereby vol-

unteered resources are consolidated into a cloud. cuCloud [Men+18] is a Volunteer

Computing-as-a-Service system implemented with Apache CloudStack (an open-

source cloud management platform). Nebula [CWH13] is a cloud service that uses

volunteer edge resources for geographically distributed data-intensive computing

(i.e., for applications that require large amounts of data). It has a web front-end

node for users to join the system as volunteers or executing applications. Each

Nebula application has a master node for handling computations and a master

node for dealing with data storage, each controlling a group of volunteer nodes.

Related to volunteer clouds is the notion of community clouds [Kha+13], proposed

as an extension of community networks [Jim+13].

104

CHAPTER 6. COMPLEX INFRASTRUCTURES AND DEPLOYMENTS

Mobile (edge-)clouds A mobile cloud or edge cloud [Dro+13; MCC12] is a

collection of mobile edge devices that aggregate their resources and make them

available through a network. In this vision, devices are thick clients that offer idle

resources for task offloading. Efforts in this direction include Hyrax [Teo12], Mo-

bile Device Cloud [MHF13], Mobile Compute Cloud (MC2) [Jai+13], Serendip-

ity [Shi+12], femto-clouds [Hab+15]. Of course, this notion of edge-cloud can

leverage volunteer computing and cyber-foraging.

Peer-to-peer edge-clouds A specialised version of edge-clouds is given by fully

decentralised, peer-to-peer clouds [BMT12]. In this context, focus is largely on al-

gorithms enabling direct offloading of computations to nearby devices. For in-

stance, Honeybee [FLR16] is a work-sharing model for independent jobs that

addresses dynamism through opportunistic computing. Mycocloud [Dub+15] is

another algorithm – bio-inspired, self-organising – for service placement in decen-

tralised clouds.

6.4 Application Development and Deployment

on Complex Infrastructure

6.4.1 Microservices

A microservice is a software service that is:

• small and focussed — i.e., it follows the single responsibility principle; and

• independent — i.e., it can be independently developed and deployed.

The point, however, is not an individual service, but rather the implications of

engineering systems of microservices. According to [Bon16], a microservices-based

architecture

advocates creating a system from a collection of small, isolated services,

each of which owns their data, and is independently isolated, scalable,

and resilient to failure.

That is, microservice-oriented development fosters isolation (adding, as a side ef-

fect, some burden to devops), in order to support agility in development and

105

CHAPTER 6. COMPLEX INFRASTRUCTURES AND DEPLOYMENTS

operations by overcoming the issues of monolithic architectures (where an appli-

cation comes as a single, large component that must be deployed and operated as

a whole).

6.4.2 Cloud-native computing

Cloud-native computing [Cnc] is a paradigm that leverages techniques and tech-

nologies like microservices, containers, and automation for building applications

that can be seamlessly run and operated in dynamic, cloud-like environments.

Cloud-native applications, so, are essentially “loosely coupled systems that are re-

silient, manageable, and observable” [Cnc] and, as a consequence, can be variously

operated. A well-known set of principles for building cloud-native applications is

the 12-Factor App methodology [12f], by Heroku.

6.4.3 Elasticity

The concept of elasticity in systems [MCD18] aims to convey the principle of

flexible system operation: by application or removal of forces, there is a correspond-

ing stretching or shrinking of balancing forces. Accordingly, ecosystems of people,

processes, and things are dynamically managed considering both infrastructural

and application requirements—constantly trading-off multiple dimensions (e.g.,

resources, quality, cost).

Osmotic Computing [Mas+16] — In Osmotic Computing, the osmosis

metaphor is used to denote the opportunistic deployment of containerised mi-

croservices to the edge and/or to the cloud in order to balance contrasting needs

while respecting constraints. A main challenge is optimising deployment with re-

spect to multiple criteria to support effective decision-making for both short-term

and long-term needs. This approach is used, e.g., in [RDR18] to regulate diffusion

and relocation of brokers and clients across edge-cloud environments through a

“pulling effect” based on a notion of “osmotic pressure” that aggregates a quan-

tification of proximity and demand and that needs to be balanced by the osmotic

controller.

106

CHAPTER 6. COMPLEX INFRASTRUCTURES AND DEPLOYMENTS

6.5 Application Development and Deployment

for Ad-Hoc Systems

The opposite scenario to complex, rich, infrastructure is when little or no in-

frastructure is available. Networks that do not rely on pre-existing infrastructure

(e.g., routers, base stations) are called ad hoc. The research field of Mobile Ad-hoc mobile ad-
hoc networks

Networks (MANETs) [CG14] studies how nodes interacting in a decentralised, ad

hoc (or peer-to-peer) fashion while moving in the environment can self-organise

to support networking functionality and applications. This is related to spon-

taneous networking [FAW01], peer-to-peer systems [SW05], and wireless sensor peer-to-peer
systems

networks [MP11].

In this thesis, the focus is primarily on the software engineering perspective

rather than on the networking perspective. Approaches that support programming

of MANETs are surveyed in Chapters 3 and 4. The approach covered in this

thesis, introduced in Chapter 5, can work in both ad-hoc and infrastructure-based

settings, as shown in Chapter 9.

6.6 Final Remarks

Modern ICT infrastructures are complex, but research is working on tools that

attempt to resolve such a complexity through abstraction layers. A key point of

this work is that elasticity, intelligent deployment, and resource exploitation in

edge/cloud environments have to be enabled by declarative programming models

such as those covered in Chapter 4 and Chapter 5. In particular, the problem

of finding efficient execution strategies can be delegated to platforms and mid-

dlewares, with applications providing just the domain logic and possibly hints to

guide application partitioning or help controllers in decision-making. Another,

related challenge revolves around sustaining operation when infrastructure falls

down or supporting it in the first place when infrastructure is absent. Chapter 9

describes a proof-of-concept middleware for aggregate computations that supports

multiple execution strategies for diverse infrastructural setups. Chapter 10 de-

scribes a pattern that could be useful for decentralised coordination of devices in

107

CHAPTER 6. COMPLEX INFRASTRUCTURES AND DEPLOYMENTS

edge-clouds.

References

[12f] 12 Factor App Methodology website. https://12factor.net. Retrieved Octo-

ber 28-th 2019. 2019.

[And04] David P Anderson. “Boinc: A system for public-resource computing and stor-

age”. In: Grid Computing, 2004. Proceedings. Fifth IEEE/ACM International

Workshop on. IEEE. 2004, pp. 4–10.

[And10] David P Anderson. “Volunteer computing: the ultimate cloud.” In: ACM Cross-

roads 16.3 (2010), pp. 7–10.

[BMT12] Ozalp Babaoglu, Moreno Marzolla, and Michele Tamburini. “Design and im-

plementation of a P2P Cloud system”. In: Proceedings of the 27th Annual ACM

Symposium on Applied Computing. ACM. 2012, pp. 412–417.

[Bon+12] Flavio Bonomi, Rodolfo Milito, Jiang Zhu, and Sateesh Addepalli. “Fog com-

puting and its role in the internet of things”. In: Proceedings of the first edition

of the MCC workshop on Mobile cloud computing. ACM. 2012, pp. 13–16.

[Bon16] Jonas Bonér. “Reactive microservices architecture: design principles for dis-

tributed systems”. In: (2016).

[CG14] Marco Conti and Silvia Giordano. “Mobile ad hoc networking: milestones, chal-

lenges, and new research directions”. In: IEEE Communications Magazine 52.1

(2014), pp. 85–96. doi: 10.1109/MCOM.2014.6710069. url: https://doi.

org/10.1109/MCOM.2014.6710069.

[Chu+11] Byung-Gon Chun, Sunghwan Ihm, Petros Maniatis, Mayur Naik, and Ashwin

Patti. “Clonecloud: elastic execution between mobile device and cloud”. In:

Proceedings of the sixth conference on Computer systems. ACM. 2011, pp. 301–

314.

[Cnc] Cloud Native Computing Foundation website. https://www.cncf.io. Re-

trieved October 28-th 2019. 2019.

[CSD11] Fernando Costa, Luis Silva, and Michael Dahlin. “Volunteer cloud computing:

Mapreduce over the internet”. In: 2011 IEEE International Symposium on

Parallel and Distributed Processing Workshops and Phd Forum. IEEE. 2011,

pp. 1855–1862.

108

https://12factor.net
https://doi.org/10.1109/MCOM.2014.6710069
https://doi.org/10.1109/MCOM.2014.6710069
https://doi.org/10.1109/MCOM.2014.6710069
https://www.cncf.io

CHAPTER 6. COMPLEX INFRASTRUCTURES AND DEPLOYMENTS

[Cue+10] Eduardo Cuervo, Aruna Balasubramanian, Dae-ki Cho, Alec Wolman, Stefan

Saroiu, Ranveer Chandra, and Paramvir Bahl. “MAUI: making smartphones

last longer with code offload”. In: Proceedings of the 8th international confer-

ence on Mobile systems, applications, and services. ACM. 2010, pp. 49–62.

[CWH13] Abhishek Chandra, Jon Weissman, and Benjamin Heintz. “Decentralized edge

clouds”. In: IEEE Internet Computing 5 (2013), pp. 70–73.

[DB16] Amir Vahid Dastjerdi and Rajkumar Buyya. “Fog computing: Helping the In-

ternet of Things realize its potential”. In: IEEE Computer 49.8 (2016), pp. 112–

116.

[Dro+13] Utsav Drolia, Rolando Martins, Jiaqi Tan, Ankit Chheda, Monil Sanghavi,

Rajeev Gandhi, and Priya Narasimhan. “The case for mobile edge-clouds”. In:

Ubiquitous Intelligence and Computing, 2013 IEEE 10th International Confer-

ence on and 10th International Conference on Autonomic and Trusted Com-

puting (UIC/ATC). IEEE. 2013, pp. 209–215.

[Dub+15] Daniel Dubois, Giuseppe Valetto, Donato Lucia, and Elisabetta Di Nitto. “My-

cocloud: Elasticity through self-organized service placement in decentralized

clouds”. In: Int. Conf. on Cloud Computing (CLOUD). IEEE. 2015, pp. 629–

636.

[EPM13] Thomas Erl, Ricardo Puttini, and Zaigham Mahmood. Cloud computing: con-

cepts, technology & architecture. Pearson Education, 2013.

[FAW01] Laura Marie Feeney, Bengt Ahlgren, and Assar Westerlund. “Spontaneous net-

working: an application oriented approach to ad hoc networking”. In: IEEE

Communications magazine 39.6 (2001), pp. 176–181.

[FLR13] Niroshinie Fernando, Seng W Loke, and Wenny Rahayu. “Mobile cloud comput-

ing: A survey”. In: Future Generation Computer Systems 29.1 (2013), pp. 84–

106.

[FLR16] Niroshinie Fernando, Seng Loke, and Wenny Rahayu. “Computing with nearby

mobile devices: a work sharing algorithm for mobile edge-clouds”. In: IEEE

Transactions on Cloud Computing 1 (2016), pp. 1–1.

[GL+15] Pedro Garcia Lopez, Alberto Montresor, Dick Epema, Anwitaman Datta,

Teruo Higashino, et al. “Edge-centric computing: Vision and challenges”. In:

ACM SIGCOMM Computer Communication Review 45.5 (2015), pp. 37–42.

[GYL11] Raghu K Ganti, Fan Ye, and Hui Lei. “Mobile crowdsensing: current state and

future challenges”. In: IEEE Communications Magazine 49.11 (2011).

[Hab+15] Karim Habak, Mostafa Ammar, Khaled A Harras, and Ellen Zegura. “Femto

clouds: Leveraging mobile devices to provide cloud service at the edge”. In: 2015

IEEE 8th international conference on cloud computing. IEEE. 2015, pp. 9–16.

109

CHAPTER 6. COMPLEX INFRASTRUCTURES AND DEPLOYMENTS

[Hu+15] Yun Chao Hu, Milan Patel, Dario Sabella, Nurit Sprecher, and Valerie Young.

“Mobile edge computing—A key technology towards 5G”. In: ETSI white paper

11.11 (2015), pp. 1–16.

[Ign16] Roger Ignazio. Mesos in action. Manning Publications Co., 2016.

[Jai+13] P Jain, R Kabra, S Rustagi, T Bansal, D Patel, and V Raychoudhury. “MC

2: on-the-fly mobile compute cloud for computational intensive task”. In: Pro-

ceedings of the 5th IBM Collaborative Academia Research Exchange Workshop.

ACM. 2013, p. 7.

[Jim+13] Javi Jiménez, Roger Baig, Pau Escrich, Amin M Khan, Felix Freitag, et al.

“Supporting cloud deployment in the Guifi.net community network”. In: Global

Information Infrastructure Symposium, 2013. IEEE. 2013, pp. 1–3.

[Kha+13] Amin M Khan, Leandro Navarro, Leila Sharifi, and Lúıs Veiga. “Clouds of

small things: Provisioning infrastructure-as-a-service from within community

networks”. In: Wireless and Mobile Computing, Networking and Communica-

tions (WiMob), 9th Int. Conf. on. IEEE. 2013, pp. 16–21.

[Kri10] Mads Darø Kristensen. “Scavenger: Transparent development of efficient cyber

foraging applications”. In: Pervasive Computing and Communications (Per-

Com), 2010 IEEE International Conference on. IEEE. 2010, pp. 217–226.

[Mas+16] Villari Massimo, Fazio Maria, Dustdar Schahram, Rana Omer, and Rajiv Ran-

jan. “Osmotic Computing: A New Paradigm for Edge/Cloud Integration”. In:

IEEE Cloud Computing 3.6 (2016), pp. 76–83. issn: 2325-6095. doi: doi .

ieeecomputersociety.org/10.1109/MCC.2016.124.

[MB17] Pavel Mach and Zdenek Becvar. “Mobile edge computing: A survey on ar-

chitecture and computation offloading”. In: IEEE Communications Surveys &

Tutorials 19.3 (2017), pp. 1628–1656.

[MCC12] Emiliano Miluzzo, Ramón Cáceres, and Yih-Farn Chen. “Vision: mClouds-

computing on clouds of mobile devices”. In: Proceedings of the third ACM

workshop on Mobile cloud computing and services. ACM. 2012, pp. 9–14.

[MCD18] Daniel Moldovan, Georgiana Copil, and Schahram Dustdar. “Elastic systems:

Towards cyber-physical ecosystems of people, processes, and things”. In: Com-

puter Standards & Interfaces 57 (2018), pp. 76–82.

[Men+18] Tessema M Mengistu, Abdulrahman M Alahmadi, Yousef Alsenani, Abdullah

Albuali, and Dunren Che. “cucloud: Volunteer computing as a service (vcaas)

system”. In: International Conference on Cloud Computing. Springer. 2018,

pp. 251–264.

[MG+11] Peter Mell, Tim Grance, et al. “The NIST definition of cloud computing”. In:

(2011).

110

https://doi.org/doi.ieeecomputersociety.org/10.1109/MCC.2016.124
https://doi.org/doi.ieeecomputersociety.org/10.1109/MCC.2016.124

CHAPTER 6. COMPLEX INFRASTRUCTURES AND DEPLOYMENTS

[MHF13] Abderrahmen Mtibaa, Khaled A Harras, and Afnan Fahim. “Towards compu-

tational offloading in mobile device clouds”. In: 2013 IEEE 5th international

conference on cloud computing technology and science. Vol. 1. IEEE. 2013,

pp. 331–338.

[MP11] Luca Mottola and Gian Pietro Picco. “Programming wireless sensor networks:

Fundamental concepts and state of the art”. In: ACM Computing Surveys

(CSUR) 43.3 (2011), p. 19.

[PG74] Gerald J Popek and Robert P Goldberg. “Formal requirements for virtualizable

third generation architectures”. In: Communications of the ACM 17.7 (1974),

pp. 412–421.

[RDR18] Thomas Rausch, Schahram Dustdar, and Rajiv Ranjan. “Osmotic message-

oriented middleware for the internet of things”. In: IEEE Cloud Computing

5.2 (2018), pp. 17–25.

[RLM18] Rodrigo Roman, Javier Lopez, and Masahiro Mambo. “Mobile edge computing,

fog et al.: A survey and analysis of security threats and challenges”. In: Future

Generation Computer Systems 78 (2018), pp. 680–698.

[SAE12] Omar Sefraoui, Mohammed Aissaoui, and Mohsine Eleuldj. “OpenStack: to-

ward an open-source solution for cloud computing”. In: International Journal

of Computer Applications 55.3 (2012), pp. 38–42.

[Sat+09] Mahadev Satyanarayanan, Paramvir Bahl, Ramón Caceres, and Nigel Davies.

“The case for vm-based cloudlets in mobile computing”. In: IEEE Pervasive

Computing 8.4 (2009).

[Shi+12] Cong Shi, Vasileios Lakafosis, Mostafa H Ammar, and Ellen W Zegura.

“Serendipity: enabling remote computing among intermittently connected mo-

bile devices”. In: Proceedings of the thirteenth ACM international symposium

on Mobile Ad Hoc Networking and Computing. ACM. 2012, pp. 145–154.

[Shi+16] Weisong Shi, Jie Cao, Quan Zhang, Youhuizi Li, and Lanyu Xu. “Edge comput-

ing: Vision and challenges”. In: IEEE Internet of Things Journal 3.5 (2016),

pp. 637–646.

[SKK12] Mohsen Sharifi, Somayeh Kafaie, and Omid Kashefi. “A survey and taxonomy

of cyber foraging of mobile devices”. In: IEEE Communications Surveys &

Tutorials 14.4 (2012), pp. 1232–1243.

[SW05] Ralf Steinmetz and Klaus Wehrle. Peer-to-peer systems and applications.

Vol. 3485. Springer, 2005.

[Teo12] Chye Liang Vincent Teo. “Hyrax: Crowdsourcing mobile devices to develop

proximity-based mobile clouds”. In: Pittsburgh: Carnegie Mellon University

(2012).

111

CHAPTER 6. COMPLEX INFRASTRUCTURES AND DEPLOYMENTS

[TR88] Andrew Stuart Tanenbaum and R van Renesse. “A critique of the remote

procedure call paradigm”. In: (1988).

[Ver+12] Tim Verbelen, Pieter Simoens, Filip De Turck, and Bart Dhoedt. “Cloudlets:

Bringing the cloud to the mobile user”. In: Proceedings of the third ACM work-

shop on Mobile cloud computing and services. ACM. 2012, pp. 29–36.

[VRM14] Luis M Vaquero and Luis Rodero-Merino. “Finding your way in the fog: To-

wards a comprehensive definition of fog computing”. In: ACM SIGCOMM

Computer Communication Review 44.5 (2014), pp. 27–32.

[Yaq+16] Ibrar Yaqoob, Ejaz Ahmed, Abdullah Gani, Salimah Mokhtar, Muhammad

Imran, and Sghaier Guizani. “Mobile ad hoc cloud: A survey”. In: Wireless

Communications and Mobile Computing 16.16 (2016), pp. 2572–2589.

112

Part II

Contribution

Chapter 7

ScaFi: Aggregate Programming

in Scala

The diversity of languages is not a diversity of signs and

sounds but a diversity of views of the world.

Wilhelm von Humboldt

Contents
7.1 Motivation and Problem . 116

7.1.1 Why ScaFi . 116

7.1.2 Embedding field computations in a host language . . . 119

7.2 Computational Fields in Scala 120

7.2.1 Constructs . 121

7.2.2 Examples . 124

7.3 FScaFi Calculus: Syntax and Semantics 130

7.3.1 Syntax . 130

7.3.2 Typing . 134

7.3.3 Operational semantics: device semantics 137

7.3.4 Operational semantics: network semantics 146

7.4 Properties and Relation with HFC 149

7.4.1 Type Preservation in FScaFi 150

7.4.2 HFC, HFC′ and Aligned FScaFi 151

7.4.3 FScaFi expressiveness 159

7.5 ScaFi: Library . 163

115

CHAPTER 7. SCAFI: AGGREGATE PROGRAMMING IN SCALA

7.5.1 Fundamental building blocks 163

7.5.2 Proof of concept: library support for explicit fields . . 168

7.6 Case Study . 171

7.6.1 Computational trust for attack-resistant gradients . . . 171

7.7 Final Remarks . 183

References . 183

As covered in Chapter 5, aggregate computing is a paradigm for program-

ming collective adaptive systems, embodied by languages like Proto [BB06] and

Protelis [PVB15]. Both Proto and Protelis are standalone domain-specific

languages (DSL) and, as a consequence, require an ad-hoc toolchain.

For a better integration of aggregate computing techniques into mainstream

software development, as well as to investigate on embedding the field calculus

in modern, object-oriented and functional languages, in this chapter we present

ScaFi, an aggregate programming DSL internal to the Scala programming lan-

guage. In order to seamlessly embed field computations into Scala, the design

choice of not explicitly exposing field types has been made: this yielded a new

field calculus variant, called FScaFi, which preserves basic expressivity and where

explicit fields can still be provided through reification at the library level (cf. Sec-

tion 7.5.2).

ScaFi is motivated and presented in Sections 7.1 and 7.2. FScaFi is described

formally in Section 7.3 and Section 7.4. Finally, Sections 7.5 and 7.6 show ScaFi

in action.

7.1 Motivation and Problem

7.1.1 Why ScaFi

A key issue for the applicability of the aggregate programming model is to find

ways to smoothly integrate it with the standard development practice—languages,

processes and tools.

Previously, a language for expressing field-based computations called Pro-

telis [PVB15] was introduced: it was based on an untyped, standalone DSL (also

called, external DSL), providing support to import existing Java libraries and call

116

CHAPTER 7. SCAFI: AGGREGATE PROGRAMMING IN SCALA

methods on objects. A Protelis specification, then, feeds an interpreter that

can be run on a device to execute local field computation rounds. This approach,

though enabling Aggregate Computing in deployed contexts, might difficulty com-

bine with the software development process one typically exploits to build complex,

distributed applications. In particular, the following issues make the process un-

smooth: training and documenting for a distinct language can be burdensome;

extra development and maintenance effort is needed to adequately support editing

tools (e.g., plugins are required for common Integrated Development Environment

(IDE) features like syntax highlighting, validation, refactoring); activities that

span both the DSL and the target language, such as static analysis and debugging,

may be hard to implement; and finally, the ability to smoothly reuse the features

and libraries of the target language can be limited. Though language development

toolchains greatly improved recently (cf. the Xtext language workbench [Bet16]

and its Xbase extension [Eff+12], to name a popular one), practically, with an

external DSL it may be difficult to come up with a cohesive process and design for

a target software system (cf. Generation gap pattern [Vli98]), since parts written

in the DSL need to bidirectionally refer and interact with other parts of the system

[Gho11].

A prominent, modern approach to address this problem is to devise an internal

DSL [Voe13] (also called embedded DSL [Gho11]) that provides mechanisms to

support the new features on top of an adequate and well-known host programming

language. Of course, the syntax of the embedded DSL is limited by the constraints

exerted by the host language; therefore, it is fundamental to take into account the

requirements as well as the desiderata for the DSL, which in our case include:

• pragmatism—supporting easy reuse of existing programming structures and

mechanisms;

• reliability—intercepting errors concerning syntax and types at compile-time;

• expressivity—offering a concise and eloquent syntax, minimising the acci-

dental language complexity induced by the environment.

All these considerations led us to choose the Scala programming language as

the host for what has become the ScaFi aggregate computing DSL and plat-

form [CPV16; VCP16]. The goal with ScaFi is to provide an environment to

117

CHAPTER 7. SCAFI: AGGREGATE PROGRAMMING IN SCALA

streamline and support effective development of systems based on the Aggregate

Computing paradigm, leveraging the solid basis provided by a mainstream pro-

gramming language such as Scala and its ecosystem. Moreover, it is found signif-

icant to integrate a novel research paradigm in the context of a widespread pro-

gramming environment already supporting the core paradigms found in modern

software development, namely Object-Oriented Programming (OOP) and Func-

tional Programming (FP). In fact, Scala:

• runs on the JVM and thus enables straightforward interaction and reuse of

libraries in the Java ecosystem;

• offers a strong, expressive type system, with type inference, that helps to

prevent errors and also comes handy for building libraries (even allowing for

type-level computations);

• has quite a flexible syntax that makes it possible for library designers to

create elegant Application Program Interfaces (APIs).

The multi-paradigm and popularity aspects were also in favour of Scala (cf., imper-

ative, object-oriented, functional, component-based programming support [OZ05;

OR14]) with respect to languages also suitable for DSL development like Haskell

or Racket.

Incidentally, Scala also has great popularity in the distributed computing arena:

it is the implementation language for several distributed computing libraries and

frameworks [Cal+17; Die+16], there including popular ones for streaming (Apache

Kafka [Apaa]) and cluster computing (Apache Spark [Apab]). Additionally, it well

supports linguistic abstractions for concurrent and distributed computing by the

Akka actor framework [Akk], which is an industry-ready solution for implementing

resilient, message-driven runtimes and applications. Hence, our choice of Scala

also fosters the construction of a platform-level support on top of ScaFi (see

Chapter 9), in the form of a middleware for running distributed and situated

systems.

As will be showcased in the next section, the flexibility of Scala allows us to

provide smooth field calculus support by: (i) a cohesive syntax to handle field

expressions (which are actually standard expressions), (ii) mechanisms to control

when and how expressions are evaluated (thanks to by-name parameters), and (iii)

118

CHAPTER 7. SCAFI: AGGREGATE PROGRAMMING IN SCALA

declaratively handling neighbour interactions with a new notion of computation

“against” a neighbour, namely, a computation whose outcome depends on the most

recent, local view of the result of computation in that neighbour (differently from

standard field calculus, this allows smooth application of host typing mechanisms

to any field expression).

7.1.2 Embedding field computations in a host language

A first key problem in embedding field computations in a host language lies

in the potential mismatch between the local representation of types and the rep-

resentation of field expressions. For the former, one would seek for the natural

representation of the host language, e.g., literal 1 representing a local value of

type Int. For the latter, one has to combine the natural representation (since field

expressions include local expressions as described above) with the additional con-

structs manipulating fields; namely, literal 1, or some variation, should represent a

field value (equal to 1 in all space-time points of the local device’s neighbourhood)

of some type, say Field[Int], inheriting all the operations one would use over the

local counterpart Int (+, -, and so on). As a consequence, standard types such

as numbers, booleans, characters, objects, and the corresponding operators, need

to be coherently lifted in order to work under the field interpretation. That is,

given any type T, the type Field[T] should support all the operations provided

by T but lifted to the field context (cf., functors in category theory): for instance,

expression e1 + e2 where e1 and e2 have type Field[Int] should naturally give

an element of type Field[Int]. Ideally, the type system should continue to do its

job with field types, and field expressions should be written in a notation which is

analogously simple as the local counterpart.

A second key problem stems from the declarativeness and compositionality of

field computations: the host language should provide the means for defining blocks

of code and for controlling when and how these are executed, mainly by deferring

their evaluation until a later time and properly contextualising them to the local

information available in each device. These mechanisms should also be lightweight

so as to keep the impact on the user-side of the DSL as little as possible.

The third, key technical difficulty is to properly deal with the interaction model

of field computations, which is neighbour-driven. Field computations are equipped

119

CHAPTER 7. SCAFI: AGGREGATE PROGRAMMING IN SCALA

with a (logical or physical) notion of neighbourhood that basically expresses the

boundary of direct communication, i.e., what devices can be reached by a given

device through a communication act occurring in a certain position of computa-

tion. The observation of values that a device reads from its neighbours is typically

modelled by reification into a neighbouring value (a map from neighbours to val-

ues), which can be manipulated functionally until being collapsed back to a local

value by means of some folding operator—e.g., computing the minimum value.

This requires one to explicitly differentiate, syntactically and semantically, the

two classes of types, neighbouring types and local types, raising the issue of how

to lift standard local operators to neighbour types. Thanks to the features of the

Scala programming language, and as detailed in this chapter, ScaFi handles this

problem with a twist:

• the same type, say Int, is used both for local types and neighbouring types;

• the notion of computation over neighbouring values is semantically turned

into a notion of computation “against” a neighbour (namely, a computation

whose outcome depends on recent result of computation in that neighbour),

hence there is no longer need of two kinds of type;

• folding operations are the triggers for a universal quantification process, it-

erating computations against all pertinent neighbours.

Such changes, impacting theory and practice of field computations as described

in this chapter, enable expressive and smooth integration with Scala programming.

7.2 Computational Fields in Scala

In Scala, every value is an object and behaviour ultimately resides in meth-

ods: thus, in order to embed field computations in Scala, field operators have

to become methods in some object which is responsible for their interpretation.

That is, programming by the DSL means calling the methods exposed by the

field constructs API, which are implemented by an interpreter object; such an

object, assumed to be accessible, is a sort of local virtual machine for field com-

putations, which also provides access to the local execution context (i.e., where

critical information about the specific device computation are available). A field

120

CHAPTER 7. SCAFI: AGGREGATE PROGRAMMING IN SCALA

computation is then carried out locally as a combination of method calls that

transparently and recursively build an internal data structure (a tree of values),

representing the local result of computation, and out of which the content of the

message to be sent to neighbours is derived. This computational mechanism, along

with others to manage field evolutions and communication across neighbours via

neighbour-dependent expressions, is what is implemented by ScaFi as described

in this section and modelled by the Featherweight ScaFi (FScaFi) calculus

introduced in Section 7.3.

7.2.1 Constructs

The following interface, implemented as a Scala trait, represents the basic field

computation constructs as methods:

trait Constructs {
// Key constructs
def rep[A](init: => A)(fun: (A) => A): A
def foldhood[A](init: => A)(aggr: (A, A) => A)(expr: => A): A
def nbr[A](expr: => A): A
def @@[A](b: => A): A

// Abstract types
type ID // type of device identifiers
type LSNS, NSNS // type of local and neighbour sensors

// Contextual, but foundational
def mid(): ID
def sense[A](name: LSNS): A
def nbrvar[A](name: NSNS): A

}

In Scala, methods are introduced with the def keyword, can be generic (with

type parameters specified in square brackets), may accept multiple parameter lists,

and specify a return type at the end of the signature (when this is not given the

compiler attempts inference). Function types may take the form (I1,. . .,IN)=>O,

which is actually syntactic sugar over FunctionN[I1,. . .,IN,O]; curried func-

tion types can be written as I1=>· · · =>IN=>O (=> is right associative). Tuple

types may take the form (T1,. . .,TN), which is actually syntactic sugar over

TupleN[T1,. . .,TN]; similarly, a literal tuple value can be denoted as (v1,. . .,vN).

By-name parameters, denoted with type =>T , capture expressions or blocks of

121

CHAPTER 7. SCAFI: AGGREGATE PROGRAMMING IN SCALA

code that are passed unevaluated to the method and are actually evaluated every

time the parameter is used—they are basically syntactic sugar over 0-ary function

types. As a relevant note on syntax, especially useful in DSLs to render constructs

with code blocks, unary parameter lists in a method can be called also with curly

brackets instead of parentheses. E.g., all the following are valid invocations for

rep method above: rep(·)(·), rep(·){·}, rep{·}(·), rep{·}{·}. Finally, nullary

methods can be invoked without parentheses; e.g., mid is a valid method call just

like mid().

First of all, note that method signatures do not include field-like type con-

structors. In fact in ScaFi, fields are not reified explicitly but only exist at the

semantic level, namely, a Scala expression is handled as a field expression when

passed to the ScaFi interpreter. Accordingly, one can adopt two useful viewpoints

at aggregate specifications: the local viewpoint, typically useful when reasoning

about low-level aspects of field computations, which considers a field expression

as the computation carried on by a specific individual device; and the global view-

point, typically more useful when focussing on higher-level composition of field

computations, which regards a specification at the aggregate level, as a whole

spatio-temporal computation evolving a field. So, an expression of a given Scala

type (say Int or List[Double]) can represent the outcome of execution of a com-

putation locally (an Int or List[Double]), or globally as the program producing

a field (a field of Ints or a field of List[Double] values). As an example, field

expression 1 can be locally seen as a device producing a 1 at a certain round, or

globally as a “flat” field holding a 1 at each space-time event (i.e., in any round of

any device).

Considering the local interpretation, two key concepts need to be clarified be-

fore diving into further details. First, when evaluating a given (sub-)expression in

a device d, a neighbour device is said to be aligned if, at its latest round, it eval-

uated the same subexpression: in fact, because of branching mechanisms, devices

can evaluate different parts of the main expression representing the overall field,

hence in general the set of aligned neighbours is smaller than the actual neigh-

bourhood, which always includes the device d itself. Second, a (sub-)expression

is said to be neighbour-dependent if its evaluation will be performed “against” an

aligned neighbour n, such that the outcome will depend on the outcome of the

122

CHAPTER 7. SCAFI: AGGREGATE PROGRAMMING IN SCALA

evaluation of the same expression on n as occurred at its latest round: we will

see that this can happen because of constructs nbr and nbrvar, whose result is

in fact a neighbour-dependent one. Note that globally, a neighbour-dependent ex-

pression can be seen as generating a field associating each space-time point with a

neighbouring value, i.e., a value obtained by evaluating the expression against an

aligned neighbour device.

We now describe each construct in turn, elucidating both its local and global

interpretation, before full examples will be provided in Section 7.2.2:

• Construct rep(init)(f) provides the (only) means for evolving fields over

time: globally, the output field is obtained by continuously applying the state

transformation function field f throughout space and time on a field which,

at the beginning, is init; locally, instead, one can interpret the expression

as the result yielded by a device upon application of the unary transition

function f to the value computed at the previous round, or to the local value

of init at the first round. As we will see, rep(0)(+1)1 is the field counting

the number of rounds executed at each device.

• Construct foldhood(init)(acc)(e) (where acc is a binary accumulator

function and init is a terminal value—the two typically forming a monoidal

structure2), provides a way of extracting information from neighbours: glob-

ally, it yields a field of local values obtained by everywhere and everytime

collapsing (i.e., folding through acc and init) the field of neighbour values

defined by e, which may possibly be neighbour-dependent; locally, it evalu-

ates the expression e against each different aligned neighbour, and the set of

results feeds a purely functional folding process using acc and init. As we

will see, foldhood(0)(+){1} is the field dynamically counting the number

of neighbours of each device (since 1 is not neighbour-dependent, it simply

sums a 1 per neighbour).

• Construct nbr(e) defines a neighbour-dependent expression used to support

interaction across neighbours: globally, it creates a field of neighbouring val-

1In Scala, underscores provide syntactic sugar for creating lambdas, by representing how
subsequent parameters are used in expressions being the body of such lambdas, such that, e.g.,
f(,) is like 1, 2=>f(1, 2) and +x like 1=> 1+x.

2I.e., typically, acc is associative, and init is an identity for acc, though these properties are
not strictly required.

123

CHAPTER 7. SCAFI: AGGREGATE PROGRAMMING IN SCALA

ues associating to each device d at each round a map from aligned neighbours

to the most recent values of e they evaluated; locally, when executed against

a neighbour device n, it gives the most recent value of e computed by n.

As we will see, foldhood(0)(+){nbr{e}} is the field mapping across time

each device to the sum of evaluations of e across neighbours.

• Construct @@(b) wraps the body b of a standard Scala function so as to make

it an aggregate function, namely, a “unit of alignment”: globally, when an

aggregate function is called, the space-time is split in regions executing the

same body and, in each such region, computation gets isolated from others

by branching; locally, this is achieved by excluding from the set of aligned

neighbours those which are executing a different aggregate function body.

Note this construct is needed in ScaFi API to properly support alignment.

Other operators that do not affect space-time behaviour but are somehow foun-

dational include:

• construct sense(lsns), to query a local sensor of name lsns: this is the

mechanisms by which an expression can interact with the local context to

receive information from the physical world (temperature, humidity, and so

on) or the platform (GPS position, time elapsed since latest round, and so

on);

• construct mid(), which is a particular sensor returning the unique identifier

of the running device;

• construct nbrvar(nsns), which can be used to query a “neighbouring sensor”

of name nsns yielding a (field of) neighbouring value(s): a typical such

sensor is nbrRange, used to ask the platform to estimate physical distances

to neighbours.

7.2.2 Examples

Here, we incrementally describe some example applications of the above con-

structs, to clarify some details of the language before its formalisation in Section 7.3

as well as to pave the way towards a more complex case study as described in Sec-

tion 7.6. Unless differently specified, the following descriptions shall rely on the

global stance.

124

CHAPTER 7. SCAFI: AGGREGATE PROGRAMMING IN SCALA

In ScaFi, a usual literal such as, for instance, tuple

(”hello”, 7.7, true)

is to be seen as a constant (i.e., not changing over time) and uniform (i.e., not

changing across space) field holding the corresponding local value at any point of

the space-time domain. By analogy, an expression such as

1 + 2

denotes a global expression where a field of 1s and a field of 2s are summed together

through the field operator +, which works like a point-wise application of its local

counterpart. Indeed, literal + can also be thought of as representing a constant,

uniform field of (binary) functions, and function application can be viewed as a

global operation that applies a function field to its argument fields.

A constant field does not need to be uniform. For instance, given a static

network of devices, then

mid()

denotes the field of device identifiers, which does not change across time but does

vary in space. On the other hand, expression

sense(”temperature”) // or sense[Double]("temperature") to explicitly type it

is used to represent a field of temperatures (as obtained by collectively querying the

local temperature sensors over space and time), which is in general non-constant

and non-uniform.

Fields changing over time can also be programmatically defined by the rep

operator; for instance, expression

// Initially 0; state is incremented at each round
rep(0){ x => x + 1 } // Equally expressed in Scala as: rep(0)(_ + 1)

counts how many rounds each device has executed: it is still a non-uniform field

since the update phase and frequency of the devices may vary both between devices

and across time for a given device.

Folding can be used to trigger the important concept of neighbour-dependent

expression. As a simple initial example, expression

125

CHAPTER 7. SCAFI: AGGREGATE PROGRAMMING IN SCALA

foldhood(0)(_ + _){ 1 }

counts the number of neighbours at each device (possibly changing over time if

the network topology is dynamic). Note that folding collects the result of the

evaluation of 1 against all neighbours, which simply yields 1, so the effect is merely

the addition of 1 for each existing neighbour.

The key way to define truly neighbour-dependent expressions is by the nbr

construct, which enables to “look around” just one step beyond a given locality.

Expression

foldhood(0)(_ + _){ nbr { sense[Double](”temperature”) } } / foldhood(0)(_ + _){
1 }

evaluates to the field of average temperature that each device can perceive in

its neighbourhood. The numerator sums temperatures sensed by neighbours (or,

analogously, it sums the neighbour evaluation of the temperature sensor query

expression), while the denominator counts neighbours as described above.

As another example, the following expression denotes a Boolean field of warn-

ings:

val warningThreshold: Double = 42.0

foldhood(false)(_ || _){
nbr { sense[Double](”temperature”) } > warningThreshold

}

This is locally true if any neighbour perceives a temperature higher than some

topical threshold. Notice that by moving the comparison into the nbr block,

foldhood(false)(_ || _){
nbr { sense[Double](”temperature”) > warningThreshold }

}

the decision about the threshold (i.e., the responsibility of determining when a

temperature is dangerous) is transferred to the neighbours, and hence warnings

get blindly extended by 1-hop. Of course, provided warningThreshold is uniform,

the result would be the same in this case.

Ordinary Scala functions can be defined to capture and give a name to common

field computation idioms, patterns, and domain-specific operations. For instance,

126

CHAPTER 7. SCAFI: AGGREGATE PROGRAMMING IN SCALA

by assuming a mux function that implements a strictly-evaluated version of if:

def mux[A, B<:A, C<:A](cond: Boolean)(th: B)(el: C): A = if(cond) th else el

a variation of foldhood, called foldhoodPlus3, which does not take “self” (the

current device) into account, can be implemented as follows:

def foldhoodPlus[A](init: => A)(aggr: (A, A) => A)(expr: => A): A =
foldhood(init)(aggr)(mux(mid==nbr{mid}){ init }{ expr })

Notice that the identity init is used when considering a neighbour device whose

identifier (nbr{mid}) is the same as that of the current device (mid). As another

example, one can give a label to particular sensor queries, such as:

def temperature = sense[Double](”temperature”)
def nbrRange = nbrvar[Double](”nbr−range”)

The second case uses construct nbrvar, which is a neighbouring sensor query op-

erator providing, for each device, a sensor value for each corresponding neighbour:

e.g., for nbrRange, the output value is a floating-point number expressing the esti-

mation of the distance from the currently executing device to that neighbour—so,

it is usually adopted as a metric for “spatial algorithms”. Based on the above

basic expressions, one can define a rather versatile and reusable building block of

Aggregate Programming, called gradient [LK87; Bea+08; Aud+17]. A gradient

(see Figure 7.1) is a numerical field expressing the minimum distance (according

to a certain metric) from any device to source devices; it is also interpretable as

a surface whose “slope” is directed towards a given source. In ScaFi, it can be

programmed as follows:

def gradient(source: Boolean, metric: () => Double = nbrRange): Double =
rep(Double.PositiveInfinity){ distance =>
mux(source) {

0.0
}{

foldhoodPlus(Double.PositiveInfinity)(Math.min(_,_)){ nbr{distance} +
metric }
}

}

3The “Plus” suffix is to mimic the mathematical syntax R+ of the transitive closure of a
(neighbouring) relation R.

127

CHAPTER 7. SCAFI: AGGREGATE PROGRAMMING IN SCALA

Figure 7.1: Pictorial representation of a gradient field snapshot in the midst of a
simulation in ScaFi. The red nodes are the sources of the gradient. The nodes
at the top-left have parted from the network and their values increase unboundly.
The grey lines represent device connectivity according to a proximity-based neigh-
bouring relationship.

The rep construct allows one to keep track of the distances across rounds of com-

putations: source devices are at a null distance from themselves, and the other

devices take the minimum value among those of neighbours increased by the corre-

sponding estimated distances as given by metric—defaulting to nbrRange. Notice

that a version of foldhood that does not consider the device itself must be used

to prevent devices from getting stuck to low values because of self-messages (as

it would happen when a source node that gets deactivated): with it, gradients

dynamically adapt to changes in network topology or position/number of sources,

i.e., it is self-stabilising [Vir+18].

Another common and important operation on fields is splitting computation

into completely separate parts or sub-computations executed in isolated space-time

regions. An example is computing a gradient in a space that includes obstacle

nodes so that gradient slopes circumvent the obstacles: this is typically needed

when the resulting structure is used for “navigation” towards the source, and

one wants to avoid navigation to get stuck on a path interrupted by obstacles.

The technical issue, here, is to prevent obstacle nodes to participate in gradient

construction and share a distance that could be wrongly selected by some device.

Note that the following erroneous code

mux(isObstacle){ Double.PositiveInfinity }{ gradient(isSource) } // erroneous

would first create the gradient in the entire space (because of strict evaluation),

128

CHAPTER 7. SCAFI: AGGREGATE PROGRAMMING IN SCALA

and then set the obstacle nodes to Double.PositiveInfinity. The solution to

the problem needs to leverage aggregate functions, and their ability of acting as

units of alignment. That is, we can use a different 0-ary aggregate function for

normal and obstacle nodes:

(mux(isObstacle){
() => @@{ Double.PositiveInfinity }

}{
() => @@{ gradient(isSource) }

})()

Calling such functions effectively restricts the domain to the set of devices execut-

ing them, thanks to the space-time branching enacted by construct @@ wrapping

the bodies of the corresponding Scala literal functions; by calling them exclusively

in any device, the system gets partitioned into two sub-systems, each one exe-

cuting a different sub-computation. For convenience, ScaFi provides as built-in

function, called branch, defined as:

def branch[A](cond: => Boolean)(th: => A)(el: => A): A =
mux(cond)(() => @@{ th })(() => @@{ el })()

With it, a gradient overcoming an obstacle is properly written as

branch(isObstacle){ Double.PositiveInfinity }{ gradient(isSource) } // correct

which is cleaner and hides some complexity while better communicating the intent:

branching computation4. Generally, notation @@ has to be used for bodies of

literal functions that include aggregate behaviour, i.e., functions which (directly

or indirectly) call methods of the Constructs trait—other uses have no effects on

the result of computation.

We remark that the above field calculus expression (gradient avoiding obsta-

cles) effectively creates a distributed data structure that is rigorously self-adaptive

[Vir+18]: independently of the shape and dynamics of obstacle area(s), source

area(s), metric and network structure, it will continuously bring about formation

of the correct gradient, until eventually stabilising to it. Additionally, it can be

used as building block for more complex applications, to which the self-adaption

properties will be transferred, by simple functional composition.

4Notice that if construct of Scala cannot be used to branch over aggregate behaviour, hence
either mux or branch should be used to control the alignment process.

129

CHAPTER 7. SCAFI: AGGREGATE PROGRAMMING IN SCALA

7.3 FScaFi Calculus: Syntax and Semantics

We now move to the semantic details of the proposed model, which amounts

to how an aggregate specification turns into computational rounds for devices and

messages to be exchanged among devices. This section addresses the problem

formally, presenting Featherweight ScaFi (FScaFi), a minimal core calculus

that models the aggregate computing aspects of ScaFi—e.g., much as FJ [IPW01]

models the object-oriented aspects of Java. The formalisation of FScaFi is in-

spired by the formalisation of the higher-order field calculus (HFC) [Aud+19]—a

thoughtful comparison between FScaFi and HFC is presented in Section 7.4.

Devices undergo computation in rounds. When a round starts, the device gath-

ers information about messages received from neighbours (only the last message

from each neighbour is actually considered), performs an evaluation of the pro-

gram, and finally emits a message to all neighbours with information about the

outcome of computation. The scheduling policy of such rounds is abstracted in

this formalisation, though it is typically considered fair and non-synchronous.

Section 7.3.1 presents the syntax of FScaFi; Section 7.3.2 presents its type

system; Section 7.3.3 presents an operational semantics for the computation that

takes place on individual devices; and Section 7.3.4 presents an operational seman-

tics for the evolution of whole networks.

7.3.1 Syntax

FScaFi is a core subset of ScaFi, strictly retaining its syntax (i.e., modulo

minor adjustments, FScaFi expressions are valid ScaFi/Scala code). The syntax

of FScaFi is given in Figure 7.2. Following [IPW01], the overbar notation denotes

metavariables over sequences and the empty sequence is denoted by •; e.g., for

expressions, we let e range over sequences of expressions, written e1, e2, . . . en

(n ≥ 0). FScaFi focusses on aggregate programming constructs. In particular:

• it neglects the many orthogonal Scala features that one can use (object-

oriented constructs, and the like), and

• it is parametric in the built-in data constructors and functions—in the ex-

amples, we consider the set of built-in data constructors and functions listed,

130

CHAPTER 7. SCAFI: AGGREGATE PROGRAMMING IN SCALA

P ::= F e program

F ::= def d(x) = @@{e} function declaration

e ::= x
∣∣ v

∣∣ (x)
τ
=> @@{e}

∣∣ e(e)
∣∣ rep(e){e}

∣∣
nbr{e}

∣∣ foldhood(e)(e){e} expression

v ::= c(v)
∣∣ f value

f ::= b
∣∣ d

∣∣ (x)
τ
=> @@{e} function value

Figure 7.2: Syntax of FScaFi.

with their types, in Section 7.3.2.

Note that—apart from specific Scala syntax—the examples of ScaFi code given

in Section 7.2.2 are actually examples of FScaFi code. In particular, in order to

turn functions foldhoodPlus, gradient and branch into FScaFi functions it is

enough to drop type annotations and the default value for the parameter metric of

gradient. To distinguish with respect to actual ScaFi code, in writing FScaFi

code we do not provide syntax colouring.

A program P consists of a sequence F of function declarations and a main

expression e. A function declaration F defines a (possibly recursive) function; it

consists of a name d, n ≥ 0 variable names x representing the formal parameters,

and an expression e representing the body of the function.

Expressions e are the main entities of the calculus, modelling a whole field com-

putation. An expression can be: a variable x, used as function formal parameter; a

value v; an anonymous function (x)
τ
=> @@{e} (where x are the formal parameters,

e is the body, and τ is an internal tag); a function call e(e); a rep-expression

rep(e){e}, modelling time evolution; an nbr-expression nbr{e}, modelling neigh-

bourhood interaction; or a foldhood-expression foldhood(e)(e){e} which com-

bines values obtained from neighbours.

Tags τ of anonymous functions (x)
τ
=> @@{e} do not occur in source programs:

when the evaluation starts each anonymous function expression (x) => @@{e} oc-

curring in the program is given a distinguished tag τ—two occurrences of the same

anonymous function expression get different tags. In the following we will use the

phrase name of a function to refer both to the tag of an anonymous function, or

to the name of a built-in or declared function. As we will see below, names are

131

CHAPTER 7. SCAFI: AGGREGATE PROGRAMMING IN SCALA

used to define the semantics of function call.

The set of the free variables of an expression e, denoted by FV(e), is defined

as usual (the only binding construct is (x)
τ
=> @@{e}). An expression e is closed if

FV(e) = •. The main expression of any program must be closed.

A value can be either a data value c(v) or a functional value f. A data value

consists of a data constructor c of some arity m ≥ 0 applied to a sequence of m

data values v = v1, ..., vm. A data value c(v1, ..., vm) is written c when m = 0.

According to the data constructors listed in Figure 7.4, examples of data values

are: the Booleans True and False, numbers, pairs (like Pair(True, Pair(5, 7)))

and lists (like Cons(3, Cons(4, Null))).

Functional values f comprise:

• declared function names d;

• closed anonymous function expressions (x)
τ
=> @@{e} (i.e., such that FV(e) ⊆

{x});
• built-in functions b, which can in turn be:

– pure operators o, such as functions for building and decomposing pairs

(pair, fst, snd) and lists (cons, head, tail), the mux function, the

equality function (=), mathematical and logical functions (+, &&, ...),

and so on;

– sensors s, which depend on the current environmental conditions of

the computing device δ, such as a temperature sensor—modelling con-

struct sense in ScaFi;

– relational sensors r, modelling construct nbrvar in ScaFi, which in

addition depend also on a specific neighbour device δ′ (e.g., nbrRange,

which measures the distance with a neighbour device).

In case e is a binary built-in function b, we shall write e1 b e2 for the function

call b(e1, e2) whenever convenient for readability of the whole expression in

which it is contained.

The key constructs of the calculus are:

• Function call: e(e1, . . . , en) is the main construct of the language. The

function call evaluates to the result of applying the function value f produced

132

CHAPTER 7. SCAFI: AGGREGATE PROGRAMMING IN SCALA

by the evaluation of e to the value of the parameters e1, . . . , en relatively to

the aligned neighbours, that is, relatively to the neighbours that in their last

execution round have evaluated e to a function value with the same name of

f.

• Time evolution: rep(e1){e2} is a construct for dynamically changing fields

through the “repeated” application of the functional expression e2. At

the first computation round (or, more precisely, when no previous state is

available—e.g., initially or at re-entrance after state was cleared out due to

branching), e2 is applied to e1, then at each other step it is applied to the

value obtained at the previous step. For instance, rep(0){(x) => @@{x + 1}}
counts how many rounds each device has computed (from the beginning, or

more generally, since that piece of state was missing).

• Neighbourhood interaction: foldhood(e1)(e2){e3} and nbr{e} model device-

to-device interaction. The foldhood construct evaluates expression e3

against every aligned neighbour (including the device itself), then aggre-

gates the values collected through e2 together with the initial value e1. The

nbr construct tags expressions e signalling that (when evaluated against a

neighbour) the value of e has to be gathered from neighbours (and not di-

rectly evaluated). Such behaviour is implemented via a conceptual broadcast

of the values evaluated for e. Subexpressions of e3 not containing nbr are

not gathered from neighbours instead.

As an example, consider the expression

foldhood(2)(+){min(nbr{temperature()}, temperature())}

evaluated in device δ1 (in which temperature() = 10) with neighbours δ2

and δ3 (in which temperature() gave 15 and 5 in their last evaluation round,

orderly). The result of the expression is then computed adding 2, min(10, 10),

min(15, 10) and min(5, 10) for a final value of 27.

Note that, according to the explanation given above, calling a de-

clared or anonymous function acts as a branch, with each function in the

range applied only on the subspace of devices holding a function with the

same tag. In particular, we write branch(e1){e2}{e3} as a shorthand for

133

CHAPTER 7. SCAFI: AGGREGATE PROGRAMMING IN SCALA

mux(e1, () => @@{e2}, () => @@{e3})()—see the discussion at the end of Sec-

tion 7.2.2.

7.3.2 Typing

We now present a type system for FScaFi. Since the type system is a cus-

tomisation of the Hindley-Milner type system5 [DM82], there is an algorithm (not

presented here) that, given an expression e and type assumptions for its free vari-

ables, either fails (if the expression cannot be typed under the given type assump-

tions) or returns its principal type, i.e., a type such that all the types that can be

assigned to e by the type inference rules can be obtained from the principal type

by substituting type variables with types. The syntax of type and type schemes is

presented in Figure 7.3 (top), where B ranges over the built-in types provided by

the language (such as num, bool, pair(T1,T2), list(T)). The set of type variables

occurring in a type T is denoted by FTV(T).

Type environments, ranged over by A and written x : T, are used to collect type

assumptions for program variables (i.e., formal parameters of functions). Type-

scheme environments, ranged over by D and written v : TS, are used to collect the

type schemes for built-in constructors and built-in operators together with the type

schemes inferred for user-defined functions. In particular, the distinguished built-in

type-scheme environment B associates a type scheme to each built-in constructor c

and to each built-in function b—Figure 7.4 shows the type schemes for the built-in

constructors and built-in functions used throughout this chapter.

The typing judgement for expressions is of the form “D;A ` e : T”, to be read:

“e has type T under the type-scheme assumptions D (for built-in constructors

and for built-in and user-defined functions) and the type assumptions A (for the

program variables occurring in e), respectively”. As a standard syntax in type

systems [IPW01], given T = T1, . . . ,Tn and e = e1, . . . , en (n ≥ 0), we write

D;A ` e : T as short for D;A ` e1 : T1 · · · D;A ` en : Tn.

The typing rules for expressions are presented in Figure 7.3 (bottom). The

rules for variables ([T-VAR]), data values ([T-DAT]), anonymous function expressions

([T-A-FUN]), built-in or defined function names ([T-N-FUN]), and function application

5Scala’s type system is not Hindley-Milner: so, in ScaFi, while semantics is not affected, for
typing we would need additional type annotations that would not be necessary for FScaFi.

134

CHAPTER 7. SCAFI: AGGREGATE PROGRAMMING IN SCALA

Types:
T ::= t

∣∣ B
∣∣ (T)→ T type

TS ::= ∀t.T type scheme

Expression typing: D;A ` e : T

[T-VAR]

D;A, x : T ` x : T
[T-DAT] T′[t := T

′′
] = (T)→ T D;A ` v : T

D, c : ∀t.T′;A ` c(v) : T

[T-A-FUN] D; A, x : T ` e : T

D;A ` (x)
τ
=> @@{e} : (T)→ T

[T-N-FUN] f is a (built-in or declared) function

D, f : ∀t.T;A ` f : T[t := T]

[T-APP] D;A ` e : (T)→ T D;A ` e : T
D;A ` e(e) : T

[T-REP] D;A ` e1 : T D;A ` e2 : (T)→ T
D;A ` rep(e1){e2} : T

[T-NBR] D;A ` e : T
D;A ` nbr{e} : T

[T-FOLD] D;A ` e1 : T D;A ` e2 : (T,T)→ T D;A ` e3 : T
D;A ` foldhood(e1)(e2){e3} : T

Function typing: D ` F : TS
[T-FUNCTION] D, d : ∀ • .(T)→ T; x : T ` e : T t = FTV((T)→ T)

D ` def d(x) = @@{e} : ∀t.(T)→ T

Program typing: ` P : T
[T-PROGRAM]

D0 = B
Fi = def di() = @@{ } Di−1 ` Fi : TSi Di = Di−1, di : TSi (i ∈ 1..n)
Dn; ∅ ` e : T

` F1 · · · Fn e : T

Figure 7.3: Type rules for expressions, function declarations, and programs.

([T-APP]), are almost standard. Rule [T-REP] (for rep-expressions) ensures that both

the initial value e1 and the domain and range of function e2 have the same type,

and then assigns it to rep(e1){e2}; rule [T-NBR] (for nbr-expressions) assigns to

nbr{e} the same type as e; and rule [T-FOLD] (for foldhood-expressions) ensures

that e1 and e3 have the same type T and that e2 has type (T, T) → T , and then

assigns type T to foldhood(e1)(e2){e3}.
The typing rules for declared functions ([T-FUNCTION]) and programs ([T-

PROGRAM]) are almost standard.

135

CHAPTER 7. SCAFI: AGGREGATE PROGRAMMING IN SCALA

Built-in data constructors
B(True) = bool

B(False) = bool

B(n) = num, where n is a number
B(Pair) = ∀t1t2.(t1, t2)→ pair(t1, t2)
B(Null) = ∀t.list(t)
B(Cons) = ∀t.(t, list(t))→ list(t)

Built-in functions: pure operators
B(pair) = ∀t1t2.t1 → t2 → pair(t1, t2)
B(fst) = ∀t1t2.(pair(t1, t2))→ t1
B(snd) = ∀t1t2.(pair(t1, t2))→ t2
B(cons) = ∀t.t→ list(t)→ list(t)
B(head) = ∀t.(list(t))→ t
B(tail) = ∀t.(list(t))→ list(t)
B(=) = ∀t.(t, t)→ bool

B(mux) = ∀t.(bool, t, t)→ t
B(+) = (num, num)→ num

B(and) = (bool, bool)→ bool

B(min) = (num, num)→ num

B(<) = (num, num)→ bool

Built-in functions: sensors
B(temperature) = ()→ num

Built-in functions: relational sensors
B(nbrRange) = ()→ num

Figure 7.4: Type schemes for the built-in value constructors and functions used in
the examples.

Example 7.1 (Typing). Consider the implementation of the gradient with obsta-

cles (as in Section 7.2.2, translated in FScaFi).

def gradient(source, metric) = @@{ // : (bool, ()->num) -> num

rep(PositiveInfinity){ (distance) => @@{

mux(source) { 0.0 }{

foldhoodPlus(PositiveInfinity)(min){ nbr{distance} + metric() }

}

}}

}

branch(isObstacle){ PositiveInfinity }{ gradient(isSource) } // : num

The types of the gradient function and of the main expression inferred by the type

136

CHAPTER 7. SCAFI: AGGREGATE PROGRAMMING IN SCALA

system are inserted above as comments. By rule [T-APP] and assumptions on built-

in mux, the type system infers that the third argument of the mux expression must

be num, since the second argument is also num. It follows that distance must be of

type num (rule [T-NBR]) as well and metric must be of type ()→ num (rule [T-APP]),

from which function gradient can be inferred to have type (bool, ()→ num)→ num

(rule [T-FUNCTION]). The overall program has then type num (rule [T-PROGRAM]).

7.3.3 Operational semantics: device semantics

This section presents a formal semantics of device computation as happens in

FScaFi, modelling the outcome one actually achieves when executing computa-

tion rounds in ScaFi. Starting from FScaFi syntax as previously described, we

shall assume a fixed program P. We say that “device δ fires”, to mean that the

main expression of P is evaluated on δ.

Remark 1 (On termination of device computation). As FScaFi allows recursive

functions, termination of a device firing is not decidable. In the rest of the chapter

we assume that only terminating programs are considered.

Device semantics: overall picture and preliminary definitions We model

device computation by a big-step operational semantics where the result of eval-

uation is a value-tree θ (see Figure 7.5, first frame), which is an ordered tree of

values, tracking the result of any evaluated subexpression. Intuitively, the eval-

uation of an expression at a given time in a device δ is performed against the

recently-received value-trees of neighbours, namely, its outcome depends on those

value-trees. The result is a new value-tree that is conversely made available to δ’s

neighbours (through a broadcast) for their firing; this includes δ itself, so as to

support a form of state across computation rounds (note that the ScaFi imple-

mentation massively compresses the value-trees, storing only enough information

for expressions to be aligned).

A value-tree environment Θ is a map from device identifiers to value-trees,

collecting the outcome of the last evaluation on neighbours. This is written δ 7→
θ as short for δ1 7→ θ1, . . . , δn 7→ θn. The syntax of value-trees and value-tree

environments is given in Figure 7.5 (first frame).

137

CHAPTER 7. SCAFI: AGGREGATE PROGRAMMING IN SCALA

Example 7.2 (Value-trees). The graphical representation of the value-trees

θ1 = True〈< 〈〉,−2〈〉, 5〈〉, True〈〉〉 and θ2 = 4〈f〈〉, 3〈〉, 4〈+〈〉, 3〈〉, 1〈〉, 4〈〉〉〉

is as follows:

True

< -2 5 True

4

f 3 4

+ 3 1 4

In the following, for sake of readability, we sometimes write the value v as short-

hand for the value-tree v〈〉. Following this convention, the value-tree θ1 is shortened

to True〈<,−2, 5, True〉, and the value-tree θ2 is shortened to 4〈f, 3, 4〈+, 3, 1, 4〉〉.
Figure 7.5 (second frame) defines: the auxiliary functions ρ and π for extracting

the root value and a subtree of a value-tree, respectively (further explanations

about function π will be given later); the extension of functions ρ and π to value-

tree environments; and the auxiliary functions name, args and body for extracting

the name, formal parameters and body of a (user-defined or anonymous) function,

respectively.

The computation that takes place on a single device is formalised by the big-

step operational semantics rules given in Figure 7.5 (fourth frame). The derived

judgements are of the form

δ, δ′; Θ;σ ` e ⇓ θ

to be read “expression e evaluates to value-tree θ on device δ with respect to the

neighbour δ′, value-tree environment Θ and sensor state σ”, where: (i) δ is the

identifier of the current device and δ′ is either equal to δ or is one of its neighbours;

(ii) Θ is the field of the value-trees produced by the most recent evaluation of (an

expression corresponding to) e on δ and its neighbours; (iii) e is an expression; (iv)

the value-tree θ represents the values computed for all the expressions encountered

during the evaluation of e—in particular ρ(θ) is the result value of e.

The operational semantics rules are based on rather standard rules for func-

tional languages, extended so as to be able to evaluate a subexpression e′ of e

with respect to the value-tree environment Θ′ obtained from Θ by extracting the

corresponding subtree (when present) in the value-trees in the range of Θ. This

138

CHAPTER 7. SCAFI: AGGREGATE PROGRAMMING IN SCALA

process, called alignment, is modelled by the auxiliary function π, defined in Fig-

ure 7.5 (second frame). Function π has two different behaviours (specified by its

subscript or superscript): πi(θ) extracts the i-th subtree of θ, if it is present; and

πf(θ) extracts the last subtree of θ, if it is present and the root of first subtree of

θ is equal to f.

When a device δ fires, its main expression e is evaluated with respect to δ itself.

That is, by means of a judgement where δ′ = δ:

δ, δ; Θ;σ ` e ⇓ θ

A key aspect of the semantics is that, if e is a foldhood-expression

foldhood(e1)(e2){e3} then its body e3 is first evaluated with respect to δ, and

then it is evaluated again with respect to each of the devices δ′ (if any) in DΘ\{δ}.
Because of alignment (see above), it might happen that a subexpression e′ of e3 is

evaluated by a judgement

δ, δ′; Θ;σ ` e′ ⇓ θ where δ 6= δ′ 6∈ DΘ

and, if the evaluation of e′ exploits the device δ′, then the evaluation of

e3 with respect to δ′ fails and the evaluation of the foldhood-expression

foldhood(e1)(e2){e3} does not consider the neighbour δ′. The evaluation rule

for foldhood-expressions, [E-FOLD], formalises failure of evaluation with respect to

a neighbour δ′ by means of the auxiliary predicate

δ, δ′; Θ;σ ` e fail

to be read “expression e fails to evaluate on device δ against neighbour δ′ with

respect to value-tree environment Θ and sensor state σ”, which is formalised by

the big-step operational semantics rules given in Figure 7.6.

Device semantics: rules for expression evaluation We start by explaining

the rules in Figure 7.5 (fourth frame), then we will explain the rules in Figure 7.6.

Rule [E-VAL] implements the evaluation of an expression that is already a value.

For instance, evaluating the expression 1 produces (by Rule [E-VAL]) the value-tree

139

CHAPTER 7. SCAFI: AGGREGATE PROGRAMMING IN SCALA

θ ::= v〈θ〉 value-tree Θ ::= δ 7→ θ value-tree environment

Auxiliary functions and syntactic shorthands:

name((x)
τ
=> @@{e}) = τ name(d) = d name(b) = b

args((x)
τ
=> @@{e}) = x args(d) = x ρ(v〈θ〉) = v

body((x)
τ
=> @@{e}) = e body(d) = e (if def d(x) = @@{e})

πi(v〈θ1, . . . , θn〉) = θi if 1 ≤ i ≤ n else •
πf(v〈θ1, . . . , θn+2〉) = θn+2if name(ρ(θ1)) = name(f) else •

For aux ∈ ρ, πi, πf :

aux(•) = •
aux(δ 7→ θ,Θ) = aux(Θ) if aux(θ) = •
aux(δ 7→ θ,Θ) = δ 7→ aux(θ), aux(Θ) if aux(θ) 6= •

δ, δ′; π(Θ);σ ` e ⇓ θ where |e| = n for δ, δ′; πi(Θ);σ ` ei ⇓ θi, i = 1, . . . , n

ρ(θ) where |θ| = n for ρ(θ1), . . . , ρ(θn)

x := ρ(θ) where |x| = n for x1 := ρ(θ1) . . . xn := ρ(θn)

Rules for expression evaluation: δ, δ′; Θ;σ ` e ⇓ θ
[E-VAL]

δ, δ′; Θ;σ ` v ⇓ v〈〉
[E-B-APP]

δ, δ; π1(Θ);σ ` e ⇓ θ δ, δ′; πi+1(Θ);σ ` ei ⇓ θi ∀i ∈ 1, . . . , n

v = LbMπ
b(Θ),σ
δ,δ′ (ρ(θ)) b = ρ(θ) not rel. ∧ δ = δ′ ∧ δ′ ∈ Dπb(Θ)

δ, δ′; Θ;σ ` e(e) ⇓ v〈θ, θ, v〉
[E-D-APP]

δ, δ; π1(Θ);σ ` e ⇓ θ δ, δ′; πi+1(Θ);σ ` ei ⇓ θi ∀i ∈ 1, . . . , n

f = ρ(θ) not built-in δ, δ′; πf(Θ);σ ` body(f)[args(f) := ρ(θ)] ⇓ θ′
δ, δ′; Θ;σ ` e(e) ⇓ ρ(θ′)〈θ, θ, θ′〉

[E-REP]
δ, δ; π1(Θ);σ ` e1 ⇓ θ1 v1 = ρ(θ1)
δ, δ; π2(Θ);σ ` e2(v0) ⇓ θ2 v2 = ρ(θ2)

v0 =

{
ρ(π2(Θ))(δ) δ ∈ DΘ

v1 or else

δ, δ′; Θ;σ ` rep(e1){e2} ⇓ v2〈θ1, θ2〉

[E-NBR] δ 6= δ′ ∈ DΘ θ = Θ(δ′)
δ, δ′; Θ;σ ` nbr{e} ⇓ θ

[E-NBR-LOC] δ, δ; π1(Θ);σ ` e ⇓ θ
δ, δ; Θ;σ ` nbr{e} ⇓ ρ(θ)〈θ〉

[E-FOLD]

δ, δ; π1(Θ);σ ` e1 ⇓ θ1 δ, δ; π2(Θ);σ ` e2 ⇓ θ0 f = ρ(θ0)
δ1, ...δn = DΘ ∪ {δ} n ≥ m ≥ 1 δ1 = δ
δ, δi; π3(Θ);σ ` e3 ⇓ θi ∀i ∈ 1, ...,m
δ, δj; π3(Θ);σ ` e3 fail for all j ∈ m+ 1, ..., n
δ, δ; ∅;σ ` f(ρ(θi), ρ(θi)) ⇓ θi+1 for all i ∈ 1, ...,m
δ, δ′; Θ;σ ` foldhood(e1)(e2){e3} ⇓ ρ(θm+1)〈θ1, θ0, θ1〉

Figure 7.5: Big-step operational semantics for expression evaluation.

140

CHAPTER 7. SCAFI: AGGREGATE PROGRAMMING IN SCALA

Auxiliary rules for expression evaluation failure: δ, δ′; Θ;σ ` e fail

[E-NBR-FAIL] δ 6= δ′ 6∈ DΘ

δ, δ′; Θ;σ ` nbr{e} fail

[E-R-APP-FAIL]
δ, δ; π1(Θ);σ ` e ⇓ θ δ, δ′; πi+1(Θ);σ ` ei ⇓ θ, ∀ i ∈ 1, ..., n
r = ρ(θ) is a relational built-in δ 6= δ′ 6∈ Dπr(Θ)

δ, δ′; Θ;σ ` e(e) fail

[E-APP-ARG-FAIL]

δ, δ; π1(Θ);σ ` e ⇓ θ e = e1, ..., en n ≥ 0
δ, δ′; πi+1(Θ);σ ` ei ⇓ θi for all i ∈ 1, ...,m < n
δ, δ′; πm+2(Θ);σ ` em+1 fail

δ, δ′; Θ;σ ` e(e) fail

[E-D-APP-FAIL]

δ, δ; π1(Θ);σ ` e ⇓ θ δ, δ′; πi+1(Θ);σ ` ei ⇓ θi,∀i ∈ 1, ..., n
f = ρ(θ) not built-in

δ, δ′; πf(Θ);σ ` body(f)[args(f) := ρ(θ)] fail
δ, δ′; Θ;σ ` e(e) fail

Figure 7.6: Big-step operational semantics for expression evaluation (auxiliary
rules for expression evaluation failure).

1〈〉, while evaluating the expression + produces the value-tree +〈〉.
Rules [E-B-APP] and [E-D-APP] model function application e(e1 · · · en). In case e

evaluates to a built-in function b, rule [E-B-APP] is used, whose behaviour is driven

by the special auxiliary function LbMΘ,σ
δ,δ′ (operational interpretation of b), whose

actual definition is abstracted away.

Example 7.3 (Built-in function application). Evaluating the expression < (−2, 5)

produces the value-tree θ1 = True〈<,−2, 5, True〉 introduced in Example 7.2. The

operational interpretation L<MΘ,σ
δ,δ′ of < is the following (notice that this interpreta-

tion does not depend on Θ, σ, δ, δ′, since < is a pure mathematical operator):

L<MΘ,σ
δ,δ′ = λx.λy.

True x < y

False otherwise

The value of the whole expression, True (the root of the last subtree of the value-

tree), has been computed by using rule [E-B-APP] to evaluate the application L<

141

CHAPTER 7. SCAFI: AGGREGATE PROGRAMMING IN SCALA

MΘ,σ
δ,δ′ (−2, 5) of the less-then operator < (the root of the first subtree of the value-

tree) to the values −2 (the root of the second subtree of the value-tree) and 5 (the

root of the third subtree of the value-tree).

In case e evaluates to a user-defined or anonymous function f, rule [E-D-APP] is

used: it performs domain restriction πf(Θ) (thus discarding devices that did not

apply the same function f, for which no consistent information on the application

of f is present), then continues the evaluation by substituting the arguments into

the body of f. We remark that we do not assume that Θ is empty whenever it

does not contain δ. In fact, in any round where e evaluates to a function f for

the first time on a device, f(e) will be evaluated with respect to an environment

not containing δ but possibly containing other devices (whose e evaluated to f in

their previous round of computation).

Example 7.4 (Defined or anonymous function application). Evaluating the ex-

pression f(3), where f is the name of the declared function def f(x) = @@{x + 1},
produces the value-tree θ2 = 4〈f, 3, 4〈+, 3, 1, 4〉〉 introduced in Example 7.2. The

value of the whole expression, 4 (the root of θ2), which has been computed by using

rule [E-D-APP], is the root of the last subtree of θ2, which is produced by the eval-

uation of the expression 3 + 1 (obtained from the body of f by replacing x with

3). Evaluating the similar expression f(3) where f is the anonymous function

((x)
τ
=> @@{x + 1}), produces the same value-tree θ2 by the same rule [E-D-APP].

Rule [E-REP] implements internal state evolution through computational rounds:

on the first firing of a device, rep(e1){e2} evaluates to e2(e1), then it evaluates to

e2(v) where v is the value calculated in the previous round.

Example 7.5 (Time evolution). To illustrate rule [E-REP], as well as computa-

tional rounds, we consider the program rep(3){f} where f is the anonymous

function (x)
τ
=> @@{x + 1} introduced in Example 7.4. The first firing of a de-

vice δ is performed against the empty tree environment. Therefore, according

to rule [E-REP], evaluating rep(3){f} produces the value-tree θ = 4〈3, θ2〉 where

θ2 = 4〈f, 3, 4〈+, 3, 1, 4〉〉 is the value-tree (introduced in Example 7.2) produced by

evaluating the expression f(3) as described in Example 7.4. The overall result of

the firing is the root 4 of θ. Any subsequent firing of the device δ is performed

with respect to a value-tree environment Θ that associates to δ the outcome θ of

142

CHAPTER 7. SCAFI: AGGREGATE PROGRAMMING IN SCALA

the most recent firing of δ. Therefore, evaluating rep(3){f} at the second firing

produces the value-tree θ′ = 5〈4, θ′2〉 where θ′2 = 5〈f, 4, 5〈+, 4, 1, 5〉〉 is the value-tree

produced by evaluating the expression f(4), where 4 is the root of θ. Hence, the

results of the firings are 4, 5, 6, and so on.

Rules [E-NBR] and [E-NBR-LOC] model device interaction (together with [E-FOLD]

which we shall consider later). When an nbr-expression is not evaluated against a

neighbour (that is, δ′ = δ), by Rule [E-NBR-LOC] the nbr operator is discarded and

the evaluation continues. Whenever instead an nbr-expression is evaluated against

a neighbour (that is, δ′ 6= δ), by Rule [E-NBR] the expression directly evaluates to

Θ(δ′) (which is the value-tree calculated by device δ′ in its last computational

round). Notice that it could be possible that δ′ is not in the domain of Θ due

to alignment operations performed in subexpressions of the enclosing instance of

foldhood. In this case, no rule is applicable and the nbr-expression fails, causing

δ′ to be ignored by the enclosing foldhood operator (see Rule [E-FOLD]).

Rule [E-FOLD] implements collection and aggregation of results from neighbours,

proceeding in the following steps:

• Evaluate the initial value e1 with respect to the current device obtaining the

value-tree θ1.

• Evaluate the aggregator e2 with respect to the current device obtaining θ0

with root f.

• Evaluate the body e3 with respect to the current device δ = δ1 and with

respect to every neighbour δ′ ∈ Dπ3(Θ) \ {δ} and consider only the m ≥ 1

neighbours δ1, ..., δm for which the evaluation does not fail, obtaining the

value-trees θ1, ..., θm, respectively.6

• Aggregate the values ρ(θi) (1 ≤ i ≤ m) computed above together with the

initial value ρ(θ1) via function f, obtaining the final outcome ρ(θm+1). Such

aggregation is performed with respect to the current device and the empty

environment, since the value-trees of the aggregation process cannot be easily

related with one another (and thus are not stored in the final outcome of

6If the aggregator f is associative and commutative, then the result of the aggregation does
not depend on the order in which the neighbours δ′ ∈ Dπ3(Θ) \ {δ} are considered. To ensure
determinism even in the case when the aggregator f is not associative and commutative, we
assume that the neighbours are considered according to a given total order on device identifiers.

143

CHAPTER 7. SCAFI: AGGREGATE PROGRAMMING IN SCALA

the computation). In other words, the aggregator f is forced to be a “pure”

function independent of the current device and environment (even though

the expression e2 as a whole might depend on the environment).

Failure of evaluation against a neighbour is formalised by means of the auxiliary

judgement δ, δ′; Θ;σ ` e fail defined by the rules in Figure 7.6. Rules [E-NBR-FAIL]

and [E-R-APP-FAIL] model the failure sources, while the other rules model failure

propagation.

The values aggregated by foldhood include the value of e3 in the current device

δ. However, an exclusive folding operation foldhoodPlus that only considers

neighbours and not the device itself can be easily encoded on top of it (see Section

7.2.2) and is in fact available in ScaFi.

Example 7.6 (Neighbourhood interaction). To illustrate rules [E-FOLD], [E-NBR]

and [E-NBR-LOC], we consider program

foldhood(2)(+){ min(nbr{temperature()}, temperature()) }

evaluated in device δ1 (in which temperature() = 10) with neighbours δ2 (in which

temperature() = 15) and δ3 (in which temperature() = 5). By Rule [E-FOLD],

the first two subexpressions of the foldhood-expression are evaluated with respect

to δ1 into the value-trees θ1, θ0, θ1 which will constitute the branches of the final

tree. They are θ1 = 2〈〉 and θ0 = +〈〉, each of them obtained by Rule [E-VAL]. Then,

the third subexpression is evaluated against δ1, δ2 and δ3, obtaining:

θ1 = 10〈min, 10〈10〈temperature, 10〉〉, 10〈temperature, 10〉, 10〉,
θ2 = 10〈min, 15〈15〈temperature, 15〉〉, 10〈temperature, 10〉, 10〉,
θ3 = 5〈min, 5〈5〈temperature, 5〉〉, 10〈temperature, 10〉, 5〉

the first one (θ1) obtained through three applications of Rule [E-B-APP] and one of

Rule [E-NBR-LOC], and the other two (θ2 and θ3) obtained through three applications

of Rule [E-B-APP] and one of Rule [E-NBR]. The roots of these value-trees are then

combined through operator +, together with the initial value 2, for a total result of

2 + 10 + 10 + 5 = 27 which is the root of the final value-tree 27〈2, +, θ1〉.

Rules [E-VAL], [E-REP], [E-FOLD] are independent of the neighbour δ′ against which

144

CHAPTER 7. SCAFI: AGGREGATE PROGRAMMING IN SCALA

the expression is computed (since δ′ does not occur in the premises of those rules).

Rules [E-B-APP] and [E-D-APP] simply pass δ′ through, allowing subexpressions to

make use of it (including evaluation of built-in relational sensors r). The neighbour

device δ′ is then non-trivially used only in rules [E-NBR], [E-NBR-LOC], [E-NBR-FAIL] and

[E-R-APP-FAIL].

We say that a neighbour is considered by the evaluation of a foldhood-

expression to mean that it contributes to the result of the expression. Because

of the interplay between neighbourhood interaction and branching (i.e., function

call) only a subset of the neighbourhood of a device might be considered by a

foldhood-expression.

Example 7.7 (Neighbourhood interaction and branching). In order to illustrate

the alignment process, guiding neighbour interaction through branching statements,

consider the gradient with obstacles function discussed in Example 7.1.

def gradient(source, metric) = @@{

rep(PositiveInfinity){ (distance) => @@{

mux(source, 0.0, foldhoodPlus(PositiveInfinity)(min){ nbr{distance}

+ metric() })

} } }

branch(isObstacle){ PositiveInfinity }{ gradient(isSource) }

Expanding the syntactic sugar, the branch statement corresponds to the execution

of a different anonymous function depending on the value of isObstacle:

mux(isObstacle, () => @@{PositiveInfinity}, () => @@{gradient(

isSource)})()

Assume that device δ0 evaluates this program with respect to Θ = {δ0 7→ θ0, δ1 7→
θ1, δ2 7→ θ2}, where isObstacle is true in δ2 and false on the other devices. Thus,

the execution of the mux statement produces f⊥ = () => @@{gradient(isSource)}
on δ0 and δ1, while it produces f> = () => @@{PositiveInfinity} on δ2.

The evaluation of the main expression is performed through rule [E-D-APP].

First, the function to be applied is computed as the result of the mux expression.

Then, the body gradient(isSource) is computed with respect to the environment

πf⊥(Θ) = {δ0 7→ π2(θ0), δ1 7→ π2(θ1)}: the value-tree of device δ2 is removed since

it corresponded to the evaluation of f>. The evaluation of gradient(isSource)

will then require the evaluation of the foldhoodPlus expression, in which only

145

CHAPTER 7. SCAFI: AGGREGATE PROGRAMMING IN SCALA

devices δ0 and δ1 will be considered (since δ2 has already been discarded).

Implementation and performance considerations The implementation of

the device semantics in ScaFi is structured to manage the population of a value

tree upon evaluation of construct occurrences while respecting the rules specified

in Figure 7.5. In doing so, naive implementations for the constructs may lead

to performance issues. For instance, a sequence of nested foldhood-operators

(not interleaved by nbr-operators) can lead to an exponential evaluation time, as,

for each aligned neighbour, an expression which in turn depends on all aligned

neighbours would need to be evaluated. To solve the issue, in ScaFi the outcome

of foldhood and rep subexpressions is “memoised” in order to prevent subsequent

re-evaluation (since such expressions are independent of the neighbour against

which are evaluated). This addresses the performance issues of nested foldhood-

operators, thus ensuring linear evaluation time.

7.3.4 Operational semantics: network semantics

We now provide an operational semantics for the evolution of whole networks,

namely, for modelling the distributed evolution of computational fields over time.

Figure 7.7 (top) defines key syntactic elements to this end:

• Ψ is a computational field that models the overall state as a map from

device identifiers to value-tree environments. From it, we can define the field

φ summarising the current status of the network as the map from device

identifiers to value-trees: φ(δ) = Ψ(δ)(δ).

• τ models network topology, namely, a directed neighbouring graph, as a map

from device identifiers to a set of identifiers.

• Σ models sensor (distributed) state, as a map from device identifiers to (local)

sensors (i.e., sensor name/value maps).

• Env (a pair of topology and sensor state) models the network environment.

• N (a pair of a field and environment) models a whole network configuration.

We use the following notation for computational fields. Let δ 7→ Θ denote

the map sending each device identifier in δ to the same value-tree environment Θ.

146

CHAPTER 7. SCAFI: AGGREGATE PROGRAMMING IN SCALA

Network configurations and action labels:

Ψ ::= δ 7→ Θ computational field

τ ::= δ 7→ I topology

Σ ::= δ 7→ σ sensors-map

Env ::= τ,Σ environment

N ::= 〈Env; Ψ〉 network configuration

act ::= δ
∣∣ env action label

Environment well-formedness:
WFE(τ,Σ) holds if τ,Σ have same domain, and τ ’s values do not escape it.

Transition rules for network evolution: N
act−→ N

[N-FIR] Env = τ,Σ τ(δ) = δ

δ, δ;F (Ψ)(δ); Σ(δ) ` emain ⇓ θ Ψ1 = δ 7→ {δ 7→ θ}
〈Env; Ψ〉 δ−→ 〈Env;F (Ψ)[Ψ1]〉

[N-ENV] WFE(Env′) Env′ = τ, δ 7→ σ Ψ0 = δ 7→ ∅
〈Env; Ψ〉 env−−→ 〈Env′; Ψ0[Ψ]〉

Figure 7.7: Small-step operational semantics for network evolution.

Let Θ0[Θ1] denote the value-tree environment with domain DΘ0 ∪ DΘ1 coinciding

with Θ1 in the domain of Θ1 and with Θ0 otherwise. Let Ψ0[Ψ1] denote the

computational field with the same domain as Ψ0 made of δ 7→ Ψ0(δ)[Ψ1(δ)] for

all δ in the domain of Ψ1, δ 7→ Ψ0(δ) otherwise. The notation Fδ(·) used in rule

[N-FIR], Figure 7.7 (bottom), models a filtering operation that clears out old stored

value-trees from Ψ(δ), implicitly based on space/time tags.7

We define network operational semantics in terms of small-steps transitions of

the kind N
act−→ N ′, where act is either a device identifier in case it represents its

firing, or label env to model any environment change. This is formalised in Figure

7.7 (bottom).

Rule [N-FIR] models a computation round (firing) at device δ: it takes the local

value-tree environment filtered out of old values Fδ(Ψ)(δ); then, by the single

device semantics, it obtains the device’s value-tree θ, which is used to update

the network configuration of δ’s neighbours—the local sensors Σ(δ) are used by

7For example, the filter may remove value-trees that were stored before t−∆t, where t is the
time of the current firing and ∆t is a decay parameter of the filter.

147

CHAPTER 7. SCAFI: AGGREGATE PROGRAMMING IN SCALA

the auxiliary function LbMΘ,Σ(δ)
δ,δ′ that gives the semantics to the built-in functions.

Notice that expression emain is always evaluated in the device itself (that is, against

no neighbour).

Rule [N-ENV] models environment change to a new well-formed environment

Env′. Let δ be the domain of Env′. We first construct a field Ψ0 associating to all

the devices of Env′ the empty context ∅. Then, we adapt the existing field Ψ to the

new set of devices: Ψ0[Ψ] automatically handles removal of devices, mapping of

new devices to the empty context, and retention of existing contexts in the other

devices.

Example 7.8 (Network evolution). Consider the program in Example 7.6:

foldhood(2)(+){ min(nbr{temperature()}, temperature()) }

and let θn = n〈min, n〈n〈temperature, n〉〉, n〈temperature, n〉, n〉 be the result

of evaluation of min(nbr{temperature()}, temperature()) in a device where

temperature() = n.

We start from a configuration N0 = 〈τ,Σ; Ψ0〉 with three devices δ, so that

τ = δ 7→ {δ1, δ2, δ3} (all devices are connected), Ψ0 = δ 7→ ∅ (devices do not hold

any information) and

Σ = δ1 7→ {t = 10}, δ2 7→ {t = 15}, δ3 7→ {t = 5}

(temperatures are as in Example 7.6).

After transition N0
δ2−→ N1, the computational field Ψ0 is updated by sending

the result θ0 = 17〈2, +, θ15〉 of the computation of δ2 (with respect to its empty

environment) to every device, obtaining Ψ1 = δ 7→ {δ2 7→ θ0}. Then, another

transition takes place: N1
δ3−→ N2, where Ψ1 is further updated with the result θ1 =

12〈2, +, θ5〉 of the computation of δ3 (with respect to the information received from

δ2), obtaining Ψ2 = δ 7→ {δ2 7→ θ0, δ3 7→ θ1}. Finally, transition N2
δ1−→ N3 happens

as described in Example 7.6, producing Ψ3 = δ 7→ {δ1 7→ θ2, δ2 7→ θ0, δ3 7→ θ1}
where θ2 = 27〈2, +, θ10〉.

Lastly, a transition N3
env−−→ N4 may happen, lowering temperatures, deleting

device δ2, inserting device δ4, and disconnecting device δ1 from device δ3. The

148

CHAPTER 7. SCAFI: AGGREGATE PROGRAMMING IN SCALA

FScaFi

Aligned FScaFi
≡

HFC’
HFC

Figure 7.8: Relationship between FScaFi, HFC, and their fragments.

result is configuration N4 = 〈τ ′,Σ′; Ψ4〉 where:

τ ′ = δ1 7→ {δ4}, δ3 7→ {δ4}, δ4 7→ {δ1, δ3}
Σ′ = δ1 7→ {t = 9}, δ1 7→ {t = 4}, δ4 7→ {t = 1}
Ψ4 = δ1 7→ {δ1 7→ θ2, δ2 7→ θ0, δ3 7→ θ1}, δ3 7→ {δ1 7→ θ2, δ2 7→ θ0, δ3 7→ θ1}, δ4 7→ ∅.

Notice that devices δ1, δ3 are not aware yet of the disappearance of δ2, nor of their

disconnection. When one of them will fire, the filter Fδi(·) will be able to remove

the obsolete values from the corresponding value-tree environments.

7.4 Properties and Relation with HFC

In this section, we present properties of FScaFi and relationship with the HFC

minimal core calculus for Aggregate Computing [Aud+19], used as main related

approach to formalise field computations.

As a preliminary result, we prove in Section 7.4.1 the device computation type

preservation property for FScaFi. Then, in Section 7.4.2, we define a fragment of

FScaFi, which we call Aligned FScaFi, where the programmer can better con-

trol the scope of operations working on neighbours: essentially, Aligned FScaFi

corresponds to a fragment of HFC (that we correspondingly call HFC′) obtained

by imposing restrictions on how values from neighbours can be aggregated. As

a result, a formal translation is provided to make the two fragments match—see

Figure 7.8.

Finally, in Section 7.4.3, we show that these fragments attain maximal ex-

pressiveness according to the definition in [Aud+18], and contain most useful

149

CHAPTER 7. SCAFI: AGGREGATE PROGRAMMING IN SCALA

programs—e.g., self-stabilising building blocks as of [Vir+18]. Overall, these re-

sults show that ScaFi provides a different “flavour” of field computation with

respect to FC (and Protelis [PVB15]), though without losing practical expressive-

ness.

7.4.1 Type Preservation in FScaFi

We now prove that the evaluation rules for FScaFi are deterministic and

preserve types, provided that the value-tree environment used for the evaluation is

coherent with the expression being evaluated according to the following definition.

Definition 1 (Well Formed Value Tree). Given a closed expression e, a local-

type-scheme environment D, a type environment A = x : T, and a type T such

that D;A ` e : T holds, the set CTD;A[e] of the well-formed value-trees for e is

inductively defined as follows. θ ∈ CTD;A[e] if and only if v = ρ(θ) has type T

(i.e. D; ∅ ` v : T) and

• if e is a value, θ is of the form v〈〉;
• if e = nbr{e1}, θ is of the form v〈θ1〉 where θ1 ∈ CTD;A[e1];

• if e = rep(e1){e2}, θ is of the form v〈θ1, θ2〉 where θ1 ∈ CTD;A[e1] and θ2 ∈
CTD;A,x:T[e2(x)];

• If e = foldhood(e1)(e2){e3}, θ is of the form v〈θ1, θ2, θ3〉 where θ ∈
CT,(T,T)→T,T
D;A [e];

• if e = e′(e) and D;A ` e′ : T′, D;A ` e : T, then θ is of the form v〈θ′, θ, θ′′〉
where θ′ ∈ CT′

D;A[e′], θ ∈ CTD;A[e], and either:

– f = ρ(θ′) is a built-in function and θ′′ = v〈〉,
– f is not a built-in function and θ′′ ∈ CTD;A,args(f):T

[body(f)].

Similarly, the set of well-formed value-tree environments WFVTE(D;A; e) is the

set of Θ = δ 7→ θ such that θ ∈ CTD;A[e].

In other words, the above definition demands value-trees to be plausible out-

comes of the evaluation of e.

150

CHAPTER 7. SCAFI: AGGREGATE PROGRAMMING IN SCALA

Lemma 1 (Computation Determinism). Let e be a well-typed closed expression

and Θ ∈ WFVTE(D;A; e). Then for all device identifiers δ, δ′ and sensor state

σ:

1. δ, δ; Θ;σ ` e fail cannot hold.

2. There is at most one derivation of the kind δ, δ′; Θ;σ ` e ⇓ θ or δ, δ′; Θ;σ `
e fail.

Proof. See [Cas+20].

By this lemma, evaluation does not result on fail when it is performed relative

to the current device (as it is the case for main expressions), and rules are deter-

ministic. Furthermore, the evaluation rules respect the types given in Figure 7.3,

provided that the built-in interpretations respect the given types. Formally, given

b such that B; ∅ ` b : T→ T and any B; ∅ ` v : T, Θ = δ 7→ v′〈〉 with B; ∅ ` v′ : T,

δ′ ∈ {δ, δ}, then we require LbMδ,δ
′

Θ,σ to be a value of type T.

Theorem 1 (Type Preservation). Assume that the interpretation of built-in oper-

ators respects the given types. Let A = x : T and D; ∅ ` v : T, so that length(v) =

length(x). If D;A ` e : T, Θ ∈ WFVTE(D;A; e) and δ, δ′; Θ;σ ` e[x := v] ⇓ θ,

then θ ∈ CTD;A[e].

Proof. See [Cas+20].

Notice that, since the evaluation of e produces a value-tree which is coherent

with e, the value-tree environment Θ can be proved to be coherent with the main

expression by induction on the network evolution.

7.4.2 HFC, HFC′ and Aligned FScaFi

The syntax of HFC is given in Figure 7.9. Its operational semantics is given

as a transition system analogous to that in Section 7.3.4, but based on a different

judgement for the device operational semantics δ; Θ;σ ` emain ⇓ θ, for which we

refer to [Aud+19]. The two main differences are as follows:

• in HFC, values are divided into local values and neighbouring values (the

latter are not allowed to appear in source code), while in FScaFi there are

no neighbouring values;

151

CHAPTER 7. SCAFI: AGGREGATE PROGRAMMING IN SCALA

P ::= F e program

F ::= def d(x) {e} function declaration

e ::= x
∣∣ v

∣∣ (x)
τ
=> e

∣∣ e(e)
∣∣

rep(e){(x) => e}
∣∣ nbr{e} expression

v ::= `
∣∣ φ value

φ ::= δ 7→ ` neighbouring field value

` ::= c(`)
∣∣ f local value

f ::= b
∣∣ d

∣∣ (x)
τ
=> e function value

T ::= t
∣∣ R

∣∣ L type

L ::= l
∣∣ S

∣∣ (T)→ R local type

R ::= r
∣∣ S

∣∣ F return type

S ::= s
∣∣ B

∣∣ (T)→ S local return type

F ::= field(S) neighbouring type

Figure 7.9: Syntax of programs, values and types of HFC.

• in HFC a language construct for foldhood is not needed, since a built-in

with the same meaning can be defined.

In both of the languages, branching statements are considered as syntactic sugar;

however, the keyword commonly used in FScaFi is branch while in HFC is if.

We shall use the same built-in functions for both languages.

Neighbouring values (i.e., maps δ 7→ ` from device identifiers to local val-

ues) are produced in HFC by the nbr construct and some built-in functions. HFC

distinguishes between types for local values from those that are not (namely, neigh-

bouring types F for neighbouring values), as well as between types that are allowed

to be returned by functions from those that are not. In summary, this induces four

different type categories: types T, local types L, return types R, and local return

types S. More specifically, the main restrictions enforced by the HFC type system

in [Aud+19] in order to ensure the domain alignment property8 are:

8Domain alignment holds iff the domain of neighbouring values φ obtained from expressions
e is equal to the set of all neighbours which computed the same e in their previous evaluation
round.

152

CHAPTER 7. SCAFI: AGGREGATE PROGRAMMING IN SCALA

HFC FSCAFI
def d(x) {e} ←→ def d(x) = @@{e}

(x)
τ
=> e ←→ (x)

τ
=> @@{e}

foldhood(e, e, e) ←→ foldhood(e)(e){e}

Figure 7.10: Informal description of the bidirectional translation between HFC
and FScaFi.

• anonymous functions cannot capture variables of neighbouring type;

• rep statements are demanded to have local return type;

• neighbouring types can only be built from local return types F = field(S),

since neighbouring values need to be aggregated and this is possible only

for return types, and avoiding “neighbouring values of neighbouring values”

which may lead to unintentionally heavy computations;

• types of the form (T) → F (functions returning neighbouring values) are

not return types. Thus, functions of type (T) → F are used almost as in a

first-order language. In particular, there is no way to write a non-constant

expression e evaluating to such a function.

The syntaxes of HFC and FScaFi are very similar: the simple rules in Figure

7.10 can translate programs from one syntax to the other, assuming that foldhood

is the name of a valid HFC built-in and all other built-in names are in common.

However, these rules do not generally preserve type-safety and behaviour for all

programs: they do it for a fragment of the two languages, which we call HFC′ and

Aligned FScaFi.

HFC′ is obtained by adding the following three custom restrictions, on how

field values can be processed, to the rules of the refined Hindley-Milner types for

HFC [Aud+19] described above:

R1 Expressions of neighbouring type can only be aggregated to local values with

a foldhood operator if they do not capture variables of neighbouring types;

so that, e.g., aggregating arguments of neighbouring type is never allowed.

R2 Functions f with arguments of neighbouring type have to return a neighbour-

ing type.

R3 Built-in functions need to be pointwise or aggregating on neighbouring values

153

CHAPTER 7. SCAFI: AGGREGATE PROGRAMMING IN SCALA

(as will be formally specified in Definition 3).

Notice that functions with neighbouring arguments and local return type could not

compute their return value from their arguments by Restriction R1, and thus would

be forced to ignore them. It follows that restriction R2 does not eliminate any

further meaningful programs. We also remark that all HFC programs considered

in previous works [Aud+19; Aud+18; Vir+18] actually belong to HFC′ (or can

easily be reformulated in order to do so).

Example 7.9. In order to show the rationale behind Restriction R1, consider the

following HFC program

def wrong_avghood(x) = {

foldhood(0, +, x) / foldhood(0, +, 1)

}

wrong_avghood(nbr{sns-temp()})

and its translation in FScaFi

def wrong_avghood(x) = @@{

foldhood(0)(+){x} / foldhood(0)(+){1}

}

wrong_avghood(nbr{sns-temp()})

We may suppose the FScaFi program to calculate the average temperature of

neighbours, as the HFC program does. Instead, this program is fully equivalent to

the simpler program nbr{sns-temp()}. If we evaluate the main expression against

a neighbour δ′, we obtain as argument the temperature t of that neighbour. When

function wrong avghood is applied to t, the neighbour device δ′ is ignored by both

foldhood statements, which fail to interpret the captured neighbouring value as

such. The value of the function is then nt/n = t, where n is the number of

neighbours.

We remark that an FScaFi program computing the average temperature of

neighbours could still be conveniently written, by resorting to the programming

patterns that will be discussed in Section 7.4.3 and that are idiomatic in ScaFi

(e.g., for the example above, it is sufficient to make x a by-name parameter).

Example 7.10. In order to show the rationale behind Restriction R2,

consider the following HFC program (where if(e1){e2}{e3} is short for

154

CHAPTER 7. SCAFI: AGGREGATE PROGRAMMING IN SCALA

mux(e1, () =>e2, () =>e3)())

def wrong_ignore(x) = { 1 }

foldhood(0, +, if (sns-temp() > 0) { wrong_ignore(nbr{sns-temp()}) } { 1

})

and its translation in FScaFi

def wrong_ignore(x) = @@{ 1 }

foldhood(0)(+){ branch (sns-temp() > 0) { wrong_ignore(nbr{sns-temp()})

} { 1 } }

We may suppose the FScaFi program to always calculate the total number of

neighbours (foldhood(0)(+){1}) as the HFC program does. However, if the sensed

temperature is positive, this program only counts neighbours with positive temper-

ature, since the argument nbr{sns-temp()} fails its evaluation against neighbours

with negative temperature.

Example 7.11. In order to show the rationale behind Restriction R3, consider

a built-in function sorthood rearranging values φ(δ) relative to neighbours in in-

creasing order of neighbour identifier δ. Formally, applying this function to a

neighbouring value φ = δ 7→ ` (assuming δ1 ≤ . . . ≤ δn), we obtain the neigh-

bouring value φ′ = δ1 7→ `π1 , . . . , δn 7→ `πn where the permutation π is such that

`π1 ≤ . . . `πn. This function is conceivable (although artificial) in HFC, but it is

not implementable in FScaFi.

Aligned FScaFi is the fragment of FScaFi that can be typed by rules in

Figure 7.11, which enforce the given restrictions. In particular:

• All rules are obtained by translating the corresponding rules for HFC in

[Aud+19], and differ from those in Figure 7.3 by acknowledging the existence

of the four type categories, by introducing type field(S) in nbr statements,

and by requiring captured variables to have local type.

• Restriction R1 is further implemented in Rule [T’-FOLD], by requiring each

free variable occurring in the third branch to be of local type.

• Restriction R2 is implemented by a change in the syntax of local types (re-

stricting (T)→ R to (T)→ F), as reflected in the Voronoi diagram of types

given in Figure 7.11 (top).

155

CHAPTER 7. SCAFI: AGGREGATE PROGRAMMING IN SCALA

Types:

T ::= t
∣∣ R

∣∣ L type

L ::= l
∣∣ S

∣∣ (T)→ F local type

R ::= r
∣∣ S

∣∣ F return type

S ::= s
∣∣ B

∣∣ (L)→ S local return type

F ::= field(S) field type

Local type schemes:

LS ::= ∀tlrs.L local type scheme

T

L R

S

B
(L)→ S

F(T)→ F

Expression typing: D;A ` e : T

[T’-VAR]

D;A, x : T ` x : T
[T’-DAT] S′[s := S

′′
] = (S)→ S D;A ` ` : S

D, c : ∀s.S′;A ` c(`) : S

[T’-A-FUN] y = FV((x)
τ
=> @@{e}) D;A ` y : L D;A, x : T ` e : R

D;A ` (x)
τ
=> @@{e} : (T)→ R

[T’-N-FUN] f is a (built-in or declared) function

D, f : ∀tlrs.L;A ` f : L[t := T, l := L, r := R, s := S]

[T’-APP] D;A ` e : (T)→ R D;A ` e : T
D;A ` e(e) : R

[T’-REP] D;A ` e1 : S D;A ` e2 : S→ S
D;A ` rep(e1){e2} : S

[T’-NBR] D;A ` e : S
D;A ` nbr{e} : field(S)

[T’-FOLD]

D;A ` e1 : S D;A ` e3 : field(S) or S
D;A ` e2 : (S, S)→ S D;A ` x : L where x = FV(e3)

D;A ` foldhood(e1)(e2){e3} : S

Function typing: D ` F : LS

[T’-FUNCTION] D, d : (T)→ R; x : T ` e : R tlrs = FTV((T)→ R)

D ` def d(x) = @@{e} : ∀tlrs.(T)→ R

Program typing: D0 ` P : T

[T’-PROGRAM]

Fi = (def di()) Di−1 ` Fi : LSi Di = Di−1, di : LSi (i ∈ 1..n)
Dn; ∅ ` e : T

D0 ` F1 · · · Fn e : T

Figure 7.11: Hindley-Milner typing for Aligned FScaFi expressions, function dec-
larations, and programs.

156

CHAPTER 7. SCAFI: AGGREGATE PROGRAMMING IN SCALA

• Restriction R3 is implicitly valid for all FScaFi programs, as it is impossible

to define a non-positional built-in operator following the semantic rules.

The embedding of Aligned FScaFi as a fragment of FScaFi can be formally

characterised by means of the following definition and theorem.

Definition 2 (Erasure). The erasure of a Aligned FScaFi type T is the type

erasure(T) obtained from T by replacing all occurrences of field(L) with L and

dropping the distinction between the different kinds of type variables (i.e., con-

sidering each of them as a standard type variable t). Similarly, the erasure of a

type scheme ∀tlrs.L is the type scheme ∀tlrs.erasure(L) (dropping distinction be-

tween kinds of variables). Finally, the erasure of a type environment A = x : T is

erasure(A) = x : erasure(T); and the erasure of a type-scheme environment is

erasure(D) = x : erasure(LS).

Theorem 2 (Typing Correspondence). Assume that D;A ` e : T in Aligned

FScaFi. Then erasure(D); erasure(A) ` e : erasure(T) in FScaFi.

Proof. See [Cas+20].

It is worth observing that a corresponding type system for HFC, enforcing

restrictions R1 and R2, can be given by translating the syntax through the rules

in Figure 7.10. Moreover, for HFC, Restriction R3 is not incorporated in the type

system, but can be expressed as an additional coherence assumption between HFC

and FScaFi, demanding built-in operators to be positional as per the following

definition.

Definition 3 (Positional Built-in Operators). We say that an HFC built-in oper-

ator is positional if it can be obtained by composition from the following operators:

• built-in operators and sensors with local inputs (as temperature, nbrRange),

including operator consthood(v), which returns a field constantly equal to its

(local) input;

• map(f, e), which applies a function f with local inputs and output (of any

ariety) pointwise to fields e;

• foldhood(e, e, e), which collapses a field via an aggregator (exactly as in

FScaFi).

157

CHAPTER 7. SCAFI: AGGREGATE PROGRAMMING IN SCALA

Positional operators are characterised by being essentially induced by operators

with local inputs. Using the HFC assumption that all local built-in operators are

implicitly overloaded to accept any combination of scalar and field parameters by

operating pointwise [Aud+19], it follows that a program using positional operators

can be rewritten to use only local operators, as per the following lemma.

Lemma 2 (A Normal Form for HFC Programs). Any HFC program P using only

positional built-in operators can be put in normal form, by repeatedly applying the

following transformations:

• expanding all built-in operators into the basic positional operators listed in

Definition 3;

• substituting every occurrence of consthood(e) with e;

• substituting map(f, e) with f(e).

Proof. The whole transformation is correct since local functions in HFC are im-

plicitly overloaded to accept any combination of scalar and field parameters by

operating pointwise [Aud+19]. As a result of the transformation, only built-in

operators with local arguments will be present.

The normal form of an HFC′ program is of particular interest since it enables

to translate back this program into Aligned FScaFi, by removing operators that

would not be expressible in Aligned FScaFi. In order for an Aligned FScaFi

program and its HFC′ translation to have the same behaviour, we need the built-

in functions to have that same behaviour, as detailed in the following definition.

Definition 4 (Built-in Coherence). We say that closed expressions (or programs)

eH : T in HFC′ and eS : T in Aligned FScaFi have the same behaviour whenever:

• if T is a local type, δ; Θ;σ ` eH ⇓ `〈θ〉 if and only if δ, δ; Θ;σ ` eS ⇓ `〈θ
′〉

for some θ and θ
′
;

• if T is a field type, δ; Θ;σ ` eH ⇓ φ〈θ〉 if and only if δ, δi; Θ;σ ` eS ⇓ `i〈θ
′〉

with φ = δi 7→ `i for some θ and θ
′
.

We say that HFC′ and Aligned FScaFi are built-in coherent iff for every built-

in operator b with local arguments, b(`) has the same behaviour in both languages.

158

CHAPTER 7. SCAFI: AGGREGATE PROGRAMMING IN SCALA

Assuming that built-in operators are positional, the coherence assumption

above and well-typedness according to the type system in Figure 7.11, we are

now able to prove that the proposed translation preserves the program behaviour.

Theorem 3 (Equivalence between HFC′ and Aligned FScaFi). Assume that

HFC′ and Aligned FScaFi are built-in coherent. If PH is a well-typed HFC′ pro-

gram in normal form without functions with field arguments9, then its translation

PS is a valid Aligned FScaFi program with the same behaviour (i.e., such that

δ; Θ;σ ` eHmain ⇓ θ if and only if δ, δ; Θ;σ ` eSmain ⇓ θ). Conversely, if PS is a

valid Aligned FScaFi program, then its translation PH is a well-typed HFC′ pro-

gram with the same behaviour (i.e., such that δ; Θ;σ ` eHmain ⇓ θ if and only if

δ, δ; Θ;σ ` eSmain ⇓ θ).

Proof. See [Cas+20].

7.4.3 FScaFi expressiveness

In this section, we argue that FScaFi is an expressive language for distributed

computations. Section 7.4.3 shows that Aligned FScaFi contains most relevant

programs and is in fact universal for distributed computations. Section 7.4.3

presents few programming patterns, enabling to conveniently express most pro-

grams so that they belong to Aligned FScaFi. Section 7.4.3 argues that the

FScaFi programs that are not in Aligned FScaFi can fruitfully extend the ex-

pressive power of HFC.

Universality and self-stabilisation in Aligned FScaFi The correspondence

between Aligned FScaFi and HFC′ given by Theorem 3 enables, as byproduct,

the direct transfer to FScaFi of important HFC properties, like the following two

properties.

Turing Universality [Aud+18]. A programming model for distributed systems

is Turing-universal if and only if it is able to replicate the behaviour of any

Turing machine, which in every event takes as input the whole collection of

causally available data.

9Thus using only built-in operators with local arguments.

159

CHAPTER 7. SCAFI: AGGREGATE PROGRAMMING IN SCALA

s ::= x
∣∣ v

∣∣ f(s)
∣∣ branch(s){s}{s}

∣∣ nbr{s}∣∣ rep(e){(x)=> @@{fC(x, s, e)}}∣∣ rep(e){(x)=> @@{f(foldhood(s)(f){mux(nbrlt(s), nbr{x}, s)}, s)}}∣∣ rep(e){(x)=> @@{fR(foldhoodPlus(s)(min){fMP(nbr{x}, s)}, x, e)}}

Figure 7.12: Syntax of a self-stabilising fragment of field calculus expressions,
where self-stabilising expressions s occurring inside a rep statement cannot contain
free occurrences of the rep-bound variable x.

Self-Stabilisation [Vir+18]. A time- and space-distributed data is stabilising

iff it remains constant in every point after a certain time t0, and its limit is

the value assumed after t0. A distributed program is self-stabilising iff given

stabilising inputs and topology, it produces a stabilising output which de-

pends only on the limits of the inputs and topology (and not on the concrete

scheduling of events, nor on the input values before stabilisation).

In fact, Aligned FScaFi is Turing universal (assuming a sufficient collection of

built-ins), since HFC can be proved to be so [Aud+18] through a program whose

translation belongs to the fragment identified by the restricted type system (Figure

7.11).

Similarly, the programming patterns provided in [Vir+18] for designing self-

stabilising applications can be rewritten in order to fit into the fragment, obtaining

the fragment in Figure 7.12 identifying self-stabilising Aligned FScaFi programs.

Programming patterns The restrictions imposed by the type system in Figure

7.11 are subtle, and programming according to them may require some forethought.

In particular, there may be issues in programming functions with field arguments,

and folding field parameters. However, there are few programming patterns that

we can use in order to comply with it.

1. Abstracting : a field-like argument may be passed “by name” through

((x)=> @@{e1})(e2) −→ ((x)=> @@{e1[x := x()]})(()=> @@{e2})

160

CHAPTER 7. SCAFI: AGGREGATE PROGRAMMING IN SCALA

2. Deferring : an nbr in the argument may be transferred into the body as

((x) => @@{e1})(nbr{e2}) −→ ((x) => @@{e1[x := nbr{x}]})(e2)

Both rewrites convert a field argument into a local argument, thus allowing its

capture into foldhood statements, possibly avoiding the additional restrictions

on functions with field arguments. Using these rewrites, we are able to cover the

following types of function applications f(e):10

• If the field parameter is never folded, no rewrite is needed, and the function

correctly performs a point-wise operation both in HFC and in FScaFi.

• If the field parameter is an expression e2 whose computation does not depend

on the current domain (e.g., relational sensors as nbrRange), we can perform

rewrite (1) without modifying the behaviour.

• Rewrite (1) is also correct provided that no occurrence of x is inside a branch-

ing statement: in this case, it is granted that x() will be computed against

the same environment as it would have been expression e2, thus producing

the same result.

• If the field parameter is directly obtained from an nbr statement, we can

perform rewrite (2) which ensures that the fields used in the function body

correctly correspond to the results of expression e2 as computed in the larger

domain of all devices evaluating the function call.

The remaining problematic case is whenever the argument e2 is a field expression

not writable as an nbr which depends on the current domain, and which is passed

into a function e1 folding it inside a branching statement. We believe that this

situation is rare, often avoidable, and in fact it does not occur in any of the

examples of program classes ever proposed for HFC, which we will partially discuss

in the following section.

FScaFi programs that go beyond HFC programs As argued in [Aud+16],

programs such as updatable metrics and combined Boolean restriction are not con-

veniently expressed in HFC. In the former case, we can use the following general

10Here we assume that the function to be applied is a value. If it is not, further restrictions
have to be taken into account (we do not present them to keep the presentation simpler).

161

CHAPTER 7. SCAFI: AGGREGATE PROGRAMMING IN SCALA

scheme for updatable functions, first proposed in [Aud+19]:

def up(injecter) = @@{

snd(rep(injecter()) {

(x) => @@{ foldhood(injecter())(max){nbr{x}} }

}) }

where injecter is a function returning a pair 〈version number, function code〉,
and the built-in operator max selects the pair with the highest version number

among its arguments. This procedure defines a perfectly reasonable “upgradeable

function” by spreading functions with higher version number throughout devices.

However, it is not allowed by the type system of HFC for functions returning fields,

such as metrics (which usually have type () → num). This scheme can instead be

used in FScaFi (as shown in Section 7.6), and works properly provided that new

versions are injected at a slow rate, and an occasionally empty domain of a field-like

expression does not produce critical effects.

Another situation where the permissive behaviour of FScaFi is crucial is that

of combined Boolean restriction. In this setting, a field-like value x need to be

restricted to those devices agreeing on the value of n Boolean parameters b1, . . . , bn,

before being processed by a function f. This rather abstract example might be

concretely instantiated, e.g., in case a function needs to be executed separately on

devices with different configurations. In HFC, this effect can be achieved only by

restricting on each of the 2n possibilities for the parameters, as in the following.

if (b1 && b2 && ... bn) {f(x)} {

if (!b1 && b2 && ... bn) {f(x)} {

if (b1 && !b2 && ... bn) {f(x)} { ... }}}

However, such a program might be infeasibly large even for small values of n. On

the other hand, in FScaFi the above program can be concisely rewritten as:

f(x + branch (b1) {nbr{0}} {nbr{0}} + branch (b2) {nbr{0}} {nbr{0}} +

...)

whose size is linear in n.11 The domain of the i-th 0-valued field-like subexpression

11In this code we assumed that x has numerical type, but similar code can be obtained for any
type by defining a binary operator which is the identity on its first argument.

162

CHAPTER 7. SCAFI: AGGREGATE PROGRAMMING IN SCALA

above is equal to the set of devices agreeing on bi, hence by intersecting all of them

the resulting domain corresponds to the set of devices agreeing on each of the n

given parameters.

7.5 ScaFi: Library

In this section, we show how ScaFi can be used to implement typed aggregate

APIs (such as the key operators introduced in Section 5.2.2). Notably, the type

class idiom can be used to formalise certain requirements on inputs and accordingly

constrain at compile-time the use of functions to suitable parameters.

7.5.1 Fundamental building blocks

Consider Figure 7.13.

Gradient-cast Multiple types of aggregations can be performed along a distance-

gradient. In fact, it comes handy to define a generalised operator G (Figure 7.13a)

as a gradient algorithm parameterised upon the metric for calculating increments

(i.e., distances), which can carry some value of field from the source outward,

with the logic acc by which such value gets evolved while ascending the gradient:

def G[V:OrderingFoldable](src:Boolean, phi:V, acc:V=>V, metric: =>Double): V =
rep((Double.MaxValue,phi)){ case (distance,value) =>
mux(src) {

(0.0, phi) // ..on sources
} {

minHoodMinus { // minHood except myself
(nbr{ distance } + metric, acc(nbr{ value }))

}
}

}._2 // yielding the resulting field of values

The context bound V:OrderingFoldable statically enforces that the instanti-

ated generic type V has an implicit OrderingFoldable[V] typeclass instance

in scope, which provides a definition of methods top():V, bottom():V, and

compare(V,V):Int. These constraints on V ensure that minHoodMinus can work

out the minimum value for tuples (distance,value), where we also assume that

163

CHAPTER 7. SCAFI: AGGREGATE PROGRAMMING IN SCALA

(a) Information propagation. (b) Information collection.

(c) Leader election. (d) State and time.

Figure 7.13: Basic aggregate building blocks.

164

CHAPTER 7. SCAFI: AGGREGATE PROGRAMMING IN SCALA

in the scope of the definition of G there are implicit OrderingFoldables for both

Doubles and 2-element tuples of OrderingFoldables.

Upon G, it is straightforward, for example, to implement a basic hopGradient

(where a distance is the number of hops from a node to another) and a broadcast

function that simply propagates a value from source points to the rest of the

network:

def hopGradientByG(src: Boolean): Int =
G[Int](src, 0, acc = _+1, metric = 1)

def broadcast[V:OrderingFoldable](source: Boolean, field: V): V =
G[V](source, field, acc = x=>x, metric = nbrRange)

Converge-cast Essentially, G allows for an information flow from source devices

to their global surroundings—a sort of propagation or diffusion of values. The

dual operation involves an information flow directed from a global area towards

specific collection points, which can be used to perform distributed sensing. This is

supported by the generalised operator C (Figure 7.13b), which accumulates values

along the potential field, starting with local at the sources where potential

is maximum and aggregating while descending the chain of parents, ultimately

converging to the points where potential is minimum.

def C[V:OrderingFoldable](potential: V, acc: (V,V)=>V, phi: V, Null: V): V = {
rep(phi){ v =>
acc(phi, foldhood(Null)(acc){

mux(nbr(findParent(potential)) == mid()){ nbr(v) } { nbr(Null) }
})

}
}

def findParent[V:OrderingFoldable](p: V): ID = {
mux(implicitly[OrderingFoldable[V]].compare(minHood{ nbr(p) }, p)<0){
minHood{ nbr{ (p, mid()) } }._2

}{ Int.MaxValue }
}

To better visualise how the algorithm works, let’s consider a 3 × 3 grid of

devices with unitary distance between rows and columns, neighbouring relation on

adjacent rows and columns (i.e., Manhattan distance), and device 3 at the 2nd row

and 1st column with the "source" sensor set to true. The following expression:

165

CHAPTER 7. SCAFI: AGGREGATE PROGRAMMING IN SCALA

def p = distanceTo(isSource) // potential

(p, mid()+”−>”+findParent(p), C[Double](p, _+_, 1, 0.0))

evaluates to

/* (1, 0->3, 3) (2, 1->0, 2) (3, 2->1, 1)
(0, 3->.., 9) (1, 4->3, 4) (2, 5->4, 2)
(1, 6->3, 1) (2, 7->4, 1) (3, 8->5, 1) */

as, for example, the source device (where the potential field is 0) folds (with a

sum) on the aggregated values coming from the top, bottom, and right devices;

conversely, “edge” devices (with no “parent”) at distance 3 from the source emit

the local value 1.

Sparse-choice The generic operator S (Figure 7.13c) enables to select devices

sparsely in such a way that the network gets partitioned into “areas of responsi-

bility”. In other words, it carries out a leader election process (see Figure 7.14),

where grain is the mean distance between two leaders—according to a notion of

distance expressed by metric. It could be implemented as follows:

def S(grain: Double, metric: Double): Boolean =
breakUsingUids(randomUid, grain, metric)

where randomUid generates a random field of unique identifiers:

def randomUid: (Double,ID) =
rep((Math.random()), mid()) { v => (v._1, mid()) }

which is in turn exploited to break the network symmetry:

def breakUsingUids(uid: (Double,ID), grain: Double, metric: => Double): Boolean
=

uid == rep(uid) { lead:(Double,ID) =>
val acc = (_:Double)+metric
distanceCompetition(G[Double](uid==lead,0,acc,metric),

lead, uid, grain, metric)
}

by means of a competition for leadership between devices defined as:

166

CHAPTER 7. SCAFI: AGGREGATE PROGRAMMING IN SCALA

Figure 7.14: Stabilised field in a ScaFi simulation for S. The red nodes are those
which compute true, i.e., the elected leaders.

def distanceCompetition(d: Double, lead: (Double,ID), uid: (Double,ID),
grain: Double, metric: => Double) = {

val inf:(Double,ID) = (Double.PositiveInfinity, uid._2)
mux(d > grain){ uid }{
mux(d >= (0.5*grain)){ inf }{

minHood {
mux(nbr{d}+metric >= 0.5*grain){ nbr{inf} }{ nbr{lead} }

} } } }

Time-decay The T operator (Figure 7.13d) can be used to express time-related

patterns, providing a convenient abstraction over rep construct. It works by de-

creasing the initial field with a decay function until a floor value is reached:

def T[V:Numeric](initial: V, floor: V, decay: V=>V): V = {
val ev = implicitly[Numeric[V]] // getting a Numeric[V] object from the
context

rep(initial){ v =>
ev.min(initial, ev.max(floor, decay(v)))

}
}

Upon T, the implementation of a timer function is straightforward:

167

CHAPTER 7. SCAFI: AGGREGATE PROGRAMMING IN SCALA

def timer[V](initial: V): V = {
val ev = implicitly[Numeric[V]] // getting a Numeric[V] object from the
context

T(initial, ev.zero, (t:V)=>ev.minus(t, ev.one))
} // Decreases ’initial’ by 1 at each round, until 0

In turn, timer supports the definition of a limitedMemory function that computes

value for timeout and then returns expValue after expiration, effectively realising

a finite-time memory.

def limitedMemory[V,T](value: V, expValue: V, timeout: T): (V,T) = {
val ev = implicitly[Numeric[V]] // getting a Numeric[V] object from the
context

val t = timer[T](timeout)
(mux(ev.gt(t, ev.zero)){value}{expValue}, t)

}

Note that the above definition of timer depends on the frequency of operation

of a given device. If one desires a notion of temporariness that is based on physical

time, it could be implemented as follows:

def timer(dur: Duration): Long = {
val ct = System.nanoTime() // Current time
val et = ct + dur.toNanos // Time-to-expire (bootstrap)

rep((et, dur.toNanos)) { case (expTime,remaining) =>
mux(remaining<=0) { (et,0) }{ (expTime, expTime - ct) }

}._2 // Selects the component expressing remaining time
}

where the state about both the expiration time and the remaining time is retained

across rounds via rep. A simulation for timer is shown in Figure 7.15.

7.5.2 Proof of concept: library support for explicit fields

In order to show the expressiveness of ScaFi and the benefit of the Scala

integration, we provide a brief practical account of the translation of HFC into

FScaFi illustrated in Section 7.4.3. Indeed, thanks to the flexibility of Scala and

the minimality of the FScaFi model, ScaFi is able to seamlessly support explicit

fields through a small object-functional library12. In particular, we can represent

12Here, we merely focus on functionality and the key semantic aspects, largely neglecting
performance considerations.

168

CHAPTER 7. SCAFI: AGGREGATE PROGRAMMING IN SCALA

Figure 7.15: Snapshots of a ScaFi simulation for timer; the third one depicts the
stabilised field.

fields according to their definition as a class wrapping a map from device identifiers

to T values.

class Field[T](val m: Map[ID,T]) { ... }
object Field { // companion object
def apply[T](m: Map[ID,T]) = new Field(m) // factory method

}

Then we just need a way to lift local values and neighbouring sensor queries into

field values:

def fnbr[A](e: => A): Field[A] =
Field[A](reifyField(nbr(e)))

def fsns[A](e: => A): Field[A] =
Field[A](reifyField(e))

where we leverage the following function to reify an implicit ScaFi field:

def reifyField[T](expr: => T): Map[ID, T] =
foldhood(Map[ID, T]())(_ ++ _) {
Map(nbr { mid() } -> expr)

}

Then, for typical operations on fields (such as mapping and folding), we can provide

169

CHAPTER 7. SCAFI: AGGREGATE PROGRAMMING IN SCALA

suitable combinators in the Field class:

def map2i[R,S](f: Field[R])(o: (T,R)=>S): Field[S] =
Field(this.restricted.m.collect { case (i,v) if f.m.contains(i) => i -> o(v,f
.m(i)) })

def fold[V>:T](z:V)(o: (V,V)=>V): V =
this.restricted.m.values.fold(z)(o)

where, crucially, the domain of the field this must be properly restricted (and pos-

sibly intersected with other fields involved) to the current domain in the program,

e.g., through a method like the following.

def restricted: Field[T] = {
val alignedField = fnbr{1} // Build a field to find current domain
Field(m.filter(el => alignedField.m.contains(el._1))) // Filter by looking at

that domain
}

We can also provide syntactic sugar for specific types, e.g., numeric ones:

implicit class NumericField[T:Numeric](f: Field[T]){
private val ev = implicitly[Numeric[T]]

def +(f2: Field[T]): Field[T] = f.map2i(f2)(ev.plus(_,_))
// ...

}

through static-time implicit instantiation of the corresponding extension class

(which is generic and requires a typeclass instance Numeric[T] available in scope)

upon attempt to invoke a method like + which is not available on the basic Field

type. Implicit conversions may also be used to simplify passing from local values

to field values and viceversa:

implicit def localToField[T](lv: T): Field[T] =
fnbr(mid).map(_ => lv)

implicit def fieldToLocal[T](fv: Field[T]): T =
fv.m(mid)

Finally, the following example provides a taste of this library in action.

170

CHAPTER 7. SCAFI: AGGREGATE PROGRAMMING IN SCALA

def gradient(source: Field[Boolean]): Field[Double] = // signature with
explicit fields

rep(Double.MaxValue){ // we use standard "local" rep
d => mux(source) { 0.0 } {

(fnbr(d) + fsns(nbrRange)).minHoodPlus // builds explicit field and then
folds into local
}

} // automatic local-to-field conversion

def main(): Double =
gradient(sense[Boolean](SRC)) // automatic local-to-field conversion
// automatic field-to-local conversion for return

7.6 Case Study

ScaFi has been applied to various distributed computing applications [CAV18;

CV18; Cas+19b; CV19; Cas+19a]. Here, we show a case study in computational

trust (Section 7.6.1), where we address a security vulnerability in collective algo-

rithms (though the same principles may be used to tackle any kind of deviance,

e.g., related to failure or performance of peers). Then, Chapters 8 and 10 contain

more use cases adopting ScaFi, e.g., for situated problem solving and resource

orchestration.

7.6.1 Computational trust for attack-resistant gradients

On computational trust In several community-based domains, it is not possible

nor convenient to maintain a trustworthiness infrastructure relying on centralised

trusted third parties. To overcome such a limitation, trust relations are typically

constructed on the base of direct observations and, possibly, recommendations

gathered by interacting with the neighbourhood. For instance, in trustworthy

crowdsourcing and sensor networks, a computational notion of trust derives from

the exchange and aggregation of information disseminated by the participating

nodes [GBS08; Yu+12; Han+14; Mou+15; BB04]. Once a trust metric is es-

tablished, the usual trust-based decision-making policy consists of comparing the

trust estimated by a node, called trustor, about the expected behaviour of another

node, called trustee, and a trust threshold value tth, which may depend on several

171

CHAPTER 7. SCAFI: AGGREGATE PROGRAMMING IN SCALA

subjective factors, like, e.g., the initial willingness of the trustor to cooperate with

the (possibly unknown) trustee.

In the computational trust literature, several metrics are based on a Bayesian

approach. In essence, the trustor assumes that there exists an unknown parameter

θ used to predict probabilistically the future good/bad behaviour of the trustee,

and the related outcome is drawn independently for each interaction between them.

In order to model uncertainty, θ is drawn by a given prior distribution, updated as

new interactions between the parties occur. Among the various probability prior

distributions proposed in the literature, the beta distribution received particular

attention [JI02; BB04; GBS08; PKK16]. Such a distribution is fed with two pa-

rameters, α and β, which count the number of positive and negative observations

experienced by the trustor when interacting with the trustee, respectively. The

evaluation of each observation depends on the context. As an example, in the

setting of data relaying, a packet sent from the trustor that is forwarded (resp.,

discarded) by the trustee is considered as a positive (resp., negative) cooperation.

Then, trust is estimated as the statistical expectation E of a beta distribution

Beta parameterised with respect to α and β, by assuming the initial scenario α =

β = 0, denoting absence of any prior interaction between the parties. Formally:

E(Beta(α + 1, β + 1)) =
α + 1

α + β + 2
.

Notice that the initial trust is equal to 0.5, which expresses a situation of total

uncertainty about the expected behaviour of the trustee.

Different techniques based on such a Bayesian approach differ for the way in

which (i) observations are weighted, e.g., depending on their age, and (ii) recom-

mendations gathered via interactions with the neighbours are combined with the

parameters discussed above.

The ageing mechanism can be implemented either by decreasing periodically

the result of past observations by a weight w, or by assuming that only the last

n observations contribute to the computation of trust. This kind of mechanism

avoids the past behaviour to be too impairing over the current behaviour, thus

mitigating the effect of on-off misbehaviours. Notice that we will consider the

latter approach in the application to Aggregate Computing.

On the other hand, the recommended values received by a node from the neigh-

172

CHAPTER 7. SCAFI: AGGREGATE PROGRAMMING IN SCALA

bourhood, and related to the trust towards a specific trustee, are somehow com-

bined to contribute to the computation of the subjective trust of the node towards

the trustee. To avoid subtle colluding attacks, like, e.g., bad mouthing (fake neg-

ative recommendations about a honest node) and ballot stuffing (fake positive

recommendations about a malicious node), the aggregation privileges direct ob-

servations with respect to evidences obtained from other nodes and weights such

evidences by the trust towards the nodes providing them.

Application in aggregate computing The Bayesian approach surveyed above

can be applied also to the fully-distributed computational framework of Aggre-

gate Computing. For the sake of simplicity, we consider the case in which nodes

compute locally on the base of numerical values exchanged with the neighbours,

as in the case, e.g., of the gradient field. In Aggregate Computing, the trustwor-

thiness of the nodes depends on the quality of the information they share at each

round. Hence, the two trust parameters α and β shall reflect such a relation. In

order to estimate the quality of shared data, we first observe the following basic

principle: if all the nodes are cooperative, the estimates of the gradient that every

node receives from its neighbourhood in a round shall not be too much different

from each other, up to certain fluctuations that may depend on several factors,

like, e.g., the topology of the network, the location of the source node, the firing

frequency of each node, and so on. Hence, if the value received from a node differs

too much from the others, then such an observation is used to impair negatively

the trust towards that node. In other words, unexpected perturbations of the gra-

dient against the overall trend are considered as a potential attack to the system.

On the other hand, a gradient estimate matching the general trend of the gradient

field represents a good observation that can be used to affect positively the trust

towards the node providing that value.

In order to implement this idea, we estimate trust by following the Bayesian

approach in such a way that every gradient estimate received in a round is com-

pared with the average of all the estimates received in that round. The detected

difference is then used to evaluate the observation and update the parameters

feeding the trust metric, by assuming that if the difference is evaluated positively

(resp., negatively) then parameter α (resp., β) is increased. Since the mean square

173

CHAPTER 7. SCAFI: AGGREGATE PROGRAMMING IN SCALA

deviation, called s, represents a standard way to predict differences among values,

we use it as the basis to compute the tolerance threshold, called maxError, for

the evaluation of the difference above. In particular, we assume that the tolerance

threshold is computed as a function dependent on s, whose definition represents a

parameter of the trust system used to determine whether to deliver penalties, by

increasing β, or rewards, by increasing α.

Once α and β are updated according to the policy above, they are possibly in-

tegrated with recommendations provided by the neighbourhood by using a mech-

anism inspired by [JI02; GBS08]. Then, the resulting pair of updated parameters

feeds the Beta distribution that governs the computation of the trust metric, which

is then compared against the trust threshold. Finally, only the gradient estimates

received from trusted nodes are actually used to update the local estimate of the

gradient.

Formally, each node i maintains locally the pair of parameters (αij, βij) for

each neighbour j. Their initial value is zero. At each round, node i performs the

following operations:

1. Node i computes the mean x̄i of the values xij, 1 ≤ j ≤ N , read from

the N neighbours that have a value to communicate and then, assumed the

deviation ξij = xij − x̄i, computes the mean square deviation:

s =

√∑N
j=1 ξ

2
ij

N
.

2. For each neighbour j, if |xij − x̄i| > maxError then βij = βij + 1, else

αij = αij + 1.

3. If the recommendation mechanism is enabled, for each neighbour j, node i

receives from any other node k in the neighbourhood the pair (αkj, βkj), and

then computes the following recommended values:

αrec
j =

∑
1≤k≤N,k 6=i,j

2 · αik · αkj
(βik + 2) · (αkj + βkj + 2) + 2 · αik

βrec
j =

∑
1≤k≤N,k 6=i,j

2 · αik · βkj
(βik + 2) · (αkj + βkj + 2) + 2 · αik

174

CHAPTER 7. SCAFI: AGGREGATE PROGRAMMING IN SCALA

otherwise αrec
j and βrec

j are set to zero.

4. For each neighbour j, node i computes:

αj = αij + αrec
j βj = βij + βrec

j

5. For each neighbour j, if E(Beta(αj + 1, βj + 1)) < tth then xij is discarded.

6. Node i computes its local value on the base of the non-discarded xij.

Notice that in order to preserve the nature of Aggregate Computing, each node

computes locally and makes decisions deriving from the knowledge of its neigh-

bourhood. The novelty is the application of a mechanism used in trust systems

to monitor the neighbourhood and detect potential suspicious behaviours. The

algorithm is parameterised by the two thresholds maxError and tth, which de-

serve empirical evaluation, as they characterise the attitude of the node to trust

perturbed values and other nodes sharing perturbed values, respectively. Anal-

ogously, the recommendation mechanism represents another option that can be

activated to take advantage of the knowledge shared by other (trusted) nodes. Fi-

nally, the generalisation to non-numeric field domains is possible without changing

the nature of the approach and by adapting the semantics of the functions and

operators used in the algorithm above.

Trust implementation in ScaFi In order to study the trust algorithm proposed

in Section 7.6.1, we have applied it to the case of a gradient computation. Here, we

describe the ScaFi implementation of the core trust logic in action, working as a

high-level formal specification of the proposed solution, a ready-to-use JVM-based

implementation, and as fully-reproducible simulation code.

The gradient algorithm presented in Section 7.2.2 can be extended to use trust

as follows (new lines are highlighted):

175

CHAPTER 7. SCAFI: AGGREGATE PROGRAMMING IN SCALA

trait BasicTrustMechanism extends TrustMechanism { self: AggregateProgram with
Env with Lib =>

case class BulkMetrics(s: Double, xmean: Double)
case class TrustParams(a: Double, b: Double, numObservations: Int)
case class TrustProfile(nbrId: ID, params: TrustParams)

def bulkMetrics(value: Double): BulkMetrics = {
def nbrVal = nbr { value }
val n = countHood(nbrVal.isFinite)
val sumValues = sumHood(mux(nbrVal.isFinite) { nbrVal } { 0.0 })
val xmean = sumValues / n
val sumSqDev = sumHood(mux(nbrVal.isFinite) { Math.pow(value - xmean, 2) }
{ 0.0 })
val s = Math.sqrt(sumSqDev / n)
BulkMetrics(s, xmean)

}

type MutableField[T] = MMap[ID,T]
def MutableField[T](): MutableField[T] = MMap[ID,T]()
type AlfaBetaPair = (Double, Double)
type AlfaBetaHistory = List[AlfaBetaPair]

def trustProfile(field: Double, bmetrics: BulkMetrics): TrustProfile = {
val BulkMetrics(s: Double, xmean: Double) = bmetrics
val (nbrId, nbrVal) = nbr{ (mid(), field) }
val deviation = Math.abs(nbrVal - xmean)
val maxError = Math.max(s, errorLB)

val m = rep(MutableField[AlfaBetaHistory]()){ m => m }
val history = m.getOrElse(nbrId, List())
val obsEval = if(deviation > maxError) (0.0, 1.0) else (1.0, 0.0)
m.put(nbrId, (obsEval :: history).take(observationWindow))

val obss = m.getOrElse(nbrId, List())
val (a,b) = obss.foldRight((0.0,0.0))((t,u) => (t._1+u._1, t._2+u._2))
TrustProfile(nbrId, TrustParams(a, b, obss.size))

}

override def eval(m: Metrics, ifTrusted: Double, ifDistrusted: Double) = {
val TrustParams(a, b, numObs) = trustParams(m)
val trustVal = beta(a, b)
val trusted = if (numObs >= minObservations) trustable(trustVal) else true
val value = mux(trusted) { ifTrusted } { ifDistrusted }
EvalResults(value, isTrusted)

}

def trustParams(m: Metrics): TrustParams // ABSTRACT

def beta(a: Double, b: Double) = (a+1)/(a+b+2)
def trustable(trustValue: Double): Boolean = trustValue >= trustThreshold

}

Figure 7.16: ScaFi scaffolding for trust mechanisms based on beta distribution.

176

CHAPTER 7. SCAFI: AGGREGATE PROGRAMMING IN SCALA

class PlainTrust extends BasicTrustMechanism { self: AggregateProgram with Env
with Lib =>

override type Metrics = TrustMetrics
case class TrustMetrics(bmetrics: BulkMetrics, trustProfiles: Map[ID,
TrustProfile])

override def trustParams(m: TrustMetrics): TrustParams =
m.trustProfiles(nbr{mid}).params

override def metrics(value: Double): TrustMetrics = {
val bmetrics = bulkMetrics(value)
TrustMetrics(bmetrics, mapHood{ trustProfile(value, bmetrics) })

}
}

Figure 7.17: Implementation, in ScaFi, of the plain trust algorithms.

def gradient(source: Boolean, trust: TrustMechanism): Double =
rep(Double.PositiveInfinity){ distance =>
mux(source) { 0.0 } {

val trustMetrics = trust.metrics(distance)

foldhoodPlus(Double.PositiveInfinity)(Math.min)(
trust.eval(trustMetrics,
whenTrusted = nbr { distance } + nbrRange,
whenDistrusted = Double.PositiveInfinity

).value)
}

}

A trust mechanism can be thought of as a building block to be invoked at particular

stages of the gradient computation, and whose interface (expressed as Scala trait)

can be of the kind:

trait TrustMechanism {
type Metrics
case class EvalResults(value: Double, trusted: Boolean)

def metrics(value: Double): Metrics
def eval(metrics: Metrics, whenTrusted: Double, whenDistrusted: Double):
EvalResults

}

In particular, two main phases of the gradient algorithm can be recognised:

1. Data collection – when the contributions of the neighbours are retrieved: at

177

CHAPTER 7. SCAFI: AGGREGATE PROGRAMMING IN SCALA

class TrustWithRecomms extends BasicTrustMechanism { self: AggregateProgram
with Env with Lib =>

override type Metrics = RecommMetrics
case class RecommMetrics(bmetrics: BulkMetrics,

nbrTrustProfiles: Map[ID,Map[ID,TrustProfile]])

override def metrics(field: Double): RecommMetrics = {
val bmetrics = bulkMetrics(field)
val localTrustProfiles: Map[ID, TrustProfile] = mapHood { trustProfile(
field, bmetrics) }
RecommMetrics(bmetrics, mapHood{ nbr(localTrustProfiles) })

}

override def trustParams(m: RecommMetrics): TrustParams = {
def localTrustProfiles = m.nbrTrustProfiles(mid)
val nbrId = nbr { mid() }
val (aRec: Double, bRec: Double) = m.nbrTrustProfiles
.mapValues(_.get(nbrId).map(p => (p.params.a, p.params.b))

.getOrElse(0.0, 0.0))
.foldLeft((0.0, 0.0))((acc, value) => {

// i = mid, j = nbrId ; a_j and b_j calculated from all nbrs k != i,j
val TrustParams(a_ik, b_ik, _) =
localTrustProfiles.get(value._1).map(_.params)

.getOrElse(TrustParams(0.0, 0.0, 0))
val (a_kj, b_kj) = (value._2._1, value._2._2)
val denom = (b_ik + 2) * (a_kj + b_kj + 2) + 2 * a_ik
(acc._1 + 2 * a_ik * a_kj / denom, acc._2 + 2 * a_ik * b_kj / denom)

})
val localParams = localTrustProfiles.get(nbrId)

.map(_.params).getOrElse(TrustParams(0.0, 0.0, 0))
TrustParams(localParams.a + aRec, localParams.b + bRec, localTrustProfiles.
size)

}
}

Figure 7.18: Implementation, in ScaFi, of the recommendations-based trust al-
gorithms.

178

CHAPTER 7. SCAFI: AGGREGATE PROGRAMMING IN SCALA

this point, the “metrics” for trust evaluation can be computed;

2. Minimisation – when the contributions of the neighbours are used to deduce

the new gradient value by applying the triangle inequality constraint: here

is when trust can be applied in order to filter out the contributions from

distrusted neighbours.

Trait BasicTrustMechanism (Figure 7.16) partially implements the TrustMechanism

contract to provide the scaffolding of a trust mechanism that uses the mean square

deviation of some value to derive trust profiles and an evaluation strategy based

on the beta distribution. The concrete implementations of such basic trust mech-

anism, with and without recommendations (class PlainTrust and TrustWithRecomms,

resp.), are shown in Figure 7.18. The idea behind the code design is the following:

a first step is to collect as much context information as possible from the neighbour-

hood in order to elicit a reference system (bulkMetrics); then, for each neighbour,

a trust profile is delineated (trustProfile) by “reading” the individual contribu-

tion against the bulk metrics; after that, a set of trust parameters for a neighbour

profile is computed (trustParams) and used to calculate the trust score (beta), i.e.,

the trust field; finally, the trust score is checked against a threshold to choose

whether or not the currently examined neighbour has to be trusted (trustable),

resulting in the choice of whenTrusted or whenDistrusted values for the EvalResults

to be returned. The code makes use of some utility functions: countHood counts

for how many neighbours the given predicate is true; sumHood sums the neighbours’

values for the provided expression; and mapHood returns a map from neighbours’

IDs to the corresponding values of the provided expression.

The key differences between PlainTrust and TrustWithRecomms lie in how the

trust metrics and parameters are computed. For the latter, notice how the

localTrustProfiles are gathered from the neighbours.

It is worth noting that, though correctly implementing the desired approach,

the presented solution has a drawback: it requires the definition of a new gradient

algorithm that is aware of, or depends on, the provided TrustMechanism; ideally,

there should be a way to inject the logic of trust into an existing algorithm, as a sort

of orthogonal component. This can be considered as an interesting future work. A

potential approach would be to work at the value-tree level of aggregate programs,

by defining injection points for inputs and outputs of the trust component, in a

179

CHAPTER 7. SCAFI: AGGREGATE PROGRAMMING IN SCALA

way similar to aspect-oriented programming.

Attack-resistant gradients for attack-resistant channels The channel algo-

rithm is a reusable building block for computing, in a distributed way, a self-healing

path from a source to a destination area. A channel of width w from a to b that

leverages gradient function g can be implemented in ScaFi as follows:

def channel(a: Boolean, b: Boolean, w: Double, g: Boolean => Double):
Boolean =
g(a) + g(b) <= distBetween(a, b, g) + w

def distBetween(src: Boolean, dest: Boolean, g: Boolean => Double): Double
= broadcast(src, g(dest))

def broadcast[V:Bounded](src: Boolean, field: V): V
= G[V](src, field, v => v, nbrRange)

In this case study, the goal is to evaluate how the gradient algorithm under attack

is able to support the formation of a correct channel. In practice, the following

channel fields are computed:

val cIdeal = channel(isSrc, isTarget, width, gradient(_))
val cFake = channel(isSrc, isTarget, width, gradient(_, fake=true))
val cTrust = channel(isSrc, isTarget, width,

gradient(_, fake=true, trust=PlainTrust))
val cRecomms = channel(isSrc, isTarget, width,

gradient(_, fake=true, trust=Recommendations))
val (errFake, errTrust, errRecomms) = (cIdeal ^ cFake, cIdeal ^ cTrust, cIdeal

^ cRecomms)

and the error in the presence of fake contributions is measured by counting, with

respect to the “right channel” in which no fakes are activated (cIdeal), the number

of nodes with inverted boolean values (i.e., the number of true nodes in the XOR

field), for three cases: no trust (cFake), plain trust (cTrust), and trust with recom-

mendations (cRecomms). The idea is that, while the fake is able – in the absence of

any trust mechanisms at work – to corrupt the gradient fields beneath the channel,

effectively compromising the path to a level of complete uselessness, the adoption

of trust-based gradient algorithms can provide enough resiliency to neutralise the

perceived effect of the attacks. Figure 7.19 provides a pictorial representation of

the simulation scenario, the evaluation approach and the expected outcomes.

The result of the experiment for (a subset of) different runs is reported in

180

CHAPTER 7. SCAFI: AGGREGATE PROGRAMMING IN SCALA

(a) Snapshot of the channel simulation at the initial stages. The big red and black nodes at the
corners are the source and target nodes, respectively. Blue square nodes are obstacles. The magenta
square node is the fake, which propagates random values, potentially distorting the gradient fields
underlying the channel computation. Orange nodes belong to the ideal channel (i.e., the channel
computed as if there were no fakes). The mere effect of the fake on the ideal channel is shown
by the small red circles, which denote those nodes yielding a wrong value of channel membership;
instead, the big red circles (resp., squares) are used to highlight errors committed while also using
trust (resp., recommendations).

(b) The channel created by the fake never
stabilises. This snapshot shows the channel
path without using trust is completely com-
promised.

(c) Using trust, it is possible to preserve the
channel. Notice that it might be slightly dif-
ferent from the ideal channel visible in (a).

(d) Sometimes, the reduction of error provided by trust in the gradients beneath the channel
algorithm may result in a different path being chosen. Though reasonable, it still counts as an
error in our evaluation.

Figure 7.19: Snapshots from the channel simulation.

181

CHAPTER 7. SCAFI: AGGREGATE PROGRAMMING IN SCALA

Figure 7.20: Each graph shows the evolution of the error across time for different
random seeds. Configuration: fake appearing at t = 80; trust algorithm starting
at t = 50; trustThreshold = 0.90; errorLB = 8.0.

Figure 7.20: when using trust, convergence is basically achieved, with the excep-

tion of some sporadic reconstructions of the channel where a noticeable error is

registered during the transitory phase. Notice that, in general, the gradient and

channel algorithms are self-stabilising; however, the fake node acts as a source

of non-constant input and continuously perturbs them. The same experiments,

launched for 2000 seconds, with tth = 0.94 and errorLB = 8.0, have shown that

recommendations, after the initial error peak, maintain convergence (i.e., correct

channel with null error) all the time in 17 out of 20 runs, where the remaining 3

runs only present one or two peaks of error that are quickly fixed, still exhibiting

the correct channel for the majority of time.

In summary, the contribution is clear: gradient implementations adopting trust

mechanisms improve stability and provide resistance to attacks in such a way that

182

CHAPTER 7. SCAFI: AGGREGATE PROGRAMMING IN SCALA

they do not impact on higher level building blocks (and in turn to applications).

It is important to notice that attacking the gradients underlying the channel

is the way by which an attacker can impact the system the most: in fact, by

trying to provoke a disruptive global effect out of merely local contributions, it

is possible to completely compromise the channel. In addition, some mechanism

should be used to prevent a malevolent node from pretending to be a source or

target. Instead, attacks directed at top-level channel values, while skipping the

defence line provided by the trust-based gradient implementation, must hijack

several nodes to produce a significant system-wide effect (e.g., a channel partition).

Functionality might still be locally compromised, though. This aspect, which is

left as an interesting future work, might possibly be tackled by enforcing invariants

between different parts of an aggregate computation.

7.7 Final Remarks

This chapter covers theory and practice of ScaFi. ScaFi provides a different

programming experience with respect to Protelis, as well as a different frame-

work for language development. From a formal standpoint, the corresponding

FScaFi calculus has a different expressiveness with respect to HFC, though they

share a common core that exhibit the most useful properties. In ScaFi, the

full power of the Scala programming language is at hand, even though attention

should be paid when using certain features that may alter the execution flow—

static checks could be implemented (e.g., as Scala compiler plugins) to intercept

common mistakes. In addition to the DSL, ScaFi provides basic simulation fa-

cilities (additionally, it is also integrated with Alchemist for advanced simulation

needs), a library of building blocks (also with support for aggregate processes—

see Chapter 8), as well as an actor-based middleware for building aggregate-like

distributed systems (see Chapter 9).

References

[Akk] http://akka.io. Retrieved October 15-th 2018. 2018.

[Apaa] https://kafka.apache.org. Retrieved October 15-th 2018. 2018.

183

http://akka.io
https://kafka.apache.org

CHAPTER 7. SCAFI: AGGREGATE PROGRAMMING IN SCALA

[Apab] https://spark.apache.org. Retrieved October 15-th 2018. 2018.

[Aud+16] Giorgio Audrito, Ferruccio Damiani, Mirko Viroli, and Roberto Casadei. “Run-

Time Management of Computation Domains in Field Calculus”. In: Founda-

tions and Applications of Self* Systems, IEEE International Workshops on.

IEEE. 2016, pp. 192–197.

[Aud+17] Giorgio Audrito, Roberto Casadei, Ferruccio Damiani, and Mirko Viroli. “Com-

positional Blocks for Optimal Self-Healing Gradients”. In: Self-Adaptive and

Self-Organising Systems (SASO), IEEE International Conference on. IEEE.

2017.

[Aud+18] Giorgio Audrito, Jacob Beal, Ferruccio Damiani, and Mirko Viroli. “Space-time

universality of field calculus”. In: International Conference on Coordination

Languages and Models. Springer. 2018, pp. 1–20.

[Aud+19] Giorgio Audrito, Mirko Viroli, Ferruccio Damiani, Danilo Pianini, and Jacob

Beal. “A Higher-Order Calculus of Computational Fields”. In: ACM Transac-

tions on Computational Logic 20.1 (2019), pp. 1–55. doi: 10.1145/3285956.

[BB04] S. Buchegger and J.-Y. Le Boudec. “A Robust Reputation System for Peer-to-

Peer and Mobile Ad-hoc Networks”. In: 2nd Workshop on the Economics of

Peer-to-Peer Systems. P2PEcon. 2004.

[BB06] Jacob Beal and Jonathan Bachrach. “Infrastructure for Engineered Emer-

gence in Sensor/Actuator Networks”. In: IEEE Intelligent Systems 21 (2 2006),

pp. 10–19. doi: 10.1109/MIS.2006.29.

[Bea+08] Jacob Beal, Jonathan Bachrach, Dan Vickery, and Mark Tobenkin. “Fast self-

healing gradients”. In: Proceedings of the 2008 ACM symposium on Applied

computing. ACM. 2008, pp. 1969–1975.

[Bet16] Lorenzo Bettini. Implementing Domain-Specific Languages with Xtext and

Xtend. Packt Publishing Ltd., 2016. isbn: 9781786464965. url: /files/https:

//www.packtpub.com/application-development/implementing-domain-

specific-languages-xtext-and-xtend-second-edition.

[Cal+17] Ben Calus, Bob Reynders, Dominique Devriese, Job Noorman, and Frank

Piessens. “FRP IoT Modules As a Scala DSL”. In: Proceedings of the 4th ACM

SIGPLAN International Workshop on Reactive and Event-Based Languages

and Systems. REBLS 2017. Vancouver, BC, Canada: ACM, 2017, pp. 15–

20. isbn: 978-1-4503-5515-5. doi: 10.1145/3141858.3141861. url: http:

//doi.acm.org/10.1145/3141858.3141861.

184

https://spark.apache.org
https://doi.org/10.1145/3285956
https://doi.org/10.1109/MIS.2006.29
/files/https://www.packtpub.com/application-development/implementing-domain-specific-languages-xtext-and-xtend-second-edition
/files/https://www.packtpub.com/application-development/implementing-domain-specific-languages-xtext-and-xtend-second-edition
/files/https://www.packtpub.com/application-development/implementing-domain-specific-languages-xtext-and-xtend-second-edition
https://doi.org/10.1145/3141858.3141861
http://doi.acm.org/10.1145/3141858.3141861
http://doi.acm.org/10.1145/3141858.3141861

CHAPTER 7. SCAFI: AGGREGATE PROGRAMMING IN SCALA

[Cas+19a] Roberto Casadei, Christos Tsigkanos, Mirko Viroli, and Schahram Dustdar.

“Engineering Resilient Collaborative Edge-Enabled IoT”. In: 2019 IEEE In-

ternational Conference on Services Computing (SCC). 2019, pp. 36–45. doi:

10.1109/SCC.2019.00019.

[Cas+19b] Roberto Casadei, Mirko Viroli, Giorgio Audrito, Danilo Pianini, and Ferruccio

Damiani. “Aggregate Processes in Field Calculus”. In: Coordination Models

and Languages. Ed. by Hanne Riis Nielson and Emilio Tuosto. Cham: Springer

International Publishing, 2019, pp. 200–217. isbn: 978-3-030-22397-7.

[Cas+20] Roberto Casadei, Mirko Viroli, Giorgio Audrito, and Ferruccio Damiani. “Ag-

gregate Programming in Scala with ScaFi”. In: 2020. Submitted to a journal.

[CAV18] Roberto Casadei, Alessandro Aldini, and Mirko Viroli. “Towards Attack-

Resistant Aggregate Computing Using Trust Mechanisms”. In: Science of Com-

puter Programming 167 (2018), pp. 114–137. doi: 10.1016/j.scico.2018.

07.006.

[CPV16] Roberto Casadei, Danilo Pianini, and Mirko Viroli. “Simulating large-scale ag-

gregate MASs with alchemist and scala”. In: Computer Science and Informa-

tion Systems (FedCSIS), 2016 Federated Conference on. IEEE. 2016, pp. 1495–

1504.

[CV18] Roberto Casadei and Mirko Viroli. “Programming Actor-Based Collective

Adaptive Systems”. In: Programming with Actors: State-of-the-Art and Re-

search Perspectives. Vol. 10789. Lecture Notes in Computer Science. Springer,

2018, pp. 94–122. doi: 10.1007/978-3-030-00302-9_4.

[CV19] Roberto Casadei and Mirko Viroli. “Coordinating Computation at the Edge:

a Decentralized, Self-Organizing, Spatial Approach”. In: 2019 Fourth Interna-

tional Conference on Fog and Mobile Edge Computing (FMEC). 2019, pp. 60–

67. doi: 10.1109/FMEC.2019.8795355.

[Die+16] Felix Dietze, Johannes Karoff, André Calero Valdez, Martina Ziefle, Christoph

Greven, and Ulrik Schroeder. “An Open-Source Object-Graph-Mapping

Framework for Neo4j and Scala: Renesca”. In: Availability, Reliability, and

Security in Information Systems. Ed. by Francesco Buccafurri, Andreas

Holzinger, Peter Kieseberg, A Min Tjoa, and Edgar Weippl. Cham: Springer

International Publishing, 2016, pp. 204–218. isbn: 978-3-319-45507-5.

[DM82] Luis Damas and Robin Milner. “Principal Type-schemes for Functional Pro-

grams”. In: Symposium on Principles of Programming Languages. POPL ’82.

Albuquerque, New Mexico: ACM, 1982, pp. 207–212. isbn: 0-89791-065-6. doi:

10.1145/582153.582176.

185

https://doi.org/10.1109/SCC.2019.00019
https://doi.org/10.1016/j.scico.2018.07.006
https://doi.org/10.1016/j.scico.2018.07.006
https://doi.org/10.1007/978-3-030-00302-9_4
https://doi.org/10.1109/FMEC.2019.8795355
https://doi.org/10.1145/582153.582176

CHAPTER 7. SCAFI: AGGREGATE PROGRAMMING IN SCALA

[Eff+12] Sven Efftinge, Moritz Eysholdt, Jan Köhnlein, Sebastian Zarnekow, Robert

von Massow, Wilhelm Hasselbring, and Michael Hanus. “Xbase: implementing

domain-specific languages for Java”. In: ACM SIGPLAN Notices. Vol. 48. 3.

ACM. 2012, pp. 112–121.

[GBS08] S. Ganeriwal, L. K. Balzano, and M. B. Srivastava. “Reputation-based Frame-

work for High Integrity Sensor Networks”. In: ACM Trans. Sen. Netw. 4.3

(2008), pp. 1–37.

[Gho11] Debasish Ghosh. “DSL for the uninitiated”. In: Commun. ACM 54.7 (2011),

pp. 44–50. doi: 10.1145/1965724.1965740. url: https://doi.org/10.

1145/1965724.1965740.

[Han+14] G. Han, J. Jiang, L. Shu, J. Niu, and H.-C. Chao. “Management and Applica-

tions of Trust in Wireless Sensor Networks: A Survey”. In: Journal of Computer

and System Sciences 80.3 (2014). Special Issue on Wireless Network Intrusion,

pp. 602–617.

[IPW01] Atsushi Igarashi, Benjamin C. Pierce, and Philip Wadler. “Featherweight Java:

A Minimal Core Calculus for Java and GJ”. In: ACM Transactions on Pro-

gramming Languages and Systems 23.3 (2001), pp. 396–450.

[JI02] A. Jøsang and R. Ismail. “The beta reputation system”. In: 15th Bled Conf. on

Electronic Commerce. 2002.

[LK87] Frank C. H. Lin and Robert M. Keller. “The Gradient Model Load Balancing

Method”. In: IEEE Trans. Softw. Eng. 13.1 (1987), pp. 32–38. issn: 0098-5589.

doi: http://dx.doi.org/10.1109/TSE.1987.232563.

[Mou+15] H. Mousa, S. Ben Mokhtar, O. Hasan, O. Younes, M. Hadhoud, and L. Brunie.

“Trust Management and Reputation Systems in Mobile Participatory Sensing

Applications: A Survey”. In: Computer Networks 90 (2015), pp. 49–73. issn:

1389-1286.

[OR14] Martin Odersky and Tiark Rompf. “Unifying functional and object-oriented

programming with scala”. In: Communications of the ACM 57.4 (2014), pp. 76–

86.

[OZ05] Martin Odersky and Matthias Zenger. “Scalable component abstractions”. In:

ACM SIGPLAN Notices 40.10 (Oct. 2005), p. 41. issn: 03621340. doi: 10.

1145/1103845.1094815.

[PKK16] B. Priayoheswari, K. Kulothungan, and A. Kannan. “Beta Reputation and

Direct Trust Model for Secure Communication in Wireless Sensor Networks”.

In: Int. Conf. on Informatics and Analytics. ICIA-16. ACM, 2016, pp. 1–5.

186

https://doi.org/10.1145/1965724.1965740
https://doi.org/10.1145/1965724.1965740
https://doi.org/10.1145/1965724.1965740
https://doi.org/http://dx.doi.org/10.1109/TSE.1987.232563
https://doi.org/10.1145/1103845.1094815
https://doi.org/10.1145/1103845.1094815

CHAPTER 7. SCAFI: AGGREGATE PROGRAMMING IN SCALA

[PVB15] Danilo Pianini, Mirko Viroli, and Jacob Beal. “Protelis: practical aggregate

programming”. In: Symposium on Applied Computing. ACM. 2015, pp. 1846–

1853. doi: 10.1145/2695664.2695913.

[VCP16] Mirko Viroli, Roberto Casadei, and Danilo Pianini. “On execution platforms

for large-scale aggregate computing”. In: Proceedings of the 2016 ACM Inter-

national Joint Conference on Pervasive and Ubiquitous Computing: Adjunct.

ACM. 2016, pp. 1321–1326.

[Vir+18] Mirko Viroli, Giorgio Audrito, Jacob Beal, Ferruccio Damiani, and Danilo

Pianini. “Engineering Resilient Collective Adaptive Systems by Self-

Stabilisation”. In: ACM Transaction on Modelling and Computer Simulation

28.2 (2018), 16:1–16:28. issn: 1049-3301. doi: 10.1145/3177774.

[Vli98] John M Vlissides. Pattern hatching: design patterns applied. Addison-Wesley

Reading, 1998.

[Voe13] M. Voelter. DSL Engineering: Designing, Implementing and Using Domain-

specific Languages. CreateSpace Independent Publishing Platform, 2013. isbn:

9781481218580. url: https://books.google.it/books?id=J2i0lwEACAAJ.

[Yu+12] Y. Yu, K. Li, W. Zhoub, and P. Lib. “Trust Mechanisms in Wireless Sensor

Networks: Attack Analysis and Countermeasures”. In: Journal of Network and

Computer Applications 35.3 (2012), pp. 867–880.

187

https://doi.org/10.1145/2695664.2695913
https://doi.org/10.1145/3177774
https://books.google.it/books?id=J2i0lwEACAAJ

Chapter 8

Dynamic Collective Computations

with Aggregate Processes

The group process contains the secret of collective life

[...]

Mary Parker Follett · The New State: Group

Organization the Solution of Popular Government

Contents
8.1 Aggregate Processes: Introduction 190

8.1.1 Motivation . 190

8.1.2 Requirements . 192

8.1.3 Features of aggregate processes 192

8.2 Formalisation . 193

8.2.1 On “multiple alignments” 193

8.2.2 The spawn Construct Extension 196

8.3 Aggregate Process Implementation in ScaFi 197

8.3.1 Alignment and dynamic field expressions: the align
construct . 198

8.3.2 Aggregate processes in ScaFi 201

8.3.3 Behind-the-scenes: spawn implementation 202

8.4 Programming with Aggregate Processes: Techniques and Pat-
terns . 203

8.4.1 Process definition . 203

8.4.2 Process generation (lifecycle management 1/2) 204

189

CHAPTER 8. DYNAMIC COLLECTIVE COMPUTING WITH AGGREGATE PROCESSES

8.4.3 Process expansion/shrinking (boundary management) 207

8.4.4 Process termination (lifecycle management 2/2) 208

8.4.5 Process abstraction . 210

8.4.6 Process interaction . 211

8.4.7 More expressive process definitions 212

8.5 Evaluation . 214

8.5.1 Case study: opportunistic messaging 214

8.5.2 Case study: drone swarm reconnaissance 217

8.6 Final Remarks . 220

References . 222

In the basic field calculus framework, a program consists of a single compu-

tation, possibly organised in a static tree of sub-computations whose domain can

change dynamically (through the branch construct). Though universal [Aud+18],

the field calculus does not provide effective mechanisms for modelling dynamic

field computations that may spring into existence, spread to involve a dynamic

team of devices, and then retract and collapse once job is done. These kinds of

“computational bubbles” are called aggregate processes. In this chapter, the aggre-

gate process abstraction is described (Section 8.1), together with a field calculus

extension (Section 8.2), a corresponding implementation in the ScaFi framework

(Section 8.3), and an account of programming techniques (Section 8.4). Finally,

aggregate processes are shown in action through two case studies of opportunistic

messaging and drone reconnaissance (Section 8.5).

8.1 Aggregate Processes: Introduction

8.1.1 Motivation

Scenarios like the IoT, CPS, and pervasive computing bring about a future

deeply interconnecting the digital and physical world, and where environments are

smart, open and rich of heterogeneous devices providing services in a coopera-

tive way. There, computational events might trigger multiple processes that are

highly contextual and hence fundamentally related to their space-time situation,

though possibly involving several computational devices and infrastructural layers

(cf., edge, fog, and cloud). Openness and dynamism of deployment environments,

190

CHAPTER 8. DYNAMIC COLLECTIVE COMPUTING WITH AGGREGATE PROCESSES

Device

Aggregate evolving
cooperative
team

team-level
activity

Aggregate
Process

neighbour

Environment
Interface

Sensor Actuator

Environment

Process Features
Process Identity
Process Domain

Process Parameters
Process Inputs

Process Outputs

Lifecycle Logic
Computation Logic

Collective
Behaviour

Figure 8.1: Logical UML model of IoT systems, comprising first-class aggregates
cooperatively playing some aggregate behaviour which may include multiple con-
current aggregate processes. Colours are used to discriminate between individual
(blue) and collective (orange) concepts.

then, require such processes to be dependable, self-adaptive and self-organising

in order to maintain coherence and functionality across the unpredictable and in-

evitable context changes and adversary events, and to opportunistically activate

and execute wherever and whenever their existence conditions hold—whether they

are by-design or emergent. According to this vision, the notion of aggregate pro-

cesses is proposed as key abstraction for modelling

dynamic, context-driven and collective activities that concurrently span

and overlap into a (possibly mobile, large-scale) collection of situated,

computational devices (which we call an aggregate or ensemble).

Figure 8.1 describes the role of aggregate processes in IoT systems, in terms of

relationships with typical entities involved (situated devices—i.e., the things) and

new first-class citizens like aggregates (collectives of things).

191

CHAPTER 8. DYNAMIC COLLECTIVE COMPUTING WITH AGGREGATE PROCESSES

8.1.2 Requirements

In order to be more systematic in the characterisation of our aggregate process

abstraction, we make explicit a set of requirements or desiderata which are based

on the aforementioned vision and on pragmatic aspects of the software engineering

practice:

• aggregate stance — to promote pervasive adaptation, aggregate processes

should abstract the individual device and seamlessly regulate the behaviour

of an ensemble across scales, density, and heterogeneity;

• dynamicity and context-orientation: aggregate processes should conveniently

support the implementation of dynamic, distributed, spatio-temporal activ-

ities where context plays a major role and continuous change is the norm;

• opportunistic resource exploitation: aggregate processes should support dy-

namic and opportunistic execution across the heterogeneous devices spread

in the physical and computational environment;

• intrinsic resiliency — aggregate process implementations should provide for-

mal guarantees about independence to large classes of environmental dynam-

ics and faults;

• conceptual, methodological, and technological integration — aggregate pro-

cesses should integrate with mainstream development paradigms, techniques

and tools.

8.1.3 Features of aggregate processes

Multiple aspects and perspectives – structural, behavioural, and interactional

– need to be considered to fully characterise an aggregate process. First, termino-

logically, we shall use the term process to refer to both process types and process

instances, i.e., concrete living instantiations of process types. Then, in practice,

when specifying a process, a designer should be able to control the following as-

pects:

• process generation — where and when a process is spawned, by whom, and

with which construction parameters;

192

CHAPTER 8. DYNAMIC COLLECTIVE COMPUTING WITH AGGREGATE PROCESSES

• process destruction — the events triggering shutdown and the desired tear-

down dynamics;

• process identity — how to distinguish between different instances of the same

process;

• process domain or shape — how the set of devices running a process changes

across space and time through “extension” and “shrinking” of the process

boundary;

• process parameters — how other processes and data can be used as

construction-time and run-time parameters;

• process logic — what actual collective computation must be carried on by

the process; and

• inter-process interaction — the mechanisms that process instances can use

to interact with one another.

8.2 Formalisation

8.2.1 On “multiple alignments”

Conceptually, and technically, FC is used to specify a “single field computation”

working on the entire available domain. As a paradigmatic example, consider a

gradient [Vir+18; Aud+17; LLM17], namely, a field of hop-by-hop distances

based on local estimates metric (a field of neighbouring real values) from the

closest node in source (a field of boolean values):

def gradient(source, metric) {
rep(infinity)(distance =>

mux { source } { 0 } { minHoodPlus(nbr{distance} + metric) }
)

}

def limitedGradient(source, metric, area) {
branch { area } { gradient(source, metric) } { infinity }

}

If sns is a sensor giving true only at a device s (and false everywhere else) and

nbrRange is a sensor giving local estimate distances from neighbours (as a range de-

193

CHAPTER 8. DYNAMIC COLLECTIVE COMPUTING WITH AGGREGATE PROCESSES

Syntax:
P ::= F e program F ::= def d(x) {e} function decl.

e ::= x
∣∣ v ∣∣ (x)

τ
=> e

∣∣ e(e)
∣∣ rep(e){(x) => e}

∣∣ nbr{e} ∣∣ spawn(e, e, e) expr.

v ::= φ
∣∣ ` value φ ::= δ 7→ ` nbr field value

` ::= f
∣∣ c(`) local value f ::= b

∣∣ d
∣∣ (x)

τ
=> e function value

Value-trees and value-tree environments:

θ ::= v
∣∣ v〈θ〉

∣∣ v 7→ θ value-tree Θ ::= δ 7→ θ value-tree env.

Auxiliary functions:

args((x)
τ
=> e) = x body((x)

τ
=> e) = e name((x)

τ
=> e) = τ

args(d) = x if def d(x){e} body(d) = e if def d(x){e} name(d) = d

ρ(v〈θ〉) = v name(b) = b

πi(v〈θ1, . . . , θn〉) = θi if 1 ≤ i ≤ n else •
πf(v〈θ1, . . . , θn〉) = θn if name(ρ(θ1)) = name(f) else •
πk(v 7→ θ) = θi s.t. vi = k if it exists else •
F (θ) = v〈θ〉 if θ = pair(v, True)〈θ〉 else •

∀aux ∈ ρ, πi, πf, πk, F :

aux(•) = •
aux(δ 7→ θ,Θ) = aux(Θ) if aux(θ) = •
aux(δ 7→ θ,Θ) = δ 7→ aux(θ), aux(Θ) if aux(θ) 6= •

Rules for expression evaluation: δ; Θ;σ ` e ⇓ θ

[E-APP]

δ;π1(Θ);σ ` e ⇓ θ δ;πi+1(Θ);σ ` ei ⇓ θi for i = 1 . . . n f = ρ(θ)

θ′ = LfMπ
f(Θ)
δ,σ (ρ(θ)) if f : b else δ;πf(Θ);σ ` body(f)[args(f) := ρ(θ)] ⇓ θ′

δ; Θ;σ ` e(e) ⇓ ρ(θ′)〈θ, θ, θ′〉
[E-LOC]

δ; Θ;σ ` ` ⇓ `〈〉
[E-FLD] φ′ = φ|DΘ∪{δ}
δ; Θ;σ ` φ ⇓ φ′〈〉

[E-NBR] Θ1 = π1(Θ) δ; Θ1;σ ` e ⇓ θ1

δ; Θ;σ ` nbr{e} ⇓ ρ(Θ1)[δ 7→ ρ(θ1)]〈θ1〉

[E-REP]

δ;π1(Θ);σ ` e1 ⇓ θ1

δ;π2(Θ);σ ` e2[x := `0] ⇓ θ2

`1 = ρ(θ1) `2 = ρ(θ2)
`0 =

{
ρ(π2(Θ))(δ) if δ ∈ DΘ

`1 otherwise

δ; Θ;σ ` rep(e1){(x) => e2} ⇓ `2〈θ1, θ2〉

[E-SPAWN]

δ;πi(Θ);σ ` ei ⇓ θi for i ∈ 1, 2, 3
k1, . . . , kn = ρ(θ2) ∪⋃{Dπ4(Θ(δ′)) for δ′ ∈ DΘ}
δ;πki(π4(Θ));σ ` ρ(θ1)(ki, ρ(θ3)) ⇓ θi for i ∈ 1, . . . , n

δ; Θ;σ ` spawn(e1, e2, e3) ⇓ F (k 7→ ρ(θ))〈θ1, θ2, θ3, F (k 7→ θ)〉

Figure 8.2: Syntax and device semantics for the FC (extended part in grey).

194

CHAPTER 8. DYNAMIC COLLECTIVE COMPUTING WITH AGGREGATE PROCESSES

tector would support), then the main expression gradient(sns,nbrRange) gives

a field stabilising to a situation where each device is mapped to its (hop-by-hop,

nearest) distance to s [Aud+19; Vir+18; Aud+17; LLM17; DV15]. If multiple

devices are sources, estimated distance considers the nearest source.

There are mechanisms in FC to tweak this “single field computation”

model. First of all, one could realise two computations by a field of

pairs of values, say (v1,v2): e.g., expression (gradient(sns1,nbrRange),

gradient(sns2,nbrRange)) would actually generate two completely independent

gradient computations. The same approach is applicable to realise an arbitrary

number of computations, but this practically works only if the number of such com-

putations is small, known, and uniform across space and time, otherwise, FC has

no mechanism to capture the abstraction of “aligned iteration” over a collection

of values conceptually belonging to different computations.

A second key aspect involves the ability to restrict the domain of a computation.

It is true that, by branching, one can prevent evaluation of some subexpressions—

e.g., in function limitedGradient, if area is a boolean field giving true to a

small subdomain, then computation of gradient is limited there. However, this

approach has limitations as well: if one wants to limit a gradient to span the ball-

like area where distances from the source are smaller than a given value, hence

setting area to “gradient(source,metric) < range”, there would be no direct

way of avoiding computation of gradient outside that limited ball, because the

decision on whether an event is inside or outside the ball has to be reconsidered

everywhere and everytime.

So, technically, in FC there are no constructs to directly model, e.g., a reusable

function that turns a field of boolean sources into a collection of independent

gradients, one per source: that would require to create a field of lists of reals,

of arbitrary size across space-time, but crucially this would not correctly support

alignment. More generally, and although being universal [Aud+18], FC falls short

in expressing the situation in which a field computation is composed of a set of

subcomputations that is dynamic in the sense that has changing size over space

and time. But this is precisely what is needed to support aggregate processes.

195

CHAPTER 8. DYNAMIC COLLECTIVE COMPUTING WITH AGGREGATE PROCESSES

8.2.2 The spawn Construct Extension

We formalise our notion of aggregate process by extending FC with a spawn

mechanism essentially carrying on a multiple aligned execution of concurrent com-

putations, managing their life-cycle (i.e., activation, execution, disposal). Fig-

ure 8.2 (first frame) presents the syntax and device semantics of FC, where the

grey-boxed parts correspond to the new spawn construct. Syntactically, a col-

lection of aggregate process is modelled by a spawn-expression spawn(eb, ek, ei).

Expression eb captures process behaviour: it is a function (of informal type

k → a → 〈v, bool〉) taking a process key (i.e., an identifier) and an input ar-

gument, and returning a pair of an output value and a boolean stating whether

the process should be maintained alive or not. Expression ek defines a field of

process keysets to add at each location (device); and ei is the input field to feed

processes. The result of spawn is a field of maps from process keys to values. As

a result, we can precisely define an aggregate process with key k as the projection

to k of the field of maps resulting from spawn, that is, the computational field

associating each event to the value corresponding to k at that event—as this may

simply be absent at an event, aggregate processes are to be considered partial

fields over the whole domain.

The semantic details of spawn are presented in grey in Figure 8.2. On the

second frame, we allow the expression of vtrees also as v 7→ θ, i.e., as a map

from keys to vtrees. On the third frame, we define auxiliary functions ρ, πi, π
k

for extracting from a vtree respectively: its root value, an ordered subtree by its

index i, and an unordered subtree by its key k. It also defines a filtering function

F which selects vtrees whose root is a pair pair(v, True), collapsing the root into

v. All of these functions can be extended to maps (see aux), which are intended

to be unordered vtree nodes for F , and vtree environments for ρ, πi and πk.

Finally, in fourth frame, we define the behaviour of construct spawn, formalised

by the big-step operational semantics rule [E-SPAWN]: the sub-expressions e1, e2

and e3 are evaluated and their results stored in vtrees θ1, θ2, θ3 forming the

first branches of the final result. Then, a list of process keys k is computed by

adjoining (i) the keys currently present in the result ρ(θ2) of e2; (ii) the keys that

any neighbour δ′ broadcast in their last unordered sub-branch π4(Θ(δ′)). To realise

“multiple alignment”, for each key ki, the process ρ(θ1) resulting from evaluation

196

CHAPTER 8. DYNAMIC COLLECTIVE COMPUTING WITH AGGREGATE PROCESSES

Figure 8.3: Aggregate computing engineering stack—the aggregate process con-
cept, captured by the spawn construct, is the framework extension, discussed in
this chapter, that opens to the dimension of concurrency.

of e1 is applied to ki and the result ρ(θ3) of e3, producing θi as a result. The map

k 7→ θ is then filtered by F , discarding evaluations resulting in a pair(v, False),

before being made available to neighbours. The same results F (k 7→ ρ(θ)) are also

returned as the root of the resulting vtree.

8.3 Aggregate Process Implementation in ScaFi

In this section, we start from the technical issues pointed out in Section 8.2.1,

which motivate the introduction of a construct align to handle arbitrary key-

based alignment (Section 8.3.1), then we show the spawn construct in ScaFi

(Section 8.3.2) – which extends the aggregate computing stack as per Figure 8.3

– before delving into its implementation details (Section 8.3.3).

197

CHAPTER 8. DYNAMIC COLLECTIVE COMPUTING WITH AGGREGATE PROCESSES

8.3.1 Alignment and dynamic field expressions: the align

construct

Results of field computations, at runtime, can be represented by hierarchical

structures known as value-trees (vtrees). A vtree is an ordered tree of values

tracking the result of any evaluated expression. The operational semantics of the

field calculus leverages vtrees; in other words, an evaluation of field expressions is

a process building a vtree. Fundamental to the machinery and compositionality

of the approach is the notion of alignment [Aud+16], by which evaluation, i.e.,

construction of vtrees, is defined in terms of other structurally-equivalent vtrees:

the vtree corresponding to the previous round of the executing device, and the

vtrees of neighbours devices. When two vtrees are not structurally-equivalent

(i.e., they have different nodes), they do not “align”, and hence one cannot be

used with the other; notice, however, that two vtrees may partially align, and

hence interaction is possible only within the aligned subtrees.

Indeed, when discussing the aggregate computing execution model (e.g., in

Sections 5.1 and 7.3.3), we said that the local execution of a field computation

yields an export message which is meant to be sent to neighbours in order to

sustain the global behaviour of the aggregate. Such an export can also be seen as

the state- and communication-related part of vtrees.

For instance, the expression

branch(isObstacle){ Double.PositiveInfinity }{ gradient(isSource) }

yields the following vtrees.

• For obstacle nodes, the following vtree:
∞ branch

∞true
The root of the vtree (∞) is the result of the whole expression. The left

sub-tree is the result of the first sub-expression (isObstacle which evaluates

to true). Finally, the right sub-tree is the result of the branch taken

(Double.PositiveInfinity which evaluates to ∞).

• For non-obstacle, non-source nodes, the following vtree (where dk is the cur-

rent distance estimate, dk−1 the previous one, and the main sub-expressions

198

CHAPTER 8. DYNAMIC COLLECTIVE COMPUTING WITH AGGREGATE PROCESSES

relative to nodes are reported on their right):

dk branch

false dk rep

∞ dk mux

false 0.0 dk foldHoodPlus

∞ min dk−1 +

dk−1nbr 0 nbrvar

For source nodes the vtree is the same, except that dk = 0.

Notice that both state and communication are based on alignment: rep re-

trieves the value to work on from the previous vtree of the device, and nbr gets

the values from neighbours by observing the nodes in the corresponding vtrees

that have the same place in the computation as the current vtree node. In other

words, interaction works on a structural basis where order matters.

However, dynamicity – due to potentially different and unknown activities –

would break ordering, possibly leading to ambiguous or inconsistent vtree entries.

Paradigmatic example of the issue: limited multi-gradient The gradient

function already supports the creation of a gradient from multiple sources: it is

sufficient to build a source input field that is true in correspondence of multiple

nodes.

val isSource = sense[Boolean](”source”)
gradient(isSource)

With this approach, however, the resulting gradient field could not be used, e.g., to

collect information into a source from nodes that are beyond the midpoint between

that source and another adjacent source. The solution is to leverage multiple

independent gradient computations that can overlap within the aggregate. For a

fixed number of gradients, the following code works.

(gradient(source1), gradient(source2), ...)

199

CHAPTER 8. DYNAMIC COLLECTIVE COMPUTING WITH AGGREGATE PROCESSES

However, there is no trivial way to handle a dynamic number of gradients (that

are to be generated and destroyed as new sources activate or deactivate, resp.)

without breaking alignment. For instance, the following code

val sources: Set[ID] = // gossip the source set
val gradients: Map[ID,Double] =
sources.map(source => source -> gradient(source==mid)).toMap

would break in unexpected ways.

Solution: alignment over arbitrary keys The previous example involves eval-

uating a field expression in an iterative context. When mapping a dynamic collec-

tion, the number of elements and the order of traversal do not allow for drawing a

consistent correspondence between two iteration steps of two devices, unless one

manually introduce keys or tags for the field expressions, e.g., based the identity

of the mapped elements. Therefore, we address this problem by a new primitive

mechanism, called align, with signature

def align[K,V](key: K)(proc: K => V): V

to enable alignment on arbitrary keys, namely, to introduce a new computation

scope by inserting a vtree node tagged with the provided key. Upon this, the

previous code can be fixed as follows:

val gradients: Map[ID,Double] =
sources.map(source =>
source -> align(source){ _ => gradient(source==mid) }

).toMap

However, this approach is quite low-level, and does not properly handle lifecy-

cle (currently expressed by field sources by means of gossiping). Therefore, we

use the principle explained in this section to define a more expressive construct

that provides both aligned execution and automatic propagation of keys. Such

construct, spawn, effectively provides an implementation of our aggregate process

abstraction.

200

CHAPTER 8. DYNAMIC COLLECTIVE COMPUTING WITH AGGREGATE PROCESSES

8.3.2 Aggregate processes in ScaFi

The spawn primitive supports our notion of aggregate processes by handling

activation, propagation, merging, and disposal of process instances (for a specified

kind of process). Coherently with the formalisation in Section 8.2, it has signature:

def spawn[K,A,R](process: K => A => (R,Boolean),
newKeys: Set[K],
args: A): Map[K,R]

It is a generic function, parametrised by three types:

1. K — the type of process keys ;

2. A — the type of process arguments (or inputs);

3. R — the type of process result.

The function accepts three formal parameters:

1. process — has type K=>A=>(R,Boolean) and expresses the computation

logic of the process by a curried function taking a key, an argument, and

then returning a pair of the computation result and a boolean status value

expressing whether the current device is willing to participate in the process

instance or not;

2. newKeys — is the set of keys of the processes to be spawned; and

3. args — is the “runtime argument” for the process instances active in this

round.

Remember that values are fields—e.g., newKeys is a field of sets which may have

entries only in specific devices and execution rounds, and args is a field whose

values of type A may differ in different space-time locations. By a local perspective,

spawn accepts a set of keys to allow generation of zero or more process instances at

the device in the current round. Note that a process key has a twofold role: it works

both as a process identifier (PID) and as initialisation or construction parameter.

When different construction parameters should result in different process instances,

it is sufficient to instantiate type K with a data structure type including both

pieces of information and with proper equality semantics. Notice that if a new key

already belongs to the set of active processes, there will be no actual generation

201

CHAPTER 8. DYNAMIC COLLECTIVE COMPUTING WITH AGGREGATE PROCESSES

val vm: RoundVM = // provides access to virtual machine calls

def spawn[K, A, R](process: K => A => (R, Boolean),
newKeys: Set[K],
args: A

): Map[A,R] = {
rep(Map[K, R]()) { case processMap => {
// 1. Take active process instances from my neighbours
val nbrProcs = includingSelf.unionHoodSet(nbr{ processMap }.keySet)

// 2. New processes to be spawn
val newProcs = newKeys

// 3. Get all processes to be executed, run them, and update their state
(nbrProcs ++ newProcs)
.map { p =>

vm.newExportStack
val result = align(puid) { _ => process(p)(args) }
// Discard the export of the previous step if status is false
if(result._2) vm.mergeExport else vm.discardExport
p -> result

}.collect { case(p,pi) if pi._2 => p -> pi._1 }.toMap
} }

}

Figure 8.4: Simple implementation of spawn in ScaFi.

(or restart) but merging instead, since identity is the same as an existing process

instance. Finally, note also that the outcome of spawn (a map from process keys

to process result values) can in turn be used to fork other process instances or

as input for other processes; i.e., the basic means for processes to interact is to

connect the corresponding spawns with data.

8.3.3 Behind-the-scenes: spawn implementation

To provide an intuition of the operational semantics of aggregate processes (for-

malised in Section 8.2), we take a look at the implementation of spawn, illustrated

in the listing of Figure 8.4. Abstracting from ancillary details, spawn internally

works as follows:

1. combines new process keys with previous ones (from the device itself) and

those from direct neighbours,

202

CHAPTER 8. DYNAMIC COLLECTIVE COMPUTING WITH AGGREGATE PROCESSES

2. maps the resulting keyset by running process in an aligned way w.r.t. the

process keys; and finally

3. filters results upon the boolean status value.

Crucially, filtering results prevents writing exports (this is achieved through the

vm calls): so, filtered processes are not broadcast to neighbours—this mechanism

ultimately impacts the spatiotemporal evolution of a process.

8.4 Programming with Aggregate Processes:

Techniques and Patterns

In the following, we discuss programming and management of aggregate pro-

cesses activated through spawn. We start from the basics (process definition,

lifecycle and boundary management) and then introduce more complex examples

in order to delineate the principle behind an “aggregate process API”, prepare

for the case studies that follow—concretely showing how composition of collective

behaviour could support the engineering of pervasive applications.

8.4.1 Process definition

Defining a (type of) process merely consists of defining a function that can be

passed as the process parameter to spawn. It must be a curried function from a

process key K, an argument A, to a tuple result (R,Boolean)—for some choice of

K, A, R made statically at a particular call of spawn.

It is good practice to define custom types for K, A, and R:

case class PID(id: Int)(val initiator: ID)
case class PArgument(arg: Int)
case class PResult(result: String)

Therefore, a process definition could take the following schema:

203

CHAPTER 8. DYNAMIC COLLECTIVE COMPUTING WITH AGGREGATE PROCESSES

// Method syntax
def myProcessLogic(pid: PID)(parg: PArgument): (PResult,Boolean) = {
val result: PResult = // compute result
val stay: Boolean = // compute logic for process boundary/lifecycle
(result, stay)

}

// Function syntax
val myProcess = (pid: PID) => (parg: PArgument) => { /* ... */ }
// or, from a method:
val myProcess: PID => PArgument => PResult = myProcessLogic _

Once we have defined a process function, we can use spawn to create process

instances:

spawn[PID,PArgument,PResult](myProcess, ...)

8.4.2 Process generation (lifecycle management 1/2)

Generating process instances is just a matter of creating a field of keysets

that become non-empty as soon as some “triggering” space-time event has been

recognised. Examples include spatial conditions on sensors data and computation,

timers firing, and so on [Vir+18].

Consider the following, simple process definition.

type K = Int // The type (alias) of process keys
type A = Int // The type (alias) of process arguments
type R = (Int, Boolean) // The type (alias) of process return

def m(k: K)(a: A): R = (k + a, true) // true means: always participate
val p = m _

A trivial example could leverage a constant, uniform field with full domain.

val keySet = Set(1)
val argument = 2
val processes = spawn(p, keySet, argument)

In this case, a single process instance gets activated everywhere, and repeatedly

applied (on a round by round basis) against a constant argument: for every device

(everywhere), processes is always (everytime) a Map(1->3). Of course, we can

204

CHAPTER 8. DYNAMIC COLLECTIVE COMPUTING WITH AGGREGATE PROCESSES

spawn multiple instances of the same process type in a single spawn, and provide

a non-uniform argument field. For instance, expression

// Remember: mid is the field of local device IDs
spawn(p, newKeys = Set(1,2), args = mid)

yields a constant field that is locally Map(1->1+δ,2->2+δ) for any device δ.

Things get more interesting when the keyset field is non-uniform. Consider a

connected system of three devices δ1, δ2, δ3. Since process keys are automatically

propagated to neighbour devices (in a hop-by-hop fashion), expression

spawn(p, newKeys = mid, args = 0)

will stabilise to a field that is everywhere Map(δ1->δ1,δ2->δ2,δ3->δ3). In this case,

the“source” or “generator” of process with PID δi is the device δi itself. The time

it takes for a process to spread depends on the timing of round execution and

communication acts in the different devices. Now, suppose the system gets split

into two partitions (δ1, δ2) and (δ3), and that, later, the latter is joined by a device

δ4: under these circumstances, the output will remain the same for δ1, δ2 whereas

δ3 and δ4 will both output Map(δ1->δ1,δ2->δ2,δ3->δ3,δ4->δ4).

Typically, processes are generated by specific devices, when specific conditions

come true. This is modelled by a keyset field which is empty everywhere in space-

time except in locations where the event is recognised A schema is the following,

val event: Boolean = // ...
val generateKey: Any => K = // ...
val keys: Set[K] = if(event){ Set(generateKey(???)) } else { Set.empty }

spawn(???, keys, ???)

where you generally need a way to generate a process key to uniquely identify a

process instance with the particular occurrence of the event.

As mentioned before, process keys work both as process identities and as con-

struction parameters. Consider the following process modelling a gradient compu-

tation.

def gradientProcess(source: ID)(obstacle: Boolean): Double =
branch(!obstacle){ gradient(source==mid) }{ Double.PositiveInfinity }

205

CHAPTER 8. DYNAMIC COLLECTIVE COMPUTING WITH AGGREGATE PROCESSES

In this case, since the ID of the source is used to identify a process instance, you

cannot have more than one gradient process per source. Now, suppose you want

to preserve the same semantics but also keep track of the device who generated

the process (which is not necessarily the source of the gradient): you do not want

process identity to depend on the generator, so your key data type must carry the

additional information while handling identity (i.e., equality) like in the previous

example. For this purpose, the following Scala case class idiom comes handy.

case class PID(source: ID)(val generator: ID)

Finally, a clarification is needed, regarding the semantics of spawn and the

peculiar execution model of round-by-round field computations (as they especially

relate to branching). Construct spawn differs from traditional “thread spawning”

constructs like Erlang’s spawn or Java’s Thread.start(), in that a ScaFi’s spawn

expression needs to always be evaluated in each round in order to carry through

active process instances. That is, in the following program,

branch(someCondition){
// ...
spawn(???, ???, ???)

}{
// ...
spawn(???, ???, ???)

}

taking a branch will cause the destruction of all the process instances spawned in

the other branch.

Time tracking in ScaFi Basic techniques for process generation include space-

time event recognition and time-wise scheduling. For the purpose, building block

T is used to model the passing of time in field computations [Vir+18]. In ScaFi,

it can be implemented as follows.

def T(init: Double, floor: Double, decay: Double => Double): Double =
rep(init) { v => Math.min(init, Math.max(floor, decay(v))) }

def T(init: Double, delta: Double): Double =
T(init, 0.0, (t: Double) => t - delta))

Operator T works by keeping track of the remaining time (starting from init) via

206

CHAPTER 8. DYNAMIC COLLECTIVE COMPUTING WITH AGGREGATE PROCESSES

construct rep, and then using the provided function decay to enact the passing of

time until floor is hit. A derived version based on a delta step can be straight-

forwardly defined. Built-in, local sensor dt() is used to locally keep track of time

passed since the previous computation round. Using T, it is trivial to spawn a

process once after some delay:

val newPids = mux(T(100, dt())==0){/* gen new keyset */}{ Set() }

The key thing to understand is that such a “once timer” restarts any time the

corresponding computation is “re-entered”; or, in other words, it is refreshed when

the corresponding computation is not executed (since its rep node, by disappearing

from the vtree, loses its memory); hence, a clock based on a cyclic timer can be

implemented as follows:

def clock(len: Long, decay: Long): Long =
rep((0L,len)){ case (k,left) => // Function defined by pattern matching
branch (left == 0){ (k+1,len) }{ (k, T(len, decay).toLong) }

}._1 // "_1" projects to the first element of the tuple

Such a clock can be used for periodically spawning processes: see, e.g., the

replicated example below.

8.4.3 Process expansion/shrinking (boundary manage-

ment)

Notice that a condition for process generation is that the generating device

does not immediately quit itself. By spawn, every process instance is automatically

propagated by all the participating devices to their neighbours. Such a propagation

does not occur only if the device returns status false (which means that the device

does not want to participate in that process instance). Therefore, it is possible

to regulate the shape of such “computational bubble” by dictating conditions by

which a device must return status false (i.e., meaning external to the bubble)—

as mentioned, this indicates the willingness to stop computing (i.e., participate

in) the process. That is, only devices that return status true (i.e., internal) will

propagate the process.

Moreover, such a propagation happens continuously: so, a device that exited

207

CHAPTER 8. DYNAMIC COLLECTIVE COMPUTING WITH AGGREGATE PROCESSES

from a process may execute it again in the future (if its neighbours are still internal

to that process). In particular, the border (or fence) of a process bubble is given

by the set of all the devices that are external but have at least one neighbour

which is internal. As long as a node is in the fence, it continuously re-acquires

and immediately quits from the process instance: this continuous evaluation of

the border is what ultimately enables a spatial extension of the process bubble

(expansion). Conversely, a process bubble gets restricted (shrinking) when internal

nodes become external.

As an example of expansion and shrinking, consider the following system evo-

lution, where a process instance is generated at δ1 and > (resp. ⊥) represents

true (resp. false) status.

>
δ1 δ2 δ3 δ4

Generation at δ1 (process will spread to δ2)

>
δ1

⊥
δ2 δ3 δ4

Border formation: δ2 forms the external fence

>
δ1

>
δ2 δ3 δ4 Process expansion: δ2 decides to join

and becomes internal (process will

spread to δ3)

⊥
δ1

>
δ2

⊥
δ3 δ4 Process shrinking: δ1 leaves (while δ3

enters the external border to monitor

expansion)

⊥
δ1

⊥
δ2

⊥
δ3 δ4 Pre-termination: all the devices are

external, so the process bubble can

vanish
δ1 δ2 δ3 δ4

The process disappears (but might be

regenerated in future)

8.4.4 Process termination (lifecycle management 2/2)

As we have seen, a process instance terminates when all the devices quit by

returning status false. Implementing process termination may not be trivial,

208

CHAPTER 8. DYNAMIC COLLECTIVE COMPUTING WITH AGGREGATE PROCESSES

since proper (local or global) conditions must be defined so that the “collapsing

force” can overtake the “propagation force”; i.e., precautions should be taken so

that external devices do not re-acquire the process: the border should steadily

shrink, also considering temporary network partitions and transient recoverable

failures from devices. In the following pages, we will develop a higher-level support

to process termination based on “termination signals”.

Example: spatiotemporally limited processes It is often useful to run pro-

cesses on a limited subset of the devices (e.g., those contained within a certain

range from the process generator), for a limited amount of time. In order to sup-

port this, a process should carry information about the generation location, the

distance from the generation location, the time of generation, and the time that

has elapsed since generation. Border and lifecycle management should manage

and predicate on such information.

case class PID(pid: String)
(val generator: ID, val startTime,
val lifetime: Long, val maxRange: Double)

type K = PID
type A = Unit // we are not interested in any runtime argument
type R = Int

def logic(k: K)(a: A): R = 0 // trivial
def lifecycle(k: K)(a: A): Boolean =
time()-k.startTime < k.lifetime &
gradient(k.generator==mid) <= k.maxRange

// This utility function merges logic with lifecycle functions into one
def combine[K,A,R1,R2](f1:K=>A=>R1)(f2:K=>A=>R2):K=>A=>(R1,R2) =
k => a => (f1(k)(a), f2(k)(a))

spawn[K,A,R](combine(logic)(lifecycle), /* newKeys */, ())

In the above example, devices call themselves out when the process time exceeds

lifetime or the distance computed by the gradient exceeds maxRange.

Notice that, in circumstances like this, the logic of computation can be

completely separated from process border and lifecycle management; in these

cases, program design can benefit from separation of concerns, adopting a single-

responsibility principle while functional composition enables creation of a full pro-

cess definition for spawn. Moreover, with careful design, this enables reusability of

209

CHAPTER 8. DYNAMIC COLLECTIVE COMPUTING WITH AGGREGATE PROCESSES

lifecycle strategies:

trait STLimitedProcessKey {
val generator: ID
val startTime: Long
val lifetime: Long
val maxRange: Double

}

def STLifecycle[K,A,R](k: K <: STLimitedProcessKey)(a: A): Boolean =
time()-k.startTime < k.lifetime &
gradient(k.generator==mid) <= k.maxRange

The above STLifecycle can be combined with any process logic over process keys

that conform to STLimitedProcessKey1.

8.4.5 Process abstraction

Using functional abstraction, it is possible to define high-level behaviours that

provide a clean interface hiding the complexity of internal process management.

Example: time replication In [PBV16], a technique based on time replication

for improving the dynamics of gossip is presented. It works by keeping k running

replicates of a gossip computation executing concurrently, each alive for a certain

amount of time. New instances are activated with interval p, staggered in time.

The whole computation always returns the result of the oldest active replicate.

This is intended to improve the dynamics of algorithms, providing an intrinsic

refresh mechanism that smoothly propagates to the output. With spawn, it is

trivial to design a replicated function that provides process replication in time.

def replicated[A,R](proc: A => R)(argument: A, p: Double, k: Int) = {
val lastPid = clock(p, dt())
spawn[Long,A,R](pid => arg => (proc(arg), pid > lastPid+k),

Set(lastPid), argument)
} // returns a Map[Long,R] from replicate IDs to corresponding values

clock is a distributed time-aware counter [PBV16] (whose synchronicity depends

on the implementation) yielding an increasing number i at each interval p that

represents the PID of the i-th replica. Notably, in this case, every device can locally

1Notice that Scala provides mechanisms, such as structural types or the pimp-my-library
pattern [OMO10], to avoid the requirement of explicit, apriori trait implementation.

210

CHAPTER 8. DYNAMIC COLLECTIVE COMPUTING WITH AGGREGATE PROCESSES

Figure 8.5: Graphical example of the evolution of a system of processes and the
role of statuses in statusSpawn. The green bubble springs into existence; the
blue bubble dissolves after termination is initiated by a node; the orange bubble
expands. Only output nodes will yield a value. Bubbles may of course overlap
(i.e., a node may participate, with different statuses, to multiple processes) and
the dynamics can be arbitrarily complex (because of mobility, failures, and local
decisions).

determine when it must quit a process instance; moreover, the exit condition based

on PID numbering (pid > lastPid+k) prevents process reentrance. Section 8.5.2

provides an empirical evaluation of the behaviour of function replicated.

8.4.6 Process interaction

The most basic means to make aggregate processes interact is by piping the

output of a process into the input of another.

val p1s = spawn[K1,A1,R1](???, ???, ???) // output is a Map[K,R]

val someDefault: R1 = ???
val arg = p1s.headOption.getOrElse(someDefault)
type A2 = R1
val p2s = spawn[K2,A2,R2](???, ???, arg)

211

CHAPTER 8. DYNAMIC COLLECTIVE COMPUTING WITH AGGREGATE PROCESSES

Moreover, the following programming idiom can be used in the case of mu-

tually feeding processes, spawns in different scopes, or when a “program-wide”

communication structure is desired:

case class Msg[V,From,To](body: V, from: From, to: To)
type MBox = List[Any]
type PostOffice = Map[Any,MBox]

rep[PostOffice](Map.empty)(msgs => {
// ...
spawn(???, ???, Args1(???, msgs))
// ...
spawn(???, ???, Args2(???, msgs))
// ...
msgs

})

8.4.7 More expressive process definitions

Now, we show how to support more declarative process definitions by leveraging

expressive “statuses”. First, we define the concrete Statuses:

trait Status

case object ExternalStatus extends Status // External to the bubble
case object BubbleStatus extends Status // Within the bubble
case object OutputStatus extends Status // Within the bubble + output
case object TerminatedStatus extends Status // Willingness to shutdown

val External: Status = ExternalStatus
val Bubble: Status = BubbleStatus
val Output: Status = OutputStatus
val Terminated: Status = TerminatedStatus

Then, we capture a process output not as a tuple (T,Boolean) but as a tuple

(T,Status), which we render as an algebraic data type to provide useful implicit

conversions to the former form (leveraging the power of Scala).

212

CHAPTER 8. DYNAMIC COLLECTIVE COMPUTING WITH AGGREGATE PROCESSES

case class POut[T](result: T, status: Status)
object POut {
// Implicit definition to map POut to (T,Boolean)
implicit def toBasicSpawnTuple[T](pout: POut[T]): (T,Boolean) =
(pout.result, pout.status!=External)

// Conversion between process computation definitions
implicit def fto[K,A,R](proc: K => A => POut[R]): K=>A=>(R,Boolean) =
k => a => toBasicSpawnTuple(proc(k)(a))

}

At this point, we can handle termination by mapping process computation

definitions; we can employ a simple shutdown algorithm that distributes the ter-

mination signal to neighbours, closes the process in a device (by going External)

when all the neighbours have received such signal, and prevents re-acquisition of

the process if any neighbour presents the termination signal.

def handleTermination[T](out: POut[T]): POut[T] = {
rep[(Boolean,Int,POut[T])]((false,0,out)){
(terminated,k,res) =>

val mustTerminate = out.status==Terminated |
includingSelf.anyHood(nbr{terminated})

val mustExit = includingSelf.everyHood(nbr{mustTerminate})
(mustTerminate, // true if observed termination signal
1, // flag (k=0 only in the first round for this process)
if(mustExit || (mustTerminate && k==0))
(out.result, External) // enforce quit

else
out // just pass given (output,status) through

)
}._3

}

Output filtering is achieved by mapping results to optional values that are

present only when the device has status Output; however, this also requires a

filtering outside the call to spawn. Function

def handleOutput[T](out: POut[T]): POut[Option[T]] = out match {
case POut(res, Output) => POut(Some(res), Output)
case POut(_, s) => POut(None, s)

}

maps process results (of type T) to Option[T] values, present (Some constructor)

or not (None constructor) based on whether status is Output or not, resp.

Finally, a higher-level “spawn” function statusSpawn can be defined as follows:

213

CHAPTER 8. DYNAMIC COLLECTIVE COMPUTING WITH AGGREGATE PROCESSES

def statusSpawn[K, A, R](process: K => A => POut[R],
newKeys: Set[K],
args: A): Map[K,R] =

spawn[K,A,Option[R]](
k => a => handleOutput(handleTermination(process(k)(a))),
params,
args).collectValues { case Some(p) => p }

where handleOutput and handleTermination wrap the given process (which

must yield a POut[T] value), and only Option[R] values that are present are

kept.

Example: limited multi-gradient The problem described in Section 8.3.1 of

activating a spatially-limited gradient computation for each device where sensor

isSrc gives true, and deactivating it when it stops doing so, can be solved as

follows:

def multiGradient(isSrc: Boolean, maxExtension: Double) =
statusSpawn[ID,Double,Double](src => limit =>
gradient(src==mid,nbrRange) match { // consider the usual gradient
case g if src==mid && !isSrc => (g, Terminated) // close on unsource
case g if g>limit => (g, External) // out of bubble
case g => (g, Output) // in bubble + get

},
newKeys = if(isSrc) Set(mid) else Set.empty,
args = maxExtension

)

where we also show the “closure idiom”, by which a process behaviour is defined

as a closure, i.e., a function closing over its environment (in this case, parameter

isSrc).

8.5 Evaluation

8.5.1 Case study: opportunistic messaging

Motivation The possibility of communicating by delivering messages regardless

the presence of a conventional Internet access has recently gained attention as a

mean to work around censorship (http://archive.is/C3niO) as well as in sit-

uations with limited access to the global network—e.g., in rural areas, or during

214

http://archive.is/C3niO

CHAPTER 8. DYNAMIC COLLECTIVE COMPUTING WITH AGGREGATE PROCESSES

urban events when the network capability is overtaken. We here consider a simple

messaging application where a source device (aka sender) wants to deliver a pay-

load to a peer device (aka recipient, target, or destination) in a hop-by-hop fashion

by exploiting nearby devices as relays. The source device only knows the identifier

of its recipient: it is not aware of its physical location, nor of viable routes. Our

goal is to show how aggregate processes can support this kind of application (with

multiple concurrent messages) while limiting the number of devices involved in

message delivery, leading to bandwidth savings (and energy savings in turn).

Opportunistic chat implementation The idea of the case study is to activate

an aggregate process for each message sent from a source node to a destination

node, and to limit the extension to such process instance to a small subset of

the devices belonging to the whole system. A simple algorithm to do so involves

creating information flows from the source node to a “central” node, and from the

central node to the recipient node. Once the recipient has received the message,

the message delivery process must be closed.

An implementation can be as follows. First, we model the data, i.e., the mes-

sage (which also represents the PID), and coordination data used for directing the

shape of the process (which also represent the runtime arguments):

case class Msg(src: ID, dest: ID, str: String)
case class ChatArgs(parentToCentre: ID, dependentNodes: Set[ID])

where parentToCentre is, for each device, the identifier of the closest neighbour

to the central node, and dependentNodes are the neighbours which consider the

current device as “parent”. Then, we define the process computation logic:

215

CHAPTER 8. DYNAMIC COLLECTIVE COMPUTING WITH AGGREGATE PROCESSES

def chatProcessLogic(msg: Msg)(args: ChatArgs): POut[Msg] = {
// Boolean field expressing a path from the source of a message
// to a centre node
val srcToCentrePath = msg.src==mid | includingSelf.anyHood {
nbr(args.parentToCentre) == mid

}
val destToCentrePath = args.dependentNodes.has(msg.target)
val inRegion = srcToCentrePath || destToCentrePath
POut(result=msg, status=branch(mid == msg.target){
justOnce(Output, thereafter=Terminated)

}{ mux(inRegion){ Bubble }{ External } })
}

where the target of the message (msg.target) has status Output at first and then

Terminated, and only nodes for which field inRegion is locally true have status

Bubble and hence participate in the message delivery process for msg. Finally, we

define a chat function that leverages statusSpawn:

def chat(centre: ID, newMsgs: Set[Msg]): Iterable[Msg] = {
val (_, parentToCentre) = gradientWithParent(centre == mid)
val dependentNodes = rep(Set.empty[ID]){ case (s: Set[ID]) =>
excludingSelf.unionHoodSet[ID](
mux(nbr{parentToCentre}==mid){ nbr(s) }{ Set.empty[ID] }

) + mid } // nodes whose path towards centre passes through me

statusSpawn[Msg,ChatArgs,Msg](
process = chatProcessLogic(_), // note: m(_) turns method m to lambda
newKeys = newMsgs,
args = ChatArgs(parentToCentre, dependentNodes)).values

}

where the device used as centre and new messages to be sent are externally provided

through parameters centre and newMsgs, respectively. The output of function

chat is the field of the collections of messages that have been currently received

at the recipient devices.

Experimental setup We compare two aggregate implementations of such mes-

saging system. The first implementation, called flood chat, simply broadcasts the

payload to all neighbours. In spite of an in-place garbage collection system, how-

ever, this strategy may end up dispatching the message towards directions far-off

the optimal path, burdening the network. The second implementation, spawn chat,

leverages spawn in order to reduce the impact on the network infrastructure by

216

CHAPTER 8. DYNAMIC COLLECTIVE COMPUTING WITH AGGREGATE PROCESSES

electing a node as coordinator, then creating an aggregate process connecting the

source and the coordinator and the coordinator and the destination, and finally

delivering the message along such support. In this experiment, we naively choose a

coordinator randomly, but better strategies could be deployed to improve over this

configuration. The experiment is simulated on a mesh network of one thousand

devices randomly deployed in the urban area of Cesena, in Italy. We simulate

the creation and delivery of messages among randomly chosen nodes, with one

message per second generated on average by the whole network in time window

[0, 250]; devices execute rounds asynchronously at an average of 1Hz. In each ex-

periment, we generate a different random displacement, different message sources

and destinations, and different random seeds for the drift distributions. We gather

a measure of QoS and a measure of resource usage. We use the probability of

delivering a message with time as a QoS measure, and we measure the number

of payloads sent by each node as a measure of impact on performance. In doing

so, we suppose payload makes up for the largest part of the communication (as is

typically the case when multimedia data are exchanged).

Results Figure 8.6 shows experimental results. The two implementations achieve

a very similar QoS, with the flood implementation being faster on average. This is

expected, as flooding the whole network also implies sending through the fastest

path. The difference, however, is relatively small and, on the contrary, we see the

spawn chat affords a dramatic decrease in bandwidth usage (by properly constrain-

ing the expansion of message delivery bubbles), despite the simplistic selection of

the coordinating device.

8.5.2 Case study: drone swarm reconnaissance

Motivation Performing reconnaissance of areas with hindrances to access and

movement such as forests, steep climbs, or dangerous conditions (e.g. extreme

weather and fire) can be a very difficult task for ground-based teams. In those

cases, swarms of unmanned airborne vehicles (UAVs) could be deployed to quickly

gather information [Bea+18]. One scenario in which such systems are particularly

interesting is fire monitoring [Cas+06]. With this case study, we show how aggre-

gate processes enable easy programming of a form of gossip that supports a precise

217

CHAPTER 8. DYNAMIC COLLECTIVE COMPUTING WITH AGGREGATE PROCESSES

Figure 8.6: Evaluation of the opportunistic chat algorithms. The figure on top
shows similar performance for the two algorithms, with the flood chat featuring
a slightly better delivery time for the payloads (as it intercepts the optimal path
among others). However, as the bottom figure depicts, spawn chat requires orders
of magnitude less resources due to the algorithm executing on a bounded area (i.e.,
by involving only a subset of system devices for each message delivery process).

collective estimation of risk in dynamic scenarios.

Experimental setup In this case study, we simulate a swarm of 200 UAVs in

charge of monitoring the area of Mount Vesuvius in Italy, which has been heavily

hit by wildfires in 2017 (http://archive.is/j3lsm). Multiple simulation runs

are performed for different random seeds. UAVs follow a simple exploration strat-

egy: they all start from the same base station on the southern side of the volcano,

they visit a randomly generated sequence of ten waypoints, and once done they

come back to the station for refuelling and maintenance. UAVs sense their sur-

roundings once per second and assess the local situation by measuring the risk of

fire. The goal of the swarm is to agree on the area with the highest risk of fire

and report the information back to the station for deployment of ground inter-

218

http://archive.is/j3lsm

CHAPTER 8. DYNAMIC COLLECTIVE COMPUTING WITH AGGREGATE PROCESSES

def gossipNaive[T](value: T)(implicit ev: Bounded[T]) = rep(value)(max =>
ev.max(value, maxHoodPlus(nbr(ev.max(max, value)))))

def gossipGC[T](value: T)(implicit ev: Bounded[T]) = {
val leader = S(grain = Double.PositiveInfinity, nbrRange)
valueBroadcast(leader, C[Double,T](
potential = gradient(leader),
acc = ev.max(_,_), local = value, Null = ev.bottom))

}

def gossipReplicated[T:Bounded](value: T, p: Double, k: Int) =
(replicated{ gossipNaive[T] }(value,p,k) // returns a Map[Long,Double]
+ (Long.MaxValue -> value) // default, lowest-priority entry of the map
).minBy[Long](_._1)._2 // projects the value of instance with min PID

Figure 8.7: Code of the gossip algorithms used in the reconnaissance case study.

vention. A snapshot of the drones performing the reconnaissance is provided in

Figure 8.8. We are not concerned with realistic modelling of fire dynamics: we

designed the risk of fire to be maximum in a random point of the surveyed area for

20 minutes; the risk then drops (e.g. due to a successful fire-fighting operation),

with the new maximum (lower than the previous) being in another randomly gen-

erated coordinate; after further 20 minutes the risk sharply increases again to on

a third random coordinate. We compare three approaches: (i) naive gossip, a

simple implementation of a gossip protocol; (ii) S+C+G, a more elaborated algo-

rithm – based on self-stabilising building blocks [Vir+18] – that elects a leader,

aggregates the information towards it, then spreads it to the whole network by

broadcast; (iii) replicated gossip, which replicates the first algorithm over time

(as per [PBV16]) and whose implementation, shown in Figure 8.7, uses function

replicated (defined in Section 8.4.5 upon spawn).

Results Results are shown in Figure 8.9. The naive gossip algorithm quickly

converges to the correct value, but then fails at detecting the conclusion of the

dangerous situation: it is bound to the highest peak detected, and so it is unsuit-

able for evolving scenarios. S+C+G can adapt to changes, but it is very sensitive to

changes in the network structure: data gets aggregated along a spanning tree gen-

erated from the dynamically chosen coordinator, but in a network of fast-moving

airborne drones such structure gets continuously disrupted. Here the spawn-based

219

CHAPTER 8. DYNAMIC COLLECTIVE COMPUTING WITH AGGREGATE PROCESSES

Figure 8.8: Snapshot of the UAV swarm surveying the Vesuvius area as simulated
in Alchemist. Yellow dots are UAVs. Grey lines depict direct drone-to-drone
communication. Drones travel at an average speed of 130km

h
, in line with the

cruise speed performance of existing military-grade UAVs (see http://archive.

is/8zar5), and communicate with other drones within 1km distance in line-of-
sight. Forming a dynamic mesh network using UAV-to-UAV communication is
feasible [FB08], although challenging [GJV16].

replicated gossip performs best, as it conjugates the stability of the naive gossip

algorithm with the ability to cope with reductions in the sensed values. The algo-

rithm in this case provides underestimates, as it reports the highest peak sensed

in the time span of validity of a replicate, and drones rarely explore the exact spot

where the problem is located, but rather get in its proximity.

8.6 Final Remarks

In this chapter, a notion of aggregate processes is proposed and implemented

in order to model dynamic, concurrent collective adaptive behaviours carried out

by dynamic formations of devices—hence extending over field calculus and ScaFi.

This work draws inspiration from previous work in the context of the Pro-

220

http://archive.is/8zar5
http://archive.is/8zar5

CHAPTER 8. DYNAMIC COLLECTIVE COMPUTING WITH AGGREGATE PROCESSES

Figure 8.9: Evaluation of the gossip algorithms in the UAV reconnaissance sce-
nario. The figure on top shows expected values and measures performed by the
competing algorithms. The bottom figure measures the error as root mean square:√∑

n (vn−a)2

n
where n device count, a actual value, and vn value at the n-th device.

The naive gossip cannot cope with danger reduction, S+C+G cannot cope with
the volatility of the network, while replicated gossip provides a good estimate while
being to cope with changes.

telis aggregate programming language [PVB15], especially [PBV16], where a

gossip algorithm based on overlapping replicates is proposed, and [Fra+17],

where a multiInstance pattern is described—both implemented in terms of an

alignedMap building block. Construct alignedMap, though not formalised, ap-

pears similar to the spawn construct: it has signature alignedMap(keys,filter,f,

default) and apparently works by running f in an aligned way on the provided keys

(filtered by filter), returning default when no value is available. Construct spawn

differs from alignedMap in that, the former (i) has been given precise semantics,

as covered in this chapter, (ii) is typed, (iii) locally keeps the state of active keys

from round to round, and (iv) provides automatic propagation of purely local keys

221

CHAPTER 8. DYNAMIC COLLECTIVE COMPUTING WITH AGGREGATE PROCESSES

to neighbours, hence simplifying border management.

The aggregate process abstraction is related to works on distributed coordina-

tion (Chapter 3), spatial computing, and collective adaptive systems (Chapter 4),

as well as to organisational paradigms in multi-agent systems [HL04]. Indeed, with

aggregate processes, it is possible to program the logic of group formation to im-

plement various grouping strategies. In the messaging case study, e.g., a dynamic,

goal-directed team of devices is formed just to connect senders with recipients, dis-

solving when the task is completed. Work on attributed-based communication [De

+14] is also related: these approaches leverage information chunks (attributes) to

dynamically bind components into ensembles. Though different in abstraction, the

spawn construct can be used to replicate the same behaviour for group member-

ship, where an ensemble is captured by a process instance and process keys are

sets of attributes.

References

[Aud+16] Giorgio Audrito, Ferruccio Damiani, Mirko Viroli, and Roberto Casadei. “Run-

Time Management of Computation Domains in Field Calculus”. In: Founda-

tions and Applications of Self* Systems, IEEE International Workshops on.

IEEE. 2016, pp. 192–197.

[Aud+17] Giorgio Audrito, Roberto Casadei, Ferruccio Damiani, and Mirko Viroli. “Com-

positional Blocks for Optimal Self-Healing Gradients”. In: Self-Adaptive and

Self-Organising Systems (SASO), IEEE International Conference on. IEEE.

2017.

[Aud+18] Giorgio Audrito, Jacob Beal, Ferruccio Damiani, and Mirko Viroli. “Space-time

universality of field calculus”. In: International Conference on Coordination

Languages and Models. Springer. 2018, pp. 1–20.

[Aud+19] Giorgio Audrito, Mirko Viroli, Ferruccio Damiani, Danilo Pianini, and Jacob

Beal. “A Higher-Order Calculus of Computational Fields”. In: ACM Transac-

tions on Computational Logic 20.1 (2019), pp. 1–55. doi: 10.1145/3285956.

[Bea+18] Jacob Beal, Kyle Usbeck, Joseph Loyall, Mason Rowe, and James Metzler.

“Adaptive Opportunistic Airborne Sensor Sharing”. In: ACM Trans. Auton.

Adapt. Syst. 13.1 (Apr. 2018), 6:1–6:29. issn: 1556-4665. doi: 10 . 1145 /

3179994. url: http://doi.acm.org/10.1145/3179994.

222

https://doi.org/10.1145/3285956
https://doi.org/10.1145/3179994
https://doi.org/10.1145/3179994
http://doi.acm.org/10.1145/3179994

CHAPTER 8. DYNAMIC COLLECTIVE COMPUTING WITH AGGREGATE PROCESSES

[Cas+06] David W. Casbeer, Derek B. Kingston, Randal W. Beard, and Timothy W.

McLain. “Cooperative forest fire surveillance using a team of small unmanned

air vehicles”. In: International Journal of Systems Science 37.6 (2006), pp. 351–

360. doi: 10.1080/00207720500438480. url: https://doi.org/10.1080/

00207720500438480.

[De +14] Rocco De Nicola, Michele Loreti, Rosario Pugliese, and Francesco Tiezzi. “A

Formal Approach to Autonomic Systems Programming: The SCEL Language”.

In: ACM Transactions on Autonomous and Adaptive Systems (TAAS) 9.2

(2014), 7:1–7:29. doi: 10.1145/2619998.

[DV15] Ferruccio Damiani and Mirko Viroli. “Type-based Self-stabilisation for Com-

putational Fields”. In: Logical Methods in Computer Science 11.4 (2015).

[FB08] E.W. Frew and T.X. Brown. “Airborne Communication Networks for Small Un-

manned Aircraft Systems”. In: Proceedings of the IEEE 96.12 (2008), pp. 2008–

2027. doi: 10.1109/jproc.2008.2006127. url: https://doi.org/10.1109/

jproc.2008.2006127.

[Fra+17] Matteo Francia, Danilo Pianini, Jacob Beal, and Mirko Viroli. “Towards a

Foundational API for Resilient Distributed Systems Design”. In: International

Workshops on Foundations and Applications of Self* Systems (FAS*W). IEEE,

2017. doi: 10.1109/fas-w.2017.116.

[GJV16] Lav Gupta, Raj Jain, and Gabor Vaszkun. “Survey of Important Issues in UAV

Communication Networks”. In: IEEE Communications Surveys & Tutorials

18.2 (2016), pp. 1123–1152. doi: 10.1109/comst.2015.2495297. url: https:

//doi.org/10.1109/comst.2015.2495297.

[HL04] Bryan Horling and Victor Lesser. “A survey of multi-agent organizational

paradigms”. In: The Knowledge engineering review 19.4 (2004), pp. 281–316.

[LLM17] Alberto Lluch-Lafuente, Michele Loreti, and Ugo Montanari. “Asynchronous

Distributed Execution Of Fixpoint-Based Computational Fields”. In: Logical

Methods in Computer Science 13.1 (2017). doi: 10.23638/LMCS-13(1:13)

2017. url: https://doi.org/10.23638/LMCS-13(1:13)2017.

[OMO10] Bruno C.d.S. Oliveira, Adriaan Moors, and Martin Odersky. “Type classes as

objects and implicits”. In: vol. 45. 10. Association for Computing Machinery

(ACM), Oct. 2010, p. 341. doi: 10.1145/1932682.1869489. url: https:

//doi.org/10.1145/1932682.1869489.

[PBV16] Danilo Pianini, Jacob Beal, and Mirko Viroli. “Improving Gossip Dynamics

Through Overlapping Replicates”. In: Proceedings of the 18th International

Conference on Coordination Models and Languages. Vol. 9686. Lecture Notes

in Computer Science. Springer, 2016, pp. 192–207. doi: 10.1007/978-3-319-

39519-7_12.

223

https://doi.org/10.1080/00207720500438480
https://doi.org/10.1080/00207720500438480
https://doi.org/10.1080/00207720500438480
https://doi.org/10.1145/2619998
https://doi.org/10.1109/jproc.2008.2006127
https://doi.org/10.1109/jproc.2008.2006127
https://doi.org/10.1109/jproc.2008.2006127
https://doi.org/10.1109/fas-w.2017.116
https://doi.org/10.1109/comst.2015.2495297
https://doi.org/10.1109/comst.2015.2495297
https://doi.org/10.1109/comst.2015.2495297
https://doi.org/10.23638/LMCS-13(1:13)2017
https://doi.org/10.23638/LMCS-13(1:13)2017
https://doi.org/10.23638/LMCS-13(1:13)2017
https://doi.org/10.1145/1932682.1869489
https://doi.org/10.1145/1932682.1869489
https://doi.org/10.1145/1932682.1869489
https://doi.org/10.1007/978-3-319-39519-7_12
https://doi.org/10.1007/978-3-319-39519-7_12

CHAPTER 8. DYNAMIC COLLECTIVE COMPUTING WITH AGGREGATE PROCESSES

[PVB15] Danilo Pianini, Mirko Viroli, and Jacob Beal. “Protelis: practical aggregate

programming”. In: Symposium on Applied Computing. ACM. 2015, pp. 1846–

1853. doi: 10.1145/2695664.2695913.

[Vir+18] Mirko Viroli, Giorgio Audrito, Jacob Beal, Ferruccio Damiani, and Danilo

Pianini. “Engineering Resilient Collective Adaptive Systems by Self-

Stabilisation”. In: ACM Transaction on Modelling and Computer Simulation

28.2 (2018), 16:1–16:28. issn: 1049-3301. doi: 10.1145/3177774.

224

https://doi.org/10.1145/2695664.2695913
https://doi.org/10.1145/3177774

Chapter 9

Aggregate Computing Platforms

Design is to design a design to produce a design.

John Heskett

Contents
9.1 Analysis of Aggregate Computing Platforms 226

9.1.1 Preliminary definitions: main entities and artefacts . . 226

9.1.2 Logical analysis . 228

9.1.3 Analysis: aggregate execution 228

9.2 ScaFi Platform: Design and Implementation 230

9.2.1 Situated actors abstraction 230

9.2.2 Architectural styles . 233

9.3 Final Remarks . 239

References . 239

Building distributed systems is difficult, for many challenges beyond plain con-

nectivity need to be addressed (as briefly covered in Chapter 3). Therefore, for

non-trivial applications, various layers of software need to be put in place in or-

der to fill the abstraction gap, i.e., the conceptual and technical distance between

application-level abstractions and the underlying platform (hardware plus infras-

tructural software—see Chapter 6). Moreover, this part should not dramatically

change for similar applications, hence making the case for reusability. This reusable

piece of software is generally called a middleware [SS02], since it sits in the middle

225

CHAPTER 9. AGGREGATE COMPUTING PLATFORMS

between lower layers and applications. However, different applications or different

hardware platforms might require different middleware software: the tension be-

tween generality and specificity is a critical concern in middleware design [HM06].

Aggregate computing, as a programming paradigm, could be used to build ap-

plications. However, the ability to express and interpret aggregate programs (as

covered in Chapters 7 and 8) – e.g., as provided by the ScaFi DSL – is not per se

sufficient: in order to build a distributed “aggregate system”, other concerns need

to be dealt with, ranging from communication, security, and of course the manage-

ment of aggregate dynamics. In other words, aggregate computing-based applica-

tions should be supported by an aggregate computing middleware. Accordingly,

this chapter provides an analysis of the problem and presents a proof-of-concept

implementation included in the ScaFi toolkit.

9.1 Analysis of Aggregate Computing Platforms

9.1.1 Preliminary definitions: main entities and artefacts

In order to foster a systematic characterisation of the problem domain, and to

be more precise in the prose, we introduce the following terms.

• An aggregate contract defines the behaviour of the participants of an aggre-

gate.

• An aggregate program is a executable piece of aggregate logic implementing

an aggregate contract, and is expressed, e.g., through a field programming

language (like Protelis or ScaFi).

• An aggregate application is an aggregate program plus configuration and

other software that altogether provide some functionality to users.

• The aggregate computing middleware (or platform) is a piece of software

that supports the development, deployment, and execution of aggregate ap-

plications; i.e., the middleware fills the abstraction gap between aggregate

applications and the underlying platform or operating system, and it also

hides heterogeneity, allowing applications to be described independently of

the specific hardware, communication technology, and operating systems.

226

CHAPTER 9. AGGREGATE COMPUTING PLATFORMS

Figure 9.1: Analysis of aggregate systems: logical vs. physical elements.

• A set of individuals participating in the same aggregate application is called

an aggregate or ensemble.

• Individuals have an identity and are situated into some environment that

can be inspected through senses and acted upon through effectors.

• An individual can interact with other individuals, which form what is known

as its neighbourhood, by exchanging messages.

• Abstraction principle: aggregates and their components (individuals) are

logical entities that may be mapped diversely to physical machines (machines

corresponding to individuals are usually called nodes or devices). The set of

physical devices that sustain the execution of an ensemble is sometimes called

an aggregate system. The communication technology used for exchanging

messages is also abstracted. Figure 9.1 graphically shows the distinction

between logical and physical aspects.

227

CHAPTER 9. AGGREGATE COMPUTING PLATFORMS

9.1.2 Logical analysis

When does an aggregate springs into existence? It depends on the desired

notion of “bootstrap”: it might be when one or more individuals start to play

an aggregate contract, or as soon as the aggregate is institutionalised (e.g., by

registering it in some organisation). In general, multiple, distinct aggregates with

the same aggregate contract may (co-)exist; so, any aggregate should have some

kind of aggregate identity, represented by some unique identifier (UID).

Individuals might exist independently of an aggregate, as parts of some organ-

isation. The individuals that participate to an aggregate are called participants.

Individuals may join or quit an aggregate at any time, as regulated by the aggre-

gate contract. Any individual has an UID within any aggregate it participates to,

to distinguish itself and other individuals from yet other individuals.

9.1.3 Analysis: aggregate execution

The field calculus framework defines, through its operational semantics, how

field computations are to be locally executed. This description is abstract: it leaves

many details out, allowing for different concrete execution protocols or strategies. It

is important to notice, however, that certain details of execution may be important

for a given aggregate application. As a consequence, the middleware should provide

the means for configuring execution-related aspects. Also, in general, certain details

may be enforced by the middleware or (fully or partially) delegated to the device;

for instance, the middleware might provide a value range for the firing frequency,

and devices might autonomously choose when to execute a round (and a policy

should say what happens when a device does not respect the “aggregate contract”).

By the most abstract perspective, as illustrated in Figure 9.2, an aggregate

application carries out an information-based process for “coherently” turning

aggregate-level input to aggregate-level output. In principle, even the deconstruc-

tion of an aggregate into individuals could be decided by the platform; in this view,

individuals become “contexts” for probing and acting upon some environment.

Macro, execution-related aspects for an aggregate application include the fol-

lowing:

• Individual context — In general, the context of an individual is given by the

228

CHAPTER 9. AGGREGATE COMPUTING PLATFORMS

Figure 9.2: Aggregate applications: high-level perspective.

part of the environment it can access, its neighbours, and its state. So, the

context provides sensory data, neighbourhood data, and state as input; also,

an individual can act upon the context through effectors, communication,

and storage acts.

• Computations of individuals — Execution proceeds in computational rounds.

In a computational round, an individual locally runs the aggregate program

against its context (the individual is said to fire). Also, in general, the

program describes how the individual should act upon its context. Certain

operations, like the propagation of coordination data (called an export) to

neighbours, are typically implicit, while other (e.g., commands to effectors)

explicit.

• Scheduling of activities — When does an individual fire? In general, an

individual may autonomously choose when to fire, or may be said to do so

by an external entity. In any case, the (internal or external, local or global)

entity that triggers the execution of the aggregate program for an individual

is called a scheduler. A scheduler may use local or global context knowledge

to decide or adjust the actual scheduling strategy. The scheduler may also

dictate when context-related activities are to be performed.

Notice that these descriptions are quite abstract and point out how concerns could

be typically handled.

A key operational aspect for aggregates is context management. It comprises

229

CHAPTER 9. AGGREGATE COMPUTING PLATFORMS

handling communication with neighbours in order to steer and coordinate collec-

tive decision-making. The problem of interaction among individuals includes the

following issues:

• Neighbour discovery — Some mechanism has to be used for devices to be

able to get acquainted with one another.

• Neighbour communication — Communication may happen in three main

modalities: (i) push, where an individual sends a message directly to a neigh-

bour; (ii) pull, where an individual asks a neighbour for messages; or (iii)

publish/subscribe, where an individual emits information with no particular

recipient and listens to relevant information in the environment.

• Message authentication — Messages should not be counterfeit, and it should

be possible to verify the source of a message.

9.2 ScaFi Platform: Design and Implementation

9.2.1 Situated actors abstraction

When it comes to design and implement distributed systems composed of multi-

ple autonomous entities, the actor model [Agh86] is generally considered a primary

choice, for it captures the key aspects there involved: distribution, encapsulation of

control, and asynchronous communication. Indeed, several works proposed actor-

based abstractions and frameworks in the context of particular distributed comput-

ing scenarios, such as wireless sensor networks (WSNs) and mobile ad-hoc networks

(MANETs) [Bea+13; Ni+05], as well as the IoT, for both middleware [Ngu+17]

and application [HCS14] development. In IoT frameworks, for instance, physical

devices and services can be wrapped or exposed as actors [HCS14; Lat+15] in

order to promote application integration [Lat+15; PA15], behaviour composition-

ality [Lat+15], and runtime adaptation [VCP16; Val+08; PA15].

To more stress the notion of (physical) environment, it is then natural to con-

sider actors for situated systems, which we shall call situated actors. However,

actor-based applications that involve complex coordination among several (po-

tentially myriads of) entities, and requiring system adaptivity and resiliency, are

still very difficult to build: development and maintenance tend to become con-

230

CHAPTER 9. AGGREGATE COMPUTING PLATFORMS

voluted and brittle due to the scattering of multiple concerns across many actor

definitions and intricate conversational patterns [BPV15]. Plausibly, this problem

can be addressed by augmenting the actor model with effective abstractions for

programming complex collective adaptative behaviours, providing resiliency and

support for very-large scale sets of situated components somewhat inherently.

In [CV18], we draw a bridge between the actor model and aggregate comput-

ing, in order to establish a disciplined approach for the injection of self-adaptive

and advanced coordination capabilities in complex distributed applications. On

the one hand, we propose the idea of viewing aggregate computing as a layer on

top of actors that enables effective specification of complex coordination patterns.

Namely, we describe an actor-based programming framework in which large sets

of actors responsible for complex coordination, which we call actor aggregates,

are programmed “in one shot” according to the aggregate computing model, to

automatically and transparently interact with each other to carry on a complex

computational process over space and time. With respect to traditional actor

programming techniques, this approach reduces accidental complexity by foster-

ing declarativity, separation of concerns, and modularity. On the other hand, our

work suggests that a careful exposure of the actor-based view of an aggregate sys-

tem can provide the means for (i) steering collective computation by the inputs

of other non-aggregate subsystems of actors, and for (ii) turning the aggregate

process into coordination events forwarded to the many different parts of a larger

application. In a nutshell, integrating aggregate computing on top of (as well

as aside to) actors is expected to pragmatically address open challenges in the

state-of-art of IoT and CASs, by proposing a principled way to the engineering of

(critical portions of) such systems.

Actors in the pervasive cyberspace An actor [Agh86] is a (re)active entity

that represents an independent locus of control, encapsulates a state and behaviour,

has a globally unique immutable identifier that allows for location transparency,

and interacts with other actors via asynchronous message passing—each actor has

a mailbox for message buffering. In response to a message, an actor can only (i)

send a finite number of messages to other actors, (ii) create a finite number of child

actors, and (iii) change its own behaviour, that is, its message processing logic.

231

CHAPTER 9. AGGREGATE COMPUTING PLATFORMS

Thus, an actor system consists of an (possibly huge) evolving set of (possibly

changing, mobile) autonomous actors that communicate with one another and

perform some task along the way.

Actor systems very well fit highly distributed systems: since communication is

based on logical identifiers, the programmer can ignore the actual physical location

in which a recipient actor resides (location transparency). Also, actors do not

share state, in that they communicate exclusively by exchanging messages; as a

consequence, the issues related to lock-based synchronisation and mutual exclusion

– as found in thread-based concurrency – are completely avoided. In addition, an

asynchronous communication style better captures the way in which events occur

and are perceived in the physical world [Arm07]; anyhow, synchronicity (sometimes

suitable when programming) can be supported as a particular case [Agh86].

Given the appropriateness of actors for modelling distributed systems, it comes

naturally to consider them when approaching the development of particular kinds

of modern distributed systems, such as large-scale situated systems and those

found in the IoT scenario [HCS14]. Here, the environment abstraction becomes

prominent and paves the path to context-awareness, namely, the ability of distin-

guishing situations depending on context, which is a peculiarity of any “intelligent”

behaviour and is often linked to a locality principle, i.e., an entity is mostly directly

affected by its immediate (logical or physical) surroundings (which effectively rep-

resents its context of operation). In this frame, we can introduce a notion of

situated actor as the bridging abstraction that adds support for situatedness on

top of plain actors. That is, a situated actor is an actor that has a given posi-

tion in an environment or generally in space-time—position often inherited by the

hosting or associated physical node. Concretely, such actors can be the software

interface to a sensor, an actuator, a processor, or generally a computational de-

vice immersed in some environment, such as the urban area of a smart city, the

elevator of a smart building, a room in a smart house, or an edge part of a smart

appliance. In other words, a situated actor can be seen as an avatar [Mri+15;

Zam17] or digital twin [ES18] for a physical device, and most specifically, what we

can call a space-aware avatar.

Starting from this viewpoint, we focus on how actors could be used to im-

plement complex decentralised behaviours, possibly involving a very-large scale

232

CHAPTER 9. AGGREGATE COMPUTING PLATFORMS

set of devices (and hence actors), as those found, for example, in contexts such

as crowd engineering, smart mobility, swarms of drones, environment monitoring,

and so on. In principle, this would require a design of the actor system which

takes into account discipline, best practices, well-known messaging [Ver15] and

structural/behavioural/reactive design patterns. However, when the logic to be

expressed involves multiple concerns along different dimensions and abstraction

levels, the development and maintenance processes might turn out to be very

complicated and costly. There are, in fact, certain system-level properties and

algorithms that are difficult to implement when reasoning in terms of individual

actors and conversation patterns between actors.

What abstractions could be added to the standard actor model for addressing

issues ranging from system-level adaptivity and resiliency to decentralised com-

putation design? How could we build actor-based applications in terms of the

composition of primitive services (e.g., reusing a crowd estimation service to de-

velop both driving congestion-aware navigation and dispersal advice)? Following

the principle of separation of concerns, we could address each problem with the

more appropriate paradigm, yet importantly, recovering compatibility between the

different views to provide a coherent framework for building complex adaptive sys-

tems.

9.2.2 Architectural styles

An architectural style characterises a class of systems through a pattern of

structural organisation based on a vocabulary of components, connectors, and

constraints [GS93]. Accordingly, the ScaFi platform can provide support for

organising systems around different architectural styles.

P2P actor-based The most natural system architecture reflects the logical, spa-

tial model of aggregate programming, where devices interact with each other on a

local basis—in a fully decentralised manner.

In general, a device actor can be thought of as composed of multiple (child or

attached) actors, each one assigned with a single, specific responsibility. Figure 9.3

depicts a complete (i.e., fully operational) device. Sensor and actuator actors

handle interaction with the environment. If the device computes on-site, it has

233

CHAPTER 9. AGGREGATE COMPUTING PLATFORMS

Figure 9.3: Conceptual model of a device actor in ScaFi: each concern (computa-
tion, sensing, actuation, state store and communication) is handled by a different
child actor. Different platforms may move some child actors outside the device.

a computational actor, which is triggered by clock signals as sent by an internal

or external entity. Such a computation actor queries the state actor for inputs—

which include the result of the previous computation, the local sensor values and

the exports of neighbour devices. Finally, the communication actor is responsible

for getting exports from the neighbourhood and propagating the result of each

computation round nearby.

In the peer-to-peer platform style (Figure 9.4), concretised by the

BasicActorP2P incarnation, the system is a network of devices (nodes) represented

by actors that, at each scheduled round of execution, compute the aggregate pro-

gram and broadcast the result message to their neighbourhood. At this level, we

abstract from the way the neighbourhood set is discovered: for example, it may

be given at configuration time or provided by a neighbouring sensor.

Figure 9.6 shows how a programmer can easily start a node with a default

configuration.

234

CHAPTER 9. AGGREGATE COMPUTING PLATFORMS

Figure 9.4: ScaFi platform: peer-to-peer style.

Figure 9.5: ScaFi platform: server mediating interactions.

Actor mediating interactions In some cases, it may be useful to move some

duties of the devices to a central entity: an actor that can provide system-wide

services and encapsulate environmental features.

As a first example, a server can mediate all device communications by keeping

a representation of the space in which they are situated (which may be purely

logical or a representation of the physical space and situation), and hence use a

configurable distance metric to reify an application-specific notion of neighbour-

hood for each device. In the crowd steering settings, one such server would easily

overcome the difficulties of smartphone local interactions (e.g., via Bluetooth).

Figure 9.5 illustrates one such platform style that is based on a central actor

working as a mediator for device-to-device communications. This new platform

235

CHAPTER 9. AGGREGATE COMPUTING PLATFORMS

// STEP 1: CHOOSE INCARNATION
import scafi.incarnations.{ BasicActorP2P => Platform }
import Platform.{AggregateProgram, Settings, PlatformConfigurator}

// STEP 2: DEFINE AGGREGATE PROGRAM
class Program extends AggregateProgram with CrowdSensingAPI {
def main() = dangerousDensity() // Specify aggregate computation

}

// STEP 3: PLATFORM SETUP
val settings = Settings()
val platform = PlatformConfigurator.setupPlatform(settings)

// STEP 4: NODE SETUP
val sys = platform.newAggregateApplication()
val dm = sys.newDevice(id = Utils.newId(),

program = Program,
neighbours = Utils.discoverNbrs())

Figure 9.6: Setup of a node in the P2P platform style.

is essentially obtained by a simple reallocation of responsibility, where the com-

munication burden (and knowledge of neighbours) is moved from each device’s

communication actor to a single server’s actor, receiving local computation results

and sending the neighbourhood state.

Actor mediating computations In another scenario we may move the ag-

gregate computation from devices to the central server: the devices collapse to

system sensors and actuators, essentially becoming environmental contexts upon

which the aggregate system can perceive and act. The situation is represented

by Figure 9.9. Computation, state management, and neighbourhood communi-

cation responsibilities move from device actors to the central actor, which uses a

(persistent or in-memory) database to store the global field.

This approach could provide a number of benefits: devices could be unaware of

the actual aggregate program to run (which can then be modified on-the-fly in the

server), and global optimisation techniques could be adopted to avoid computing

all rounds in all devices.

236

CHAPTER 9. AGGREGATE COMPUTING PLATFORMS

// STEP 1: CHOOSE INCARNATION
import scafi.incarnations.{ BasicActorServerBased => Platform }
... // STEP 2,3,4 as in the P2P version
dm.addSensorValue(name = Utils.LocationSensorName,

provider = ()=>Utils.getLocation())

Figure 9.7: Setup of a node in the platform style based on a mediator of interac-
tions. The code is mostly the same as in the P2P case. The selection of a different
ScaFi incarnation gives a new semantics to all the above method calls. In addi-
tion, we need to configure a location sensor providing device position to be sent
to the server.

Figure 9.8: ScaFi platform: server mediating computations.

Mixing actor mediating/computing We have seen so far that a plausible

execution architecture for aggregate systems can be based on a centralised en-

tity which can, for example, be implemented as an actor. This server can be in

charge of locality-based information propagation or computation. A possible next

step is to envision a server which dynamically switches between merely mediating

communications or computing aggregate programs.

The key insight of this chapter lies exactly in the independence of an aggregate

computation from the underlying execution strategy. In fact, thanks to its “pul-

verisation” semantics, an aggregate computation can be ultimately performed at

the device site or by a computing entity that is able to correlate global and local

information.

There may be practical reasons to opt for centralised execution platforms—

237

CHAPTER 9. AGGREGATE COMPUTING PLATFORMS

Figure 9.9: ScaFi platform: cloud and hybrid styles.

e.g., for easier maintenance, to enforce security policies, or because broadcasts to

neighbourhoods are not supported at the infrastructure-level. Secondly, the gener-

ality and abstractness of aggregate computing can provide greater flexibility with

respect to how the ensemble ultimately carries out computations. This means that

(i) the platform can make the best use out of the computational and networking

resources at hand, and (ii) it can opportunistically adapt the execution strategy

to changes in the available environment or computational infrastructure. It is

possible to reason in terms of movable or fluent responsibilities, in the sense that

certain operations can “flow” from devices to computing servers, or vice versa—

dynamically.

Aggregate Computing in the Cloud The introduction of central servers seems

to contradict the original purpose of the aggregate computing approach, which

fits fully decentralised distributed computing scenarios. However, handling large

numbers of devices is possible using cloud-oriented approaches.

Cloud computing is a well-established model and technology supporting scal-

ability and elasticity through on-demand provisioning of IT resources—which are

typically virtualised. Since it represents a further opportunity for building scalable

systems, it is reasonable to think of an alternate execution strategy for aggregate

systems where computations are carried out in the cloud.

238

CHAPTER 9. AGGREGATE COMPUTING PLATFORMS

A main strategy for a cloud-based execution platform consists in storing the

whole computational field as a big data, with aggregate computation structured

as a myriad of stateless computing services concurrently working on a big shared

database.

The global aggregate computation might even be executed partially “on

ground”, e.g., as advocated in edge- and fog-computing initiatives [Bon+12], and

may “flow” up and down depending upon context and contingencies—energetic is-

sues, presence of congestions, unexpected storage requirements, changes in wireless

availability, and so on.

9.3 Final Remarks

This chapter covers aspects related to providing middleware-level support for

aggregate computing, and presents the ScaFi platform as a proof-of-concept im-

plementation. Supporting different architectural styles and execution strategies is

the fundamental, starting point for more ambitious goals, such as that of enabling

dynamic, opportunistic adaptation of the execution strategy of aggregate systems,

depending on multiple factors ranging from available infrastructure and quality-

of-service requirements. Indeed, a middleware is the place where a wide range of

optimisations may be applied. However, developing a middleware is a significant

engineering challenge: further work is needed to move this proof-of-concept im-

plementation into a full-fledged, flexible, optimised, production-ready framework

with high-quality API.

References

[Agh86] Gul Agha. Actors: A Model of Concurrent Computation in Distributed Systems.

Cambridge, MA, USA: MIT Press, 1986. isbn: 0-262-01092-5.

[Arm07] Joe Armstrong. Programming Erlang: software for a concurrent world. Prag-

matic Bookshelf, 2007.

239

CHAPTER 9. AGGREGATE COMPUTING PLATFORMS

[Bea+13] Jacob Beal, Stefan Dulman, Kyle Usbeck, Mirko Viroli, and Nikolaus Correll.

“Organizing the Aggregate: Languages for Spatial Computing”. In: Formal

and Practical Aspects of Domain-Specific Languages: Recent Developments. A

longer version available at: http://arxiv.org/abs/1202.5509. IGI Global,

2013. Chap. 16, pp. 436–501. isbn: 978-1-4666-2092-6. doi: 10.4018/978-1-

4666-2092-6.ch016.

[Bon+12] Flavio Bonomi, Rodolfo Milito, Jiang Zhu, and Sateesh Addepalli. “Fog com-

puting and its role in the internet of things”. In: Proceedings of the first edition

of the MCC workshop on Mobile cloud computing. ACM. 2012, pp. 13–16.

[BPV15] Jacob Beal, Danilo Pianini, and Mirko Viroli. “Aggregate Programming for the

Internet of Things”. In: IEEE Computer 48.9 (2015), pp. 22–30. doi: 10.1109/

MC.2015.261.

[CV18] Roberto Casadei and Mirko Viroli. “Programming Actor-Based Collective

Adaptive Systems”. In: Programming with Actors: State-of-the-Art and Re-

search Perspectives. Vol. 10789. Lecture Notes in Computer Science. Springer,

2018, pp. 94–122. doi: 10.1007/978-3-030-00302-9_4.

[ES18] Abdulmotaleb El Saddik. “Digital twins: The convergence of multimedia tech-

nologies”. In: IEEE MultiMedia 25.2 (2018), pp. 87–92.

[GS93] David Garlan and Mary Shaw. “An introduction to software architecture”. In:

Advances in software engineering and knowledge engineering. World Scientific,

1993, pp. 1–39.

[HCS14] Raphael Hiesgen, Dominik Charousset, and Thomas C Schmidt. “Embed-

ded Actors – Towards distributed programming in the IoT”. In: 2014 IEEE

Fourth International Conference on Consumer Electronics Berlin (ICCE-

Berlin). IEEE. 2014, pp. 371–375.

[HM06] Salem Hadim and Nader Mohamed. “Middleware: Middleware Challenges and

Approaches for Wireless Sensor Networks”. In: IEEE Distributed Systems On-

line 7.3 (2006). doi: 10.1109/MDSO.2006.19. url: https://doi.org/10.

1109/MDSO.2006.19.

[Lat+15] Elizabeth Latronico, Edward A. Lee, Marten Lohstroh, Chris Shaver, Armin

Wasicek, and Matthew Weber. “A Vision of Swarmlets”. In: IEEE Internet

Computing 19.2 (2015), pp. 20–28. issn: 10897801. doi: 10.1109/MIC.2015.

17. url: https://cloudfront.escholarship.org/dist/prd/content/

qt7p53t9x5/qt7p53t9x5.pdf.

[Mri+15] Michael Mrissa, Lionel Médini, Jean-Paul Jamont, Nicolas Le Sommer, and

Jérôme Laplace. “An avatar architecture for the web of things”. In: IEEE

Internet Computing 19.2 (2015), pp. 30–38.

240

http://arxiv.org/abs/1202.5509
https://doi.org/10.4018/978-1-4666-2092-6.ch016
https://doi.org/10.4018/978-1-4666-2092-6.ch016
https://doi.org/10.1109/MC.2015.261
https://doi.org/10.1109/MC.2015.261
https://doi.org/10.1007/978-3-030-00302-9_4
https://doi.org/10.1109/MDSO.2006.19
https://doi.org/10.1109/MDSO.2006.19
https://doi.org/10.1109/MDSO.2006.19
https://doi.org/10.1109/MIC.2015.17
https://doi.org/10.1109/MIC.2015.17
https://cloudfront.escholarship.org/dist/prd/content/qt7p53t9x5/qt7p53t9x5.pdf
https://cloudfront.escholarship.org/dist/prd/content/qt7p53t9x5/qt7p53t9x5.pdf

CHAPTER 9. AGGREGATE COMPUTING PLATFORMS

[Ngu+17] Anne H Ngu, Mario Gutierrez, Vangelis Metsis, Surya Nepal, and Quan Z

Sheng. “IoT middleware: A survey on issues and enabling technologies”. In:

IEEE Internet of Things Journal 4.1 (2017), pp. 1–20.

[Ni+05] Yang Ni, Ulrich Kremer, Adrian Stere, and Liviu Iftode. “Programming ad-

hoc networks of mobile and resource-constrained devices”. In: ACM SIGPLAN

Notices 40.6 (2005), pp. 249–260.

[PA15] Per Persson and Ola Angelsmark. “Calvin–merging cloud and iot”. In: Procedia

Computer Science 52 (2015), pp. 210–217.

[SS02] Richard E Schantz and Douglas C Schmidt. “Middleware”. In: Encyclopedia of

Software Engineering (2002).

[Val+08] Jorge Vallejos, Elisa Gonzalez Boix, Engineer Bainomugisha, Pascal Costanza,

Wolfgang De Meuter, and Éric Tanter. “Towards Resilient Partitioning of Per-

vasive Computing Services”. In: Proceedings of the 3rd Workshop on Software

Engineering for Pervasive Services (SEPS 2008) January 2008 (2008), pp. 15–

20. doi: 10.1145/1387229.1387234. url: https://www.researchgate.

net/profile/Eric{_}Tanter/publication/234802434{_}Towards{_

}resilient{\ _ }partitioning{\ _ }of{\ _ }pervasive{\ _ }computing{\ _

}services/links/02e7e52cc526b22fd7000000.pdf.

[VCP16] Mirko Viroli, Roberto Casadei, and Danilo Pianini. “On execution platforms

for large-scale aggregate computing”. In: Proceedings of the 2016 ACM Inter-

national Joint Conference on Pervasive and Ubiquitous Computing: Adjunct.

ACM. 2016, pp. 1321–1326.

[Ver15] Vaughn Vernon. Reactive Messaging Patterns with the Actor Model: Appli-

cations and Integration in Scala and Akka. 1st. Addison-Wesley Professional,

2015. isbn: 0133846830, 9780133846836.

[Zam17] Franco Zambonelli. “Key Abstractions for IoT-Oriented Software Engineering”.

In: IEEE Software 34.1 (2017), pp. 38–45.

241

https://doi.org/10.1145/1387229.1387234
https://www.researchgate.net/profile/Eric{_}Tanter/publication/234802434{_}Towards{_}resilient{_}partitioning{_}of{_}pervasive{_}computing{_}services/links/02e7e52cc526b22fd7000000.pdf
https://www.researchgate.net/profile/Eric{_}Tanter/publication/234802434{_}Towards{_}resilient{_}partitioning{_}of{_}pervasive{_}computing{_}services/links/02e7e52cc526b22fd7000000.pdf
https://www.researchgate.net/profile/Eric{_}Tanter/publication/234802434{_}Towards{_}resilient{_}partitioning{_}of{_}pervasive{_}computing{_}services/links/02e7e52cc526b22fd7000000.pdf
https://www.researchgate.net/profile/Eric{_}Tanter/publication/234802434{_}Towards{_}resilient{_}partitioning{_}of{_}pervasive{_}computing{_}services/links/02e7e52cc526b22fd7000000.pdf

Chapter 10

Self-Organising Coordination

Regions: a Pattern for Edge

Computing

Complexity is looking at interacting elements and asking

how they form patterns and how the patterns unfold.

W. Brian Arthur

Contents
10.1 Motivation . 245

10.1.1 Need for design patterns for self-* systems 245

10.1.2 Context . 245

10.1.3 Problem and forces . 246

10.1.4 Basic patterns and abstractions 247

10.1.5 Related patterns . 248

10.1.6 Known Uses . 249

10.2 SCR Pattern Description . 252

10.2.1 Structure and participants 252

10.2.2 Dynamics and collaborations 253

10.2.3 Variants and extensions 255

10.2.4 Applicability . 256

10.2.5 Consequences . 257

10.2.6 Implementation . 257

243

CHAPTER 10. SELF-ORGANISING COORDINATION REGIONS

10.2.7 Sample code . 259

10.3 Evaluation . 260

10.3.1 Case study #1: dynamic area management 260

10.3.2 Case study #2: situated problem solving 265

10.3.3 Case study #3: coordinating edge computations 275

10.4 Final Remarks . 284

References . 285

Aggregate computing provides perspectives and inspiration for techniques and

approaches to distributed system design. This chapter presents a general, decen-

tralised coordination design pattern for partitioned orchestration which was dis-

covered from multiple occurrences in the form of a “S-G-C-G” chain of aggregate

building blocks (see Sections 5.2.2 and 7.5.1). It aims to provide adaptivity and

resilience in large-scale situated systems through multiple feedback loops involving

dynamic system partitions. The pattern is called Self-organising Coordina-

tion Regions (SCR), since it works through an internally-regulated, adaptive

construction of regions where activity is coordinated via feedback/control flows

among master and worker nodes. In other words, it leverages asymmetry in com-

plex coordination scenarios and accordingly proposes a tunable trade-off between

centralised and decentralised decision-making.

The described pattern finds application in several scenarios where a sparse set

of leaders is expected to collect feedback from and enact decisions for a subset

of other participants—examples include target counting [PDV17], group manage-

ment for target tracking [Liu+04], decentralised service orchestration [JDB16],

self-adaptative software [Wey+13], Wireless Sensor Networks (WSN) [DRT05;

LRM08], robot swarm control [WAC+14], crowd tracking and steering [BPV15].

The rest of this chapter is structured as follows, with content following roughly

the GoF pattern template form [Vli98]. Section 10.1 provides motivation, context

and discusses related work and patterns. Section 10.2 presents the pattern by

providing its intent, synonyms, structure, dynamics as well as known uses, conse-

quences and methodological guidelines of its application. Section 10.2.6 shows an

implementation in the Aggregate Computing framework, and discusses variants.

Section 10.3 provides empirical evaluation. Finally, Section 10.4 provides some

concluding thoughts.

244

CHAPTER 10. SELF-ORGANISING COORDINATION REGIONS

10.1 Motivation

10.1.1 Need for design patterns for self-* systems

Design Patterns are paramount in software engineering. They capture ex-

pert knowledge by describing reasoned solution schemas for a well-defined class

of repeatedly occurring problems in specific contexts [Bus+96]. Patterns help to

harness complexity by characterising systems of forces arising in a context, and

strategies to resolve them [Ale77], while abstracting from implementation details,

denoting intents and properties of solutions, providing motivated guidance towards

desired configurations, and supporting documentation and team communication

through a common vocabulary [Bus+96]. Over time, several classes of patterns

have been discovered to assist designers and implementors of software-based sys-

tems, resulting in catalogues of patterns, e.g., for language implementation [Par09],

object-oriented software [Vli98], concurrency [Sch+00], messaging [HW04], reac-

tive systems [Ver15; KHA17], asynchronous programming [Cas16], fault-tolerant

software [Han13] etc. Moreover, patterns can be classified into multiple tax-

onomies (e.g., by level of abstraction into architectural, design patterns, and id-

ioms [Bus+96]), can be related to each other (e.g., by refinement, variance, and

combination [Bus+96]), and can be presented using different formats (e.g., Alexan-

drian [Ale77], GoF [Vli98], and POSA [Bus+96]).

10.1.2 Context

In this chapter, we consider the context of coordination in large-scale dis-

tributed systems. Specifically, we focus on scenarios – e.g., pervasive comput-

ing, Collective Adaptive Systems (CAS), Internet of Things (IoT), Cyber-Physical

Systems (CPS), and Edge Computing – characterised by the following forces:

• Distribution. Having distributed components leads to concurrency, lack of

global clock, and independent (and often frequent) failure or unavailability

of components [CDK05]—with corresponding implications.

• Cyber-physicality. The system may consist of both disembodied and physi-

cally embedded components.

245

CHAPTER 10. SELF-ORGANISING COORDINATION REGIONS

• Situatedness. Components may be logically or physically immersed into an

environment such that their location and context are relevant, since their

inputs and outputs may be limited to the surroundings.

• Heterogeneity. Components may differ by their computational capabilities,

energy requirements, and general dependability.

• Large scale. Systems may be too large to be centrally orchestrated or man-

ually operated.

Given the rather intense research ongoing in these contexts, their broad scope,

complexity of the challenges, and proliferation of paradigms, some catalogues

of design patterns have emerged. Relevant examples include pattern catalogues

for multi-agent architectures [HCY+99] and ensemble structures [HL04], bio-

inspired computing [FM+13; Bab+06], and decentralised control [Wey+13] and

coordination [DWH06] in self-adaptive systems. They typically work at differ-

ent levels of abstractions, from principles and high-level behaviour components

to mathematically-defined evolution rules, and do not generally provide complete

solutions for the complex problem of scalable coordination of large-scale situated

systems.

Edge computing (Chapter 6) is a motivating scenario for SCR.

10.1.3 Problem and forces

Most specifically, in such scenarios, the problem forces that must be dealt with

include the following:

• heterogeneity creates asymmetry in individual capabilities, or tasks are so

complex that collaboration is essential, e.g., the information, rights, or re-

sources available at an individual device are not sufficient for it to au-

tonomously carry out the task at hand;

• a locality principle holds, as context is key for both individual and collective

activity, and cost is typically proportional to the distance between sources,

processes, and users;

• neither full centralisation nor full decentralisation in control and decision-

making is possible or desirable—the former for evident scalability reasons,

246

CHAPTER 10. SELF-ORGANISING COORDINATION REGIONS

the latter for the inherent complexity in achieving consensus and globally

optimised functions; and

• the environment and system structure are dynamic (e.g., due to emergence

of events that must be dealt with, mobility or failure), creating a situation

of constant change where the system stability is continuously endangered by

perturbations.

10.1.4 Basic patterns and abstractions

The SCR pattern, described in detail in Section 10.2, basically consists of

a subdivision of the system into regions regulated through feedback-and-control

loops between leaders and the other agents. It recurs in a number of scientific

works and proposed solutions, and is implemented variously. In this section, its

component patterns are introduced.

Some patterns presented in the aforementioned catalogues [FM+13; Vir+18]

constitute the foundations of the current work. Indeed, the SCR pattern is a

combination of three fundamental coordination (sub-)patterns:

• Multi-leader election. In distributed systems, it is sometimes useful to

break symmetry or introduce multiple local centralisation points to sim-

plify decision-making or coordination. This pattern consists in the election

of multiple leaders to uniformly cover a logical or physical space.

• Information propagation. Communication patterns that abstract from low-

level implementation or networking details are essential in distributed sys-

tems. This pattern consists of propagating information from one or more

sources outward, independently of the underlying system structure.

• Information collection. This pattern consists of collecting information from

a set of sources into one or more sinks, still abstracting from low-level details.

In order to account for situations where devices can fail or change, coherently to

the self-organisation principle, we should consider the above patterns as continuous

processes (or, at least, as processes that are reactive [MC14] to failure or change).

This means that information (updates) must move continuously, as a stream (log-

ically, and despite potential optimisations), as captured by the information flow

abstraction, defined in [DWH07] as follows:

247

CHAPTER 10. SELF-ORGANISING COORDINATION REGIONS

An information flow is a stream of information from source localities

towards destination localities and this stream is maintained and reg-

ularly updated to reflect changes in the system. Between sources and

destinations, a flow can pass other localities where new information

can be aggregated and combined into the information flow.

A common way to implement information flows is by activating processes that

create and maintain structures for the communication paths. One such example is

the gradient [DWH06; Aud+17; DB16], a self-healing distributed data structure

mapping any node of the system to its hop-by-hop estimated distance from source

points: it provides an underlying carrier for controlling effective directions of prop-

agation/collection of data flows. Information flows can be naturally expressed in

the library of [Vir+18], which fosters the definition of collective behaviour of an

ensemble of devices through a composition of self-organising patterns, drawing in-

spiration from biology [FM+13]. The aforementioned sub-patterns are “building

blocks” in [BPV15], where are respectively called S (for Sparse-choice—i.e., a scat-

tered selection from the set of participating devices), G (for Gradient-cast—i.e., a

multicast diffusing information along a gradient), and C (for Converge-cast—i.e.,

a multicast aggregating information to a sink device).

10.1.5 Related patterns

A well-known organisational meta-pattern for self-adaptive systems is

MAPE [KC03]: it suggests structuring the system feedback control loop into four

components: Monitor, Analyse, Plan, and Execute. In [Wey+13], several MAPE

patterns are provided for organising the adaptation logic in decentralised self-

adaptive systems. These are related and operate in a similar design context, but

their focus is on internal organisation of system adaptivity rather than on external,

application design. In particular, the Regional Planning pattern [Wey+13] consists

in distributing Planning components to different “software regions” (i.e., loosely

coupled software subsystems); there, they collect data from Analyse components

(which are fed by Monitoring components) and command Execute components for

enaction of planned adaptations. SCR subsumes Regional Planning: it enables the

design of self-adaptation control loops but goes beyond that, by covering various

248

CHAPTER 10. SELF-ORGANISING COORDINATION REGIONS

assignments of responsibilities to the participants and being directly usable for

application logic as well; e.g., leaders in SCR may gather regional data, resolve

contention, or propagate events.

The Multi-Scale Feedbacks pattern [DDFM19] deals with large-scale coordina-

tion in hierarchical self-* systems. The pattern characterises a self-* system as a

set of entities, exposing observable features, that are associated with or compos-

ing other entities. Then, it defines micro-to-macro information abstraction and

macro-to-micro feedback as key functions between micro and macro features. Even

though SCR can be applied to hierarchies and hierarchically, and shares some sim-

ilarities with Multi-Scale Feedbacks – e.g., inter-level feedbacks (downward/upward

causation) are comparable to SCR downstream and upstream information flows,

assuming leaders are at a higher level than other agents –, the two patterns have

different goals and take different perspectives: while SCR focusses on coordina-

tion of decentralised activity and interactions, Multi-Scale Feedbacks focusses on

hierarchical design.

10.1.6 Known Uses

Various forms and uses of the SCR pattern can be found in literature.

Decentralised service orchestration In [JDB16], SCR is used to design a

decentralised service orchestration system; there, a workflow specification is split

for scalability and performance into sub-workflows executed by multiple collabo-

rating engines that are migrated to different network regions based on placement

analysis.

WSN middlewares TCMote [DRT05] is designed according to SCR. The sys-

tem is organised in (possibly hierarchical) sensor regions governed by leaders with

higher capabilities than the other region nodes (called motes). TCMote uses tuple

channels for one-to-many and many-to-one communication between region sen-

sors and the region leader in a single-hop. In another WSN middleware, TS-

Mid [LRM08], tuple space-based logical regions are used for power saving; there,

regional leaders dispatch operations to normal nodes and transmit results to sink

nodes.

249

CHAPTER 10. SELF-ORGANISING COORDINATION REGIONS

Swarm robotics In the swarm steering study [WAC+14], the authors lever-

age dynamically selected, human-controlled leaders to influence and guide robot

swarms towards dynamic goal regions.

Traffic light control The framework [JM18] for decentralised traffic light con-

trol is based on hierarchical multi-agent system organised as per SCR. Region

agents model regions of the traffic network. They consist of intersection agents

(SCR leaders) that coordinate with other intersection agents and control a set of

turning movement agents (SCR downstream process), which learn to behave col-

lectively and provide feedback at the corresponding intersection (SCR upstream

process).

Resource management In [YKO03], a hierarchical system for the manage-

ment of resources in large-scale multi-agent domains is described. In this ap-

proach, called Distributed Dispatcher Manager (DDM), agents are organised into

teams where communication is restricted to happen only between group subor-

dinates to the corresponding team leaders. Leaders, which can also be grouped

to form higher-order teams. collect information from subordinates and propagate

resource assignments back. In another work, Mission-oriented Adaptive Place-

ment (MAP) [Pau+19], SCR is adopted to implement a resource management

framework for self-adaptive dispersal of computing services in multi-layer infras-

tructures. The approach leverages regional load balancing and inter-region coor-

dination for global load balancing.

Decentralised reinforcement learning In [ZLA10], a decentralised approach

to reinforcement learning is proposed that leverages a multi-level, supervision-based

organisation to coordinate the learning process: there, lower-level agents (called

subordinates) are grouped into clusters, depending on how much they interact

together, and report states and rewards to supervising agents (called supervisors),

which in turn provide supervisory information to guide the learning agents in the

exploration of their state-action spaces.

Morphogenesis In [Zah19], SCR is used to implement an algorithm, inspired

by the working of vascular systems of plants, for the dynamic distribution of re-

250

CHAPTER 10. SELF-ORGANISING COORDINATION REGIONS

Figure 10.1: SCR from a structural perspective—see description in Section 10.2.1.
Notation: “gateway-like” nodes denote candidate leaders (red for active ones, grey
for unelected ones); small grey squares denote relays; small grey circles denote
users/workers.

sources aimed at the regulation of morphogenetic processes. This is called Vascular

Morphogenesis Controller (VMC). A VMC system consists of an acyclic directed

graphs where root notes (i.e., the leaders) acquire and distribute resources to leaves

in a forward flow, and leaves, depending on their environmental conditions, provide

a backward flow of guiding signals used to adjust the thickness of connections—

influencing the amount of resources flowing in, which in turn affects creation and

removal of nodes (cf., branching and shedding in plants).

Other known uses Instances of the pattern can be found in other works that

include distributed sensing [CV18], target counting [PDV17], group management

for target tracking [Liu+04], situated problem solving [Cas+19b], design of self-

adaptation control loops [Wey+13] (as discussed above), crowd tracking and steer-

ing [BPV15; Cas+19a] in opportunistic IoT, as well as peer-to-peer clouds [CV19].

251

CHAPTER 10. SELF-ORGANISING COORDINATION REGIONS

10.2 SCR Pattern Description

Intent Support scalable control and monitoring of a distributed system, with

resiliency to failures and dynamicity, and balancing centralisation and decentral-

isation in decision-making. In particular, it promotes the formation of dynamic

groups of components, while taking into account the context (as induced by the

environment or problem space).

Name and synonyms

• Self-organising Coordination Regions. This reflects the decentralised nature

of this pattern, as well as its support for coordination through scoped, en-

dogenous, emergent structures and dynamics.

• Decentralised Multi-Orchestration. This is also a suitable name, as the pat-

tern defines a decentralised coordination strategy for injecting multiple or-

chestration points into a system, creating corresponding system partitions

regulated through feedback loops.

• SGCG. This name denotes the chain of aggregate programming blocks

that provides a possible implementation schema of the pattern (see Sec-

tion 10.2.6).

10.2.1 Structure and participants

Structurally, the pattern is organised as of Figure 10.1. The system can be log-

ically represented as a network of nodes on which spatially extended and dynamic

structures, called regions, emerge, each “containing” a subset of devices. These

components can assume at any time one or more of the following roles1:

• Candidate leader : a node that is eligible, by virtue of its position, resources,

or capabilities2 for being elected as leader of a group of nodes or a region of

space;

1Depending on the scenario and the particular instantiation of the pattern, the types of
entities involved may take specialised names, such as those reported in Table 10.1.

2Even though the pattern itself makes no assumption on the network structure, on an edge
deployment usually candidate leaders correspond to edge servers.

252

CHAPTER 10. SELF-ORGANISING COORDINATION REGIONS

Pattern
term

Synonyms/specialised terms based on context

Networks
Master/Worker
Architecture

Cluster Man-
agement

Coordination Others

Leader Hub, Root
Master, Control
plane

Manager
Orchestrator,
Coordinator

Principal, Super-
visor

Candidate
leader

Secondary mas-
ter

Backup man-
ager

Member Node Worker, Slave Agent
Component, Co-
ordinable

User, Follower,
Subordinate,
Participant

Intermediary
Relay, Link,
Router

Work queue
Channels, Con-
nectors

Forwarder,
Intermediary

Region Partition Subtask
(Sub-
)Cluster

Team, Coalition Area, Division

Table 10.1: Examples of specialised terminology for the pattern components in
different contexts.

• Leader : a node that is responsible for processing information obtained from

other nodes in its region and enacting decisions within the region;

• Member or subordinate (of a region): a node (e.g., a user or worker node)

that sends/receives information to/from the leader of the region it is part of,

through intermediaries;

• Intermediary : a node that mediates interaction between leaders and mem-

bers.

The regions may be logical or physical, may cover a part or the entirety of the

space, and may be strictly separated or overlapping. The intermediaries mediate

the interaction between leaders and members; sometimes, e.g., in peer-to-peer

networks, these may work as relays.

10.2.2 Dynamics and collaborations

The pattern induces a computational behaviour organised in four phases (Fig-

ure 10.2):

1. Election of leaders. Leaders are elected from the set of candidates.

2. Formation of regions. Structures are created such that each user is assigned

to a single leader, and information can flow in both directions through proper

communication paths.

253

CHAPTER 10. SELF-ORGANISING COORDINATION REGIONS

(a) Network of devices (b) Candidate leaders

(c) Leaders get elected (d) Region formation

(e) Information collection (f) Decision propagation

Figure 10.2: Series of snapshots showing the phases of the pattern.

254

CHAPTER 10. SELF-ORGANISING COORDINATION REGIONS

Figure 10.3: SCR from a dynamical perspective—see description in Section 10.2.2.
Notation: solid arrows represent required inputs or unavoidable perturbations;
dashed lines denote possible feedback loops.

3. Information flow from users to leaders. User nodes stream data or updates

needed by leaders to achieve the system goals, and some processing can

occur en-route—examples include sensor data, local events, service requests,

or feedback information for the assigned tasks.

4. Information flow from leaders to users. Leaders stream computation results

to all members of their managed region—it may be a decision to be enacted,

a collective view to be propagated, instructions to be assigned, and so on.

Note that these phases are only conceptually sequential: they are rather dy-

namical processes that happen concurrently, are continuously revised, and are

related by input/output dependencies (see Figure 10.3). Specifically, the leader

election phase can be thought as an active process black box that can react to

various perturbations to automatically revise the selection of leaders and shape

of regions; then, as regions change, the corresponding collection and propagation

processes need to adapt. Moreover, the system can be configured with feedback

loops: information propagated by leaders may produce an effect on workers that

can subsequently get perceived by leaders through collected data.

10.2.3 Variants and extensions

• Leader election with pre-established regions. In some cases, the regions must

be decided before the corresponding leaders are elected.

255

CHAPTER 10. SELF-ORGANISING COORDINATION REGIONS

• Connected leaders. In some scenario, communication between leaders is de-

sired to allow for global, system-wide coordination that goes beyond the

needs of individual regions.

• Hierarchical organisation. The pattern can be applied recursively: a region

can be split into sub-regions governed by sub-leaders, and so on.

• Overlapping regions. Multiple instances of the pattern may be concurrently

spawned with different regions, in order to provide in each device a superim-

posed view of its various “localities”. This requires the capability to execute

some parts of the distributed coordination algorithm concurrently.

10.2.4 Applicability

When to apply Use of the SCR pattern is encouraged in any of the following:

• A large-scale situated system needs to self-organise in such a way that its

components can be monitored and coordinated according to a view larger

than local, such as in complex situation recognition.

• A balance between centralisation and decentralisation is required to support

effective decision-making in large-scale, dynamic contexts.

• All or part of the information should be processed nearby the users, because

of resource constraints like bandwidth, storage, energy, and so on.

• The underlying network structure is unknown, the system is open (new re-

lays, leader candidates and users can join and leave the system dynamically),

failures are possible, or other events can dynamically change the network

structure.

When not to apply Adoption of the SCR pattern is discouraged (or would

lead to degenerate cases) in the following circumstances:

• Decision-making can be carried out in a fully local way.

• Decision-making must be entirely centralised (actually, this could be tackled

by electing a single leader, but more efficient solutions may exist for less

dynamic scenarios).

• The network structure is statically defined.

256

CHAPTER 10. SELF-ORGANISING COORDINATION REGIONS

10.2.5 Consequences

The SCR pattern has the following consequences:

• Hybrid decision-making. Decisions are taken considering a tunable subset of

the whole system, de-facto creating a hybrid between centralised and decen-

tralised decision-making.

• Sub-network isolation. Unless an extended version of the pattern is deployed,

users belonging to different regions do not participate in the same sub-system

(i.e., they do not exchange data).

• Reduced dependence from deployment and network structure. SCR creates a

sort of dynamic, adaptive network overlay structure on top of the existing

communication infrastructure. By merely organising application logic on

that overlay, the specific shape of the underlying network can be abstracted

away, allowing for easier porting to diverse setups (e.g. cloud, edge, purely

P2P).

• Eventual consistency. Temporal mobility, loss of messages, and device fail-

ures, only temporarily affect the values collected in leaders, and hence, de-

viation from the actual global view.

10.2.6 Implementation

In this section, we describe some implementation issues and possible variants

of the four phases described in Section 10.2.2, and then provide an example spec-

ification in ScaFi.

Election of leaders and formation of regions

• Consensus strategy. Consensus on leadership may involve centralised algo-

rithms, or resort to (more challenging) algorithms for distributed and asyn-

chronous systems [Sto00].

• Candidate leaders. In general, there could be constraints or preferences con-

cerning which nodes can be selected as leaders: coordinators are usually

preferably static, dependable nodes with significant computational and net-

work resources, and little or no power saving concern—such as edge gateways

257

CHAPTER 10. SELF-ORGANISING COORDINATION REGIONS

or fog nodes. Trust could also be used to rate and therefore include/exclude

nodes from the candidate set based on observed activity.

• Time of election. Leaders can be elected statically (i.e., before system exe-

cution) or be dynamically reconsidered, continuously or after a delay.

• Objectives. The goal is usually a configuration of leaders that must be valid

or optimised with respect to a particular property—e.g., uniformity in spa-

tial coverage (as of a smart city environment) or balancing of load (tasks,

workers).

• Adaptivity and resilience. A new leader election process must be activated

when the current leader configuration gets invalidated. E.g., this could hap-

pen due to mobility, change of load, or failure of some leader.

Information spreading

• Gossip. One way to implement spreading of information is through gossip

protocols [Bir07], which are suitable for letting information flow from lead-

ers to users under the condition that the generated information is monotonic

(namely, it can only change in a single direction). Whenever such an as-

sumption does not hold, gossip algorithms should get periodically reset (or

overlapping replicates of the algorithm should execute in parallel [PBV16]).

• Gradient-based information cast. A class of algorithms for distributed infor-

mation spreading is rooted on the idea of carrying information along with a

monotonically-increasing (logical or physical) distance from the information

source. This is suitable both for generating regions once leaders are elected

(by selecting the closest leader) and for propagating information from leaders

to users. Several implementations of the algorithm exist, ranging from dis-

tributed adaptive Bellman-Ford [DB16] to advanced versions and compound

algorithms taking into account aspects like time, speed, and acceleration of

devices [Aud+17].

Information accumulation

• Gossip. Information accumulation is generally a tougher task than informa-

tion spreading. As for spreading, accumulation can be realised by gossiping

258

CHAPTER 10. SELF-ORGANISING COORDINATION REGIONS

information such that the leader is reached with messages from all nodes in

the region: however, this effectively works only in the case of small regions.

• Spanning tree techniques. A more scalable technique is based on building

a spanning tree over the network (locally selecting as parent the closest

neighbour to the source), then accumulating along such tree towards the

leader. Spanning trees, however, are highly fragile to changes in the network:

disruption and creation of links may lead to different configurations, making

naive versions of this algorithm unsuitable for mobile scenarios.

• Multi-path techniques. Multi-path techniques aggregate information along

the source using multiple spanning trees rather than a single one. They are

usually more robust to changes in the network structure, but take more time

to converge in case of stable networks [Vir+18].

10.2.7 Sample code

We propose an implementation draft for the pattern in the paradigm of aggre-

gate computing [BPV15; Vir+19]—used in next section as a basis for evaluating a

smart city case study. The reason for this choice is rooted in the rather straightfor-

ward mapping between the sub-patterns of SCR and the building blocks available

in existing aggregate computing languages, which allow for a concise implementa-

tion.

Pattern implementation schema In ScaFi, the pattern can be encoded as

follows3.

3Purple symbols are non-primitive aggregate building blocks, grey symbols are configuration
parameters, and bold symbols denote methods for local activity to be tailored to the application.

259

CHAPTER 10. SELF-ORGANISING COORDINATION REGIONS

Figure 10.4: A snapshot of the simulation in execution. Edge servers are depicted
as square nodes, users as circular nodes. Leaders are black, big squares; unelected
leaders (working as relays) are smaller, greyed squares. The colour of the circular
dot identifies the id of the region assigned to that node.

class SCR extends AggregateProgram with BlockG with BlockC with BlockS {
def main = {
// selects a field of leaders, with at least grain distance
val leader = branch(isCandidate) { S(grain) } { false }
// creates a gradient from leaders based on a given metric
val potential = distanceTo(leader, metric)
// gathers localInput values towards leaders by aggregation
val convergeCast = C(potential, localInput, aggregationFun)
// on leaders, takes a local decision based on received data
val decision = decisionMaking(leader, convergeCast)
// broadcast decisions and take action
val divergeCast = G(leader, metric, decision)
localAction(divergeCast)

}
}

10.3 Evaluation

10.3.1 Case study #1: dynamic area management

In this section, we present an example implementation of the pattern in the

context of smart cities and edge computing and evaluate it by simulation to reveal

260

CHAPTER 10. SELF-ORGANISING COORDINATION REGIONS

Name Description Values
u Active user devices count [50, 100, 200, 500, 1000]
α Backoff algorithm parameter [0, 10−3, 10−2, 10−1, 1]
ρ Probability a leader stops after 10 min [0, 0.25, 0.5, 0.75, 1]
fb Flag: feedback loop enabled [true, false]

Table 10.2: Free variables for the scenario in exam.

its intrinsic self-organisation character.

Motivation Consider a multimedia application that requires computation over

user-generated video stream and low-latency communication. Example applica-

tions are, e.g., metropolitan collaborative surveillance [Dau+18] and multiplayer

gaming. For the latter, pervasive usage of multi-view and 360-degree-view video

streams is currently limited by delay intolerance and excessive bandwidth usage

[BE17]. Moreover, relevance of low-latency video processing will likely increase

in the future with advancements in mobile augmented reality technology [SC12].

One wants such multimedia application to execute on a smart urban environment,

where users, equipped with mobile devices (smartphones, or even augmented-

reality equipment) can move. The smart city is populated with a network of static

(non-mobile) edge servers, with which mobile devices can communicate. The goal

is to adaptively select a subset of edge nodes (enough to sustain the computa-

tion) to work as local leaders, gather and redirect the video streams from user

devices to one leader edge device, process the data gathered, and finally spread

the computation result back to the users.

Scenario description We consider a scenario of multiple edge servers (specifi-

cally, 126) in the centre of the Italian city of Cesena, all participating in the system

as leader candidates. Their positions form an irregular grid, and vary on different

simulation runs. We dynamically select a subset of these leader candidates to work

as leaders, and let the others participate in the system as relays. More precisely,

the edge servers elect a leader for every region of 200 meters in radius, competing

using the S building block (namely, breaking symmetry using a device local id,

and favouring already established leaders if in a proper range).

The goal of the system is to collect data streams generated by users, aggregate

261

CHAPTER 10. SELF-ORGANISING COORDINATION REGIONS

Name Description Unit

E of feedback
adjustment

Mean of the feedback adjustment for every leader. It measures
how much the radius of the coordinated region is extended.
Lower values indicate bigger regions.

m

σ of feedback
adjustment

Standard deviation of the feedback adjustment for every
leader. It is an indication of how much the radius of the co-
ordinated region varies among leaders. Higher values indicate
higher disparity in such values, meaning that the feedback
system is altering the region sizes more intensively.

m

∑
of clients

per edge
server

Overall number of users served. The value should ideally
match the number of users in the system. Higher values indi-
cate streams being processed by multiple leaders (due to users
changing region), lower values indicate non-served users.

users

σ of clients
per edge
server

Standard deviation of number of users served by each leader.
Indication of load balancing. Higher values indicate that more
computational capacity is required for some leaders w.r.t. oth-
ers. The lower, the better balanced is the load.

users

Table 10.3: Dynamic area management: measures for the case study.

it, and diffuse to the whole region the number of streams being processed. Users are

modelled as devices moving along roads open to pedestrian traffic (data obtained

from OpenStreetMap [HW08]) at a constant speed of 1.4m
s

. Bidirectional commu-

nication is considered established between users and edge servers, and among edge

servers, if physical distance is within WiFi range (100m). Users do not directly

communicate with each other. In our experiment, we let the system run for 10

simulated minutes, then we simulate a disruptive event: elected leaders fail with

probability ρ—e.g. as would happen due to a city-wise power shortage. After this

event, we simulate 10 further minutes of system evolution.

We compare two implementations of the SCR pattern, a classic one (as de-

scribed in Section 10.2.6) and a version with a feedback loop. In the latter, leaders

try to coordinate and resize their regions in the attempt to cover approximately the

same number of users, to reduce disparities in elaboration load that would cause

slowdowns on overloaded edge servers. We implement self-organising adaptation

of region size by feeding the information on the number of served users back to

the leader, and using it to dynamically change the region size (the more users, the

smaller the region), competing with other leaders. In order to prevent sharp oscil-

lations of the region sizes, with possible resonance phenomena, we don’t feed the

262

CHAPTER 10. SELF-ORGANISING COORDINATION REGIONS

Figure 10.5: Evaluation of the backoff parameter. Values are averaged along all
values of u and ρ. Not considering new values (α = 0) has a similar effect to dis-
abling feedback entirely. Plugging the feedback directly, without filtering, makes
the system oscillate. Other values show how α tunes the trade-off between reac-
tivity and stability, with α = 0.01 both smooth and with an impact on the system
comparable to α = 0.1.

served user count back to the algorithm input directly, but we filter it using an ex-

ponential backoff (a low pass filter), namely, the feedback value is αut+(1−α)ut−1,

where ut is the count of served users at time t.

We first evaluate good values for α in our scenario, by looking at how different

values affect the size of regions and their stability. We then measure performance

and resilience for both the base and the optimal-α versions of the SCR pattern

varying the number of users and ρ, and observe the number of users served in total

and by each edge server. A summary of the free variables for the case study is

given in Table 10.2; measures are instead summarised and explained in Table 10.3.

The pattern has been implemented in Protelis [PVB15], and simulations have

been performed using Alchemist [PMV13]. We executed 100 replicas of the experi-

ment for each configuration in the cartesian product of the parameters values, vary-

ing displacement of edge devices, initial position of users and their waypoints, and

execution times of devices. Data has been processed using Python xarray [HH17]

and matplotlib [Hun07]. The experiments include a reference implementation of

the SCR pattern, they are entirely open-sourced, automated, and reproducible

using the instructions provided in a publicly accessible repository4.

4https://bitbucket.org/danysk/experiment-2019-coordination-dynamic-orchestration.

263

https://bitbucket.org/danysk/experiment-2019-coordination-dynamic-orchestration

CHAPTER 10. SELF-ORGANISING COORDINATION REGIONS

Results We initially measure the benefits of using the feedback system and the

impact of different values for α. Results are depicted and described in Figure 10.5,

and show how α = 10−2 is the best choice among the analysed values.

We then evaluate correctness and performance of the algorithm both without

and with feedback enabled (α = 10−2). Results presented in Figure 10.6 show that

the system is able to serve all the users, actually serving some users twice at the

moment they cross the boundary between neighbouring regions.

Finally, we study resilience of the system to failures by analysing its behaviour

with different sudden disruptions hitting the leaders. Figure 10.7 shows the pattern

reaches stability in few seconds even when disruption is large, and regardless of

the feedback system. At disruption time, several nodes are not served and several

others get instead apparently overserved, as they are in an inconsistent state and

participating in multiple, quickly changing regions, with their streams getting lost

because of the time required to recover both regions and spanning trees for data

accumulation. The feedback system has a negligible impact on resilience, but

improves load balancing both before and after disruption.

Figure 10.6: System correctness. Warm colours are results with feedback system
disabled, cold colours are results with feedback system enabled and α = 10−2.
Both configurations serve all the users, and actually slightly “overserve” them.
This is due to the fact that users joining a different region, have, for some time,
their streams counted also in the region they left due to network propagation
and elaboration times. The feedback system provides benefits in terms of load
balancing, as depicted in the right chart: the lower σ means lower disparity among
leaders in the number of served users.

264

CHAPTER 10. SELF-ORGANISING COORDINATION REGIONS

Figure 10.7: System resilience to disruption. Both the pattern configurations pro-
vide resilience to disruptions. The system is able to find new leaders in few seconds
even if the whole set of previously selected leaders is shut off. The feedbacked sys-
tem seems to achieve slightly better performance for smaller disruptions, but takes
more time to stabilise in the worst case. As seen in Figure 10.6, the feedbacked
system achieves visible better performance in terms of load balancing, both before
and after the disruptive event, regardless of its entity.

10.3.2 Case study #2: situated problem solving

Situated problem solving system model Our goal is to build a distributed

coordination system for large-scale, situated, collaborative problem detection and

problem solving. The generalised model we consider is as follows. A system is

situated within an environment, where problems (or issues) arise. The environment

is inhabited by a (large) set of heterogeneous agents (a.k.a. workers) making up

the IoT system, which roam inside it and interact opportunistically. Workers have

sensors and actuators, to perceive the environment for potential issues and perform

repairing actions, as well as specific skills (a.k.a. capabilities)—i.e., an ontology of

pragmatic or epistemic actions potentially useful for the considered problems.

As a running example of a hybrid problem-solving IoT system, consider a

wide smart manufacturing facility populated with machinery, mobile robots and

humans. Due to the facility’s operation, toxic waste may be spilled in unknown

places within the floor. Sensors—or roaming human workers—may detect waste,

which due to health hazards must be cleaned by specialised robots. Cleaning

robots move to the toxic waste spill area and clean it, upon instruction of various

edge-level system control entities responsible for decision-making. Since the system

265

CHAPTER 10. SELF-ORGANISING COORDINATION REGIONS

goal is critical—toxic waste is dangerous—the system must be resilient in fulfilling

its goal and failure of components must not lead to violation of the system goal.

Since the toxic spillage problem typically emerges in unknown places, it is to

be tackled dynamically by cooperation between different entities (i.e., detected

through specialised sensors or human workers, and solved by dispatching cleaning

robots) while overall control and coordination must take place in a way that is

resilient to failure (e.g., faults in single devices or in the control infrastructure

must not lead to global failure).

Therefore, the key entities we consider for collaborative problem solving are:

• Environment. An IoT system’s spatial operational environment that needs

to be monitored—e.g., the physical area of the smart manufacturing facility.

• Problems. Within the system’s environment, problems (or issues) may arise

that need to be solved. Those are situated (i.e., localised in space and time);

e.g., a toxic waste spill occurs in a specific area within the manufacturing

facility at some specific time point.

• Workers. These are active, situated agents (e.g., IoT devices, humans,

robots) that inhabit the environment and are part of the system. They which

opportunistically wander or profitably visit a set of loci of interest to perform

tasks. Workers may be heterogeneous, exposing different capabilities w.r.t.

detecting or solving problems. For the toxic waste scenario, things or humans

enjoy problem detection capabilities (i.e., sensing toxins), while specialised

robots are responsible for solving problems (i.e., actuating—cleaning toxic

waste). When a worker detects a problem, it cannot autonomously decide

how to deal with it, and must report the issue to another entity responsible

for decision-making.

• Coordinators. Resource-rich computational entities, deployed on the edge,

are responsible for coordinating workers. A coordinator takes decisions about

issues it has been notified about, which result in assignment of tasks to work-

ers under its supervision. Workers which detect problems notify their coor-

dinator, who subsequently allocates appropriate tasks to worker(s) with the

necessary capabilities. Coordinators themselves may differ in their decision-

making ability or computational power.

266

CHAPTER 10. SELF-ORGANISING COORDINATION REGIONS

The system entities above are not static: they interact towards the global

system goal. When a worker detects a problem, either the worker is allowed to

directly handle it, or not. The former case is of course rather simplistic and assumes

no need for coordination for solving problems; the worker may solve the problem

by itself if it owns needed capabilities, or may delegate tasks to other workers.

However, in the latter case, which is the one we focus here, the worker cannot

autonomously take decisions about how to deal with the problem, and must report

the problem to another entity responsible for decision-making, the coordinator.

Coordinators are responsible for determining the assignment (a.k.a. allocation)

of problems/tasks to workers. The level of sophistication of such decision-making

carried out by the coordinator is of course left to the system designer to implement

in a domain-specific manner. The coordinator might elaborate a (partial) plan,

hence assigning (partial) sequences of actions to workers, or it might just delegate

the issue to the workers, assuming they have the knowledge to do the planning

themselves—in this chapter, we mainly consider the latter option. Additionally,

a coordinator is expected to play a role throughout the problem solving process,

i.e., by also supervising or monitoring the activity of workers and providing any

needed help. Accordingly, workers engaged in a task can provide feedback to the

coordinator in order to report progress, request further resources, or provide any

information useful for the specific and overall workflow.

A smart choice of coordinators is generally desired, where “smart” depends on

various factors; typically, this means choosing nodes that both guarantee (i) good

and uniform spatial coverage of the environment, and (ii) balanced coverage of

workers—which might be unevenly distributed across space. We support multiple

coordinators, each of which is responsible for a certain portion of the environment

(called an area). Decision-making is decentralised, as coordinators control sets of

workers independently.

However, components in a system might fail, as is especially the case in the

highly distributed, volatile IoT-based systems we target. Assuming workers are

generally available, failure of coordinators must be tackled, as workers cannot solve

problems by themselves and their coordination is critical for achieving the system

goal. To this end, we support dynamic selection of coordinators in case of failure:

candidate coordinators are system components which (in varying degrees) are able

267

CHAPTER 10. SELF-ORGANISING COORDINATION REGIONS

Elected
Coordinator

(Edge)

Detector

Detector/Solver

Solver

…

Coordinator Area

Backup
Coordinator

(Edge)

Downstreaming/
Upstreaming

Upstreaming/
Downstreaming

Profile
Capabilities

Problems
Assignments

Elected
Coordinator

Coordinator Area

Backup
Coordinator

Detector

Solver

…
……

…

Feedbacks
Problems

Figure 10.8: Problem-solving ecosystem.

to perform coordination duties (e.g., as being resourceful or trusted enough). Out

of candidate coordinators, some leaders are elected (active coordinators), respon-

sible for a set of workers; those not elected (i.e., inactive) are considered “backup

coordinators”. Failure of an elected, active coordinator leads to dynamic, auto-

matic selection of a backup one; thus, the system is resilient to their failure.

We implement the situated, collaborative problem solving workflow of Fig-

ure 10.8 through the specification of Figure 10.9.

Problem-solving system concerns The model of Section 10.3.2 defines key

abstractions, and relationships among them, essential to the problem solving con-

ception. The system designer can take the problem solving workflow as a functional

black box: she just needs to provide inputs/configuration and refine the abstrac-

tions with domain-specific details. Methodologically, the following needs to be

defined.

• Problem model — A taxonomy of the problems has to be defined, together

with associated properties and metadata for use, e.g., in allocation decision-

making. In the toxic waste removal scenario, a spillage problem can be

modelled, e.g., by specifying the location in the environment, the kind of

substance, and the rough amount of material to be disposed.

268

CHAPTER 10. SELF-ORGANISING COORDINATION REGIONS

class ProblemSolvingEcosystem extends AggregateProgram with ProblemAPI {
override def main = {
val coordinators = priorityS(grain, priorityField)
val potential = branch(infoPropagationNet){gradient(coordinators)}{+∞}
val problems = collectSets(downTo=potential, problemOccurrences)
val solvers = collectSets(downTo=potential, solverProfile)
val feedbacks = collectSets(downTo=potential, feedbackField).groupBy(_.
problem)
val assignments = branch(coordinators){

allocate(coordinators,solvers,problems,feedbacks) }{ Set() }
val tasks = broadcast(potential, assignments)
branch(workers){ execute(tasks) }{ () }

} }

Figure 10.9: Excerpt of the aggregate program modelling situated problem solving
as a decentralised workflow. Gray, underlined symbols denote fields of parameters
(e.g., grain) or built-in/sensor values (e.g., solverProfile). Black, bold symbols
denote application-specific functionality. Red and purple symbols denote core and
library constructs, respectively.

• Agents model — The agents as well form a taxonomy. In the toxic waste

removal scenario, we may have human or robot detectors, and three (possibly

overlapping) solver roles: waste collector, disposer, and cleaner. So, sensors

and actuators have to be defined and provided: e.g., the waste collector

may be equipped with a camera, a pump, and mechanical arm. Agents

have capabilities—crucial for problem allocation; e.g., waste collectors and

disposers may advertise their ability to carry on light or heavy loads, or their

resistance to hot or acid substances. Finally, we only assume that an agent

is able to communicate , at the minimum, with other nearby agents—the

concrete modality being a design decision.

• Solving processes — The allocation strategy used by the coordinator to as-

sign tasks/problems to solvers has to be designed, weighing various vari-

ables (e.g., required, preferred, and optional skills, solver-to-problem dis-

tance, urgency etc.) in an ad-hoc manner, and possibly leveraging heuristics

and ML techniques for optimisation purposes. Also, the solving process for

each problem type has to be designed in terms of a micro-level workflow,

expressed e.g., via finite-state automata. This includes identifying phases

and states of the activity, pre- and post-conditions preventing or enabling

269

CHAPTER 10. SELF-ORGANISING COORDINATION REGIONS

progress, and corresponding feedback messages for the coordinator. E.g., the

spillage problem solving workflow can be captured as going through states

{start , collected , disposed , cleaned , disposed&cleaned}; through feedback, the

coordinator can mobilize cleaners and disposers once the collected stage is

reached.

• System and environment design — From the definition of sensors and actu-

ators follows the model of the environment as perceived by an agent. More-

over, other elements of the environment and overall system can be specified,

including number of agents; number of edge servers (candidate coordinators);

number and dimension of areas; and infrastructural elements such as wireless

access points for communication.

Example scenario: infrastructural maintenance in a smart city To eval-

uate the proposed approach, we illustrate a case study of urban infrastructural

maintenance in smart cities and set up an experimental framework with simula-

tions based on the ScaFi-Alchemist platform [CPV16]5. Our evaluation’s focus

is on functional correctness, resilience, and on the actual automatic triggering of

adaptivity mechanisms.

As a case study, consider a scenario where autonomous agents (e.g., robots)

and human workers are collectively employed for maintaining a city’s infrastruc-

ture. As parts of the city’s common facilities may break or degrade, issues must be

quickly identified and dealt with appropriate actions. This entails the notification

and resolution of issues by the active agents operating within it. Non-autonomous

agents might be useful as well: cameras and diffused plain sensors may provide

data to smart software components which are capable of inferring semantics and

contributing to the system. The issues arising in the city’s facilities are situated,

i.e., they have an identity and location in space-time. Agents may use electro-

magnetic sensors, smoke/gas sensors, cameras, or even accept inputs by citizens to

detect potential problems. Naturally, agents who identify issues might not be able

to solve those by themselves: they may not have required skills or enough resources

to deal with the problem, and hence they have to report it to a “control centre”.

5The source code of simulations as well as instructions for running the experiments
and generating the plots are available at the repository https://github.com/metaphori/

engineering-collaborative-edge-iot.

270

https://github.com/metaphori/engineering-collaborative-edge-iot
https://github.com/metaphori/engineering-collaborative-edge-iot

CHAPTER 10. SELF-ORGANISING COORDINATION REGIONS

Note that issues might be dealt with, in principle, in a completely decentralised

way: the agent who finds an issue may locally broadcast requests for specialists

or resources, without involving any central entity, and the closest matching agents

would respond.

Such a problem setting fits our approach particularly well. We advocate keep-

ing the system quite decentralised, by splitting it into areas of space of reasonable

size, while also introducing centralisation points (the coordinators) to provide more

sophisticated/optimised coordination and decision-making. Coordinators should

be placed in strategic/central places of the city, and as they may have to optimise

decisions, they should be resourceful machines—e.g., a cloudlet [Sat+09] or an

edge computer. We assume security countermeasures are taken for the system to

be safe, as well as that potential coordinators outnumber required coordinators

(e.g., for redundancy) and have legal ability to carry on their tasks. A smart

coordinator might choose to allocate problems to workers based on elements like

problem severity, skills of workers, or distance from workers to problems; espe-

cially when heterogeneous teams are needed to deal with complex issues, such an

allocation decision is not an easy one to be left to a self-organising team of workers.

Experimental setup and simulation framework For our experiments, we em-

ploy the aggregate specification of Figure 10.9, enriched with simulation-specific

code for parametrisation and data gathering. The experimental setting and simu-

lation scenario (depicted in Figure 10.10) are as follows. A number of devices are

supposed to be deployed in the city centre of Vienna: 300 lightweight devices and

10 edge servers. Two devices can communicate if they are within 50 meters range.

All these devices, including edge servers, are assumed to run the AC middleware

as a service and the aggregate application described by the program in Figure 10.9

on top. They are assumed to “fire” (i.e., to run computation rounds and send

corresponding data to neighbours) asynchronously but at similar frequencies.

We run simulations considering either “smart” coordinators (which use an ad-

vanced allocation strategy of problems to workers—abstracting from the concrete

one) or “naive” coordinators, as indicated by a smartness boolean parameter. We

measure, along time: (i) the total number of problems detected by all workers, (ii)

the problems streamed to the coordinator but still unhandled, (iii) the problems

271

CHAPTER 10. SELF-ORGANISING COORDINATION REGIONS

Figure 10.10: Snapshot of the simulation scenario. Large, blue nodes represent
edge devices eligible for election as coordinators; large red-filled squares denote
leaders. Small circles represent workers; their filling colour reflects the potential
field (warmer colours when closer to coordinators). Square contours (e.g., bottom-
left corner) denote nodes currently working on a problem. Gray edges depict
neighbouring links.

both allocated to and accepted by at least one worker (i.e., those successfully as-

signed), and (iv), the total number of problems handled to completion. We observe

the system response by injecting problem occurrences and failure as described in

Figure 10.11. Our experiments are implemented as ScaFi simulations [CPV16]

and available online.

Experimental results The experimental results are reported in Figure 10.11.

Our evaluation goals concern a qualitative assessment of correctness, adaptivity

and resilience of the system.

• Correctness — Evidence comes from the fact that all the problems found

272

CHAPTER 10. SELF-ORGANISING COORDINATION REGIONS

Figure 10.11: Aggregated results of multiple simulation runs, with “naive” (left)
and “smart” (right) coordinators. For each case, 50 simulation instances are exe-
cuted for different random seeds, and the mean values are taken for the measured
quantities. From t0 = 150 to t1 = 600 time units, a significant number of “prob-
lems” are randomly generated, so that they can be detected by worker devices.
Moreover, from t2 = 300 to t3 = 310, a blackout is injected, with the effect of
temporarily detaching the edge servers from the network.

have been managed: this means that both the notification of problems, the

task allocation, and the feedback process work well. Moreover, notice how

the injection of a blackout, disconnecting edge servers from the network

(between t2 = 300 to t3 = 310), provides a delay but does not affect the out-

come. Finally, differences emerge between coordinators that use an advanced

allocation strategy and naive ones: overall, one can observe the increase of

performance when smart allocation decisions are taken.

• Adaptivity — When the active coordinators fail, the system self-organizes

to elect new coordinators. This results into an adaptation of the structures

supporting the data flows.

• Resilience — Resilience naturally emerges: despite coordination failures,

group formation changes or general faults in the control infrastructure, the

system does not fail: it correctly responds to failures through appropriate

coordination reactions. Notice the gentle degradation of performance caused

by failure and the restoration of conventional efficiency.

Discussion

273

CHAPTER 10. SELF-ORGANISING COORDINATION REGIONS

• Functional Perspective — Elements about the functional correctness of the

solution are empirically verified in this section. The solution schema in Sec-

tion 7.6.1 is the core of the approach but may not satisfy all the functional

properties needed by a real-world application. For instance, the designer

needs to decide what happens when an area lacks resources for specific prob-

lems or coordinators do not receive timely feedback.

• Non-Functional Perspective

A) Bandwidth and storage — The amount of data that needs to be prop-

agated depends on the number of nodes in each area, the amount of

problem solving activity, and amount of data required by the coordi-

nators (concerning problem reporting, solver profiles, and feedbacks).

Storage is needed because data propagation through aggregate opera-

tors G and C requires keeping state. The specification in Figure 10.9

partially deals with this by using a subset of nodes for the epidemic

distribution of data in each area.

B) Latency — In the simplest case, the time between problem identifica-

tion and resolution is TC + TA + TG + TS where TC is the time needed

to collect problem data to the coordinator, TA is the time needed by

the coordinator to make its allocation decision, TG is the time needed

to transmit the allocation decision, and TS is the time needed by the

worker to solve the problem. In particular, TC and TG are proportional

to grain and depend on the firing frequency of nodes and the propaga-

tion delay, whereas TA and TS are application-specific. While it is useful

to be aware of these performance aspects, it must be noticed that a va-

riety of optimisations can be applied to the execution process globally

sustaining an aggregate application [VCP16]: messages can be com-

pressed (or include only deltas), round frequency can be dynamically

adjusted according to desired QoS, communications might be optimised

through localisation in edge access points—what is possible ultimately

depends on assumptions, configuration, and available infrastructure.

– Usability — A description of what the designer must define and what is

provided by our approach is given Section 10.3.2. For the large part of

274

CHAPTER 10. SELF-ORGANISING COORDINATION REGIONS

application design, the designer can focus on the business logic, filling

in the gaps with specifications of problems, agents, solution workflows,

coordination, and environment. However, knowledge about AC and its

toolchain is required for deployment and implementation of extensions

with respect to the basic workflow.

• Generality and Extensions — The specification of Figure 10.9 represents a

general solution schema that can be specialised for different situated prob-

lem solving applications, whose key design dimensions are explained in Sec-

tion 10.3.2. Straightforward examples are those in smart cities, such as infras-

tructural maintenance (Section 10.3.2), but include generally any scenario in-

volving situated monitoring, decision-making, and action (e.g., firefighting,

car crash management, etc.). Depending on the specific scenario, extensions

may mix “centralised” and “localised” decision-making, mix “opportunistic”

and “planned” monitoring, allow collaboration globally or among adjacent

areas, or balance the distribution of skills/resources among areas according

to certain metrics (e.g., occurrences of problems, or criticality).

10.3.3 Case study #3: coordinating edge computations

Motivation In this case study, we focus on the problem of decentralised coordina-

tion of edge resources and computations in open scenarios. The idea is to leverage

decentralised coordination, self-organisation, and spatial patterns in order to pro-

vide system-level adaptivity and resilience. The system works by dynamically

partitioning itself into areas (which can be thought of as edge-clouds) governed by

corresponding managers, and setting up downstream and upstream coordination

flows from managers to peripheral nodes (i.e., workers and users) and vice versa.

Problem Definition The recurring theme in FMEC is the smart exploitation of

resources, i.e., the utilisation of idle resources from devices that were not usually

fully considered for computational or storage purposes (e.g., networking and end

devices), and the coordination of resources and tasks to both extend the possi-

bilities of individual components and attain non-functional advantage in system

as well as user processes. In this chapter, we focus on large-scale scenarios char-

275

CHAPTER 10. SELF-ORGANISING COORDINATION REGIONS

acterised by dense groupings of mobile and heterogeneous devices with diverse

computational and networking capabilities. The question addressed is: how can

we expose, manage, and coordinate the resources made available by such computa-

tional collective in order to build a scalable, adaptive edge computing platform?

Our reference scenario is a city, more or less smart (in the sense that it might

provide no, little, or much infrastructure), that hosts a large number of compu-

tational things and agents (possibly mobile, such as people with mobile phones

or wearable devices); then, all these devices may offer/advertise resources (e.g., à

la volunteer computing [And10]) or request resources to the system—e.g., for task

execution. The resource providers and consumers are situated entities—i.e., they

reside in a environment (which can be perceived and manipulated) and their po-

sition is generally relevant since it affects interaction (e.g., who can be contacted,

or the cost of communications). Accordingly, we address the problem of building

a system for large-scale, opportunistic, situated resource management and schedul-

ing that spans the thing, edge, and fog layers. Specifically our goal is to present a

design approach that fosters some key properties:

• Scalability. The system should be able to scale with the number of devices

and the size of geographical deployments (i.e., also with the density of de-

vices). This calls for decentralisation in interaction and decision-making.

• Minimal connectivity requirements. Devices do not need to be connected to

the Internet; we only assume a device is able to send messages within its

neighbourhood.

• Minimal infrastructural requirements. The approach should work seamlessly

with or without preexisting infrastructure in place, i.e., it could leverage

mobile ad-hoc networking (MANET) [Bel+13].

• Opportunism. The system and its users leverage opportunistic interactions

to coordinate and carry out activities.

• Adaptivity. The system should be self-adaptive with respect to infrastruc-

tural changes as well as perturbations induced by the environment and the

autonomous behaviour of agents.

• Openness. Components can dynamically enter or exit the system in order to

participate in it or not.

276

CHAPTER 10. SELF-ORGANISING COORDINATION REGIONS

• Resilience and graceful degradation. Permanent or temporary failures of

devices and infrastructural elements should not significantly affect the system

functionality.

• Hybrid resource coordination style. The system should balance centralised

and decentralised decision-making for the allocation of tasks to resources.

• Global strategies and local tactics. The system should balance between the

exploitation of local opportunities and the pursuing of global-level benefits.

In other words, we make very few assumptions on connectivity and reliability

and rather address dynamicity through adaptivity and opportunistic coordination.

Also, we trade off performance for adaptivity, as our focus is not on statically com-

puting an optimal resource allocation, but rather supporting edge computations

in highly dynamic scenarios.

Figure 10.12: Visual overview of the proposed design for self-organising edge-
clouds.

Key entities and collaborations We consider an environment inhabited by

(possibly mobile) devices. These devices are entities of any sort capable of compu-

277

CHAPTER 10. SELF-ORGANISING COORDINATION REGIONS

tation and networking; they may include user devices (e.g., smartphones or other

wearables), IoT devices (e.g., smart light poles, traffic lights), edge devices (e.g.,

gateways, servers, roadside units) and fog devices (e.g., routers, cellular base sta-

tions). We assume the network topology is dynamic and not known apriori: these

devices can only interact in an opportunistic fashion by exchanging messages with

other devices (also called neighbours) located in the vicinity. A device, according

to its characteristics and configuration, may play one or more of the following

roles :

• Resource providers (aka workers) — These devices offer (a share of their)

resources to the system and are available for running tasks in a sandboxed

environment on the behalf of client devices. They may provide both a share

of resources for peer-to-peer negotiation and a share of resources for orches-

trated coordination.

• Resource consumers (aka users, clients) — These devices delegate the exe-

cution of tasks to the system by requesting appropriate resources. Clients

may contact nearby workers directly (e.g., within a 3-hop range) or dispatch

a request to their master (whose location may be unknown).

• Manager nodes (aka leaders) — These devices are responsible for managing

(i.e., monitoring and controlling) workers and satisfying requests from clients.

They are typically resourceful computers (e.g., edge servers or fog nodes),

preferably non-mobile, and located in correspondence of hotspots to ensure

wide “coverage” of devices.

• Relay nodes (aka links) — These devices collectively create a mesh network

to ensure there exists a hop-by-hop path from workers and clients to orches-

trators. The Link role is just an optimisation (with respect to the case in

which any device contributes to information spreading) to limit the amount

of energy spent in sustaining the system through continuous coordination.

These roles represent a way to support various levels of commitment to the system

(for flexibility with respect to local resources and the will to participate) as well

as to reason about the different functions that need to be maintained. Notice that

all these roles may coexist in a given device.

In order to deal with a huge number of situated devices, we apply the divide-et-

278

CHAPTER 10. SELF-ORGANISING COORDINATION REGIONS

impera principle: the environment is partitioned into a number of (management)

areas (aka partitions, localities, regions, or edge-clouds), each managed by a dif-

ferent master. It comes natural to perform such division spatially—which is also

coherent with the locality principle. All the resource providers and consumers refer

to the master of the corresponding partition: they upstream data and requests,

and receive control data emitted by the master downstream.

We stress that the system should be able to operate in dynamic environments

where devices may move or fail; indeed, users, workers, and even managers and

relay nodes might be autonomous with respect to many aspects, and only be

required to respect the coordination protocol for their role in order to sustain the

self-organising behaviour of the system.

The proposed design can be adapted to find suitable trade-offs between cen-

tralised and decentralised coordination and decision-making. For instance, simple

tasks may be offloaded from clients to workers without requiring any intermedia-

tion from the manager; in such case, the manager could just monitor the activity

in its area and interact with other managers to perform meta-coordination—e.g.,

negotiating resources and dispatching reconfiguration of workers among areas.

Design issues and dimensions The presented model is independent of a num-

ber of lower-level issues and mechanisms, and is hence highly configurable, e.g.:

• How are the management areas determined and structured — Since areas

are a notion used to decentralise management activities for scalability pur-

poses, these should be created in order to evenly balance load in the system

as well as exploit locality (co-located users may issue similar requests, and

co-located workers can interact with low latency). Thus, the management

regions should be dynamically created and gracefully adapted by consider-

ing the distribution of workers, consumers and managers. Often, managers

are determined first, and then regions are negotiated in turn, based on the

desired shape of the edge-clouds in terms of exposed resources.

• How are the managers chosen among eligible devices — The system should

self-organize by finding consensus on leadership among the set of candidates.

The point is not the actual algorithm but the properties that need to be

enforced and maintained. Generally, the managers should uniformly cover

279

CHAPTER 10. SELF-ORGANISING COORDINATION REGIONS

the situated workers and users, but more advanced choices could also consider

the trust, resourcefulness and dependability of manager candidates, or the

density and profiles of users and workers.

• As leaders and areas are dynamically determined, how can workers and users

know how to contact the respective manager — The model abstracts from

these details. However, we generally assume every node is at least able to

communicate with neighbour devices and there exists a sequence of other

devices (i.e., a path of relays) connecting users/workers to leaders. This is

a sufficient condition for setting up communication paths (e.g., via patterns

like potential/gradient fields [DWH06] unfolding from leaders) to enable self-

organising information flows [saso07DeW].

• What should happen when a master node fails — The failure of a master

usually invalidates the invariants required from a configuration of masters.

In any case, an area loses its leader and, unless that area could dissolve by

feeding adjacent areas, a new leader must be elected. While this happens,

requests from users and feedback from workers cannot be handled, but they

eventually will be as soon as a newly elected master will receive them.

• What should happen when a link node fails — This should not have serious

consequences, unless this results in permanent network partitioning. The

system should self-organize to properly correct the paths followed by infor-

mation flows; the aforementioned gradient fields could inherently handle this

adaptation.

• What should happen when a worker node fails — It essentially depends on

what kind of guarantees must be provided by the system. In any case, the

leader should become aware of such failure (e.g., by requiring a heart beat

and considering a temporal threshold that may also depend on a volatility

metric characterising the risk for communication delays in the area under

supervision). Also, if the assigned task is continuable, intermediate results

might be stored in nearby devices or in the master, so that they can be

retrieved by a newly allocated worker.

The focus of the approach is on the coordination logic for an edge computing

platform. However, there are some important concerns (application-specific issues

280

CHAPTER 10. SELF-ORGANISING COORDINATION REGIONS

or challenges on their own from which we abstract from) that should be defined

and developed to actually design a working ecosystem:

• Management functions — These may include monitoring (e.g., resource usage

or availability), control (e.g., assignment of tasks), orchestration (i.e., control

of coalitions of workers), or choreography (e.g., managers may group workers

into “teams” for cluster computing, and let these work autonomously). Such

aspects may affect the logical structure of the system, e.g., whether masters

directly communicate with users or always interface with workers.

• Task scheduling strategies — Assigning tasks to workers requires to solve

issues like task placement and partitioning [Mao+17]. It is reasonable to

centralise such issues in manager nodes, which have a global view of the

corresponding areas. For optimising choices, the designers should consider

what information needs to be collected into those decision points (e.g., QoS

preferences and requirements, locations, accurate task models, and so on).

• Sociality and economics — The model is configurable with respect to the

aspects related to consumption and offering of resources. E.g., in the vision

of social clouds [Cha+12], dis/incentives can be used to regulate sharing,

trading, and interactions through socially corrective mechanisms.

• System structure and environment — Particular applications could impose

more or less constraints on the physical and logical structure of the system.

Specific decisions should be taken regarding how leaders are elected, how

areas are determined, the concrete shape of components, their number and

requirements, the assumptions on infrastructure (e.g., WAPs) and so on.

Evaluation The approach is empirically evaluated through synthetic experiments

built on the ScaFi-Alchemist simulation framework [CPV16]. In particular, we

complete the core implementation schema provided in Figure 10.13 with meth-

ods and types to support a service and request management functionality, where

(i) workers advertise the services they provide; (ii) consumers can send requests

for services to the area manager; and (iii) the area manager handles requests by

allocating them to workers or declining them if no worker in the area supports

the requested service. The source code of the simulations, launch scripts, and

281

CHAPTER 10. SELF-ORGANISING COORDINATION REGIONS

class EdgeCloudCoordinationWorkflow extends AggregateProgram with ... {
// Some definitions (excluded for brevity)

def main = {
// 1) Elect managers among powerful "fog" nodes
val leaders = branch(FOG){ S(grain) }{ false }

branchOn(EDGE || FOG) {
// 2) Build the adaptive communication structure, based on a
// potential field pointing to leaders for data down-/up-streaming
val potential = branch(leaders || RELAY){ distanceTo(leaders) }{ +∞ }
val cs = CommunicationStructure(leaders, potential)

// 3) Sets up a "continuous" feedback control loop base
rep(DownstreamData.empty){ case dFlow =>

val data = branchOn(isWorker || isConsumer){ execute(dFlow) }
val uFlow = dataUpstream(cs, data)
val controlData = branchOn(leaders){ processData(uFlow) }
dataDownstream(cs, controlData)

} } }

// Workers/clients receive commands/events from leaders and produce data
def execute(dd: DownstreamData): Data
// Data/events by workers/clients are collected/streamed to leaders
def dataUpstream(cs: CommunicationStructure, data: Data): UpstreamData
// Leaders process upstream data/events and issue control commands/events
def processData(ud: UpstreamData): ControlData
// Control commands/events or area-wide information is sent around areas
def dataDownstream(cs: CommunicationStructure,

cd: ControlData): DownstreamData
}

Figure 10.13: Core aggregate implementation schema for an edge computing
ecosystem: symbols in bold black and gray are methods and types, resp., to be
implemented for application-specific functionality (e.g., using Aggregate building
blocks as per [CPV16]); red and purple symbols denote primitive and derived field
constructs; blue symbols are Scala keywords.

282

CHAPTER 10. SELF-ORGANISING COORDINATION REGIONS

Property Solution

Scalability
• Partition into areas covering a subset of components

• Decentralised coordination with neighbours

Connectivity/

Infrastructural

requirements

• Only local, short-range connectivity is assumed

• Independence from the concrete communication technology

Opportunism • Opportunistic coordination with nearby devices

Adaptivity/

Resilience

• Continuous sensing, interaction, and actuation

• Self-organisation

Openness • Participation only requires executing the program/protocol

Hybrid

coordination

• Tunable degree of de/centralisation

• Flexibility in decision-making/responsibility distribution

Table 10.4: Characteristics of the edge-cloud coordination solution.

additional information are available at the accompanying repository6.

Setup We assume to be in a (smart) city. Our system consists of 50 fog nodes

irregularly covering the urban area, 200 worker nodes supporting zero or more

services (one of them being rarer than the others) and also working as relays,

and 500 clients unevenly distributed in the city. The sleeping period between

execution rounds in each device is about 1 second. The fog nodes can interact

with one another, whereas clients and workers are connected only with proximate

devices (50 metres range). Over time, the clients request services, with a peak in

the time frame [150, 250]. Multiple simulation configurations are considered, by

varying the granularity of the areas. We launch 30 simulation runs with different

random seeds for each configuration.

Results and discussion Our goal is to show functional correctness and basic

performance. Figure 10.14 shows some key metrics of the system, for different

partitioning granularities. With respect to more coarse-grained partitioning, in

the case of many, smaller areas (Figure 10.14a), we observe a minor load on relays

(as fewer events and less worker/consumer data have to be propagated), but a

higher risk of being saturated (i.e., reaching 100% utilisation of worker resources)

6https://github.com/metaphori/fmec19-edgecloud

283

CHAPTER 10. SELF-ORGANISING COORDINATION REGIONS

(a) System performance with many, small areas.

(b) System performance with few, large areas.

Figure 10.14: Edge resource coordination: evaluation graphs.

as well as higher reject rate (since fewer workers and a minor variety of resources

will be available). By contrast, larger areas can satisfy more requests (since they

can generally count on more kinds of resources), and have greater capacity for

dealing with localised spikes of activity. However, larger areas also means that

higher load is put on managers and relay nodes.

10.4 Final Remarks

In this chapter, we introduce Self-organising Coordination Regions, an adaptive

coordination pattern for dynamic, opportunistic scenarios where neither complete

centralisation nor full decentralisation of control and decision-making are possible

or desirable. The pattern fits a problem of potentially growing relevance, and it

is particularly suitable for edge systems and for deploying a coordination stance

that covers more than pure locality yet without requiring any global coordina-

tor. To show applicability and benefits, we also present three case studies in edge

computing, showing that the pattern is able to create semi-independent coordi-

nation regions, compute over aggregated information, and propagate results to

region members. The pattern is also easily extensible: we show, e.g., how a simple

284

CHAPTER 10. SELF-ORGANISING COORDINATION REGIONS

feedback mechanism could be devised to improve the load balancing across differ-

ent leaders. We believe the presented pattern, along with easy implementation in

ScaFi, can streamline prototyping and development of a wide class of advanced

coordination mechanisms, especially in the context of edge computing.

References

[Ale77] Christopher Alexander. A pattern language: towns, buildings, construction.

OUP, 1977.

[And10] David P Anderson. “Volunteer computing: the ultimate cloud.” In: ACM Cross-

roads 16.3 (2010), pp. 7–10.

[Aud+17] Giorgio Audrito, Roberto Casadei, Ferruccio Damiani, and Mirko Viroli. “Com-

positional Blocks for Optimal Self-Healing Gradients”. In: Self-Adaptive and

Self-Organising Systems (SASO), IEEE International Conference on. IEEE.

2017.

[Bab+06] Ozalp Babaoglu, Geoffrey Canright, Andreas Deutsch, Gianni A Di Caro, Fred-

erick Ducatelle, Luca Gambardella, Niloy Ganguly, et al. “Design patterns from

biology for distributed computing”. In: ACM Transactions on Autonomous and

Adaptive Systems 1.1 (2006), pp. 26–66.

[BE17] Kashif Bilal and Aiman Erbad. “Edge computing for interactive media and

video streaming”. In: 2nd Int. Conf. on Fog and Mobile Edge Computing

(FMEC). IEEE, 2017.

[Bel+13] Paolo Bellavista, Giuseppe Cardone, Antonio Corradi, and Luca Foschini.

“Convergence of MANET and WSN in IoT urban scenarios”. In: IEEE Sensors

Journal 13.10 (2013), pp. 3558–3567.

[Bir07] Ken Birman. “The promise, and limitations, of gossip protocols”. In: ACM

SIGOPS Operating Systems Review 41.5 (2007), p. 8.

[BPV15] Jacob Beal, Danilo Pianini, and Mirko Viroli. “Aggregate Programming for the

Internet of Things”. In: IEEE Computer 48.9 (2015), pp. 22–30. doi: 10.1109/

MC.2015.261.

[Bus+96] F. Buschmann, R. Meunier, H. Rohnert, P. Sommerlad, and M. Stal. Pattern-

Oriented Software Architecture, Volume 1: A System of Patterns. Wiley, 1996.

[Cas16] M. Casciaro. Node.js Design Patterns, 2nd Edition. Packt, 2016.

[Cas+19a] Roberto Casadei, Giancarlo Fortino, Danilo Pianini, Wilma Russo, Claudio

Savaglio, and Mirko Viroli. “A development approach for collective opportunis-

tic Edge-of-Things services”. In: Information Sciences 498 (2019), pp. 154–169.

285

https://doi.org/10.1109/MC.2015.261
https://doi.org/10.1109/MC.2015.261

CHAPTER 10. SELF-ORGANISING COORDINATION REGIONS

[Cas+19b] Roberto Casadei, Christos Tsigkanos, Mirko Viroli, and Schahram Dustdar.

“Engineering Resilient Collaborative Edge-Enabled IoT”. In: 2019 IEEE In-

ternational Conference on Services Computing (SCC). 2019, pp. 36–45. doi:

10.1109/SCC.2019.00019.

[CDK05] George F Coulouris, Jean Dollimore, and Tim Kindberg. Distributed systems:

concepts and design. Pearson Education, 2005.

[Cha+12] Kyle Chard, Kris Bubendorfer, Simon Caton, and Omer F Rana. “Social cloud

computing: A vision for socially motivated resource sharing”. In: IEEE Trans-

actions on Services Computing 5.4 (2012), pp. 551–563.

[CPV16] Roberto Casadei, Danilo Pianini, and Mirko Viroli. “Simulating large-scale ag-

gregate MASs with alchemist and scala”. In: Computer Science and Informa-

tion Systems (FedCSIS), 2016 Federated Conference on. IEEE. 2016, pp. 1495–

1504.

[CV18] Roberto Casadei and Mirko Viroli. “Programming Actor-Based Collective

Adaptive Systems”. In: Programming with Actors: State-of-the-Art and Re-

search Perspectives. Vol. 10789. Lecture Notes in Computer Science. Springer,

2018, pp. 94–122. doi: 10.1007/978-3-030-00302-9_4.

[CV19] Roberto Casadei and Mirko Viroli. “Coordinating Computation at the Edge:

a Decentralized, Self-Organizing, Spatial Approach”. In: 2019 Fourth Interna-

tional Conference on Fog and Mobile Edge Computing (FMEC). 2019, pp. 60–

67. doi: 10.1109/FMEC.2019.8795355.

[Dau+18] Rustem Dautov, Salvatore Distefano, Dario Bruneo, Francesco Longo, Giovanni

Merlino, et al. “Metropolitan intelligent surveillance systems for urban areas

by harnessing IoT and edge computing paradigms”. In: Software: Practice and

Experience 48.8 (2018), pp. 1475–1492.

[DB16] Soura Dasgupta and Jacob Beal. “A Lyapunov analysis for the robust stability

of an adaptive Bellman-Ford algorithm”. In: 55th Conf. on Decision & Control

(CDC). IEEE, 2016.

[DDFM19] Ada Diaconescu, Louisa Jane Di Felice, and Patricia Mellodge. “Multi-Scale

Feedbacks for Large-Scale Coordination in Self-Systems”. In: 2019 IEEE

13th International Conference on Self-Adaptive and Self-Organizing Systems

(SASO). IEEE. 2019, pp. 137–142.

[DRT05] Manuel Diaz, Bartolomé Rubio, and José M Troya. “A coordination middle-

ware for wireless sensor networks”. In: Systems Communications. IEEE. 2005,

pp. 377–382.

286

https://doi.org/10.1109/SCC.2019.00019
https://doi.org/10.1007/978-3-030-00302-9_4
https://doi.org/10.1109/FMEC.2019.8795355

CHAPTER 10. SELF-ORGANISING COORDINATION REGIONS

[DWH06] Tom De Wolf and Tom Holvoet. “Design patterns for decentralised coordination

in self-organising emergent systems”. In: ESOA’06 Proceedings. Springer. 2006,

pp. 28–49.

[DWH07] Tom De Wolf and Tom Holvoet. “Designing self-organising emergent systems

based on information flows and feedback-loops”. In: 1st SASO Conf. IEEE.

2007, pp. 295–298.

[FM+13] Jose Luis Fernandez-Marquez, Giovanna Di Marzo Serugendo, Sara Montagna,

Mirko Viroli, and Josep Lluis Arcos. “Description and composition of bio-

inspired design patterns: a complete overview”. In: Natural Computing 12.1

(2013), pp. 43–67. issn: 1572-9796. doi: 10.1007/s11047-012-9324-y.

[Han13] Robert S Hanmer. Patterns for fault tolerant software. John Wiley & Sons,

2013.

[HCY+99] Sandra Hayden, Christina Carrick, Qiang Yang, et al. “Architectural design

patterns for multiagent coordination”. In: Int. Conf. on Agent Systems. Vol. 99.

1999.

[HH17] S. Hoyer and J. Hamman. “xarray: N-D labeled arrays and datasets in Python”.

In: Journal of Open Research Software 5.1 (2017).

[HL04] Bryan Horling and Victor Lesser. “A survey of multi-agent organizational

paradigms”. In: The Knowledge engineering review 19.4 (2004), pp. 281–316.

[Hun07] J. D. Hunter. “Matplotlib: A 2D graphics environment”. In: Computing In

Science & Engineering 9.3 (2007), pp. 90–95. doi: 10.1109/MCSE.2007.55.

[HW04] G. Hohpe and B.A. Woolf. Enterprise Integration Patterns. Prentice Hall, 2004.

isbn: 9780321200686.

[HW08] M. Haklay and P. Weber. “OpenStreetMap: User-Generated Street Maps”. In:

IEEE Pervasive Computing 7.4 (2008), pp. 12–18.

[JDB16] Ward Jaradat, Alan Dearle, and Adam Barker. “Towards an autonomous de-

centralized orchestration system”. In: Concurrency Computat. Pract. Exper.

28.11 (2016), pp. 3164–3179.

[JM18] Junchen Jin and Xiaoliang Ma. “Hierarchical multi-agent control of traffic

lights based on collective learning”. In: Engineering applications of artificial

intelligence 68 (2018), pp. 236–248.

[KC03] Jeffrey O Kephart and David M Chess. “The vision of autonomic computing”.

In: Computer 1 (2003), pp. 41–50.

[KHA17] R. Kuhn, B. Hanafee, and J. Allen. Reactive Design Patterns. Manning, 2017.

isbn: 9781617291807.

287

https://doi.org/10.1007/s11047-012-9324-y
https://doi.org/10.1109/MCSE.2007.55

CHAPTER 10. SELF-ORGANISING COORDINATION REGIONS

[Liu+04] Juan Liu, Jie Liu, James Reich, Patrick Cheung, and Feng Zhao. “Distributed

group management in sensor networks: Algorithms and applications to local-

ization and tracking”. In: Telecommunication Systems 26.2-4 (2004), pp. 235–

251.

[LRM08] Rita Lima, Nelson Rosa, and Igor Marques. “TS-Mid: Middleware for wireless

sensor networks based on tuple space”. In: 22nd AINA Workshops. IEEE. 2008,

pp. 886–891.

[Mao+17] Yuyi Mao, Changsheng You, Jun Zhang, Kaibin Huang, and Khaled B Letaief.

“A survey on mobile edge computing: The communication perspective”. In:

IEEE Communications Surveys & Tutorials 19.4 (2017), pp. 2322–2358.

[MC14] Mathieu Magnaudet and Stéphane Chatty. “What should adaptivity mean to

interactive software programmers?” In: Symp. on Eng. Interact. Comput. Sys.

ACM. 2014, pp. 13–22.

[Par09] Terence Parr. Language Implementation Patterns: Create Your Own Domain-

Specific and General Programming Languages. 1st. Pragmatic Bookshelf, 2009.

isbn: 193435645X, 9781934356456.

[Pau+19] Aaron Paulos, Soura Dasgupta, Jacob Beal, Yuanqiu Mo, Khoi Hoang, Lyles

J Bryan, Partha Pal, Richard Schantz, Jon Schewe, Ramesh Sitaraman, et al.

“A framework for self-adaptive dispersal of computing services”. In: 2019 IEEE

4th International Workshops on Foundations and Applications of Self* Systems

(FAS* W). IEEE. 2019, pp. 98–103.

[PBV16] Danilo Pianini, Jacob Beal, and Mirko Viroli. “Improving Gossip Dynamics

Through Overlapping Replicates”. In: LNCS. Springer, 2016, pp. 192–207.

[PDV17] Danilo Pianini, Simon Dobson, and Mirko Viroli. “Self-Stabilising Target

Counting in Wireless Sensor Networks Using Euler Integration”. In: 11th SASO

Conference. IEEE, 2017.

[PMV13] Danilo Pianini, Sara Montagna, and Mirko Viroli. “Chemical-oriented Simu-

lation of Computational Systems with Alchemist”. In: Journal of Simulation

(2013). issn: 1747-7778. doi: 10.1057/jos.2012.27.

[PVB15] Danilo Pianini, Mirko Viroli, and Jacob Beal. “Protelis: practical aggregate

programming”. In: Symposium on Applied Computing. ACM. 2015, pp. 1846–

1853. doi: 10.1145/2695664.2695913.

[saso07DeW] Tom De Wolf and Tom Holvoet. “Designing self-organising emergent systems

based on information flows and feedback-loops”. In: 1st Conf. on Self-Adaptive

and Self-Organizing Systems. IEEE. 2007, pp. 295–298.

288

https://doi.org/10.1057/jos.2012.27
https://doi.org/10.1145/2695664.2695913

CHAPTER 10. SELF-ORGANISING COORDINATION REGIONS

[Sat+09] Mahadev Satyanarayanan, Paramvir Bahl, Ramón Caceres, and Nigel Davies.

“The case for vm-based cloudlets in mobile computing”. In: IEEE Pervasive

Computing 8.4 (2009).

[SC12] Marco de Sá and Elizabeth F. Churchill. “Mobile Augmented Reality: A De-

sign Perspective”. In: Human Factors in Augmented Reality Environments.

Springer, 2012, pp. 139–164.

[Sch+00] Douglas C. Schmidt, Michael Stal, Hans Rohnert, and Frank Buschmann.

Pattern-Oriented Software Architecture, Vol. 2: Patterns for Concurrent and

Networked Objects. Wiley, 2000. isbn: 978-0-471-60695-6.

[Sto00] S.D. Stoller. “Leader election in asynchronous distributed systems”. In: IEEE

Transactions on Computers 49.3 (Mar. 2000), pp. 283–284.

[VCP16] Mirko Viroli, Roberto Casadei, and Danilo Pianini. “On execution platforms

for large-scale aggregate computing”. In: Proceedings of the 2016 ACM Inter-

national Joint Conference on Pervasive and Ubiquitous Computing: Adjunct.

ACM. 2016, pp. 1321–1326.

[Ver15] Vaughn Vernon. Reactive Messaging Patterns with the Actor Model: Appli-

cations and Integration in Scala and Akka. 1st. Addison-Wesley Professional,

2015. isbn: 0133846830, 9780133846836.

[Vir+18] Mirko Viroli, Giorgio Audrito, Jacob Beal, Ferruccio Damiani, and Danilo

Pianini. “Engineering Resilient Collective Adaptive Systems by Self-

Stabilisation”. In: ACM Transaction on Modelling and Computer Simulation

28.2 (2018), 16:1–16:28. issn: 1049-3301. doi: 10.1145/3177774.

[Vir+19] Mirko Viroli, Jacob Beal, Ferruccio Damiani, Giorgio Audrito, Roberto

Casadei, and Danilo Pianini. “From distributed coordination to field calcu-

lus and aggregate computing”. In: Journal of Logical and Algebraic Methods in

Programming (2019), p. 100486. issn: 2352-2208. doi: https://doi.org/10.

1016/j.jlamp.2019.100486.

[Vli98] John M Vlissides. Pattern hatching: design patterns applied. Addison-Wesley

Reading, 1998.

[WAC+14] Phillip Walker, Saman Amirpour Amraii, Nilanjan Chakraborty, et al. “Human

control of robot swarms with dynamic leaders”. In: Conf. on Int. Robots & Sys.

IEEE. 2014, pp. 1108–1113.

[Wey+13] Danny Weyns, Bradley Schmerl, Vincenzo Grassi, Sam Malek, Raffaela Miran-

dola, et al. “On patterns for decentralized control in self-adaptive systems”. In:

Software Engineering for Self-Adaptive Systems II. Springer, 2013, pp. 76–107.

289

https://doi.org/10.1145/3177774
https://doi.org/https://doi.org/10.1016/j.jlamp.2019.100486
https://doi.org/https://doi.org/10.1016/j.jlamp.2019.100486

CHAPTER 10. SELF-ORGANISING COORDINATION REGIONS

[YKO03] Osher Yadgar, Sarit Kraus, and Charles L Ortiz. “Hierarchical information

combination in large-scale multiagent resource management”. In: Communica-

tion in Multiagent Systems. Springer, 2003, pp. 129–145.

[Zah19] Payam Zahadat. “Self-adaptation and self-healing behaviors via a dynamic dis-

tribution process”. In: 2019 IEEE 4th International Workshops on Foundations

and Applications of Self* Systems (FAS* W). IEEE. 2019, pp. 261–262.

[ZLA10] Chongjie Zhang, Victor Lesser, and Sherief Abdallah. “Self-organization for

coordinating decentralized reinforcement learning”. In: Proceedings of the 9th

International Conference on Autonomous Agents and Multiagent Systems: vol-

ume 1-Volume 1. International Foundation for Autonomous Agents and Mul-

tiagent Systems. 2010, pp. 739–746.

290

Chapter 11

Wrap Up

A l’alta fantasia qui mancò possa;

ma già volgeva il mio disio e ’l velle,

s̀ı come rota ch’igualmente è mossa,

l’amor che move il sole e l’altre stelle.

Dante Alighieri · Divina Commedia, Paradiso, Canto

XXXIII

In this chapter, conclusions are drawn and perspectives for future work are

provided.

11.1 Conclusion

As outlined in Chapter 1, this thesis tackles the general problem of computa-

tional collective intelligence engineering, and the specific problem of programming

and operating collective adaptive systems. Accordingly, starting from the state

of the art in research fields like coordination, multi-agent systems, autonomic

computing, collective adaptive systems, and aggregate computing (as reviewed in

Part I), contributions (see Part II) have been delivered in terms of (i) a novel,

Scala-internal, aggregate programming language (ScaFi, Chapter 7), (ii) an op-

erational abstraction for dynamic collective computations carried out by oppor-

tunistic teams of devices (aggregate processes, Chapter 8), (iii) a proof-of-concept

293

middleware for aggregate systems supporting different architectural styles (ScaFi

platform, Chapter 9); and (iv) a decentralised coordination pattern for edge com-

puting (SCR, Chapter 10).

11.1.1 Discussion

ScaFi language With respect to previous field calculus implementations like

Protelis (and its predecessor, Proto), ScaFi is an embedded, internal DSL. As a

consequence, it has access to all the features of the host language. Among these

features, ScaFi inherits the static type-checking of Scala, enabling early intercep-

tion of bugs at compile-time—providing for a better programming experience with

respect to Protelis, which is dynamically typed. Type annotations in ScaFi also

foster code readability; additionally, their usage is lightweight thanks to Scala’s

type inference. Moreover, ScaFi exposes all object-oriented, functional, generic,

and modular programming mechanisms, which may be valuable for library design-

ers. However, mixing field constructs with certain host mechanisms (e.g., those

affecting control flow) can potentially lead to issues: static and dynamic checks, as

well as proper documentation and development awareness, could help to avoid pit-

falls. By the point of view of development, ScaFi can leverage Scala tools (parser,

compiler, syntax highlighters, linters), whereas Protelis requires (the maintenance

of) its own toolchain and proper integration with IDEs. A potential drawback

of ScaFi is that ScaFi code can only run on the JVM, whereas, in principle,

Protelis code can be mapped to different platforms by implementing a new code

generator—ScaFi code could also be mapped, but Protelis has already an infras-

tructure in place thanks to Xtext. In general, however, by the relief from practical

burdens through reuse of tools and functionality from the host language, ScaFi

could represent an ideal framework for rapid prototyping of field calculus variants.

Aggregate processes The aggregate process abstraction, implemented as a

field calculus extension based on the new spawn primitive, does increase the prac-

tical expressiveness of the field calculus, as covered in Chapter 8. Essentially, a

spawn expression represents a generation point for concurrent collective process in-

stances. This is somewhat similar to starting threads in Java or spawning processes

in Erlang. Therefore, this mechanism introduces a concurrency aspect in aggre-

gate programming which, before, was – though not static – only a priori defined

(emerging through repeated execution and dynamic evaluation of a pre-defined

number of computation branches). The well-known practice of multi-threaded

programming could be an inspiration for techniques aimed at the coordination of

sets of aggregate processes.

ScaFi platform Writing a field calculus program is a minor part of making up

a distributed, aggregate system: a middleware is fundamental to ease the develop-

ment, deployment, and operation of aggregate applications. The ScaFi platform

provides a preliminary actor-based and object-oriented façade API targetting the

JVM platform. The actor abstraction, by capturing autonomous entities or flows

of control that communicate through asynchronous message passing, could help to

reduce the abstraction gap found in the design and implementation of a distributed

middleware. However, this is a major engineering challenge, with issues including

flexibility (to support multiple, diverse scenarios), versatility (to support multi-

ple, diverse devices), and usability (to reduce programming effort). In particular,

complexity arises from the heterogeneity of architectures and infrastructures that

may potentially be targetted (as shown in Chapter 6).

Self-organising Coordination Regions pattern Design patterns are key in

software engineering, for they capture the knowledge of recurrent problems and as-

sociated solutions in specific design contexts. Emerging distributed computing sce-

narios, such as the IoT, CPS, and Edge Computing, define a novel and still largely

unexplored application context, where identifying recurrent patterns can be ex-

tremely valuable to mainstream development of language mechanisms, algorithms,

architectures and supporting platforms—keeping a balanced trade-off between gen-

erality, applicability, and guidance. SCR is a general, decentralised coordination

design pattern for partitioned orchestration that aims to provide adaptivity and

resilience in large-scale situated systems. This pattern, or variations of it, have

been adopted in a variety of contexts, as discussed in Chapter 10. Additionally, the

pattern finds straightforward implementation in aggregate computing—making its

structure easily recognisable.

11.2 Future Work

Potential future work can be envisioned along the following directions.

Aggregate processes: combinators, API, workflows Chapter 8 covers ag-

gregate functions as well as programming techniques for working with aggregate

processes, based on the novel spawn primitive. However, more work is needed

to come up with a principled, rich API for effectively combining aggregate pro-

cesses together. In particular, programming (collective) workflows is currently

not straightforward. This issue is somewhat related to the aggregate execution

model, which is logically continuous and abstracted to the programmers: certain

aspects of the dynamics as well as some relationships between static and dynamic

behaviour are still not clear and deserve further study.

Aggregate computing middleware: adaptive execution In addition to

consolidation, the current ScaFi middleware can be extended for a more sophis-

ticated operational management of aggregate systems. Current support enables

flexible deployment and execution (design-time, manual). A possible set of incre-

mental extensions could be implemented to make such a support:

• dynamic — enabling manual reconfiguration of the system at runtime;

• adaptive — enabling automatic reconfiguration at runtime, by reacting , e.g.,

to available infrastructure; and

• opportunistic (or optimising) — actively seeking for reconfiguration oppor-

tunities in order to improve efficiency or QoS while respecting constraints.

Contracts, deviance, heterogeneity An issue that deserves further investi-

gation relates to what it does actually mean to program an aggregate. This is

especially interesting when the involved components exhibit (various levels of)

autonomy. For instance, what happens when individuals do not respect the “ag-

gregate contract”? Moreover, humans and autonomous agents participating into

an aggregate may exhibit deviance: how can this be dealt with? Also, what does

it take to coordinate heterogeneous aggregates? Notions of trust (cf. Section 7.6),

as used in [JJ18], may prove useful.

Collective intelligence and multi-agent organisational paradigms The

ability of aggregate programming of specifying group-wide behaviour by a global

perspective could be helpful to structure and institutionalise multi-agent systems.

Moreover, aggregate processes do provide means of defining dynamic teams of

devices. As a consequence, it would be interesting to consider the integration of

collective processes within multi-agent architectures.

Declarative model The aggregate computing paradigm is declarative, and

hence delegates to the platform various kinds of aspects related to neighbour-

hoods and execution. Interesting extensions could be investigated to provide more

flexibility and control, e.g., by considering: reactive round execution, reflective

control of round execution, and support for multiple nbr targets.

	Contents
	Abstract (italiano)
	Abstract
	Introduction
	Research Context and Motivation
	Overview and Contribution
	General problem statement
	Specific problem statement
	Contributions

	References
	About This Thesis
	List of Publications

	I Background and Motivation
	Perspectives on Collective Adaptive Systems
	(Complex) Systems
	Cyber-physical systems

	Multi-Agent Systems
	Main aspects in MASs

	Self-* Systems
	Autonomic computing
	Self-* properties

	Pervasive and Ubiquitous Computing
	Ambient intelligence
	Context-aware computing

	Collective Computing
	Computational collective and swarm intelligence
	Collective adaptive systems

	Final Remarks
	References

	Distributed Computing and Coordination
	Concurrency Theory, Processes, and Services
	Shared Dataspace Coordination
	Generative communication
	Programmable coordination rules

	Distributed coordination
	Self-organising coordination
	Field-based coordination

	Final Remarks
	References

	Spatial and Collective Adaptive Computing
	Spatial Computing Approaches
	Spatial pattern languages
	General purpose spatial computing languages

	Network Abstraction and Space-Oriented Macroprogramming Approaches
	Collective Adaptive Computing Approaches
	Final Remarks
	References

	Aggregate Computing
	Field Calculus
	Basic calculus
	Operational semantics, typing and basic properties
	Behavioural properties
	Language extension: the higher-order field calculus

	From Field Calculus to Aggregate Computing
	Protelis: a DSL for field calculus
	Aggregate Programming

	Final Remarks
	References

	Complex Infrastructures and Deployments
	Fundamentals
	Virtualisation
	Management platforms

	Cloud Computing
	Beyond Cloud Computing: Edge and Fog Computing
	Application Development and Deployment on Complex Infrastructure
	Microservices
	Cloud-native computing
	Elasticity

	Application Development and Deployment for Ad-Hoc Systems
	Final Remarks
	References

	II Contribution
	ScaFi: Aggregate Programming in Scala
	Motivation and Problem
	Why ScaFi
	Embedding field computations in a host language

	Computational Fields in Scala
	Constructs
	Examples

	FScaFi Calculus: Syntax and Semantics
	Syntax
	Typing
	Operational semantics: device semantics
	Operational semantics: network semantics

	Properties and Relation with HFC
	Type Preservation in FScaFi
	HFC, HFC' and Aligned FScaFi
	FScaFi expressiveness

	ScaFi: Library
	Fundamental building blocks
	Proof of concept: library support for explicit fields

	Case Study
	Computational trust for attack-resistant gradients

	Final Remarks
	References

	Dynamic Collective Computing with Aggregate Processes
	Aggregate Processes: Introduction
	Motivation
	Requirements
	Features of aggregate processes

	Formalisation
	On ``multiple alignments''
	The spawn Construct Extension

	Aggregate Process Implementation in ScaFi
	Alignment and dynamic field expressions: the align construct
	Aggregate processes in ScaFi
	Behind-the-scenes: spawn implementation

	Programming with Aggregate Processes: Techniques and Patterns
	Process definition
	Process generation (lifecycle management 1/2)
	Process expansion/shrinking (boundary management)
	Process termination (lifecycle management 2/2)
	Process abstraction
	Process interaction
	More expressive process definitions

	Evaluation
	Case study: opportunistic messaging
	Case study: drone swarm reconnaissance

	Final Remarks
	References

	Aggregate Computing Platforms
	Analysis of Aggregate Computing Platforms
	Preliminary definitions: main entities and artefacts
	Logical analysis
	Analysis: aggregate execution

	ScaFi Platform: Design and Implementation
	Situated actors abstraction
	Architectural styles

	Final Remarks
	References

	Self-Organising Coordination Regions
	Motivation
	Need for design patterns for self-* systems
	Context
	Problem and forces
	Basic patterns and abstractions
	Related patterns
	Known Uses

	SCR Pattern Description
	Structure and participants
	Dynamics and collaborations
	Variants and extensions
	Applicability
	Consequences
	Implementation
	Sample code

	Evaluation
	Case study #1: dynamic area management
	Case study #2: situated problem solving
	Case study #3: coordinating edge computations

	Final Remarks
	References

	Wrap Up
	Conclusion
	Discussion

	Future Work

