
UNIVERSITÀ DEGLI STUDI DI PARMA
DIPARTIMENTO DI INGEGNERIA DELL’INFORMAZIONE

Dottorato di Ricerca in Tecnologie dell’Informazione
XXII Ciclo

Maria Chiara Laghi

SERVICE ORIENTED
MOBILE COMPUTING

DISSERTAZIONE PRESENTATA PER IL CONSEGUIMENTO

DEL TITOLO DI DOTTORE DI RICERCA

GENNAIO 2010

UNIVERSITÀ DEGLI STUDI DI PARMA

Dottorato di Ricerca in Tecnologie dell’Informazione

XXII Ciclo

SERVICE ORIENTED

MOBILE COMPUTING

Coordinatore:

Chiar.mo Prof. Carlo Morandi

Tutor:

Chiar.mo Prof. Gianni Conte

Dottorando: Maria Chiara Laghi

Gennaio 2010

To my family
and my friends

Contents

Introduction 1

1 State of the Art 5
1.1 Pervasive and ubiquitous computing 8

1.1.1 Pervasive computing emerging paradigms 11

1.2 Mobile Computing . 13

1.2.1 Mobile hardware . 24

1.2.2 Mobile software platforms and applications 37

1.2.3 Java Micro Edition (J2ME) 47

1.2.4 Comparison between most diffused devices and platforms . 49

1.3 Service oriented infrastructures for pervasive computing 55

1.3.1 Ubiquitous peer-to-peer sharing of services 56

1.3.2 Web Services on resource-constrained devices 58

2 Framework 61
2.1 Networked Autonomic Machine 61

2.1.1 Services as NAM resources 63

2.1.2 Service composition . 65

2.1.3 Related works . 67

2.1.4 NSAM for p2p service-oriented infrastructure 71

2.2 Code Mobility . 74

2.2.1 Resource and Service migration 76

ii Contents

3 Middleware and Applications 77
3.1 Ubiquitous p2p sharing of services: JXTA-SOAP mobile 78

3.1.1 Service deployment . 80
3.1.2 Service publication and lookup 82
3.1.3 Service invocation . 82
3.1.4 Secure service invocation in JXTA-SOAP 84
3.1.5 Ambient Intelligence applications 92
3.1.6 Emergency Management application 93
3.1.7 Service-oriented Peer-to-peer architecture 98
3.1.8 Mobile Service Problem and Pull Solution 103
3.1.9 P2P Video Streaming . 107
3.1.10 Peer-to-peer e-learning communities 108
3.1.11 SOP application . 114

3.2 Interoperability among heterogeneous WS platforms: STIL project . 118
3.2.1 Secure access to the STIL network 121
3.2.2 Access to the LVP services from a mobile device 122

Conclusions 125

Bibliography 129

Acknowledgements 135

List of Figures

1 Convergence of application contexts and emerging paradigms within
NAM framework . 3

1.1 Digital convergence . 15

1.2 The vision of Mobile Computing 22

1.3 ARM processor evolution to Cortex 32

1.4 Symbian OS architecture . 39

1.5 Android platform architecture . 45

1.6 J2ME configurations and profiles 50

1.7 Web Services for the mobile infrastructure 59

2.1 NSAM basic ontology. 64

2.2 Example of service compositions. 66

2.3 Service-oriented peer . 72

2.4 Peer-to-peer network layers . 74

2.5 MC taxonomy. 75

3.1 Package structure of Jxta-Soap component 79

3.2 Classes involved in service deployment. 80

3.3 Classes involved in service invocation. 83

3.4 Interaction with a discovered secure service. 86

3.5 TLS-based secure invocation model 88

3.6 MIKEY transaction example . 91

iv List of figures

3.7 Emergency management typical scenario 97
3.8 Disaster response GUI - 1 . 99
3.9 Disaster response GUI - 2 . 99
3.10 The Mobile Service Problem. 104
3.11 Service download protocol in SP2A. 106
3.12 P2P Video Streaming Service in SP2A 109
3.13 General structure for the OLPCService 112
3.14 Learning path management panel 113
3.15 The system designed for the NC3A WS-SP project. 115
3.16 SOP application GUI . 118
3.17 Interaction among STIL actors and applications 120
3.18 STIL authentication system for wireless netwotks 121
3.19 Interaction within STIL infrastructure 123

Introduction

Pervasive Computing (PC), also referred to as Ubiquitous Computing, is an emerging
paradigm concerning with the increasing integration of ICT into people’s lives and
environments, made possible by the growing availability of microprocessors with
inbuilt communication facilities. In other words, Pervasive Computing deals with
the design of context-aware, adaptive applications, allowing also information access
anywhere, anytime from any device. Pervasive computing has many potential applica-
tions, from health and home care, to environmental monitoring and intelligent trans-
port systems.

Our research has focused on the integration of Mobile Computing and Service
Oriented Architecture (SOA) in a Pervasive Computing perspective. We considered
three interleaved concepts: the way people view mobile computing devices and use
them within their environments to perform tasks, the way applications are created and
deployed to enable such tasks to be performed, and how the environment is enhanced
by the emergence and ubiquity of new information and functionalities.

Mobile Computing refers to a broad set of computing operations that allow a user
to access information from portable devices such as laptop computers, PDAs, smart
phones, handheld computer, music players, portable game devices, etc. Due to digital
convergence, mobile industry is facing a significant disruption in these years. Multi-
functional products are emerging for consumers, and diversification is introducing a
new set of requirements for architectures and platforms, such as flexibility, scalability
and modularity. Mobility is considered a strategic component of enterprise business,
and deploying mobile applications provides great productivity improvements.

2 Introduction

On the other hand, service discovery and composition are key concepts for de-
veloping pervasive applications. In a ubiquitous computing environment, a service-
oriented infrastructure must be enabled with service discovery protocols (SDPs) to
find the most appropriate services, either upon direct request from the users or proac-
tively. In this context, we have considered the Web Service technology, that provides
standard, simple and lightweight mechanisms for exchanging structured and typed
information between services in a decentralized and distributed environment.

Therefore, to develop proactive and self-adaptive applications for ubiquitous and
pervasive computing requires to merge information from diverse layers of a system
to produce an effective response. To this purpose, it is necessary to identify the most
suitable interaction paradigm. It is worth noting that most of development work effort
to date is based on the traditional Client-Server interaction paradigm (CSP). How-
ever, this paradigm could be inadequate for ubiquitous and pervasive applications in
particular when context- awareness, auto-adaptive and emergence functionalities are
required. To improve scalability, we support the shift from traditional client/server
architectures to systems based on the peer-to-peer (P2P) paradigm, completed by the
self-organization and the self-adaptation principles.

The peer-to-peer paradigm enables two or more entities to collaborate sponta-
neously in a network of equals (peers) by using appropriate information and com-
munication systems without the necessity for central coordination. Furthermore, a
peer-to-peer system is a complex system, because it is composed of several inter-
connected parts that as a whole exhibit one or more properties (i.e. behavior) which
cannot be easily inferred from the properties of the individual parts. In the context of
education this trend may enable each user to be much more proactive in the creation
of paths for his/her own training and in communicating with other members which
share some interests to build new group knowledge.

Figure 1 illustrates how these paradigms fit together. SOA separates functions
into distinct units (services), which can be distributed over a network and can be
combined and reused to create applications. Peer-to-peer allows flexible and scalable
resource sharing, including services. Mobile computing addresses the mobility of
user, context-awareness and interaction with the environment. The state of the art in

Introduction 3

these research fields is illustrated in section 1.

Figure 1: Convergence of application contexts and emerging paradigms within NAM
framework

In order to enforce SOA and peer-to-peer functionalities to devices with lim-
ited processing and storage resources, a lightweight, modular middleware is required.
While developing such a tool (illustrated in section 3), we have defined a novel for-
malism to describe the envisioned pervasive systems. Indeed, the Networked Auto-
nomic Machine (NAM) is a theoretical model of an hardware/software entity that is
programmed to be altruistic in sharing its resources. In particular, the focus is on spe-
cial kinds of resources, i.e. services, offered to and by mobile devices. In section 2 we
present NAM and its service-oriented specialization, called NSAM, a framework for
peer-to-peer service sharing, based on three key aspects: overlay scheme, dynamic
service composition and self-configuration of peers.

4 Introduction

Interestingly, we have found that NAM and NSAM are suitable not only for Per-
vasive Computing, but also for another emerging paradigm, i.e. Cloud Computing
(CC), in which dynamically scalable and often virtualized resources are provided as
a service over the Internet. CC mixes aspects of Grid computing, Internet computing,
Utility computing, Autonomic computing, Edge computing, Green computing and is
strictly related to the SOA paradigm.

Scalable, self-managing and autonomic PC and CC systems should be character-
ized by

• Dynamic instantiation, dynamic composition, dynamic configuration, dynamic
reconfiguration of services

• Vertically scaling platforms

• Self-configuration and adaptation of Cloud Computing platforms in response
to anomalies of the run-time environment

• Self-managing platforms

• Horizontally scaling platforms

The resource mobility approach embedded in the NAM formal specification (which
means service code on-demand, in NSAM) allows to design open, efficient and in-
novative cloud computing systems, with service providers forming a peer-to-peer
network, and services being dynamically deployed and un-deployed, depending on
the number of concurrent requests.

Chapter 1

State of the Art

Change is the only thing in
the world that is unchanging

– Heraclitus of Ephesus

The emergence of compact albeit powerful devices is giving users the ability
to access, anytime and anywhere, globally available applications. While the anytime
anywhere goal of mobile computing can be considered a reactive approach to the need
for information access, pervasive computing is perceived as a proactive approach with
the vision of "all the time everywhere". In 1991, Mark Weiser [1] described his vision
of pervasive computing; the essence of that vision was the creation of environments
saturated with computing and communication capability, yet gracefully integrated
with human users thus becoming a ”technology that disappears.” Pervasive comput-
ing promises to build software, devices and networks that are deeply embedded in the
user’s physical environment. In fact users may not even notice that they are dealing
with a computing environment because the facilities are seamlessly and naturally in-
tegrated with the physical environment. Since motion is an integral part of everyday
life, such technologies must support mobility; otherwise, a user will be aware of the
technology by its absence when he/she moves. Augmented by the ubiquitous, hetero-
geneous and always-on communications and intelligent sensing of both devices and

6 Chapter 1. State of the Art

environment, PDA and smart phones, as universal mobile terminals, are becoming
integral part of the physical environment.

As stated in [2], pervasive computing represents a major evolutionary step in a
line of work dating back to the mid-1970’s. Two distinct related steps in this evolution
are distributed systems and mobile computing.

The field of distributed systems arose at the intersection of personal computers
and local area networks. A distributed system consists of a collection of autonomous
computers, connected through a network and distribution middleware, which enables
computers to coordinate their activities and to share the resources of the system, so
that users perceive it as a single, integrated and coherent system. Distributed systems
are mainly characterized by:

• Openness: the possibility to extend and modify the system easily, to respond
to changed functional requirements. Any real distributed system will evolve
during its lifetime.

• Heterogeneity: it calls for integration of components written using different
programming languages, running on different operating systems, executing on
different hardware platforms.

• Fault-tolerance: the ability to recover from faults without halting the whole
system. Faults happen because of hardware or software failures (e.g., software
errors, ageing hardware, etc.), and distributed components must continue to
operate even if other components they rely on have failed.

• Scalability: the ability to accommodate a higher load at some time in the fu-
ture. The load can be measured using many different parameters, such as, for
instance, the maximum number of concurrent users, the number of transactions
executed in a time unit, the data volume that has to be handled.

• Resource sharing: in a distributed system, hardware and software resources ,
are shared among the different users of the system; some form of access control
of the shared resources is necessary in order to grant access to authorised users
of the system only.

1.0. State of the Art 7

The appearance of full-function laptop computers and wireless LANs in the early
1990s led researchers to face the problems that arise in building a distributed system
with mobile clients. Although many basic principles of distributed system design
continued to apply, key constraints of mobility forced the development of specialized
techniques. These constrain deals with the concepts of device, of network connection
and of execution context. Devices in a fixed distributed system are stationary or fixed
and vary from home PCs, to workstations, to mainframes, while a mobile distributed
system has at least some physically mobile devices that range from personal digital
assistants, to mobile phones,sensors, digital cameras and smartcards. While the for-
mer are generally powerful machines, with large amounts of memory and very fast
processors, the latter have limited capabilities like slow CPU speed, little memory,
low battery power and small screen size. Fixed hosts are usually permanently con-
nected to the network through continuous high-bandwidth links. Disconnections are
either explicitly performed for administrative reasons or are caused by unpredictable
failures. These failures are treated as exceptions to the normal behavior of the sys-
tem. The performance of wireless networks (i.e., GSM, GPRS, UMTS and HSDPA
networks, satellite links, WaveLAN, HiperLAN, Bluetooth) may vary depending on
the protocols and technologies being used. In a fixed distributed environment, context
is more or less static: bandwidth is high and stable, location almost never changes,
hosts can be added, deleted or moved, but the frequency at which this happens is by
orders of magnitude lower than in mobile settings. Context is extremely dynamic in
mobile systems; hosts may come and leave generally much more rapidly.

Service lookup is more complex in the mobile scenario, especially when the fixed
infrastructure is completely missing, as for ad-hoc systems. Broadcasting is the usual
way of implementing service advertisement; however, this has to be carefully engi-
neered in order to save the limited resources available (e.g., sending and receiving
is power consuming), and to avoid flooding the network with messages. Because of
these challenges, mobile computing is a very active and evolving field of research. An
important issue is to determine the role of the mobile hosts in a distributed system. At
one extreme, mobile hosts are used as dumb terminals and at the other they are used
as workstations with enough computational power and memory to perform computa-

8 Chapter 1. State of the Art

tions locally. In the former case mobile hosts will depend on some assigned host to
compute on their behalf (assignment may change over time), while in the latter case,
mobile hosts would be active participants of the distributed system. Mobility makes
the location of the user a fast-changing parameter and the reliance on a fixed network
configuration unrealistic. The ubiquity of mobile hosts results in computing systems
that are of a much larger scale than the present distributed systems . This implies
operating in a highly heterogeneous environment and raises questions of organizing
information efficiently.

In determining the difference between software systems for mobile environments
and those for static distributed environments, two different categories of problems are
highlighted: the first refers to issues of portability and extensibility; on how existing
systems and algorithms should be modified or augmented to be used in a mobile
computing environment; the second refers to building and experimenting with new
systems taking into account the fuzziness of the environment.

1.1 Pervasive and ubiquitous computing

Pervasive Computing (often considered the same as ubiquitous computing in the lit-
erature) is a related concept but can be distinguished in terms of interaction with the
environment. The main objective of Ubiquitous Computing (UC) is to provide glob-
ally available services and resources in a network by giving users the ability to access
them anytime and irrespective to their location. The main issue in Pervasive Comput-
ing (PC) is to provide spontaneous emergent services created on the fly by mobile or
wireless devices that interact by ad hoc connections. In other words, Pervasive Com-
puting deals with the design of adaptive applications that interact with the closest
environment enhanced by context-awareness and emergence functionalities. Perva-
sive computing basically concerns three interleaved concepts: the way people view
mobile computing devices, and use them within their environments to perform tasks,
the way applications are created and deployed to enable such tasks to be performed
and, finally, it concerns the environment and how it is enhanced by the emergence
and ubiquity of new information and functionalities.

1.1. Pervasive and ubiquitous computing 9

In [2] some research thrusts are related to pervasive computing. The first research
thrust is the use of smart spaces. A space may be an enclosed area such as a meeting
room or corridor, or it may be a well-defined open area such as a courtyard or a quad-
rangle. By embedding computing infrastructure in building infrastructure, a smart
space brings together two worlds naturally disjoint. The second thrust is invisibility.
The ideal expressed by Weiser is complete disappearance of pervasive computing
technology from a user’s conciousness. In practice, a reasonable approximation to
this ideal is minimal user distraction. If a pervasive computing environment con-
tinuously meets user expectations and rarely presents him with surprises, it allows
him to interact almost at a subconcious level. The third research thrust is localized
scalability. As smart spaces grow in sophistication, the intensity of interactions be-
tween a user’s personal computing space and his surroundings increases. This has
severe bandwidth, energy and distraction implications for a wireless mobile user.
The presence of multiple users will further complicate this problem. Scalability, in
the broadest sense, is thus a critical problem in pervasive computing. Previous work
on scalability has typically ignored physical distance, i.e. a web server or file server
should handle as many clients as possible, regardless of whether they are located next
door or across the country. The situation is very different in pervasive computing.
The fourth thrust is the development of techniques for masking uneven conditioning
of environments. The rate of penetration of pervasive computing technology into the
infrastructure will vary considerably depending on many non-technical factors such
as organizational structure, economics and business models.

The component technologies are very simple and basic. The hardware technolo-
gies (laptops, handhelds, wireless communication, software-controlled appliances,
room cameras, and so on) are all here today. The component software technologies
have also been demonstrated: location tracking, face recognition, speech recognition,
online calendars, and so on. The real research issue is in the seamless integration of
component technologies into a whole proactive system.

Proactivity is another central concept for pervasive computing; for proactivity to
be effective, it is crucial that a pervasive computing system tracks user intent. Other-
wise, it will be almost impossible to determine which system actions will help rather

10 Chapter 1. State of the Art

than hinder the user. For example, suppose a user is viewing video over a network
connection whose bandwidth suddenly drops. The system may reduce the fidelity
of the video, pause briefly to find another higher-bandwidth connection, or advise
the user that the task can no longer be accomplished. The correct choice will de-
pend on what the user is trying to accomplish. Pervasive systems have to capture
and exploit user intent and offer support for adaptation and proactivity. Adaptation
is necessary when there is a significant mismatch between the supply and demand
of a resource. The resource in question may be wireless network bandwidth, energy,
computing cycles, memory, and so on. There are three alternative strategies for adap-
tation in pervasive computing. First, a client can guide applications in changing their
behavior so that they use less of a scarce resource. This change usually reduces the
user-perceived quality, or fidelity, of an application. Second, a client can ask the envi-
ronment to guarantee a certain level of a resource. This is the approach typically used
by reservation-based QoS systems. From the viewpoint of the client, this effectively
increases the supply of a scarce resource to meet the client’s demand. Third, a client
can suggest a corrective action to the user. The existence of smart spaces suggests
that some of the environments encountered by a user may be capable of accepting re-
source reservations. At the same time, uneven conditioning of environments suggests
that a mobile client cannot rely solely on a reservation-based strategy when the en-
vironment is uncooperative or resource-impoverished, the client may have no choice
but to ask applications to reduce their fidelities.

Another issue is relate on how powerful mobile client needs to be for a pervasive
computing environment in terms of CPU, memory, disk capacity. Tipically a pow-
erful client is named thick client while a thin client is a minimal one. Thick clients
tend to be larger, heavier, require a bigger battery, and dissipate more heat, all neg-
ative factors from the viewpoint of the user who has to carry or wear the client. For
a given application, the minimum acceptable thickness of a client is determined by
the worst-case environmental conditions under which the application must run satis-
factorily. A very thin client suffices if one can always count on high-bandwidth, low
latency, wireless communication to nearby computing infrastructure, and if batteries
can be recharged or replaced easily. If there exists even a single location visited by a

1.1. Pervasive and ubiquitous computing 11

user where these assumptions do not hold, the client will have to be thick enough to
compensate at that location.

A pervasive computing system that strives to be minimally intrusive has to be
context-aware. In other words, it must be cognizant of its user’s state and surround-
ings, and must modify its behavior based on this information. A user’s context can
be quite rich, consisting of attributes such as physical location, physiological state
(such as body temperature and heart rate), emotional state (such as angry, distraught,
or calm), personal history, daily behavioral patterns. If a human assistant was given
such context, it would make decisions in a proactive fashion, anticipating user needs.
More dynamic information has to be sensed in real time from the user’s environment.
Examples of such information include position, orientation, the identities of people
nearby, locally observable objects and actions, and emotional and physiological state.

Finally, security issues have to be considered in a ubiquitous environment; pri-
vacy, in particular, already a thorny problem in distributed systems and mobile com-
puting, is greatly complicated by pervasive computing. Mechanisms such as location
tracking and smart spaces monitor user actions on an almost continuous basis. As
a user becomes more dependent on a pervasive computing system, it becomes more
knowledgeable about that user’s movements, behavior patterns and habits. Exploiting
this information is critical to successful proactivity and self-tuning. At the same time,
unless use of this information is strictly controlled, it can be put to a variety of unsa-
vory uses ranging from targeted spam to blackmail. Indeed, the potential for serious
loss of privacy may deter knowledgeable users from using a pervasive computing sys-
tem. Greater reliance on infrastructure means that a user must trust that infrastructure
to a considerable extent. Conversely, the infrastructure needs to be confident of the
user’s identity and authorization level before responding to his requests. It is a dif-
ficult challenge to establish this mutual trust in a manner that is minimally intrusive
and thus preserves invisibility.

1.1.1 Pervasive computing emerging paradigms

Therefore, to develop proactive and self-adaptive applications for ubiquitous and per-
vasive computing requires to merge information from diverse layers of a system to

12 Chapter 1. State of the Art

produce an effective response. To this purpose, it is necessary to identify the most
suitable interaction paradigm. It is worth noting that most of development work effort
to date is based on the traditional Client-Server interaction paradigm (CSP). How-
ever, this paradigm could be inadequate for ubiquitous and pervasive applications in
particular when context- awareness, auto-adaptive and emergence functionalities are
required.

For challenging contexts such as ambient intelligence and emergency manage-
ment, requiring highly efficient, pervasive and dependable solutions, a synergetic
approach based on ubiquitous computing models and service-oriented technologies
is envisioned. Moreover, to improve scalability, we support the shift from traditional
client/server architectures to systems based on the peer-to-peer (P2P) paradigm, com-
pleted by the self-organization and the self-adaptation principles.

The peer-to-peer paradigm enables two or more entities to collaborate sponta-
neously in a network of equals (peers) by using appropriate information and com-
munication systems without the necessity for central coordination. Furthermore, a
peer-to-peer system is a complex system, because it is composed of several inter-
connected parts that as a whole exhibit one or more properties (i.e. behavior) which
cannot be easily inferred from the properties of the individual parts.

At the beginning of the P2P era, Barkai (2002) proposed the following require-
ments for a general-purpose P2P middleware:

• portability item interoperability

• security

• local autonomy

• persistence

• scalability

• extensibility

With these objectives in mind, in recent years some researchers have focused on
designing robust overlay schemes (with respect to bootstrapping, connectivity, mes-

1.2. Mobile Computing 13

sage routing) and distributed security / trust mechanisms, while others have targeted
application-specific problems. Next step is to create decentralized and self-organizing
infrastructures, being able to provide services to users according to their availability
and the network status, and also supporting the spontaneous creation of services pro-
vided by heterogeneous nodes, such as mobile devices interacting through ad hoc
connections without any prior planning. Gaber [3] has proposed two alternatives to
the traditional client/server paradigm (CSP) to design and implement ubiquitous and
pervasive applications: the Adaptive Services/Client Paradigm (SCP) and the Sponta-
neous Service Emergence Paradigm (SEP). In other words, the peer-to-peer paradigm
is completed respectively by the self-organization and the self-adaptation principles.
In SCP a decentralized and self-organizing middleware that implements an intelligent
network should be able to provide services to users according to their availability and
the network status. In SEP, spontaneous services can be created on the fly and be pro-
vided by mobile devices that interact through ad hoc connections without any prior
planning. In order to enforce these paradigms to systems which include devices with
limited processing and storage resources, lightweight middleware components are
strongly required.

1.2 Mobile Computing

Mobile computing systems may be easily moved physically and their computing ca-
pabilities may be used while they are being moved. Examples are laptops, personal
digital assistants, and mobile phones. Mobile computing systems differ from other
computing systems in the tasks they are designed to perform, the way that they are
designed, and the way in which they are operated. Among the distinguishing aspects
of mobile computing systems, we recall their prevalent wireless network connectivity,
their small size, the mobile nature of their use, their power sources, and their func-
tionalities that are particularly suited to the mobile user. Because of these aspects,
mobile computing applications are inherently different than applications written for
use on stationary computing systems. Today it is difficult to imagine computing with-
out network connectivity; networking and distributed computing are two of the largest

14 Chapter 1. State of the Art

segments that are the focus of current efforts in computing. Wireless communication
systems are often used in mobile computing systems to facilitate network connec-
tivity, but they do not necessarily mean mobile, because some wireless technologies
can only be used when one or both the parties are fixed or berely move during the
wireless signal transmission, such as the short range bluetooth or infrared or long
range wi-max. Wirelesse places an emphasys on the radio layer and link layer of the
network protocol stack, whereas mobile computing takes advantage of ubiquitous
wireless communications to build applications and services. The future of communi-
cation naturally involves the convergence of computing and communication in almost
every aspects of information technology, thus allowing information access anywhere,
anytime from any device. Not only information has to be easily accessible from any
place and time, but is stored in a highly decentralized, distributed information infras-
tructure; a wide variety of information servers (both public and proprietary) needs
to be accessible to mobile devices. Such devices themself may contain data, or data
can be stored on flash memory smart-cards. This vision leads to the issue of build-
ing an universal mobile platform for reliable and high performance computing with
heterogeneous seamless wireless access via limited computing resources.

Obviously any mobile computing system can also be stationary; therefore it is
important to look at those elements that are outside of the stationary computing sub-
set. In [4], the dimensions of mobility are defined as the tools that allow to qualify the
problem of building software applications and mobile computing systems. Although
these dimensions are not completely orthogonal with respect to each other, they are
separate enough in nature to be distinguished and approximated to orthogonal vari-
ables. Moreover, some of these dimensions are limiting factors that usually are not
considered when dealing with typical stationary application. These dimensions of
mobility are:

• Location awareness

• Network connectivity quality of service

• Limited device capabilities (storage and CPU)

1.2. Mobile Computing 15

Figure 1.1: Digital convergence

• Limited power supply

• Support for a wide variety of user interfaces

• Platform proliferation

• Active transactions

A mobile device is not always at the same place, its location may be constantly
changing. The challenges and opportunities presented by mobility can be divided in
two categories: localization and location sensitivity. Localization is the mere ability
of the architecture of the mobile application to introduce logic that allows the selec-
tion of different level of workflow, business logic and interfaces based on a given
set of location information, commonly referred to as locales. Localization is not ex-
clusive to mobile applications but takes a much more prominent role in mobile ap-
plications. Location sensitivity is something fairly exclusive to mobile applications.
It is the ability of the device and the software application to first obtain location in-
formation while being used and then to take advantage of this location information

16 Chapter 1. State of the Art

in offering features and functionality. It may also include the location of the device
relative to some starting point or a fixed point, some history of past locations, and a
variety of calculated values that may be found from the location and the time such as
speed and acceleration. The most well known location sensing system today is GPS;
GPS devices use triangulation techniques by triangulating data points from the satel-
lite constellation that covers the entire surface of the earth. If a device does not have
GPS capabilities but uses a cellular network for wireless connectivity, signal strength
and triangulation or other methods can be used to come up with some approximate lo-
cation information, depending on the cellular network. Actually, location information
is one of the biggest drivers of mobile applications as it allows for the introduction of
new business models and fundamentally new methods of adding productivity to busi-
ness systems; location based mobile services can be applied in the field of emergency
management, real-time traffic information updates (coupled with maps and naviga-
tion), mobile workforse monitoring (i.e logistic telematics), location based message
services and computing service discovery and automatic configuration.

Whether wired or wireless connectivity is used, mobility means loss of network
connectivity reliability. In the case of wireless network connectivity, physical condi-
tions can significantly affect the quality of service (QoS). QoS tools and products are
typically used to quantify and qualify the reliability, or unreliability, of the connec-
tivity to the network and are mostly used by network operators. Network operators
control the physical layer of the network and provide the facilities, such as Inter-
net Protocol (IP), for software application connectivity. Usually, the QoS tools, run
by the network operators, provide information such as available bandwidth, risk of
connectivity loss, and statistical measurements that allow software applications to
make smart computing decisions. Stationary software applications typically assume
some discrete modes of connectivity mostly limited to connected or disconnected.
This works for most applications because most wired network connectivity is fairly
reliable. Conversely, mobile applications have to know how to continue to operate
even after they are disconnected from the network or while they connect and discon-
nect from the network intermittently and frequently. Almost all mobile applications
should know how to stop working when the application suddenly disconnects from

1.2. Mobile Computing 17

the network and then resume working when it connects again. For example, the real-
time bandwidth available should be part of the data provided and refreshed on some
time interval. Such data can be used to design applications that dynamically adapt
their features and functionality to the available bandwidth.

Another issue is related to the dimension of devices. Mobile devices are small
and this physical size limitation imposes boundaries on volatile storage, non-volatile
storage, and CPU on them. Smaller devices are easier to carry and, consequently,
may become more pervasive. This pervasiveness also largely depends on the price of
the devices. Making electronic devices very small normally increases the cost, as the
research and development that go into making devices smaller are very expensive.
But, once a technology matures and the manufacturing processes for making it be-
comes mostly automated, prices begin to decrease. At the point when the device is
more and more of a commodity, smaller also means less expensive. Mobile applica-
tions must be designed to optimize the use of data storage and processing power of
the device in terms of the application use by the user. The operating system of some
devices may offer the available storage space, but this is not guaranteed. So, we need
to design with the least amount of assumptions about the hardware capabilities of the
device or with all those assumptions valid for all of the devices to be supported by
the mobile application. A large part of engineering mobile applications requires first
a theoretical understanding of the various types of platforms and operating systems
available on mobile devices, then an understanding of the available commercial im-
plementations of the varieties of types of operating systems and platforms and the
type of applications best suited for each platform-device combination.

For the same set of reasons that wireless is the predominant method of network
connectivity for mobile devices, batteries are the primary power source for mobile
devices, thus introducing another constraint, namely a limited power supply; this must
be balanced with the processing power, storage, and size constraints; the battery is
typically the largest single source of weight in the mobile device. Mobile platforms
allow the monitoring of the remaining power and other related power information.
Some platforms allow multiprocessing and multithreading, which have an effect on
the control over the variation of the CPU activity, which in turn has an effect on the

18 Chapter 1. State of the Art

control over the power consumed by the device.

Mobile computing imposes another level of challenge on human-computer in-
terfaces (HCIs). Because applications and services are predominantly used on the
move, the interaction between the user and the mobile terminal and between the user
and a backend service system must be sufficiently simple, convenient, intuitive, flex-
ible and efficient. In addition the user interface has to be designed to save power.
Stationary users use non mobile applications while working on a PC or a similar
device. The keyboard, mouse, and monitor have proved to be fairly efficient user in-
terfaces for such applications. This is not at all true for mobile applications; examples
of some alternative interfaces are voice user interfaces, smaller displays, stylus and
other pointing devices, touch-screen displays, and miniature keyboards, that are of-
ten used in a combined way. Perhaps the biggest paradigm shift that designers and
implementers of mobile applications must undergo is to understand the necessity of
finding the best user interfaces for the application, architecting the system to accom-
modate the suitable user interfaces, implementing them, and keeping in mind that a
new user interface may be required at any time. Key issues in the context of HCI are
the following:

• User interface design on a mobile device. A number of interleaved factors as
size, color depth, display resolution, battery time, weight, connection, etc., af-
fect the design of a user interface for a mobile application.

• Coherent user interfce design across multiple mobile devices. Due to the lack of
standardized representation layer of input and output devices, a user interface
has to be designed and implemented on each type of targeting device. The
layout of the GUI components and the operational logic must be consistent to
allow easy navigation and intuitive operations.

• Adaptive user interface design. The application and supporting system soft-
ware on a mobile device must be able to dynamically optimize the user inter-
face on the device based on the hardware configuration of the mobile device
and context of the running application.

1.2. Mobile Computing 19

Platform proliferation has very significant implications on the architecture, de-
sign, and development of mobile applications. Platform proliferation heightens the
importance of designing and developing devices independent of the platform. Writ-
ing native code specific to the mobile device, unless absolutely necessary because
of performance requirements, is not a recommended practice because of the prolif-
eration of devices. The platform makers and manufacturers of devices and operating
systems of those devices will always try to create restrictions on the developer to
prohibit writing platform-independent applications. Regardless of the efforts of com-
mercial platform builders, the software architects and developers should be focused
on their primary task of meeting the user’s requirements. And if these requirements
include support of multiple platforms, which happens more frequently than not for
mobile computing systems, platform independence should be on the top of the archi-
tects’ and developers’ list when choosing the tools to build an application.

Most of today’s stationary applications have a restriction that can reduce the ben-
efits of a mobile application system enormously: the user of the system must initiate
all interactions with the system. We call such systems passive systems because they
are in a passive state, waiting for some external signal from the user to tell them
to start doing some particular thing. During the past two decades, messaging-based
systems have been developed and have evolved. With messaging systems, each par-
ticipant of the system can send a message to another participant and, if desired, under
a specific topic in an asynchronous manner. Later came the idea of push; in the push
model of communication, an information producer announces the availability of cer-
tain types of information, an interested consumer subscribes to this information, and
the producer periodically publishes the information (pushes it to the consumer). Push
systems, by definition, are active systems. For example, a particular user could be
browsing the Web and, while purchasing some goods online, be notified of the change
in the price of a particular stock. In this example, the system has taken an active role
in starting communication with the user on a particular topic. Active transactions are
those transactions initiated by the system; they may be synchronous or asynchronous.
All active transactions are initiated by the system. Synchronous transactions are time-
dependent transactions; the term is used to refer to a sequence of interactions between

20 Chapter 1. State of the Art

the user and the computing system. Synchronous active transactions can be summa-
rized by a set of properties:

• The transaction is initiated by the system, and during the same transaction, the
user is given an opportunity, for a finite period of time, to respond to the action
initiated by the system.

• Synchronous active transactions require a timely response from the user.

• The interactions between the system and the user work in a sequential and
serial manner during a synchronous transaction.

• Synchronous active transactions are established between the system and a sin-
gle user. This may be replicated for many users, but at the most elemental level,
there is only one user in each active transaction.

Most of today’s active systems are asynchronous. Asynchronous transactions are not
time-dependent. Asynchronous active transactions, like their synchronous counter-
parts, can be described by a set of properties:

• Asynchronous active transactions work just like messaging systems. They can
be established with either 1− n receivers or 1− n topics to which 1−m re-
ceivers are subscribed.

• Asynchronous active transactions may be a composition of 1−n messages sent
by the system and may require 1−m messages back from the users. If 1−m
messages required as responses from the users are not received within some
time frame specified by the system, the transactions may be deemed as failed.
Note that we are not defining the semantics of messaging systems (for if that
is what we were referring to, we would be wrong). Rather, we are defining the
semantics of asynchronous active transactions to be such that they encapsulate
a number of messages being sent from the system to the user and from the user
to the system and that some messages from the user, marked as responses to
the messages from the system, can be required for the successful completion
of the transaction.

1.2. Mobile Computing 21

Choosing whether the active behavior of a system is implemented using an asyn-
chronous active transactional model or a synchronous active transactional model is
completely dependent on the user requirements and the available tools, and is directly
related to the available budget. Active transactions are an absolute essential part of
mobile application development mainly because of the lack of focus on the part of the
user while the user is mobile. It is also important to note that active transactions dif-
fer from push-pull systems and messaging systems not only because they can be both
synchronous and asynchronous but also because they can contain 1− n interactions
between the system and the user.

According with [5], the vision of mobile computing can be summarized in con-
vergence of mobile access and pervasiveness of mobile intelligence(figure 1.2). The
first addresses to the fact that system components and network elements, using a
blend of wireless technologies, need to be coordinate and interoperable, prompting
the use of mobile terminals that are able to provide applications and services with a
set of sistematically integrated hardware and software components.

Moreover, because wireless is everywhere, access to backend systems and net-
works is ubiquitous; service and applications must be unobtrusive, meaning that the
system of well-coordinated wireless components must be smart enough to choose the
best way to accomodate a user’s needs, and this process must be completely trans-
parent to the user. The user does not need to use the system explicitly and the system
helps the user in achieving a task automatically and intelligently. The trend of con-
vergence of mobile access suggests unified access from a device to surrounding other
wireless devices, whereas the pervasiveness of mobile intelligence represents how
data are collected, processed, and disseminated among all the components in a mo-
bile environment.

As explained in [4], the difference between mobile and stationary user can be
referred to as mobile condition; the mobile user is fundamentally different from the
stationary user in the following ways:

1. The mobile user is moving, at least occasionally, between known or unknown
locations. The location of the user at a given time is a variable. Other variables
may be the speed at which the mobile user may be traveling, what network con-

22 Chapter 1. State of the Art

Figure 1.2: The vision of Mobile Computing

nectivity modes are available to the user, what the quality of that connectivity
may be at any given place and time, or how long he or she may stay con-
nected or disconnected. The mobile user also expects the system to have good
connectivity coverage. The changing location of the mobile user also forces
restrictions on power, size of device, wireless connectivity of the device, and
just about every other aspect of the state of the mobile user.

2. The mobile user is typically not focused on the computing task. Mobile users
are typically mobile because they are moving between two points with the
primary task of reaching the destination. Another reason for lack of focus is
multitasking; because of this multitasking nature of the mobile user, a variety
of user interface input types such as voice may be needed to take advantage of

1.2. Mobile Computing 23

the senses that are not preoccupied by another task. Also, the user interface to
the system must be very user friendly and require as few of the user’s senses
focused on communicating with the machine as efficiently as possible. For
example, voice user interfaces allow users to focus on driving while still getting
whatever information they need from the system.

3. The mobile user frequently requires high degrees of immediacy and respon-
siveness from the system. Mobile users are often in a situation where they need
to quickly perform one or more computing tasks, such as retrieving contact
information, sending a voice or e-mail message, or triggering some remote
process. They don’t have the time to go through a long boot sequence or long
application setup times. Mobile users normally have higher expectations of
performance from their devices than stationary users do. A short delay in ap-
plication responsiveness can decrease its usefulness enormously.

4. The mobile user is changing tasks frequently and/or abruptly. The mobile user
needs to be able to stop performing some computing task abruptly, do some-
thing that may be completely unrelated, then return to the application after
some unknown period of time, and, without much effort to remember what he
or she had been doing, continue the computing task. Mobile users expect appli-
cations that flow smoothly and do not require complex navigation despite the
abrupt nature of their actions.

5. The mobile user expects to be able to retrieve data and do computing at any
given moment and any given time. And this is precisely why the support for
a variety of platforms with a variety of user interfaces is critical for a mobile
application: to use an application anywhere and anytime, one may have to use
it through whatever device is available and convenient for that given place and
time. Mobile users expect to start a transaction and leave it unfinished on one
device at a given place and time and finish the same transaction later on a
different device and at a different place and time.

While designing mobile applications, it is important to balance the solutions to prob-

24 Chapter 1. State of the Art

lems presented by each mobility dimension and to take into account the mobile con-
dition for the mobile user. Once we the requirements from the user are defined, the
first step in building the mobile application is to decide on the architecture; because
access must be granted to the same application ubiquitously through any device and
interface, mobile architectures are inherently network-based computing architectures
that rely on suitable architectural patterns that take into account the described dimen-
sions of mobility.

Due to digital convergence, mobile industry is facing a significant disruption in
these years. Multifunctional products are emerging for consumers, and diversifica-
tion is introducing a new set of requirements for architectures and platforms, such as
flexibility, scalability and modularity. Mobility is considered a strategic component
of enterprise business, and deploying mobile applications provides great productivity
improvements. Mobility is complex, because it involves multiple back-end systems,
some legacy, some newly deployed, and a collection of mobile devices with an in-
creasing number of mobile operating systems (BlackBerry OS, Windows Mobile,
Symbian OS, Mac OS X, Palm OS, Android and mobile Linux). A great variety
of wireless technologies is also available in a global workplace, from current cel-
lular networks with CDMA and GSM standards, to WiFi, WiMax, and future next-
generation 4G networks.

1.2.1 Mobile hardware

As a small computer, a mobile device consists of integrated or interconnected hard-
ware components and software. These hardware components include a microproces-
sor, read-only memory (ROM), random access memory (RAM), expansion storage,
network interfaces and antenna, a battery, and a display. Some mobile devices also
have a hard disk.

Mobile processors

A mobile device is controlled by a small, embedded, computer system; the notion of
embedded system refers to a specialized computer system that performs a fixed set

1.2. Mobile Computing 25

of functions. Mobile devices such as cell phones, PDAs, laptop computers, pagers
and wireless-enabled portable gaming devices constitute a large portion of embedded
systems. The microprocessors (CPUs) used in mobile/portable devices are generally
referred to as mobile processors, a type of embedded processor. The main character-
istics of mobile processors are[6]:

• Limited programmabiity - a mobile processor can supply limited computing ca-
pability compared to a desktop computer, due to power cosumption constraints.

• High I/O to computation ratio - network and I/O communications are more
frequent on mobile terminals than on desktop computers.

• Stream and data processing - multimedia processing is indispensable on many
mobile terminals.

A few mobile processor families have emerged to become the major players in the
mobile market.

The Advanced Reduced Instruction Set Computer (RISC) Machine (ARM)
is a microprocessor architecture initially developed by a British company called Acron.
The ARM company, a spin-off of Acron, licenses ARM technologies to semiconduc-
tor manufacturers and electronic device manufacturers.

ARM was originally conceived as a processor for desktop personal computers
by Acorn Computers, a market now dominated by the x86 family used by IBM PC
compatible computers. The relative simplicity of ARM processors made them suit-
able for low power applications. This has made them dominant in the mobile and
embedded electronics market as relatively low cost and small microprocessors and
microcontrollers. As of 2009, ARM processors account for approximately 90% of
all embedded 32-bit RISC processors. ARM processors are used extensively in con-
sumer electronics, including PDAs, mobile phones, digital media and music players,
hand-held game consoles, calculators and computer peripherals such as hard drives
and routers. The ARM architecture is licensable. Companies that are currently or
formerly ARM licensees include Alcatel, Atmel, Broadcom, Cirrus Logic, Digital
Equipment Corporation, Freescale, Intel (through DEC), LG, Marvell Technology

26 Chapter 1. State of the Art

Group, NEC, NVIDIA, NXP (previously Philips), Oki, Qualcomm, Samsung, Sharp,
ST Microelectronics, Symbios Logic, Texas Instruments, VLSI Technology, Yamaha
and ZiiLABS.

ARM processors are developed by ARM and by ARM licensees. Prominent ex-
amples of ARM Holdings ARM processor families include the ARM7, ARM9, ARM11
and Cortex. Examples of ARM processors developed by major licensees include the
DEC StrongARM, Freescale’s i.MX, Marvell (formerly Intel) XScale, NVIDIA’s
Tegra, ST-Ericsson Nomadik, Qualcomm’s Snapdragon, and the Texas Instruments
OMAP product line as summarized in tables 1.1, 1.2, 1.3, 1.4.

In ARM-based machines, peripheral devices are usually attached to the processor
by mapping their physical registers into ARM memory space or into the coprocessor
space or connecting to another device (a bus) which in turn attaches to the processor.
Coprocessor accesses have lower latency so some peripherals (for example XScale
interrupt controller) are designed to be accessible in both ways (through memory and
through coprocessors). In other cases, chip designers only integrate hardware using
the coprocessor mechanism.

To improve compiled code-density, the Thumb mode was introduced. When in
this mode, the processor executes 16-bit instructions. Most of these 16-bit-wide Thumb
instructions are directly mapped to normal ARM instructions. The space-saving comes
from making some of the instruction operands implicit and limiting the number of
possibilities compared to the full ARM mode instruction.

Thumb-2 extends the limited 16-bit instruction set of Thumb with additional 32-
bit instructions to give the instruction set more breadth (i.e. introducing bit-field ma-
nipulation, table branches, and conditional execution). A stated aim for Thumb-2 is to
achieve code density similar to Thumb with performance similar to the ARM instruc-
tion set on 32-bit memory. In ARMv7 this goal can be said to have been met. The
architecture has evolved over time, and starting with the v7 architecture three "pro-
files" are defined: the "A" (application), "R" (realtime), and "M" (microcontroller)
profiles. To improve the ARM architecture for digital signal processing and multime-
dia applications, a few new instructions were added to the set. They are variations on
signed multiply-accumulate, saturated add and subtract, and count leading zeros.

1.2. Mobile Computing 27
Fa

m
ily

A
rc

hi
te

ct
ur

e

Ve
rs

io
n

C
or

e
Fe

at
ur

es
C

ac
he

(I
/D

)/M
M

U

Ty
pi

ca
l

M
IP

S@
M

H
z

A
pp

lic
at

io
n

A
R

M
7T

D
M

I
A

R
M

v4
T

A
R

M
7T

D
M

I

(-
S)

3-
st

ag
e

pi
pe

lin
e,

T
hu

m
b

no
ne

15
M

IP
S@

16
.8

M
H

z,

63
D

M
IP

S@
70

M
H

z

G
am

e
B

oy
A

dv
an

ce
,

N
in

te
nd

o
D

S,
iP

od
,

L
eg

o
N

X
T

St
ro

ng
A

R
M

A
R

M
v4

SA
-1

10
16

K
B

/1
6

K
B

,

M
M

U

20
3M

H
z

1.
0D

M
IP

S/
M

H
z

A
pp

le
N

ew
to

n
2x

00
se

ri
es

,
A

co
rn

R
is

c

PC
,P

si
on

N
et

bo
ok

St
ro

ng
A

R
M

A
R

M
v4

SA
-1

11
0

in
te

gr
at

ed

So
C

16
K

B
/1

6K
B

,

M
M

U
23

3
M

H
z

In
te

l
A

ss
ab

et
,

Ip
aq

H
36

x0
,

Z
au

ru
s

SL
-

5x
00

,P
al

m
Z

ir
e

31

A
R

M
9E

A
R

M
v5

T
E

J
A

R
M

92
6E

J-

S

T
hu

m
b,

Ja
ze

lle
D

B
X

,

E
nh

an
ce

d

D
SP

in
-

st
ru

ct
io

ns

va
ri

ab
le

,

T
C

M
s,

M
M

U
22

0M
IP

S@
20

M
H

z

M
ob

ile
ph

on
es

:
So

ny
E

ri
cs

so
n

(K
,

W

se
ri

es
);

Si
em

en
s

an
d

B
en

q
(x

65
se

ri
es

an
d

ne
w

er
);

Te
xa

s
In

st
ru

m
en

ts
O

M
A

P1
71

0,

O
M

A
P1

61
0,

O
M

A
P1

61
1,

O
M

A
P1

61
2,

O
M

A
P-

L
13

7,
O

M
A

P-
L

13
8;

Q
ua

lc
om

m

M
SM

61
00

,
M

SM
61

25
,

M
SM

62
25

,

M
SM

62
45

,
M

SM
62

50
,

M
SM

62
55

A
,

M
SM

62
60

,
M

SM
62

75
,

M
SM

62
80

,

M
SM

63
00

,
M

SM
65

00
,

M
SM

68
00

;

Fr
ee

sc
al

e
i.M

X
21

,i
.M

X
27

Table 1.1: ARM processor families and applications - part 1

28 Chapter 1. State of the Art
Fa

m
ily

A
rc

hi
te

ct
ur

e

Ve
rs

io
n

C
or

e
Fe

at
ur

es
C

ac
he

(I
/D

)/M
M

U

Ty
pi

ca
l

M
IP

S@
M

H
z

A
pp

lic
at

io
n

X
sc

al
e

A
rm

v5
T

E
PX

A
26

x
de

fa
ul

t
40

0M
H

z,
up

to
62

4M
H

z
Pa

lm
Tu

ng
st

en
T

3

X
sc

al
e

A
rm

v5
T

E
PX

A
27

x
A

pp
lic

at
io

ns

pr
oc

es
so

r

32
K

B
/3

2K
B

,

M
M

U

80
0M

IP
S@

62
4

M
H

z

G
um

st
ix

ve
rd

ex
,”

Tr
iz

ep
s-

M
od

ul
es

”

PX
A

27
0

C
O

M
,

H
T

C
U

ni
ve

rs
al

,
H

P

hx
47

00
,

Z
au

ru
s

SL
-C

10
00

,
30

00
,

31
00

,

32
00

,
D

el
l

A
xi

m
x3

0,
x5

0,
an

d
x5

1

se
ri

es
,

M
ot

or
ol

a
Q

,
B

al
lo

on
3,

Tr
ol

lte
ch

G
re

en
ph

on
e,

Pa
lm

T
X

,
M

ot
or

ol
a

E
zx

Pl
at

fo
rm

A
72

8,
A

78
0,

A
91

0,
A

12
00

,

E
68

0,
E

68
0i

,
E

68
0g

,
E

69
0,

E
89

5,
R

ok
r

E
2,

R
ok

r
E

6,
Fu

jit
su

Si
em

en
s

L
O

O
X

N
56

0,
To

sh
ib

a
Po

rt
ég

é
G

50
0

X
sc

al
e

A
rm

v5
T

E
M

on
ah

an
s

32
K

B
/3

2K
B

L
1,

T
C

M
,

M
M

U

10
00

M
IP

S@
1.

25
G

H
z

Sa
m

su
ng

O
m

ni
a

X
sc

al
e

A
rm

v5
T

E
PX

A
90

0
B

la
ck

be
rr

y
87

00
,B

la
ck

be
rr

y
Pe

ar
l(

81
00

)

Table 1.2: ARM processor families and applications - part 2

1.2. Mobile Computing 29
Fa

m
ily

A
rc

hi
te

ct
ur

e

Ve
rs

io
n

C
or

e
Fe

at
ur

es
C

ac
he

(I
/D

)/M
M

U

Ty
pi

ca
l

M
IP

S
@

M
H

z
A

pp
lic

at
io

n

A
R

M
11

A
R

M
v6

A
R

M
11

36
J

(F
)-

S

8-
st

ag
e

pi
pe

lin
e,

SI
M

D
,

T
hu

m
b,

Ja
ze

lle
D

B
X

,

(V
FP

),
E

n-

ha
nc

ed
D

SP

in
st

ru
ct

io
ns

va
ri

ab
le

,

M
M

U

74
0@

53
2-

66
5

M
H

z

(i
.M

X
31

So
C

),
40

0-

52
8M

H
z

Te
xa

s
In

st
ru

m
en

ts
O

M
A

P2
42

0
(N

ok
ia

E
90

,N
ok

ia
N

93
,N

ok
ia

N
95

,N
ok

ia
N

82
,

N
ok

ia
N

80
0,

N
ok

ia
N

81
0,

Q
ua

lc
om

m

M
SM

72
00

(w
ith

in
te

gr
at

ed
A

R
M

92
6E

J-

S
C

op
ro

ce
ss

or
@

27
4

M
H

z,
us

ed
in

E
te

n

G
lo

fii
sh

,
H

T
C

Ty
T

N
II

,
H

T
C

N
ik

e)
,

Fr
ee

sc
al

e
M

X
C

30
0-

30
(N

ok
ia

E
63

,N
ok

ia

E
71

,
N

ok
ia

58
00

,
N

ok
ia

E
51

,
N

ok
ia

E
75

,N
ok

ia
N

97
,N

ok
ia

N
81

),
Q

ua
lc

om
m

M
SM

72
01

A
as

se
en

in
th

e
H

T
C

D
re

am
,

H
T

C
M

ag
ic

,M
ot

or
ol

a
Z

6,
H

T
C

H
er

o

A
R

M
11

A
R

M
v6

K
Z

A
R

M
11

76
JZ

(F
)-

S

8-
st

ag
e

pi
pe

lin
e,

SI
M

D
,

T
hu

m
b,

Ja
ze

lle
D

B
X

,

(V
FP

),
E

n-

ha
nc

ed
D

SP

in
st

ru
ct

io
ns

va
ri

ab
le

,

M
M

U
+

Tr
us

tZ
on

e

A
pp

le
iP

ho
ne

,
A

pp
le

iP
od

to
uc

h,
C

on
ex

-

an
t

C
X

24
27

X
,

M
ot

or
ol

a
R

IZ
R

Z
8,

M
o-

to
ro

la
R

IZ
R

Z
10

,
N

V
ID

IA
G

oF
or

ce

61
00

[1
9]

;T
el

ec
hi

ps
T

C
C

91
01

,T
C

C
92

01
,

T
C

C
89

00
,

Fu
jit

su
M

B
86

H
60

,
Sa

m
su

ng

S3
C

64
10

,S
3C

64
30

Table 1.3: ARM processor families and applications - part 3

30 Chapter 1. State of the Art

Fa
m

ily
A

rc
hi

te
ct

ur
e

Ve
rs

io
n

C
or

e
Fe

at
ur

es
C

ac
he

(I
/D

)/M
M

U

Ty
pi

ca
l

M
IP

S
@

M
H

z
A

pp
lic

at
io

n

C
or

te
x

A
R

M
v7

-A
C

or
te

x-
A

8

V
FP

,
N

E
O

N
,

Ja
ze

lle
R

C
T,

T
hu

m
b-

2,

13
-s

ta
ge

su
pe

rs
ca

la
r

pi
pe

lin
e

va
ri

ab
le

(L
1+

L
2)

,

M
M

U
+

Tr
us

tZ
on

e

up
to

20
00

(2
.0

D
M

IP
S/

M
H

z
in

sp
ee

d
fr

om
60

0M
H

z

to
gr

ea
te

r
th

an

1G
H

z)

Te
xa

s
In

st
ru

m
en

ts
O

M
A

P3
xx

x
se

ri
es

,

SB
M

70
00

,
O

re
go

n
St

at
e

U
ni

ve
rs

ity
O

S-

W
A

L
D

,
G

um
st

ix
O

ve
ro

E
ar

th
,

Pa
nd

or
a,

A
pp

le
iP

od
to

uc
h

(3
rd

G
en

er
at

io
n)

,
A

r-

ch
os

5,
Fr

ee
Sc

al
e

i.M
X

51
-S

O
C

,
B

ea
-

gl
eB

oa
rd

,
A

pp
le

iP
ho

ne
3G

S,
M

ot
or

ol
a

D
ro

id
,P

al
m

Pr
e,

Sa
m

su
ng

i8
91

0,
So

ny
E

r-

ic
ss

on
Sa

tio
,

To
uc

h
B

oo
k,

N
ok

ia
N

90
0,

Z
iiL

A
B

S
Z

M
S-

08
sy

st
em

on
a

ch
ip

C
or

te
x

A
R

M
v7

-A
C

or
te

x-
A

9

M
PC

or
e

A
pp

lic
at

io
n

pr
ofi

le
,

(V
FP

),

(N
E

O
N

),

Ja
ze

lle
R

C
T

an
d

D
B

X
,

T
hu

m
b-

2,

O
ut

-o
f-

or
de

r

sp
ec

ul
at

iv
e

is
su

e
su

pe
r

sc
al

ar

,
1-

4
co

re

SM
P

M
M

U
+

Tr
us

tZ
on

e

2.
5

D
M

IP
S/

M
H

z

(p
er

co
re

)

Te
xa

s
In

st
ru

m
en

ts
O

M
A

P4
43

0/
44

40
,

ST
-

E
ri

cs
so

n
U

85
00

Table 1.4: ARM processor families and applications - part 4

1.2. Mobile Computing 31

Moreover, Jazelle is a technique that allows Java Bytecode to be executed directly
in the ARM architecture as a third execution state (and instruction set) alongside the
existing ARM and Thumb-mode.

The Advanced SIMD extension, marketed as NEON technology, is a combined
64- and 128-bit single instruction multiple data (SIMD) instruction set that provides
standardized acceleration for media and signal processing applications. NEON can
execute MP3 audio decoding on CPUs running at 10 MHz and can run the GSM AMR
(Adaptive Multi-Rate) speech codec at no more than 13 MHz. It features a compre-
hensive instruction set, separate register files and independent execution hardware.
NEON supports 8-, 16-, 32- and 64-bit integer and single-precision (32-bit) floating-
point data and operates in SIMD operations for handling audio and video processing
as well as graphics and gaming processing. In NEON, the SIMD supports up to 16
operations at the same time.

VFP (Vector Floating Point) technology is a coprocessor extension to the ARM
architecture. It provides low-cost single-precision and double-precision floating-point
computation fully compliant with the ANSI/IEEE Std 754-1985 Standard for Binary
Floating-Point Arithmetic. VFP provides floating-point computation suitable for a
wide spectrum of applications such as PDAs, smartphones, voice compression and
decompression, three-dimensional graphics and digital audio, printers, set-top boxes,
and automotive applications.

The ARM architecture is supported by Unix-like operating systems Linux, BSD,
QNX, Plan 9 from Bell Labs, Inferno, Solaris, and iPhone OS. ARM is targeted to
support wide range of browsers and OS’s, from the classic Symbian and Windows
Mobile to the newest Ubuntu, iPhone OS and Android.

The XScale, a microprocessor core, is Marvell’s (formerly Intel’s) implementa-
tion of the ARMv5 architecture, and consists of several distinct families: IXP, IXC,
IOP, PXA and CE. Intel sold the PXA family to Marvell Technology Group in June
2006. The XScale architecture is based on the ARMv5TE ISA without the float-
ing point instructions. XScale uses a seven-stage integer and an eight-stage memory
super pipelined RISC architecture. It is the successor to the Intel StrongARM line
of microprocessors and microcontrollers, which Intel acquired from DEC’s Digital

32 Chapter 1. State of the Art

Figure 1.3: ARM processor evolution to Cortex

Semiconductor division as the side-effect of a lawsuit between the two companies. I

It consist on an ARM-compliant execution core with instructions ad data memory
management units, data caches and buffers, power management, performance mon-
itoring, debug and JTAGSunits, coprocessor interfaces, and core memory bus. The
Xscale architecture features Intel dynamic voltage management technology, which
allows operating voltage and frequency scaling on the fly.

XScale microprocessors can be found in products such as the popular RIM Black-
Berry handheld, the Dell Axim family of Pocket PCs, most of the Zire, Treo and
Tungsten Handheld lines by Palm, later versions of the Sharp Zaurus, the Motorola
A780, the Acer n50, the Compaq iPaq 3900 series and many other PDAs. The XScale
is also used in devices such as PVPs (Portable Video Players), PMCs (Portable Me-
dia Centres), including the Creative Zen Portable Media Player and Amazon Kindle
E-Book reader, and industrial embedded systems.

1.2. Mobile Computing 33

On 2006 Intel agreed to sell the XScale PXA business to Marvell Technology
Group; the move was intended to permit Intel to focus its resources on its core x86 and
server businesses. Marvell holds a full Architecture License for ARM, allowing it to
design chips to implement the ARM instruction set, not just license a processor core.
The XScale effort at Intel was initiated by the purchase of the StrongARM division
from Digital Equipment Corporation (DEC) in 1998. Intel still holds an ARM license
even after the sale of XScale.

MIPS (originally an acronym for Microprocessor without Interlocked Pipeline
Stages) is a reduced instruction set computer (RISC) instruction set architecture (ISA)
developed by MIPS Computer Systems (now MIPS Technologies). The early MIPS
architectures were 32-bit, and later versions were 64-bit. MIPS embedded processors
and application-spcific integrated circuits (ASICs) are claimed to have the smallest
silicon footprint and lower power consumption.

Through the 1990s, the MIPS architecture was widely adopted by the embedded
market, including for use in computer networking, telecommunications, video arcade
games, video game consoles, computer printers, digital set-top boxes, digital televi-
sions, DSL and cable modems, and personal digital assistants. MIPS cores have been
commercially successful, now being used in many consumer and industrial applica-
tions. MIPS cores can be found in newer Cisco, Linksys and Mikrotik’s routerboard
routers, cable modems and ADSL modems, smartcards, laser printer engines, set-
top boxes, robots, handheld computers, Sony PlayStation 2 and Sony PlayStation
Portable. In cellphone/PDA applications, the MIPS core has been largely unable to
displace the incumbent, competing ARM core. The low power-consumption and heat
characteristics of embedded MIPS implementations, the wide availability of embed-
ded development tools, and knowledge about the architecture means use of MIPS
microprocessors in embedded roles is likely to remain common.

Motorola/Freescale Semiconductor’s DragonBall, is a microcontroller design
based on the famous 68000 core, but implemented as an all-in-one low-power solu-
tion for handheld computer use.

The DragonBall’s major design win was in earlier versions of the Palm Comput-
ing platform; however, from Palm OS 5 onwards it has been superseded by ARM-

34 Chapter 1. State of the Art

based processors from Texas Instruments and Intel. The processor is also used in
some of the AlphaSmart line of portable word processors. The processor is capable
of speeds of up to 16.58 MHz and can run up to 2.7 MIPS, for the base 68328 and
DragonBall EZ model. It was extended to 33 MHz, 5.4 MIPS for the DragonBall
VZ model, and 66 MHz, 10.8 MIPS for the DragonBall Super VZ. It is a 32-bit pro-
cessor with 32-bit internal and external address bus (24-bit external address bus for
EZ and VZ variants) and 32-bit data bus. It has many built-in functions, like a color
and grayscale display controller, PC speaker sound, serial port with UART and IRDA
support, UART bootstrap, real time clock, is able to directly access DRAM, Flash
ROM, and mask ROM, and has built-in support for touch screens.

The more recent DragonBall MX series microcontrollers, later renamed the Freescale
i.MX series, are intended for similar application to the earlier DragonBall devices but
are based around an ARM9 or ARM11 processor core instead of a 68000 core.

Memory and Storage

Memory represents another dimension of constraints for mobile devices, as it requires
a small program footprint for both mobile operating system and applications. Three
types of memory are used in this domain: RAM, ROM and flash memory. The latter
is a special for of nonvolatile electrically erasable programmable read-only mem-
ory (EEPROM) that allows data to be read or erased on a block level, as opposed
to the byte level of other ROM types. On desktop computers, physical memory is
considered first-level storage, and hard drives (i.e. hard disk) are secondary storage.
For mobile computer systems, because of the size of system code and because ap-
plication codes are comparatively smaller than those of desktop computer systems,
a pure first-level memory design can be implemented at moderate cost to achieve
good performances. As a result, today’s PDA and smart phones only use memory for
code and data storage. Mobile devices often support I/O extension interfaces, thus
allowing the use of large flash cards with gigabyte capacity. They allow faster access,
they are smaller and lighter than hard disks, they are quiet and don’t have mechanical
parts, so they’re preferred to hard disk for mobile devices. Moreover, hard disk ower
consumption is prohibitively high, and data access speed does not satisfy the needs

1.2. Mobile Computing 35

of mobile applications.

Input device and Display

The input device is crucial to the adoption of a mobile device; available input devices
used on cell phones, PDAs, smart phones and other handheld computing devices are:

• Cell phone keypad; it is a 12-button keypad consisting of keys from 0 to 9,
each also representing some letters and characters and four function keys, i.e.
call, hang up, menu, cancel.

• QWERTY keyboard. It is a tiny version of standard English computer key-
boards or typewriters.

• Alphabetic keyboard. Another type of small keyboard, with keys arranged al-
phabetically.

• Stylus-based virtual keyboard and Handwriting Recognition. They are mostly
popular on PDAs; a user can either use a stylus to write on the device screen
or click keys on a virtual keyboard displayed on the screen. The stylus-based
input method is well suited for frequent text input, but cannot be operated with
one hand.

The display of mobile devices has evolved in a number of directions at a fast pace for
many years. Display screen dimensions vary from device to device, predominantly
determined by the purpose of the device. Smart phones, for example, often have a
sufficiently large display screen for wireless Internet applications as well as for per-
sonal information management (PIM) applications. Design choices have to be made
with regard to a number of factors:

• size - cell phones usually have 2.2-inch diagonal LCD screens with backlight.
The screen size for PDAs range from 2 to 10 inches, while smart phones have
screens of 3,7-4 inches.

36 Chapter 1. State of the Art

• resolution - low resolution are still c.ommon among mobile devices; however,
QVGA (320x240) but also 320x480 and 480x360 are supported for newer
smartphones.

• color depht - it is very common to see consumer mobile devices with a color
depht of 16 bit (65536 colors) or 18 bit (262144 colors)

• backlight - for a better display effect, the display screens of cell phones or
PDAs usually have a backlight.

• power consumption - Thin-film transistor (TFT) displays tend to consume more
power than earlier passive matrix displays (several hundreds milliwatts).

Actually, high performance smart phones use a touchscreen technology; there
are two major categories for such a technology: capacitive and resistive. Capacitive
touchscreens work by transferring a small electrical charge from the screen to your
finger and detecting the region where the charge is removed. Resistive screens use
two extremely thin layers below the glass that are pressed together when the screen is
touched. The difference between the two means that resistive screens can be touched
with any object, like a stylus, while capacitive screens need to make contact with your
body, usually through your finger. In practice we find capacitive screens, like the one
used on the iPhone, to be more responsive, though recent resistive screens, like the
Sony Ericsson Satio, have shown that well designed resistive displays can be nearly
as responsive. The second important element to consider for touchscreen devices is
the design of the interface used by the manufacturers. Touchscreens demand that the
icons are large enough to be pressed with a finger and well spaced enough to avoid
accidentally pressing the icons beside it.

Because the display screen of a mobile device accounts for a significant amount
of the power consumption of the mobile system, it must be considered in the overall
power management scheme. In addition to employing advanced low-power display
technologies, mobile software, including the operating systems, and applications,
must be power aware and adaptively control the display.

1.2. Mobile Computing 37

1.2.2 Mobile software platforms and applications

Actually, the need for high performances in mobile devices involves the ability to
browse any web site, handle mail and different kind of business document; manage
complex user interfaces; support next generation 3D games; edit photos and videos
and watch videos in any format; in addition to rich operating systems,and java and
execution environment support.

For this reason, the whole mobile industry need to go through profound trans-
formation from vertical to horizontal business model. It is necessary to adopt open
interfaces either through standardization or through de facto industry standards with
open specification - not forgetting the open source community with increasing ex-
posure towards mobile platforms. Currently many inherent drivers in mobile device
industry are pushing towards modular solutions, standardized interfaces, and utiliza-
tion of third parties with special domain knowledge [7] A mobile software platform
is defined as the combination of an operating system for a collection of compatible
mobile devices with a set of related software development libraries, application pro-
gramming interfaces (APIs) and programming tools. Mobile software platforms are
either proprietary for special devices or open to all independent software providers.
As mobile hardware technologies and wireless technologies continue to advance, mo-
bile operating systems are required to take advantages of those improvements and
provide strong support for application developers. In the following the major mobile
platforms are presented.

Symbian

Symbian is a private, independent company that develops and supplies the open stan-
dard operating system Symbian OS designed for mobile devices and smartphones,
with associated libraries, user interface, frameworks and reference implementations
of common tools, developed by Symbian Ltd. It was a descendant of Psion’s EPOC
and runs exclusively on ARM processors. Symbian is owned by large cell phone man-
ufacturers including Nokia, Ericsson, Sony Ericsson, Siemens and Samsung. Sym-
bian OS is designed to support a wide range of voice and data services in 2G, 2.5G

38 Chapter 1. State of the Art

and 3G cellular systems, as well as multimedia and data synchronization. Symbian
OS was created with three systems design principles in mind: the integrity and se-
curity of user data is paramount, user time must not be wasted, and all resources are
scarce. It is areal time, multithreaded, preemptive kernel that performs memory man-
agement, process and thread scheduling, interprocess communication, process rela-
tive and thread relative resource management, hardware abstraction and error han-
dling. The basic services provide a programming framework for SymbianOS compo-
nents, such as kernel and user API library, device drivers, file systems, and standard
C++ library. On top of the basic services is a set of communication services, mul-
timedia services, PC connectivity services and generic OS services as represented
in figure 1.4. Communication services act as the core to mobile telephony and data
network access applications. Personal area network (PAN) connectivity such as Blue-
tooth and IrDA, and USB is also enabled by these services. Multimedia services deal
with audio and video recording, playback and streaming. Connectivity services are
software components that implement PC synchronization. Generic OS services offer
typical OS-related components such as memory management and file system access.
Application services allow user programs to be executed in separated processes. The
UI framework is comprised of an array of UI components and event-handling mecha-
nism that allows easy porting of UI programs between different Symbian OS devices.

Furthermore, all Symbian programming is event-based, and the CPU is switched
into a low power mode when applications are not directly dealing with an event. This
is achieved through a programming idiom called active objects. Similarly the Sym-
bian approach to threads and processes is driven by reducing overheads. Symbian OS
uses EPOC C++, a pure object-oriented language, as the supporting programming
language for both system services implementations and application programming in-
terfaces. It also allows Java applications for mobile devices (J2ME apps) to run on
top of a small Java runtime environment. The last version of Symbian OS is used
devices as Samsung i8910 Omnia HD, Nokia N97, Nokia 5800 XpressMusic, Nokia
5530 XpressMusic and Sony Ericsson Satio.

1.2. Mobile Computing 39

Figure 1.4: Symbian OS architecture

Palm

Palm OS (also known as Garnet OS) is a mobile operating system initially developed
by Palm, Inc. for personal digital assistants (PDAs) in 1996; Palm Inc. is the company
that created the PDA market.

Palm OS is designed for ease of use with a touchscreen-based graphical user
interface and making use of limited computing power to allow efficient operations. It
is provided with a suite of basic applications for personal information management.
It has been implemented on a wide array of mobile devices, including wrist watches,
handheld gaming consoles, barcode readers and GPS devices. Later versions of the
OS have been extended to support smartphones.

Palm OS 6 (Cobalt) is a milestone in Palm OS history. It is a complete rwrite
of previous versions and it is the first to support multithreading. It also provides
more wireless capability, multimedia application support and a variety of extension
slots. Palm OS allows third party hardware to be used as part of the system; the
kernel of Palm OS is based on AMX, licensed from Kodak, which offers preemp-
tive multitasking and protective memory management. System services are a set of
modular components that provide communication, input method, GUI event handling
and multimedia processing. Third party software libraries can also be plugged into

40 Chapter 1. State of the Art

the system, for example J2ME profile implementations can be added as external li-
braries. Palm OS employs a database model to store files rather than a block-based
file model. Recently Palm has released webOS, a mobile operating system running
on the Linux kernel with proprietary components. webOS’s graphical user interface
is designed for use on devices with touchscreens. It includes a suite of applications
for personal information management and makes use of a number of web technolo-
gies such as HTML 5, JavaScript, and CSS. The Palm Pre, released on June 2009, is
the first device to run this platform.

Windows Mobile

Windows Mobile is a compact operating system developed by Microsoft, and de-
signed for use in smartphones and mobile devices. It is based on Windows CE and
is designed to support a variety of low-capability mobile devices such as PDAs, cell
phones, smartphones, bar code readers, handheld computers and embedded devices in
automobiles, among others. There are three versions of Windows Mobile for various
hardware devices:

• Windows Mobile Professional runs on ’Windows Phones’ (smartphones) with
touchscreens

• Windows Mobile Standard runs on ’Windows Phones’ with regular screens

• Windows Mobile Classic which runs on “Windows Mobile Classic devices”
(Pocket PCs).

“Windows Mobile Classic device” is a Windows Mobile personal digital assistant
(PDA) that does not have telephone functionality. It was formerly known as the
Pocket PC. It was the original intended platform for the Windows Mobile operat-
ing system.

The .Net Compact Framework is loaded into the ROM of the underlying smart-
phone device. .Net is Microsoft’s general software infrastructure of Internet-based
computing. Its core is XML Web services. They are widely accepted as the solution
to enable seamless, robust and secure collaboration among heterogeneous Internet

1.2. Mobile Computing 41

services and applications.What makes it possible to achieve this goal is the open-
standard XML that is able to integrate data and its structure into a self-explanatory
format such that they can be organized, edited, programmed, and exchanged between
any applications, services, web sites and smart devices. The heart of the .Net infras-
tructure is .Net Framework on most Windows-based operating systems, including
tablet PCs, Pocket PCs and Smartphones.

Embedded Linux

Linux is a free, open-source, UNIX-like operating system. It actually refers to a com-
bination of two portions: Linux kernels and Linux applications. A vast number of
free, open-source applications have been developed and are in use on various Linux
systems. Source code of Linux kernels and applications are mostly available under
Gnu Public License (GPL). Linux is diffused also in the embedded system market,
powering up a broad range of network equipement, consumer electronics, industrial
facilities and mobile devices. In particular, some Linux distributions for PDAs are
free for download on the internet, and commercial Linux systems for mobile devices,
such as Monta Vista Linux are available in the market. Embedded Linux systems
could be either hard real time or soft real time. Hard real time means that the system
must respond in a deterministic way every time a relevant event occurs. In soft real-
time systems, quick responsiveness is desired but not guaranteed.Mobiledevices used
by consumers generally fall into the latter category. The latest Linux kernels support
both hard real time and soft real time applications due to the preemptive kernel design
and the process scheduler.

Summarizing, the main characteristics of embedded Linux systems are:

• the monolithic kernel supports multitasking and multithreading and can be tai-
lored for different applications scenario;

• the open-source community provides support for the latest new technologies,
including Bluetooth, wireless LAN and wireless sensor network;

• application under GPL license can be modified and extended;

42 Chapter 1. State of the Art

• license fee is low or nonexistent.

Several industry groups have formed to foster use of Linux in embedded applica-
tions. In particular, the Embedded Linux Consortium produced the ELCPS (Embed-
ded Linux Consortium Platform Specification) which was intended as a guide to de-
velopers of embedded Linux devices as to what functionality should be included in
order to provide a standard platform supporting application portability.

RIM Blackberry

RIM provides a proprietary multi-tasking operating system (OS) for the BlackBerry,
which makes heavy use of the device’s specialized input devices, particularly the
scroll wheel or more recently the trackball. The OS is focused on easy operation and
was originally designed for business , it provides support for Java MIDP 2.0 and WAP
1.2. Third-party developers can write software using proprietary BlackBerry APIs as
well, but any application that makes use of certain restricted functionality must be
digitally signed so that it can be associated to a developer account at RIM. This sign-
ing procedure guarantees the authorship of an application, but does not guarantee the
quality or security of the code. The OS supports push e-mail, mobile telephone, text
messaging, internet faxing, web browsing and other wireless information services as
well as a multi-touch interface.

Modern GSM-based BlackBerry handhelds incorporate an ARM 7 or 9 proces-
sor, while older BlackBerry 950 and 957 handhelds used Intel 80386 processors. The
latest GSM BlackBerry models (8100, 8300 and 8700 series) have an Intel PXA901
312 MHz processor, 64 MB flash memory and 16 MB SDRAM. CDMA BlackBerry
smartphones are based on Qualcomm MSM6x00 chipsets which also include the
ARM 9-based processor and GSM 900/1800 roaming (as the case with the 8830 and
9500) and include up to 256MB flash memory. The latest BlackBerry 9000 series is
equipped with Intel XScale 624 MHz CPU,which makes the fastest BlackBerry to
date. Several non-BlackBerry mobile phones have been released featuring the Black-
Berry e-mail client which connects to BlackBerry servers.

1.2. Mobile Computing 43

iPhone os

iPhone OS, known as OS X or OS X iPhone in its early history, is the operating
system developed by Apple for the iPhone and iPod touch. Like Mac OS X, from
which it was derived, it uses the Darwin foundation. iPhone OS has four abstraction
layers:

• the Core OS layer;

• the Core Services layer

• the Media layer

• the Cocoa Touch layer

The operating system takes less than 240 Megabytes of the device’s total memory
storage. iPhone OS’ user interface is based on the concept of direct manipulation, us-
ing multi-touch gestures. Interface control elements consist of sliders, switches, and
buttons. The response to user input is supposed to be immediate to provide a fluid in-
terface. Interaction with the OS includes gestures such as swiping, tapping, pinching,
and reverse pinching. Additionally, using internal accelerometers, holding the device
sideways (so that the screen is in landscape orientation) alters the screen orientation
in some applications. A home screen (rendered by "SpringBoard") with application
icons, and a dock at the bottom of the screen, showing icons for the applications the
user accesses the most, is presented when the device is turned on or whenever the
home button is pressed. The screen has a status bar across the top to display data,
such as time, battery level, and signal strength. The rest of the screen is devoted to
the current application. There is no concept of starting or quitting applications, only
opening an application from the home screen, and leaving the application to return to
the home screen.

The central processing unit used in the iPhone and iPod Touch is an ARM-based
processor (Cortex8) instead of the x86 (and previous PowerPC or MC680x0) pro-
cessors used in Apple’s Macintosh computers, and it uses OpenGL ES 1.1 rendering
by the PowerVR 3D graphics hardware accelerator co-processor. Mac OS X applica-
tions cannot be copied to and run on an iPhone OS device. They need to be written

44 Chapter 1. State of the Art

and compiled specifically for the iPhone OS and the ARM architecture. Authorized
third-party native applications are available for devices with iPhone OS 2.0 and later
through Apple’s App Store.

Apple has not announced any plans to enable Java to run on the iPhone. The
iPhone OS has been subject to a variety of different hacks for a variety of reasons,
centered around adding functionality not supported by Apple, but it is not illegal.
Before the SDK was released, third-parties were permitted to design "Web Apps"
that would run through Safari. Unsigned native applications are also available. The
ability to install native applications onto the iPhone outside of the App Store will not
be supported by Apple. Such native applications could be broken by any software
update, but Apple has stated it will not design software updates specifically to break
native applications other than those that perform SIM unlocking.

The SDK itself is a free download, but in order to release software, one must en-
roll in the iPhone Developer Program, a step requiring payment and Apple’s approval.
Signed keys are given to upload the application to Apple’s App Store. Applications
can be distributed in three ways: through the App Store, through enterprise deploy-
ment to a company’s employees only, and on an "Ad-hoc" basis to up to 100 iPhones.
Once distributed through the App Store, a developer can request up to 50 promotional
codes that can be used to freely distribute a commercial application he or she has de-
veloped. This distribution model for iPhone software appears to make it impossible
to release software based upon code licensed with GPLv3.

Android

Android is a software stack for mobile devices that includes an operating system,
middleware and key applications (figure 1.5). The Android SDK provides the tools
and APIs necessary to begin developing applications on the Android platform using
the Java programming language. By providing an open development platform, An-
droid offers developers the ability to build rich and innovative applications. Devel-
opers are free to take advantage of the device hardware, access location information,
run background services, set alarms, add notifications to the status bar, etc. Develop-
ers have full access to the same framework APIs used by the core applications. The

1.2. Mobile Computing 45

application architecture is designed to simplify the reuse of components; any appli-
cation can publish its capabilities and any other application may then make use of
those capabilities (subject to security constraints enforced by the framework). This
same mechanism allows components to be replaced by the user. For example, an ap-
plication can call upon any of the phone’s core functionality such as making calls,
sending text messages, or using the camera, allowing developers to create richer and
more cohesive experiences for users. Android is built on the open Linux Kernel. Fur-
thermore, it utilizes a custom virtual machine that was designed to optimize memory
and hardware resources in a mobile environment. Android is open source; it can be
liberally extended to incorporate new cutting edge technologies as they emerge. The
platform will continue to evolve as the developer community works together to build
innovative mobile applications.

Figure 1.5: Android platform architecture

Android includes a set of C/C++ libraries used by various components of the
Android system. These capabilities are exposed to developers through the Android
application framework. Some of the core libraries are listed below:

46 Chapter 1. State of the Art

• System C library - a BSD-derived implementation of the standard C system
library (libc), tuned for embedded Linux-based device

• Media Libraries - based on PacketVideo’s OpenCORE; the libraries support
playback and recording of many popular audio and video formats, as well as
static image files, including MPEG4, H.264, MP3, AAC, AMR, JPG, and PNG

• Surface Manager - manages access to the display subsystem and seamlessly
composites 2D and 3D graphic layers from multiple applications

• LibWebCore - a modern web browser engine which powers both the Android
browser and an embeddable web view

• SGL - the underlying 2D graphics engine

• 3D libraries - an implementation based on OpenGL ES 1.0 APIs; the libraries
use either hardware 3D acceleration (where available) or the included, highly
optimized 3D software rasterizer

• FreeType - bitmap and vector font rendering

• SQLite - a powerful and lightweight relational database engine available to all
applications

It allows developers to write managed code in the Java language, controlling the
device via Google-developed Java libraries Android relies on Linux version 2.6 for
core system services such as security, memory management, process management,
network stack, and driver model. The kernel also acts as an abstraction layer between
the hardware and the rest of the software stack.

The first phone on the market to use the Android platform was HTC Dream,
followed by HTC Hero, HTC MAgic, Motorola Droid, Samsung l7500 and l5700;
HTC Google Nexus One is expected with the last version of Android platform (ver-
sion 2.1).

1.2. Mobile Computing 47

Brew

Binary Runtime Environment for Wireless (BREW) is a wireless software platform
solution for CDMA cell phones developed by QUALCOMM, the company that cre-
ated the CDMA technology. BREW consists of three components: a binary runtime
environment, an application developement environment and a distribution system.
The binary runtime environment allows native BREW applicatins to operate regard-
less of the air interface used by the cell phone. The application development environ-
ment provides a set of platform APIs and supporting tools for BREW software devel-
opment. The Brew distribution system (BDS) allows wireless data service providers
to deliver content to subscriber. Any mobile applications that are about to be deployed
on mobile device must be signed using a digital key and certificate. Brew is gener-
ally regarded as a hardware-independent wireless solution for mobile devices. In this
sense it is competing with J2ME; these technologies are not entirely competitors,
for example Qualcomm has selected IBM’s J9 Java virtual machine for BREW, thus
allowing to execute Java applications.

1.2.3 Java Micro Edition (J2ME)

Java is not a mobile operating system, but other mobile operating systems can lever-
age Java platforms to enable code portability and enforced security. In this sense Java,
in particular J2ME, performs as a common middle layer between a specific mobile
operating system and applications offered by wireless service providers.

Java by definition is a cross-platform, object-oriented, interpretive programming
language developed by SUN Microsystems. At the heart of Java is a set of Java Virtual
Machines (JVMs) from different platforms that interpret compiled Java bytecode. To
run Java applications on a platform, a Java Runtime Environment (JRE) is required. A
JRE consists of a JVM for the underlying platform, core classes in standard packages,
and some supporting files.
The official Java platforms (JRE and software development kit) available from Sun
Microsystems, each targeting a type of computing system are:

• Java 2 Standard Edition (J2SE), for desktop and server systems

48 Chapter 1. State of the Art

• Java 2 Enterprise Edition (J2EE), for enterprise application systems

• Java 2 Micro Edition (J2ME), for embedded systems

• Java Card, for smart card applications

J2ME is aimed at the ever-expanding embedded devices market. Due to the diver-
sity of devices in this segment, J2ME has ben furthered packaged into two distinct
configurations: Connected Limited Device Configuration (CLDC) for mobile devices
and Connected Device Configuration (CDC) for consumer and embedded devices.

A J2ME configuration consists of a set of fundamental requirements for JVMs
and supportive Java classes and APIs that as a whole represent Java runtime envi-
ronment for a collection of embedded devices with similar hardware and network
capabilities.

The characteristics of CLDC devices can be summarized as follows:

• A 16-bit or 32-bit processor with a clock speed of 16 MHz or higher

• Low memory budget, 160 to 512 Kbyte

• Lower power consumption and limited power supply (mostly battery)

• Simple user interface, or no interface at all

• Low bandwidth and possibly intermittent network connection

Examples of CLDC devices include cell phones, low-end PDAs, pagers, wireless sen-
sors, radio frequency identification (RFID) devices, etc. CLDC devices are resource
constrained in terms of power, processing capability, memory capacity and network
capability; therefore, standard JVM cannot be used. Instead, a stripped-down JVM,
the Kilobyte virtual machine (KVM), is highly desirable for CLDC configuration.
Sun has suplied a reference implementation of KVM along with the CLDC config-
uration. Other KVM implementations are also available, such as IBM’s J9 virtual
machine, which has been selected for the BREW platform by Qualcomm. The char-
acteristics of CDC devices are:

1.2. Mobile Computing 49

• A 32-bit processor

• Large memory budget, 2MB RAM and 2.5 MB ROM available to the Java
application environment

• Wired power supply or long battery time

• Stable network connection

• Various user iterface, from sophisticated GUIs to no UI

Examples include high-end PDAs, television set-top boxes, and RFID readers.
Unlike CLDC, CDC configuration uses standard JVM. J2ME configurations are de-
fined based on hardware and network specifications rather than vertical classification
of application scenarios of various devices.. The functionality provided by devices
of the same J2ME configuration may vary greatly, requiring additional APIs that are
not provided by the underlying common-ground J2ME configuration. For this rea-
son, some J2ME profiles have been defined for each configuration. A profile is a set
of standard Java APIs for a specific narrower class of devices within a J2ME con-
figuration. For the CDC configuration, a foundation profile, a personal basis profile
and a personal profile are defined; the foundation profile ats as the core to the other
two profiles. For the CLDC configuration, mobile information device profile (MIDP)
and PDA profile have been devised. For cell phones and smart phones, the CLDC
configuration and the MIDP profile made up a standard Java platform, as shown in
figure 1.6.

1.2.4 Comparison between most diffused devices and platforms

Symbian OS and Palm OS are historically dedicated mobile operating systems for cell
phones and PDAs, respectively. The challenge is to provide a wide range of mobile
telephony and mobile data services with very limited resource on a small form factor.
As an open source operating system, Linux has been embraced by a number of mobile
device manufacturers as a low-cost and highly customizable solution. J2ME CLDC

50 Chapter 1. State of the Art

Figure 1.6: J2ME configurations and profiles

is platform independent and can be used on any mobile operating system supporting
J2ME.

Microsoft Windows Mobile for Smartphone is rooted in the general purpose Win-
dows CE operating system, and is known to require much more in the way of com-
puting resources due to the generalized architecture of Win CE even though it has
been tailored for smart phones. Microsoft approach, where the company supplies the
software and general specifications, then leaves it to the handset makers to design and
build the phones.

On the contrary, both Apple’s iPhone and Research In Motion’s BlackBerry are
vertically integrated products, controlled from top to bottom by a single company.
The advantages of integration are obvious. On handsets more than PCs, the success
of a user interface depends on it being tailored to a specific piece of hardware. Every
bit of the iPhone version of OS X seems tailored to the specific capabilities of the
device, the keyboard and display in particular, which is a big reason why the user
experience is so good. In the end, customers pay their money and make their choices.
iPhone-like top-to-bottom will probably always yield the best integrated products.
The price the user pay is that Apple gets to make all the choices. And in the case

1.2. Mobile Computing 51

of the iPhone, Apple also has control over what applications are approved to run
on it. Apple has made several arguments in support of the strategy to control every
aspect of its device, including the hardware (battery, screen, etc.) and the software
(OS, applications, etc.) that runs on it.

The primary argument in Apple’s support is that this way Apple can make sure
that devices work the way they are expected to work. The other reason could be that
Apple wants to prevent the loss of revenue for the thousands of developers develop-
ing applications for the App store (if you have a jailbroken phone, you can virtually
install any application for free). In this sense, the relationship between Apple and
the applications developers is a pure commercial one. The last argument is to ensure
hardware compatibility; for hardware related issues, Apple may want to ensure that
the hardware is capable to support the software. iPhones are extremely powerful de-
vices (for their size) and the described philosophy may induce to think that Apple
is preventing users to take full advantage of its powers. Instead of making their de-
vices/OS strong to handle such uses, Apple has chosen an easier route to allow only
certain things on its devices so as to avoid the trouble of making the device more
secure.

The arrival of a much more mature Android (version 2.0 on the Motorola/Verizon
Droid and 2.1 on expectes HTC Google Nexus One) means we are going to see a fair
fight for the future of smartphones between the models of vertical integration and
open platforms. Android has a real chance because it started out as a much more
modern design and Google has shown the ability to evolve in Internet time. In a
little over a year, we have seen two major versions of Android, with two significant
point releases (1.5 "Cupcake" and 1.6 "Donut") in between. Still there are risks in the
platform approach. One is that Google has relatively little control over how hardware
makers use the open source Android. The biggest risk would be what’s known in
the software development business as a code fork, which means that we would see
different versions of Android that would not all run the same applications. In this
case, Google will use its heft and influence to keep this from happening. But even
relatively simple variations, like handsets with or without physical keyboards, can
lead to software compromises the produce less-than-optimal experiences.

52 Chapter 1. State of the Art

Things are a little rougher in BlackBerry-land, where RIM has to support devices
with more diverse capabilities. The touchscreen Storm2 in particular has put a strain
on the one-size-fits-all OS; some features designed for keyboard-equipped BlackBer-
rys don’t feel right on the big touchscreen. Still, RIM has also done a very good job
of delivering a very good experience.

Windows Mobile until now has been the leading platform choice (Symbian is
a contender), but it has some problems that the newest version 6.5 has not solved
yet; new touchscreen phones come with a stylus, which immediately takes us back a
decade or more. Worse, the stylus isn’t just an atavism; with the insensitive resistive
touchscreens that WinMo still requires, there are times when user really need it. An
interim release that will support more modern capacitive displays is due in a few
months, but a major overhaul, Windows Mobile 7, is not expected to show up in
handsets until a year from now.

Today, with iPhone, BlackBerry, and Android, we have three world-class product
families with different approaches to software and hardware development. Black-
Berry tends to live mainly in its own email-centric world, but iPhone and Android
will be going at it head on. The developers have deserted Windows Mobile and are
now writing applications for Android and iPhone instead. Hence, Windows Mobile
has less than 300 applications in the application Market Place. While Windows CE
has a lot of legacy applications from long ago, Windows Mobile has very few new
applications, because no new development is happening. Microsoft will release Win-
dows Mobile 7 next year, which will bring multi-touch gestures and support for ca-
pacitive screens at an OS level. This update will catch up to where competitors were
3 years ago. But because it still will have few applications, it will gain little on what
Windows Mobile 6.5 is today. The inevitable result will be that Windows Mobile is
discontinued for consumer smartphones. However, Windows CE derivatives will still
live on, but in specialized industrial settings only.

In the following a summarizing table of smartphones that in 2009 offered the
perfect mix of features, performance and value for money (figures 1.5, 1.6).

1.2. Mobile Computing 53

HTC Hero Samsung HD-Icon Apple iPhone 3GS

Battery
8h

750 h standby

5 h

300 h standby

Camera
5-megapixel

4x

8-megapixel

4x
3-megapixel

Connec-

tivity

Bluetooth, 3G, HSDPA

Data: GPRS, WAP,

UMTS, HSDP

Bluetooth, Wi-Fi, 3G,

HSDPA

Data: GPRS, EDGE,

HSDPA

Bluetooth, Wi-Fi

(802.11b/g)

Data: GPRS, WAP,

EDGE, UMTS, HSDPA

Display
320 x 480 pixels

65k colours

360 x 640 pixels

16 million colours
320 x 480 pixels

Memory
800 MB

microSD (exp. slot)

8GB

microSD (exp. Slot)
32GB

OS Android Series 60 iPhone OS

Input
method

Touchscreen Touchscreen Touchscreen

Dim.
WxDxH

56.2 x 14.4 x 112 mm 58 x 12.9 x 123 mm 62 x 12 x 115 mm

Video
and
picture

MPEG-4, WMV

JPG

MPEG-4

JPG

MPEG-4

JPG

Table 1.5: Comparison between smartphones - part 1

54 Chapter 1. State of the Art

nokia N900 Blackberry Bold 9700 Sony Ericsson Satio

Battery
6 h talk

500 h standby

4.5 h talk

340 h standby

Camera
3-megapixel

4x

12Mpixels

4x
3-megapixel

Connec-

tivity

Bluetooth, Wi-Fi

(802.11b/g) Data: GPRS,

WAP, EDGE, UMTS,

HSDP

Bluetooth, Wi-Fi

(802.11b/g) Data: GPRS,

WAP, EDGE, UMTS,

HSDPA

Bluetooth, Wi-Fi, 3G,

HSDPA Data: GPRS,

EDGE, UMTS, HSDPA

Display
800 x 480 pixels

16 million colours

480 x 360 pixels

65k colours

640 x 360 pixels

16 million colours

Memory
256 MB RAM

32GB ROM

microSD (exp slot)

256 MB ROM

2GB memory card In-

cluded

microSD (exp. slot)

8GB

microSD (exp slot)

OS
Linux

(on ARM Cortex-A8)
Symbian

Input
method

QWERTY keyboard,

Touchscreen
QWERTY keyboard Touchscreen

Dim.
WxDxH

60 x 18 x 111 mm 60 x 14 x 109 mm 54 x 15 x 111 mm

Video
and
Picture

MPEG-4, WMV

JPG

MPEG-4

JPG

MPEG-4, Real Video,

WMV

JPG

Table 1.6: Comparison between smartphones - part 2

1.3. Service oriented infrastructures for pervasive computing 55

1.3 Service oriented infrastructures for pervasive comput-
ing

To develop pervasive services and applications, research in engineering methodolo-
gies and software architectures has focused service discovery and composition. In a
ubiquitous computing environment, a service-oriented infrastructure must be enabled
with service discovery protocols (SDPs) to find the most appropriate services, either
upon direct request from the users or proactively. Moreover, mobility and resource
scarcity introduce two dimensions that service-oriented infrastructures for wired net-
works don’t take into account: location awareness and physical proximity between
the service provider and the user. In a broader vision, to find the most appropriate ser-
vices, the service-oriented infrastructure should exploit context. To improve decen-
tralization, scalability, robustness, and to avoid single points of failure, the peer-to-
peer paradigm is a viable solution for such advanced service-oriented infrastructures.
In contrast with the client/server approach, in which resource providers and resource
consumers are clearly distinct, peers usually play both roles. The key concept of the
peer-to-peer paradigm is leveraging idle resources to do something useful, like cycle
sharing or content sharing. In [8], Bodhuin et al. compare some traditional solutions
for net-centric computing middleware, such as Jini, OSGi and CORBA, listing their
pros and cons. The survey does not include Sun MicroSystem’s JXTA [9], probably
due to the fact that in year 2005 an implementation for mobile devices was not com-
pleted. JXTA is mainly the specification of a set of open protocols for building over-
lay networks, independent from platforms and languages. Currently there are three
official implementation of JXTA protocols: J2SE-based, J2ME-based and C/C++/C
-based. In particular, an almost complete version of the JXTA Java Micro Edition
(JXTA-J2ME, a.k.a. JXME) has been recently released. It provides a JXTA compat-
ible platform on resource constrained devices using the Connected Limited Device
Configuration (CLDC) with Mobile Information Device Profile 2.0 (MIDP), or Con-
nected Device Configuration (CDC). Supported devices range from smartphones to
PDAs.

56 Chapter 1. State of the Art

1.3.1 Ubiquitous peer-to-peer sharing of services

In this context, Web Service technologies provide standard, simple and lightweight
mechanisms for exchanging structured and typed information betweens services in a
decentralized and distributed environment. Web Services are a text-based Machine-
to-Machine (MMI) interface, they are simple to build and take advantage of the ubiq-
uity of the Web. The Web service community has addressed a number of issues in the
context of Internet such as developing languages to describe services and the design
of business processes by combining Web services.

Orchestration and choreography standards of Web services workflows address
both the language for describing the process workflow and the supporting infrastruc-
ture for running it. OSGi [10] is a Java-based technology which provides a service-
oriented plug-in-based platform for application development. The core component
of the OSGi Specifications is the OSGi Framework, which provides a standardized
environment to applications (called bundles). On top of the Framework, services are
specified by a Java interface. Bundles can implement this interface and register the
service with the Service Registry. Clients of the service can find it in the registry, or
react to it when it appears or disappears. Advanced networking features, such as e.g.
peer-to-peer connectivity, are not provided by OSGi and must be implemented on top
of it.

The Web Service community considers services as the only mean for access-
ing resources (this concept has been explicitly formalized in the WSRF specification
[11]), yet centralized registries, themselves exposed as services (like UDDI), are still
deemed the primary tool to support the publication and the discovery phases. Unfortu-
nately, a peer-to-peer network of Web Service providers with a publication/discovery
infrastructure implemented as a set of interacting Web Services would be absolutely
unefficient due to the heaviness of the SOAP messaging protocol.

On the other side, in JXTA each peer’s service is just an example of resource
which can be exploited by the user which owns the peer, or shared in the network,
i.e. advertised by the user and exploited by other users. Resource descriptions have
the shape of XML documents, namely advertisements. A JXTA advertisement can
be filled with any document, e.g. a WSDL interface if the shared resource is a Web

1.3. Service oriented infrastructures for pervasive computing 57

Service. JXTA provides a lot of flexibility by separating basic infrastructural services,
mandatory for all peers, from specialized services, with different levels of description
and efficiency.

Within the context of JXTA and Web Service integration, Distributed System
Group (DSG) of University of Parma is responsible for the development and main-
tenance of the JXTA-SOAP component [12], enabling Web Service deployment in
JXTA peers, as well as distributed WSDL publication and discovery, and SOAP mes-
sage transport over JXTA pipes (i.e. virtual communication channels which may con-
nect peers that do not have a direct physical link, resulting in a logical connection
bound to peer endpoints corresponding to available peer network interfaces with an
example being a TCP port and associated IP address). JXTA-SOAP is currently im-
plemented in two versions: J2SE-based (fully featured, extending JXTA-J2SE) and
J2ME-based (partially featured, extending JXME), and is the sole open source project
for P2P sharing of Web services being actively maintained and updated.

WSPeer [13] is a J2SE toolkit for deploying and invoking Web Services in peer-
to-peer Grid environments, which wraps Globus Toolkit core libraries to support the
WS Resource Framework (WSRF) [11]. More interesting for ubiquitous computing
environments is the Mobile Web Services Mediation Framework (MWSMF) [14, 15],
an adaptation of Apache ServiceMix, which is an open source ESB (Enterprise Ser-
vice Bus). It provides an hybrid solution, since it must be configured as JXTA-J2SE
peer and established as an intermediary between Web Service clients and mobile
hosts, the latter being configured as JXME peers. Web Service clients can invoke the
services deployed on mobile hosts via the MWSMF, which compresses SOAP mes-
sages (to BinXML format) and sends them through JXTA pipes. The MWSMF also
manages message persistence, guaranteed delivery, failure handling and transaction
support. Unfortunately, the source code is not publicly availble and few details are
given about the realization of lightweight Web Service providers running on mobile
hosts.

58 Chapter 1. State of the Art

1.3.2 Web Services on resource-constrained devices

The ubiquity of Web Services makes them interesting to use for mobile applica-
tions. Device proliferation should not cause protocol proliferation; for this reason,
using Web Services makes much sense for distributed mobile applications. Besides
hardware constraints, mobile devices introduce many other specific challenges which
make difficult the deployment of Web Services on top of them [16]. Unlike dedicated
servers, mobile devices will typically have intermittent connectivity to the network.
As a result, the services offered on a mobile device may not be accessible all the
time. An application that uses or composes such Web Services needs to operate in an
opportunistic manner, leveraging such services when they become available. On the
server side, Web Services on mobile devices should also attempt to keep messages
as short as possible. Another issue to be addressed is the change of IP address which
may arise when a mobile device moves between different locations, and from one
administrative domain to another. However, with the P2P in place, the need for the
Public IP can be eliminated and the mobiles can be addressed with unique peer ID.
Each device in the P2P network is associated with the same peer ID, even though
the peers can communicate with each other using the best of the many network in-
terfaces supported by the devices like Ethernet, WiFi, etc. [23]. Web Services and
mobile applications can be related in three ways as represented in figure 1.7:

• Web Service Proxy: the backend of a mobile system uses Web Services to
retrieve information and return it to the mobile user. The interface between the
back-end system and the device remains consistent and can be implemented
through whatever communication protocol may be necessary.

• Direct Connection to Web Services: mobile devices can directly access the
network through the use of Web Services, thus avoiding the use of a proxy.

• Mobile devices as Web Service providers: more powerful performing mobile
devices can bacome service providers hosting a lightweight web server and
deploying services.

1.3. Service oriented infrastructures for pervasive computing 59

Figure 1.7: Web Services for the mobile infrastructure

Since the WS message protocol, namely SOAP, introduces some significant over-
head, few toolkits support the deployment of Web Services on limited devices, such
as PDAs, smart phones, etc. One is gSoap [17], which provides a WS engine with run-
time call de-serialization. Unfortunately, gSoap is written in C/C++, thus requiring
a priori stub/skeleton generation by means of a specific compiler, which also means
lack of portability.

.NET Compact Framework [18] is a subset of the .NET platform, targeting mobile
devices. Its class library enables the development of Web Service clients, but does not
allow to host Web Services.

60 Chapter 1. State of the Art

Looking at the Java Micro Edition (J2ME) platform, most libraries are only for
client side functionality. The Java Wireless Toolkit (WTK) provides J2ME Web Ser-
vices API (WSA) [19], based on JSR 172 [20], which specifies runtime Service-
Provider interface to allow the generation of portable stubs from WSDL files. The
specification contains some notable limitations, most of them due to the require-
ment for WS-I Basic Profile compliance. Conforming to the profile ensures interop-
erability, but also prevents using alternative methods. Another widely used solution
is the kSoap2 [21] open source component, which is a parser for SOAP messages
(with RPC/literal or document/literal style encoding), not supporting the generation
of client side stubs. kSoap2 is compliant with devices lacking JSR 172 support, and
allows to access non WS-I conformant services. To the best of our knowledge, the
unique solution enabling J2ME applications (CLDC, CDC) as service endpoints is
the Micro Application Server (mAS) [22]. It can be considered a lightweight version
of Axis, by which it is inspired.

Chapter 2

Framework

In this chapter we introduce the formal framework we contributed to define, dur-
ing the Ph.D. period, in the context of DSG research and development activity. The
framework, called NAM, can be used to design distributed computing systems with
shared resources. Here we introduce also NSAM, which is the service-oriented ver-
sion of NAM, and we use it to address the service composition problem. Finally, we
discuss about code mobility aspects, that we used to complete NSAM with a service
mobility framework.

2.1 Networked Autonomic Machine

A Networked Autonomic Machine (NAM) is a hardware/software entity that is pro-
grammed to be completely altruistic, providing resources to other NAMs. In a peer-
to-peer system of NAMs, each node can act both as resource consumer and resource
provider, and contributes to the effective and efficient functioning of the whole sys-
tem. NAMs can be of different types and complexities, depending on the device and
on the characteristics of the offered resources. Several kinds of devices are con-
sidered: PCs and workstations, notebooks, PDAs, smart-phones, as well as sensors
and actuators. Devices can be classified on the basis of their system characteristics
(OS, processor type, memory, I/O type, battery, connectivity) or their functionalities

62 Chapter 2. Framework

(camera, communicating, processing, sensors...). The software layer of each NAM
includes a lightweight control module implementing a peer-to-peer overlay scheme.

Formally, a NAM node is a tuple

NAM =< UID,CT RL,R > (2.1)

where UID is a unique identifier, CT RL is the control layer, and R is a set of resources.

The control system is defined as

CT RL =< X ,Y,S,SR,δint ,δext ,λ , ta > (2.2)

where

• X is is the set of input values

• Y is the set of output values

• S is a set of states

• SR is the set of states of the resources owned by the NAM

• δint : S×SR→ S is the internal transition function

• δext : Q×X×SR→ S is the external transition function, where Q = {(s, te)|s ∈
S,0≤ te ≤ ta(s)} is the total state set (te is the time elapsed since last transition)

• λ : S→ R+ is the output function

• ta : S→ Y is the time for which the system stays in state S if no external event
occurs

The external transition function dictates the system’s new state when an external
event occurs. This state is determined by the input, the current state and how long the
system has been in this state.

2.1. Networked Autonomic Machine 63

Resource attributes describe the device characteristics; some of them may change
with time, others are fixed:

R = {r1,r2, ...,rn} (2.3)

Example of resource:

r1 = devicehardware =< CPU,memory(t),battery(t),connectivity >

representing the hardware of the device. Of course, resources can be defined with
finer granularity. Each resource property has a name and a range. In the example,
battery is represented by a percentage, connectivity is a string in wired,wireless or
in a more rich enumeration, CPU is an integer value, etc. Some properties are time-
dependant.

2.1.1 Services as NAM resources

A service is a resource consisting in a unit of work executed by a service provider to
achieve the results desired by a service consumer. Formally, a service is a tuple

σ =< I,O,P,E,C > (2.4)

where I is a set of input parameters, and O a set of output parameters. Each I/O param-
eter has a type, i.e. a class (still using the ontological terminology). It is important that
service consumers and service providers share the same domain ontologies in order to
have a common understanding of shared services. Semantic descriptions of services
are used to organize service advertisements in centralized or distributed repositories,
allowing to efficiently retrieve and use services in the network. P and E are the pre-
condition and effect sets, respectively. Such optional parameters are expressed in the
form of logical conditions which can assume the true or false value. Preconditions
must be verified in order to invoke the service, while an execution effect may become
a precondition for the successive invocation in a composition scenario. For example,
in an ambient intelligence scenario, if we need a service that assigns the value “ON”

64 Chapter 2. Framework

Figure 2.1: NSAM basic ontology.

to the “status” property of a “living room light”, we specify an invocation effect very
precisely. C is the set of classes associated to the service.

The service-oriented version of NAM is called Networked Service-oriented Auto-
nomic Machine (NSAM). In NSAM network, each NSAM provides atomic services
and cooperates with other NSAMs to build composite services.

An atomic service is defined as the minimal executable function unit, that cannot
be decomposed and whose execution can transform a given state to another state. It
is represented as a tuple:

a =< I,O,P,E,Q > (2.5)

where Q is the set of quality of service attributes, depending on the device character-
istics and on the amount of resource required to process inputs and generate outputs.
Each node can provide different atomic services. The number of concurrent service
instances and the quality of service (QoS) of each instance at a certain time depends
on the current availability of hardware resources on the node.

Atomic services provided by different peers can be statically or dynamically ag-
gregated (proactively or on-demand) to realize new complex tasks. A composite ser-

2.1. Networked Autonomic Machine 65

vice is a tuple:

c =< I,O,P,E,Q,Gw > (2.6)

where Gw is the rule that allows to combine atomic services; this rule is represented
as a directed workflow graph

Gw =< Rw,Lw > (2.7)

where Rw is a set of services (both atomic and composite) and Lw is a set of links that
represent transitions (i.e. I-O connections) among services.

2.1.2 Service composition

In a service-oriented infrastructure, user and application requests typically need to
combine the functionality of several services and resources spread over the networked
environment. The mechanism of combining two or more services together to form a
complex service is known as service composition. Typically, a service composition
system accepts a complex user task as an input and attempts to meet the needs of the
task at hand by appropriately matching the task requirements with the available ser-
vices. Such composite services enable users (applications) to reach their goal without
having to discover and coordinate among a number of services on their own.

According to the NSAM model, a composite service is defined as aggregation of
atomic and composite services (recursion). This allows the definition of increasingly
complex applications by progressively aggregating components at higher levels of
abstraction.

Creating a complex process requires not only a clear definition of collaboration
patterns of all its components, but also a way of depicting service interactions. Task
resolution is performed firstly deriving several different compositions at the seman-
tic level, then identifying the underlying services that can take part in the composite
results. Service composition mechanisms are classically treated as extensions to ser-
vice discovery strategies (that are usually implemented as atomic services hosted
by all peers). Service discovery is achieved by matching service requests with the

66 Chapter 2. Framework

Figure 2.2: Example of service compositions.

ontology-based service descriptions of shared services. According to the proposed
NSAM model, I and O attributes are used as parameters for discovery mechanisms.
When a peer receives a service request that cannot process by itself, either partially
or completely, it searches for other peers able to process the request. For this reason,
it should be able to locate peers that provide any type of service and to send messages
to a fraction of its neighbours in order to propagate the requests.

The requirements for service composition are that the output produced by a ser-
vice σ1 can be consumed by σ2, i.e. for each o∈O1, ∃i∈ I2 , so that type(o) = type(i)
and sem(o) = sem(i).
Figure 2.2 illustrates an example in which a service with input set I and output set O
is composed using two alternative, semantically matching, flows:

σ1→ σ2

since I ≡ I1,O1≡ I2,O2≡ O

σ1→ σ3→ σ4

since I ≡ I1,O1≡ I3,O3≡ I4,O4≡ O

The quality parameter Q in the definition of the requested service is used to select
a composition among all the possibilities, and to stop the discovery process when at
least a composition with the required quality of service is discovered.

2.1. Networked Autonomic Machine 67

A service providing system is considered self-adaptive if it can dynamically ad-
just its service structure so as to reflect the changing demand and improve user’s
satisfaction. To make a system self-adaptive an effective coordination mechanism
can be created in which peers are considered to be cooperative in nature.

Some NSAMs may also act as orchestrators for service composition, offering
a service that collects service information (by triggering discovery processes), and
creates a combination of available services that meet user requirements. Such coordi-
nators manage both the discovery process and the service invocation once a satisfying
composition is found.

Finally, one of the major challenges in pervasive computing applications is the
issue of mobility. In any pervasive computing environment, once the initial compo-
sition is identified and a service session is established, the mobility of the peer can
change the composed solution. In such situations, the challenge is to reconfigure the
session under progress as quickly as possible by considering the current resource
availability around the user.

2.1.3 Related works

Before developing our own framework, we studied state-of-art solutions, such as
Gator Tech [23], Amigo [24], Socam [25].

Among others, the most innovative is PERSONA (Perceptive Spaces prOmot-
ing iNdepentent Aging) [26], which is a EU-funded research project (FP6) started in
2007, aiming at developing a scalable open standard technological platform to build
a broad range of Ambient Assisted Living (AAL) Services. In this context the main
technical challenge is the design of a self-organizing middleware infrastructure allow-
ing the extensibility of component/device ensembles in an ad hoc fashion. In order
to achieve this goal the communication patterns of the infrastructure must be able to
execute distributed coordination strategies in order to provide the necessary service
discovery, service orchestration and service adaptation functionalities. The compo-
nents of a PERSONA system are interfaced with the PERSONA middleware that
enables the allocation of a different number of communication buses, each of them
adopting specific and open communication strategies. Components linked with the

68 Chapter 2. Framework

PERSONA middleware may register with some of these communication buses, find
each others and collaborate trough the local instances of the buses. Input and output
buses support multi-modal user interactions with the system. The context bus is an
event-based channel to which context sources are attached, in particular the Wireless
Sensor Networks (WSN) [27] are attached to this bus. Published events may be re-
elaborated and transformed in high level events (situations) by components that have
subscribed to the bus (e.g. context reasoners). The service bus is used to group all the
services available in the AAL-space, being them atomic or composite (whose avail-
ability is managed by a Service Orchestrator component). Services belonging to the
service bus may be requested by the Situation Manager in consequence of situation
detections and rules stored in the Knowledge Base of the system. Generally, devices
are attached to both the context and service bus. The former is used to send notifi-
cations of status changes, the latter to answer to status query or execute actions (e.g.
switch on the light device). Many other basic components are foreseen in PERSONA
system, but their discussion is out of the scope of this thesis (see [28] for details).

With respect to PERSONA, our NAM framework does not distinguish between
software and hardware components. Moreover, resources (and in particular services)
are managed according to distributed algorithms, rather than centralized components
like the Service Orchestrator.

The Pervasive Information Community Organization (PICO) [29] is a middle-
ware framework that enhances existing Internet-based services, creating mission-
oriented dynamic computing communities that perform tasks for users and devices.
It consists of autonomous software entities called delegents (or intelligent delegates)
and hardware devices called camileuns (namely connected, adaptive, mobile, intel-
ligent, learned, efficient, ubiquitous nodes) creating communities of delegents that
collaborate proactively to handle dynamic information, provide selective content de-
livery, and facilitate application interface. A device model captures the characteristics
and features of the available hardware resources. The identified features in the device
model are provided as services over the network by creating software entities called
delegents (intelligent delegates). Many such delegents can be combined together into
a cooperative structure called communitiy. The communities offer a transparent ser-

2.1. Networked Autonomic Machine 69

vice usage mechanism within the PICO framework. Moreover, delegents represent-
ing low-resource devices can carry out tasks remotely. Camileuns and delegents are
PICO’s basic building blocks. Delegent can gather information locally or remotely to
collaborate with other delegents to form a computing community. After completing
the designated tasks in the remote camileun, a delegent returns to the active state. A
delegent may terminate itself after achieving its goal or mission.

A dynamic service composition mechanism [30] has been implemented in PICO
framework. The descriptions of discovered services are stored in a centralized direc-
tory, where also resources are exported as services. Users (applications) approach the
directory to locate one or more services they need. The directory performs a query on
the registered services and returns a matching service if found. By employing seman-
tics, formal declarative descriptions are attached to services. Computer programs can
use these descriptions to find the appropriate services and use them correctly. Such an
architecture can typically be mapped onto managed environments with well-defined
nodes in the network that can act as directories.

The PICO approach to dynamic service composition is similar to NAM’s, except
for PICO use of centralized directory for service discovery. On the contrary, PICO
introduces the concept of community, as a group of collaborating delegents that is
created for a specific task and exists for a limited period of time, while cooperation
in NAM is enabled through an always available P2P network. Moreover NAM is a
hardware/software entity, whose characteristics depend on the hosting device capa-
bilities, while PICO delegents and camileuns (i.e. software and hardware entities) are
completely separated entities.

SpiderNet framework [31] executes a novel bounded composition probing (BCP)
protocol to provide fully decentralized QoS-aware service composition. SpiderNet
leverages on a service-oriented P2P system called P2P service overlay where peers
can provide not only media files but also a number of application service components
such as media transcoding and data filtering as well as application-level data routing.
P2P service overlays promote Internet-scale service sharing without any adminis-
tration cost or centralized infrastructure support. New services can be flexibly com-
posed from available service components based on the user’s function and quality-of-

70 Chapter 2. Framework

service (QoS) requirements. SpiderNet supports directed acyclic graph composition
topologies and explores exchangeable composition orders for enhanced service qual-
ity. During service runtime, SpiderNet provides proactive failure recovery to over-
come dynamic changes (e.g., peer departures) in P2P systems. The proactive failure
recovery scheme maintains a small number of dynamically selected backup com-
positions to achieve quick failure recovery for soft realtime streaming applications.
The backup compositions are adaptively selected based on the conditions of the cur-
rent composition and the user’s QoS requirements. Thus, they can avoid the delay
and overhead of triggering BCP to find a new composition if one of the maintained
backup compositions can recover the failure. The SpiderNet system is implemented
as a distributed middleware infrastructure deployed in wide-area networks, which
can automatically map the user’s composite service request into an instantiated dis-
tributed application service in the P2P service overlay. SpiderNet decentralized ser-
vice discovery based on the Pastry distributed hash table (DHT) system. When a peer
wants to share a service component, it registers the service component by storing the
component’s static meta-data (e.g., location, input QoS, output QoS) into the DHT
system.

The SpiderNet framework does not target mobile and resource-contrained de-
vices, only considering a peer-to-peer network of static desktop PCs. NAM, on the
contrary is designed with respect to a very dinamically changing environment, where
not only peers can abrubtly leave the network, but the QoS of the services they pro-
vide may vary with the available resources of hosting devices.

CARMEN (Context Aware Resource Management ENvironment) [32] is a mid-
dleware for context-aware resource management, capable of supporting the auto-
matic reconfigurationo Web Services for the wireless Internet in response to con-
text changes, without any intervention on the service application logic. CARMEN
allows service providers, system administrators and final users to specify service
management requirements at a high level of abstraction in terms of different kinds
of metadata: declarative management policies for migration, binding and access con-
trol, and profiles for the description of user preferences, device capabilities, and ser-
vice component characteristics. Another key feature of CARMEN is the exploitation

2.1. Networked Autonomic Machine 71

of mobile middleware proxies that follow the provision-time movement of users, to
customize service provisioning, to maintain service session state and to operate asyn-
chronously with regards to temporarily disconnected clients. CARMEN implements
mobile proxies in terms of Mobile Agents (MAs). With the adoption of MA-based
proxies, wireless portable devices need limited network connectivity, only to inject in
the fixed network the responsible proxies acting on their behalf. At the highest level
of CARMEN architecture there are a Metadata Manager (MM) and a Context Man-
ager (CM). The first supports the specification, modification, check for correctness,
installation and evaluation of profiles and policies; the latter dynamically determines
the context of a CARMEN client, supports the accessibility of resources and manages
resource bindings in case of context modifications. The CARMEN low-level facili-
ties provide mechanisms and tools to address most common issues in context-aware
service provisioning to wireless clients.

With respect to CARMEN, NAM framework is more focused in service composi-
tion than in context-aware service provisioning; moreover CARMEN proxies do not
take into account device capabilities and resource as NAM does, because they migrate
to more powerful nodes of the network to exploit computation intensive operations.

2.1.4 NSAM for p2p service-oriented infrastructure

The NSAM model is particularly suitable to characterize service-oriented peers, in-
teracting with complex environments (figure 2.3). In this framework, among the re-
sources of the peer (R set, according to the NAM/NSAM model), functional modules
are implemented as services. For example, the overlay scheme mechanisms are im-
plemented as atomic services that each NSAM runs. Considering a group of NSAMs,
the peer-to-peer interaction of their overlay services leads to the emergence of a com-
posite overlay service. Self-configuration works similarly, with atomic services that
adapt the configuration of the NSAM, based on information that in general is both
local and external, for which a composite service spanning the whole network drives
a global adaptation process. Thus, service composition mechanisms are embedded in
the implementation of atomic services.

The CTRL component of the NSAM is basically a lightweight resource manager,

72 Chapter 2. Framework

that configures the NSAM at startup, deciding which resources must be run, and man-
ages their runtime allocation. In particular, it defines and implements the instantiation
policy of atomic services that are requested by multiple consumers at the same time.

Figure 2.3: The structure of a service-oriented peer, supporting ubiquitous computing
for mobile users in highly dynamic and heterogeneous environments.

Service composition is highly desirable in peer-to-peer (P2P) systems where ap-
plication services are naturally dispersed on distributed peers. However, it is challeng-
ing to provide high quality and failure resilient service composition in P2P systems
due to the decentralization requirement and dynamic peer arrivals/departures. More-
over, in pervasive computing environments peers are hosted on a number of devices
with heterogeneous functionality sets. In the presence of such variety, it is desirable
to dynamically combine available basic services (as building blocks) to create com-
posite services.

Dynamic composition mechanisms built using graph techniques [33] provide
support to user tasks in the face of dynamic challenges such as heterogeneity, re-
source restrictions, user and resource mobility, locality of service provisioning, and
so forth. It is also necessary to dynamically capture information regarding the state

2.1. Networked Autonomic Machine 73

of a device while the device is operational. Such a dynamic mechanism will ensure
uniform resource consumption, timely support, and fairness in resource utilization.
A P2P service overlay network (figure 2.4) may be defined, over which service
consumers send requests to service providers and new services can be flexibly com-
posed from available service components based on the user’s function and quality-of-
service (QoS) requirements. However, in general, mobile devices still have difficul-
ties in fully satisfying users’ requirements, due to shortcomings in system resources,
especially limited battery life. Restrictions in battery capacity prohibit the use of fully
functional applications for satisfactory durations. In addition, the mobile computing
environment requires applications to adapt dynamically to their context, including
the user’s role, capability, and current environment, while maintaining the constant
functionality of applications. When an application invokes a complex task that can
be performed by a combination of services, that application is resolved to a service
composition or a service flow that is represented as a service composition graph. QoS
control for applications running in a mobile peer must be invoked in a way that does
not exhaust the resources of the device, including residual battery energy.

The metadata that represents the service includes descriptions about service ca-
pabilities. By employing semantics, formal declarative descriptions are attached to
services. Semantic descriptions of services are used to organize services in a reposi-
tory, retrieve the appropriate services and use them correctly. A domain ontology may
used to conceptualize domain knowledge with commonly accepted vocabulary and
to provide semantics to service descriptions. The syntactic parameters of a service
define input, output, QoS parameters, pre-conditions and post-conditions, if present.
Addressing the issue of mobility, within the P2P service overlay, it is possible to en-
sure that the request is recomputed with minimal interruprion of the session under
progress. The effect of user mobility while a service session is in progress can lead
to a complete dynemic recomposition of the service.

74 Chapter 2. Framework

Figure 2.4: The three network layers: P2P service overlay network, peers’ overlay
network, and physical network.

2.2 Code Mobility

According to the definition given by Carzaniga et al., code mobility is the capability
to reconfigure dynamically, at runtime, the binding between the software components
of the application and their physical location within a computer network [34]. The
presented modeling formalism NAM is particularly suitable for building peer-to-pper
systems characterized by services that migrate on-demand, thus allowing to cope with
highly dynamic environmental conditions.

2.2. Code Mobility 75

Mobile code technologies can be analyzed by considering the ability to transfer
the state of an execution thread (or execution unit, to use a more general term). We
say that a technology supports strong mobility if it allows executing units to move
their code and execution state (e.g., the stack and instruction pointer of a thread) to a
different site. When an executing unit must be transferred to a remote site, it is sus-
pended, transmitted to the destination site, and resumed there. A technology supports
weak mobility if it allows an executing unit in a site to be bound dynamically to code
coming from a different site (i.e., the code can be moved and executed automatically),
but no execution state is transferred across the network. This means that even though
some data state could be transferred, the executing unit would need to be restarted
upon arrival [35].

Figure 2.5: MC taxonomy.

An acceptable classification of mobile code paradigms is illustrated in figure 2.5.
It is based on the assumption that a component A, placed at site SA, needs the results
of the computation of a service. We assume the existence of another site SB, involved
in the delivery of the service. To obtain the service results, A starts the interaction
pattern that leads to service delivery. Service execution involves a set of resources,
the know-how about the service (its code), and a computational component respon-
sible for the execution of the code [35]. Four solutions are possible: Client/Server
(CS), Remote Evaluation (REV), Code on Demand (COD) and Mobile Agent (MA).

76 Chapter 2. Framework

The first solution, CS, is static: components cannot change their location or their
code during their lifetime. The REV and MA allows remote execution, respectively
by means of code uploading or component migration. Finally, COD allows a com-
putational components to retrieve code from another remote component. Within the
context of the formal framework that specifies the concept of Networked Autonomic
Machine (NAM), resources provided by each NAM may be shared and also migrated
within a group of NAMs.

2.2.1 Resource and Service migration

In the NAM framework, a resource migration is defined as a tuple

M =< NAMu,NAMd ,R > (2.8)

where R is the resource, NAMu is the node providing it (uploader) and NAMd is
the node receiving it. If the resource is a service σ , before its migration can start it
is necessary to match the resources of the downloader with the set Rσ of resources
required by the service itself (e.g. running environment, libraries, CPU, RAM, etc.).

Chapter 3

Middleware and Applications

The definition and design of NAM framework has its basis in two projects that
have been developed and managed by the Distributed System Group of University
of Parma: SP2A (Service-oriented Peer-to-peer architecture), a lightweight middle-
ware enabling service-oriented peers for efficient and robust distributed applications,
and JXTA-SOAP, a component which extends the JXTA middleware, with the design
goal of wrapping Web Services in JXTA services through the use of JXTA for Web
Service discovery and SOAP message transport. JXTA-SOAP has been included in
SP2A middleware as an external API, thus enabling Web Services technology for the
development of Service Oriented Peers (SOPs).

During the Ph.D. research activity several applications have been developed, tar-
geting different fields, from Ambient Intelligence to e-learning communities, to emer-
gency management scenarios, and finally to logistics, with the goal of enabling inter-
operability among heterogeneous platforms (including resource constrained devices)
and ubiquitous sharing of services and resources. In the following, these applica-
tions, which have been implemented within SP2A and JXTA-SOAP, are presented,
with emphasis on the enhancements that it is possible to obtain with the introduction
of NAM framework.

78 Chapter 3. Middleware and Applications

3.1 Ubiquitous p2p sharing of services: JXTA-SOAP mo-
bile

JXTA-SOAP component has been designed having in mind ubiquitous computing
needs. JXTA-SOAP extends JXTA which is a set of open, generalized peer-to-peer
protocols that allow a vast class of networked devices (smart phones, PDAs, PCs and
servers) to communicate and collaborate seamlessly in a highly decentralized fash-
ion. JXTA-SOAP aims at reducing the complexity otherwise required to build and
deploy peer-to-peer service-oriented applications, by providing an open source soft-
ware platform and deployed virtual network. The JXTA platform provides core build-
ing blocks (IDs, advertisements, peergroups, pipes) and a default set of core plug-
gable policies. JXTA-SOAP completes this framework by providing service-related
mechanisms which have been designed taking into account many important software
design patterns. JXTA-SOAP is currently implemented in two versions: J2SE-based
(fully featured, extending JXTA-J2SE) and J2ME-based (partially featured, extend-
ing JXTA-J2ME). The package structure is the same for both J2SE and J2Me version
(figure 3.1). External libraries (libs) and example(examples) folders are in the
main path of the project; on the contrary there are distinct paths for the two imple-
mentation of the component, namely soap.j2se and soap.cdc.

The J2SE version of the JXTA-SOAP component supports both service deploy-
ment and service discovery/invocation. It is based on Apache Axis 1.4, which is an
implementation of the SOAP protocol. In typical client/server settings, Axis is de-
ployed in a servlet engine, such as Apache Tomcat, along with implemented Web
Services, while client applications use Axis’ Java API to create instances of requests.
The so-called Axis engine is the running processing logic, either client or server. The
J2ME version of the architecture supports Connected Device Configuration (CDC)
and Personal Profile. We implemented the API which enables the development of
peers that are able to deploy, provide, discover and consume Web Services in a JXTA-
SOAP network. Since Axis is not available for the CDC platform, we adopted kSoap2
[36] as SOAP parser (for consumer functionalities) and, for service provision, we in-
tegrated the mAS [22] lightweight engine.

3.1. Ubiquitous p2p sharing of services: JXTA-SOAP mobile 79

Figure 3.1: Package structure of Jxta-Soap component

80 Chapter 3. Middleware and Applications

In the following the internal architecture of JXTA-SOAP is described, with refer-
ence to the features and the different technological solutions the J2ME version of the
component relies on.

3.1.1 Service deployment

In order to deploy its services, a JXTA-SOAP based peer has to instantiate and con-
figure the related SOAPService objects (one for each hosted service), and to advertise
the service interfaces in the network. The class diagram in figure 3.2 illustrates the
relationships among classes which are involved in this tasks. The Peer class repre-
sents the generic peer application implemented by the developer, and relies on JXTA-
SOAP’s API which provides all the other classes represented in the diagram.

Figure 3.2: Classes involved in service deployment.

At start-up, the typical Peer object bootstraps the JXTA-JXME platform, con-
figuring basic connectivity settings, such as TCP/IP and HTTP ports, and joins the
public JXTA peergroup (represented by an instance of PeerGroup class). Bridges to
existing common membership and access technologies are the MembershipServices,
which allow peers to establish their identity within peergroups. Each MembershipSer-

vice implementation is responsible for its own protocol definition. The default mem-
bership service for the public JXTA peergroup is the PSEMembershipService, based
on Personal Security Environment (PSE). This service initializes the PSE KeyStore,

3.1. Ubiquitous p2p sharing of services: JXTA-SOAP mobile 81

an object that acts as a secure datastore for peer certificates and keys. Once the Peer

has authenticated itself to PSE, it is ready to deploy its service instances.

For each service to be deployed, a ServiceDescriptor must be instantiated. The
ServiceDescriptor is filled with service-specific information, such as the service name,
a brief description, the implementation class name, the peergroup ID, the security tag.
Moreover, the ServiceDescriptor implements the ServiceLifecycle interface, which is
used to pass a Context Object [37] (constructed by the user application) to the Web
Service class.

Next step is to create the context object, and to pass it to a SOAPService instance,
along with a security Policy that is associated to each service implementation.

The SOAPService class is neuralgic, since it provides all basic service-related op-
erations. The SOAPService’s initialization method sets the ServiceDescriptor, boot-
straps the service provision engine, creates and publishes the public pipe and the
advertisement of the service. Since the J2ME version of JXTA-SOAP does not sup-
port Axis, we have integrated the Server class of the Micro Application Server (mAS)
into the basic service class of the JXTA-SOAP API. mAS implements the Chain of
Responsibility pattern [38], the same used in Axis. It avoids coupling the sender of a
request to its receiver by giving more than one object a chance to handle the request;
receiving objects are chained and the request passed along the chain until an object
handles it. Moreover, mAS allows service invocation by users and service deploy-
ment by the owner, and supports browser management of requests, distinguishing
whether the HTTP message contains a Web page request or a SOAP envelope. Like
it happens with Axis, when mAS runs, a series of Handlers are each invoked in or-
der. The object which is passed to each Handler invocation is a MessageContext. A
MessageContext is a structure which contains several important parts: 1) a "request"
message, 2) a "response" message, and 3) a bag of properties.

For each service implementation, the Peer spawns a SOAPServiceThread which
waits for other peers’ connections to that service, on the service public pipe, and cre-
ates a pool of InvocationThreads to efficiently execute service invocation (the Thread-
pool pattern is illustrated in [39]).

82 Chapter 3. Middleware and Applications

3.1.2 Service publication and lookup

The main enhancement of JXTA-SOAP with respect to traditional Web Service frame-
works is the adopted distributed approach for service advertising and lookup. JXTA-
SOAP allows to encapsulate WSDL interfaces in particular JXTA documents, the
so-called ModuleSpecAdvertisements, which can be spread into the network using
many different routing policies which can be inserted in JXTA protocol stack. In gen-
eral, a ModuleSpecAdvertisement describes a module specification. Its main purpose
is to provide references to the documentation needed in order to create conforming
implementations of that specification. A secondary use is to make running instances
remotely usable, e.g. by publishing a pipe advertisement associated to the Module-
SpecAdvertisement. Once the ModuleSpecAdvertisement has been filled with the in-
formation about service (WSDL for J2SE version and service main class and methods
for J2ME version) and the secure pipe tag, a context object is created and passed to
the SOAPService instance. Moreover, the Peer spawns a SOAPServiceThread which
waits for other peers’ connections to the deployed service, on the public pipe associ-
ated to the ModuleSpecAdvertisement.

Service publication is a distributed process, which uses network nodes as a dis-
tributed repository (on the contrary, traditional UDDI registries are centralized in-
terface description repositories). As for publication, service lookup is a distributed
process, which can be conceptualized as message exchange between low-level JXTA
modules.

3.1.3 Service invocation

SOAP is the most widely used Web Service protocol for message enveloping. SOAP
message management in JXTA-SOAP J2ME version is based on kSoap2, while the
standard version is based on Axis. Figure 3.3 illustrates associations among classes
which are involved in the service invocation task, performed by a generic Peer. The
latter, once it has discovered the ModuleSpecAdvertisement and the interface of the
required Web Service, creates a SOAPTransportDeployer, which manages the trans-
mission of SOAP messages to and from the service using its pipe. Moreover, the

3.1. Ubiquitous p2p sharing of services: JXTA-SOAP mobile 83

Figure 3.3: Classes involved in service invocation.

Peer creates a ServiceDescriptor, which is used by the kSoap2 based implementation
CallFactory.

The latter instantiates a kSoap2’s Soap Object, and sets all the properties for
message exchanging through JXTA pipes. Soap Object is a highly generic class which
allows to build SOAP calls, by setting up a SOAP envelope. We have maintained
the same structure of J2SE-based version for Call Factory, to allow portability of
service consumer applications from desktop PCs or laptops to PDAs. Internally, the
Call Factory class creates a Soap Object passing references to the Service Descriptor,
the public pipe advertisement of the service and the peergroup as parameters for the
creation of the Call object.

The Call Factory class also allows to create an instance of kSoap Pipe Trans-
port, the class we implemented to manage the transmission of SOAP messages us-
ing service pipes. The kSoap2 API provides a Transport class that encapsulates the
serialization and deserialization of SOAP messages, but does not manage commu-
nication with the service; the HTTP Transport subclass, both in CDC and CLDC
version, allows service invocation over HTTP, setting up the required properties, but
it uses URLs as absolute references of remote services, and it is not suitable for usage

84 Chapter 3. Middleware and Applications

in JXTA-SOAP, where services (as every resource) are identified by JXTA-IDs and
must be invoked through JXTA pipes. Thus, we extended the Transport class with the
implementation of a call functionality that configures a JXTA pipe and creates the
messages to be sent over it.

After instantiating the transport using the Call Factory class, the consumer peer
creates the request object, indicating the name of the remote method to invoke and
setting the input parameters as additional properties. This object is assigned to a Soap
Serialization Envelope, as the outbound message for the soap call; Soap Serialization
Envelope is a kSoap2 class that extends the basic Soap Envelope, providing support
for the SOAP Serialization format specification and simple object serialization. The
same class provides a getResponse method that extracts the parsed response from
the wrapper object and returns it.

3.1.4 Secure service invocation in JXTA-SOAP

Peer-to-peer architectures present a particular challenge for providing high levels of
availability, privacy, confidentiality, integrity, and authenticity, due to their open and
autonomous nature. Network nodes cannot be considered trusted parties, and no as-
sumptions can be made regarding their behavior. Preserving integrity and authenticity
of resources means safeguarding the accuracy and completeness of data and process-
ing methods. Unauthorized entities cannot change data; adversaries cannot substitute
a forged document for a requested one. Privacy and confidentiality mean ensuring
that data is accessible only to those authorized to have access, and that there is con-
trol over what data is collected, how it is used, and how it is maintained. A malicious
node might give erroneous responses to requests, both at the application level, return-
ing false data, or at the network level, returning false routes and partitioning the net-
work. Moreover, the P2P system must be robust against a conspiracy of a malicious
collective, i.e. a group of nodes acting in concert to attack reliable ones. Attackers
may have a number of goals, including traffic analysis against systems that try to pro-
vide anonymous communication, and censorship against systems that try to provide
high availability.

Security attacks in P2P systems can be classified into two broad categories: pas-

3.1. Ubiquitous p2p sharing of services: JXTA-SOAP mobile 85

sive and active [40]. Passive attacks are those in which the attacker just monitors
activity and maintains an inert state. The most significant passive attacks are eaves-
dropping, which involves capturing and storing all traffic between some set of peers
searching for some sensitive information (such as personal data or passwords), and
traffic analysis, where the attacker not only captures data but tries to obtain more in-
formation by analyzing its behavior and looking for patterns, even when its content
remains unknown. In active attacks, communications are disrupted by the deletion,
modification or insertion of data. The most common attacks of this kind are: spoof-
ing, in which one peer impersonates another; man-in-the-middle, where the attacker
intercepts communications between two parties, relaying messages in such a manner
that both of them still believe they are directly communicating; playback or replay, in
which some data exchange between two legitimate peers is intercepted by the attacker
in order to reuse the exact data at a later time and make it look like a real exchange;
local data alteration, which goes beyond the assumption that attacks may only come
from the network and supposes that the attacker has local access to the peer, where
he can try to modify the local data in order to subvert it in some malicious way.

To cope with malicious attacks, security policies adopted at the overlay P2P net-
work level usually consist of key management, authentication, admission control, and
authorization. These are the strategies we took into account for securing consumer-
to-service communication in JXTA-SOAP. Currently, JXTA-SOAP supports secure
service invocation by means of two orthogonal mechanisms. The first one, transport-
level security, allows to create a secure channel which guarantees the integrity and
confidentiality of exchanged information, by means of mutual authentication between
parties (using certificates) and data encoding. The other approach is WSS-based
message-level security, for which SOAP messages sent by service consumers con-
tain security parameters (tokens) which are extracted by service providers to check
for consumers’ compliance with the security policy of the invoked service. Figure 3.4
summarizes the interaction of a peer with a discovered secure service.

The net.soap.jxta.security.policy package provides two important
modules, i.e. Policy and PolicyManager. The latter is a class which allows
to associate a service with a security policy (currently: TLS, WSS, or both). The

86 Chapter 3. Middleware and Applications

Figure 3.4: Interaction with a discovered secure service.

3.1. Ubiquitous p2p sharing of services: JXTA-SOAP mobile 87

Policy interface provides methods which are commonly implemented by all pol-
icy classes. They allow to extract authentication parameters from the client request
message and to verify their correctness according with the service security require-
ments. If all parameters are validated, the client is allowed to invoke the service,
otherwise the request is refused. Authentication parameters are stored in a vector of
SOAPService class that is used to keep a list of authenticated peers.

Current implementations of the Policy interface are DefaultTLSPolicy,
based on JXTAUnicastSecure pipes which subsume default (unsecure) JXTAU-
nicast pipes, and DefaultWSSPolicy, which uses Apache’s WSS4J to provide
SOAP messages with security headers and fill them with tokens. Policies are associ-
ated to services by means of two extensions of the <Parm> field of the
ModuleSpecAdvertisement. The first extension is the <security> tag, whose
value (true or false) indicates whether a service is secured or not. The other exten-
sion is the <InvocationCharter>, a XML document which is inserted in the
<Parm> field of the ModuleSpecAdvertisement if the <security> tag is set to
true. The secure invocation model is illustrated in figure 3.5 (TLS-based case), with
particular emphasis on multithreaded handling of concurrent invocations.

The net.soap.jxta.security.certificate package provides classes
that enable JXTA-SOAP to use X.509 certificates for authentication and to extract
them from a PeerAdvertisement; in particular, it uses the Key Store associated to
JXTA PSEMembershipService, that is initialized when the peer boots in the network
group. The net.soap.jxta.security.wss4j package implements a WSSe-
curity class, that enables the client to create a custom security header for invocation
requests, according to the Invocation Charter (i.e. encryption, body signature).

DefaultTLSTransport

TLS is the default technology used by JXTA-SOAP when the secure service is cre-
ated. Each SOAP message between client and server is sent through a TLS channel
which requires previous authentication of involved entities. According to the imple-
mented policy, a communication session is established, in which the client sends
to the server its PeerAdvertisement with the peer self-signed certificate created by

88 Chapter 3. Middleware and Applications

Figure 3.5: TLS-based secure invocation model. Concurrent invocations are handled
by separated service threads.

3.1. Ubiquitous p2p sharing of services: JXTA-SOAP mobile 89

JXTA. The server is able to extract additional information about the requesting client
(i.e. name, PeerID, group) and, if the authentication procedure succeeds, to update
the list of authenticated peers with the corresponding entry:

[PeerID, X.509 Certificate]

Then a TTL (time to live) is associated to the authentication of the client. At the
end of the period of validity, the entry is automatically deleted from the list.

In JXTA, the default Membership Service is PSE, which stands for Personal Se-
curity Environment. This service is the only one that is considered secure. PSE pro-
vides credentials based on X.509 certificates. Any number of such certificates may be
included as Certificate elements in the PSE credential, together with the Peer Group
ID and the subject’s Peer ID. The credential itself is also signed. Since the default TLS
policy implementation uses JXTA’s PSE keystore for storing/retrieving certificates, it
is necessary that both client and server also authenticate to the PSEMembershipSer-
vice, which is the default membership service implemented in JXTA. When the client
request is received by the server, an output pipe is created for invocation response and
validation of authentication parameters; then the X.509 certificate is imported, a new
thread is created for secure invocation management and the associated secure pipe is
sent to the client for successive invocations.

DefaultWSSMessage

This is the default message security policy and uses the methods of WSSecurity class
to build a security header which is included in all messages and invocation requests.
During the authentication phase, the client attaches its X.509 certificate to the header
using a <wsse:BinarySecurityToken> and digitally signs the request mes-
sage body with its private key.

The WSS-based policy does not use JXTA PSE keystore, but requires that both
client and server generate a couple of private/public keys and use them to create a
self-signed X.509 certificate which is stored in their own keystore, whose integrity
and privacy are granted by means of a password.

90 Chapter 3. Middleware and Applications

MIKEYPolicy for mobile applications

Since PSE membership classes are not available for JXME version of JXTA plat-
form, we imported and modified them to be able to authenticate peers within a
peer group. Moreover, J2ME does not support TLS, so it was impossible to use
JXTA secure pipes for service invocation. We implemented a new type of pipe,
JxtaUnicastCrypto, by which it is possible to cipher message contents, and
we used them to define a new security policy, suitable for Connected Device Config-
uration (CDC) and Personal Profile.

PipeService and PipeServiceImpl classes in the net.jxta.pipe

package create and use a SecretKey object containing the cipher algorithm and the
corresponding key. The client and the server have to share the same key, so we in-
troduced Multimedia Internet KEYing (MIKEY) [41] protocol to create the key pair
and all the required parameters for encryption and decryption operations. Although
memory and processing power have dramatically improved for handheld devices, en-
cryption remains a resource-intensive task that requires consideration when designing
protocols. MIKEY is a schema for management of cryptographic keys which can be
used in real-time and peer to peer applications; it was developed with the intention
to minimize latency when exchanging cryptographic keys between small interactive
groups that reside in heterogeneous networks. The protocol is defined in RFC 3830
and in JXTA-SOAP project we introduced an implementation with RSA-R algorithm
[42]. The standard describes mechanisms for negotiating keys between two or more
parties who want to establish a secure channel of communication; to transport and
exchange keying material, three methods are supported, Pre-shared secret key (PSK),
Public Key encryption (PKE) and Diffie Hellmann (DH) key exchange. Each key-
exchange mechanism (PSK, PKE, and Diffie-Hellman) defined in MIKEY is using
the same approach of sending and receiving messages, but the message attributes
(that is, headers, payloads, and values) differ from method to method.

To create a MIKEY message it is necessary to create an initial MIKEY message
starting with the Common Header payload, and then concatenate necessary payloads
of the message. As a last step create and concatenate the MAC/signature payload
without the MAC/signature field filled in; calculate the MAC/signature over the en-

3.1. Ubiquitous p2p sharing of services: JXTA-SOAP mobile 91

Figure 3.6: MIKEY transaction example: the JXTA-SOAP Client is a peer that acts as
service consumer, while the JXTA-SOAP Server is a peer that acts as service provider.
Of course roles can be exchanged, since every peer can provide and consume services.

tire MIKEY message, except the MAC/Signature field, and add the MAC/signature
in the field. The common header payload must be included at the beginning of each
MIKEY message (request and response) because it provides necessary information
about the Crypto Session with which it is associated. MIKEY defines several pay-
loads to support the three key exchange methods and the corresponding architectural
scenarios (that is, peer to peer, simple one to many, many to many, without a central-
ized control unit). The main characteristic of MIKEY protocol is that it minimizes
message exchange; the negotiation of key material should be accomplished in one
round trip, as described in figure 3.6.

Ubiquitous computing, for its nature, has an extremely wide range of applica-
tions. Here we consider two important and challenging fields, i.e. ambient intelli-
gence and emergency management, for which we have developed solutions based on
JXTA-SOAP.

92 Chapter 3. Middleware and Applications

3.1.5 Ambient Intelligence applications

Ambient Intelligence (AmI) refers to digital environments that proactively support
people in their daily lives, based on the convergence of three key technologies: Per-
vasive Computing, Artificial Intelligence, and Intelligent User Friendly Interfaces
[?]. AmI represents a step beyond the current concept of User Friendly Information
Society, because the technologies should be fully adapted to human needs and cog-
nition. Indeed, AmI should be orientated towards community and cultural enhance-
ment, helping citizens to build knowledge and skills, and to achieve better quality of
life. At the same time, AmI should inspire trust and confidence, working in a seam-
less, unobtrusive and often invisible way.

In the AmI context, the European Commission recently started the Ambient As-
sisted Living (AAL) technology and innovation funding programme, aiming at ex-
tending the time older people can live in their home environment by increasing their
autonomy and assisting them in carrying out activities of daily living, feeling in-
cluded, secure, protected and supported. AAL spaces are physical places featured
with AmI enabling technologies, including the intelligence which supports the ser-
vices. Examples of AAL spaces are the home where the user lives, the neighborhood,
the town, but also the body of the user itself. The technical challenge is to develop
an integrated technological platform that allows the practical implementation of the
AAL concept for the seamless and natural access to those services indicated above, to
empower the citizen to adopt ambient intelligence as a natural environment in which
to live. In particular, the novel paradigms Adaptive Services/Client Paradigm (SCP)
and Spontaneous Emergence Paradigm (SEP) described in chapter 1, are particularly
suitable for regulating the interactions among the software entities of AAL-oriented
AmI systems.

User Activity Monitoring

One of the most challenging AmI services is User Activity Monitoring, which may
be transversal to every AmI scenario. The framework illustrated in chapter 2, in con-
junction with the SCP and SEP paradigms, is able to provide the flexibility required

3.1. Ubiquitous p2p sharing of services: JXTA-SOAP mobile 93

to deal with highly dynamic environments where devices continuously change their
availability and (or) physical location (e.g. those which are carried or worn by the
user). This complex problem of composing and decomposing connections among
nodes is abstracted in an overlay network where the Activity Monitor (AM) com-
ponent subscribes for raw context events coming from other distributed components
(sensors, specialized data filters, etc.), searches for remote services which may pro-
vide useful information for its reasoning function, and publishes context events which
describe indoor and outdoor activity of the user, taking into account different contour
information such as medical prescriptions, planned agenda, etc.

A distinction between static and dynamic activities is necessary. Static activities
like "standing" or "sitting" can be inferred directly from the low-level data at a partic-
ular time instant (such as the pose of the person at a certain time using some kind of
thresholding mechanism on the pose estimate). By contrast dynamic activities, such
as "moving around", are usually composite activities requiring a monitoring of a full
sequence of low-level data (e.g. context events describing ongoing sub-activities).
Low-level data needs to be stored for several time frames (in a context buffer), as
the whole sequence is needed to infer that activity from an evolution of the low level
data. For example: "cooking" may be composed of several low-level data at different
time instances: "opening the fridge", "closing the fridge", "standing in front of the
oven", etc. Outdoor user activities are even more challenging to detect. The user may
wear a personal mobile device (PMD) and sensors that monitor the level of its activ-
ity. The PMD should have a mechanism to be called from an external entity to deliver
the activity level. Thus, the mobile device would be both service provider and service
consumer. Collected information, which is analyzed in deferred time, may be useful
for several other AAL services, e.g. planning the weekly menu (the less activity, the
less amount of calories to ingest).

3.1.6 Emergency Management application

Emergency management (or disaster management) is the discipline of dealing with
and avoiding risks [43]. It involves preparing for disaster before it happens, disas-
ter response (e.g. emergency evacuation, quarantine, mass decontamination, etc.), as

94 Chapter 3. Middleware and Applications

well as supporting and rebuilding society after natural or human-made disasters have
occurred. The disaster management cycle involves four key phases:

1. Mitigation: includes any activities that prevent a disaster, reduce the chance of
a disaster happening, or reduce the damaging effects of unavoidable disasters.

2. Preparedness: includes plans or preparations made to save lives or property,
and to help the response and rescue service operations.

3. Response: includes actions taken to save lives and prevent property damage,
and to preserve the environment during emergencies or disasters. The response
phase is the implementation of action plans.

4. Recovery: includes actions that assist a community to return to a sense of nor-
malcy after a disaster.

These four phases usually overlap. Information and Communication Technology
(ICT) is being used in all the phases, but the usage is more apparent in some phases
than in the others. For example, ICT support is very important during the disaster
response (DR) phase of an emergency, which may commence with search and res-
cue, but in all cases the focus will quickly turn to fulfilling the basic humanitarian
needs of the affected population. This assistance may be provided by national or in-
ternational agencies and organizations. Effective coordination of disaster assistance
is often crucial, particularly when many organizations respond and local emergency
management agency capacity has been exceeded by the demand or diminished by the
disaster itself. Tracing missing people, coordinating donor groups, recording the lo-
cations of temporary camps and shelters are examples of problems in the immediate
post-disaster period that can be effectively addressed by using ICT.

Disasters can happen anywhere at any time. Some disasters can be prevented,
while some others cannot. Preparedness however greatly increases our chances to
reduce their impact. Developing effective early warning and alert systems often can
save thousands of human lives. From the 2004 tsunami in the Indian Ocean to the
forest fires that ravaged southern Europe in the summer of 2007, recent natural and

3.1. Ubiquitous p2p sharing of services: JXTA-SOAP mobile 95

man-made disasters (including also conflict-related complex emergencies) have high-
lighted the need for a more effective response.

In the area of civil protection the European Commission has recently proposed to
improve the EU’s capacity through a number of important measures [44]. Among oth-
ers, building up the Monitoring and Information Centre (MIC), playing the role of op-
erational center for European civil protection intervention. This requires a qualitative
shift from information sharing/reacting to emergencies towards proactive anticipa-
tion/real time monitoring of emergencies and operational engagement/coordination.
This includes early warning systems, performing needs assessments, identifying match-
ing resources, and providing technical advice on response resources to the Member
States; developing scenarios, standard operating procedures and lessons learned as-
sessments; implementing the Commission competencies to pool available transport
and provide co-financing for transport; increasing training and exercise activities for
Member States and other experts; and helping the Member States to set up common
resources. This implies also the use of monitoring capabilities such as those devel-
oped under the Global Monitoring for Environment and Security (GMES) initiative
[45] or enabling tools like GALILEO (the European satellite navigation system) [46].

We have focused on disaster response exploitation based on the concept of ubiq-
uitous computing, whose main objective is to provide globally available services and
resources in a network by giving users the ability to access them anytime and any-
where.

Proposed technological framework

Our framework focuses on the problem of identifying matching resources in response
to disasters. The most important are human resources, i.e. Civil Protection volunteers,
Red Cross doctors and medical attendants, firemen, policemen, army officers, etc. In
a typical scenario, it is necessary to coordinate the action of rescuers that are already
in the disaster location, and those that are on vehicles and may be requested to reach
the disaster place. The purpose of our work is also to support the work of the back-end
operators, improving the ICT infrastructure that must allow not only communications
among actors, but also automated gathering, elaboration and delivery of the huge

96 Chapter 3. Middleware and Applications

amount of data collected by each actor.

For example, in case of flooding, first volunteers arriving at the disaster loca-
tion may notice that some roads are interrupted. If they are equipped with a mobile
device including a camera, they may (1) send short alert messages, including their
coordinates obtained by means of GPS/GIS, and (2) take and send photos to provide
a more detailed description of the environment. The back-end system collects and
filter these data, and sends useful advices (such as the best route to be followed) to
rescue vehicles which are directed to the disaster place.

The infrastructure of the service-oriented applications we envision is a peer-to-
peer overlay network, which is placed at level 5 in the TCP/IP stack and is almost
independent from the possible connectivity solutions, that we summarize in the fol-
lowing.

For long distance communications, in Europe the most used infrastructure is Gen-
eral Packet Radio Service (GPRS), which is a packet-oriented Mobile Data Service
available to users of Global System for Mobile Communications (GSM) and IS-136
mobile phones (the so-called second generation - 2G). It provides data rates from
56 up to 114 kbit/s. A more powerful technology which is assuming higher im-
portance is the Universal Mobile Telecommunications System (UMTS), one of the
third-generation (3G) cell phone technologies, which is also being developed into a
4G technology. Both 2G and 3G technologies require the presence of base stations
on the territory. In case of heavy disasters such as hurricanes, base stations may be
damaged, for which satellite and/or TETRA-based communications are the other op-
tions. TETRA is a telecommunications standard for Private Mobile Radio (PMR)
systems developed by ETSI as an answer, at European level, to the evolving needs of
PMR Operators, which have to cope with traffic congestion and a growing demand
for speech and data services.

For local communications among actors equipped with mobile devices, infras-
tructured communications are usually based on WiFi. If some devices are out of
the range of the WiFi access point, they can try to set up a mobile ad-hoc network
(MANET), which is a self-configuring network of mobile routers (and associated
hosts) connected by wireless links, the union of which form an arbitrary topology.

3.1. Ubiquitous p2p sharing of services: JXTA-SOAP mobile 97

Figure 3.7: The back-end system, the rescue operators and vehicles are connected in
a peer-to-peer overlay network, offering services to each others (left image). Connec-
tivity is guaranteed by different technological solutions (right image).

98 Chapter 3. Middleware and Applications

The routers are free to move randomly and organize themselves arbitrarily; thus, the
network’s wireless topology may change rapidly and unpredictably. Such a network
may operate in a standalone fashion, or may be connected to the larger Internet.

Example DR Application

Using JXTA-SOAP mobile, we developed a GUI-based application that allows to
join a JXTA-based P2P network to share services for supporting disaster response
activities. The application has several overlapping panels (or tabs), each one being
related to a specific function. As illustrated in figure 3.8, the Remote panel shows
discovered remote services. It is possible to search for services in the P2P network
(offered by other rescue operators), and to select one of them from the resulting list,
in order to see all the operations it offers, which are shown in the Operation tab. The
user puts a description of the desired service in the search field, and all the matching
services are listed in the table. Some services from the back-end are assumed to
be always available, such as the one that provides photos taken by a satellite. The
Operation management panel (figure 3.9) shows all the functionalities provided by
the selected service; the operator can choose a particular operation and fill the input
parameters table in the invocation panel.

3.1.7 Service-oriented Peer-to-peer architecture

The Service-oriented Peer-to-Peer Architecture (SP2A) [47] is a lightweight frame-
work based on the Peer pattern [48], which defines the basic modules for building
service-oriented peers (SOPs) for efficient and robust Grid environments. The SP2A
middleware maps NSAM concepts in a thin software layer, independent from the
hardware, whose resources are exposed as services. SP2A allows to cope with the
requirements of applications with a large number of users dynamically connecting to
the system, and provides high levels of scalability, decentralization and interoperabil-
ity. It is distributed as a set of Java interfaces and both J2SE and J2ME class imple-
mentations, which support state-of-art technologies for peer-to-peer message routing,
service description and deployment: Web Services, OWL-S and JXTA. These tech-

3.1. Ubiquitous p2p sharing of services: JXTA-SOAP mobile 99

Figure 3.8: Disaster Response GUI: remote service selection panel

Figure 3.9: Disaster response GUI: operation management panel. A photo of the dis-
aster location is taken, and a short description written, both ready to be sent to the
back-end upon request, or proactively by the rescue operator.

100 Chapter 3. Middleware and Applications

nologies complement each others: Web Services provide a framework for service
description; OWL-S supplies service providers with a core set of markup language
constructs for describing the properties and capabilities of their services in unam-
biguous, computer-interpretable form; JXTA operates at the lower level providing
P2P functionalities. According with the Peer pattern, the basic modules for building
service-oriented peers are:

• Communication Service(CS): allows peers to create a virtual network overlay
on top of physical network infrastructure.

• Resource Provision Services(RPSs): implement resource management mecha-
nisms for local and remote control of Peer’s resources.

• Resource Monitoring Service(RMS): is responsible for providing a list of avail-
able local resources, maintaining related information, identifying and reporting
failures.

• Access Service(AS): is the entry point for users to interact with the system

• Routing Service(RS): defines the rules for addressing, filtering sending and re-
ceiving messages

• Scheduling Service(SCS): is responsible for managing task execution requests,
based on information provided by the RMS

• Security Service(SES): is responsible for protecting shared resources; it relies
on mechanisms to safeguard integrity and authenticity of data, to ensure pri-
vacy and confidentiality in communications, and to provide means for user au-
thentication and authorization. Moreover, the Security Manager allows peers
to establish their identity within a group.

• State Management Service(SMS): provides facilities to check and change the
peer state.

3.1. Ubiquitous p2p sharing of services: JXTA-SOAP mobile 101

Peergroup management

Peergroups are communities of peers organized for specific knowledge sharing. At
the middleware level, the creation of subspaces is also motivated by the need to cre-
ate scoping environments which restrict the propagation of query messages, thus im-
proving the performance of discovery algorithms. Moreover, content exchange and
service interaction often require the creation of secure domains. Peers can have differ-
ent ranks, corresponding to the actions they are allowed to perform within the group.
A partial list of ranks is:

• admin - the peer is a member trusted by the group founder; the actions it is
allowed to perform are: service sharing/discovery, group monitoring, voting
for changing member ranks;

• newbie - the peer is a new member; it only can search for an admin peer, to ask
for a promotion;

• searcher - the peer is allowed to search for services and to interact with them;

• publisher - the peer can search for services but also publish its own services in
the peergroup.

Service description, sharing and discovery

Resources are shared as a Resource Provision Services (RPSs); to use a resource,
a consumer must know if the related Resource Provision Service (RPS) exists and
is available; if it operates under a specified set of assumptions, constraints, policies;
and if it can be invoked through a specified means, including inputs that the service
requires and outputs that will form the response to the invocation. All SP2A RPSs
have a name, a short textual description, and an uniquely identified owner. In addition,
they expose an interface which specifies how to access its functionalities. Service
deployment is transparent to the user, which only has to invoke the shareRPS method
of the RPSManager. This encapsulates the creation of a JXTA service advertisement,
and the creation of a service instance in a new thread.

102 Chapter 3. Middleware and Applications

// [1] Service construction

MathService math = new MathService();

rpsManager.addToRPSList(math);

// [2] Service activation and publication

rpsManager.shareRPS(math);

SP2A allows to share in the P2P network both the descriptions of of "local" RPS,
i.e. a service whose instance is intended to be running in separate thread of the SP2A-
based peer application, as in the example above, and "external" RPSs, i.e.services
deployed in traditional containers (e.g. Axis servers) and addressed by simple URLs.

Using the math example, we illustrate how a SP2A-based peer performs attribute/value
search and service interaction, using the RPSManager and the methods which all
RPSs have in common.

rpsManager.findRPS(mainGroup, "Name",

"MathService");

... // search results filtering

ResourceProvisionServiceImpl math =

(ResourceProvisionServiceImpl) rpsManager.

getDiscoveredRPSVector().getElementAt(..);

String WSDLbuffer = math.getInterfaceDescription("WSDL");

... // interface parsing

Integer a = new Integer(..);

math.invokeOperation("add", new Object[] { a });

Service selection and delivery

Service selection and delivery involve shared Resource Provision Services and other
SOP modules. The Communication Service delivers a message to the Security Man-
agement Service, communicating resource request and credentials of the requester
(another Peer); if the requester’s credentials are valid, the SMS delivers the resource
request to the Scheduling Service which interacts with the RMS to check the avail-
ability of the requested resource. If the requested resource is available, the Scheduler

3.1. Ubiquitous p2p sharing of services: JXTA-SOAP mobile 103

invokes its allocation on the corresponding Resource Provision Service; otherwise, if
the resource is not available, or by its nature can be provided concurrently by many
Peers, the SCS starts searching for remote resources, transparently to the user. The
Routing Service computes the destination(s) and sends request message(s). In the
meantime, the Resource Provision Service provides the available local resource to
the requester, through the CS.
The service migration framework described in chapter 2 has been implemented within
SP2A, thus providing a solution for the discussed Mobile Service Problem.

3.1.8 Mobile Service Problem and Pull Solution

The Mobile Service Problem (illustrated in figure 3.10) is a weak mobility problem,
because the execution unit that searches the service is dynamically bound to the code
coming from a different site, but no migration of execution state is involved. We
created a Code on Demand architecture, where a node accesses the service it needs,
obtains the service know-how and executes it within its own context and resources.

Before downloading the service, the requesting peer must check to have enough
resources to execute it, to avoid network overload. The service provider exposes an
XML file with minimal hardware (number of processors, memory) and software (OS
type and architecture, Java version, external libraries) requirements for service ex-
ecution. This file is converted to a string and appended to the description field of
Resource Provision Service (RPS).

The Pull solution implemented for Mobile Service problem involves the follow-
ing steps:

• A peer node P1 searches for a service σ

• The service is found on peer P2

• P1 decides to download the .jar and .wsdl files of service σ

• P1 locally activates service S and starts to provide it

When the download has been completed, the requesting node shares the service
in the peer network and becomes provider for it.

104 Chapter 3. Middleware and Applications

Figure 3.10: The Mobile Service Problem.

Communication protocol

SP2A supports JXTA technology for peer-to-peer message routing; JXTA protocols
provide three transport mechanisms for communication among peers: Endpoint Ser-
vice, which is a point to point communication level, Pipe Service, which integrates
the Endpoint Service with the abstraction of virtual communication channel and Jxta
Socket, at the higher level, that provides an interface similar to standard sockets’ one.
We used JXTA Sockets because they allow bidirectional communications and grant
security to them; moreover they add to the message an ACK_NUMBER that provides
additional information to the payload to assure reliability to the communication and
correctness of sequentiality at the the receiver side. It is possible to configure the
socket output buffer to reduce the number of packets and facilitate data reading oper-
ations.

3.1. Ubiquitous p2p sharing of services: JXTA-SOAP mobile 105

The communication protocol for mobile Service Problem is described by the fol-
lowing algorithm (and illustrated in figure 3.11):

• the server, after deploying the service, waits for client connections through
JxtaServerSocket class

• a client connects to the server which provide the discovered service through
JxtaSocket class

• both client and server create an I/O stream for data exchange

• the client requests to download the service

• the server communicate the .jar file dimension and starts to send packets of
bytes

• the client receives the packets and is able to reconstruct the file; then it sends a
notification message to the server

• the server closes the connection and waits for other requests

• the client shares the service for download

Download Protocol

During the discovery phase, results are stored in a DiscoveredRPSs vector in
RPSManagerImpl class; the dimension of such a vector gives information about
the number of nodes found on a single discovery operation that are sharing the service
for download: the greater the dimension is, the more the service is available in the
network. The basic idea of our download protocol is to first try to download the
service from the nodes listed in the actual vector and, if the vector is empty, or none
of the peers are available at the moment, to invoke findRPS() method to start a
new discovery in the JXTA peer-to-peer network.

Every time downloadRPS() method is invoked with the vector dimension as
a parameter, a certain number of attempts to download the file from each provider is

106 Chapter 3. Middleware and Applications

Figure 3.11: Service download protocol in SP2A.

performed, with an increasing timeout. The number of attempts increases if the dis-
covery results in the vector are scarce, and decreases if a lot of providers are found in
order to have a greater probability to find an available node from which downloading
the service.

In the implementation of Pull solution for Mobile Service Problem, Java Reflec-
tion API is used to add in the runtime classpath of client the base class name of the
downloaded service, and then to instantiate an object of the same class.

SP2A architecture currently enables users to actively contribute to the provision
of resources in the peer-to-peer network, following a PaaS model, in which services
are provided and diffused according to the users’ requests. We have considered dif-
ferent applications that may take advantage of such an architecture, spacing from
P2P Video Streaming to e-learning communities to Service Oriented Mobile Peers
for geo-localization applications (developed in the context of a collaboration with

3.1. Ubiquitous p2p sharing of services: JXTA-SOAP mobile 107

NATO 3C agency).

3.1.9 P2P Video Streaming

The traditional client/server model for video streaming is not very scalable with the
increasing number of users, and introduces problems due to limited bandwidth and
excessive workload at the server side. Peer-to-peer paradigm offers a good solution to
the problem of load balancing; each peer, in fact, share its resources (bandwidth for
communication among nodes and disk space for storing video stream data) with other
peers that are requesting a service. Video streaming can be classified in two main
categories: live and on-demand. In a live session the video is provided at real-time
to all requesting users, and reproduction is synchronized; a Video-on-Demand (VOD)
service allows to reproduce a video from any point and at any time, on the basis of
users’ requests. We considered the case of live video streaming as an example for the
proposed SP2A-based architecture, because of the higher probability that peaks of
requests occur (i.e. in correspondence of sport matches or concerts). In this context it
is important to evaluate the dynamics of the system and the capability of adapting to
the incoming requests for a service. A possible scenario for the P2P Video Streaming
example is the following (as illustrated in figure 3.12):

• In an initial situation, M peers provide the video streaming service and K peers
may host a video stream buffer, thus becoming provider too.

• A node starts a discovery for a certain video and selects one of the M provider
peers; the selected node may accept the request only if it has not reached the
limit of L served peers, otherwise requestor has to choose another provider
from the list.

• The M provider nodes communicate with each other, and are able to estimate
the global workload on the system, all the time. When the system appears not
to be able to assure the required QoS, they request to the K available nodes
to download the service and start providing it (such kind of interaction can be
interpreted as ”solicited pull”).

108 Chapter 3. Middleware and Applications

• If a new provider peer is idle for a certain period of time, it may decide to
remove the service and stop providing it. Otherwise, if requests for a service
continue to increase it may also offer the service code for download, thus con-
tributing to the service diffusion in the p2p network.

3.1.10 Peer-to-peer e-learning communities

In general, P2P is useful where shared resources and services lie at many endpoints.
In the context of education this trend may enable each user to be much more proac-
tive in the creation of paths for his/her own training and in communicating with other
members which share some interests to build new group knowledge. Given that nowa-
days technology is mobile, students turn "nomad" [49], i.e. they overcome the bound-
aries of a classroom or a course to organize themselves in mobile groups which can
quickly change their members and their goals. Especially in higher education, an in-
stitution should provide an IT infrastructure to involve learners in making meaningful
connections to resources or other people.

A P2P e-learning community (PEC) is an unmoderated environment in which in-
formal knowledge exchange, rather than formal training, takes place. As peers join
the network, opportunities for more information to be stored, accessed, exchanged,
and learned increase. A community of practice (CoP) is made by people who have
a common interest in some subject and collaborate over an extended period to share
ideas, find solutions, and build innovations [50]. The CoP concept refers as well to
the stable group that is formed from such regular interactions. On the contrary, a PEC
is a highly dynamic collection of peergroups, whose members collaborate over short
periods to exchange knowledge. Mobility introduces some additional uncertainties
on the stability of learning groups: mobile devices can have some limitations of com-
putational and storage resources, or a low quality of achievable data connections, so
mobile peers can unexpectedly become unreachable. To provide learning tasks with-
out service interruptions the system infrastructure should be able to discover other
peers able to support the learning activity. Moreover, the learning framework should
be able to adapt service provision on the base of user context, both in term of his/her

3.1. Ubiquitous p2p sharing of services: JXTA-SOAP mobile 109

Figure 3.12: P2P Video Streaming Service in SP2A. In the first picture the service is
offered by a limited number of servers, because the number of requests for it is low;
as the number of requests increase, SP2A architecture enables other available peers
to become providers of the service.

physical space and time and in terms of user’s device and network capabilities. SP2A
framework supports PECs in which users adopt different devices and perform differ-

110 Chapter 3. Middleware and Applications

ent kinds of learning activities.

Context-aware e-learning services

A context-dependent service for mobile consumers is a service whose behavior and
output can be adapted to user preferences, user location, and user resources (de-
vice capabilities, negotiated bandwidth). Different kind of e-learning services can
be provided in a context-aware fashion, using the P2P paradigm. Previously we re-
ferred to P2P as the synonym of e-learning services offered both by institutional
actors, i.e. teachers, and by informal actors, i.e. students. At the infrastructural level,
P2P means a set of mechanisms supporting user connectivity and, exactly, context-
awareness. User-to-user services like video conference are highly demanding in terms
of bandwidth and resilience. To cope with their requirements, P2P streaming tech-
niques (bandwidth sharing, etc.) are a meaningful solution. With respect to central-
ized solutions, P2P streaming models are characterized by the lack of single points
of failure, which is an advantage, but also by the topological mismatch between the
overlay network and the physical network, which leads to non-optimal resource ex-
ploitation. On-demand services, which are not characterized by user-to-user live in-
teractions, may be based on P2P discovery mechanisms and content-adaptation and
replication techniques. We consider here two examples: on-demand streaming, and
on-demand learning path construction. On-demand streaming applications with dis-
tributed providers of multimedia objects can be realized by means of traditional P2P
architectural models for file sharing. But, with respect to this kind of application,
on-demand streaming requires more guarantees on data flow continuity and delays.
For this reason, data chunks scheduling must consider a broader range of parame-
ters, which are often related to the characteristics of the underlying physical network.
Moreover an efficient recovery mechanisms must be provided in order to guarantee
the continuity of the data flow. The on-demand learning path construction service ac-
cepts queries and searches for related learning objects (LOs), building a learning path
which can be dynamically rearranged during the process if the owners of some LOs
leave the network. By definition LOs encapsulate both learning content and appropri-
ate descriptive information (metadata). As illustrated by [51], semantic relationships

3.1. Ubiquitous p2p sharing of services: JXTA-SOAP mobile 111

of LOs have essentially two spaces: the inner space, which implies the LO structure,
and the outer space, which delivers the learning value of LOs within specific con-
text of use. Both kinds of relationships enable the specification of learning paths, as
sequences of semantically interrelated LOs. The e-learning architecture proposed by
[51] consists of a portal, in which instructors publish LO descriptions and define se-
mantic relationships between published LOs. Learners can browse or query the LOs
of the portal, but also insert new LOs or enrich the descriptions of existing LOs in
order, for example, to extend the available learning paths for a course. Our approach
considers an even more dynamic environment, in which LOs are frequently updated
(e.g. a student in mathematics may publish its exercise solutions day by day) and their
availability depends on their replication degree (RD) in the overlay network (since
there is no central repository). For example, we assume that a learner is interested
in "Computer Science" for a half-day learning session. The learning path constructor
suggests the following LOs:

Current time: 9AM
Proposed learning path:

1. "Information theory (basics)" - OD - lecture slides - [RD=2] - time: n/a

2. "From finite state automata to Turing machine" - OD - lecture video -
[RD=5] - time: 1h

3. "Algorithms and Data Structures" - U2U - live lesson - [RD=n/a] - time:
11AM-12AM

It is important to observe that user-to-user services can figure as steps of a learn-
ing path. Their position in the LO sequence depends on the declared availability of
the service provider.

Using SP2A middleware, we developed an application that can be executed both
on PCs and PDAs or smart phones. It is very useful for learners to have a graphical
interface that shows all the session steps and helps them to correctly manage the
learning material.

The Learning Path Construction Service (OLPCService) allows the creation of
a learning paths combining the Learning Objects deployed in the Sp2A network by

112 Chapter 3. Middleware and Applications

different Learning Object Provision Services (LOPService). These services expose
methods that , given a set of prerequisites, return a list of LOs. The user/student has
to provide three pieces of information to the system:

• the subject (e.g. Computer Science),

• the user’s know-how about this subject (prerequisites),

• the time the user wants to spend studying.

In a typical scenario, the user/student with a mobile device (edge node) sends
the request to the OLPCService (rendezvous node), which invokes the LOPServices
(edge nodes) to obtain the LOs.

Figure 3.13: General structure for the OLPCService

The discovery of LOs is based on the name of the corresponding subject and
the type of resource is selected from a dictionary, organized in order of importance
(i.e. streaming video, slide, video on-demand, exercises, paper); during the discovery
phase, preconditions are taken into account by selecting only LOs that are compatible
with the user’s knowledge. Each LOPService has a local Database with information

3.1. Ubiquitous p2p sharing of services: JXTA-SOAP mobile 113

about all its available LOs. Once the OLPCService has received the complete list of
learning objects, it proceeds ordering them in a timeline according with the described
priority and avoiding overlapping of resources.

The client (i.e. student) runs a GUI-based application, that is composed of tab
panels, with the capability of easily switching from one to the other even using a
mobile device; in particular, in the case of mobile users, it’s the application itself
that recognizes the type of selected LO and runs the right program for it. When the
execution is completed, it is possible to come back to the list of available LOs, and
select another step of the learning path.

Figure 3.14: Learning path management panel

The user can join a peergroup, selecting from the list of available ones, and col-
laborate in exchanging knowledge and learn with other members. The Learning Path
panel in figure 3.14 allows to select a topic and shows the corresponding learning
material. For example, a learner who is interested in Computer Science” for a half-
day learning session can type the course name in the learning path panel, and start
the search. The learning path constructor suggests some LOs depending on the cur-
rent time of request, and the GUI-based network explorer shows them in a table with
all the information the learner needs to use them. The LO table shows if the service
is on-demand or user-to-user, and what is the type of the LO, e.g. a presentation, a

114 Chapter 3. Middleware and Applications

live lesson video, etc. The replication degree is also provided, to inform the learner
about the resource availability in the overlay network. The last information provided
is about time: for on-demand services it could be the duration of a lesson or a video,
while for user-to-user services it could show the availability of providers. For exam-
ple if a teacher is available in the chat room at a particular time, the corresponding LO
is scheduled depending to that time, that is shown in the table. Finally, the learner can
select a LO and switch to the corresponding tab panel. From each panel it is possible
to perform actions depending on the LO type: for example, the slides panel lists all
the downloaded presentations, and it is possible to select one of them and show the
slides. If a mandatory step in the learning path is jumped, a dialog will suggest the
user to go back to the LOs list and select the right activity to successfully complete
the learning path.

In the context of NAM, learning objects can be considered as atomic services pro-
vided by LOPServices and dinamically composable to create learning paths without
involving OLPService, thus enabling a completely decentralized network. Moreover,
code mobility mechanisms can be used for migrating resources when their requests
increase for limited periods of time, i.e. the approaching of the exam date for a certain
subject.

3.1.11 SOP application

In the context of a collaboration with NATO C3 agency in their WS-SP project, we
have developed a prototype Service Oriented Peer (SOP) application for mobile de-
vices with Java Micro Edition (J2ME) and Connected Device Configuration (CDC);
in particular, devices must be compliant with CDC1.1/Foundation1.1/Personal Pro-
file1.1.

The system for which SOP prototype has been designed allows geo-localization
of users and exchange of other information related to position; four types of partici-
pants are involved (figure3.15:

• Mobile MIDP 2.0 compliant (GPRS). They provide tagged pictures with GEO
position and receive and depict GEO information on the area using Web Ser-

3.1. Ubiquitous p2p sharing of services: JXTA-SOAP mobile 115

vices.

• PDA CDC compliant (Wireless LAN). They receive and depict GEO informa-
tion on the area using Web Services.

• KML Web Service server (LAN). It provides GEO KML ship ID and coordi-
nates via Web Service in a given area.

• SI Search server (LAN). It provides GEO KML detailed ship information via
Web Service and other type of GEO information related to a given area.

Figure 3.15: The system designed for the NC3A WS-SP project.

In the scenario NATO C3 agency has considered, a user with its PDA device
accesses the network through Satellite communication GPRS. The PDA has the WS-
SP software installed and is GPS receiver.He sees the his GPS location, selects two

116 Chapter 3. Middleware and Applications

points in the PDA screen to determine a screen square location. Then he uses the
WS-SP application to find out Web Services in his MANET. The software will detect
web services published by other members. He selects the web Service infoShip
and press button select; in the next panel he enters the coordinates as parameters and
selects the option get results in results panel. He goes to the results panel and verifies
result is correct, and that it get the URL where the result is stored. He copies the URL
and executes Google Maps for PDA that will depict the GEO points that represent the
results of infoShips web service call. The user may also take a picture of Area
Of Interest (AOI) and tag it with simple text; then he uses the WS-SP software to list
WebServices which can receive field pictures and invoke one of them to send alive
picture with the comment.

SOP application is based on SP2A and allows to manage three kinds of services:

• Local Services that are deployed locally in the peer

• Remote Services that are deployed remotely in other peers accessible on the
SP2A/JXTA network

• External Services which are deployed in an application server (not part of the
SP2A/JXTA network) either running on the same node hosting the peer or on
an external host.

In particular, the application allows users to publish advertisements of local and
external services in the SP2A/JXTA network, search the SP2A/JXTA network for
available services, list external services deployed on an application server whose IP
address is known and invoke discovered services, regardless of their external or re-
mote type .

The SOP GUI shows different tabbed panels, and from the mobile device it is
possible to switch from one to another using the cursor or the arrows where available.

• The first panel (Main) shows the joined peer groups; actually the only group
available is Default, but it is possible to add others.

• The Local panel show services that are deployed locally in the peer, so it can be
empty if no services are available. There are a table that lists all the services and

3.1. Ubiquitous p2p sharing of services: JXTA-SOAP mobile 117

a Share Service button that allows to publish the advertisement of a selected
service.

• The External panel lists services that are available on an external application
server; to search for Services, type the service address (it must be a correct
URL) in the text field and press the Show button; if any service is available at
the selected address, the table will be filled with a list of services

• Remote panel is for services which are deployed remotely in the peer network;
it is possible to search for services on other peers and to select one of them
from the list (as for external services), in order to see all the operations the
service offers, which are shown in the operation tab. To find a service in the
peer network, it suffices to put the service name in the text field and a discovery
is started in the SP2A network; the service table is then updated with all found
services.

• Operation panel shows all the operation available for a selected service.

• Invocation panel is where the user introduces the required parameters for ser-
vice invocation; it shows what service and operation have been selected and
lists all the parameters. The user has to introduce a value for the required pa-
rameters and to select where to save the results, whether in a file stored locally
or in the Result tab. Only when the result destination is selected the Invoke
option is enabled.

• Result panel is filled with service response, in case the user has chosen to show
the invocation result in the corresponding tab (figure 3.16)

In such a scenario, as well as in emergency management applications, network
connectivity is not continuously available and only a few devices are enabled to com-
municate with the central station or to access the network through Satellite communi-
cation GPRS/UMTS. In order to preserve battery and CPU resources of devices that
are in charge of communication, all the information obtained from the site (images,
videos, GPS coordinates) can be distributed among other nodes ih the ad hoc network

118 Chapter 3. Middleware and Applications

Figure 3.16: Panels for service discovery and invocation in SOP application

for elaboration, then composed as NAM resource and sent back to the communicating
node.

3.2 Interoperability among heterogeneous WS platforms:
STIL project

STIL ("Strumenti Telematici per l’Interoperabiliá delle reti di imprese: Logistica dig-
itale integrata per l’Emilia-Romagna", i.e. telematic tools for interfirm networks in-
teroperability: digital logistics for the Emilia-Romagna region) is a regional project
in the field of IT applied to logistics I had been involved with in the first period
of my Ph.D. activity. Logistics can be defined as the geographical repositioning of
raw materials, work in process, and finished inventories where required at the lowest
cost possible, through the integration of information, transportation, inventory, ware-

3.2. Interoperability among heterogeneous WS platforms: STIL project 119

housing, material handling, and packaging. In STIL, logistics is considered in the
context of interactions between providers and consumers of products and services in
the e-market place. STIL’s final goal is to create a region-wide Virtual Logistic Pole
providing Enterprise Application Integration (EAI) for business to business (B2B)
applications to manufacturing firms, transportation carriers and logistic hubs. The
concept of value-chain is applied not only to the manufacturer-carrier chain, but also
to public interest, with particular emphasis on process observation and optimization
for environment and quality of life safeguard.

Key elements for STIL architecture development are:

• Domain business model: description of processes and of static and dynamic
elements of the value chain

• Data model: a Global Virtual View (GVV) has been defined which represents
a unified language for information exchanged in the logistic processes.

• Software architecture: a set of base software components to allow interoper-
ability among etherogeneous systems (STIL Platform).

• Pilots: a set of application prototypes for logistics operations leveraging on
STIL platform and STIL GVV.

Figure 3.17 illustrates the interaction between STIL actors, namely manufactur-
ers, logistic operators and carriers, logistic centers. In a typical scenario, we can con-
sider two types of services, as STIL application, which are critical for the value-chain:

• the TransportationBroker which accepts transport orders from manu-
facturers’ logistic operators, requests and retrieves mission plans, interacts with
carriers to obtain their quotations and finally orders the best one;

• the MissionPlannerwhich is invoked by the TransportationBroker to com-
pute optimized mission plans considering different transportation systems. In
this scenario, each kind of service may be offered by multiple competing providers
with different costs and implementations. In the prototype, emphasizing decen-
tralized and direct e-business interaction, NAM can provide to each node the
basic layer for peer-to-peer service sharing and interaction.

120 Chapter 3. Middleware and Applications

Figure 3.17: Interaction among STIL actors and applications

STIL defines an ICT infrastructure which offers mechanisms and policies for
the semantic integration of applications (eServices) which realize stategical features
for the value-chain. An eService is a software entity deployed by a service provider
across the Internet. eServices can be statically selected by subscribing off-line con-
tracts, or dynamically discovered using several approaches (for example, the NAM
approach). Obviously, an eService can be selected not only for its functionalities, but
also for the quality of service (QoS) it guarantees. From the technological point of
view, eServices are implemented with Web Service technologies. By focusing solely
on messages, the Web Service model is completely language, platform and object
model-agnostic. A Web Service can be implemented using the full feature set of any
programming language, object model, and platform. A Web Service can be consumed
by applications implemented in any language for any platform.

Our contribution to the project, as described in the following, basically involved

3.2. Interoperability among heterogeneous WS platforms: STIL project 121

the development of a system for authentication of users accessing to the wireless
network of a STIL-federated company and a client application for the use of STIL
services from a mobile device (PDA).

3.2.1 Secure access to the STIL network

As represented in figure 3.18, the system we have developed for secure access to
the wireless network enables the mobility of users among different sites within STIL
federated security model. User’s arrival in a new site does not require a ’SysAdmin’
because authentication process is federated and is based on trust relations both direct
or mediated by STIL platform.

Figure 3.18: STIL authentication system for wireless netwotks

The proposed solution is designed for mobile devices and has a user friendly in-
terface which is suitable for technically non-expert users. It is based on the use of

122 Chapter 3. Middleware and Applications

Captive Portal technology thus improving the end-to-end security level (from device
to company system). A web interface is available for the user selection of authentica-
tion service among the following:

• accessing company (local)

• origin company

• STIL community (global)

3.2.2 Access to the LVP services from a mobile device

Using STIL infrastructural supports and J2ME APIs we have implemeted an applica-
tion that allows a client (i.e. truck driver) to interact with the system of the transport
company in order to receive a "Transport Mission" on his PDA and to send back
periodic information from it (figure 3.19).

In details, the application enables the following operations:

• Obtain a new transport mission from the transport company system, or load a
previously stored one;

• Visualize details of a transport mission;

• Send an event of enter/exit in relation to a site;

• Send an exception event (e.g. truck break down).

All interactions are allowed through Web Services invocation; with this application
the transport company system receives information about the transport mission com-
pletion directly from the driver and in real time.

3.2. Interoperability among heterogeneous WS platforms: STIL project 123

Figure 3.19: Interaction between driver and transport company system within STIL
infrastructure

Conclusions

The major achievements of this work are related to the definition of Networked Auto-
nomic Machine (NAM), a formal framework to design distributed computing systems
with shared resources, and to the development of the mobile version of JXTA-SOAP
and SP2A middlewares.

A Networked Autonomic Machine (NAM) is a hardware/software entity that is
programmed to be completely altruistic, providing resources to other NAMs. In a
peer-to-peer system of NAMs, each node can act both as resource consumer and re-
source provider, and contributes to the effective and efficient functioning of the whole
system. NAMs can be of different types and complexities, depending on the device
and on the characteristics of the offered resources. Several kinds of devices are con-
sidered: PCs and workstations, notebooks, PDAs, smart-phones, as well as sensors
and actuators. Devices can be classified on the basis of their system characteristics
(OS, processor type, memory, I/O type, battery, connectivity) or their functionalities
(camera, communicating, processing, sensors, etc.). The software layer of each NAM
includes a lightweight control module implementing a peer-to-peer overlay scheme.

The service-oriented version of NAM namely Networked Service-oriented Auto-
nomic Machine (NSAM) has been presented. In NSAM network, each NSAM pro-
vides atomic services and cooperates with other NSAMs to build composite services.
An atomic service is defined as the minimal executable function unit, that cannot
be decomposed and whose execution can transform a given state to another state.
Atomic services provided by different peers can be statically or dynamically aggre-
gated (proactively or on-demand) to realize new complex tasks. Both atomic and

126 Conclusions

composite services are tuples, the latter with a specific rule that allows to combine
atomic services; this rule is represented as a directed workflow graph.

The presented modeling formalism NAM is particularly suitable for building
peer-to-peer systems characterized by services that migrate on-demand, thus allow-
ing to cope with highly dynamic environmental conditions. Within the context of the
formal framework, we have explained how resources provided by each NAM may be
shared and also migrated within a group of NAMs.

The definition and design of NAM framework has its basis in two projects that
have been developed and managed by the Distributed System Group of University
of Parma: SP2A (Service-oriented Peer-to-peer architecture), a lightweight middle-
ware enabling service-oriented peers for efficient and robust distributed applications,
and JXTA-SOAP, a component which extends the JXTA middleware, with the design
goal of wrapping Web Services in JXTA services through the use of JXTA for Web
Service discovery and SOAP message transport. JXTA-SOAP has been included in
SP2A middleware as an external API, thus enabling Web Services technology for the
development of Service Oriented Peers (SOPs). We have presented the main features
of both SP2A and JXTA-SOAP, focusing on the additional features we have imple-
mented, enabling service migration mechanisms in the first and service provision
from resource constrained devices in the latter. Moreover, transport level security
mechanisms have been introduced in the J2ME version of Jxta-Soap, by means of
the creation of new type of pipe, JxtaUnicastCrypto, by which it is possible
to cipher message contents, and the definition of a new security policy, suitable for
Connected Device Configuration (CDC) and Personal Profile.

Finally, we presented several applications, which have been implemented within
SP2A and JXTA-SOAP, with emphasis on the enhancements that it is possible to
obtain with the introduction of NAM framework. These applications target different
fields, from Ambient Intelligence to e-learning communities, to emergency manage-
ment scenarios, and finally to logistics, with the goal of enabling interoperability
among heterogeneous platforms (including resource constrained devices) and ubiq-
uitous sharing of services and resources.

Future work in NAM is related to the simulation of the complete system with

Conclusions 127

Discrete Event Universal Simulator (DEUS). DEUS is a general purpose simulator,
developed by the Distributed System Group of University of Parma, which aims at be-
coming one of the reference tools in the field of complex system simulation. Complex
systems are dynamic and composed of interconnected parts that as a whole exhibit
one or more properties that could not be gathered from the properties of the individ-
ual parts. A network of NAM nodes can be considered a complex system, and can
be represented by a simulation model, i.e. a specification of the system in terms of a
set of states and events. Performing a simulation means mimicking the occurrence of
events over time, and recognizing their effects as represented by states.

For asynchronous complex systems, characterized by events that are not guaran-
teed to occur at regular intervals, and by the lack of a bound on the time step (i.e. it
should not be so small as to make the simulation run too long, nor so large as to make
the number of events unmanageable), it is more appropriate to adopt an event-driven
simulation [52]. Examples of such systems are distributed computing systems based
on the peer-to-peer paradigm, with nodes randomly joining and leaving, but also
emergency rescue and crisis management scenarios, where rescuers do not arrive and
leave at regular time intervals. Since NAM framework belongs to this category of
complex systems, simulation appears to be a useful approach to evaluate the system
performances before fully implementing it.

After the completion of the simulation phase, a new version of SP2A, directly
mapping on NSAM, will be implemented and tested on PlanetLab, a global dis-
tributed system that supports the development of new network services. Since the
beginning of 2003, more than one thousand researchers at top academic institutions
and industrial research labs have used PlanetLab to develop new technologies for dis-
tributed storage, network mapping, peer-to-peer systems, distributed hash tables, and
query processing. The PlanetLab Consortium currently consists of 1056 nodes at 490
sites, and is managed by Princeton University, the University of California at Berke-
ley, and the University of Washington. Our University participates in the Consortium.

Bibliography

[1] M. Weiser. The Computer of the 21st Century. Scientific American, September
1991.

[2] M. Satyanarayanan. Pervasive Computing: Vision and Challenges. IEEE Per-
sonal Communications, 8:10–17, August 2001.

[3] J. Gaber. Spontaneous Emergence Model for Pervasive Environments. IEEE
Globecom Workshop, November 2007.

[4] Reza B’Far. Mobile Computing Principles: Designing and Developing Mobile
Applications with UML and XML. Cambridge University Press, 2005.

[5] Lionel M. Ni Pei Zheng. Smart Phone Next Generation Mobile Computing.
Morgan Kaufmann Publishers, 500 Sansome Street, Suite 400, San Francisco,
CA, 2006.

[6] F. Koushanfar, V. Prabhu, M. Potkonjak, and J. M. Rabaey. Processors for mo-
bile applications. In in Proc. 2000 IEEE Int. Conf. Computer Design: VLSI in
Computers and Processors , pages 603–608, 2008.

[7] R. Suoranta. New Directions in Mobile Device Architectures. In in Proc. of the
9th Euromicro Conference on Digital System Design (DSD’06), 2006.

[8] T. Bodhuin, G. Canfora, R. Preziosi, and M. Tortorella. Open Challenges in
Ubiquitous and Net-Centric Computing Middleware. IEEE International Work-
shop on Software Technology and Engineering Practice, September 2005.

130 Bibliography

[9] B. Traversat, A. Arora, M. Abdelaziz, M. Duigou, C. Haywood, J.-C. Hugly,
E. Poyoul, and B. Yeager. Project JXTA 2.0 Super-Peer Virtual Network. Tech-
nical report, Sun Microsystems, 2003.

[10] OSGi Alliance. Osgi: the dynamic module system for java [online]. Available
from World Wide Web: http://www.osgi.org.

[11] OASIS. Web Services Resource Framework (WSRF) v1.2. Technical report,
April 2006.

[12] Distributed Systems Group and Sun MicroSystems. Jxta-soap project [online].
Available from World Wide Web: https://soap.dev.java.net.

[13] A. Harrison and I. Taylor. WSPeer - An Interface to Web Service Hosting and
Invocation. In Proc. of the 19th IEEE International Parallel and Distributed
Processing Symposium (IPDPS’05), May 2005.

[14] S. N. Srirama, M. Jarke, and W. Prinz. A Mediation Framework for Mobile
Web Service Provisioning. In Proc. of the 10th IEEE International Enterprise
Distributed Object Computing Conference Workshops (EDOCW’06), October
2006.

[15] S. N. Srirama, M. Jarke, and W. Prinz. MWSMF: a Mediation Framework Real-
izing Scalable Mobile Web Service. In Proceedings of Mobilware’08, February
2008.

[16] S. Berger, S. McFaddin, C. Narayaswami, and M. Raghunath. Web Services on
Mobile Devices - Implementation and Experience. In Proceedings of the Fifth
IEEE Workshop on Mobile Computing Systems & Applications, October 2003.

[17] R. A. van Engelen and K. Gallivan. The gSOAP Toolkit for Web Services
and Peer-To-Peer Computing Networks. In Proc. of the 2nd IEEE International
Symposium on Cluster Computing and the Grid (CCGrid2002), pages 128–135,
May 2002.

http://www.osgi.org
https://soap.dev.java.net

Bibliography 131

[18] Microsoft. .net compact framework [online]. Available from World Wide
Web: http://msdn.microsoft.com/en-us/netframework/

aa497273.aspx.

[19] Sun MicroSystems. J2me web services apis (wsa) [online]. Available from
World Wide Web: http://java.sun.com/products/wsa/.

[20] Sun MicroSystems. Jsr 172: J2me web services specification [online]. Available
from World Wide Web: http://jcp.org/en/jsr/detail?id=172.

[21] S. Haustein and J. Seigel. ksoap2 project [online]. Available from World Wide
Web: http://ksoap2.sourceforge.net.

[22] P. Plebani. mas project [online]. Available from World Wide Web: https:
//sourceforge.net/projects/masproject.

[23] Helal S., Mann W., El-Zabadani H., King J., Kaddoura Y., and Jansen E. The
Gator Tech smart house: A programmable pervasive space. IEEE Computer,
pages 64–74, 2005.

[24] OSGi Alliance. Amigo project. ambient intelligence for the networked home
environment [online]. Available from World Wide Web: http://www.
amigo-project.org.

[25] Gu T.AND Pung H.K. and Zhang D.Q. A middleware for building context-
aware mobile services. In in Proc. of IEEE Vehicular Technology Conference,
pages 2656–2660, 2004.

[26] Persona project web site [online]. Available from World Wide Web: http:
//www.aal-persona.org.

[27] Baronti P. AND Pillai P. AND Chook AND V.W.C.AND Chessa S.AND Gotta
A. AND Hu Y.F. Wireless sensor networks: A survey on the state of the art and
the 802.15.4 and zigbee standards. Computer Communications, 30(7):1655–
1695, 2007.

http://msdn.microsoft.com/en-us/netframework/aa497273.aspx
http://msdn.microsoft.com/en-us/netframework/aa497273.aspx
http://java.sun.com/products/wsa/
http://jcp.org/en/jsr/detail?id=172
http://ksoap2.sourceforge.net
https://sourceforge.net/projects/masproject
https://sourceforge.net/projects/masproject
http://www.amigo-project.org
http://www.amigo-project.org
http://www.aal-persona.org
http://www.aal-persona.org

132 Bibliography

[28] Fides-Valero A., Freddi M., Furfari F., and Tazari M.-R. The PERSONA frame-
work for supporting context-awareness in open distributed systems. In in Proc.
of Ambient Intelligence conference (AmI08), pages 91–108, 2008.

[29] M. Kumar, B.A. Shirazi, S.K. Das, B.Y. Sung, D. Levine, and M. Singhal. Pico:
a middleware framework for pervasive computing. Pervasive Computing, IEEE,
2(3):72–79, July-Sept. 2003.

[30] S. Kalasapur, M. Kumar, and B.A. Shirazi. Dynamic service composition in
pervasive computing. Parallel and Distributed Systems, IEEE Transactions on,
18(7):907–918, July 2007.

[31] Xiaohui Gu, K. Nahrstedt, and Bin Yu. Spidernet: an integrated peer-to-peer
service composition framework. In High performance Distributed Computing,
2004. Proceedings. 13th IEEE International Symposium on, pages 110–119,
June 2004.

[32] Paolo Bellavista, Antonio Corradi, Rebecca Montanari, and Cesare Stefanelli.
Context-aware middleware for resource management in the wireless internet.
IEEE Transactions on Software Engineering, 29:1086–1099, 2003.

[33] S. Kalasapur, M. Kumar, and B.A. Shirazi. Dynamic service composition in
pervasive computing. Parallel and Distributed Systems, IEEE Transactions on,
18(7):907–918, July 2007.

[34] A. Carzaniga, G. P. Picco, and G. Vigna. Designing Distributed Applications
with Mobile Code Paradigms. In ICSE - International Conference on Software
Engineering, April 1997.

[35] A. Carzaniga, G. P. Picco, and G. Vigna. Is Code Still Moving Around? Looking
Back at a Decade of Code Mobility. In ICSE - International Conference on
Software Engineering, May 2007.

[36] S. Haustein and J. Seigel. ksoap2 project [online]. Available from World Wide
Web: http://ksoap2.sourceforge.net.

http://ksoap2.sourceforge.net

Bibliography 133

[37] Krishna A., Schmidt D. C., and Stal M. Context Object: A Design Pattern
for Efficient Middleware Request Processing. In in Proc. of the 12th Pattern
Language of Programming Conference, 2005.

[38] Gamma E., Helm R., Johnson R., and Vlissides J. Design Patterns. Addison-
Wesley, 1995.

[39] I. Pyarali, M. Spivak, R. Cytron, and D. C. Schmidt. Evaluating and Optimiz-
ing Thread Pool Strategies for Real-Time CORBA. In in Proc. of the ACM
SIGPLAN Workshop on Optimization of Middleware and Distributed Systems
(OM 2001), 2001.

[40] Govoni D. and Soto J.C.. JXTA and security. In JXTA: Java P2P Programming.
Sams Publishing, 2002.

[41] Mikey: Multimedia internet keying [online]. Available from World Wide Web:
http://www.ietf.org/rfc/rfc3830.txt.

[42] Mikey-rsa-r: An additional mode of key distribution in multimedia internet key-
ing (mikey) [online]. Available from World Wide Web: http://www.ietf.
org/rfc/rfc4738.txt.

[43] Haddow G.D. and Bullock J.A. Introduction to Emergency Management.
Butterworth-Heinemann, 2004.

[44] Commission of the European Communities. Communication on Reinforcing
the Union’s Disaster Response Capacity. Technical report, 2008.

[45] Commission of the European Communities. Communication on Global Mon-
itoring for Environment and Security (GMES): Establishing a GMES capacity
by 2008. Technical report, 2004.

[46] Gallup Organization. General public survey on the European Galileo Pro-
gramme. Technical report, 2007.

http://www.ietf.org/rfc/rfc3830.txt
http://www.ietf.org/rfc/rfc4738.txt
http://www.ietf.org/rfc/rfc4738.txt

134 Bibliography

[47] M. Amoretti, F. Zanichelli, and G. Conte. SP2A: a Service-orientd Framework
for P2P-based Grids. In Proceedings of the 3rd international workshop on Mid-
dleware for grid computing, pages 1–6. ACM Press, 2006.

[48] M. Amoretti, M. Reggiani, F. Zanichelli, and G. Conte. Peer: an Architectural
Pattern. In Proceedings of the 12th Pattern Languages of Programs (PLoP),
pages 1–14, 2005.

[49] A. Bryan. Going Nomadic:Mobile Learning in Higher Education. EDUCAUSE
Review, 39(5):28–35, 2004.

[50] E. Wenger. Communities of practice - Learning, meaning and identity. Cam-
bridge University press, 1998.

[51] D. Kotzinos, S. Pediaditaki, A. Apostolidis, N. Athanasis, and V. Christophides.
Online Curriculum on the Semantic Web: The CSD-UoC Portal for Peer-to-Peer
E-learning. In in Proc. of the 14th international conference on World Wide Web,
pages 307–314, 2005.

[52] B. Zeigler, T. Kim, and H. Praehofer. Modeling and Simulation. Academic
Press, 2000.

Acknowledgments

	Introduction
	State of the Art
	Pervasive and ubiquitous computing
	Pervasive computing emerging paradigms

	Mobile Computing
	Mobile hardware
	Mobile software platforms and applications
	Java Micro Edition (J2ME)
	Comparison between most diffused devices and platforms

	Service oriented infrastructures for pervasive computing
	Ubiquitous peer-to-peer sharing of services
	Web Services on resource-constrained devices

	Framework
	Networked Autonomic Machine
	Services as NAM resources
	Service composition
	Related works
	NSAM for p2p service-oriented infrastructure

	Code Mobility
	Resource and Service migration

	Middleware and Applications
	Ubiquitous p2p sharing of services: JXTA-SOAP mobile
	Service deployment
	Service publication and lookup
	Service invocation
	Secure service invocation in JXTA-SOAP
	Ambient Intelligence applications
	Emergency Management application
	Service-oriented Peer-to-peer architecture
	Mobile Service Problem and Pull Solution
	P2P Video Streaming
	Peer-to-peer e-learning communities
	SOP application

	Interoperability among heterogeneous WS platforms: STIL project
	Secure access to the STIL network
	Access to the LVP services from a mobile device

	Conclusions
	Bibliography
	Acknowledgements

