
Self-managed Workflows for
Cyber-physical Systems

Dissertation

to achieve the academic degree
Doktor-Ingenieur (Dr.-Ing.)

Submitted at

Technische Universität Dresden
Fakultät Informatik

Submitted by

Dipl.-Inf. Ronny Seiger
born 19.12.1985 in Cottbus

1st Referee
Prof. Dr.-Ing. Thomas Schlegel

(Technische Universität Dresden/Hochschule Karlsruhe, Deutschland)

2nd Referee
Prof. Dr. Mathias Weske

(Hasso-Plattner-Institut, Universität Potsdam, Deutschland)

Subject Consultant
Prof. Dr. rer. nat. habil. Dr. h. c. Alexander Schill
(Technische Universität Dresden, Deutschland)

Co-Supervisor
Prof. Dr. rer. nat. habil. Uwe Aßmann

(Technische Universität Dresden, Deutschland)

Submitted on 17th July 2018
Defended on 7th November 2018

Confirmation

I hereby certify that I have authored this Dissertation entitled Self-managed Work-
flows for Cyber-physical Systems independently and without undue assistance from
third parties. No other than the resources and references indicated in this thesis
have been used. I have marked both literal and accordingly adopted quotations as
such. There were no additional persons involved in the spiritual preparation of the
present thesis. I am aware that violations of this declaration may lead to subsequent
withdrawal of the degree.

Dresden, November 19, 2018

Dipl.-Inf. Ronny Seiger

Acknowledgements

“If all difficulties were known at the
outset of a long journey, most of us
would never start out at all.”

Dan Rather

Undoubtedly, the journey of a PhD student wandering around in the wide fields
of computer science is a long journey full of difficulties, obstacles and side quests
that distract the player from the main story. During the course of the years, I had
many opportunities to get insights into related research fields and communities, to
travel the wasteland to conferences and meet people at interesting places, and to
work with a variety of researchers, students and other NPCs on various projects.
This helped me a lot to develop myself and my special perks as well as to level up
my skills as a scientist. With making good progress in the main story, after 6,5 years
and 6 research projects at two chairs, I was able to focus and advance my research to
finally and gladly arrive at the end of this long journey on the difficult road towards
the final quest of defeating the end-boss(es) and finishing the main PhD storyline.
At this point, I would like to thank all people who supported me along the road
towards this final level of my thesis.

First of all, I would like to thank my supervisors Prof. Thomas Schlegel and
Prof. Uwe Aßmann for giving me the opportunity to work in this very vibrant and
interesting research field. They always provided me with valuable feedback and
new ideas to extend and improve the current state of the PhD project and thesis.
In addition, I would like to thank Prof. Schill and Prof. Weske and their research
groups for their co-supervision and additional feedback.

Many special thanks go to my current and former colleagues from the Software
Technology group and Software Engineering of Ubiquitous Systems group. First and
foremost, I would like to mention and thank Steffen Huber, Christoph Seidl, Peter
Heisig, Florian Niebling and Christine Keller for the intense discussions of ideas and
concepts, which led to the development of this PhD thesis. Of course, my thanks
also go to all the other colleagues and NPCs who have to endure my madness every
day. Besides discussions about work-related stuff, we always had good off-topic chats
about the meaning of life and all the rest, sometimes over a beer or two. Additionally,
I am grateful for the support from my colleagues from N+P Informationssyteme
GmbH in Meerane, from the Institute of Ubiquitous Mobility Systems in Karlsruhe,
and from Berufsakademie Dresden. Last but not least, countless paper reviewers
and discussions with associated researchers at various venues helped me to mature
the concepts presented in this thesis to their present state.

I would also like to extend my gratitude to the countless students working hard
and getting their hands dirty to make sense of my fuzzy ideas and implement parts of
the prototypes presented in this thesis. Special thanks with that regard go to André

5

Kühnert, Stefan Herrmann, Reik Müller and all other of my former and current
student assistants, thesis students as well as seminar and practical course students.
Most importantly, I would like to thank my family and friends for supporting and

believing in me the whole time: my parents for giving me the opportunity to move
to the big city to study computer science and supporting me during the sometimes
very hard and difficult times with their love (and also some bottlecaps from time
to time to survive in the wasteland); to my dearest Bets for her love and warmth
and understanding during the last months of writing; and of course to all my friends
for providing badly needed distractions from work and thesis writing–be it floating
on the Soc̆a river while listening to our favourite metal bands, driving for hours
through Cambodia’s countless temple areas in an uncomfortable Tuk-Tuk, or hunt-
ing kangaroos with Staubi along the coast of Western Australia. All in all, being a
PhD student and research assistant was an awesome experience and I had a great
time working together with colleagues, students, supervisors and other researchers.
I hope, I will be able to continue my work in an academic or R&D-related context
in the future.

Ronny

This research has received funding under the grant numbers 100098171 (“VICCI”
project) and 100268299 (“CyPhyMan” project) by the European Social Fund (ESF)
and the German Federal State of Saxony.

Abstract

Workflows are a well-established concept for describing business logics and pro-
cesses in web-based applications and enterprise application integration scenarios on
an abstract implementation-agnostic level. Applying Business Process Management
(BPM) technologies to increase autonomy and automate sequences of activities in
Cyber-physical Systems (CPS) promises various advantages including a higher flex-
ibility and simplified programming, a more efficient resource usage, and an easier
integration and orchestration of CPS devices. However, traditional BPM notations
and engines have not been designed to be used in the context of CPS, which raises
new research questions occurring with the close coupling of the virtual and physical
worlds. Among these challenges are the interaction with complex compounds of
heterogeneous sensors, actuators, things and humans; the detection and handling of
errors in the physical world; and the synchronization of the cyber-physical process
execution models. Novel factors related to the interaction with the physical world
including real world obstacles, inconsistencies and inaccuracies may jeopardize the
successful execution of workflows in CPS and may lead to unanticipated situations.
This thesis investigates properties and requirements of CPS relevant for the in-

troduction of BPM technologies into cyber-physical domains. We discuss existing
BPM systems and related work regarding the integration of sensors and actuators
into workflows, the development of a Workflow Management System (WfMS) for
CPS, and the synchronization of the virtual and physical process execution as part
of self-* capabilities for WfMSes. Based on the identified research gap, we present
concepts and prototypes regarding the development of a CPS WFMS w. r. t. all
phases of the BPM lifecycle. First, we introduce a CPS workflow notation that
supports the modelling of the interaction of complex sensors, actuators, humans,
dynamic services and WfMSes on the business process level. In addition, the effects
of the workflow execution can be specified in the form of goals defining success and
error criteria for the execution of individual process steps. Along with that, we
introduce the notion of Cyber-physical Consistency. Following, we present a sys-
tem architecture for a corresponding WfMS (PROtEUS) to execute the modelled
processes–also in distributed execution settings and with a focus on interactive pro-
cess management. Subsequently, the integration of a cyber-physical feedback loop
to increase resilience of the process execution at runtime is discussed. Within this
MAPE-K loop, sensor and context data are related to the effects of the process
execution, deviations from expected behaviour are detected, and compensations are
planned and executed. The execution of this feedback loop can be scaled depend-
ing on the required level of precision and consistency. Our implementation of the
MAPE-K loop proves to be a general framework for adding self-* capabilities to
WfMSes. The evaluation of our concepts within a smart home case study shows ex-
pected behaviour, reasonable execution times, reduced error rates and high coverage
of the identified requirements, which makes our CPS WfMS a suitable system for
introducing workflows on top of systems, devices, things and applications of CPS.

Publications

This thesis is partially based on the following peer-reviewed publications:

• Thomas Schlegel, Krešimir Vidačković, Sebastian Dusch, and Ronny Seiger.
Management of interactive business processes in decentralized service infras-
tructures through event processing. Journal of King Saud University - Com-
puter and Information Sciences, 24(2):137 – 144, 2012

• Ronny Seiger, Christine Keller, Florian Niebling, and Thomas Schlegel. Mod-
elling complex and flexible processes for smart cyber-physical environments. In
Proceedings of 25th European Modeling and Simulation Symposium (EMSS),
pages 73–82, September 2013

• Ronny Seiger, Florian Niebling, and Thomas Schlegel. A distributed execution
environment enabling resilient processes for ubiquitous systems. In IEEE Inter-
national Conference on Pervasive Computing and Communications Workshops
(PERCOM Workshops), pages 220–223, March 2014

• Ronny Seiger, Susann Struwe, Sandra Matthes, and Thomas Schlegel. A re-
silient interaction concept for process management on tabletops for cyber-
physical systems. In Human Interface and the Management of Information. In-
formation and Knowledge in Applications and Services, pages 347–358. Springer,
2014

• Ronny Seiger, Christine Keller, Florian Niebling, and Thomas Schlegel. Mod-
elling complex and flexible processes for smart cyber-physical environments.
Journal of Computational Science, 10:137 – 148, 2015

• Ronny Seiger. Modelling and execution of consistent and distributed work-
flows for cyber-physical systems. In Business Process Management (Doctoral
Consortium), 2015

• Ronny Seiger, Steffen Huber, and Thomas Schlegel. PROtEUS: An Inte-
grated System for Process Execution in Cyber-Physical Systems, pages 265–280.
Springer International Publishing, 2015

• Ronny Seiger, Christoph Seidl, Uwe Aßmann, and Thomas Schlegel. A capability-
based framework for programming small domestic service robots. In Proc. of
the 2015 Joint MORSE/VAO Workshop., pages 49–54, New York, NY, USA,
2015. ACM

• Ronny Seiger, Steffen Huber, and Thomas Schlegel. Toward an execution sys-
tem for self-healing workflows in cyber-physical systems. Software & Systems
Modeling, pages 1–22, 2016

9

Publications

• Ronny Seiger, Steffen Huber, Peter Heisig, and Uwe Aßmann. Enabling Self-
adaptive Workflows for Cyber-physical Systems, pages 3–17. Springer Interna-
tional Publishing, 2016

• Ronny Seiger, Diana Lemme, Susann Struwe, and Thomas Schlegel. An inter-
active mobile control center for cyber-physical systems. In Proc. of the Int.
Joint Conf. on Pervasive and Ubiquitous Computing: Adjunct, pages 193–196,
New York, NY, USA, 2016. ACM

• Steffen Huber, Ronny Seiger, André Kühnert, Vasileios Theodorou, and Thomas
Schlegel. Goal-based semantic queries for dynamic processes in the internet of
things. International Journal of Semantic Computing, 10(02):269–293, 2016

• Steffen Huber, Ronny Seiger, André Kühnert, and Thomas Schlegel. Using
semantic queries to enable dynamic service invocation for processes in the in-
ternet of things. In IEEE Intern. Conference on Semantic Computing (ICSC),
pages 214–221, Feb 2016

• Steffen Huber, Ronny Seiger, André Kühnert, and Thomas Schlegel. A context-
adaptive workflow engine for humans, things and services. In Proc. of the
ACM International Joint Conference on Pervasive and Ubiquitous Computing:
Adjunct, UbiComp ’16, pages 285–288, New York, NY, USA, 2016. ACM

• Ronny Seiger, Steffen Huber, Peter Heisig, and Uwe Aßmann. Toward a frame-
work for self-adaptive workflows in cyber-physical systems. Software & Systems
Modeling, Nov 2017

• Ronny Seiger, Stefan Herrmann, and Uwe Aßmann. Self-healing for distributed
workflows in the internet of things. In IEEE Int. Conference on Software
Architecture (ICSA) Workshops, 2017

• Ronny Seiger, Steffen Huber, and Thomas Schlegel. An execution system
for self-healing workflows in cyber-physical systems. In Software Engineering
2017, number Lecture Notes in Informatics (LNI), pages 75–76. Gesellschaft
für Informatik, 2017

• Ronny Seiger, Steffen Huber, and Peter Heisig. Proteus++: A self-managed
iot workflow engine with dynamic service discovery. In 9th Central European
Workshop on Services and their Composition (ZEUS), 2017

• Ronny Seiger, Mandy Korzetz, Maria Gohlke, and Uwe Aßmann. Mixed reality
cyber-physical systems control and workflow composition. In Proc. of the 16th
Int. Conf. on Mobile and Ubiquitous Multimedia, MUM ’17. ACM, 2017

• Ronny Seiger, Stefen Huber, and Uwe Aßmann. A case study for workflow-
based automation in the internet of things. In IEEE Int. Conference on Soft-
ware Architecture (ICSA) Companion, 2018

• Ronny Seiger, Peter Heisig, and Uwe Aßmann. Retrofitting of workflow man-
agement systems with self-x capabilities for internet of things. In BP-Meet-IoT
Workshop, Int. Conference on Business Process Management (BPM) Work-
shops, 2018

10

The following peer-reviewed publications cover work that is closely related to the
content of the thesis, but not contained herein:

• Ronny Seiger, Stephan Groß, and Alexander Schill. Seccsie: A secure cloud
storage integrator for enterprises. In 2011 IEEE 13th Conference on Commerce
and Enterprise Computing, pages 252–255, Sept 2011

• Georg Püschel, Ronny Seiger, and Thomas Schlegel. Test modeling for context-
aware ubiquitous applications with feature petri nets. In Proc. Workshop
Model-based Interactive Ubiquitous Systems (MODIQUITOUS), 2012

• Ronny Seiger, Tobias Nicolai, and Thomas Schlegel. A framework for control-
ling robots via brain-computer interfaces. In Andreas Butz, Michael Koch, and
Johann Schlichter, editors, Mensch & Computer 2014 - Workshopband, pages
003–006, Berlin, 2014. De Gruyter Oldenbourg

• Ronny Seiger, Florian Niebling, Mandy Korzetz, Tobias Nicolai, and Thomas
Schlegel. A framework for rapid prototyping of multimodal interaction con-
cepts. Large-scale and Model-based Interactive Systems, pages 21–28, 2015

• Thomas Schlegel, Ronny Seiger, Christine Keller, and Romina Kühn. Model-
based interactive ubiquitous systems (modiquitous). In Proceedings of the
7th ACM SIGCHI Symposium on Engineering Interactive Computing Systems,
EICS ’15, pages 296–297, New York, NY, USA, 2015. ACM

• Ronny Seiger, Bashar Altakrouri, Andreas Schrader, and Thomas Schlegel,
editors. Proceedings of the 1st Workshop on Large-scale and Model-based In-
teractive Systems: Approaches and Challenges (LMIS 2015), number 1380 in
CEUR Workshop Proceedings, Aachen, 2015

Contents

1. Introduction 15
1.1. Motivation . 15

1.2. Research Issues . 17

1.3. Scope & Contributions . 19

1.4. Structure of the Thesis . 20

2. Workflows and Cyber-physical Systems 21
2.1. Introduction . 21

2.2. Two Motivating Examples . 21

2.3. Business Process Management and Workflow Technologies 23

2.4. Cyber-physical Systems . 31

2.5. Workflows in CPS . 38

2.6. Requirements . 42

3. Related Work 45
3.1. Introduction . 45

3.2. Existing BPM Systems in Industry and Academia 45

3.3. Modelling of CPS Workflows . 49

3.4. CPS Workflow Systems . 53

3.5. Cyber-physical Synchronization . 58

3.6. Self-* for BPM Systems . 63

3.7. Retrofitting Frameworks for WfMSes 69

3.8. Conclusion & Deficits . 71

4. Modelling of Cyber-physical Workflows with Consistency Style Sheets 75
4.1. Introduction . 75

4.2. Workflow Metamodel . 76

4.3. Knowledge Base . 87

4.4. Dynamic Services . 92

4.5. CPS-related Workflow Effects . 94

4.6. Cyber-physical Consistency . 100

4.7. Consistency Style Sheets . 105

4.8. Tools for Modelling of CPS Workflows 106

4.9. Compatibility with Existing Business Process Notations 111

5. Architecture of a WfMS for Distributed CPS Workflows 115
5.1. Introduction . 115

5.2. PROtEUS Process Execution System 116

5.3. Internet of Things Middleware . 124

5.4. Dynamic Service Selection via Semantic Access Layer 125

13

Contents

5.5. Process Distribution . 126
5.6. Ubiquitous Human Interaction . 130
5.7. Towards a CPS WfMS Reference Architecture for Other Domains . . 137

6. Scalable Execution of Self-managed CPS Workflows 141
6.1. Introduction . 141
6.2. MAPE-K Control Loops for Autonomous Workflows 141
6.3. Feedback Loop for Cyber-physical Consistency 148
6.4. Feedback Loop for Distributed Workflows 152
6.5. Consistency Levels, Scalability and Scalable Consistency 157
6.6. Self-managed Workflows . 158
6.7. Adaptations and Meta-adaptations 159
6.8. Multiple Feedback Loops and Process Instances 160
6.9. Transactions and ACID for CPS Workflows 161
6.10. Runtime View on Cyber-physical Synchronization for Workflows . . 162
6.11. Applicability of Workflow Feedback Loops to other CPS Domains . . 164
6.12. A Retrofitting Framework for Self-managed CPS WfMSes 165

7. Evaluation 171
7.1. Introduction . 171
7.2. Hardware and Software . 171
7.3. PROtEUS Base System . 174
7.4. PROtEUS with Feedback Service . 182
7.5. Feedback Service with Legacy WfMSes 213
7.6. Qualitative Discussion of Requirements and Additional CPS Aspects 217
7.7. Comparison with Related Work . 232
7.8. Conclusion . 234

8. Summary and Future Work 237
8.1. Summary and Conclusion . 237
8.2. Advances of this Thesis . 240
8.3. Contributions to the Research Area 242
8.4. Relevance . 243
8.5. Open Questions . 245
8.6. Future Work . 247

Bibliography 249

Acronyms 277

List of Figures 281

List of Tables 285

List of Listings 287

Appendices 289

14

1. Introduction

“A customer can have a car painted
any color he wants as long as it’s
black.”

Henry Ford

1.1. Motivation

This famous quote by American entrepreneur Henry Ford represents one of the
key statements of the Second Industrial Revolution. Henry Ford was one of the
pioneers in the field of mass production in the beginning of the 20th century. His
dream of manufacturing affordable automobiles for everyone led to the invention
of the conveyor belt, the electrification of mechanical production processes and the
emergence of mass production, which are important corner stones of the Second
Industrial Revolution. The Model T first built by Ford in 1908 is one of the symbols
of this era. However, Ford’s quote also shows that production processes of complex
and rather expensive goods were required to be highly inflexible and static in order
to be feasible for mass market production.

Now, roughly a 100 years later everyone in the German production and soft-
ware industries is talking about Industry 4.0, a term coined at the Hannover Fair
in 2011 [KLW11]. After the introduction of advanced electronics and computers
to control production processes–known as Third Industrial Revolution–Industry 4.0
aims at a stronger integration and tighter coupling of information technologies with
machines, tools, material, produced goods, and also customers along the whole sup-
ply chain and during all phases of the product lifecycle (Digital Twin) [LFK+14,
SCA+17, RvWLB15]. This currently ongoing digitisation eventually leads to the
emergence of an Internet of Everything [DMLYE18], which will pervade every area
of life. One of the goals of the Fourth Industrial Revolution is the establishment
of highly flexible, decentralized production processes involving virtual and physical
entities, which can be reconfigured instantaneously according to the current demand
and various context factors, and which are feasible even for lot sizes of one item.
Research in the areas of Cyber-physical Systems (CPS) and Internet of Things (IoT)
will provide the technological foundations for achieving this goal [Jaz14].

Business Process Management (BPM) and workflow technologies have provided
well-established concepts and approaches to flexibly orchestrate web applications
based on Service-oriented Architectures (SOAs) and to realize the integration of
existing systems and software in Enterprise Application Integration (EAI) contexts.
Many organizations use business processes to formalize, execute and monitor their
intra-organizational as well as inter-organizational processes. These technologies
prove feasible to manage workflows regarding virtual resources and purely digital

15

1. Introduction

services. One of the most common examples for introducing and explaining business
processes is the booking of a business trip involving flight companies, hotels, rental
car agencies and credit card companies [Whi05]. This scenario shows the strength of
business processes when orchestrating web services and routing data among various
workflow tasks within an organization or across multiple companies and enterprise
applications involved in the processes.

With current developments in the field of micro-electronics, more and more hard-
ware devices and physical objects (Things) are equipped with sensors, actuators and
microprocessors, which allow data to be gathered from these devices and the devices
to be controlled by software. Many of these IoT devices and their control soft-
ware are not closed anymore, they increasingly offer open programming interfaces
nowadays and therefore, the possibilities to use or add web services to control and
connect them remotely. This raises the question about the suitability of workflow
technologies to be used to automate processes in the context of CPS. The central
goal of this thesis is to investigate this question as workflows would allow for an easy
and flexible programming and orchestration of tasks and more complex processes
among the sensors, actuators, embedded computers, desktop and mobile computers,
as well as Cloud servers of CPS. A main advantage of using workflows in this context
is the integration of functionality from different, highly heterogeneous devices and
platforms on a unified abstraction layer in the sense of EAI, which also facilitates
reuse of functionality as well as the simplified creation of high-level programs across
system and device boundaries [SHS15]. Thus, the application of BPM technologies
in CPS and IoT environments represents a new and vibrant research area (BPM
Everywhere [Cha15]), which faces new challenges and requirements with the de-
sign of a Workflow Management System (WfMS) that is able to enact workflows in
CPS [JKM+17, MBBF17]. Existing WfMSes from industry and research mostly put
focus on aspects regarding digital business processes in organizational contexts. The
extension of business processes into the physical domain and with that, the need for
more adaptive and context-sensitive workflows that also consider the physical effects
of the workflow execution are topics addressed by only a few related approaches.

This PhD thesis investigates the topic of workflows for CPS in depth. Based on
the characteristics of CPS, a set of requirements for a WfMS operating in the con-
text of CPS is derived. We design a workflow notation and management system for
CPS, which take this set of new requirements into account. Special focus is put on
the interaction of the processes with the physical world via sensors, actuators and
humans, and on the implementation of a feedback loop, which considers data from
additional sources to verify the process execution or to handle unanticipated errors
that may have occurred–thus increasing the resilience of the WfMS through self-
adaptation. As many existing BPM systems do not fulfil the necessary requirements
to be capable of self-management in the context of CPS, we also propose a frame-
work and retrofitting process to add this capability to other workflow systems. To
illustrate and evaluate our new concepts, example processes from the Smart Home
domain as application area of Industry 4.0 technologies are used throughout this
thesis. Besides Smart Factories in the context of Industry 4.0, smart homes rep-
resent instances of CPS that consist of more or less complex sensor and actuator
networks providing assistance to their residents. Like other smart spaces, these CPS
are controlled by various context-aware applications and adaptive smart processes

16

1.2. Research Issues

(cf. Figure 1.1). However, compared to smart factories, smart homes are charac-
terised by a higher degree of unanticipated behaviour and more frequent context
changes as the residents–humans and their pets–tend to be very dynamic and less
predictable than production machines, which leads to the constant emergence of new
situations and possible errors that need to be anticipated. Therefore, processes have
to be more flexible, adaptive and resilient against possible errors and newly emerg-
ing situations. Another advantage of smart homes as testbeds for cyber-physical
workflows is the availability of a wide range of affordable smart consumer appli-
ances that provide open programming and communication interfaces. Production
machines used in industry are very costly and currently mostly controlled by closed
proprietary software, which prevents runtime adaptations and the implementation
of a workflow layer on top of these machines to orchestrate the production processes
from a higher level. There is a high probability that this fact will change in the
near future with further development of concepts and technologies for Industry 4.0.
The findings from this thesis regarding workflows for CPS can then also be applied
to these Cyber-physical Production Systems (CPPS) [Mon14] and other emerging
smart spaces.

Figure 1.1.: Smart Home as Envisioned by the VICCI Research Project [Nac12].

1.2. Research Issues

The main topic of this thesis is the application of workflow technologies in CPS. We
will investigate the applicability of workflows to facilitate the linking of heteroge-
neous CPS components across system boundaries, to increase the level of automation
in CPS application scenarios, and to enable resilient and autonomous processes that
are able to handle errors and other unanticipated situations themselves.
In the course of these investigations, we will discuss necessary elements of work-

flow languages and components of WfMSes to implement workflows for CPS. This
includes questions regarding the processing of complex sensor streams, the dynamic
selection of process resources, the interaction with humans, and the distributed ex-
ecution of processes. CPS consist of a variety of heterogeneous resources including
physical entities such as sensors, actuators, computing devices, smart objects, hu-
mans and things that interact with each other and with virtual software applications
and services in a very dynamic cyber-physical environment. The focus of our inves-

17

1. Introduction

tigations is to show the applicability and feasibility of using workflow technologies
to describe and enact these interactions among all involved CPS entities on a more
abstract business process-oriented level.
The interactions with and influence on the physical world introduce a new di-

mension for the modelling and execution of business processes in CPS and IoT. We
will put a focus on describing and checking the effects of the process execution on
the physical world and vice versa–correlating sensor data from the physical world
with the processes to determine success or failure of the execution. As these inter-
actions with the physical world introduce new error sources relevant to the process
executions in CPS, we will also investigate how to detect and react to possibly un-
desired situations and errors. This includes the discussion of questions with respect
to modelling and synchronizing the states of cyber world and physical world during
process execution (Cyber-physical Synchronization), the automated handling of de-
tected errors, the addition of self-management capabilities to the WfMSes for CPS,
and the general extension of existing WfMSes with autonomous capabilities as part
of a retrofitting process. One of the main questions of this work is related to the
Cyber-physical Synchronization aspect for workflows depicted in Figure 1.2. In this
simple example workflow from the smart home domain, the process-aware smart
home control system is supposed to switch on the light in a specific room. After
issuing the corresponding call to the actuator that is controlling the light and receiv-
ing a positive response from the actuator’s control software, the workflow instance
finishes assuming the light is switched on now. However, the light bulb maybe burnt
or worn off, which the controlling actuator maybe unable to detect. This leads to
an inconsistent process execution state between the cyber world (light on) and the
physical world (light off), raising the questions of how to detect these kind of in-
consistencies and how to remedy them automatically. From this simple scenario
showing the need for considering feedback from additional data sources to verify the
process executions in the physical world, we derive more complex use cases involving
the interactions with humans and the state synchronization of service robots and
other smart home appliances in Cyber-physical Processes.

Cyber-physical
Synchronization

Actuator
Call

C
yb

er
 W

or
ld

Sm
ar

t H
om

e

SwitchOnLight

Start End

Ph
ys

ic
al

 W
or

ld

H
om

e Activate
Light
Switch

assumed
state

actual
state

Response

Figure 1.2.: Synchronization of the Cyber and Physical Worlds in Smart Lighting
Scenario [SHS16].

When using autonomous service robots controlled by a WfMS for supportive tasks
in the smart home, the robot has to be able to dynamically react to new and unfore-
seen situations. Simple camera-based navigation and localization done by the robot

18

1.3. Scope & Contributions

itself is usually sufficient for navigating autonomously within known wide spaces.
However, a smart home is usually full of known and unknown objects, narrow pas-
sages, furniture and other dynamically moving obstacles (cf. Figure 1.3). Fetching
and driving tasks in this context require different levels of precision regarding the
robot’s positioning and navigation capabilities that can often only be achieved using
external data to verify and adjust its position and hence, to prevent inconsistencies
regarding the robot’s assumed virtual and actual physical position. In addition, the
robot–being a mobile device–relies on a battery and wireless network connection to
receive new instructions. Due to these limitations, the robots may be temporarily
unavailable for process execution or even fail the execution of process instances at
runtime. In this extended example, we will investigate the workflow-based control of
multiple robots and interactions with other dynamic CPS devices and data sources
to add autonomic capabilities to the respective processes and WfMS and thereby,
to increase the fault-tolerance and resilience of the CPS workflows.

Figure 1.3.: Autonomous Robot Navigation Scenario in a Smart Home [SSAS15].

1.3. Scope & Contributions

The main domain that will be addressed to apply and evaluate the concepts de-
veloped in the context of this thesis is the Smart Home as a representative of a
CPS. Smart homes show typical components–sensors, actuators, smart objects and
humans–and behaviour that can be found in CPS. In addition to the interactions
of software controlled actuators and sensors with the physical environment and ob-
jects, humans are essential entities in the smart home. Interacting with these entities
requires flexible workflows that are able to adapt to new situations and to unpre-
dictable behaviour. Many of the proposed concepts can be transferred to other
smart spaces and CPS domains, though. Available consumer hardware to be used
in smart home environments provides a sufficient level of open programming inter-
faces and non-critical behaviour to be the basis for the quantitative evaluation of
our CPS workflows. When discussing aspects and concepts related to the interaction
with humans, we will put no explicit focus on providing a high level of usability and
with that, no user studies to evaluate the user interfaces and interactive applications
presented as part of our prototypes.

When investigating the application of BPM technologies for CPS, we conduct
the discussion on a more technical and architectural level regarding the workflow
notations and management systems, not on the level of “classical” business pro-

19

1. Introduction

cesses. We assume that a domain expert is able to identify and model the relevant
workflows. Process mining, machine learning (artificial intelligence) or other ways
of identifying and synthesizing parts of a workflow are out of scope of this work.
Process adaptations at runtime in case of errors or other undesired behaviour are
mostly done on the level of modifying the process resources as they are the main in-
terfaces between the physical and virtual worlds and therefore close to the new error
sources. Structural adaptations of processes are out of scope of this work as there
has been a wide variety of related research conducted to cover this topic sufficiently.
The concepts regarding workflow languages and architectures will be described us-

ing semi-formal notations normally based on the Unified Modeling Language (UML).
The application of more formal specifications and methods for the purposes of au-
tomated verification or reasoning is out of scope of this thesis. Related to that, we
will only briefly discuss safety and security-related aspects (e. g., concurrent access,
transactions and real-time behaviour) as they usually represent very complex or-
thogonal research issues that go beyond the scope of a single PhD thesis.

In short, the contributions of this PhD thesis comprise:

• a domain-independent modelling notation for executable workflows in CPS
that supports the specification of the process outcome using style sheets;

• a system architecture of a distributed WfMS for CPS able to execute CPS
workflows that interact with the physical world via sensors, actuators, smart
objects and humans;

• a generic software component for adding feedback loops to workflows to en-
able cyber-physical synchronization based on the concept of Cyber-physical
Consistency and self-management;

• a retrofitting framework for extending existing WfMSes with self-* properties.

1.4. Structure of the Thesis

This PhD thesis is structured as follows: Chapter 2 presents basic concepts from
the BPM and CPS domains and deduces requirements for applying workflows in
CPS that will be investigated in the course of this thesis. Chapter 3 discusses and
evaluates existing BPM systems and related research with respect to the identified
requirements. The main chapters containing our new concepts are aligned with the
simplified BPM lifecycle (Design, Implement/Configure, Run & Adjust) [VDA13].
Chapter 4 presents our approach for modelling workflows and associated entities
and resources in CPS. Chapter 5 elaborates on the basic architecture of a corre-
sponding WfMS to execute workflows in CPS. Chapter 6 presents a generic software
component and framework to equip existing WfMSes with the capabilities of cyber-
physical synchronization and self-management at runtime based on feedback loops.
Chapter 7 discusses the applicability and feasibility of the new concepts qualitatively
and quantitatively with the help of various experiments in a smart home case study.
Chapter 8 summarises the thesis and our contributions, and shows starting points
for future work.

20

2. Workflows and Cyber-physical Systems

“Science must begin with myths,
and with the criticism of myths.”

Karl Popper

2.1. Introduction

The main theme of this thesis is the application of workflow and BPM technologies to
introduce formalized processes to CPS to increase automation and have a flexible way
of defining interactions among all entities in CPS. In this chapter, we introduce the
most important basic concepts from the fields of workflow and BPM technologies as
well as CPS and IoT. Based on the characteristics of CPS and two running examples
from the smart home domain, we derive a set of new requirements that workflow
languages and management systems have to fulfil in order to be used in cyber-
physical environments. This list is not intended to be comprehensive with respect
to all special properties of CPS, but rather a first set of requirements that emerge
when investigating the new research area of Cyber-physical Workflows [SHS16].

2.2. Two Motivating Examples

In this thesis, we focus on the application of workflow technologies in smart homes
as instances of CPS. The investigation of these environments is especially inter-
esting as, on the one hand, smart homes feature all kinds of new “smart” devices
from simple sensors to complex actuators consisting of compounds of sensors, ac-
tuators and processing units that are connected and interacting with each other
(e. g., service robots [SG07]). On the other hand, the central entities within a smart
home are its residents which every application and process is developed and evolved
around [PWLK03]. Despite the goal of increasing the level of automation with the
help of workflows, users still have to be considered as first class citizens and interac-
tion partners. In the following, we describe two typical scenario processes in smart
homes that serve as simplified running examples throughout this thesis. As they
show new CPS-related behaviour and characteristics, we use these simple workflows
to discuss emerging aspects and issues relevant for CPS. To describe processes on a
more abstract and organisational level, we use a reduced and simplified set of Busi-
ness Process Model and Notation (BPMN) 2.0 elements. In later parts of this thesis,
we will apply a more technically-oriented graphical process modelling notation based
on our self-developed process metamodel to have a graphical representation of a pro-
cess (cf. Chapter 4) [SKNS15]. In the smart home case study conducted as part of
the evaluation, we will also present more complex processes including parallel and
hierarchical sequences of activities (cf. Chapter 7).

21

2. Workflows and Cyber-physical Systems

2.2.1. Morning Routine Process

Bell rang

Move Robot
to Paperboy

Place Paper
on Robot

End

Switch on
Light

Move Robot
to Reader

Brew Coffee

Robot
arrived

Robot
arrived

Figure 2.1.: Morning Routine Process.

The first scenario process is focused on increasing the comfort of residents in the
smart home. Figure 2.1 shows this home automation process and its interactions
with physical and virtual CPS entities. The process consists of an ordered sequence
of activities and events to automate parts of the morning routine of a smart home
resident. After the door bell rang, a service robot is instructed to drive to the
paper (parcel) delivery boy. From a technical perspective, the robot continuously
reports its location in the form of events to the smart home during this autonomic
and asynchronous navigation task. Once the smart home control system detects
that the robot has reached its destination via an explicit event, the delivery boy is
notified on his smartphone to put the newspaper on the robot. After a confirmation
by the delivery boy, the robot is sent to the resident to deliver the paper. Upon the
successful arrival of the service robot, the light in the kitchen is switched on and the
coffee maker is instructed to start brewing coffee.

2.2.2. Emergency Process

Ask about
Health Status

End

Healthy?

No

Yes

Call
Emergency

Service
Unlock Door

Health Alarm
triggered

Medical
Personnel arrives

Authentication
successfull?

yes

Timeout (15s)

Figure 2.2.: Emergency Scenario Process.

Following the example from Dar et al. [DTRE11], the second scenario process is
set in an Ambient Assisted Living (AAL) environment [SDFGB09] where elderly
residents are automatically provided with assistance in emergency situations con-

22

2.3. Business Process Management and Workflow Technologies

cerning possible health issues. Figure 2.2 shows this process and its interactions
with the CPS entities in a simplified BPMN model. A fitness tracker monitors the
resident’s vital signs including blood pressure and oxygen saturation. In case a sud-
den drop within these values appears, the resident is asked for his/her well-being on
a personal interaction device. If there is a negative response or no response after a
15 seconds timeout, an emergency call is placed. Once a medic arrives and authenti-
cates himself at the front door using a fingerprint scanner, the door is automatically
opened and the medic can provide the resident in distress with medical assistance.

2.2.3. Towards Workflows in Cyber-physical Systems

The example processes described in the previous sections are two possible processes
that can be designed for and implemented in a smart home to assist its residents.
They show typical characteristics of CPS: the interactions between virtual software
components and physical entities including humans, smart objects, actuators and
sensors; and the combination of event-driven behaviour and active tasks. The pro-
cesses illustrate some of the advantages the application of workflow technologies in
CPS can have. Among others, workflows allow for a flexible composition of active
and reactive behaviour provided by heterogeneous CPS resources integrated across
individual application and system boundaries. The definition of these workflows can
become significantly easier and more flexible than implementing the corresponding
processes in a high-level programming language.

However, the use of workflows in CPS also comes with new challenges for the
WfMSes as the interaction with the physical world holds new sources of errors and
imprecisions that need to be dealt with. We will elaborate on these advantages and
challenges in later sections (cf. Sections 2.5 and 2.6).

2.3. Business Process Management and Workflow
Technologies

2.3.1. Basic Terminology

Figure 2.3 presents a taxonomy of important terms from the field of BPM.

Business Process A Business Process is defined as a“set of one or more linked
procedures or activities which collectively realise a business objective or policy goal,
normally within the context of an organisational structure defining functional roles
and relationships.” [Coa96] In this thesis, we regard CPS as the organisational struc-
tures the business processes are defined and executed in to fulfil domain-specific
objectives (e. g., to provide assistance in emergency situations in AAL settings).

Process Business processes are formalized in a Process Definition. We use the term
Process Model throughout this thesis as it is more related to software engineering
and software modelling topics. A Process is the “representation of a business process
in a form which supports automated manipulation, such as modelling, or enactment
by a workflow management system. The process consists of a network of activities
and their relationships, criteria to indicate the start and termination of the process,

23

2. Workflows and Cyber-physical Systems

Business Process
(i.e., what is intended to happen)

Workflow Management System
(controls automated aspects of the

business process)

Process Instances
(representation of what is actually

happening)

Activity Instances

Work Items
(tasks allocated to a

workflow participant)

Invoked Applications
(computer tools/applications

to support an activity)

Automated ActivitiesManual Activities
(not managed by the

Workflow System)

Activities

Process Definition
(representation of what is

intended to happen)

defined in a managed by

viacomposed of

or

Sub-
Processes

used to create & manage

include one or more

during execution
represented by

include include
and/or

Figure 2.3.: Taxonomy of Basic BPM Terminology from [Coa96].

and information about the individual activities, such as participants, associated
IT applications and data, etc.” [Coa96] We refer to a Process as a more technical
oriented, executable description of a business process in CPS. A Process Instance
represents a particular process that is being executed or was executed by a WfMS.

Activity A process is composed of subprocesses and activities. An Activity is a
“description of a piece of work that forms one logical step within a process. An
activity may be a manual activity, which does not support computer automation,
or a workflow (automated) activity.” [Coa96] In later sections, we will also refer to
an activity as Atomic Step to represent an automated process step that cannot be
further decomposed. A manual activity performed by a person will also be called
Human Task [AAD+07].

Workflow A Workflow can be regarded as the “automation of a business process,
in whole or part, during which documents, information or tasks are passed from one
participant to another for action, according to a set of procedural rules.” [Coa96]
When talking about workflows, we refer to a more abstract high-level description of
sequences of activities, events and tasks of a process not focussing on implementation
details.

Workflow Management System A WfMS is a “system that defines, creates and
manages the execution of workflows through the use of software, running on one
or more workflow engines, which is able to interpret the process, interact with
workflow participants and, where required, invoke the use of IT tools and appli-
cations.” [Coa96] We will also use the term Business Process Management System
(BPMS) as a synonym for a WfMS.

24

2.3. Business Process Management and Workflow Technologies

Work Item A Work Item is the “representation of the work to be processed (by a
workflow participant) in the context of an activity within a process instance.” [Coa96]
A Worklist contains the work items of a particular workflow participant or group
of participants. The Worklist Handler is responsible for managing the interaction
between users and the worklist maintained by the WfMS. In the course of this the-
sis, we will refer to a process Resource as a more general term for describing the
worklist participant as it not only refers to users but also to devices and software
applications involved in the execution of a process activity in CPS [DLRM+13].

Event In the context of BPM, an Event represents an “occurrence of a partic-
ular condition (which may be internal or external to the workflow management
system) which causes the workflow management software to take one or more ac-
tions.” [Coa96] We will also consider the arrival of messages, new data from sensors
and actuators of CPS, and the detection of new situations as events–with or without
relevance for the process execution [Tal08, OHG17].

2.3.2. The BPM Lifecycle

Process Monitoring and
Controlling

Process Discovery

Process Analysis

Process RedesignProcess Implementation

Process Identification

Process Architecture

As-is Process Model

Insights on Weaknesses and their Impact

To-be
Process Model

Executable Process Model

Conformance and
Performance Insights

Figure 2.4.: The BPM Lifecycle from [DLRM+13].

One of the key principles when introducing the concept of business processes and
designing a Process-aware Information System (PAIS) [DVdATH05] is the BPM
Lifecycle [DLRM+13], which follows the Deming Plan–Do–Check–Act (PDCA) Cy-
cle [Joh02]. It is depicted in Figure 2.4. First, relevant processes within an or-
ganization or–in the context of this thesis–within the CPS have to be identified
on an abstract level. From these processes and their interrelations, a general Pro-
cess Architecture describing the processes, their dependencies and interactions with
each other is derived. The individual processes are then formalized in a process
model as they are currently carried out (Process Discovery). Following an analysis
of these processes evaluating weaknesses and their impacts, the processes are re-

25

2. Workflows and Cyber-physical Systems

designed resulting in to-be process models. The next phase deals with the technical
implementation of the respective processes that leads to the derivation of executable
process models. During the execution of instances of executable process models, the
Process Monitoring and Controlling phase leads to insights about the conformance
and performance of the respective processes. The BPM lifecycle then repeats itself
with the evolutionary discovery of new and existing processes based on the results of
the process monitoring and controlling. In the context of this thesis, we assume that
experts in the individual CPS domain are responsible for the initial identification,
discovery and implementation of the relevant processes. The goal is to automate
parts of the implementation, monitoring and controlling, as well as analysis and
redesign at runtime in order to deal with unanticipated errors and situations.

2.3.3. Workflow Languages

Workflow languages are used to describe and define workflows in a formal way. They
range from textual notations that are more implementation oriented (e. g., Web Ser-
vices Business Process Execution Language (WS-BPEL) [OAS14]), to more formal
workflow languages (e. g., Yet Another Workflow Language (YAWL) [vdAtH05]) and
graphical modelling notations with execution semantics (e. g., BPMN 2.0 [Mod11])
or purely symbolic notations (e. g., PICTURE for processes in public administra-
tions [BPR07]). These languages usually include a common set of elements to de-
scribe the control flow as well as the data flow within a process–among activities
and subprocesses along transitions between one or more activities and logic elements.
Messages, events and resources also belong to the important elements of a workflow
notation [SKNS13]. With these elements, simple Event–Condition–Action (ECA)
rules and Event-driven Process Chains (EPCs) [STA05] as well as very complex op-
erational and cross-organizational processes can be defined imperatively. Another
form of modelling workflows is in a declarative way [vDAPS09], which relies on a
more loose specification of workflow activities, not defining a specific sequence of
executions but rather constraints limiting the order the activities can be executed
(e. g., within the DECLARE language [RSS13]).

BPMN 2.0

Sm
ar

t H
om

e
C

on
tr

ol
 S

ys
te

m

Reply to Health
Enquiry

Call Ambulance

Close
Emergency

Reset Alarm

Feeling Well?Emergency detected Emergency handled
No

Yes

Figure 2.5.: Partial Emergency Scenario Process in BPMN 2.0.

BPMN evolved from a purely graphical symbolic business process modelling lan-
guage to the de facto standard language for describing organizational business pro-
cesses in its current version 2.0, which also features execution semantics [Mod11].
It supports a rich set of various types of activities, gateways, events, messages, data

26

2.3. Business Process Management and Workflow Technologies

objects, pools and lanes. Figure 2.5 shows a simplified excerpt from the emergency
scenario process described in Section 2.2.2 in BPMN 2.0. The smart home is depicted
as a Pool, which is used to represent whole organizations. A pool contains Lanes
(here: the control system), which describe who is executing a specific set of tasks.
When an emergency situation is detected as an event, the user has to reply to the
health enquiry. In case of an emergency, the ambulance is called–otherwise a false
alarm is assumed and the emergency situation is closed, and the alarm is then reset.
A critical evaluation of BPMN with respect to the workflow patterns [vDATHKB03]
and its suitability to model business processes can be found in [WvdAD+06, Bör12].
Some of the criticisms of BPMN include the large and complex set of modelling el-
ements that lead to an increased difficulty of creating unambiguous process models
and the lack of standard workflow engine implementations for BPMN 2.0.

WS-BPEL

Figure 2.6.: Partial Emergency Scenario Process in WS-BPEL.

Before BPMN, WS-BPEL [OAS14] was widely used as an Extensible Markup Lan-
guage (XML)-based language to describe and enact business process in distributed
service-oriented architectures. WS-BPEL has a stronger focus on describing exe-
cutable processes in IT systems, which leads to a certain gap between this technical
specification and the description of the actual underlying business process [PDB+08].
Over the years, a vast variety of extensions were introduced to WS-BPEL to reflect
various additional aspects of business processes (e. g., the BPEL4People extension to
model human activities [KKL+05]). Figure 2.6 shows an excerpt from the emergency
scenario process in a graphical notation for WS-BPEL. As its focus is on web service

27

2. Workflows and Cyber-physical Systems

orchestration, the underlying textual process specification contains many parameters
and attributes regarding the actual service calls and data to be exchanged.

YAWL

Figure 2.7.: Partial Emergency Scenario Process in YAWL.

Compared to BPMN and WS-BPEL, which are widely used in organizational
contexts, YAWL [vdAtH05] is mostly applied in academic settings. YAWL was de-
veloped with a focus on implementing the workflow patterns suggested by Van Der
Aalst [vDATHKB03]. Processes created with YAWL are formal, executable pro-
cesses as YAWL relies on workflow nets, which are based on Petri nets [VdA98].
Central modelling elements are places and transitions with preconditions and post-
conditions. During execution of a YAWL process, tokens move through the workflow
net from places to places after triggering transitions. Due to being founded on Petri
nets, these processes can be analysed more formally with respect to the properties
of Petri nets [AAH98]. Figure 2.7 presents an excerpt from the emergency scenario
process as a YAWL process.

2.3.4. Workflow Management System

The WfMS is responsible for enacting instances of executable process models. Fig-
ure 2.8 shows the essential components of a BPMS as proposed in [DLRM+13]
and [GdV98]. The Process Modelling Tool is used to create an abstract formal de-
scription of a process based on a workflow language. The resulting process models
are either instantiated and executed by the Execution Engine, which is the core
component of the BPMS or they are stored in a Process Model Repository for later
use. The Worklist Handler manages tasks assigned to the process resources during
execution of a process instance. Interaction with the execution engine is enabled by
various Monitoring & Administration Tools, which allow for the control and visual-
ization of the process execution. During the execution of processes, the execution
engine produces Execution Logs that can be inspected with the help of the mon-
itoring tools or used for process discovery and redesign based on Process Mining
approaches [VDAADM+11]. The execution engines mostly interacts with external
services to enact the business processes. There exists a large variety of industrial
and academic WfMSes based on various workflow languages. We present a brief
overview and evaluation of some systems in Section 3.2. The majority of current
BPMS enact workflows and communicate with external applications and services
based on the SOA-paradigm.

28

2.3. Business Process Management and Workflow Technologies

External Services

BPMS

Process Modelling
Tool

Administration &
Monitoring Tools Execution Engine

Worklist Handler

Process Model
Repository

Execution
Logs

External ServicesExternal Services
External Services

Figure 2.8.: The Architecture of a BPMS from [DLRM+13].

2.3.5. Service-oriented Architectures

Service
Provider

Service
Registry

Service Client

Publish Bind

Find

Figure 2.9.: The Basic SOA from [Pap03].

SOAs are the main principles that BPMSes rely on as one of their main purposes
is the orchestration and choreography of SOA-based service invocations within and
across service-based enterprise applications. When executing a process, the BPMS
invokes functionality from various internal or external software components that
are represented and implemented as services in SOAs hosted by a web server. In
principle, SOAs are “a way of reorganizing a portfolio of previously siloed soft-
ware applications and support infrastructure into an interconnected set of services,
each accessible through standard interfaces and messaging protocols.” [Pap03] This
architecture is especially suitable when multiple applications using heterogeneous
technologies and platforms need to communicate with each other in a flexible and
decoupled way.
Figure 2.9 shows a basic high level view on SOAs. A Service usually represents

a business function implemented in software. It is accompanied by a formal in-
terface description (e. g, using the Web Services Description Language (WSDL) or
Web Application Description Language (WADL)) that describes how to invoke the
service–technically the set of operations provided by the service. These service de-
scriptions are published by the respective Service Provider to a Service Registry.
Service Clients can query the registries to find suitable services and bind the respec-

29

2. Workflows and Cyber-physical Systems

tive service endpoints to their applications. The formal description of a service’s in-
terfaces decouples the service’s offered functionality from its actual implementation,
which leads to more flexible services and service compositions as clients can invoke
the services based in the provided interfaces in a technology agnostic way [Pap03].
These advantages made SOA the predominant paradigm for distributed business ap-
plications and WfMSes as well as the IoT [GIM11]. Here the Representational State
Transfer (REST) architecture has become the prevalent approach for implementing
web services. More elaborations on individual SOA-related aspects and its relation
to the BPM domain can be found in [WCL+05, PTDL07, Erl05].

SOA-based Deployment Models for IoT

Figure 2.10.: Deployment Models for IoT from [CSB16].

Nowadays, various new computing paradigms and deployment models for mostly
service-based architectures exist that extend the classical client-server model to more
advanced system architectures based on virtualization of resources and locality of
processing and information. Figure 2.10 gives an overview of current deployment
models discussed by Chang et al. and Niroshinie et al. in the context of BPMSes,
IoT and mobile Cloud computing [CSB16, NSW13].

• The Distant Data Centre model (cf. Figure 2.10(a)) describes the classical
Cloud computing approach with mobile and stationary devices communicating
via network gateways with remote and virtualized servers and resources on
different service levels (XaaS [DFZ+15]).

• The Fog Computing model (cf. Figure 2.10(b)) describes the use of comput-
ing resources of the network infrastructure between distant Cloud servers and

30

2.4. Cyber-physical Systems

mobile or stationary clients (edge devices) often in a hierarchical network struc-
ture. Network gateways enable the proximal preprocessing of data from edge
devices in a Fog before it is being sent to the Cloud [BMZA12].

• The Ad-hoc Computing model (cf. Figure 2.10(c)) describes the use of local
computing resources to create a local Cloud often initiated by a mobile or
stationary edge device for local ad-hoc processing of data and task execution
(cf. Mist Computing [Cor16] and Dew Computing [SDA+15]).

• The Distant Mobile Cloud (cf. Figure 2.10(d)) refers to the Distant Data
Centre model of mobile devices using resources and services of distant Cloud
servers.

• The Mobile Edge Cloud (cf. Figure 2.10(e)) refers to the Fog Computing model
of network gateways providing micro-services in a small Cloud (Cloudlet) for
proximal data preprocessing with mobile devices and transferring the results
to the distant Cloud [PNC+14].

• The Mobile Ad-hoc Cloud (cf. Figure 2.10(f)) refers to the Ad-hoc Computing
model of mobile edge devices forming a local ad-hoc Cloud for local data
processing.

2.4. Cyber-physical Systems

2.4.1. Basic Terminology

Cyber-physical Systems According to Lee, Cyber-physical Systems (CPS) are “in-
tegrations of computation with physical processes. Embedded computers and net-
works monitor and control the physical processes, usually with feedback loops where
physical processes affect computations and vice versa.” [Lee08] CPS combine soft-
ware, sensors and physics via actuators that act independently, cooperative or in
the form of System of Systems (SoS) composed of interconnected autonomous sys-
tems [SS12].

Internet of Things The Internet of Things (IoT) can be regarded as the “world-
wide network of interconnected objects uniquely addressable based on standard com-
munication protocols.” [GBMP13] In this context, Things “are active participants
in business, information and social processes where they are enabled to interact and
communicate among themselves and with the environment by exchanging data and
information”. [GBMP13]

CPS vs. IoT The terms CPS and IoT are often used as synonyms. In this thesis,
we follow the idea of Chen that the physical entities of the IoT are represented by
their corresponding virtual entities (Digital Twins) that are interconnected via the
Internet (e. g., through web services) [Che10]. As shown in Figure 2.11, the unions
of the physical entities (P1, ..., Pn) and their corresponding virtual representations in
the cyber world (C1, ..., Cn) are regarded as CPS. The focus of IoT is on the perspec-
tive of Things and Devices and enabling their interconnectivity through wired or
wireless technologies (network-centric). CPS on the other hand, put their focus on

31

2. Workflows and Cyber-physical Systems

Figure 2.11.: Relation between IoT and CPS from [Che10].

the System perspective to enable interactions with the physical world via respective
algorithms (component-centric). The IoT technologies developed for interconnecting
things and devices leverage the development of CPS.

Smart Home The focus of this thesis is on application scenarios within smart
homes as instances of CPS. A Smart Home can be defined as a “residence equipped
with computing and information technology which anticipates and responds to the
needs of the occupants, working to promote their comfort, convenience, security
and entertainment through the management of technology within the home and
connections to the world beyond.” [Ald03] A special form of a smart home is an AAL
environment, which aims at supporting people with disabilities and health issues as
well as elderly people in living a self-determined and independent life [SDFGB09].

2.4.2. Context in CPS

An important characteristic of CPS is that the systems and their components are
showing a highly context-dependant behaviour, i. e., available functionality and in-
teractions of CPS components with other entities are influenced by intrinsic and
extrinsic context factors [Bro13]. A common definition of Context from the field
of ubiquitous computing, which can also be applied within the scope of this thesis
is given by Dey: “Context is any information that can be used to characterise the
situation of an entity. An entity is a person, place, or object that is considered
relevant to the interaction between a user and an application, including the user
and applications themselves.” [Dey01] We extend the notion of an entity to also
comprise CPS devices, things and workflows.

A proposition of an exemplary context taxonomy can be found in [KKS11]. This
work classifies a user’s context into the Interaction Context, Temporal Context, Spa-
tial Context, Task Context, Physical Context and Socio-technical Context. For our

32

2.4. Cyber-physical Systems

smart home use cases, we mostly refer to context factors relating to the spatial,
temporal and physical context as they are highly relevant for CPS. We base the con-
text model used within later concepts on an ontology to describe relevant context
factors of CPS entities and relations among them [HSKS16b]. In this work, context-
awareness is considered to be a property of CPS. However, we put no explicit focus
on realising context-adaptive behaviour as part of the WfMS’s features. More de-
tailed discussions of context related to business processes and workflow systems can
be found in [TGD+08, SLI08, AFG+07, SWC+18].

2.4.3. A High-level CPS Architecture

Figure 2.12.: Architecture for the Implementation of CPS from [LBK15].

The development of CPS is a highly complex topic, which comprises a wide variety
of research questions from different areas. From various propositions of architectures
and approaches for developing and implementing CPS, we pick the high-level archi-
tectural view on CPS for Industry 4.0 proposed by Lee et al. [LBK15] as it provides
a suitable level of abstraction for discussing challenges and concepts in the context
of this thesis. Figure 2.12 shows the five level architecture.
On the bottom Smart Connection level, devices are seamlessly connected into

a network of computers, sensors, actuators, machines, robots and things. Plug &
Play functionality allows for the easy addition and removal of known and unknown
devices. The Data-to-information Conversion level provides means for smart analyt-
ics of device and component health, predictive maintenance, human behaviour and
other multi-dimensional data correlations. The Cyber level comprises twin models
for components and machines as comprehensive virtual representations of the phys-
ical entities of the CPS (Digital Twins [BR16]). It also includes a time machine
mechanism to explore histories and variations of components and processes as well
as means of clustering similar data for data mining. On the Cognition level, inte-
grated simulation and synthesis of components, knowledge, situations and processes
have to be provided. Cognition also refers to enabling remote visualization for users
to understand the CPS as well as the collaborative diagnostics and decision making
of software agents within the CPS. Based on these levels and concepts, the top level

33

2. Workflows and Cyber-physical Systems

comprises Configuration of the CPS based on self-* mechanisms (cf. Section 2.4.5)
to create variations, to react to errors and disturbances, and to enable resilience in
general, which is one of the main goals of this thesis.

2.4.4. IoT Reference Model

Service Virtual Entity Physical Entity

Device

Actuator Tag Sensor

Resource

Network

Resource

On-Device

Resource

exposes

is associated

with
hosts

represents

is attached to

contains

reads

monitors

acts on

identifies

contains

is associated with

Augmented Entity

User

Active Digital

Artefact

Digital Artefact

Passive Digital

Artefact

Human User

contains

invokes / subscribes

contains

interacts with

Color Scheme

Animate Objects
Software

Hardware

Combination

XOR

Figure 2.13.: IoT Reference Model from [BBDL+13].

The IoT Reference Model by Bauer et al. [BBDL+13] provides a suitable basis for
our work to describe the entities in CPS and IoT environments and their relations.
The core of this model is depicted in Figure 2.13. It classifies the entities into physi-
cal Hardware components (Sensors, Actuators, Tags); virtual Software Components
(Artefacts) that are exposed and invoked via services; Combinations of hardware
and software; and Animate Objects (Humans, Animals). Physical and virtual enti-
ties can be composed of multiple components. Actuators influence physical entities,
sensors monitor these entities and are also able to read tags to interact with phys-
ical objects. With this model, the authors propose to use IoT Services [TMS+12]
as basic mechanism to interact with virtual and physical entities, either via active
invocations or passive subscriptions. Services are associated with virtual entities,
which represent the corresponding physical entities. The attached IoT devices may
host the respective services themselves (On-demand Resources) or their functional-
ity is offered via external services (Network Resource). We will follow this central
IoT service-based approach in our own concepts and architecture for implementing
workflows and the corresponding infrastructure of CPS [MRM13].

34

2.4. Cyber-physical Systems

2.4.5. Self-aware and Self-managed Computing Systems

Sensor Effector

Sensor Effector

Policy

Autonomic Manager

Managed Element

Monitor Execute

PlanAnalyse

Knowledge

Symptom

Change
Request

Change
Plan

Figure 2.14.: Functional Details of the MAPE-K-based Autonomic Manager
from [IBM05].

As shown in the top level of Figure 2.11, self-configuration, self-adjustment and self-
optimization are important capabilities of CPS, which can be subsumed under the
terms Self-aware Computing [Bro13] and Self-managed Systems [KM07]. According
to Kounev et al., Self-aware Computing Systems “are systems that: 1) learn models
capturing knowledge about themselves and their environment (such as their struc-
ture, design, state, possible actions, and run-time behavior) on an ongoing basis and
2) reason using the models (for example predict, analyze, consider, plan) enabling
them to act based on their knowledge and reasoning (for example explore, explain,
report, suggest, self-adapt, or impact their environment) in accordance with higher-
level goals, which may also be subject to change.” [KLB+17] During the course of this
thesis, we will mostly refer to the term Self-management for WfMSes as a generaliza-
tion of various concepts related to self-aware computing and self-* (self-x) properties
for CPS workflows (e. g., self-adaptation, self-healing and self-optimization) [KM07].

One of the most applied principles to enable self-* capabilities and autonomic
behaviour of software components is the MAPE-K feedback loop [MSW16]. The
functional details of a MAPE-K-based autonomic manager are depicted in Fig-
ure 2.14 [IBM05]. The Autonomic Manager is used to analyse and adapt a specific

35

2. Workflows and Cyber-physical Systems

software component (Managed Element). This managed element provides sensor
information about its current states and operations that are collected within the
Monitor phase of the autonomic manager. Relevant changes within this data–called
Symptom–are evaluated according to specific rules and policies in the Analyse phase.
In case an undesired behaviour can be detected based on the symptoms, a change
request is created and transferred to the Plan phase to find a suitable Change Plan,
which contains compensation actions to adapt the managed element. This change
plan is then enacted in the Execute phase of the autonomic manager by invoking the
respective operations on the Effectors of the managed elements. The central compo-
nent of the autonomic manager is the Knowledge Base, which contains all relevant
data, rules, models and context information. As proposed by Kramer and Magee,
the individual phases of the MAPE-K loop can also be controlled by an autonomic
manager to increase the adaptivity of the managed system [KM07].

2.4.6. Properties of CPS

From the previous elaborations and related research, we derive the following list of
properties of CPS that are relevant for this thesis, but not intended to be com-
prehensive. This list should be extended and detailed in future work with re-
spect to the respective application domains and the scope of the future research.
Broader discussions of properties and challenges of CPS development can be found
in [Bro13, Lee08, GPGV14].

P1: Cyber-physical Interactions The main characteristic and novel feature of CPS
is the mutual interaction between the virtual world and the physical world. Soft-
ware controlled actuators influence physical entities, which again can effect virtual
processes and software applications. Sensors are able to measure physical properties
that can be evaluated by software applications controlling the CPS. Virtual repre-
sentations of physical entities (Digital Twins/Cyber-physical Objects [PLM16]) have
to exist to enable this form of cyber-physical feedback loop. [Lee08]

P2: Hierarchical Device Structures The basic building blocks of CPS are sensors
and actuators, which are the interfaces between the physical and virtual worlds;
as well as computing units to process data in between. The complexity of devices
in CPS ranges from simple sensors to complex combinations of various sensors,
actuators and computing units possibly interacting with Cloud servers during oper-
ation (e. g, service robots as described in the first smart home scenario process in
Section 2.2.1). In CPS, these devices are usually organized hierarchically (i. e., a
device consists of multiple subdevices, which again may be composed of other de-
vices) [SS12]. Current research also discusses the next hierarchy levels in the form
of Cyber-physical Systems of Systems (CPSoS) [CBF+16, CSB16].

P3: Limited Physical Resources In comparison with computations and interac-
tions in purely virtual environments (e. g., on Cloud servers or computing grids),
where usually a large pool of computational resources is available and scalability is
rather easy to achieve (e. g, through virtualization), resources in the physical world
are scarce and much more constraint. This will often lead to concurrent physical

36

2.4. Cyber-physical Systems

processes that intend to interact with the same physical resources and CPS de-
vices. [Lee08]

P4: Dynamic Availability of Devices As CPS consist of a variety of heteroge-
neous devices also comprising embedded computers and mobile devices, there are
limitations regarding the availability of computational resources, too. Embedded
and mobile computers are usually constraint on memory, computing power, power
supply and network connectivity, which results in very dynamic and loosely coupled
network structures with unreliable devices and fluctuating availability of resources
and services. [CDB+12, DTB+15, SGCG18]

P5: Physical Error Sources From the interactions with the physical world, new
source for errors emerge that need to be considered in CPS control software. As
mentioned before, physical world resources as well as computational resources are
constraint. Physical processes and interactions are usually more asynchronous, more
imprecise and take longer to execute than computations in the virtual world. In
addition, physical resources and objects may show signs of degradation, they may
break and they may be influenced by other physical entities. [Lee08, SGLW08]

P6: Context-dependant Behaviour Context plays an important role in CPS. The
behaviour of CPS entities depends on various physical and virtual context fac-
tors as well as on interactions with other entities in these very dynamic environ-
ments. [Bro13, WZZ+14]

P7: Human Interactions In the scope of this thesis, we regard application scenar-
ios for CPS that are focussed on supporting and interacting with humans. They are
important first class entities in CPS that the physical and virtual processes interact
with. [BCG12]

P8: Safety-critical Behaviour The real world interactions with humans and phys-
ical objects in CPS may be safety-critical to some extend, requiring appropriate
means of ensuring safety and real-time behaviour. Despite being out of focus of this
thesis, we will discuss real-time and safety in later chapters as these are inherent
properties of CPS. [CBF+16]

P9: Unanticipated Behaviour As CPS consist of various heterogeneous devices
and other systems whose interactions with each other and with the physical envi-
ronment have not been fully anticipated at design time, there is emergent behaviour
to be observed from the interactions of the constituent CPS systems/components
and other entitites (e. g., humans and things) at runtime, especially when discussing
CPSoS. [CBF+16, BCG12]

P10: Autonomy Due to CPS being composed of various subsystems that are usu-
ally organized in hierarchical structures, there are no centralized control entities
any more as opposed to classical enterprise applications. The distributed nature of
CPS shows a higher degree of decentralization and autonomy–and with that self-
awareness–of individual subsystems/components in CPS. [CDB+12, Bro13]

37

2. Workflows and Cyber-physical Systems

2.5. Workflows in CPS

The main topic of this thesis is the application of workflow technologies to implement
and control high-level processes in CPS. In the following, we will call these processes
CPS Workflows and workflow-enabled CPS Process-aware Cyber-physical Systems
(PACPS). From the findings in previous sections, we see that BPM technologies have
matured in the field of service-oriented computing to automate business processes in
enterprise contexts. However, existing workflow languages and management systems
have not been designed to be used in CPS and therefore do not consider the specific
properties of CPS, which is why their suitability needs to be evaluated and probably
new concepts have to be introduced to design PACPS (cf. Chapter 3).

2.5.1. Process Levels in CPS

Figure 2.15.: Workflows on Top of Common Implementation Layers of
CPS [BSMD11].

Figure 2.15 presents a typical layered architecture for implementing CPS on the
technical level that will serve as basis for the following investigations [BSMD11]. The
Hardware Layer comprises all CPS devices (sensors, actuators, computers, etc.) that
are able to actively interact with the physical environment. This is usually a highly
heterogeneous set of IoT devices from various vendors. The Driver/Control Soft-
ware Layer adds proprietary software to control the specific hardware components
to the stack. This layer also includes purely virtual (cyber) software components
and applications. To make the CPS devices’ and software components’ functionali-
ties remotely accessible, they can be either connected via device/component specific
adapters to a middleware (e. g., the Open Home Automation Bus (openHAB) IoT

38

2.5. Workflows in CPS

middleware for home automation [SZZ14]) on the Middleware Layer, which provides
a homogeneous programming interface for accessing the devices and components;
or they can be directly augmented by web services (e. g, based on the REST or
Simple Object Access Protocol (SOAP) technologies) on the Service Layer. After
unification of the heterogeneous device control software and other software compo-
nents using proprietary or standardized protocols, the middleware also enables this
service-based access to the CPS devices and other distributed software components
on the Service Layer. The main task of the Workflow Layer in PACPS is then
the high-level orchestration of service calls to the respective web services based on
workflow/process definitions.

As shown in Figure 2.15, Processes can be found on each layer–from physical and
electrical processes in the hardware, to operating system and application level pro-
cesses on the device/control software layer, processes on the respective web servers
and middleware, up to high-level executable processes among the distributed sys-
tems on the workflow layer [Lee08, AIM10]. On the upper layers, the processes
are usually synchronous or asynchronous and based on discrete events and actions.
On the lower layers, continuous and synchronous control processes are usually the
predominant form of processes [DLV12], which are also used to implement more
safety-critical functionality of a CPS device. The properties of the processes on the
individual layers as well as their cross-layer influences and interfaces for cross-layer
interactions have to be investigated in more detail in future work to identify depen-
dencies among processes that will influence the design and future developments of
the workflow layer.

The service robot used in the Morning Routine scenario (cf. Section 2.2.1) is a
good example for these multi-layer processes: during autonomous navigation based
on Simultaneous Localization and Mapping (SLAM), the robot uses continuous pro-
cesses close to the hardware to control its locomotion engine and to evaluate the
camera stream to derive navigation instructions; the more abstract functionality to
drive to a certain position in a room is exposed via a high-level asynchronous service
call based on a Robot Operating System (ROS) service, which emits events in case
the robot arrived or got stuck. In the scenario, this high-level service is invoked by
the WfMS as part of the execution of the Morning Routine process. The focus of our
investigations is on the Workflow Layer (cf. Figure 2.15) and the implementation of
PACPS. However, aspects considering the other layers will also be discussed.

2.5.2. Advantages of Using Workflows in CPS

Besides achieving a general level of repeatability, the introduction of a dedicated
workflow layer and with that, the application of workflows to orchestrate high-level
processes among the devices, things and humans in PACPS as proposed in the previ-
ous sections offers the following advantages. The list shows advantages of workflows
for PACPS in the context of this thesis, mostly over the use of “traditional” higher-
order programming languages and approaches in CPS. It is not meant to cover all
possible advantages, though.

• Increased Automation: The inherent purpose of workflows is to automate
repetitive tasks in different domains. By applying workflows to CPS, the level
of automation in cyber-physical environments can be increased. Advantages

39

2. Workflows and Cyber-physical Systems

such as a more efficient resource usage, higher product quality, increased com-
fort, higher safety, and cost savings can be often observed associated with this
increased level of automation.

• High-level Programming: Workflows can be viewed as simple high-level
programs defining the flow of activations, messages, events and data among
services in CPS. They are usually less complex than higher-order programming
languages.

• Flexible Combination of Functionality: The high-level programming of
workflows allows for a flexible combination of available functionality in the
sense of EAI. Workflows can be programmed and changed faster than hard-
wired programs created with higher-order programming languages.

• End-user Programming: Workflow languages are usually designed to be
used by domain experts and not necessarily by software developers. Depending
on the complexity of the workflow language and the respective modelling tools,
also end-users can be enabled to create simple executable workflows using
graphical editors and drag & drop interactions.

• Cross-application/Device/System Orchestration: As workflows are usu-
ally implemented on top of web services, a flexible integration, orchestration
and combination of functionality across the borders of single systems, devices
and applications is possible.

• Easy Integration of Heterogeneous Systems: With web services being
the unifying layer to access the heterogeneous subsystems/devices of CPS,
workflows can be used to achieve an easy integration and coupling of existing
systems independent of their underlying technologies.

• No Alterations to “Original” Systems: The existing functionality of the
individual CPS components is exposed via web services. These web service can
be used to build high-level programs in the form of workflows. This approach
allows for creating new functionality, applications and processes without the
necessity of modifying the underlying components’ control software or services.

• Complex Active and Reactive Behaviour: As workflows support the
concepts of asynchronous messages and events as well as active service invoca-
tions, active and reactive behaviour can be combined to realize more complex
system functionalities, program logic and behaviour within a workflow.

• Documentation (Traceability): Workflows are usually specified based on
a formal metamodel (workflow language). The corresponding workflow mod-
els combined with instance data from process monitors (histories, logs) allow
for the documentation of relevant processes (Process Architecture) as well as
tracing the progress of process instances.

• Analysis/Optimization: The formal specification of workflows also facili-
tates the analysis and optimization of individual processes, instances as well
as of the overall process architecture (Process Landscape).

40

2.5. Workflows in CPS

2.5.3. Challenges of Using Workflows in CPS

Discover Predict and Adapt

Enact ResponsePre-defined Model

Event Processing + Learning

Sensing
(Physical Objects,
Systems, Humans)

Actuating
(Physical Objects,
Systems, Humans)

Raw Event Data

Higher Level Knowledge

C1) Placing Sensors in a
Process-aware Way

C2) Monitoring of
Manual Activities

C3) Connection of Analytical
Processes with IoT

C4) Integrating IoT into the
Correctness Check of Processes

C5) Dealing with Unstructured
Environments

C6) Managing the Link between
Micro-processes

C7) Breaking Down End-to-end
Processes

C8) Detecting New Processes
from Data

C16) Improving Resource Monitoring
and Quality of Task Execution

C15) Improving Resource
Utilization Optimization

C14) Improving Online
Conformance Checking

C13) Bridging the Gap between Event-
based and Process-based Systems

C12) Dealing with New Situations

C11) Concretizing
Abstract Process Models

C10) Specifying the Social
Role of Agents

C9) Specifying the Autonomy
Level of Things

Figure 2.16.: High-level Overview of Challenges Showing the Interaction between
IoT and BPM from [JKM+17].

Before exploiting the comprehensive list of advantages presented in Section 2.5.2,
various obstacles and issues have to be resolved that come with the introduction
of workflow technologies in CPS. The application of BPM technologies in the con-
text of CPS and IoT poses a new research field that raises various novel research
challenges. Several works discuss this topic and with that the new challenges in
detail [LMM15, CSB15, CSB16, MBBF17, GGAAPE+11, MRH15, KP15]. The
work by Janiesch et al. presents a good high-level overview of 16 challenges related
to the interaction between IoT and BPM that are partially relevant for our work
(cf. Figure 2.16) [JKM+17]. This overview relates to the phases of the BPM lifecy-
cle (cf. Section 2.3.2) extended with the lower layer processing and learning of raw
data from sensing and actuating of entities in IoT and CPS. From this connection,
16 challenges are identified that discussed in detail in [JKM+17]. When deriving
requirements for our work, we will refer to the challenges from this list.

The more general challenges that we want to address with this thesis refer to the
establishment of workflow technologies in the domains of IoT and CPS. These sys-
tems consist of a large number of heterogeneous entities comprising various sensors
for environmental factors (e. g., light levels, temperature, humidity) and actuators
for controlling appliances (e. g., light switches, thermostats, service robots), smart
objects equipped with sensing technologies (e. g., RFID and NFC) as well as virtual
sensors and software services. All these CPS entities interact with each other, with
the physical environment and physical objects, with the virtual world, and most im-
portantly with the users. We aim at developing a workflow notation and execution
system to describe and enact interactions among these entities in the physical and
virtual worlds on the business process level (PACPS). With the physical world being
more unreliable and producing more unanticipated situations, the WfMS has to be
resilient and self-adaptive to deal with errors and unexpected behaviour. To achieve
these properties, the effects of the workflow executions in CPS have to be described

41

2. Workflows and Cyber-physical Systems

as part of the processes and verified during process execution. We aim at creating
a link between the workflow executions and the corresponding effects on physical
objects and the physical environment, and vice versa.

2.6. Requirements

Based on the previous findings regarding the properties P1–P10 of CPS (cf. Sec-
tion 2.4.6), process levels in PACPS (cf. Section 2.5.1), challenges C1–C16 of bring-
ing together IoT and BPM (cf. Section 2.5.3) as well as related research, we derive
a set of high-level requirements that this PhD thesis will cover. The requirements
are classified into two categories: 1) related to the basic CPS Workflow Notation
and Engine, and 2) to Self-management for Cyber-physical Resilience. The lists of
requirements and challenges are by far not exhaustive as this thesis is one of the first
research works in the area of CPS and BPM. However, it discusses the basic require-
ments necessary to establish a dedicated layer for resilient workflows in CPS towards
PACPS and therefore to exploit the advantages workflows may offer for program-
ming and controlling CPS (cf. Section 2.5.2). For each requirement, we will denote
its relation to the corresponding CPS properties (P1–P10) from Section 2.4.6 and
challenges (C1–C16) from Section 2.5.3 as well as references to corresponding ex-
ternal sources. Despite the main application domain of this thesis being the Smart
Home as an example of CPS, most related works discuss CPS-related properties
and challenges with respect to other domains (e. g., smart factories, smart hospitals,
automotive). However, we are aiming at deriving a general set of requirements for
implementing CPS workflows based on the general properties of CPS and their main
actors with a focus on the interactions of the virtual entities with the physical world
and vice versa. These general requirements and their associated solutions can then
also be applied to the smart home domain.

2.6.1. CPS Workflow Notation and Engine

The following requirements refer to features that a CPS WfMS has to support to
serve as basic WfMS for implementing CPS workflows in the context of this thesis.
This also comprises the respective workflow notation to specify the CPS workflows.

R1: Abstraction and Processing of Complex Sensor Events With CPS consisting
of a possibly large number of sensors and other event sources, the basic CPS WfMS
has to support the processing and abstractions of complex sensor events on different
levels of granularity from low-level sensor events to aggregated higher level events.
This aspect also includes the correlation of the appearance of specific sensor events
with the execution of related workflow instances and vice versa (Instance Correla-
tion [Wom11b]).

Refers to: P1, P2, C1, C2, C3, C13, [BBDC+15, Tal08, OHG17]

R2: Integration and Dynamic Selection of Resources Due to resource-constraints
and context-dependant behaviour of heterogeneous devices in CPS, the CPS WfMS
has to support the integration and dynamic selection of process resources at runtime.

42

2.6. Requirements

Refers to: P4, P6, C5, C15, [BCG12, CDB+12, SDFGB09, CSB16, SGCG18]

R3: Ubiquitous Interaction with Humans As humans are important first class
entities who interact with processes in the form of process resources or who manage
the process executions, the CPS WfMS has to support the integration of humans
into workflows and provide means for ubiquitous interactions with the WfMS.

Refers to: P6, P7, C2, C16, [BAJ17, BCG12, Wei91, SECP13]

R4: Distributed Process Execution With hierarchical structures and the large
number of devices that make up CPS as well as an increasing demand for scalability,
autonomy and decentralization, the CPS WfMS has to support the distributed–and
possibly offline–execution of complex processes in hierarchical networks.

Refers to: P2, P4, P10, C6, C7, C15, [CDB+12, Bro13, MMG08, PRS+13]

2.6.2. Self-management for Cyber-physical Resilience

The following requirements refer to advanced features a CPS WfMS has to support
to provide a resilient WfMS that is capable of maintaining a consistent state during
the cyber-physical interactions and dealing with unanticipated situations and errors
in CPS. The last requirement refers to the extension of existing WfMSes to also
support these features, which will be investigated in the context of this thesis, too.

R5: Cyber-physical Synchronization Due to the inherent nature of CPS, inter-
actions between the virtual and the physical world take place very frequently. A
digital representation of physical objects, processes and context factors has to be
available to the CPS WfMS and constantly synchronized through a feedback loop-
based mechanism to keep a consistent state of the physical and virtual worlds.

Refers to: P1, P5, P9, C3, C4, C14 [Lee08, LBK15, CSB16]

R6: Handling of Cyber-physical Errors With the previous requirement, there is
also a need to react automatically to inconsistencies, deviations, imprecisions and
other errors that may have occurred during the execution of CPS workflows. The
CPS WfMS has to be supported with this task by a dedicated software component.

Refers to: P3, P5, P8, P9, C4, C8, C9, C12, [CBF+16, BCG12, HWS+16]

R7: Self-management Capabilities Due to the highly context-dependant and dy-
namic behaviour of CPS and building on the requirement regarding the automated
handling of cyber-physical errors, the CPS WfMS has to also be able to react au-
tonomously to other undesired situations and errors based on specified constraints
related to context factors, performance indicators or service quality levels.

43

2. Workflows and Cyber-physical Systems

Refers to: P6, P8, P9, P10, C5, C9, C12, C14, C15, [GGBG13, MSW16, Kou11,
OCEP13]

R8: Retrofitting of Workflow Management Systems As the capability of self-
management is an essential feature of a CPS WfMS and many (non-CPS) WfMSes
already exist in industrial and academic contexts, a retrofitting framework and pro-
cess have to be derived to also equip these existing WfMSes with the capability of
self-management to enable cyber-physical resilience and other self-* properties.

Refers to: P1, P5, P6, P8, P9, P10, C5, C9, C12, C14, C15, [GGBG13, MSW16,
Kou11, OCEP13, ABD+16]

2.6.3. Research Questions

From the elaborations in this chapter, we derive the central automation hypothesis
for this PhD thesis:

Workflow technologies can be used to

• facilitate the linking of components,

• increase the level of automation,

• and enable resilient autonomous processes

in Cyber-physical Systems.

With regard to that hypothesis, we will investigate the following research questions
related to the corresponding requirements R1–R8 in the course of this thesis:

Q1) How to model workflows in CPS? (R1, R2, R3, R4)

Q2) How to design and implement a CPS WfMS? (R1, R2, R3, R4)

Q3) How to synchronize virtual and physical world processes? (R5)

Q4) How to add self-* capabilities to a CPS WfMS? (R6, R7)

Q5) How to retrofit existing workflow systems? (R8)

The research questions can be classified according to the simplified BPM lifecycle
described in [VDA13]. Question Q1 relates to the (Re)design phase; question Q2
relates to the Implement/configure phase; questions Q3 and Q4 relate to the Run
and adjust phase; and question Q5 relates to all three phases. These research
questions serve as the basis for discussing related research in the next chapter. We
structure this investigation into five categories derived from the research questions:

• Modelling of CPS Workflows (Q1),

• CPS Workflow Systems (Q2),

• Cyber-physical Synchronization (Q3),

• Self-* for BPM Systems (Q4),

• Retrofitting Frameworks (Q5).

44

3. Related Work

“Science never solves a problem
without creating ten more.”

George Bernard Shaw

3.1. Introduction

After identifying the important requirements and research questions that will form
the scope of this thesis, we discuss related research regarding the application of
BPM technologies for CPS. We will investigate and evaluate approaches discussing
the topic and various aspects of applying BPM technologies in the context of CPS
and IoT. The goal is on the one hand, to identify research gaps, and on the other
hand, concepts that can be applied to realize a WfMS for CPS on the modelling,
implementation and runtime level fulfilling the requirements that form the scope
and theme of this thesis. First, we briefly evaluate some well-known and established
existing WfMSes from industry and academia with respect to the requirements iden-
tified in Section 2.6. Following, a detailed discussion of related research with respect
to these requirements is given. This discussion is structured in the following cate-
gories, which can be related to the phases of the simplified BPM lifecycle [VDA13]:
Modelling of CPS Workflows (Design), CPS Workflow Systems (Implement/config-
ure), Cyber-physical Synchronization (Run and adjust), Self-* for BPM Systems
(Run and adjust, Redesign), and Retrofitting Frameworks. The results of this eval-
uation are then used as basis for our own concepts that will be described in the
following chapters.

The evaluation of related research in this chapter is based on a comprehensive
literature study regarding the topics Business Process Management, Workflows,
Cyber-physical Systems and Internet of Things. The study is complemented by var-
ious literature surveys on these topics [CSB16, SJV+15, MSW16, TMS+12, SLI08,
SWYS11, AIM10, VDA13, GBMP13, MSDPC12, MBBF17, Bor14].

3.2. Existing BPM Systems in Industry and Academia

BPM technologies have been around for many years and with that, a lot of WfMSes
have been developed. In this section, we briefly evaluate some of the most well-
known systems that are used in industry and academia. Table 3.1 gives an overview
of 12 WfMSes and an evaluation with respect to their fulfilment of the require-
ments R1–R8. We distinguish between four levels of support regarding the fulfilment
of the individual requirement by the respective system: Special Feature/Unique Sell-
ing Proposition (++); supported (+); partially supported (o); not supported (-).

45

3. Related Work

Table 3.1.: Evaluation of Existing WfMSes with respect to Requirements.
PPPPPPPPPWfMS

Req. R1
Complex
Sensors

R2
Dynamic
Resources

R3
Human

Interaction

R4
Distributed
Processes

R5
CPS
Sync

R6
CPS
Errors

R7
Self-*

R8
Retrofit

Activti o - + o - - - -

jBPM + o + o - - - -

Apache ODE o - o - - - - -

YAWL - + o o - - - -

Camunda o - o o - - - -

Bonita o - o o - - - -

MS WWF - - o - - - - -

ARIS - - o o - - - -

SAP - - o - - - - -

Bizagi + - + o - - - -

IBM o o o - - - - -

IFTTT o o + - - - - -

++ = Special Feature (USP); + = supported; o = partially supported; - = not supported

Activiti Activiti1 is an open source WfMS implemented in Java. It supports
BPMN 2.0 processes and provides an execution engine and model repository as
well as graphical modelling and monitoring tools. Activiti does not support the in-
tegration and dynamic selection of specific CPS components. Simple sensors could
be integrated using BPMN’s event specifications. The WfMS provides web-based
tools for modelling, monitoring and collaboration to facilitate human interactions.
A basic form of distributed process execution could be reached using BPMN’s pools
and lanes. There is no support of aspects regarding Cyber-physical Resilience (Re-
quirements R4–R8).

jBPM jBPM2 is a Java-based open source WfMS, which supports BPMN 2.0, WS-
BPEL and other workflow notations. It allows for coupling with additional jBoss
tools, e. g., to enable Complex Event Processing (CEP) of sensor streams. Dynamic
processes and services can be achieved by various mechanisms of underspecification
and the integration with Open Services Gateway initiative (OSGi) services. It also
features graphical tools and Human Tasks. There is no explicit support of sensors
or actuators, nor of requirements related to cyber-physical resilience.

Apache ODE Apache ODE3 (Orchestration Director Engine) is a Java-basedWfMS
with a focus on service orchestrations using WS-BPEL for executable process defini-
tions. It provides standard workflow functionality including service calls to propri-
etary and SOAP-based web services, simple events and human tasks. Special CPS
properties are not addressed by Apache ODE.

1https://www.activiti.org/
2https://www.jbpm.org/
3http://ode.apache.org/

46

https://www.activiti.org/
https://www.jbpm.org/
http://ode.apache.org/

3.2. Existing BPM Systems in Industry and Academia

YAWL The YAWL4 engine is a Java-based workflow system that relies on YAWL
as basic workflow notation for processes (cf. Section 2.3.3). It allows for mod-
elling of complex workflows involving data transformations and service invocations
based on Petri nets. Dynamic processes and services can be implemented using
Worklets [ATHEVDA06]. The Petri net based approach could also be used to model
workflows in distributed systems. Again, there is no explicit support for CPS specific
components and resilience.

Camunda Camunda BPM5 is a BPM platform mostly focussed on software devel-
opment processes. It uses BPMN 2.0 as basic workflow notation. The Java-based
execution engine features integration with Spring6, SOAP and REST service con-
nectors as well as Human Workflow Management. BPMN’s events and pools/lanes
could be used to realize sensor interactions and distributed processes. Other CPS
aspects are not supported.

Bonita Bonita BPM7 is a Java-based WfMS, which also relies on the BPMN 2.0
standard for describing business processes. It includes a workflow designer, web
portal to manage processes, an execution engine and various connectors for third
party applications. The tooling for interacting with the WfMS is comprehensive,
events and distributed execution could be realized similarly to the other BPMN 2.0-
based engines. The specific CPS requirement cannot be fulfilled.

MS WWF The Microsoft Windows Workflow Foundation8 is a more technical ap-
proach aimed at developers for implementing automated workflows among Microsoft
products. It uses a proprietary format and execution engine to enact the processes.
Besides some graphical user interfaces to model and interact with the workflows,
there is no support of relevant aspects with respect to our investigations.

ARIS The ARIS Platform9 is an extensive platform and tool suite for modelling,
managing, analysing and executing business processes. The products support a wide
variety of modelling and web techniques (including BPMN, WS-BPEL and UML)
and are applied in various domains of software engineering and BPM. A native
support of CPS or IoT related aspects cannot be found, though.

SAP The SAP Business Workflows are part of the SAP applications10 for man-
aging business processes. They are tightly integrated with the SAP software suites
and their business objects. Various tools for workflow modelling, monitoring and
managing exist. The properties of CPS are not supported.

4http://www.yawlfoundation.org/
5https://camunda.com/
6http://spring.io/projects/spring-framework
7https://www.bonitasoft.com/
8https://msdn.microsoft.com/en-us/library/jj684582.aspx
9http://www2.softwareag.com/corporate/products/aris_alfabet/bpa/default.aspx

10https://www.sap.com/germany/products.html

47

http://www.yawlfoundation.org/
https://camunda.com/
http://spring.io/projects/spring-framework
https://www.bonitasoft.com/
https://msdn.microsoft.com/en-us/library/jj684582.aspx
http://www2.softwareag.com/corporate/products/aris_alfabet/bpa/default.aspx
https://www.sap.com/germany/products.html

3. Related Work

Bizagi Bizagi11 Business Process Management provides various mature software
tools for workflow management. The Bizagi Modeler and Studio support BPMN 2.0
specifications and execution. The focus is on virtual business processes in various
organisational and commercial domains. Few CPS features can be supported by
adapting BPMN’s event and pool/lane mechanisms.

IBM IBM’s Node-RED12 platform allows for a flow-based programming for the
IoT. The platform is based on Node.js13 and enables the wiring of integrated IoT
devices to form workflows. Simple sensors and actuators can be part of these flows. A
formal workflow notation is not available. Complementary to that, IBM BlueWorks
Live14 is a Cloud-based business process management platform that does not cover
CPS aspects, though.

IFTTT If This Then That15 is a simple end-user platform to create automated
flows between web and IoT services. Sensor events can be used to trigger actuators
and services to execute specified actions (ECA rules). The focus of this platform
is on the flow-based orchestration of web services, e. g., to integrate social media
applications. There is no formalism underlying the workflow definitions and no
support of the CPS-related requirements.

Conclusion

From the investigations related to the fulfilment of requirements R1–R8 by existing
WfMSes, we conclude that there is basically no native support of CPS-related as-
pects by current BPMSes used in industry. Some of the necessary features could be
implemented by adapting and extending already available mechanisms (e. g., CEP
for sensor processing or Human Tasks for interactions). Almost all of the presented
BPM systems put their focus on managing (virtual) business processes–either inter-
organizational or intra-organisational–that describe the flow of interactions among
humans, goods, organisational units and companies. Despite the presented systems
being successful in these areas, they cannot be applied within CPS due to a lack
of support of basic and advanced features that are required of a CPS WfMS. Be-
sides not fulfilling most of the identified requirements, some of the BPM systems are
rather bloated and rely on heavy-weight SOA technologies. CPS and IoT environ-
ments require fast and light-weight software components and communications due
to limited resources and constraint environments [GIM11].
We have seen that there is a wide spectrum of already existing WfMSes, which

are all capable of invoking external services and software components. With re-
quirement R8, we will discuss possible extensions and other means of adapting these
systems to add some support of CPS workflows and self-management to their func-
tionalities. Based on the discrepancies determined by the investigation of the exist-
ing WfMSes, we will conduct a more detailed review of research from academia to
evaluate the suitability of related approaches w. r. t. requirements R1–R8.

11https://www.bizagi.com
12https://nodered.org/
13https://nodejs.org/en/
14https://www.blueworkslive.com/
15https://ifttt.com/

48

https://www.bizagi.com
https://nodered.org/
https://nodejs.org/en/
https://www.blueworkslive.com/
https://ifttt.com/

3.3. Modelling of CPS Workflows

Listing 3.1: Example of the When–Then Extension for WS-BPEL.

1 <iotx:when name=? temperatureCondition?>

2 <bpel:condition >$temperatureVar > 35</bpel:condition >

3 <sequence name=?test?>

4 <empty name=? empty1?></empty >

5 <empty name=? empty2?></empty >

6 </sequence >

7 </iotx:when >

3.3. Modelling of CPS Workflows

The idea of using BPM technologies in the context of IoT and CPS to describe and
execute, and thereby automate repetitive tasks has gained more and more interest
over the last years. First, we will investigate approaches with respect to require-
ments R1–R4 that refer to the modelling of workflows for CPS and IoT. Common
workflow notations (e. g., WS-BPEL, BPMN 2.0 and YAWL) do not natively sup-
port the specification of sensor-related events and actuator operations. They also
do not feature the modelling of physical objects/things and their context properties
as well as dynamic behaviour and resource constraints. Various works investigate
the applicability of existing workflow languages to model (business) processes in the
new domains of IoT and CPS [DMC14, GEPF11, MRH15, BBDC+15, SSOK13,
TSD+12, Mez16, YBSD16, GKGK16, MD17, BDGP17]. All of these investigations
come to the conclusion that the expressiveness of established BPM languages is not
sufficient to model CPS and IoT-specific properties and behaviour regarding the
workflow-based interaction with sensors, actuators, humans and the physical world
in general. They propose extensions for various modelling notations to represent
these new entities as resources, new participants in workflows and other aspects.

In [DMC14] Domingos et al. propose an extension of the standard WS-BPEL
language to also support context variables and communication paradigms regarding
the IoT. Their extensions relate to sensor values as new context variables and the
interaction of the processes with these sensors in a request/reply or publish/subscribe
manner. On top of that, when-then conditions can be defined to enable simple ECA
rule specification and event-driven behaviour. Listing 3.1 shows an exemplary when–
then construct related to a specific temperature and executing one of two activities
depending on the temperature value. The authors describe a mapping process for
the extension to standard WS-BPEL workflows to maintain compatibility among
WfMSes. Standard WS-BPEL mechanisms and extensions can still be used (e. g., for
dynamic services or human interaction).

Kefalakis et al. present the APDL process definition language for complex RFID-
based sensor solutions and processes [KSKP11]. The XML-based Domain-specific
Language (DSL) is designed to model business processes involving RFID sensors as
key data and event sources in production and supply chain management. The APDL
specification is an extension of the XML Process Definition Language (XPDL) for
specifying more technical processes. It is accompanied by a comprehensive editor.

The majority of extensions proposed in related work refer to BPMN as basic nota-
tion as it is currently viewed as de facto standard for modelling business processes.

49

3. Related Work

The applicability of BPMN in the context of Wireless Sensor Networks (WSNs)
to describe IoT-related processes is evaluated and proposed for building automa-
tion in [CK11, TSD+12, SSOK13]. With BPMN4WSN Tranquilini et al. [TSD+12]
and Sungur et al. [SSOK13, MPO+17] describe extensions of BPMN to model and
program business processes related to sensor networks. Figure 3.1 shows the pro-
posed extensions with respect to the BPMN metamodel. The central class is the
WSNTask as specialization of the standard BPMN ServiceTask. A WSNTask rep-
resents a specific action to be executed in WSNs–either a sensing task, an actuating
task or an intermediary operation. All of which can be active command actions or
event-driven tasks. WSNPerformers can be specified to define static or dynamic
resources (nodes) that are responsible for executing the specific task. The execution
logic maybe distributed among several performers. A WSNTask refers to specific
WSNOperations, which are invoked to execute the task.

Figure 3.1.: BPMN4WSN Class Diagram from [SSOK13].

As the modelling of individual sensors and event sources is often not feasible for
complex IoT and CPS setups, Baumgraß et al. show the application of CEP for
BPMN processes in logistics scenarios [BBDC+15]. The extension of a BPMN task
with an Event Processing Language (EPL) query allows for defining specific patterns
in complex event streams that will trigger certain actions to be performed. The
authors also propose a corresponding system architecture for event-driven process
execution systems, which will be explained in more detail in Section 3.4. Another ap-
proach for modelling and execution of event stream processing in business processes
is proposed by Appel et al. in [AKF+14]. They introduce Event Stream Processing
Units (SPU s) as encapsulations of application logic for stream processing and show
how to execute these units with respect to EPCs and BPMN.
The integration of IoT devices as business process resources based on BPMN 2.0 is

investigated by Meyer et al. in [MRM13]. They base their approach on the linking of
the IoT devices and their native software services based on the IoT Reference Model
(cf. Section 2.4.4) with BPMN resources. IoT devices are represented by extensions
of BPMN Lanes in process pools. The device’s native service is exposed as process
performer. The dynamic assignment of an IoT service or a required native service
to execute a certain task at runtime can be achieved by using a specific Expression,
which is part of an IoT parameter definition or an explicit IoT assignment spec-
ification. As an extension of these concepts, the authors discuss various ways of

50

3.3. Modelling of CPS Workflows

representing Things within business processes in [MRH15]. They propose to rep-
resent physical entities (Things) as Participants in BPMN-based processes, i. e., as
pools and lanes with no active tasks.

The works of Yousfi et al. discuss BPMN extensions for modelling business pro-
cesses and interactions in the context of ubiquitous systems, i. e., with a stronger
focus on interacting with users via interactive devices [YBSD16, YHBW17]. The au-
thors propose the introduction of new task types (Sensor Task, Reader Task, Image
Task, Collector Task) regarding the use of new smart devices to gather data from
smart objects (e. g., by using microphones, cameras or RFID readers). Along with
that, new event types (Sensor Event, Reader Event, Image Event, Audio Event,
Collector Event) are introduced to the business processes to indicate the capturing
of new data from a smart object after executing one of the corresponding tasks.
In [YHBW17] Yousfi et al. extend and apply these concepts to describe new pat-
terns regarding additional characteristics and new paradigms of ubiquitous systems,
namely automatic identification and data capture, context awareness, augmented
reality, sustainability, and ambient intelligence.

Figure 3.2 presents an overview of the previously discussed works with examples
for IoT-driven business process notations from [CSB16]. The figure shows special
tasks for sensing and actuating marked with the respective icons as proposed by
Sungur et al. [SSOK13]. The exemplary IoT process also contains dedicated pools
and lanes for the IoT system and IoT devices as discussed by Meyer et al. [MRM13]
as well as their proposal of representing physical entities (here: Milk) as passive
participants in a business process [MRH15]. Additionally, the process shows the
emission of an event by a smart actuator ([YBSD16]) and the execution of a sensor
stream task by an SPU [AKF+14].

Figure 3.2.: Examples for IoT-driven Business Process Notations from [CSB16].

51

3. Related Work

With BPMN4CPS, Graja et al. present an extension of the BPMN 2.0 metamodel
to model relevant CPS aspects in business processes [GKGK16]. Besides a separa-
tion of pools for physical and cyber activities, a Controller pool is responsible for
orchestrating the overall process. Regarding the types of activities, the authors dis-
tinguish between Cyber Tasks (Embedded Service Task, Web Service Task, Cloud
Service Task) and Physical Tasks (Actuator’s Task, Sensor’s Task) as extensions of
BPMN Service Tasks. Special CPS devices including their real world parameters
and physical entities can be defined as subclasses of BPMN Performers.

In [BDGP17] Bocciarelli et al. present an extended version of their PyBPMN
modelling language for CPPS. The PyBPMN extension of the BPMN language en-
ables the definition of workload, performance, reliability and other general resource
management properties [BD11]. The new PyCPS extensions aim at defining more
detailed CPS-specific properties of the process resources (e. g., components, control
units, sensor and actuator units and their communication interfaces).
Martins and Domingos discuss the modelling of IoT behaviour within business

processes using only standard compliant BPMN 2.0 modelling elements in [MD17].
Their approach is based on defining specific tasks of IoT devices as resources in
dedicated pools. The resulting BPMN processes are translated to the Callas sensor
programming language [LM16]. The corresponding bytecode is then deployed and
executed on the respective IoT devices.
A semantic framework for modelling the management of IoT resources in business

processes is proposed by Suri et al. in [SGCG17]. The authors present extensions of
an ontological representation of core BPMN classes [YCZM07] to model human and
non-human process resources, e. g., various types of IoT devices (sensors, actuators,
tags). Special IoT-related attributes, constraints and properties of these resources
can also be defined with the help of the ontologies. These properties can then be
used to find replacing resources in case of errors or conflicts at runtime.
Other related works discuss the usage and modelling of IoT devices in the con-

text of smart business processes [GGAAPE+11, FVH18]; the collaboration of mul-
tiple IoT devices within a process-aware IoT community to solve specific goals in a
process-driven way [KAK16]; or the extension of BPMN 2.0 with resource and con-
text constraints to enable business process executions on mobile devices [PRS+13].
In [SWC+18] the authors describe a new approach for integrating semantic context
information into Petri net based business processes in the context of IoT.

Conclusion

Table 3.2 presents an overview and evaluation of work related to the modelling of
CPS workflows that we investigated with respect to the identified requirements. We
distinguish between four levels of support regarding the fulfilment of the individual
requirement by the respective approach: Special Feature/Unique Selling Proposi-
tion (++); supported (+); partially supported (o); not supported (-).
Most works identified a need to extend existing BPM notations to represent spe-

cific CPS and IoT devices and behaviour as well as physical world entities and
properties as part of a business process. Sensors and actuators are usually inte-
grated as process resources in a service-based manner (cf. Section 2.3.5). However,
they are addressed rather statically, which limits the dynamic selection of suitable
resources at runtime (Requirement R2). Most works propose the modelling of in-

52

3.4. CPS Workflow Systems

Table 3.2.: Evaluation of Related CPS Workflow Modelling Approaches with respect
to Requirements.

PPPPPPPPPWork
Req. R1

Complex
Sensors

R2
Dynamic
Resources

R3
Human

Interaction

R4
Distributed
Processes

R5
CPS
Sync

R6
CPS
Errors

R7
Self-*

R8
Retrofit

[DMC14] + o o - - - - -

[KSKP11] + - o - - - - -

[SSOK13] + + o o - - - -

[BBDC+15] ++ o o - - - - -

[AKF+14] ++ o o - - - - -

[MRM13] + + o - - - - -

[YBSD16] + o ++ - - - - -

[GKGK16] o + o - - - - -

[BDGP17] + o o - - - - -

[MD17] o o o - - - - -

[SGCG17] o + + - - - - -

++ = Special Feature (USP); + = supported; o = partially supported; - = not supported

dividual sensors and sensor tasks, which are communicated with via active service
calls or publish/subscribe mechanisms. For larger networks of various types of sen-
sors in CPS, the approach of addressing sensors individually becomes infeasible,
which is why CEP was introduced as a solution to process more complex streams
of sensor events (Requirement R1). The aspects of human interaction (Require-
ment R3) and distributed processes (Requirement R4) are addressed only to a very
limited extend by few works. All of the proposed extensions to existing more or less
standardised workflow notations also lead to the implementation of proprietary ex-
tensions to existing or completely new proprietary WfMSes. The more CPS-related
requirements of synchronization, error handling, self-management and retrofitting
(Requirements R5–R8) are not addressed explicitly by any of the investigated works.

3.4. CPS Workflow Systems

Following the modelling of CPS workflows (Design Phase), the implementation
and execution of the particular workflows by a CPS workflow system (Implemen-
tation/Configuration Phase) need to be investigated. Various works present ap-
proaches for WS-BPEL-based, BPMN-based or proprietary WfMSes that address
specific properties of CPS and IoT environments for different contexts and do-
mains [GEPF11, CS11, JDK15, BCD+15, TSD+12, HHGR06, SHH+14, PRBA15,
JROK11, MCS16, MM05, MPMR16]. A comprehensive overview of BPM architec-
tures discussing WfMSes with respect to reference architectures, adaptive processes
and service composition can be found in [Wes12]. In this section, we discuss WfM-
Ses for CPS with a focus on realizing the basic set of requirements R1–R4. More
advanced approaches that also investigate the self-management aspects including

53

3. Related Work

autonomic error handling (self-healing) and cyber-physical interactions (synchro-
nization) are presented in Section 3.6.

Glombitza et al. present an approach for using WS-BPEL to realize business
processes for the IoT in [GEPF11]. They propose a SOA-based architecture to
transform and execute WS-BPEL processes on sensor nodes and WSNs acting as
runtime environments for web services and application logic as defined in the re-
spective WS-BPEL processes. The goal is to use resource-constraint IoT devices
to enact heavy-weight business processes after being transformed to the respective
target platforms. The authors do not provide any IoT or CPS-specific WS-BPEL
extensions to model processes. The Flogo16 project follows a similar approach of
modelling workflows involving micro-services for IoT and transforming these work-
flows to executable code for the respective edge devices (cf. Section 2.3.5).

With ERWF, Chen and Shih developed an “Embedded Real-Time Workflow En-
gine for User-centric Cyber-physical Systems” [CS11]. This engine uses proprietary
workflow scripts to describe and execute predefined activities as processes on a hu-
manoid robot serving as an example of an embedded system combined with actuators
and sensors. The authors define a formal model for the execution times and proba-
bilities of workflow activities in order to enable real-time capabilities of the workflow
engine. Figure 3.3 presents an overview of ERWF’s system architecture. Workflow
Scripts are instantiated by the Workflow Manager & Processor. The Scheduler is
responsible for assigning Threads to workflow tasks, which are then dispatched to
execute the workflow instances–possibly with real-time behaviour. Specific Device
Drivers are used to communicate with the robot’s built-in sensors and actuators.

Figure 3.3.: System Architecture of the ERFW System from [CS11].

In [JDK15] Juhász et al. present the Rea framework for programming workflows
for CPS. It follows a task-oriented programming approach for implementing work-
flows on a hardware-related level consisting of loosely-coupled tasks, combinators
(sequences, parallels, controllers, pipes) and constraints. The Rea language is a
DSL founded on an extended version of the Erlang programming language. The
workflow system runs on the corresponding IoT devices and interacts with its sen-

16http://www.flogo.io/

54

http://www.flogo.io/

3.4. CPS Workflow Systems

sors and actuators. The framework provides means for failure detection and handling
as well as interaction with the workflows via a simple client application.

Figure 3.4.: High-level Architecture for Real-time Monitoring of Business Processes
through CEP from [BBDC+15].

The implementation of event-driven process applications in the domains of logis-
tics and IoT was proposed in several works by Herzberg et al. [HMW13], Baumgraß
et al. [BBDC+15, BCD+15] and Mandal et al. [MHW17]. The authors propose to
use CEP to evaluate complex event streams from various sensor sources based on
EPL patterns defined in the respective process models. Figure 3.4 shows a high-level
architecture for real-time monitoring of business processes using CEP as presented
in [BBDC+15]. The Process Engine subscribes to an Event Service, which is part
of the Event Engine. Various Event Sources are connected to the Event Processing
component via Event Handlers. Once a significant pattern is detected, the event
processing component emits a notification, which is forwarded to all subscribed pro-
cess engines through the respective event services. Another approach applying CEP
in the context of business processes to analyse sensor streams is presented by Jung et
al. in [JROK11]. Event Stream Processing Units (SPU s) proposed by Appel et al. for
event processing tasks in business processes [AKF+14] were already introduced in
Section 3.3.

Figure 3.5.: Methodology for Implementing Transactional Workflows
from [MMG08].

55

3. Related Work

Pervasive workflows supporting long running transaction in distributed environ-
ments are discussed in detail by Montagut et al. in [MM05, MMG08]. The authors
propose a fully decentralized workflow engine based on web services, the dynamic
assignment of business partners to workflow tasks, and WS-BPEL as underlying
workflow language. Along with that workflow system, a transactional protocol for
workflow tasks was developed to deal with failures occurring in the decentralized
infrastructure of process resources. Figure 3.5 shows their proposed methodology
for implementing transactions for workflows. A Critical Zone C is defined for a
part of a workflow along with Transactional Requirements (TR) for C. During the
Assignment procedure, available partners are evaluated with respect to their offered
transactional properties. In case a partner fulfils the requirements, an Instance Cd

of the respective workflow activities in C is created and executed with respect to
the transactional requirements.

Complementary to the previous approaches, the ADEPT WfMS also supports
the distributed execution of workflows based on instance migration as well as ad-
hoc changes to the underlying processes [RRD03, DR09]. Using the ADEPT system
as basis, Müller et al. propose the AgentWork WfMS supporting rule-based work-
flow adaptations [MGR04]. The ADEPT system and the corresponding AristaFlow
WfMS [DRRM+09] for flexible, adaptive and highly scalable business processes is
currently being used in various IoT-related projects to implement flexible and mobile
production processes [PRBA15].

Worklets proposed by Adams et al. represent self-contained subprocesses in SOAs
flexibly selected at runtime depending on the specific workflow tasks and their con-
text [ATHEVDA06]. Exlets are specializations of these dynamic subprocesses specif-
ically designed to deal with exceptions during process execution [ATHVDAE07].
The AristaFlow system also implements robust and flexible error handling mecha-
nisms [LRD10].

Dar et al. present in [DTB+15] a process-based and resource-oriented integration
architecture for the IoT. Their approach is set in smart home and AAL settings
to provide users with assistance. The corresponding processes are described using
BPMN. The framework supports dynamic service discovery and replacement based
on web service descriptions and registries; event-based communication based on
publish/subscribe mechanisms; and distributed process execution based on BPMN’s
choreography capabilities–also on mobile IoT devices.

Another approach for mobile and distributed business process in the context of IoT
is proposed by Pryss et al. [PTKR10, PRBA15]. Their focus is on designing a flex-
ible light-weight workflow system to be used on mobile devices. The system uses
context information and additional sensor data to provide a mobile task execution
environment in a nursing home scenario. A 3D augmented reality application can
be used to model, configure and visualise the corresponding workflows. With Presto
and Parkour, Giner et al. discuss similar approaches of mobile workflow support
in the IoT [GCFP10]. Their focus is on supporting human workers with executing
tasks within business processes and on implicit interactions for pervasive workflows
in subsequent work [GCFP11]. An approach for integrating external context infor-
mation from wearables into business processes in a production context can be found
in [SAEJ18]. Peng et al. also present a mobile WfMS in a Cloud computing set-
ting [PRS+13]. The central process executor and coordinator is deployed on a Cloud

56

3.4. CPS Workflow Systems

server, which distributes subprocesses and tasks to a mobile process engine. The
mobile engine is able to incorporate context information from various sensors and to
dynamically invoke required services in the Cloud as part of the activity execution.

In [MCS16] Mass et al. describe a device-to-device-based BPMS for industrial
IoT. The BPMS enables decentralized process execution, also with unreliable IoT
devices. A Migration Module, which is part of the Process Executor is capable of
migrating a process instance from one node to another by creating a snapshot of its
current state and transferring this instance to a new process executor.

Other related works comprise a general context-aware and workflow-based frame-
work for pervasive environments, which can be used with various CEP and work-
flow engines [AE14]; a WS-BPEL-based workflow execution engine for mobile de-
vices [HHGR06]; a Cloud Process Execution Engine (CPEE) [MRM14]; and a con-
ceptual framework for process-based Cloud manufacturing [SHH+14]. The concept
of Osmotic Computing for distributing simple process tasks between Cloud and Edge
in an IoT context is presented in [NND+17]. An approach describing the smart con-
figuration of smart environments based on the semantic description of IoT resources
and with that, the goal-oriented derivation and configuration of processes in the
context of smart homes and smart factories can be found in [MVKM16, MPMR16].

Conclusion

Table 3.3.: Evaluation of Related CPS Workflow System Approaches with respect
to Requirements.

PPPPPPPPPWork
Req. R1

Complex
Sensors

R2
Dynamic
Resources

R3
Human

Interaction

R4
Distributed
Processes

R5
CPS
Sync

R6
CPS
Errors

R7
Self-*

R8
Retrofit

[GEPF11] o o - - - - - -

[CS11] + o - - - - - -

[JDK15] o - o - - - - -

[BBDC+15] ++ o o - - - - -

[MMG08] - ++ - ++ - - - -

[DTB+15] + + o + - - + -

[PRBA15] + o + + - - - -

[GCFP10] + o ++ o - - - -

[PRS+13] + + o + - - - -

[MCS16] + + o ++ - - - -

++ = Special Feature (USP); + = supported; o = partially supported; - = not supported

Table 3.3 presents an overview and evaluation of work related to the execution/im-
plementation of CPS workflows that we investigated with respect to the identified
requirements. We distinguish between four levels of support regarding the fulfilment
of the individual requirement by the respective approach: Special Feature/Unique
Selling Proposition (++); supported (+); partially supported (o); not supported (-).

57

3. Related Work

Within the investigations of related work regarding CPS WfMSes we found ap-
proaches discussing several relevant aspects. Event-driven architectures as well as
CEP were identified as important technologies to cope with sensor and context data
within CPS (Requirement R1). Web services are the most important means of en-
capsulating and remotely invoking device functionality. Several works address the
issue of dynamic service invocation due to unreliable and limited resources of IoT
devices (Requirement R2). The aspect of ubiquitous human interaction in the con-
text of business processes is only discussed in few works (Requirement R3). The
importance of mobile and distributed process execution also increased with the de-
velopment of more decentralized systems (Requirement R4). Most workflow systems
proposed are proprietary developments resulting from the necessity of adding new
software components to realize specific IoT or CPS functionality to WfMSes. We
have also seen alternatives to BPMN and WS-BPEL for describing the underly-
ing IoT-related processes. Despite being an important aspect in CPS, real-time
is addressed by almost no related approaches in the workflow context. Flexibil-
ity in business process systems was identified as an important aspect by various
works. As discussed in Section 2.4.6 this aspect also plays an important role in the
smart home domain and in CPS in general due to the dynamic availability of re-
sources and emergence of new situations. Ad-hoc changes to process instances as well
as structural adaptations and evolution of process models [RWRW05] as proposed
within the works related to the ADEPT project have to be considered complemen-
tary to our investigations, which focus on the CPS resources. The CPS-related
requirements of synchronization, error handling, self-management and retrofitting
(Requirements R5–R8) are not addressed explicitly by the investigated works.

3.5. Cyber-physical Synchronization

After evaluating related work regarding the design and implementation/configura-
tion phases of the BPM lifecycle [VDA13], we move the investigations towards more
runtime-oriented aspects. Under the term Cyber-physical Synchronization, we un-
derstand the issue of projecting a physical entity’s state and properties to its virtual
representation and vice versa as well as maintaining the consistency between both
models in case of changes to one of the other (Requirements R5 and R6). Our focus
is on investigating Cyber-physical Synchronization in the context of workflows and
(business) processes [Wom11a, Wom11b, MMS14, MDCM17] but we will also eval-
uate more general approaches regarding physical objects, (environmental) context
factors and systems [PLM16, CR15, RvWLB15, CSB16, Sto15, RSI+17, dR12].

The aspect of Cyber-physical Synchronization is closely related to representing
and synchronizing physical things, systems and environments to virtual entities–
referred to as Cyber-physical Objects [PLM16], Cyber-physical Equivalence [Sto15],
Augmented Worlds [CR15], Thing/Device Shadows17, Cyber Twins [LBK15] and
most prominently as Digital Twins [RvWLB15].

In [PLM16] Petrolo et al. describe Cyber-physical Objects as key elements and
actors of CPS. Similar to Smart Objects [KKSF10], cyber-physical objects are aware
of their surroundings, able to interact with users and to react to events. The authors

17https://docs.aws.amazon.com/iot/latest/developerguide/what-is-aws-iot.html

58

https://docs.aws.amazon.com/iot/latest/developerguide/what-is-aws-iot.html

3.5. Cyber-physical Synchronization

discuss possible applications and programming models as well as basic platforms for
implementing cyber-physical objects and CPS in general.
Stork discusses challenges regarding the realization of Cyber-physical Equivalence

for Industry 4.0 applications in the context of visual computing [Sto15]. He argues
that all characteristics of physical objects have to be represented by their virtual
equivalences including geometry, functionality and behaviour. In case of a mismatch
between the physical and digital objects, the corresponding models have to be up-
dated or actions have to be performed to restore consistency between both entities.
In addition, Lee et al. propose to use sensor data from production machines and
their contexts to create a Cyber Twin for the machines of a smart factory [LBK15].

human user

MIRROR
WORLD

hellomsg

pospos

hello

PHYSICAL
WORLD

user ass.
agent

mirror-example workspace

SituatedMessage

Agent
Bodypos

perceive

5nTouches

ghost agent

touch

perceive

Agent
Body

perceive

Figure 3.6.: Example for a Mirror World from [CR15].

Croatti and Ricci present their work regarding programming abstractions for aug-
mented worlds in [CR15]. Their concept of Augmented Worlds links a computational
object to its physical location. Such an augmented object–including its state and
behaviour–can be represented and implemented through concepts of classical object-
oriented programming approaches (i. e., classes and objects). Additional models
have to be applied to handle concurrency, though. Mirror worlds [RPTC15] are the
software-level representations of physical worlds and provide services to users based
on software agents and the user’s physical location. As shown in Figure 3.6, location-
based (situated) messages are contained at specific points in the mirror world. Once
the user reaches a physical location associated with a situated message, its mobile
assistant user agent–running either on a smartphone or smart glasses–interacts with
the corresponding agent in order for the user to perceive the message. There also
exist ghost agents autonomously moving along the streets and interacting with the
location-based services/agents or hugging the human users upon their encounter.

Among others, Rosen et al. discuss the importance of Digital Twins for future IT-
based manufacturing solutions in the context of Industry 4.0 [RvWLB15]. Digital
Twins are complete representations of physical products and systems including struc-
tured semantic information created throughout all stages of the lifecycle (Design,
Build, Operate) of the respective system or product. This information is contained
within a Digital Thread and available to all subsequent stages of the lifecycle. Ac-
cording to the authors, Digital Twins are key enabler for realizing and optimizing

59

3. Related Work

Listing 3.2: Device Shadow Example for the State of a Traffic Light.

1 { "state": {

2 "desired": {

3 "lights": {

4 "color": "RED" },

5 "engine": "ON" },

6 "reported": {

7 "lights": {

8 "color": "GREEN" },

9 "engine": "ON" },

10 "delta": {

11 "lights": {

12 "color": "RED" }

13 } },

14 "metadata": { ...

15 "delta": {

16 "lights": {

17 "color": {

18 "timestamp": 123456

19 } } } },

20 "version": 10,

21 "timestamp": 123456789 }

Industry 4.0 solutions, e. g., production intelligence, production planning, product
design and production system engineering [RvWLB15].

Practical solutions closely related to the idea of cyber-physical synchronization
are already provided by various existing commercial IoT platforms to represent
properties and states of things and devices. The Amazon AWS IoT platform18

integrates the concept of Thing Shadows or Device Shadows, which are documents
containing state information for IoT entities (things, devices, apps, etc.) that can
be queried via web services. Listing 3.2 shows an excerpt of a Device Shadow
for a traffic light19. It contains its states, metadata and also information about
mismatches regarding the desired and the reported state. Similarly, the Eclipse
Ditto project for development of IoT solutions features Digital Twins20 to represent
a real world device or asset with all its capabilities and aspects as virtual entity.
Chang et al. propose to use specific Virtual Thing Adaptors to integrate physical
(manufacturing) systems into digital software systems [CSB16].

As an extension to the Physical Web for IoT presented in [WSJ15] where people,
places and things have webpages and services to interact with, Ruta et al. describe
their vision of the Physical Semantic Web in [RSI+17]. Their framework relies on
semantic descriptions being exposed and propagated by representations of things and
humans to enable dynamic knowledge discovery and sharing in the IoT. Services and
suitable entities can be found dynamically by logics-based queries with respect to
specific capabilities and context constraints.

18https://aws.amazon.com/iot/?nc1=h_ls
19https://docs.aws.amazon.com/iot/latest/developerguide/device-shadow-document.html
20https://www.eclipse.org/ditto/intro-digitaltwins.html

60

https://aws.amazon.com/iot/?nc1=h_ls
https://docs.aws.amazon.com/iot/latest/developerguide/device-shadow-document.html
https://www.eclipse.org/ditto/intro-digitaltwins.html

3.5. Cyber-physical Synchronization

Figure 3.7.: Overview of the Verification and Analysis Process of Physical Models
from [DRSA12].

De Roo et al. discuss in [DRSA12, dRSA11, dRSA14] various aspects of composing
physical models with virtual models in embedded control software. They show how
to formally verify the physical models at runtime with the help of sensor informa-
tion and events, and adapt the models in case of inconsistencies for a cyber-physical
example, namely the heating process of a laser printer. Figure 3.7 gives an overview
of their approach. Software engineer and domain expert write the physical domain-
specific models, whereas the general purpose software module is implemented by the
software engineer. Composition filters are used for composing the physical models
and software models. They communicate with the physical models via events and
with the software modules via messages. Static analysis is used to verify the phys-
ical models and composition filters at design time and a special interpreter for the
domain-specific physical models performs the runtime verification.

Wombacher discusses the correlation of physical objects and business processes
in [Wom11b] and the issue of detecting potential errors in the corresponding sensor
infrastructure in [Wom11a]. He distinguishes between two possibilities of correlat-
ing workflow and sensor data: a) to trigger a state transition in the control flow
of a process based on sensor data; and b) to monitor the effects of the workflow
instance execution based on changes within the corresponding sensor data. From
that, Wombacher derives multiple classes of potential errors [Wom11b]:

• Successful workflow execution with reliable sensor data, i. e., everything is ok;

• successful workflow execution with unreliable/erroneous sensor data, i. e., the
workflow was executed successfully but the sensor data associated with the
workflow is incorrect;

61

3. Related Work

• successful workflow execution with undocumented changes, i. e., ad-hoc changes
within a specific workflow instance are not documented, but the instance is
executed successfully;

• effect of workflow evolution, i. e., the workflow is adapted and applied to new
resources that are not able generate the necessary sensor data;

• effect of changes on sensor infrastructure, i. e., faulty or broken sensors lead to
corrupt data that cannot be correlated to the respective workflow instances.

In [MDCM17] Meroni et al. present an artefact-driven approach to monitor busi-
ness processes. Artefacts of a BPMN process are enriched with additional data and
information regarding their runtime states and process-related events to enable the
monitoring and compliance checking of the artefact’s and process instance’s lifecy-
cle among all involved process participants. They use a scenario from logistics as
running example, which is implemented by an IoT software infrastructure.
As part of their SmartPM process management system [MMS14], Marrella et

al. apply the Situation Calculus [LPR98] to formally specify preconditions and post-
conditions of the execution of process activities. That way, they are able to determine
deviations of the expected outcome of the process execution from its actual effects
on context factors or process resources. A more detailed description of the SmartPM
system is given in Section 3.6.

Conclusion

Table 3.4.: Evaluation of Related CPS Cyber-physical Synchronization Approaches
for Workflows with respect to Requirements.

PPPPPPPPPWork
Req. R1

Complex
Sensors

R2
Dynamic
Resources

R3
Human

Interaction

R4
Distributed
Processes

R5
CPS
Sync

R6
CPS
Errors

R7
Self-*

R8
Retrofit

[PLM16] o - o - o - - -

[Sto15] - - - - + - - -

[CR15] - + o - + - - -

[RvWLB15] - - - - + - - -

[RSI+17] - ++ + - o - - -

[DRSA12] + o - - + + - -

[Wom11b] + - - - + o - -

[MDCM17] + o o - + - - -

++ = Special Feature (USP); + = supported; o = partially supported; - = not supported

Table 3.4 presents an overview and evaluation of work related to the aspect of
Cyber-physical Synchronization for WfMSes that we investigated with respect to
the identified requirements. We distinguish between four levels of support regarding
the fulfilment of the individual requirement: Special Feature/Unique Selling Propo-
sition (++); supported (+); partially supported (o); not supported (-).

62

3.6. Self-* for BPM Systems

From the investigations above, we see that only few approaches discuss aspects re-
lated to cyber-physical synchronization and the maintenance of Cyber-physical Con-
sistency (cf. Section 4.6) in the context of workflows (Requirements R5 and R6).
With software-controlled CPS and IoT environments influencing the physical world,
a need for representing physical entities, their states and contexts by digital models
and instances (Digital Twins) was identified by several works. However, workflows
and business processes are only abstract virtual concepts without a corresponding
physical equivalent (Physical Twin). The concepts of subprocesses, control flow
logic, events as well as pools and lanes can only partially be mapped to physi-
cal equivalences. Therefore, several approaches propose to use additional, possibly
redundant sensor data from several sources to reliably correlate the effects of the
execution of cyber-physical workflows to changes within the states of the physical
process resources (things, humans and other physical entities including their con-
texts) and the physical environment. In case of inconsistencies between the expected
outcome and the actual outcome of the process executions determined by additional
sensor data, the information of the virtual representations have to be updated or
compensation actions have to be executed in the physical world to restore Cyber-
physical Consistency (cf. Chapter 6). Approaches for realizing this functionality au-
tonomously are discussed in the following section. We will elaborate on the relation
between CPS workflows and Cyber-physical Objects/Digital Twins in Section 6.10.

3.6. Self-* for BPM Systems

CPS and IoT environments are characterized as being highly dynamic and also vul-
nerable and prone to errors due to scarce and unreliable resources as well as unpre-
dictable situations and behaviour of its constituents (cf. Section 2.4.6). Self-* capa-
bilities including self-awareness, self-healing, self-optimization, and self-adaptation
in general are therefore important properties required for autonomously acting sys-
tems and devices within CPS–either to restore inconsistent physical and cyber states
(Requirement R6) or to handle errors and other unanticipated situations in gen-
eral (Requirement R7). In this section, we discuss related work with respect to
the aspect of Self-* (Self-x) for adaptive (cyber-physical) software systems in gen-
eral [BDK+15, BDK+17, RBD+09] and with a special focus on self-* capabilities
for (cyber-physical) BPMSes [MMP06, OCEP13, Fri11, WSBL15, MMS14, RSA10,
HSDV13, DTB+15]. These discussions mostly refer to the Run & Adjust phase
of the BPM lifecycle as they deal with ad-hoc modifications to particular process
instances and software configurations at runtime.

Complementary to the literature study presented in this section, a systematic lit-
erature review on self-adaptation for CPS by Muccini et al. can be found in [MSW16]
and a discussion of challenges regarding self-adaptive CPS by Giese in [Gie16]. A
survey on context-aware workflow adaptations by Smanchat et al. can be found
in [SLI08] and a survey on self-healing systems by Ghosh et al. in [GSRU07] and
by Psaier et al. in [PD11]. In [OG17] Oberhauser and Grambow present a com-
prehensive vision towards autonomically-capable processes supporting various self-*
properties. The authors discuss potential technologies and methods to implement
parts of the required components and functionality to realize this vision.

63

3. Related Work

WithMUSIC, Rouvoy et al. present a middleware for self-adaptation in ubiquitous
and service-oriented environments [RBD+09]. The component-based architecture of
the MUSIC platform integrates components for the management of context infor-
mation and related Quality of Service (QoS) constraints, an adaptation manager
using reasoning to find adaptation plans from a repository, and an executor to per-
form necessary reconfigurations, which results in an implementation of the MAPE-K
feedback loop (cf. Section 2.4.5) based on the Deming cycle [Joh02]. The platform
supports the dynamic discovery and binding of services, the negotiation and moni-
toring of Service-level Agreements (SLAs), and the hosting of services.

Figure 3.8.: The MORPH Reference Architecture from [BDK+15].

An additional general software framework for context-adaptive systems with self-
adaptive behaviour is the MORPH reference architecture presented by Braberman
et al. in [BDK+15, BDK+17]. Figure 3.8 shows the MORPH reference architecture,
which is based on Kramer and Magee’s three layer architecture for self-managed
systems [KM07]. On the lowest level, the component-based target system emits
events, status and sensor data, and other logging information (Probes), and it is
interacted with via Effectors receiving reconfiguration and behaviour commands.
These commands are deduced based on higher-level goals from the Goal Management
layer defined by the users or inferred by the system. From these goals, strategies for
dealing with exceptions are derived on the Strategy Management layer and enacted
on the target system’s effectors from within the Strategy Enactment layer.

64

3.6. Self-* for BPM Systems

With SH-BPEL, Modafferi et al. describe a self-healing plug-in for WS-BPEL
engines [MMP06]. The system’s process manager component integrates a manage-
ment engine, which is able to retrieve and invoke substitute web services in case of
errors. A Diagnoser component monitors the WS-BPEL engine and reports its diag-
noses to a Recovery Selector component. Recovery strategies can be either directly
implemented as part of the process manager or they can be triggered by external
systems. Based on the diagnosis and selected recovery strategy, web services are
chosen to be invoked by the workflow engine. With Worklets [ATHEVDA06] and
Exlets [ATHVDAE07] Adams et al. present SOA-based approaches to dynamically
select subprocesses according to the context of the current workflow tasks and ex-
ceptions occurred during the process executions from special repositories.

D-OSyRIS by Fr̂ıncu is a self-healing distributed workflow engine [Fri11] for per-
vasive and mobile computing environments. The workflow engine relies on the SiLK
language to model workflows, which is a nature-inspired rule-based language de-
scribing workflows by means of chemical reaction-like behaviour [FP10]. The author
presents a decentralized workflow system, which also features a healing mechanism
based on the Deming cycle to find unresponsive workflow engines and replace them.
The Monitor gathers context information from all involved workflow engines; the
Analyser determines failed modules; the Planner decides on which resource a failed
component can be restarted; and the Executor restarts the failed component.

Chang and Ling present a similar context-aware solution to replace failed devices
in service-oriented workflows [CL08] implemented in the Decoflow engine [Lok03].
The dynamic replacement of faulty services and devices in decentralized IoT-aware
business processes is proposed by Dar et al. in [DTB+15]. An approach for migrating
business processes among peers of a distributed industrial IoT device landscape in
case of device failures or disconnections is discussed by Mass et al. in [MCS16].

Hoenisch et al. present their work on self-adaptive resource allocation for elastic
process execution in [HSDV13]. The goal is to automatically adapt required Cloud
resources for running the underlying BPMS (ViePEP [SHVD12]) based on the cur-
rent demand and current and future process landscape. The authors propose to
implement the MAPE-K feedback loop to enable self-healing, self-configuration and
self-optimization. In this particular work, resource utilization of virtual machines
running the process execution system is monitored and analysed with respect to
specific SLAs. The planner takes the current load but also future workflow steps
and their associated predicted loads into account to derive a scheduling and resource
allocation plan via reasoning.

The MABUP approach for multi-level autonomic business process management is
discussed by Oliveira et al. in [OCEP13]. The MABUP system comprises four lev-
els of modelling a business process: the organisational level, the technological level,
the operational level and the service level. During process execution, a dedicated
MAPE-K-based management phase supervises and instruments the execution sys-
tem. The Monitor collects sensor information regarding context, domain-specific
and non-functional requirements as well as QoS criteria. The Analyser determines
deviations from expected behaviour as defined within the business process’s domain
assumptions and context criteria. The Planner selects operational tasks to be ex-
ecuted to compensate the deviations occurred for the respective instances, and the
actuator components enact these compensations as part of the Executor.

65

3. Related Work

Richly et al. present in [RSA10] a semantic BDI (Belief-Desire-Intention)-based
approach [RG+95] to realize cooperative and reflexive workflows. The approach
uses the BDI technique in combination with semantics to implement autonomous
workflow adaptations for the OSPP system–a service-based workflow engine with
WS-BPEL-like processes [HRR+08]. In this work, the Belief includes the context
variables and the executed workflow. Intentions are represented by available work-
flows and Desires are internal objects of the system. With these information, the
workflow system is able to learn new workflow cases and adaptations at runtime as
well as merge workflow instances to reduce redundant task execution.

In [Sch09] Schlegel describes an approach for object-oriented interactive processes
in decentralized production systems. The work is based on a semantic object-
oriented process metamodel called OMICRON [Sch08] to create variants of activities
by inheritance and extensions in case dynamic changes to the respective process are
required. The system also supports the distribution of processes and models as well
as the generation of user interfaces to interact with the processes. A more detailed
discussion of business process adaptation mechanisms on the instance and type level
can be found in [DR09, RRKD05].

Figure 3.9.: Architecture of the SitOPT System and its Layers from [WSBL15].

With SitOPT, Wieland et al. developed a system for situation-aware adaptive
workflows in production systems and CPS/IoT environments in general [WSBL15,
HWS+16]. Figure 3.9 gives an overview of the system architecture of SitOPT. On
the lowest layer (Sensing), sensors measure data from various physical entities of
the CPS. Situations are recognized based on predefined descriptions and templates
of possible situations after evaluating the sensor data and finding matching situa-
tions within the self-optimizing Situation Recognition layer. On the Situation-aware

66

3.6. Self-* for BPM Systems

Workflow layer, processes are modelled and executed by the respective WfMS. In
case of exceptions (e. g., machine failures) and other unintended situations that oc-
curred during the process execution, suitable workflows or workflow fragments to
handle the particular situation are selected from a workflow fragment repository
that contains all possible workflows and remedies to specific situations.

Figure 3.10.: The Architecture of SmartPM from [MMS16].

The SmartPM system developed by Marella et al. is a cognitive business pro-
cess management platform for adaptive CPS processes [MMS14, MMS16, MMHS15,
MMS17, MM17]. The authors approach the issue of adaptive and self-managed
processes from the perspective of artificial intelligence for Knowledge-intensive Pro-
cesses [DCMR12]. They use reasoning about actions, high-level programming and
automated planning to implement automated adaptations of processes in highly dy-
namic settings (e. g., cyber-physical domains). Figure 3.10 shows the high-level ar-
chitecture of the SmartPM system as an advancement of the ASTRO-CAptEvo sys-
tem enabling dynamic context-aware adaptation for service-based systems [RBK+12].
Devices interact with the external environment and BPMN-based workflows for
SmartPM are defined on the Presentation layer. The workflows are described based
on the CAPTLang language for context-aware adaptable business processes [BMP13]
and translated into the IndiGolog programming language for embedded reasoning
agents [DGLLS09]. They are executed by the respective IndiGolog Engine, which
then communicates with the respective devices via the Communication Manager

67

3. Related Work

component. Context factors, preconditions and postconditions of workflow activities
as well as situations before and after the execution of these activities are formalized
using the Situation Calculus [LPR98]. At runtime, workflow-related events from
sensors are analysed with respect to these situations. In case a mismatch between
the physical reality and expected reality can be determined, the Planner component
is triggered to find a recovery procedure consisting of new workflow tasks. The re-
covery plans and adaptations are determined by using Classical Planning to solve
the planning problem of getting from the current state to the desired state [Mar17].

Conclusion

Table 3.5.: Evaluation of Related Self-* Approaches for Workflows with respect to
Requirements.

PPPPPPPPPWork
Req. R1

Complex
Sensors

R2
Dynamic
Resources

R3
Human

Interaction

R4
Distributed
Processes

R5
CPS
Sync

R6
CPS
Errors

R7
Self-*

R8
Retrofit

[RBD+09] + + - - - - ++ -

[BDK+15] o o - - o o ++ -

[MMP06] - + - - o o + -

[Fri11] - o - ++ - - + -

[CL08] - + - - - - o -

[HSDV13] o + - o - - ++ -

[OCEP13] o o - - - - + -

[RSA10] o - - - - - ++ -

[Sch09] - - + + - - o -

[WSBL15] + + o - o o + -

[MMS16] + + o - ++ + + -

++ = Special Feature (USP); + = supported; o = partially supported; - = not supported

Table 3.5 presents an overview and evaluation of work related to implementing
self-* properties for WfMSes that we investigated with respect to the identified
requirements. We distinguish between four levels of support regarding the fulfilment
of the individual requirement by the respective approach: Special Feature/Unique
Selling Proposition (++); supported (+); partially supported (o); not supported (-).

From the investigations, we found several approaches dealing with aspects related
to the realization of self-* properties for software systems in general and for WfM-
Ses in particular–also in the context of CPS and IoT (Requirement R7). The topic
of self-adaptive and self-managed software systems in general is a very broad and
diverse topic with general concepts and more concrete approaches regarding specific
domains and problems. The implementation of the Deming cycle in the form of the
MAPE-K feedback loop is a widely accepted approach to achieve certain degrees
of self-adaptation and other self-management capabilities for software and workflow
systems in specific application domains. Domain and context models describe the
environment the WfMS operates in. Goals and other formalisms are used to spec-

68

3.7. Retrofitting Frameworks for WfMSes

ify the expected outcome of the workflow executions. By analysis of goal-related
data from additional external and internal sensors, mismatches, (cyber-physical) in-
consistencies and unexpected situations can be determined (Requirement R5) and
compensation strategies can be derived by planning components to remedy these
issues (Requirements R6 and R7). Several approaches rely on adapting the pro-
cess by finding alternative resources or services to handle errors with respect to the
process resources. The selection or synthesis of new workflow fragments is another
approach to adapt the respective process instances in case of undesired behaviour.
While several approaches address self-healing and self-adaptation for software sys-
tems, workflows and IoT applications in case of device errors and inconsistencies,
the aspects of human interaction and also distributed process execution are rarely
discussed. The broad spectrum of approaches targeting the realization of self-* capa-
bilities for software and workflow systems–ranging from the MAPE-K loop, object-
oriented models, semantics-based adaptations to complex planning algorithms using
artificial intelligence–shows the complexity of this particular aspect and research
field with approaches targeting more general concepts but also concrete domain and
application specific solutions.

3.7. Retrofitting Frameworks for WfMSes

In Section 3.2, we evaluated several existing WfMSes used in industry and academia
with respect to the requirements. We found that there is a large number of WfM-
Ses with no or very limited support of CPS-related features. As it is infeasible to
completely redesign and modify these BPMSes or to replace them by other systems
in order to use them in the context of CPS and IoT, we investigate at this point if
there are solutions and approaches to retrofit these existing WfMSes and software
systems with respect to the required CPS-related capabilities (Requirement R8).

In [Mon13] Monnier talks about smart grids enabled by the IoT. He briefly dis-
cusses the aspect of retrofitting existing meter infrastructures in houses with ad-
ditional sensors and appliances to realise smart meters and smart grids. Also in
the context of smart homes, Alur et al. mention the challenge of retrofitting exist-
ing houses with IoT devices [ABD+16]. When discussing the vision of smart cities,
Harmon et al. [HCLB15] briefly mention the aspect of retrofitting the existing in-
frastructure with additional smart sensors and actuators [HCLB15]. In [AMT+12]
Aswani et al. present a concrete example for retrofitting an air conditioner with a
cyber-physical control system to improve energy efficiency. Camps et al. discuss the
issues of adding autonomic agents based on control loops to increase the fault toler-
ance of health monitoring systems in [SH05]. Moctezuma et al. show in [MJPL12]
how to retrofit a factory automation system to address new market needs and soci-
etal changes. They add new hardware components for monitoring and new software
components based on web services to the existing production infrastructure in order
to increase the self-awareness of the overall system and with that, to increase energy
efficiency, reconfigurability, safety and other quality-related parameters.

A more general approach of retrofitting a legacy SCADA (Supervisory Control
and Data Acquisition [DS99]) system with an external event-based coordination
layer to add fault tolerance and protection against cyber attacks in cyber-physical
environments is presented by Xiao et al. in [XRK08]. Kaiser et al. describe an

69

3. Related Work

external infrastructure for monitoring distributed legacy systems and adding auto-
nomic capabilities to these systems in [KPGV03]. Their approach relies on events
to communicate asynchronously with probes and effectors of the legacy system. In
a follow-up work, Parekh et al. developed a general methodology for retrofitting au-
tonomic capabilities onto legacy systems [PKGV06]. Figure 3.11 gives an overview
of their proposed retrofitting reference architecture. Sensors gather information
(Probes) from the legacy systems that are collected and then interpreted and anal-
ysed by Gauges. Decision and coordination of possible adaptation strategies based
on the results of the interpretation are conducted by the controllers, which instruct
the effectors of the legacy system in case reconfigurations are required.

Figure 3.11.: Reference Architecture of the Retrofitted Autonomic Software Infras-
tructure from [KPGV03].

Dabholkar and Gokhale present in [DG09] an approach of specializing general pur-
pose middleware systems with respect to specific requirements that CPS demand of
a software system (e. g., real-time behaviour and dealing with constraint resources).
They use feature-oriented software development to abstract required features and
generative programming to realize the specialized middleware. A general architec-
ture for the implementation of CPS that can also serve as a framework for retrofitting
legacy systems is discussed by Lee et al. in [LBK15] and described in Section 2.4.3.

In [BtHS01] Barros et al. show how to retrofit internal assembly processes with
more high-level business processes based on components and services to facilitate
synchronization across encapsulated workflows and external interactions. Lee et
al. present a way to add adaptivity to an existing scientific workflow engine by
implementing new components to realize the MAPE-K feedback loop [LPS+09].
Sensors provide data about the status of jobs running on the computation grid. Once
resources are available, the workflow engine is instructed to execute new workflows.

70

3.8. Conclusion & Deficits

Conclusion

Table 3.6 presents an overview and evaluation of work related to retrofitting of
WfMSes with self-* capabilities that we investigated with respect to the identified
requirements. We distinguish between four levels of support regarding the fulfilment
of the individual requirement by the respective approach: Special Feature/Unique
Selling Proposition (++); supported (+); partially supported (o); not supported (-).

The investigations of related work with respect to the aspect of retrofitting exist-
ing WfMSes and software systems in general with CPS-related capabilities (Require-
ment R8) have shown only few relevant approaches. Most works present concrete
ways to retrofit existing hardware and software infrastructures with new devices
and software components in the context of CPS to make them more self-aware and
efficient. The most common approach towards retrofitting is to loosely add new
components that implement a variant of the MAPE-K feedback loop, which serves
as a general framework to facilitate autonomous behaviour in WfMSes and soft-
ware systems. However, there is no concrete suggestion regarding the retrofitting of
existing BPMSes with new capabilities to implement autonomous (CPS) workflows.

Table 3.6.: Evaluation of Related Retrofitting Approaches w. r. t. Requirements.
PPPPPPPPPWork

Req. R1
Complex
Sensors

R2
Dynamic
Resources

R3
Human

Interaction

R4
Distributed
Processes

R5
CPS
Sync

R6
CPS
Errors

R7
Self-*

R8
Retrofit

[XRK08] o - - - - - - o

[PKGV06] + o - - - - + +

[LBK15] o o - - - - + o

[LPS+09] o o - - - - + +

++ = Special Feature (USP); + = supported; o = partially supported; - = not supported

3.8. Conclusion & Deficits

Table 3.7 presents a summarizing overview and evaluation of all related works that
we investigated with respect to the identified requirements. We distinguish be-
tween four levels of support regarding the fulfilment of the individual requirement
by the respective approach: Special Feature/Unique Selling Proposition (++); sup-
ported (+); partially supported (o); not supported (-). From Tables 3.1 and 3.7
we see that many existing systems and related works were developed that address
relevant aspects to realize workflows for CPS and IoT. Most of these approaches
sufficiently cover single or multiple requirements identified in Section 2.6 across the
whole BPM lifecycle. However, there is no comprehensive solution that addresses
all requirements in the context of BPM that are relevant for this thesis.

Nevertheless, we are able to deduce important concepts, methods, technologies,
components and frameworks suggested as suitable solutions by the investigated
works to design, implement and operate a suitable WfMS for CPS and IoT cov-
ering all of the relevant requirements:

71

3. Related Work

• In order to monitor and evaluate simple and complex streams of sensor data
from CPS entities, simple event processing (ECA rules) and CEP can be ap-
plied. (Requirement R1)

• In order to dynamically find and invoke process resources in the CPS, web
services in combination with a service registry and semantic description of the
services and CPS entities can be applied. (Requirement R2)

• In order to enable ubiquitous interaction with users, synchronous and asyn-
chronous communication as well as advanced mobile and stationary user in-
terface technologies can be applied. (Requirement R3)

• In order to realize distributed process execution, decentralized systems and
coordination infrastructures in combination with process instance migration
can be applied. (Requirement R4)

• In order to synchronize the physical and virtual worlds, additional sensor in-
formation in combination with formalisms to describe effects of workflow tasks
and CPS entities can be applied. (Requirement R5)

• In order to deal with errors and other unanticipated situations during CPS
process execution, the MAPE-K feedback loop from autonomous computing
can be applied. (Requirement R6)

• In order to add more general self-* capabilities to the CPS workflow system,
the MAPE-K feedback loop in combination with goal specifications can be
applied. (Requirement R7)

• In order to retrofit existingWfMSes with CPS-related capabilities, loose service-
based coupling of the legacy system with the MAPE-K feedback loop and
external event and data sources can be applied. (Requirement R8)

All of these individual approaches and components require new concepts and a
holistic engineering approach to combine them with respect to the relevant phases
of the BPM lifecycle, which are presented in the following chapters:

• The modelling of CPS workflows and related CPS entities (cf. Chapter 4);

• The implementation of a CPS worfklow management system and related IoT
infrastructure (cf. Chapter 5);

• The operation of the WfMS and the autonomous execution of the workflow
instances (cf. Chapter 6).

In these chapters, we will discuss the application of the aforementioned concepts for
realizing the individual requirements by a comprehensive WfMS in detail. We will
elaborate on the respective design decisions and the implementation of the individ-
ual software components to realize the desired functionality as well as alternative
solutions. As already discussed in Section 2.6, the findings from related work are
usually deduced based on application domains other than the smart home. However,
the concepts are rather general approaches that can be easily transferred to other
CPS domains, especially the smart home as it shows very similar characteristics as
other smart spaces [KBG13].

72

3.8. Conclusion & Deficits

Table 3.7.: Evaluation of Related Work with respect to Requirements.
PPPPPPPPPWork

Req. R1
Complex
Sensors

R2
Dynamic
Resources

R3
Human

Interaction

R4
Distributed
Processes

R5
CPS
Sync

R6
CPS
Errors

R7
Self-*

R8
Retrofit

[DMC14] + o o - - - - -

[KSKP11] + - o - - - - -

[SSOK13] + + o o - - - -

[BBDC+15] ++ o o - - - - -

[AKF+14] ++ o o - - - - -

[MRM13] + + o - - - - -

[YBSD16] + o ++ - - - - -

[GKGK16] o + o - - - - -

[BDGP17] + o o - - - - -

[MD17] o o o - - - - -

[SGCG17] o + + - - - - -

[GEPF11] o o - - - - - -

[CS11] + o - - - - - -

[JDK15] o - o - - - - -

[MMG08] - ++ - ++ - - - -

[DTB+15] + + o + - - + -

[PRBA15] + o + + - - - -

[GCFP10] + o ++ o - - - -

[PRS+13] + + o + - - - -

[MCS16] + + o ++ - - - -

[PLM16] o - o - o - - -

[Sto15] - - - - + - - -

[CR15] - + o - + - - -

[RvWLB15] - - - - + - - -

[RSI+17] - ++ + - o - - -

[DRSA12] + o - - + + - -

[Wom11b] + - - - + o - -

[MDCM17] + o o - + - - -

[RBD+09] + + - - - - ++ -

[BDK+15] o o - - o o ++ -

[MMP06] - + - - o o + -

[Fri11] - o - ++ - - + -

[CL08] - + - - - - o -

[HSDV13] o + - o - - ++ -

[OCEP13] o o - - - - + -

[RSA10] o - - - - - ++ -

[Sch09] - - + + - - o -

[WSBL15] + + o - o o + -

[MMS16] + + o - ++ + + -

[XRK08] o - - - - - - o

[PKGV06] + o - - - - + +

[LBK15] o o - - - - + o

[LPS+09] o o - - - - + +

++ = Special Feature (USP); + = supported; o = partially supported; - = not supported

73

3. Related Work

74

4. Modelling of Cyber-physical Workflows
with Consistency Style Sheets

“Simplicity is a great virtue but it
requires hard work to achieve it and
education to appreciate it. And to
make matters worse: complexity
sells better.”

Edsger W. Dijkstra

4.1. Introduction

This chapter focuses on various aspects regarding the modelling of workflows for
cyber-physical systems. With the main goal being the automation of processes and
activities in CPS involving sensors, actuators, complex machines, smart objects and
humans, a more technical and thereby machine-processable imperative description
of operative workflows is required. As pointed out in Chapter 2 and Section 3.3, ex-
isting business process languages (e. g., BPMN 2.0 or WS-BPEL) lack expressiveness
with respect to aspects related to CPS and IoT, are too ambiguous to be interpreted
in a standard way, and contain many elements that are not needed for CPS. The
primary focus of these languages is on modelling Business Processes, which is why
additional formalisms are required to model Cyber-physical Processes. In the fol-
lowing, we present the workflow metamodel used as the underlying formalism to
describe workflows within the scope of this thesis. This workflow language is de-
signed with a focus on the implementation perspective of CPS workflows [PDB+08],
while still providing an abstract view on the underlying “business” processes de-
scribing the behaviour of the CPS. These workflows can be seen as templates or
recipes that define the basic structure–including the flow of activations and data
among the entities of CPS–of processes at design time. However, due to the very
dynamic nature of CPS, instances of these processes have to be (self-)adaptive at
runtime to deal with unanticipated behaviour, exceptions and errors (cf. Chapter 6).

The workflow language presented in this chapter supports the modelling of hierar-
chical workflows and detailed control and data flows. Special process steps are used
to model the interaction with actuators via a variety of services and with multiple
sensors via CEP. User tasks within processes and distributed processes can also be
modelled with the help of the metamodel. We introduce a formalism to specify the
expected (cyber-physical) effects of the execution of process steps and define criteria
for potential failures. In addition, we present a semantic structure for modelling
the CPS and IoT entities, their relations and context, which can be used to specify
necessary requirements a resource has to fulfil in order to execute specific tasks.

75

4. Modelling of Cyber-physical Workflows with Consistency Style Sheets

4.2. Workflow Metamodel

With designing and developing a workflow management system for CPS, we rely
on various principles from software engineering and model-driven software develop-
ment. The metamodel follows principles from object-oriented programming and
component-based software engineering to enable extensibility and reusability of
workflow components. The basic structure of the workflow metamodel is described
in detail in [SKNS13, SKNS15, SHS16].

4.2.1. Process Meta-Level Hierarchy

M3
Process Meta-

Metamodel

M2
Process

Metamodel

M1
Process Model

M0
Process Instance

Component Relation

ProcessStep TransitionProcess

HealthMonitoringProc

HumanTask

AskWellBeing

AskWellBeing_Inst1 HMProc_Instance2

AskWellBeingIf-Trans

AWBif-Trans_Inst1

Figure 4.1.: Process Meta-Level Hierarchy.

Before describing the concepts and elements applied in the workflow metamodel
in detail, we provide a classification of the different meta-levels for processes used
in this work following the Meta-Object Facility (MOF) specifications [Omg08]. Fig-
ure 4.1 shows the runtime view on this hierarchy in UML notation with exemplary
elements on each level. The relationships between two consecutive meta-levels are
instanceOf -relations from the lower to the upper level. Based on the findings from
the OMICRON meta-metamodel for object-oriented processes described in [Sch08],
we assume that Components and Relations are sufficient meta-metamodel elements
(Level M3) to be used for defining the basis for our workflow metamodel (Level M2).
These M3 level classes are instantiated on level M2 to describe the process meta-
model elements, which will be described in detail in the following sections. These
classes are used to create (multiple) models of processes (Level M1) describing

76

4.2. Workflow Metamodel

an abstract workflow (e. g., the Emergency Process in the smart home from Sec-
tion 2.2.2). From these process models, the WfMS creates (multiple) process in-
stances (Level M0) for each process model during process execution at runtime.
Levels M3 to M1 are related to the design time view, whereas level M0 shows the
runtime view on processes. The elements in the individual meta-levels represent only
an excerpt from the complete set of elements, which will be described in the follow-
ing with a focus on process elements on the metamodel level M2. In this chapter,
we will describe core metaclasses regarding the structure of processes and special
process steps that are relevant for discussing the requirements R1–R8. The complete
process metamodel and additional explanations of important classes–however not of
the entire metamodel–can be found in Section C.

4.2.2. Composite Structure

The basic building block and central element of the metamodel (Level M2) is the
Process Step. As workflows in CPS can become very complex, a composition of
process steps is necessary to enable the organizational and functional structuring
of workflows. Following the Composite design pattern [Gam95], we distinguish be-
tween abstract Composite steps containing one or more process steps (substeps) and
Atomic steps as specializations of the abstract Process Step class (cf. Figure 4.2).
Atomic steps (Activities) provide a black-box view on process activities, which can-
not be decomposed any further. An atomic step usually encapsulates a single task,
a function call, a call to a specific service method or micro-service [VGC+15].

Composite steps can be composed of other process steps–atomic steps or other
composite steps (e. g., Loops). A Process is regarded as a composite step forming
a closed, self-contained workflow including other subprocesses, composite steps and
atomic steps. This modular structure leverages extensibility and reusability when
modelling complex processes. However, the metamodel does not impose restrictions
on the level of granularity for a process, a composite step or an atomic activity. The
process designer is responsible for deciding about the process structure, granularity
and composition of process steps based on available interfaces to interact with CPS
devices and services.

Process ProcessStep

CompositeStep AtomicStep

-parentStep 0..1

-subSteps 1..*

Figure 4.2.: Composite Components of the Core Process Metamodel.

77

4. Modelling of Cyber-physical Workflows with Consistency Style Sheets

4.2.3. Component Relations

ProcessStep

PortDataPort ControlPort

TransitionDataType

-type 1

-endDataPorts

0..*

1

-startDataPorts

0..*

1

-targetPort 1

-outTransitions0..*

-sourcePort1

-endControlPorts

0..*

1

-startControlPorts

0..*

1

Figure 4.3.: Ports and Transitions between Process Steps.

Directed Transitions are used to model relations within a process as a directed
graph defining the flow of activations and data along the edges between processes
steps (nodes). In analogy to the concept of software components discussed by Szyper-
ski et al. [SBW99], we view process steps as components providing interfaces–Ports–
for ingoing and outgoing data (Data Ports) as well as for activations (Control Ports).
A port represents an entry or exit point for data or control flow concerning a process
step. This concept is adapted from the Port concept used in the WS-BPEL workflow
language [OAS14] to define abstract interfaces for processes. By connecting these
start and end ports of process steps with the help of Transition relations, the di-
rected flow of activations between control ports and the flow of data between typed
data ports–and therefore between process steps–can be defined (cf. Figure 4.3).
In general, we distinguish between Data Ports and Control Ports, which are both

specializations of the Port class. Data ports are used for modelling data being
consumed by process steps as input parameters or being produced by process steps
as output values. Data ports represent data of a certain Data Type, which can also
be modelled using the process metamodel to have an abstract process-level view on
the data flow. To support the use of data objects of different types, multiple ingoing
ports (startDataPorts) and outgoing ports (endDataPorts) can be contained within
a process step. Control ports are used for connecting process steps that do not
require the processing of ingoing or outgoing data. Diverging control or data flow
can be modelled by using multiple outgoing ports. A process step can also contain
multiple ingoing ports, which may be connected to multiple preceding process steps
to merge control or data flow.
As shown in Figure 4.3, connections between process steps are modelled by using

Transitions, which can be viewed as a directed relation between exactly one port of
a process step (sourcePort association) and exactly one port of another process step

78

4.2. Workflow Metamodel

(targetPort association). A port contains references to all transitions that originate
from it. When modelling composite process steps, there also needs to be a transition
created between the start ports of parent step and its child step, as well as between
their respective end ports. Transitions are only allowed to be created between the
ports of distinct process steps and between process steps on the same hierarchical
level and their direct parents. This cannot be enforced structurally by the model,
but it has to be expressed by using additional constraints and constraint languages.
Figure 4.4 shows an example of a graphical process model including process steps,
which again contain other encapsulated processes that are connected via transitions.

Figure 4.4.: Example of a Process Containing Several Connected Subprocesses.

4.2.4. Process Step Specializations

Thus far, the basic structure of processes has been described with focus on process
steps as components and their composition. In order to increase the expressiveness
of the workflow language, new elements have to be added to describe more complex
control and data flow structures. Figure 4.5 depicts a small set of basic constructs
from common programming languages as extensions that have been introduced as
specializations of composite and atomic process steps. In general, a process step
will be executed if all of its start ports are in an activated state, which corresponds
to the logical AND operation. Other logical connectors for joining the control flow
and modelling more complex activation patterns (e. g., OR and XOR connections)
need to be modelled explicitly. Using the If directive, we can define conditional
join operations based on data at the start ports of the respective process step and
the subsequent activations of TrueTransitions and FalseTransitions w. r. t. the eval-
uation of the If-condition. The forking of control flow into parallel sequences is
modelled by creating multiple outgoing ports and transitions from the correspond-
ing process step to the target process steps (cf. Figure 4.4). Loops are viewed as
extensions of composite process steps, which may contain arbitrary process steps.
Extensions of this class are used to implement Do–While, For and While loops using
loop conditions and counters to define loop behaviour and conditions for loop exits.

79

4. Modelling of Cyber-physical Workflows with Consistency Style Sheets

The object-oriented design of the metamodel facilitates the extensibility of the set
of modelling elements. New specialized process steps can be easily introduced by
extending the atomic or composite process step with new classes in an inheritance
relation. Figure 4.5 shows extensions of the atomic process step to add service
invocations (cf. Section 4.2.8) and data manipulations (cf. Section 4.2.6) to the set
of supported process steps.

CompositeStep

Loop

AtomicStep

If

DataManipulation

OR

XOR

ServiceInvoke

ProcessStep

Figure 4.5.: Extensions of Process Steps via Inheritance.

4.2.5. Process Step Attributes

Process steps have additional attributes to further describe their properties. Names
and Unique identifiers allow for managing process steps and instances. A text
Description can be used to provide a description of the particular process step.

An optional Resource attribute specifies the resource responsible for executing
the process step–in analogy to the Swimlane/Pool concepts from BPMN 2.0. This
attribute is used primarily to provide a network identifier (IP address or host name)
and it can be combined with an additional Distributed flag in case a specific process
has to be executed on a remotely connected process engine (Requirement R4 : Dis-
tributed Processes). To increase the flexibility of this rather static assignment, a
type-based, capability-based or even role-based specification of a resource or its
properties, respectively, could facilitate the dynamic selection of process resources
at runtime (Requirement R2 : Dynamic Resources) [HSKS16b, Sch08].

By adding a domain specific Type attribute to the metaclass, the semantics of a
Process Step can be further described. A corresponding Process Ontology has to be
developed to classify types of process steps (e. g., stating that the current process
step is a Cleaning process or a Fetching process in the Smart Home domain) and
relations among process steps. This classification can then be used to enable runtime
adaptation and composition of processes (e. g. based on inheritance or aggregation
of process steps) as described in [Sch08, SKNS15].

80

4.2. Workflow Metamodel

4.2.6. Data Types and Data Flow

NumericType

DataType

ComplexType SimpleType

-parentType 0..1

-subTypes 1..*

DataPort

-type

1

IntegerType DoubleType

BooleanType

StringType

ListType

SetType

Figure 4.6.: Metamodel for Process Data Definition.

Automating the processing and routing of data flow among process steps, services,
sensors and actuators as well as humans requires more formal descriptions of data
flow and input/output of process steps than it is possible to model with state-of-the-
art workflow languages (e. g., BPMN 2.0 or WS-BPEL). To provide a uniform view
on the data flow, the process metamodel also includes means for defining simple data
types and mappings of input and output data of process steps. In analogy to the
composite pattern used for process components, these data types comprise simple
atomic types (e. g., Integer, Boolean, String, etc.) and more complex self-defined
types including lists, sets and combinations of these simple types (cf. Figure 4.6)
in XML and JavaScript Object Notation (JSON)-like tree structures. With this,
we model the data flow between ports on the process level, which is transformed
automatically to input/output parameters for the specific service calls corresponding
to the process step subclass or presented as input/output forms to the user in case
of human activities. When connecting two data ports with the help of a transition,
type compatibility of these ports is automatically checked by the process modelling
environment (cf. Section 4.8.1). Data type definitions are contained in a Process
and linked to the particular data port by means of an association. A basic form
of scoping for data types and data instances can be achieved by creating a data
type definition in a particular (sub)process, which restricts access to this data type
to data ports of the same process and its child processes, but not to its parent
processes. Figure 4.8 shows control and data ports with associated types for the
Emergency scenario process from Section 2.2.2. The data port at the output of the
AskWellBeing Human Task step represents the user’s response as Boolean value

81

4. Modelling of Cyber-physical Workflows with Consistency Style Sheets

(fine: true, or not fine: false), which is evaluated in the following If process step in
order to either call an ambulance or terminate the process.

(a)

REST service
method(in):out

(b)
0..*

1

1
0..* target

DataDuplication DataExplosionDataImplosion

DataManipulation DataMapping

AtomicStep DataType

+ name

DataPortProcessStep

Figure 4.7.: (a) Meta-classes for Data Flow Modelling. (b) Data Flow on Process
and Service Level.

In addition, mappings between specific (sub)data instances to data instances of
connected process steps’ ports can be specified. Figure 4.7(a) shows the process
metamodel elements used to define typed data ports for process steps and mappings
between data types. In Figure 4.7(b) the flow and mapping of process data to
input data of a REST service call (specialization of ProcessStep class) and the re-
mapping of the service response is presented. This mapping is done automatically
based on metadata in the process model (e. g., the name of the data port) and the
corresponding attributes (names) of the service parameters in the XML or JSON-
based service description.

Figure 4.7(a) also shows extensions of the atomic process step to perform addi-
tional manipulation of data: the DataImplosion process step allows for combining
data from several ports into one data instance; the opposite–decomposing data from
a complex data instance to several ports–is achieved by executing the DataExplosion
step; and the copying of data instances from one port to other ports is modelled
using the DataDuplication step (cf. Figure 4.7(b)). More complex binary data can
be integrated into processes by its resource identifier on local or remote storage.

4.2.7. Escalation Ports, Failure Ports and Failure Branches

Besides Control Ports and Data Ports, the process metamodel includes special el-
ements for error and exception handling. Escalation Ports can be used to define
a certain time frame for a process step after which this port should be activated
automatically. This mechanism is useful in case time-critical behaviour is required
for a process step, e. g., when waiting for a response from a human in an emergency
situation as shown in the example process model in Figure 4.8. Failure Ports will
be activated in case the process engine recognizes errors during the execution of the
respective process step. Both Failure Ports and Escalation Ports can be attached
to a process step only once. The corresponding failure handling steps have to be

82

4.2. Workflow Metamodel

modelled explicitly as a failure branch connected to the respective port. Upon acti-
vation of a failure or escalation port, the main outgoing process branches attached
to the escalated/failed process steps are deactivated.

Figure 4.8.: Emergency Scenario Process Model with Control Flow, Data Flow and
Escalation Port in our Graphical Modelling Notation.

4.2.8. Services

SOAs are the predominant paradigm to couple heterogeneous systems and appli-
cations in a loosely manner [Pap03] (cf. Section 2.3.5). The main focus of current
workflow systems is to provide flexible ways of orchestrating these services across
application and system boundaries (cf. Section 1.1). Many existing workflow engines
and related work base the integration of sensors and actuators in the context of IoT
and CPS on a service-oriented approach (cf. Section 3.3, [MRM13, GKGK16]). By
extending the Atomic Step with several subclasses for service invocations, we are able
to easily connect external system functionality via standardized or proprietary ser-
vice calls. As shown in Figure 4.9, subclasses for the invocation of the more common
standardised service interfaces REST (RESTInvoke), SOAP (SOAPInvoke) and Ex-
tensible Markup Language Remote Procedure Call (XML-RPC) (XMLRPCInvoke)
as well as for more proprietary services based on OSGi (OSGiInvoke) [All03] and
ROS (ROSInvoke) [QCG+09] exist and can be easily extended to support other ser-
vices. RESTful services are the current standard technologies for programming the
IoT whereas SOAP services are predominant in more heavy-weight business appli-
cations [GIM11]. These specialized process steps are the main building blocks for
invoking external functionality on the lowest level of granularity assumed for our
workflows (i. e., on the level of single service methods). Attributes of service invo-
cation process steps usually include a Uniform Resource Identifier (URI), a specific
service or method to call as well as input and output parameters, which are mod-
elled as data ports of the process step. The concrete service call is then created with
the help of these attributes and its response is mapped to the specific outgoing data
ports. The modelling of these process-based service invocations can be supported by
loading and automatically parsing a document containing a formal description of the
respective service (e. g., a WSDL or WADL file) from which the service parameters
and input/output ports are generated automatically. In Figure 4.8 two service calls

83

4. Modelling of Cyber-physical Workflows with Consistency Style Sheets

are modelled as part of the emergency process: a REST call for invoking an external
emergency service in the Cloud; and an OSGi call for activating the door actuator
to open the entrance door. In case the functionality to be invoked via a process is
accessible only locally and not through a service-based interface, a LoadClassStep
exists as another specialization of an atomic process step. This process modelling
element allows for loading arbitrary Java classes and invoking the desired methods
using the Java Reflections Application Programming Interface (API).

AtomicStep

ServiceInvoke

+ uri
+ method

ProcessStep

RESTInvoke SOAPInvoke XMLRPCInvoke ROSInvoke OSGiInvoke

Figure 4.9.: Metamodel Extensions for Service Calls.

4.2.9. Events and Event Abstractions

The concept of events in workflow languages evolved from EPCs as proposed by
Scheer within the ARIS framework [Sch13] to a large set of different event types
in the BPMN 2.0 specification and its application in service-oriented workflow en-
gines [SVDS12]. Events from various physical and virtual sensors and other sources
also play an important role in CPS [Tal08]. Section 2.6 discusses the integration of
sensors and actuators as a key requirement to manage workflows in CPS in detail
(Requirement R1). As concluded from the discussion of related work in Section 3.3,
the modelling of single sensor sources (e. g., as proposed by Domingos et al. [DMC14]
or Meyer et al. [MRM13]) is not feasible for large scale sensor and event networks
that make up CPS. Therefore, we rely on a pattern-based approach to evaluate
possibly large event streams using CEP for sensor event abstraction [SSOK13] and
processing as proposed by Baumgraß et al. [BBDC+15].

In our metamodel, an Event is an extension of an atomic process step (cf. Fig-
ure 4.10(a)), i. e., it is modelled as a process step containing input and output ports,
which are connected to other process steps. An EPL statement is used for defining
the activation pattern of a TriggeredEvent process step, i. e., an event triggered by
external events and consumed by the process instance. This process step is acti-
vated once all its ingoing ports are active. Then a listener for the defined event

84

4.2. Workflow Metamodel

(EPL) pattern is registered and the execution waits and analyses event data with
respect to the pattern. Once the pattern can be detected, the outgoing ports of the
TriggeredEvent step are activated and the execution continues (cf. Section 5.2.4).

The Structured Query Language (SQL)-like EPL provides a very expressive syntax
to describe patterns within event streams [Luc02]–from simple ECA rules to complex
activation patterns based on temporal conditions, event combinations or arithmetic
operations. These patterns can be defined on the level of single event instances with
respect to low-level sensor events to aggregated events on a higher level; on the level
of event types; and also depending on multiple events of different types. Compared
with simple ECA rules and the large set of ambiguous events existing in BPMN 2.0,
EPL statements are more expressive and suitable to be used in CPS [BCD+15].
However, the specification of these events is rather complex and requires domain
knowledge as well as advanced knowledge of the EPL syntax and available events
and their attributes.

AtomicStep

HumanTask

AtomicStep

(a)

(b)

TriggeredEvent

+EPL

Event

TriggeringEvent

Figure 4.10.: (a) Event Extension and (b) Human Task Extension of Atomic Process
Steps.

The TriggeredEvent process step in Figure 4.8 contains an EPL statement for
the emergency scenario process, which defines the activation (triggering) of that
particular event if the sensor events from the health monitor regarding the blood
pressure of person Alice will drop below 100mmHg systolic and 60mmHg diastolic
on average within 180 seconds. Once this process step is activated, a listener for this
particular EPL statement is created. The event and its outgoing ports become active
if the pattern is detected by the CEP engine within the event cloud (cf. Section 5.2.4).
This triggered event is specified on the level of the process model, but it refers to a
particular instance of a person, i. .e, there has to be a process model dedicated to
each resident of the AAL-enabled smart home. The EPL patterns and related data
models do not impose restrictions on the properties of an event, though. Events
can also be defined on the type level given the data model and intention of the
respective process allow such a specification. The specific event payloads that led to
the activation can be transferred to succeeding process steps using data ports and
event names as matching criterion for the mapping between event and data port.

85

4. Modelling of Cyber-physical Workflows with Consistency Style Sheets

Using the TriggeringEvent class, events produced by the process instance and
inserted into the event cloud are defined. Once all of these process step’s ingoing
ports are active, an event is emitted having the ingoing data port’s data instances as
payload. This higher level event can then again be used as part of an event pattern
defining the activation of a TriggeredEvent. The data model that defines event types
used by the CEP engine is derived from the Knowledge Base (cf. Section 4.3).

4.2.10. Human Tasks

The integration of and interaction with humans is discussed as an important re-
quirement to expand CPS towards Ubiquitous Systems [Wei91] in Section 2.6 (Re-
quirement R3). To integrate human activities into workflows, we extend the meta-
model’s atomic step with a special Human Task process step (cf. Figure 4.10(b))
in analogy to the WS-HumanTask specification from the WS-BPEL4People exten-
sion [KKL+05, AAD+07]. A human task represents an activity within the process
that needs to be executed by humans, e. g., to provide data, to react to errors, or
simply to confirm the execution of a manual task so that the process instance can
continue. The data at the human task’s ingoing ports as well as its description
should be presented to the user in order to communicate the task at hand. A suit-
able way for entering required data at the outgoing data ports should be offered to
the user (cf. Section 5.6.2). A control port at the end of the respective human task
would suffice in case a simple confirmation that a task has been completed by the
user is needed. Figure 4.8 shows a HumanTask process step within the emergency
scenario process used to enquire the resident about her/his health. The process
step’s outgoing data port is of type Boolean representing her state of health de-
pending on her answer (fine or not fine). A simple client application presents this
human task including its description and an option to answer the question on her
mobile end-user device (cf. Section 5.6.2).

4.2.11. Summary

Thus far, a metamodel for describing complex workflow structures including control
flow and data flow has been introduced. The complete process metamodel can be
found in Section C. This metamodel can be used to define executable workflows for
CPS with respect to requirements R1–R4 identified in Section 2.6. The Emergency
Process example scenario presented in Figure 4.8 shows the application of the meta-
model to define a complex CPS workflow. The focus of the workflow metamodel
is on the rather static integration of services, events and humans as basic building
blocks of workflows in CPS. However, adding the capabilities of dynamic service se-
lection, cyber-physical synchronisation and self-adaptation/self-management to the
list of supported features (Requirements R2, R5–R8) for CPS workflows requires
more information to be added to the process models. One of the central compo-
nents of self-managed systems described in the following section is the Knowledge
Base containing all relevant information that is used for modelling domain specific
behaviour and for enabling self-* capabilities (cf. Section 2.4.5).

86

4.3. Knowledge Base

4.3. Knowledge Base

The MAPE-K feedback loop is one of the central principles from the engineering
of self-managed systems field [DLGM+13]. The individual phases of this loop rely
heavily on the information contained in a Knowledge Base shared among the entities
of the CPS. The knowledge base stores the models used to describe the CPS entities
and workflows as well as their contexts. It also contains and updates runtime and
history information regarding the respective instances. In order to increase the
resilience of the WfMS, this information is used within the individual MAPE-K
phases as shared Knowledge for analysis and planning purposes (cf. Chapter 6).

Figure 4.11.: Parts of the Context Model for an Instance of a Light Sensor.

In our work, the knowledge base is founded on the DogOnt ontology, which pro-
vides an ontological model for describing intelligent domotic environments [BC08,
BGT17]. This ontology follows a functionality and capability-based approach for
the semantic description of sensors and actuators–including their context–in smart
home settings. Therefore, it is suitable to be used as the basic model to describe
CPS entities within the scope of this thesis. We combine and apply this ontol-
ogy to the openHAB middleware1 and its entities (Items as first class citizens).
The following sections show the application of the DogOnt ontology to model CPS
devices–Items–from openHAB (e. g., sensors and actuators) and exemplary exten-
sions that we introduced to model workflow related data as well as more complex
combinations of sensors and actuators in the form of robots and humans. These
models are described in more detail in [HSKS16b, SSAS15]. We decided to use a
semantic model (Ontology) as foundation of our knowledge base as it provides a bet-
ter expressiveness for modelling entities, concepts and their relations among each

1https://www.openhab.org/

87

https://www.openhab.org/

4. Modelling of Cyber-physical Workflows with Consistency Style Sheets

other and it allows for deriving new knowledge via inference, which will be useful
for future extensions of the system [KKMZ17].

4.3.1. Sensors

Sensors are vital elements of CPS and IoT. Figure 4.11 shows details of the sensor
model graph in the knowledge base for an instance of an ambient light sensor (am-
bient light 1 node). Besides its type (Light Sensor), the knowledge base contains a
URI and a unique identifier; its context (i. e., physical location Kitchen and associ-
ated location coordinates within a map of the building); its functionality and type
(Light Sensing); and its state including the concrete value for the current luminance
of this sensor instance (node1b). The Type classes associated with a sensor represent
the physical values being measured by the respective sensor. They are also the basis
for the event data model applied within the CEP engine (cf. Section 4.2.9).

4.3.2. Actuators

Figure 4.12.: Parts of the Context Model for a Dimmer Switch.

In analogy to sensors, actuators are also represented within the knowledge base
as shown for two instances of light dimmer switches (Dimmer1 and Dimmer2) in
Figure 4.12. The State node represents the current state of the light switch (i. e., its
power level in percent). Its Light Level Control functionality refers to light level
control commands as nodes (On, Off, Up, Down), each of which can be invoked
via a specific service URI. These states and commands are derived from openHAB’s
internal model for actuators. The Light Level Control functionality also has a rela-
tion to the Light Intensity node. This relation is used to connect actuators to the
physical values they are able to manipulate and therefore to also connect them to
the respective sensors. Listing 4.1 shows the textual representation of an instance of
a HomeMatic KeyMatic door actuator in Resource Description Framework (RDF)
notation for semantic data following the Manchester syntax [HDG+06, HSKS16b].

88

4.3. Knowledge Base

Listing 4.1: Instance of a HomeMatic KeyMatic Door Opener in RDF Description.

1 instance:Thing_keymatic_1

2 rdf:type dogont:DoorActuator;

3 dogont:hasFunctionality instance: Function_Keymatic_1;

4 dogont:hasState instance:State_Keymatic_1;

5 dogont:isIn instance:Lobby_0 .

6

7 instance:Function_Keymatic_1

8 rdf:type dogont:OpenCloseFunctionality .

9

10 instance:State_KeyMatic_1

11 rdf:type dogont:OpenCloseState;

12 dogont:hasStateValue [rdf:type dogont:OpenStateValue;

13 dogont:realStateValue "CLOSED"^^xsd:string] .

14

15 instance:Lobby_0

16 rdf:type dogont:Lobby;

17 rdfs:label "Lobby"^^xsd:sring .

4.3.3. Robots

The previous sections describe how to integrate relatively simple sensors and actua-
tors into the knowledge base used in the context of this thesis. Robots are currently
on the verge of becoming ubiquitous assistants throughout almost all domains and
phases of everyday lives [SG07]. They are perfect examples of more complex com-
binations of sensors and actuators, which interact with each other and require more
abstract models and levels of detail to be represented in the knowledge base.

Robots are usually composed of several subdevices–either sensors, actuators or
computational units–which can be represented as individual entities (Items) belong-
ing to the robot’s context in the knowledge base. Figure 4.13 shows the example of
a TurtleBot service robot having several subcomponents (e. g., a Kobuki locomotion
engine, an Asus Xtion camera and a control laptop). The robot has a set of runtime
metrics (RTMetric) including the power/battery level and a liveliness timestamp
(heartbeat) as well as its current location based on a map of the respective building.
As the robot may also be able to host an instance of the workflow engine, it can
have several (sub)processes running on its computing unit. A robot’s functionality
can become very complex and specific for that robot type. The level of detail nec-
essary to describe all properties and functionality may become to fine grained and
implementation-specific to be able to support a wide range of service robots. In
addition, the composition of workflows involving service robots or the development
of robotic applications may also be hindered by the complexity and level of detail
of current robot control software (e. g., ROS [QCG+09]). Therefore, the knowledge
base contains the hasCapability relation to have a more abstract and general view
on a robot’s capabilities–with a service robot being an example of a complex com-
bination of sensors and actuators. In Section A, we present the DROiT API –an
approach of a capability-based abstraction for the class of small domestic service
robots as described in [SSAS15]–and its underlying models for implementing the
abstraction for concrete service robots and the capabilities shown in Figure 4.13.

89

4. Modelling of Cyber-physical Workflows with Consistency Style Sheets

Figure 4.13.: Parts of the Context Model for a TurtleBot Robot.

The aforementioned models based on the DROiT API are one example of ab-
stracting and integrating more complex CPS devices into the knowledge base. The
capability-oriented approach provides a more abstract view on the robots than the
functionality-based approach, which is why it can be applied to a wider range of
service robots. Application development and workflow integration are simplified as
many implementation and technological details regarding the offered capabilities are
hidden behind the API. Capabilities integrate well with the knowledge base provid-
ing an additional view on the CPS devices. We have used the DROiT API within
various workflow related use cases and CPS applications [SLSS16, SNS14a, SHA17,
SNK+15]. Besides an easier integration and support of a wider range of robots–due
to it being on a more abstract level–the capability-based abstraction also facilitates
the dynamic resource selection at runtime. Applications and workflows can request
a suitable device based on required capabilities (e. g., a robot able to fetch things),
which may result in more resources available and able to execute the specific task
than using functionalities or other properties to specify resource requirements.

In general, the simplification of complex functionality CPS devices provide to a
more abstract view is a necessary step to integrate these devices into the knowledge
base and to use their functionality and capabilities on the workflow level. In our ap-
proach, we represent the complex device as well as its set of possible subcomponents
as main entities. The functionality of the device and with that, its capabilities vary
depending on the availability of certain components. This abstraction process of
viewing complex devices as a composition of smaller devices, which add functional-
ities and capabilities to the overall system can also be applied to other CPS devices
(e. g., production machines, household appliances or personal devices). CPS devices
interact with physical objects and their environment, which requires a certain degree
of context awareness and a representation of objects and locations as their physical

90

4.3. Knowledge Base

contexts in the knowledge base. By also including these concepts (here: Movement-
Target and GrabbingTarget locations) in our abstract models (cf. Section A), we
enable their augmentation with additional context information (e. g., the physical
conditions at a movement target or the physical location of a grabbing target).

Robots are also good examples to show the complex interactions of sensors, ac-
tuators and computing units. Programmed processes run on various levels of the
hardware platforms: within single devices (e. g., microprocessors controlling specific
motors or processing camera data), single systems (e. g., computers controlling the
entire robot), or across system boundaries (e. g., workflows orchestrating multiple
devices in the smart home) (cf. Section 2.5.1). The focus of this work is on the latter
level of workflows among systems and systems of systems (PACPS). Functionalities
and capabilities of a device or a system have to be accessible via service-based in-
terfaces in order to be included in a process model. The invocation of a service
from the workflow layer may trigger internal processes on the device or system level,
which are regarded as black boxes and not considered by this work. That way, more
(safety-) critical and other safety-related features can be implemented closer to the
actual hardware involved in the respective processes. For example, the processes
regarding obstacle avoidance can be executed directly on the computer controlling
the robot and not necessarily by the workflow engine.

4.3.4. Humans

CPS, IoT and especially ubiquitous systems put a strong emphasis on integrating
users into the overall systems, which is why the representation of a person is also
needed in the knowledge base (Requirement R3 : Human Interaction). However,
there is only little to no related research regarding the ontological representation of
humans, their capabilities and contexts. The Friend Of A Friend (FOAF) ontology
mostly specifies properties of persons and their relations among each other [GCB07].
The SOUPA ontology adds more properties as well as Beliefs, Desires and Inten-
tions (BDI) from agent-based systems to the models to describe goals and plans of
people [CPFJ04]. These works focus on humans as central entities of the whole sys-
tem. In our approach, people are considered as first class citizens of the CPS along
with the aforementioned sensors, actuators and more complex entities. In analogy
to sensors and actuators described in the previous sections, the Person class in
the knowledge base is also linked to context factors (e. g., a location) as well as to
capabilities the individual instance of a person has (e. g., grabbing, movement or
communication from the robot example in Section A). The SOUPA ontology could
be used to extend the information in the knowledge base with respect to humans,
their behaviour and intentions in the CPS.

4.3.5. Workflows

Workflow-specific data is contained in the knowledge base according to the descrip-
tions in previous sections of this chapter. This information comprises process (step)
and instance attributes as well as the runsOn relation, which links a (sub)process
instance to its executing device (i. e., resource) as shown in Figure 4.13. Additional
process-related data concerning the physical effects of activities will be introduced
in Section 4.5. Goals and Objectives will be used to describe and verify the expected

91

4. Modelling of Cyber-physical Workflows with Consistency Style Sheets

outcome of the process execution, to detect exceptions and undesired behaviour, and
to adapt the process in case of errors.

4.4. Dynamic Services

Figure 4.14.: Extension of the Workflow Metamodel for Dynamic Service Selection.

Thus far, components within CPS can only be accessed based on rather static
IoT service address definitions and requests (cf. Section 2.4.4). As pointed out in
Section 2.6 (Requirement R2 : Dynamic Resources), the availability of devices and
resources within CPS may vary heavily over time, making static service calls infea-
sible and error prone [CSOL15]. Therefore, the workflow metamodel also supports
special process steps to enable a more general (under-)specification of workflow ac-
tivities as described in [HSKS16b]. This specification relies on semantic SPARQL
Protocol And RDF Query Language (SPARQL) queries to be executed on the un-
derlying ontology. The queries specify necessary functionalities, capabilities and
context constraints of resource instances available from the knowledge base (cf. Sec-
tion 4.3) to execute the respective workflow task. As suggested in [DBBM11], a
semantic model to describe the components of an IoT environment is feasible to
enable a more dynamic and flexible discovery of resources and services. We distin-
guish between three types of SPARQL-based knowledge base (ontology) queries as
subclasses of a Semantic Invoke (cf. Figure 4.14) process step to retrieve specific
devices, IoT service parameters associated with the device functionality, or sensor
values from the knowledge base:

• Semantic Select: This query is used for a one-time retrieval of the current
state of actuators or values of sensors in a certain context. Listing 4.2 shows an
exemplary query for retrieving the current brightness level in a given location.

• Semantic Ask: This query is used for a one-time retrieval of certain data
and values (e. g., sensor values) from the knowledge base and evaluating these
values based on a given condition. Listing 4.3 shows an exemplary query for
checking if the brightness levels in the current location are below 290.1 Lux.

92

4.4. Dynamic Services

Listing 4.2: Semantic Select Query for Retrieving Current Luminance Levels.

1 SELECT ?realLoc ?curRealLoc ?lightState ?currentValue

2 WHERE {

3 instance:State_Current_Location dogont:hasStateValue ?

stateValue .

4 ?stateValue dogont:realStateValue ?curRealLoc .

5 ?thing dogont:hasState ?lightState .

6 ?lightState dogont:hasStateValue ?lightValue .

7 ?lightValue rdf:type ?type.

8 ?type rdfs:subClassOf* dogont:BrightnessStateValue .

9 ?lightValue dogont:realStateValue ?currentValue .

10 ?thing dogont:isIn ?loc .

11 ?loc rdfs:label ?realLoc .

12 FILTER (? curRealLoc = ?realLoc)}

Listing 4.3: Smenatic Ask Query for Checking Current Illuminance Levels.

1 ASK

2 WHERE {

3 instance:State_Current_Location dogont:hasStateValue ?

stateValue .

4 ?stateValue dogont:realStateValue ?curRealLoc .

5 ?thing dogont:hasState ?lightState .

6 ?lightState dogont:hasStateValue ?lightValue .

7 ?lightValue rdf:type ?type.

8 ?type rdfs:subClassOf* dogont:BrightnessStateValue .

9 ?lightValue dogont:realStateValue ?currentValue .

10 ?thing dogont:isIn ?loc .

11 ?loc rdfs:label ?realLoc .

12 FILTER (? curRealLoc = ?realLoc && xsd:double (? currentValue

) < 290.1)}

• Semantic Command: This query is used for finding certain types of actu-
ators in a specific context. The execution of an instance of this process step
leads to the invocation of the respective functions as defined in the query for
all instances of actuators matching the query criteria. Listing 4.4 shows an
exemplary query for finding all actuators of type Dimmer Switch in a given
location able to execute the OnCommand.

In addition, we support the specification of a goal within a GoalBasedInvoke pro-
cess step for defining the outcome of a certain process and additional non-functional
properties using the TROPOS specification methodology [BPG+04]. These speci-
fied goals are evaluated and partially converted into the SPARQL queries described
above [HSK+16]. More detailed elaborations by Huber on applying goals and the
TROPOS methodology for dynamic service discovery and workflow adaptations for
role-based resources in the IoT can be found in [Hub18]. These more abstract spec-
ifications of properties and context constraints that need to be fulfilled by process
resources in order to execute the respective tasks enables a more flexible allocation

93

4. Modelling of Cyber-physical Workflows with Consistency Style Sheets

Listing 4.4: Semantic Command Query for Retrieving Dimmer Actuators.

1 SELECT ?func

2 WHERE {

3 instance:State_Current_Location dogont:hasStateValue ?

stateValue .

4 ?stateValue dogont:realStateValue ?curRealLoc .

5 ?thing dogont:hasFunctionality ?func .

6 ?thing rdf:type ?thingType .

7 ?thing dogont:isIn ?loc .

8 ?thingType rdfs:subClassOf* dogont_DimmerSwitch .

9 ?func dogont:hasCommand ?cmd .

10 ?cmd rdf:type ?cmdType .

11 ?cmdType rdfs:subClassOf* dogont:OnCommand .

12 ?loc rdfs:label ?realLoc .

13 FILTER (? realLoc = ?curRealLoc)}

of resources at runtime. Available resources and their specific service addresses do
not have to be known at workflow design time. They can be discovered and invoked
dynamically based on the presented queries, model and instance information con-
tained in the knowledge base. In addition, the complexity of process models can be
reduced as not every service invocation has to be modelled as an individual process
step for multiple devices or services. The results of the semantic invoke extensions
may comprise the querying and triggering of multiple sensors and actuators that
match the specified criteria. That way, we can for example trigger all lights in a
specific room to be switched on without requiring a priori knowledge about avail-
able light sources and without the specification of the individual process activities
to switch on each individual device.

4.5. CPS-related Workflow Effects

Thus far, we are able to specify ordered sequences of process steps and activities to
be executed as part of CPS workflows. These workflows may include–besides logic
and other elements for manipulating the control flow–interactions with static and
dynamic services, actuators, sensors and humans. The meta-classes and attributes
presented in previous sections are used to define active and reactive conditional
actions including control flow and data flow similar to other high-level workflow
languages. In order to verify the successful execution of the individual activities or
detect the occurrence of exceptions and errors, we also need a way to specify success
and error criteria regarding the expected outcome and effects of executing a process
step in the physical world and in the virtual world.

4.5.1. Metamodel Extensions

One of the major differences of CPS workflows compared to “traditional” business
workflows is their ability to also influence the physical world. As pointed out in
Section 2.5, these physical effects have to be taken into consideration when executing
an instance of a CPS workflow. The synchronization of the digital model of the

94

4.5. CPS-related Workflow Effects

physical world with the actual real world states (Cyber-physical Synchronization) to
achieve Cyber-physical Consistency (cf. Section 4.6) is an important requirement for
engineering resilient CPS workflow management systems (Requirements R5–R7 in
Section 2.6). However, current workflow languages do not support the specification
of the relevant CPS aspects regarding the physical effects and outcome of processes.
Therefore, we propose an extension of the previously described metamodel to also
specify these effects as described in [SHHA16, SHHA17]. These extensions can also
be applied to other workflow modelling languages such as BPMN 2.0 or WS-BPEL.

ProcessStep

AtomicStep (Activity)

Process

CompositeStep

<<Interface>>

CpsStep

+ cyberPhysical

1 .. *-subSteps

0 .. 1-parentStep

Goal

 + goalName

0 .. 1

Objective

+ objectiveName

+ contextPaths

+ satisfiedCondition

+ compensationCondition

+ state

1 .. *

FailurePort

0 .. 1

CompensationAction

fulfills 1 .. *

0 .. *fulfilled by

Figure 4.15.: Metamodel Extensions for Specifying Effects/Success Criteria in Ob-
jectives for the Workflow Execution regarding CPS Aspects.

Figure 4.15 shows the proposed extensions for the process metamodel described
in Section 4.2 in UML notation. Process steps–either composite process steps or
atomic process steps (Activities in BPMN 2.0)–have to implement the new CpsStep
interface, which adds the cyberPhysical property to the respective process step. This
attribute indicates if the respective process step influences the physical world. In case
this is true, a Goal Go can be specified to define the domain-specific outcome, effects
regarding relevant context factors, and success and error criteria for the process step
as proposed in [KK12]. This more declarative goal-oriented approach is especially
suitable for complex SoS, because modelling every possible outcome and error as
well as possible compensations for the process step in question and associated fail-
ure handling process branches is not feasible [Kop13, MPMR16]. The cyber-physical
flag is used in combination with the goals to decide about the selection of appropriate
compensation actions in the MAPE-K loops for exceptions that occurred (cf. Sec-
tion 6.3). Regarding the error compensation for cyber-physical process steps, we try
to find replacement actuators in the same context as the original process resource
and invoke the respective commands to execute similar functionality.
The Goal property Go = (gn,O) consists of a Goal Name gn and a set of Objec-

tives O = {o1, . . . , on} that need to be fulfilled to confirm the successful execution of
the process step and ensure cyber-physical consistency CPC (cf. Definition 4.1). An
exemplary goal Go of a process activity or subprocess could be gn =’provide enough

95

4. Modelling of Cyber-physical Workflows with Consistency Style Sheets

Listing 4.5: Query Specifying the Context Path to a Specific Light Sensor.

1 MATCH (kitchen) -[: instanceOf]->(room)

2 MATCH (light) -[: instanceOf]->(sensor)

3 MATCH (light) -[:isIn]->(kitchen)

4 RETURN light.value AS lightIntensity

light for working in the kitchen’. This goal includes the objective o1 for the process
step to increase the light levels in a certain room (here: kitchen) above a certain
threshold (here: 700 Lux) within a certain time frame (here: 5 seconds). In case one
of the objectives cannot be fulfilled, an error is assumed and a CompensationAction
for this error has to be searched for (Requirements R5 and R6). The compensa-
tion action is derived in the Plan phase of the MAPE-K feedback executions based
on the occurred mismatch and suitable compensation queries from a compensation
repository (cf. Section 6.2). A compensation action is able to fulfil one or more
objectives. On the other hand, multiple compensation actions may be necessary to
fulfil an objective or an objective cannot be fulfilled by compensation actions at all.
An objective oi = (on,CP, sc, cc) contains an Objective Name on and the following
attributes (cf. Figure 4.15).

Context Paths

The context paths CP = {cp1, . . . , cpn} specify paths cpi to relevant context at-
tributes ci ∈ SP,t of the actual state as measuring points to be monitored during
the execution of the process step. These measuring points can be sensor data,
process-related events or other context factors that are influenced by the process
(cf. Section 4.6). As there is no need for using inference or semantic data at this
point, the information contained in the knowledge base (cf. Section 4.3) is viewed,
stored and processed based on a graph G = (V,E) with the vertices V being entities
within the knowledge base (here: graph database) and the edges E being relations
between these entities. With the large number of interconnected devices and enti-
ties that make up CPS and the IoT, graphs and graph databases are usually more
feasible, expressive and faster than classical object relational databases or semantic
triple stores when processing data and evaluating relationships at runtime [RWE15].
A context path cpi is a path along the edges (x1, . . . , xn) ∈ E within the graph G
(representing the structure of the CPS) specified using a graph query written in
the Cypher graph query language for Neo4j databases [Web12], which are the tech-
nological foundation of the graph database used at this point. The graph query
represents a path pointing to a specific vertex c

′
i ∈ V , which represents data nodes

(context values) in the knowledge base. An exemplary context path cpi leading to
the value of a light sensor node ci ∈ SP,t (lightIntensity) in the kitchen written as
Cypher query is shown in Listing 4.5.

Satisfied Condition

The satisfied condition sc defines the criteria for fulfilling the particular objective oi
with the left side referring to context attributes ci,t at time t from the physical

96

4.5. CPS-related Workflow Effects

Listing 4.6: Satisfied Condition for Successful Light Switching.

1 #lightIntensity > 700

Listing 4.7: Compensation Condition for Erroneous Light Switching.

1 #objective.created.isBefore (#now.minusSeconds (5))

state SP,t as addressed by the respective context path cpi and the right side defining
the corresponding assumed/expected context attribute c

′
i,t from the virtual process

state SC,t as target value. If this condition can be evaluated positively, the ob-
jective oi belonging to the particular process step is assumed to be fulfilled. If all
satisfied conditions for a goal are true, then cyber-physical consistency is maintained
for the respective process step. An exemplary satisfied condition (written in Spring
Expression Language (SpEL) [JHA+13]) requiring the light level (ci,t) to be above
a certain threshold (700 Lux) is shown in Listing 4.6.

Compensation Condition

The compensation condition cc is used to specify a Boolean error/exception criterion,
which suggests that the execution was not successful and an error occurred (when
true). This condition may include context data ci from the physical state SP,t

specified in the context paths cpi ∈ CP as well as special functions and additional
context data, e. g., time frames or averages. The compensation condition is used
to indicate the need for finding a compensating action to handle the occurred error
(Requirement R6 : CPS Errors). An exemplary compensation condition written
in SpEL testing if an objective was created more than 5 seconds ago is shown in
Listing 4.7. We assume that after a maximum of 5 seconds there should be a
significant change within the light levels, otherwise there is a malfunction regarding
the light switch actuator.

State

Figure 4.16.: Example Process with Failure Port and Human Task in Failure Branch.

97

4. Modelling of Cyber-physical Workflows with Consistency Style Sheets

This attribute adds a runtime state to the individual objective. An objective can
be satisfied, unsatisfied, in need of compensation, or failed. If the satisfied condi-
tion sc can be evaluated positively, then the objective is in state satisfied. The need
for compensation can be determined by evaluating the compensation condition cc.
If neither condition is true, the objective is of state unsatisfied. In case the objective
cannot be fulfilled by the MAPE-K feedback loop, i. e., a compensation is needed
but cannot be found, it enters the failed state. The overall goal is fulfilled if all of
its objectives are satisfied (i. e., all relevant sensor values as defined in the objectives
indicate the fulfilment of the goal and therefore the successful execution). At that
point, cyber-physical consistency for the respective process step is presumed and
the process execution continues. As shown in Figure 4.16, a Failure Port may be
specified as part of the cyber-physical process step (cf. Section 4.2.7). This port
will be activated in case the process step’s goal (i. e., at least one of its objectives)
cannot be fulfilled (i. e., a compensation for the occurred error cannot be found).
This activation will then trigger the manually modelled process branch connected
to the failure port to be executed. By adding a dedicated process branch for un-
resolvable error cases to the failure port, the process designer is able to specify the
fallback process behaviour for that specific error case/exception using all concepts
of the workflow language. With respect to the smart lighting scenario, this error
branch may include a Human Task, which notifies the user to check the lamps in
the specific room manually in case no compensating action for the broken lights
can be found. Figure 4.16 shows an example process that contains the invocation
of a REST service to switch on a specific dimmer. This process step is annotated
with the goal “enough light for working”, which was described in previous sections.
In case the goal cannot be fulfilled due to missing compensation actions (e. g., no
alternative light switches are available), the process step’s failure port is activated
and a human task triggered to inform the user. Other BPM systems and notations
may be extended in a similar way to use failure branches or other built-in means for
error, exception or compensation handling.

Knowledge Base Extensions

Figure 4.17.: CPS-related Workflow Data in the Knowledge Base.

Goals, objectives and their states are also contained in the knowledge base for
further processing. Figure 4.17 shows an extract from the knowledge base with
CPS-related workflow data. An instance of the cyber-physical Light Control process
step runs within the context of the smart home. It has the goal “Enough light for
working”, which includes the objective of providing a certain level of light intensity as

98

4.5. CPS-related Workflow Effects

described in Listings 4.5 and 4.6. The states of the objectives and goals are stored
as attributes of the particular nodes. We also store the respective compensation
actions that were executed for the specific objective in case of an erroneous process
step needing compensations. The example in Figure 4.17 shows that UP commands,
which are part of the light level control functionality of a dimmer (cf. Figure 4.12)
were executed for two dimmers in order to fulfil the objective.

4.5.2. General Applicability of Goals and Objectives

ProcessStep

AtomicStep (Activity)

Process

CompositeStep

<<Interface>>

ManagedStep

+ managed

1 .. *-subSteps

0 .. 1-parentStep

Goal

 + goalName

0 .. 1

Objective

+ objectiveName

+ contextPaths

+ satisfiedCondition

+ compensationCondition

+ state

1 .. *

FailurePort

0 .. 1

CompensationAction

fulfills 1 .. *

0 .. *fulfilled by

Figure 4.18.: Generic Metamodel Extensions for Specifying the Effects/Success Cri-
teria in Objectives for Managed Process Step Executions.

Goals and objectives can also be used to specify non-CPS related aspects and
success criteria that need to be fulfilled upon execution of a process (step). These as-
pects may comprise QoS levels (e. g., throughput or latency requirements for certain
operations) [OCEP13], Key Performance Indicators (KPIs) [KK12] or limitations
on other physical or virtual context factors (e. g., restrictions on the overall energy
consumption of a subprocess [SGCG18]). These metrics have to be contained in the
knowledge base of the individual instance of the process management system and
they have to be reachable via respective context paths. Due to the composite struc-
ture of a process, goals and objectives can be specified on various levels (i. e., on the
process level, subprocess level or atomic task level). The process modeller is respon-
sible for specifying these goals in a non-conflicting and non-contradicting way. With
goals comprising objectives related to various aspects of the process execution the
requirement R7 of adding the capability of self-adaptation and self-management to
processes can be achieved in a sophisticated way. Figure 4.18 shows our generalized
proposition of the process metamodel to support the definition of managed process
steps based on goals and objectives. The ManagedStep interface adds the managed
attribute as well as goals and objectives to the respective process step in analogy
with the CpsStep interface described in Section 4.5.1. This way, objectives related
to virtual context factors and criteria can be specified, and compensation actions for

99

4. Modelling of Cyber-physical Workflows with Consistency Style Sheets

occurred errors can be derived, too. The selection of suitable strategies for deriving
compensation actions depends on the respective attributes of the managed process
steps. For erroneous cyber-physical process steps, we describe the selection strat-
egy of choosing similar actuators or functionalities as replacements in Section 6.3.
For erroneous managed distributed subprocesses, we describe the strategy of repeat-
ing the execution of the same subprocess on another peer in Section 6.4. General
elaborations on the selection process for managed process steps can be found in Sec-
tion 6.2. Depending on the preferred strategies for selecting suitable compensations
for self-management of process steps, additional attributes or classifications of use
cases and desired behaviour of the MAPE-K loop have to be added to the managed
process steps and Compensation Repository (cf. Section 6.2).

4.6. Cyber-physical Consistency

A goal Go aggregates objectives oi ∈ O that define the expected influence of a par-
ticular process step on the physical world. As pointed out in requirement R5, the
aspect of Cyber-physical Synchronization is especially important for CPS to ensure a
consistent view between the virtual and physical world (cf. Section 2.6). The infor-
mation contained in the goals is used to check if the process execution was successful
and if its outcome is as expected (w. r. t. the satisfied condition sc) or–if not–to find
possible compensation actions for the erroneous process instance (w. r. t. the com-
pensation condition cc). In this work, the notion of Cyber-physical Consistency CPC
is introduced as an extension of the well-known Atomicity, Consistency, Isolation,
Durability (ACID) criteria for distributed systems and databases [GR92].

State
Synchronization

Actuator
Call

C
yb

er
 W

or
ld

Sm
ar

t H
om

e

SwitchOnLight

Start End

Ph
ys

ic
al

 W
or

ld

H
om

e Activate
Light
Switch

assumed
state

actual
state

Response

SC,t

SP,t

Figure 4.19.: Synchronization Between Cyber World SC,t and Physical World SP,t.

In order to verify that the process execution is in a state of cyber-physical consis-
tency, its assumed physical state (Cyber State SC,t as defined as target values in the
satisfied conditions of process objectives) is compared to the actual real world state
(Physical State SP,t as measured by sensors) of the entities involved in the process
execution as shown in Figure 4.19 for the smart lighting scenario process. Cyber-
physical consistency (cf. Definition 3) is reached if both states correspond to each
other or if they can be synchronized. It is violated if there is a mismatch between
both states. With reaching cyber-physical consistency, we are able to verify that the
process execution was successful or detect exceptions/errors. The example shows a
simple process issuing a service call to a dimmer actuator to switch on the light in

100

4.6. Cyber-physical Consistency

a certain room in the smart home. A positive service response indicates that the
request was executed successfully and the process terminates. However, a broken
or worn off light bulb, hardware issues, real world obstacles or wrong parameters
may lead to an undesired physical state SP,t of the light switch, which may not be
detected by the IoT device’s control software or WfMS. In case the service is not
able to detect these issues, the cyber state SC,t (light on) and process execution
state (successful) do not correspond to the physical state SP,t (light off) and actual
execution state (unsuccessful), which means that cyber-physical consistency is vio-
lated and needs to be restored for that example.

To have a more formal representation of the concept of Cyber-physical Consis-
tency (CPC) we denote:

Definition 1 Physical Process Context SP,t

Ct = {c1,t, . . . , cn,t} is a set of all physical context attributes ci,t of CPS at a given
point in time t. A context attribute is defined as a tuple ct = (n, vt), where n ∈ N
represents a unique identifier from a set N of identifiers and vt ∈ Vt represents a
value from a set Vt of context values at a given point in time t. We define SP,t ⊆ Ct

as a set of all physical context attributes that are manipulated by or relevant for the
execution of a specific process (step) at time t as defined within the objectives oi ∈ O
of the process step’s goal Go (Physical Process Context). SP,t represents the actual
(physical) state of the process execution in CPS at a given point in time t.

Values can be numeric values for measurable factors but also more abstract con-
cepts, e. g., execution states or locations. The physical process context refers to phys-
ical factors whose states can be measured by sensors or abstract values depending
on the respective sensors (e. g., light=on) as addressed by the corresponding context
paths cpi ∈ CP . For our light example, a context attribute ci,t ∈ SP,t could be the
light influenced by the respective process instance identified by n=lightSource1 and
having a specific value at time t: vt=700Lux.

Corresponding to the previous definition we denote:

Definition 2 Virtual Process Context SC,t

C
′
t = {c′1,t, . . . , c

′
n,t} is a set of all virtual representations of physical context at-

tributes c
′
i,t at a given point in time t (assumed state of the physical world). A

virtual context attribute is defined as a tuple c
′
t = (n

′
, v

′
t), where n

′ ∈ N repre-
sents a unique identifier and v

′
t ∈ Vt represents a value at a given time t. We define

SC,t ⊆ C
′
t as a set of all virtual context attributes that are manipulated by or relevant

for the process execution (Virtual Process Context). SC,t is the assumed (virtual)
state of the physical process execution in CPS at a given point in time t.

The virtual process context attributes correspond to the right sides of the condi-
tions referred to in the compensation condition cc and satisfied condition sc via the
corresponding context paths cpi ∈ CP used within the objective specifications. The
process designer specifies virtual context attributes as target values in the satisfied
conditions for the execution of individual process tasks or process instances. At

101

4. Modelling of Cyber-physical Workflows with Consistency Style Sheets

runtime, the values of these virtual context attributes are the values that the com-
puter assumes for the corresponding physical context attributes at a specific point
in time t–inconsistencies/deviations from the actual physical context values can be
possible.

From the previous definitions we derive the condition for the process execution
being in a state of cyber-physical consistency (CPCt) at a given point in time t:

Definition 3 Cyber-physical Consistency CPCt

For all relevant context attributes ct ∈ SP,t (defined in the objectives’ context paths)
of the actual physical state (cf. Definition 1), there exists a corresponding virtual
context attribute c

′
t ∈ SC,t of the assumed state (cf. Definition 2) where n = n

′
and

vt = v
′
t (i. e., the identifier and value of both context attributes are equal).

(4.1) CPCt ⇔ ∀ct : ct ∈ SP,t, ∃c
′
t : c

′
t ∈ SC,t where ct ≡ c

′
t

with ct ≡ c
′
t : (n = n

′
) ∧ (vt = v

′
t)

Analogous to that, we define the condition for the process execution not being in a
state of cyber-physical consistency at a given point in time t based on the criteria
defined in the corresponding objective:

Definition 4 Cyber-physical Inconsistency ¬CPCt

There exists at least one context attribute ct ∈ SP,t of the physical state (cf. Defi-
nition 1) that has a corresponding virtual context attribute c

′
t ∈ SC,t of the assumed

state (cf. Definition 2) where n = n
′
and vt ̸= v

′
t (i. e., the identifiers of both context

attributes are equal but their values are different and therefore inconsistent).

(4.2) ¬CPCt ⇔ ∃ct : ct ∈ SP,t, ∃c
′
t : c

′
t ∈ SC,t where ct ̸≡ c

′
t

with ct ̸≡ c
′
t : (n = n

′
) ∧ (vt ̸= v

′
t)

So far, the definitions relate cyber-physical consistency CPCt to a specific point in
time t. One or more objectives define the expected target values for relevant context
factors from SP,t and SC,t that also refer to that specific time t. Goals aggregate
multiple objectives referring to multiple points in time. Hence, goals can be used to
specify overall cyber-physical consistency CPC criteria for a certain process activity,
subprocess or process referring to multiple points in time.

Robot Movement Example: Figure 4.20 shows a more complex example of mul-
tiple objectives specified for the process-controlled movement of a service robot.
The overall goal is to move the robot from its docking station to a specific room
identified via its x,y-coordinates on the robot’s internal map (6,10). The correct
starting and end points as well as two intermediate stopping points of the robot’s
trajectory are defined as individual objectives of the corresponding process step in
the order the objectives need to be fulfilled. The fulfilment of these objectives has
to be analysed and possibly corrected continuously during the execution for the sin-
gle process step. The four objectives relate to the specific physical context factors
from the actual physical state SP,t as target values that represent the robot’s loca-
tion (x,y-coordinates) during the points in time t0, .., t3. Here, a specific point in

102

4.6. Cyber-physical Consistency

time t does not necessarily need to be an actual date but it can also be related to
a particular sensor event (e. g., when the robot passed a light barrier or reports its
arrival). From the figure, we see that during the actual movement of the robot, an
inconsistency between the physical state SP,t and the cyber state SC,t occurred due
to an incorrect positioning of the robot at time t2 in the physical world. The robot
assumed the correct position (4,6) and stopped, publishing an “arrived” event. The
corresponding objective’s satisfied condition defines successful process execution as
the robot emitting an “arrived” event and an external tracking system confirming
the correct physical location (4,6). The compensation condition indicates an in-
consistency and error during process execution when the robot emits the “arrived”
event and the external coordinates not matching the specified target coordinates.
The compensation condition became true for the third objective at time t2 as the
external system measured other coordinates (4,8). Therefore, the corresponding ob-
jective was not fulfilled and with that, the goal is left unsatisfied and the overall
cyber-physical consistency is violated. Although the robot reached its correct final
position at time t3, one of the objectives is unsatisfied. We rely on the process
designer to specify reasonable and important objectives for the individual process
steps, which is why we consider all objectives as equally important. Therefore, the
unsuccessful fulfilment of one objective leads to a violation of the overall consistency.
Optional or weighted objectives and also more advanced concepts, e. g., regarding
Eventual (Cyber-physical) Consistency [Bur14] have to be discussed as part of fu-
ture investigations. One of the major goals of this thesis is to detect inconsistencies
during process execution as described in this example (Requirement R5 : CPS Sync)
and to “repair” the inconsistency before the process execution continues (Require-
ment R6 : CPS Errors). We aim at detecting and repairing these inconsistencies at
the workflow level to remedy missing functionality, issues or errors, and imprecisions
related to the individual process resource (i. e., CPS entity, here: robot). An alterna-
tive to specifying the movement targets of the robot by four objectives in one goal
for one process step and checking this goal continuously during execution, would
be to model four individual process steps for driving to the individual targets and
defining the goals to contain one objective each per process step, which is checked
during the execution of the individual process step.

Figure 4.20.: Inconsistent States of the Movement Path Coordinates of a Service
Robot controlled by a Process.

103

4. Modelling of Cyber-physical Workflows with Consistency Style Sheets

CPS workflows are abstract virtual concepts that do not have a physical equiva-
lent. The execution of CPS workflow instances can be traced through their effects
on the physical world, i. e., changes within context attributes, states and other prop-
erties of the physical environment, of things and objects, or of humans. The parts
of a workflow that are able to modify these factors are related to tasks involving
sensors and actuators, which are the interfaces to interact with the physical world
(cf. Figure 4.19). Other workflow elements, e. g., split and merge operators or the
concepts of processes and subprocesses cannot be directly synchronized to physical
representations. The extension of the workflow meta-levels depicted in Figure 4.1
into the physical world and introduction of a new InstanceOf relation to represent
the virtual workflow instance in the physical world is therefore only partially possi-
ble or reasonable–mostly related to service invocation tasks to call physical actuator
commands. As proposed with the newly introduced concept of Cyber-physical Con-
sistency (cf. Definition 3), the evaluation of relevant context values and states in
the physical world that were influenced by a workflow instance presents a reason-
able way of correlating the physical effects of the process execution with the virtual
model/representation of the process (instance). We will elaborate on the relation be-
tween CPS workflows, cyber-physical consistency and cyber-physical objects/digital
twins as well as on cyber-physical transactions and ACID criteria for CPS workflows
in Sections 6.10 and 6.9.

Consistency Levels and Ranges

Depending on the application domain, maintaining a strict level of cyber-physical
consistency CPC regarding all relevant physical context attributes from SP is not
always necessary or feasible–especially in the physical world where a lower level of
precision is usually sufficient for tasks to be completed than for processes in the
virtual world. While, for example within smart factories a high level of precision is
required to yield a high product quality, context factors and other criteria defined
in goals and objectives for smart home environments can be in a certain range or
below/above certain thresholds to achieve the desired levels of comfort and qual-
ities (e. g., with respect to the room temperature or illumination). As shown in
the exemplary objectives, we support the definition of conditions for success and
error criteria in a more fuzzy way based on comparison operators to specify–besides
equality–thresholds and ranges for measurable (numerical) context attributes as ap-
plied in classical control theory.

This is complemented by an optional Consistency Level Lo for an objective o:

Definition 5 Consistency Level Lo

The Consistency Level Lo can be specified optionally as part of an objective oi =
(on,CA, sa, ca, Lo). It defines the minimal threshold on a relative scale (i. e., 0 to
100%) that has to be reached for the particular numerical context attribute to fulfil
the objective oi (i. e., to evaluate the satisfied condition positively).

We took this concept from the field of Approximate Computing as it promises
to reduce costs and overhead introduced by additional computations for analysis
of objectives and execution of compensating actions in error cases [HO13]. With

104

4.7. Consistency Style Sheets

respect to the lighting scenarios, the objective “enough light for working” could al-
ready be fulfilled at 90% of the necessary light levels in the context of the smart
home (Lo = 0.9) and it has to be at 100% in the smart factory (Lo = 1). With
this, we can scale the level of consistency and precision to be reached when ensur-
ing cyber-physical consistency (Soft Consistency), probably reducing the number
of computations necessary to restore CPC. More abstract non-numerical context
attributes are usually compared based on the equality/comparison function for the
respective data type (e. g., process states are compared by checking for string equal-
ity, which can only be true or false). Depending on the comparison operators used
within the satisfied conditions, the consistency level defines a minimal threshold
(larger than), maximal threshold (smaller than) or a range (equals) for numerical
context values to be reached to fulfil the condition. When relying on ranges or con-
sistency levels, the definitions of CPCt and ¬CPCt in Equations 4.1 and 4.2 have to
be adjusted to reflect the loosened constraints for equality of the assumed state SC,t

and the actual state SP,t. The consistency level can also be regarded as a guarantee
in the form of a QoS contract for CPS workflows, which ensures that certain QoS,
KPI or CPS context levels have to be reached during the execution.

4.7. Consistency Style Sheets

Processes in CPS can become very complex–consisting of various subprocesses and
activities that influence multiple virtual and physical context factors. Processes
may have several cyber-physical process steps or need to fulfil other QoS and KPI
criteria in managed process steps. Thus, goals associated with process steps may
have multiple complex objectives with respect to different consistency requirements,
aspects and views, which may bloat the process models. We therefore introduce Con-
sistency Style Sheets for workflows–in analogy to Cascading Style Sheets containing
style-related parameter configurations for websites [BLLJ98]. The Consistency Style
Sheets contain the MAPE-K (managed) configurations of an entire process concern-
ing these views–goals, objectives and consistency levels to be used to check the
outcome of the process execution for managed process steps and to adapt a process
step instance in case of unfulfilled objectives. The goals contained in a style sheet
may refer to various views, e. g., regarding criteria related to CPS effects, distribu-
tion, QoS levels, process conformance, and other consistency aspects. In general,
Consistency Style Sheets contain the parameter configurations for the individual
process steps of a process model used in the MAPE-K feedback loops to manage
their executions. At runtime, the style sheets are parsed by the respective WfMS
or Feedback Service and the process parameters are set before an instance of the
process is executed (e. g., as described in Figure 6.11 in Section 6.12.1).

Goals are linked to their respective managed process steps through the process
step’s unique identifier specified in the style sheet. Objectives could also be assigned
in a more template-oriented way to process steps of a certain type rather than to
a specific process step. The sheet is used to configure the corresponding process
by setting the relevant attributes (goals and objectives) for its managed elements
(process steps) during process deployment. Having this mechanism simplifies the
configuration and adjustment of a process and facilitates reuse of style sheets (or
style sheet fragments) for other processes in the form of templates. It also sepa-

105

4. Modelling of Cyber-physical Workflows with Consistency Style Sheets

rates the concerns of specifying the newly introduced concept of goals for processes
from the “original” process model and workflow concerns [JGVDSJ14], i. e., mod-
els of “legacy” workflows do not have to be altered, only complemented by new
Consistency Style Sheets (cf. Section 6.12).

Listing B.1 shows a comprehensive consistency style sheet for an extended version
of the Morning Routine scenario process containing multiple goals and objectives
in JSON. Three goals specify Cyber-physical properties of three different process
steps: there should be enough light for reading in the kitchen (Lines 3–19), the
brewing of the coffee is successful if the temperature of the cup is above 37 degrees
(Lines 21–33), and the paper fetching robot is at the correct position for picking up
the paper (Lines 35–49). The first goal’s objective regarding the change within the
illumination values contains a consistency level definition (Line 9) specifying that
the light levels are already sufficient at 90% of the specified objective. The style
sheet also contains a goal regarding the Distribution of a certain subprocess stating
that the battery level of the robot should be above 30% to guarantee the successful
execution of the distributed subprocess (Lines 51–62). The fifth goal (Lines 64–75)
specifies criteria for the correct execution of a process step (Process Conformance).
The step was executed successfully, if it is in state “executed”, an error occurred
if the execution peer cannot be reached within 5 seconds while still executing an
instance of the process step. The process steps from this consistency style sheet will
be further described and evaluated in Chapter 7.

The information contained in a consistency style sheet can be used to compute the
overall consistency level for a process as a sum of the individual levels and for adjust-
ing objectives with respect to computational costs and levels of precision (Scalable
Consistency). The process configurations are easily adjustable by changing the style
sheets accordingly, which simplifies setup, test and repetitions of experiments when
determining optimal process parameters. The conditions defined in a consistency
style sheet can be used as a basis for specifying contracts between the virtual world
process execution and the physical world process execution [WN14].

4.8. Tools for Modelling of CPS Workflows

After the description of elements and concepts necessary to specify CPS workflows
and associated CPS entities, we present the tooling infrastructure to apply the new
concepts and model the respective processes for CPS. We developed multiple appli-
cations to support users with creating CPS workflows and the corresponding CPS
entities–also to provide more sophisticated means for workflow modelling and human
interaction (Requirement R3). These tools are related to the Design (Modelling)
phase of CPS and CPS workflows.

4.8.1. Workflow IDE

In accordance with the process modelling language and extensions suggested in the
previous sections, we developed a process model editor based on the Graphiti2 tool-
ing infrastructure framework as Eclipse plugin. As the process metamodel is an

2https://eclipse.org/graphiti/

106

https://eclipse.org/graphiti/

4.8. Tools for Modelling of CPS Workflows

1 2

3

Figure 4.21.: Eclipse-based Process Model Editor.

Ecore model from the Eclipse Modeling Framework (EMF)3, we decided to use the
Graphiti framework for creating the editor. Figure 4.21 shows the Integrated De-
velopment Environment (IDE) for CPS workflows as described in [SKNS13] with
the canvas for modelling a process (1), the set of graphical process modelling el-
ements (2), and the properties view for defining the attributes of the individual
process elements (3). The workflow designer first drags the desired process element
(i. e., process step or one of its specializations) from the list of available elements (2)
and drops it onto the modelling Canvas (1). Then, he/she configures parameters of
this process step in the Properties view (3). Following, the designer creates ingo-
ing and outgoing control flow and data flow ports–and probably the associated new
data types–for the process step from the list of modelling elements. These ports
are then connected with the respective ports of other process steps by choosing a
transition from the list of modelling elements and selecting source and target ports.
The editor also provides some basic means of verification and constraint checking
regarding aspects that are not reflected in the metamodel, e. g., the checking of type
compatibility between data ports or the checking of mandatory input fields. We
also support the use of process fragments and templates from a connected Process
Repository within the workflow IDE (cf. Section 5.2.7).

With this IDE, the process designer is provided with a tool focused towards end-
user development of workflows using drag and drop gestures. However, due to the

3http://www.eclipse.org/modeling/emf/

107

http://www.eclipse.org/modeling/emf/

4. Modelling of Cyber-physical Workflows with Consistency Style Sheets

rather technical notation and components of a process, the designer needs deep
knowledge of the process composition (e. g., regarding the modelling of data flow
between ports), technical details (e. g., regarding specific service parameters), as well
as domain knowledge (e. g., regarding the definition of the effects of a process step in
objectives). An extension of the IDE to support the use of gestures to draw graphi-
cal process elements is described in [NSKS14]. Future developments to increase the
usability and end-user friendliness of the workflow IDE could comprise providing
a predefined set of available process steps that can be easily composed (wired) by
drag and drop from a process repository (cf. Mixed reality workflow composition
with HoloFlows in Section 4.8.2); DSLs and corresponding extensions of the IDE to
ease the definition of goals and objectives, EPL patterns and SPARQL queries with
live recommendations and auto-completion using the knowledge base [MVKM16];
as well as a more sophisticated Consistency Style Sheet editor. As the knowledge
base is founded on a semantic ontology, suitable ontology editors (e. g., the Top-
Braid Suite4 or Protégé5) can be used to extend and modify the underlying models.
Future development stages may include a workflow store/ecosystem that lets people
contribute, share, sell and rate their cyber-physical workflows created with the IDE.

4.8.2. HoloFlows: Mixed Reality Workflow Editor

A first prototype of a mixed reality application for creating basic CPS workflows
compatible with the metamodel was also developed as part of addressing the re-
quirement of ubiquitous human interaction (Requirement R3) in the context of this
thesis with a special focus on creating an end-user friendly intuitive workflow mod-
elling application. The HoloFlows6 app implemented for smart glasses (Microsoft
HoloLens7) uses mixed reality technology to display holograms containing informa-
tion about current sensor and actuator states as well as control functionality above
the respective physical device (cf. Figure 5.19) [SKGA17]. Besides direct interaction
with sensors and actuators, users are able to create simple workflows between ac-
tuators, ECA rules between sensors and actuators as well as direct sensor–actuator
workflows by connecting the respective devices via a virtual wire in augmented re-
ality. These workflows can be mapped to the workflow metamodel described in
Section 4.2 and then executed by the PROtEUS WfMS (cf. Chapter 5). Due to the
augmented reality technology displaying sensors, actuators and workflows at their
respective physical locations, end-users are able to explore their surroundings and
compose simple workflows in a relatively easy way, which enables them to automate,
customise and individualise their own CPS processes. The HoloFlows app exploits
the physical location of CPS devices as one important context factor of CPS to
provide an increased usability and user experience. In its current state, the app is
a first prototype for composing CPS workflows compatible with the core classes of
the workflow metamodel–supporting the creation of control flows among sensors and
actuators as described in the following sections. More advanced concepts (e. g., data
flow, complex events, human interactions, distribution, dynamic services or goals for
managed process steps) cannot be modelled with HoloFlows, yet.

4https://www.w3.org/2001/sw/wiki/TopBraid
5http://protege.stanford.edu/
6https://github.com/IoTUDresden/HoloFlows
7https://www.microsoft.com/de-de/hololens

108

https://www.w3.org/2001/sw/wiki/TopBraid
http://protege.stanford.edu/
https://github.com/IoTUDresden/HoloFlows
https://www.microsoft.com/de-de/hololens

4.8. Tools for Modelling of CPS Workflows

(a) Conditional Sensor–Actuator Workflow. (b) Direct Sensor–Actuator Workflow.

(c) Actuator–Actuator Workflow.

Figure 4.22.: Mixed Reality App HoloFlows for Simple Workflow Composition.

Conditional Sensor–Actuator Workflows: These ECA workflows are created by
connecting a sensor with an actuator (cf. Figure 4.22(a)). Upon drawing a virtual
connection between these devices by first selecting the particular sensor and then
selecting the corresponding actuator (cf. Section 5.6.3), a condition defining the
threshold for triggering an event related to the sensor’s value has to be defined.
Second, the action to be activated by the actuator is selected. The workflow can
then be started, it will trigger an event and with that the activation of the actuator
once the defined condition related to the sensor value becomes true.

Direct Sensor–Actuator Workflows: These workflows are created by directly con-
necting sensors producing continuous data with actuators consuming continuous
data that is compatible with each other (cf. Figure 4.22(b)). The sensor emits data,
which is directly used as input parameter for the actuator once both devices are
connected and the workflow is activated. Examples of these type of workflows can
be the direct mapping of the color value detected by a color sensor to a connected
lamp able to show this color, or the direct mapping of the state of a potentiometer
(0 .. 100%) to the light level of a dimmer switch (0 .. 100%).

109

4. Modelling of Cyber-physical Workflows with Consistency Style Sheets

Actuator–Actuator Workflows: These workflow are created by connecting an actu-
ator with another actuator (cf. Figure 4.22(c)). Upon drawing a connection between
these devices, the action to be activated for the first actuator has to be selected, and
then the action for the second actuator. Once the workflow is started, both actions
are executed sequentially in the order they were defined.

4.8.3. CPS Modelling Process

Knowledge Base

Process Repository

CPS Designer

Workflow Designer

End-user

Model CPS Device

Extend Ontology Create Device Instances

<<include>> <<include>>

Model CPS Workflow

Model Basic
Workflow

Define EPL
Patterns

Define SPARQL
Queries Define Goals

<<include>> <<include>><<include>><<include>>

Model Basic CPS
Workflow

Create Direct
Sensor-Actuator

Workflow

Create Actuator-
Actuator Workflow

Create Conditional
Sensor-Actuator

Workflow

<<include>> <<include>> <<include>>

Figure 4.23.: Modelling Activities of Different Types of Users of CPS.

Figure 4.23 shows the modelling activities of different types of users of CPS. The
main actors involved in the modelling and design of CPS are the CPS Designer, the
CPS Workflow Designer and the End-user.
The CPS Designer is an expert in the field of CPS and is responsible for modelling

and integrating new CPS devices into the knowledge base and existing infrastructure.
If the devices–their properties, functionality, capabilities, context, etc.–can already
be modelled with the knowledge base’s underlying ontology, the CPS designer only
needs to create new instances of the respective devices to add them to the existing
CPS infrastructure and knowledge base/triplestore; otherwise the modeller has to
extend the concepts of the ontology accordingly to represent the new CPS devices
and entities. The CPS Designer uses an ontology editor to model the CPS devices.

The CPS Workflow Designer is a domain expert, who models domain-specific
CPS workflows based on the workflow metamodel. Besides domain knowledge, the
designer needs deep knowledge of the metamodel and the specific processes as well
as service parameters and data models. He/she uses the workflow IDE to model

110

4.9. Compatibility with Existing Business Process Notations

CPS workflows consisting of events, service calls, human tasks, control and data
flow, process logic, subprocesses and also possibly process fragments from a reposi-
tory. Besides these basic processes, the designer also needs to specify EPL patterns,
SPARQL queries and goals, which are rather complicated expressions that should
be supported by more sophisticated tools also connected to the knowledge base.

The End-user wants to create very basic CPS workflows to automate and cus-
tomise simple routines involving only a small number of CPS devices. He/she uses
the HoloFlows app to connect the respective virtual devices with each other in aug-
mented reality (AR) and to set some simple parameters for the three types of con-
nections (cf. Section 4.8.2). The AR app requires only very little knowledge about
CPS and workflow composition in general and has a steep learning curve [SKGA17].
In order for the workflow IDE presented in Section 4.8.1 to be usable by end-users,
non-computer scientists or non-domain experts, the IDE has to be simplified to a
large degree. Service calls, events and other workflow components have to be pre-
modelled and available from a repository to use simple drag and drop gestures to
compose these workflow elements into complete process models [DR09]. The IDE
also has to support the modellers with parameter configurations, automatic sugges-
tions and auto-completion, workflow verification, and probably a wizard guiding the
user through the steps of defining executable CPS workflows.

4.9. Compatibility with Existing Business Process Notations

Various works discuss the suitability of existing workflow notations to model business
processes [WvdAD+06, Bör12] (cf. Sections 2.3.3 and 3.3). As shown in this chapter
with our process metamodel and with the discussions of related work in Chapter 3,
additional workflow elements are necessary to cover the special properties of CPS
and IoT environments and to fulfil the identified requirements.

The more general concepts regarding the composite structure of processes and
logic elements to describe (conditional) splits and merges of the control flow can be
found in other workflow languages in similar ways. The detailed description of typed
data flow consumed and produced by process steps and services as well as mappings
among these data are only partially possible with current business process languages
which makes extensions to these notations necessary.

The support of complex rules to define patterns within event streams and model
complex high-level events also requires extensions to existing notations [BBDC+15].
Simple sensor-related events can often be modelled with built-in workflow elements
related to the occurrence of an event as trigger for following actions or decisions
(e. g., event-based gateways in BPMN 2.0).

Many BPM systems support the definition of Service Tasks to invoke web Ser-
vices, usually deployed and registered locally in the WfMS or accessed based on
SOAP. The workflow metamodel proposed in this chapter supports these invoca-
tions as well, which allows a direct mapping to other BPM notations. In addition, it
covers a wide variety of other web service protocols and proprietary services due to
CPS consisting of highly heterogeneous resources that often already provide built-in
web service interfaces with REST being the prevalent protocol in IoT. The under-
specification of workflow activities to enable dynamic discovery of suitable services
at runtime is only partially supported by existing workflow notations (e. g., Worklets

111

4. Modelling of Cyber-physical Workflows with Consistency Style Sheets

in YAWL [ATHEVDA06]). New workflow elements are necessary to realise the se-
mantic resource discovery described in Section 4.4.
The concepts of a Human Task or similar manual tasks can also be found in

existing BPM notations, which allows for a direct mapping to our concepts.
The specification of CPS aspects and other QoS, KPI or context criteria in goals

and objectives is not supported by common BPM notations. These aspects have to
be specified either as newly introduced metamodel attributes and classes or as new
parameters for the particular process steps. The style sheet mechanism proposed
in Section 4.7 facilitates the separation of concerns with respect to modelling the
“regular” workflow and defining the outcome, effects or success criteria of the process
steps in separate documents, which are evaluated during the execution of the MAPE-
K feedback loops. Workflows can be defined using the respective notation in its
original form and Consistency Style Sheets can be added to a workflow definition.
These style sheets may include goals concerning different aspects (e. g., CPS effects,
process conformance or distribution) that are used to configure additional process
parameters at runtime. The goals are linked to the original workflow definition via
the identifiers of the corresponding process steps. This way existing “legacy” process
models can be reused without any modifications (cf. Section 4.7).
The workflow metamodel described in Section 4.2 can be viewed as a more tech-

nical, imperative workflow language for implementing executable processes, which
may be used as an intermediate language between high-level business process nota-
tions (e. g, BPMN) and very technical descriptions of processes on the programming
level. An evaluation of the expressiveness of our workflow langugage with respect to
the Workflow Patterns [vDATHKB03] as well as the derivation of transformations
or automated mappings to other workflow languages remain tasks for future work.

Relation to BPMN 2.0

BPMN 2.0 is the most widely used process notation to describe business processes
in an organizational context (cf. Section 2.3.3). In the context of this thesis, we use
BPMN 2.0 to describe example processes from a more abstract perspective to show
organisational aspects and to illustrate general concepts and workflows. From our
evaluation of existing workflow notations, we conclude that BPMN 2.0 lacks expres-
siveness and technical detail (e. g., with respect to describing the automated data
flow between services, service tasks and other process steps) to implement processes
for CPS to be executed completely automatically by a BPMN-based WfMS without
requiring human intervention–unless modelled as part of a workflow (Human Task).
The semantics of some of the modelling elements (e. g., related to events and services
as well as activities/tasks) are rather ambiguous and not precise enough to imple-
ment fully automated processes for CPS. Partial (possibly automated) mappings
between modelling elements of our workflow notation and BPMN 2.0 are possible,
e. g., related to simple events, timeouts, service invocations and human activities. To
handle errors and other exceptional behaviour during process execution, BPMN 2.0’s
compensation events and compensation handlers could be used as part of a process-
based feedback loop [RS16]. Our proposed process modelling language can be seen
as a more concrete technically oriented process notation that BPMN can be used on
top of, but that still abstracts from many implementation details of the underlying
CPS control applications and processes (cf. Section 2.5.1).

112

4.9. Compatibility with Existing Business Process Notations

The investigation of related work regarding the modelling of CPS workflows in Sec-
tion 3.3 shows that BPMN 2.0 lacks most of the modelling elements and concepts
necessary to describe CPS workflows with respect to the identified requirements R1–
R8 (e g., complex sensor events, dynamic actuator service selections, or interaction
of distributed WfMSes). Many of the related approaches propose extensions of the
BPMN language and corresponding implementations or adaptations of the related
WfMSes (cf. Chapter 3), which shows that BPMN 2.0 per se is not suitable for de-
scribing and enacting the complex interactions of sensors, actuators, smart objects,
humans and the physical environments of CPS on the business process level as re-
quired within the context of this thesis. These limitations are due to the fact that
BPMN was designed for modelling and executing business processes. The extensions
and modifications to BPMN 2.0 and a corresponding WfMS necessary to fulfil all
requirements would be very complex and invasive, which is why we decided to base
our CPS WfMS on an extensible and more implementation-oriented component-
based workflow language. Some of our concepts, e. g., goals for defining success and
error criteria [KK12], EPL patterns for defining complex sensor events [BBDC+15]
and special semantic process tasks for dynamic service selections can be applied
to BPMN 2.0 as well. The investigation of the applicability of our CPS workflow
concepts to BPMN and an associated WfMS remains subject to future work.

113

4. Modelling of Cyber-physical Workflows with Consistency Style Sheets

114

5. Architecture of a WfMS for
Distributed CPS Workflows

“What the gears cannot do the
computer might. The computer is
the Proteus of machines. Its essence
is its universality, its power to
simulate.”

Seymour Papert

5.1. Introduction

This chapter describes selected aspects regarding the runtime view and necessary
components of a workflow management system to implement and execute CPS work-
flow instances conforming to the CPS workflow notation presented in Chapter 4.
New modelling elements were introduced to fulfil the identified requirements for es-
tablishing workflows in CPS. Along with these extensions, new software components
become necessary to execute instances of these modelled CPS workflows. As pointed
out in Sections 3.2 and 3.4, existing workflow engines from industry and research
fulfil the requirements only partially, which is why we propose a new system ar-
chitecture of a CPS workflow management system called PROtEUS. This WfMS is
meant to serve as a reference architecture for workflow systems in CPS as it discusses
rather generic components that can also be added to existing WfMSes.

The WfMS architecture features components for processing complex event streams
from various sensors; the dynamic selection and invocation of services according to
context, availability and capability constraints of the respective CPS resources; for
users to interact with the WfMS using stationary or mobile devices; and to create
hierarchical networks of WfMSes that are able to distribute and execute process
fragments among each other. These components are integral parts of a WfMS for
CPS to fulfil the identified requirements. With the PROtEUS WfMS for CPS, we
describe the basic concepts and their implementation regarding the composition
and interaction of these parts in the form of a possible reference architecture for
a WfMS that is able to execute distributed CPS workflows. System engineers can
use this architecture as a reference to adapt and extend existing WfMSes with new
components according to the principles and concepts described in this chapter.

115

5. Architecture of a WfMS for Distributed CPS Workflows

5.2. PROtEUS Process Execution System

5.2.1. Overview

The PROtEUS 1 process execution system is our proposal of a system architecture
for a CPS WfMS. In the following, we describe its key architectural concepts that are
based on the elaborations in [SKNS15, SHS15, SHS16, SHH17, SNS14b]. We start
with explaining basic internal components of the WfMS used to enact processes
and interact with sensors and actuators (Requirements R1 and R2). Following,
we focus our elaborations on associated external services and applications used in
combination with PROtEUS to interact with dynamic services via an IoT middle-
ware (Requirement R2), with other PROtEUS instances in distributed processes
(Requirement R4), and with humans for ubiquitous interaction (Requirement R3).
An overview of the architecture and implementation of the PROtEUS system–its

associated components and used technologies–can be found in Figure 5.1. The focus
of our developments is on the engineering aspect of integrating existing and well-
established technologies and software components into a comprehensive WfMS for
CPS following the general suggestions and WfMS reference architectures presented
in [DLRM+13, GdV98, KM07]. Where necessary, we implemented core function-
ality for executing CPS process instances, additional components and adapters for
connecting the system components with each other ourselves. The following sections
of this chapter explain the PROtEUS system, its individual software components,
associated external services and their interactions in more detail.

Process Execution Engine

Semantic

Access

Layer

PROtEUS

Process

Manager
CEP Engine

Local Service Platform

Service

Service

Service

Actuator

Service Invoker CEP Adapter

Human Task

Handler

WebSocket Server

Management

Client

Interactive

Client
Service

Actuator

Service

Sensor

Actuator
Sensor Sensor

Distribution

Manager

Remote

Engine Client

Feedback

Service

Monitor

Analyzer

Planner

Executor

Knowledge

Base

Process
Goals

Result

openHAB
(IoT Middleware)

Neo4j

Spring

Java + EMF + Akka

Java

Esper

OSGi

WampServer

AndroidAndroid / Eclipse

Self-developed component

Existing component

Figure 5.1.: Components and Technologies of the PROtEUS WfMS.

• Process Execution Engine: Executes process instances according to their un-
derlying process models (cf. Chapter 4) and communicates with all other com-
ponents. (Section 5.2.2)

• Process Manager : Provides interfaces and functionality to manage, control
and monitor the execution of processes. (Sections 5.2.3 and 5.6.3)

1https://github.com/IoTUDresden/proteus

116

https://github.com/IoTUDresden/proteus

5.2. PROtEUS Process Execution System

• CEP Engine: Enables complex event processing within multiple CPS sensor
event streams to detect specific event patterns defined in the corresponding
process steps [SHS16]. (Section 5.2.4)

• Local Service Platform: Enables the local deployment and discovery of web
services based on OSGi. (Section 5.2.5)

• Service Invoker : Supports the invocation of various types of web services to
invoke CPS device (sensor and actuator) functionality based on standard or
proprietary protocols. (Section 5.2.5)

• Web Socket Server : Enables the bi-directional communication and interaction
with users and other instances of the WfMS for distributed process execution
via publish/subscribe and remote procedure calls. (Section 5.2.6)

• Human Task Handler : Distributes manual tasks that are part of a process
requiring human interactions [SLSS16]. (Section 5.6)

• Distribution Manger : Enables the distributed execution of subprocesses via
subcontracting and instance migration on remote PROtEUS peers in a hier-
archical network managed by super-peers (D-PROtEUS) [SNS14b, SHA17].
(Section 5.5)

PROtEUS interacts with the Semantic Access Layer (SAL) to dynamically dis-
cover and invoke services from an IoT middleware (cf. Section 5.3) interacting with
sensors and actuators based on required functionality and context constraints de-
fined in an ontology [HSKS16b, HSK+16] (cf. Sections 4.4 and 5.4). The Feedback
Service is a generic implementation of the MAPE-K [IBM05] control loop to add
self-management to WfMSes and manage the process executions based on goals
(cf. Section 4.5 and Chapter 6).

5.2.2. Process Execution Engine

The Process Execution Engine creates instances of process models and routes con-
trol and data flow through the process instance in accordance with the behaviour
of Petri nets. As discussed by Van Der Aalst in [VDA96], Petri nets are a suitable
foundation for workflow systems due to their formal semantics and analysis tech-
niques (cf. Section 2.3.3). Despite formal verification being out of scope of our work,
we base the execution behaviour of the process engine on Petri nets to allow for
a formal verification of the software using processes to control the CPS in future
work [BG11]. The verification of the physical aspects and effects of processes based
on Petri nets requires further research. Our contributions regarding Cyber-physical
Consistency may be a first step towards this direction (cf. Sections 4.6 and 6.3).

Runtime Behaviour

The engine manages the lifecycles of process steps and their associated ports along
with the data instances during execution. At runtime, ports have an activation
state, which is used to decide on the point of execution of the according process step
instance (Level M0 in Figure 4.1). When instantiating a process model (Level M1

117

5. Architecture of a WfMS for Distributed CPS Workflows

in Figure 4.1), all of its ingoing control and data ports have to be instantiated
and activated with required data instances, respectively. Upon activation of a port
instance, its connected transition and target port at the target process step are
activated as well. In the regular case, a process step instance is executed once all
of its ingoing ports are activated. Special process steps for steering the control
flow (e. g., XOR or OR elements) show a different behaviour in accordance with
their logical function, e. g., OR activates its outgoing ports if one of its ingoing
ports is activated, which disables the rest of its ingoing ports. The engine calls the
execution function of the current process step and the logic will be determined and
executed according to the type of process step using polymorphism. The various
types of process steps are described in Section 4.2. Their actual execution behaviour
is described in the following sections.
Ports can have an Optional attribute, which indicates that the particular port

does not necessarily have to be activated to execute the respective process step.
The process step’s outgoing data and control ports are activated after the successful
execution of the process step, which also triggers the activation of connected tran-
sitions and target ports. Connected data ports are activated with instances of the
data from the corresponding source data ports or according to the data mappings
defined for the process steps (cf. Section 4.2.6).
To draw a simplified analogy with the execution behaviour of a Petri net [Pet81],

one could state that Places describe the current state of a process step instance and
its ingoing ports; Tokens are control flow or data flow activations that move through
the process instance along process transitions (Petri net Arcs). In the regular case,
a Petri net transition is fired (i. e., a process step instance is changing its state
to executing), once all its input places consumed a token (i. e., all of the process
step’s ingoing non-optional data ports and control ports have been activated). After
the firing of the transition (i. e., successful execution of the respective process step
instance), tokens are created for the output places (i. e., outgoing data and control
ports) of the process step instance, which then move along the next arcs (process
transitions) to the next process step’s ingoing ports (input places). As the tokens
moving through a process also have to represent typed data and processes can be
composed hierarchically, a coloured and hierarchical Petri net could be suitable
to formally represent the execution behaviour [HJS89]. The detailed investigation
of this mapping including the concepts of (sub)process steps, ports, transitions,
activations and the extensions described in the following sections as well as the
implementation with the help of this kind of Petri nets remains subject to future
work.

Runtime Attributes

Upon instantiation, process steps, ports and transitions have additional attributes
that are used for managing and executing processes. The lifecycle of a process step
instance is depicted in the following state chart (cf. Figure 5.2). Upon uploading a
process model file created with the IDE to the WfMS, the model (Meta-level M1,
cf. Section 4.2.1) and all its process steps are in state undeployed. Calling the process
manager’s Deploy function causes the process model to be loaded into memory and
some general process parameters to bet set. From that point on, process instances
(Meta-level M0, cf. Section 4.2.1) of the process model can be created. Multiple pro-

118

5.2. PROtEUS Process Execution System

inactive executing

paused waiting

executed

failed

stopped

escalated

Wait

deactivated
Deactivate

Response

undeployed

deployed

createInstance

Deploy

Finish [all outgoing ports active]

Timeout
Pause

Resume

Pause

Resume

Execute [all ingoing ports active]

Error

Timeout

Stop Stop

Stop

deployed

Process Model (M1)

Process Instance (M0)

Deactivate [part of a conditional split/merge]

Figure 5.2.: Lifecycle of a Process Step Instance.

cess instances can be created from a process model. During instantiation (transition
from level M1 to M0), new objects are instantiated for the individual process steps,
transitions, ports and data–all containing unique identifiers, references to the corre-
sponding process model elements, and individual states (inactive). These elements
also contain a reference to the particular process instance they are part of, which
is also in the inactive state. These states and additional runtime attributes of the
process instances and their components are described by a dedicated Runtime Meta-
model, which also references the process metamodel. We introduce this dedicated
metamodel to decouple the design time metamodel used for modelling processes
(Level M1) from the runtime metamodel used for describing process instances at
execution time (Level M0).

The invocation of the Execute method triggers the process step’s and containing
components’ states to be switched to executing under the condition that all non-
optional ingoing ports of the process step instance are active. Special process steps
for directing the control flow (e. g., XOR and OR) may show different behaviour at
this point with respect to their logical function. A process step instance can also
become deactivated in case it is part of a process branch that is not executed due to
a conditional split or a disjunctive merge (e. g., if an OR process step is activated by
one of its ingoing branches, the process step instances within the other branches are
deactivated). Loops show slightly different behaviour, too. Once a loop iteration is
executed, the process steps contained in the loop are instantiated anew.

From the state of executing, a process instance can be paused and resumed or
stopped, which terminates its execution. In case all non-optional ports are activated

119

5. Architecture of a WfMS for Distributed CPS Workflows

and the process step is executed successfully, the instance is executed. The occurrence
of an error leads to the transition to the failed state–except for the case that the
MAPE-K feedback loop is able to compensate the error (cf. Chapter 6). In case
of asynchronous operations, e. g., when executing a human task or a distributed
process, the process instance enters the waiting state, which can also be paused and
resumed, as well as stopped. If an Escalation Port is part of the process instance
(cf. Section 4.2.7) and the specified timeout is triggered, the process instance moves
from the states of executing or waiting to escalated.
Instances of transitions and ports are also characterized by their activation states

(active/inactive). Data ports include the concrete data instances as results of the
data flow within the process as additional runtime attributes. In case an execution
Resource is selected dynamically (cf. Section 5.4), this attribute is updated with the
concrete resource. The implementation of the lifecycle managers for all process
components that are part of the Process Execution Engine relies on the Akka2

framework for building concurrent and distributed applications.
As a future extension of the lifecycle depicted in Figure 5.2 the introduction of

an Enable transition has to be investigated in analogy with the similar concept for
BPMN. In an analysis phase preceding the execution of a particular process step
instance, the involved resources should be evaluated with respect to their availability
(e. g., reachability of services or event sources) and the process model in general
should be analysed to discover deadlocks and unreachable steps. That way, the
process execution system is able to ensure that a particular process step or transition
can be executed and the necessary resources are actually available for static service
invocations. For dynamic service invocations (cf. Section 5.4) and process executions
monitored by the MAPE-K loop (cf. Chapter 6) this is only partially necessary.

5.2.3. Process Manager

The Process Manager component is the interface to manage process models and the
execution of process instances. It provides means for uploading process models as
well as the parametrisation, deployment and instantiation of process models in the
execution system. Process instances can be controlled via the Process Manager and
monitoring/logging information about process instances and the execution system
in general can be retrieved by clients via the Process Manager. Upon state changes
in process instances, the process manager broadcasts a logging message containing
relevant data (i. e., process step information, states and data instances) via the
WebSocket server. In Section 5.6, we describe the means of interacting with the
process execution system via the Process Manager in more detail.

5.2.4. Complex Event Processing Engine

The integration of numerous event sources and with that, the necessity for processing
of complex events is identified as one of the main requirements for CPS workflows
in Section 2.6 (Requirement R1 : Complex Sensors). The corresponding process
metamodel element TriggeredEvent for representing complex events is introduced
in Section 4.2.9. The Complex Event Processing Engine Esper3 serves as the event

2https://akka.io/
3http://www.espertech.com/esper/

120

https://akka.io/
http://www.espertech.com/esper/

5.2. PROtEUS Process Execution System

Figure 5.3.: Complex Event Pattern Detection.

processing component in PROtEUS. Its communication with other components and
the relation of events to the process metaclasses are shown in Figure 5.4 by means
of an exemplary process modelled with our process notation. The exemplary event
HealthAlarm is an instance of the TriggeredEvent metaclass, which adds an EPL
statement to the particular process step (cf. Section 4.2.9). Figure 5.3 shows the
flow of events and pattern-based event processing within our approach.

CEP Engine

Process Engine

BP-
Sensor

BP-
Sensor

BP-
Sensor

1. execute

2. register
listener (EPL)

4. pattern detected

3.1 event 3.2 event 3.3 event

5. activate event

select * from
PersonStatus(name='Alice').
win:time(180sec) where
avg(bp_sys)<100 AND
avg(bp_dias)<60

TriggeredEvent

+ EPL : String

instanceOf

AtomicStep

+ name
+ type
+ resource

Figure 5.4.: Communication between Process Engine and CEP Engine During Pro-
cess Instance Execution.

Upon the start of the PROtEUS runtime environment, the CEP engines subscribes
and listens to a configurable set of events–the openHAB IoT middleware being the
main event source. These low-level event sources are connected to the CEP engine
via custom adapters, which provide the corresponding network interfaces and map
the events to the CEP engine’s internal data model. When reaching an instance of a
TriggeredEvent process step defined in a process model, the process engine calls the
execution method of this type of process step (1) as shown in Figure 5.4. This leads
to the registration of a listener for the EPL pattern defined in the TriggeredEvent
process step (2). From that point on, the CEP engine analyses the incoming event
stream with respect to the EPL pattern. The example in Figure 5.4 shows the anal-

121

5. Architecture of a WfMS for Distributed CPS Workflows

ysis of the blood pressure values of a certain person (Alice). A blood pressure sensor
sends data about the wearer’s health in a constant time interval (3.1–3.3) to the CEP
engine. In case the average systolic and diastolic values fall below the defined thresh-
olds (cf. EPL pattern in Figure 5.4) over 180 seconds of time, the pattern is detected
by the CEP engine (4), and the process level event (HealthAlarm) is activated (5)
leading to the continuation of the process instance. In our example, the resident will
receive an AskWellBeing human task notification on her end-user device enquiring
the health status of the resident. New sources and types of events can be added to
the CEP engine at runtime via sensor specific adapters/wrappers. Events may com-
prise low-level sensor events but also higher level and complex events emitted from
other processes and process instances as TriggeringEvents (cf. Section 4.2.9) as well
as from additional software components that aggregate, analyse and produce high
level events from low-level data (e. g., activity recognition systems or machine data
analysers). The EPL pattern referring to sensors and events of arbitrary granularity
has to be defined by the process modeller who has to have knowledge about existing
event types and event sources contained in the Knowledge Base (cf. Section 4.3).

5.2.5. Service Invoker and Local Service Platform

Services belong to the basic building blocks of distributed systems (cf. Section 2.3.5).
When interacting with external components, sensors, actuators and more complex
CPS devices, we assume that they provide a service-based interface to enable the
invocation of their functionality. Sensors and actuators may be encapsulated by a
web service running on the associated embedded device. The Service Invoker is the
component within PROtEUS, which performs the service calls to the specific service
endpoints. Section 4.2.8 discusses specific metamodel classes as specialisations of the
ServiceInvoke process step related to the type of service being invoked. According to
this type, a client performing the service call is instantiated by the Service Invoker
with the respective service parameters and input data (Static Service Invocation of
known resources). Figure 5.5 shows the communication among the PROtEUS com-
ponents and the process instance to invoke an external REST service. The process
engine executes the corresponding RESTInvoke process step (1) to place an emer-
gency call in our demo scenario (cf. Section 2.2.2). This leads to the Service Invoker
instantiating a REST client (2) and calling the external server hosting the specified
REST service (3). The service’s response is reported back to the service invoker (4)
and returned data is integrated into the process step (5) (cf. Section 4.2.6).

Figure 5.5 also shows the selection and invocation process for dynamic services
via the Semantic Access Layer (SAL) component responsible for finding services at
runtime (Dynamic Service Invocation of unknown resources, cf. Section 5.4). The
DoorUnlocking step is a specialisation of the SemanticInvoke process step for the
openHAB middleware (cf. Section 4.4), which relies on a semantic query to be sent to
and evaluated by the SAL. When executing this step (6), the Service Invoker sends a
request containing the semantic query to the SAL to look for devices and services in
the knowledge base that match the criteria defined in the query (7). A more detailed
description of this discovery process can be found in Section 5.4. Once the SAL
successfully determined a suitable service, it reports its URI and required parameters
back to the Service Invoker (8), which will then call the respective service (9). The

122

5.2. PROtEUS Process Execution System

Process Engine

Service Invoker

Local Service PlatformExternal Server

OSGi ServiceREST Service

1. execute

6. call SAL

3. call 4. result

5. result

9. call 10. result

2. call REST

11. result

SQ: SELECT ?func WHERE {
 ?thing dogont:hasFunctio
 ?thing rdf:type ?thingType
 ?thingType rdfs:subClassOf

SAL

7. query 8. service

SemanticInvoke

+ semanticQuery : String

instanceOf

Invoke

+ name
+ type
+ resource

instanceOf

Figure 5.5.: Message Flow during the Execution of Static Service Invocations and
Dynamic Service Invocations via the SAL.

results of the service invocation are reported back to the Service Invoker (10) and
incorporated into the process (11).

The excerpt from the scenario process depicted in Figure 5.5 shows the use of
the Local Service Platform, which is also part of the PROtEUS architecture. As
there is often a need for deploying local services only accessing in-house devices
and applications, e. g., for security reasons–only allowing access to the door opener
from the local network, we provide means for installing and running services locally
with this component. The OSGi-based platform enables the deployment of bundles
and services at runtime. It also integrates a service registry for dynamic service
discovery. In our use case, the SAL uses the semantic query to find the service to
unlock the door deployed on this local platform (cf. Section 5.4).

5.2.6. WebSocket Server

The WebSocket Server component enables asynchronous, bi-directional communica-
tion with the PROtEUS environment. It relies on the Web Application Messaging
Protocol (WAMP)4, which provides means for publish/subscribe communication and
remote procedure calls. These functionalities are used for asynchronous tasks such
as the management and monitoring/logging of process instances via the Process
Manager (cf. Sections 5.6 and 5.2.3), the interaction via the Human Task Handler
(cf. Section 5.6.1), and the remote execution of subprocesses in a distributed process
execution setup via the Distribution Manager (cf. Section 5.5).

5.2.7. Process Repository

The Process Repository is an external component used for persisting process models
and parts of process models. It can be accessed by the workflow IDE to store and
retrieve process steps to be used in new process models. The process manager also
uses this repository to download and instantiate existing processes. Communication
with the repository is done via the WebSocket’s Remote Procedure Call (RPC)

4http://wamp-proto.org/

123

http://wamp-proto.org/

5. Architecture of a WfMS for Distributed CPS Workflows

functionality. The repository uses the Teneo5 database framework combined with
Hibernate6 for persisting EMF models.

5.3. Internet of Things Middleware

Figure 5.6.: Management Application for PROtEUS Resources in IoT Middleware.

The existing OSGi-based openHAB 2.07 platform serves as the central IoT mid-
dleware for our smart home setups. Sensors and actuators as well as more complex
entities such as service robots are connected to the middleware using already ex-
isting bindings or bindings that we implemented ourselves. These heterogeneous
CPS resources are managed and unified by the middleware, which offers a RESTful
API to access sensor and actuator functionality as IoT services (cf. Section 2.4.4).
The middleware provides a web-based user interface to manage available resources
(cf. Figure 5.6). We complemented this interface by a mobile Android-based dash-
board application for tablet devices as shown in Figure 5.11 and detailed in [SLSS16].
Besides locations and current states of sensors and actuators, the mobile app also
allows access to actuators’ functionalities and sensor data histories. The middleware
is augmented by the SAL (cf. Section 5.4) as new plugin to enable the dynamic dis-
covery and selection of suitable resources and services at runtime [HSKS16b]. This
includes an ontology describing the IoT devices’ properties, functionalities, capabili-
ties, contexts and relations among each other in the knowledge base (cf. Section 4.3).

5https://wiki.eclipse.org/Teneo
6http://hibernate.org/
7http://www.openhab.org/

124

https://wiki.eclipse.org/Teneo
http://hibernate.org/
http://www.openhab.org/

5.4. Dynamic Service Selection via Semantic Access Layer

5.4. Dynamic Service Selection via Semantic Access Layer

The requirement R2 regarding the dynamic selection of CPS resources–sensors and
actuators–was identified as an important aspect for CPS workflows in Section 2.6.
The metamodel extensions enabling the specification of semantic queries to find
available instances of these resources at runtime based on information contained in
the knowledge base were introduced in Section 4.4. The SAL acts as an intermediate
layer between the PROtEUS WfMS and the openHAB IoT middleware to facilitate
the dynamic discovery and selection of services as described in [HSKS16b, HSK+16].
The SAL8 is a new plugin component added to the base version of the openHAB
middleware, which can be accessed as a REST service.

PROtEUS

SAL

IoT-Service

Process

Model

(SPARQL)
Semantic Query Lifted Response

Lowered Invoke Response

Physical World

Cyber World

ActuatorSensor

Knowledge Base
(Interface,

Capabilities, Context)

IoT-Service

Figure 5.7.: Semantic Access Layer (SAL) as Mediator between WfMS and IoT
Services.

Figure 5.7 shows the SAL as mediator between PROtEUS and actuators and
sensors accessed via their IoT service interfaces. As described in Section 4.4, the
process designer is able to specify SPARQL queries for special types of semantic pro-
cess steps. These queries contain context and capability constraints as criteria that
have to be fulfilled by suitable process resources to execute the particular process
step. We support the retrieval of specific sensor and actuator states (SemanticSe-
lect), the evaluation of sensor data (SemanticAsk) and the invocation of actuator
functionality based on the actuator’s associated IoT services (SemanticCommand)
(cf. Section 4.4). Upon execution of a semantic process step, PROtEUS’s Service
Invoker sends the semantic query contained in the process definition to the SAL. The
SAL then evaluates the query with respect to the (instance) information available
in the knowledge base. Depending on the type of the semantic process step, the
SAL initiates the invocation of the found IoT services to retrieve and check data or
to execute a command for sensors or actuators found after evaluation of the query
(Lowered Invoke). Besides a domain-specific model of their functionalities, capabil-
ities and other context factors, the knowledge base also contains the URIs of the
resources’ service interfaces to be used by the Service Invoker. After the service is
executed, the response of the particular service call is lifted to the process level so
that this data can be used in consecutive process steps.

With the SAL, we support the underspecification of process resources for specific
tasks. Due to the varying availability of devices in CPS and IoT, the assignment

8https://github.com/IoTUDresden/openhab-distro

125

https://github.com/IoTUDresden/openhab-distro

5. Architecture of a WfMS for Distributed CPS Workflows

of process resources to a workflow task based on its static URI at design time is
not always feasible. The criteria defined in a semantic query are on the more ab-
stract levels of functionalities and capabilities of resources constrained by additional
context factors, which allows for the dynamic and context-sensitive discovery and
invocation of services associated with the respective IoT devices. More detailed elab-
orations on applying goals for dynamic service discovery and workflow adaptations
for role-based resources in the IoT can be found in [Hub18]. Despite having an onto-
logical foundation and semantic description of the CPS entities and their relations,
we do not exploit the full potential of this semantic information, yet. Currently, the
knowledge base serves as sophisticated data model and data (instance) storage that
can be queried to retrieve instances, parameters and related information as part of
semantic searches. The application of semantic reasoning techniques to derive new
knowledge from the existing models and instances may reduce the modelling effort
and increase the flexibility of the dynamic service discovery for IoT services even
further [DBBM11]. A detailed investigation of applying these inference mechanisms
for dynamic process resource discovery and selection remains subject to future work.

5.5. Process Distribution

Figure 5.8.: Subcontracting as Means for Process Distribution among Peers and
Super-Peers.

The capability of distributed process execution was identified as one important
requirement for CPS workflow engines in Section 2.6 (Requirement R4). CPS and
IoT environments consist of a large number of devices and entities, which are often
organized in hierarchical structures. The current trend of Fog Computing [SW14]
tries to leverage these properties of IoT systems to provide scalability, security and
fast preprocessing [BMZA12] by also using processing resources of devices along the
network (cf. Section 2.3.5). Network gateways provide computing resources closer to
the edge that can also be used for process execution and distribution of tasks. For
that reason, process management systems have to be scalable in terms of manageable
process resources and the support of decentralized SoS architectures. The PROtEUS
WfMS supports these requirements as described in detail in [SNS14b, SHA17].

126

5.5. Process Distribution

Figure 5.8 shows an extended workflow based on the Emergency scenario pro-
cess to illustrate the advantages of distributed process execution in the context of
a mobile health care/AAL scenario [PRS+13, PRBA15]. After the detection of an
emergency situation by a wearable blood glucose monitor, a service robot is in-
structed with a subprocess to retrieve an insulin injection from a particular shelf
within the smart home. This subprocess consists of three process steps to be per-
formed by the robot: driving to the shelf, retrieving the injection, and driving to the
human in need. These three special process steps are executed locally by the robot
as an edge device (cf. Section 2.3.5) without any other process resources involved
and without the need of communicating with other process engines, which is why the
robot is able to enact this subprocess autonomously. The overall process terminates
upon the successful execution of this subprocess.

5.5.1. Distributed Systems Architecture

Figure 5.9.: Hierarchical Overlay Network Structure of Peers and Super-Peers.

As suggested in Figures 5.9 and 5.8, we rely on a hybrid overlay network structure,
which consists of “regular” PROtEUS WfMS peers and higher order D-PROtEUS
super-peers [SNS14b]. This structure reduces bottlenecks and single points of failures
compared to classical client server architectures and it is also more efficient regard-
ing communication and organisational overhead compared to pure peer-to-peer ap-
proaches [YGM01] or fully decentralized systems (e. g., Multi-agent Systems [Fer99]).
Peers and Super-Peers form a multi-level hierarchy providing a scalable solution with
respect to the number of process engines and process instances and leveraging lo-
cality in the sense of Fog Computing as certain workflow tasks can be moved closer
to the computing edges onto specialized devices, which also increases autonomy of
these devices (cf. Section 2.3.5).

Peers

Within the hybrid peer–super-peer infrastructure, peers are arbitrary devices that
are able to run the PROtEUS system and therefore execute process instances as

127

5. Architecture of a WfMS for Distributed CPS Workflows

described so far. Each peer is connected (statically) to a dedicated super-peer,
which manages it and from which the peer receives process fragments and execution
commands. Upon the initial connection to the corresponding super-peer, a peer
sends its profile including its name, type, IP address, and capabilities to the super-
peer. In CPS, peers may comprise various classes of devices ranging from regular
desktop computers to resource-constraint embedded and mobile devices.

Super Peers

Besides also running the PROtEUS system for executing process instances, super-
peers have an active Distribution Manager component, which is responsible for man-
aging the network infrastructure and the distributed process execution. This config-
uration is called D-PROtEUS. The role of a super-peer is assigned manually by the
system architects based on a device’s available computing resources. Super-peers
should be more reliable with respect to availability and have a steadier network
connection as well as more computing resources as they have to perform additional
management tasks. Due to the super-peers also running the WfMS, they can execute
processes and act as “regular” peers to higher level super-peers. In order to maintain
a global state of the process executions, super-peers exchange global synchronization
information about the execution of process instances among each other. A multi-
level hierarchy consisting of peers, super-peers and super-peers, which also act as
peers allows for delegating subprocesses and tasks along the paths of the tree-like
network hierarchy. Suitable resources for the distributed process execution can be
found in the peer–super-peer network in various ways, e. g., by using the Kademlia
algorithm based on distributed hash tables [MM02].

5.5.2. Distribution Manager

The Distribution Manager is the component running on a super-peer, which is re-
sponsible for communicating with Remote (PROtEUS) Engine Clients via the Web-
Socket server (cf. Figure 5.1). Its main task is to extract, distribute and merge
subprocesses and process fragments to and from peers in the sense of subcontracting
for processes [vdA00] and process instance migration [ZHKL10]. Figure 5.8 shows
the subcontracting and migration mechanisms with respect to the “Retrieve Insulin
Injection” subprocess instance. The super-peer instantiates the particular process
and enacts the process instance using the D-PROtEUS system (0–1) (cf. Figure 5.10).
It evaluates the corresponding Resource and Distributed attributes of process steps
and subprocesses (cf. Section 4.2.5). If a subprocess contains the active distributed
flag and a resource identifier belonging to one of its associated peers, the Distribu-
tion Manager is invoked with the corresponding process step as input parameter (2).
The Distribution Manager creates a snapshot of the subprocess instance as proposed
in [MCS16] and then calls the WebSocket server to serialize relevant data as a pro-
cess fragment–the process step model, the current state of the process instance and
ingoing data instances–and to transfer it to the peer (here: Service Robot running
the PROtEUS system) in question (3) (cf. instance migration [ZHKL10]). Here the
WebSocket server deserializes the received data (4) and invokes the Process Man-
ager to instantiate and execute the subprocess based on the model information, data
instances and state of the process (5). The peer’s process manager instantiates the

128

5.5. Process Distribution

Figure 5.10.: Message Flow during Distributed Process Execution.

subprocess, the PROtEUS WfMS executes the instance (6–7), and the result of the
execution (i. e., new states of the process instance and outgoing data instances) is
transferred back via the WebSocket server to the super-peer’s Distribution Man-
ager (7–10). The Distribution Manager then merges these results into the main
process instance (11) and the execution continues on the super-peer (12).

With subcontracting, the hierarchical structure of the network can be leveraged
when distributing tasks and processes. Specific process activities and subprocesses
can be moved closer to the compute edge for autonomous and fast local preprocess-
ing or to the Cloud for resource-intensive computations (cf. Section 2.3.5). Offline
execution is enabled through subcontracting as devices do not necessarily have to
rely on a permanent connection to their designated super-peer when executing sub-
processes. This increases the resilience of the process execution, especially on mobile
devices (e. g., service robots), which are likely to disconnect from and reconnect to
the network more frequently. Subcontracting also increases data security as only
data relevant for the execution of the specific subprocess is transferred to the peer,
while global process data is only known to the responsible super-peers. The selec-
tion of suitable peers is currently done in a static way based on the URI attribute
contained in the process step model, which points to the specific peer. More sophisti-
cated mechanisms of dynamically assigning resources automatically to subprocesses
exist (e. g., as described in [SYY07, MVSA16]), but are out of scope of this work.
As the PROtEUS system is also available as a Docker container9, multiple instances
of the peer (PROtEUS) or super-peer (D-PROtEUS) configurations can be started
easily and be automatically distributed to various nodes based on different criteria
(e. g., by using the Kubernetes10 container orchestrator). The subcontracting for

9https://www.docker.com/
10https://kubernetes.io/

129

https://www.docker.com/
https://kubernetes.io/

5. Architecture of a WfMS for Distributed CPS Workflows

processes as applied in our approach provides a mechanism for the top-down distri-
bution and delegation of tasks in the network hierarchy from higher order peers to
lower order peers. This is in contrast to the “classical” way of programming for Fog
computing, where processing is done on the nodes closer to the edge first and then
data and tasks are moved up the hierarchy (cf. Section 2.3.5).

Figure 5.11.: Mobile Dashboard Application for Managing PROtEUS Resources.

5.6. Ubiquitous Human Interaction

Figure 5.12.: Interacting with PROtEUS via Different Devices and Modalities.

Despite the main goal of an increased automation in CPS via workflows, users
are still important factors and stakeholders in CPS as discussed with respect to
requirement R3 in Section 2.6. Therefore, the users have to be provided with various
means of interacting with the CPS workflows–either to control and monitor them
or to perform Human Tasks, which are part of a workflow specification. We have

130

5.6. Ubiquitous Human Interaction

developed several applications to facilitate the interaction with the PROtEUS system
using mobile and stationary devices in the sense of ubiquitous computing [Wei91].
Figure 5.12 presents an overview of interaction means using the WebSocket server
in combination with the Process Manager and the Human Task Handler.

5.6.1. Human Task Handler

Figure 5.13.: Message Flow during Execution of a Human Task.

The Human Task Handler component is responsible for publishing requests con-
cerning user interactions via human tasks as modelled in the respective processes
(cf. Section 4.2.10). Figure 5.13 shows the message flow during the execution of a
human task instance. Before the execution of a human task (1), Interactive Clients
need to be connected to the WebSocket Server and subscribed to the topics that hu-
man tasks are published to (0). The Human Task Handler is invoked with the data
of the respective process step, i. e., general information–type, name, description–and
ingoing data instances as well as the required outgoing data ports (2). It then sends
the human task request asynchronously to the WebSocket Server and waits for an
answer (3). The WebSocket server publishes this request, which contains the rele-
vant process step instance information (4). In our example, the human task asks
the resident of the smart home for his/her well-being. This question is contained in
the description of the human task process step. There is no ingoing data necessary,
the outgoing data port contains a Boolean value representing the user’s answer. In
Figure 5.13, the user either sends a response via his/her end-user device (5.1), which
will be sent back to the Human Task Handler (6) and incorporated into the AskWell-
Being process step (7), or there will be a timeout triggered via an Escalation Port
(cf. Section 4.2.7) after a defined timeframe without receiving an answer (5.2). In
case the answer is evaluated by the If process step as false or the timeout occurred,
an emergency call will be placed using a RESTful service invocation. Otherwise the
process will terminate.

131

5. Architecture of a WfMS for Distributed CPS Workflows

(a) Human Tasks Overview. (b) Human Task Interaction.

Figure 5.14.: Mobile Human Tasks Management App.

5.6.2. Human Task Manager

Human Tasks are introduced into the workflow metamodel as dedicated tasks within
a process performed by users, e. g., to solve manual tasks, to enter data or to handle
errors that have occurred (cf. Section 4.2.10). The Human Task Handler is called
by the process engine once it reaches an instance of a human task process step.
It serializes and publishes this process step instance via the WebSocket server on a
specific topic for human task requests. Interactive devices subscribed to that specific
topic receive these requests and present a corresponding interface for handling open
human tasks to the user as shown in Figures 5.14(a) and 5.14(b) for an Android-
based human task management app. The app’s overview section serves as worklist
handler showing a list of all work items (human tasks) for the particular user. The
human task instance data contained in a request is used to create a simple user
interface automatically using basic Android user interface elements. The task’s
description and ingoing data ports are presented to the user; forms are generated
based on the outgoing data ports of the human task (cf. Figure 5.14(b)). We decided
to implement an application for the human task manager in the form of a mobile app
as it enables the user to react to urgent requests in a timely and location independent
manner on a personal mobile device [SLSS16]. However, arbitrary apps and devices
could be connected to the WAMP-based WebSocket server to provide user interfaces
for reacting to human tasks. Once the user filled in the forms and confirms the
completion of the human task, the response is sent back to the PROtEUS system
and incorporated into the overall process with the execution of the process instance
continuing.

5.6.3. Process Manager

Besides the process modelling environment (IDE) presented in Section 4.8.1 [SHS16,
SKNS15], a user interface/application to monitor and control process models and
instances is an important component of a WfMS. Various stationary and mobile
multi-modal applications exist to interact with PROtEUS. When providing means
for ubiquitous human interaction with workflows, we focus on applications to support
the development and management of CPS workflows and the corresponding WfMS
with the help of mobile and stationary end-user devices. The automatic generation

132

5.6. Ubiquitous Human Interaction

of complex, adaptive user interfaces is out of scope as well as providing a high
degree of user experience for end-users according to their capabilities and individual
constraints. Users have to be able to interact with processes (i. e., to design, manage,
control and monitor them) and they have to be able to manually interact as part of
the process instance executions (i. e., by solving human tasks).

Desktop Application

Figure 5.15.: Execution Trace for Emergency Scenario Process in the PROtEUS
Desktop Application.

The PROtEUS desktop application is presented in Figure 5.15. Like the IDE, it
uses Eclipse and EMF-based technologies to visualise and control the process execu-
tion (e. g., start/stop process instances) and to inspect current and historical process
model and instance data. Eclipse’s debugging view is used to present instance data
regarding process step executions and data ports in the top of the window. The
application is complemented by an instance viewer showing the graphical represen-
tation of selected active or finished process instances with highlighted execution
traces (cf. bottom part of the Emergency scenario process instance in Figure 5.15).

Mobile Application

The mobile process management application is part of a larger Android-based CPS
control app described in [SLSS16]. The SmartCPS 11 app provides a dashboard view

11https://github.com/IoTUDresden/smartcps

133

https://github.com/IoTUDresden/smartcps

5. Architecture of a WfMS for Distributed CPS Workflows

(a) Process Overview. (b) Process Details.

Figure 5.16.: Mobile Process Management App SmartCPS.

of important sensors, actuators and current process instances (cf. Figure 5.11). Be-
sides a section dedicated to the management of human tasks, the app’s process man-
agement section includes an overview and control of process instances and process
models (cf. Figure 5.16(a)). Specific process models and instances can be inspected
in detail in a dedicated view showing the graphical process model and model or
instance information (cf. Figure 5.16(b)).

Tabletop Application

Figure 5.17.: Overview Screen of the Tabletop Process Management Application.

Following the idea of a having a control center application for managing all CPS
devices and processes on a central stationary large screen computer, we developed
a process management application for PROtEUS to be used on multi-touch table-
top devices as described in [SSMS14]. The NatiaPro12 application presents a large
overview screen of available process models, running instances and some general

12https://github.com/IoTUDresden/NatiaPro

134

https://github.com/IoTUDresden/NatiaPro

5.6. Ubiquitous Human Interaction

(a) The Safe Select Gesture. (b) The LinMark Select Gesture.

Figure 5.18.: Special Gestures for Process Management on Tabletops.

system state information (cf. Figure 5.17). For every process model and instance,
control options can be selected (cf. Figure 5.18(b)) and details opened in a new
window (cf. Figure 5.18(a)).

The application is implemented on a tabletop, which uses optical finger/gesture
and marker recognition (Samsung SUR4013 with MicroSoft PixelSense technology)
for multi-touch and tangible interaction. As this device’s gesture recognition is
very vulnerable and error prone with respect to light and other context factors, we
developed a set of special gestures for controlling the application, which are more
resilient against input errors and imprecisions. Management applications and their
respective user interfaces for controlling CPS workflows have to be carefully designed
with fault tolerance in mind as the manipulation of the workflow execution (start,
stop, pause, etc.) also influences and affects processes and entities in the physical
world. Input errors and undesired actions have to be avoided in this context.

One of the special process management gestures is the LinMark Select gesture for
the safe selection of options from a list (cf. Figure 5.18(b)). In order to choose a con-
crete option of process-related actions, the user has to put down his/her finger and
slide it to the desired option while holding down the finger. The Safe Select gesture
is used for the confirmation of a process-related control action (cf. Figure 5.18(a)).
The user has to swipe his/her finger along a specific slider to confirm the action to be
executed. Both gestures are more complex than a simple tap, but also more resilient
against errors as they require a longer interaction with the device and also consider
the movement position and direction of the fingers to perform the interactions suc-
cessfully. These gestures are still intuitive and easy to learn, though. With CPS also
influencing the physical world, user interfaces have to be especially resilient against
unintended control actions and other faulty behaviour. A short user study of the

13https://www.samsung.com/ae/business/smart-signage/interactive-display-sur40/

135

https://www.samsung.com/ae/business/smart-signage/interactive-display-sur40/

5. Architecture of a WfMS for Distributed CPS Workflows

new gesture set showed a reduction of input errors when managing CPS workflows
on tabletops [SSMS14].

Mixed Reality CPS Control

Figure 5.19.: Live View of HoloFlows.

(a) Sensors. (b) Actuators.

Figure 5.20.: Sensors and Actuators in HoloFlows.

The HoloFlows mixed reality application presented in Section 4.8.2 supports the
direct manipulation of actuators according to their functionality, the displaying of
current sensor values, as well as the visualisation and execution of workflows created
with HoloFlows in augmented reality [SKGA17]. As shown in Figure 5.6.3, holo-
grams are placed above the respective CPS device’s physical location. Figure 5.19
shows the live view of a small smart home setup through the Microsoft HoloLens–
including three actuators (door, lamp, coffee maker), two sensors (color, light), and
a conditional sensor–actuator workflow between the light sensor and the door.

136

5.7. Towards a CPS WfMS Reference Architecture for Other Domains

Sensor holograms include a type-specific icon, an identifier and their current value
(cf. 1 in Figure 5.20(a)). They show a connector box for creating connections/work-
flows with other devices (cf. 2 in Figure 5.20(a)) and an anchor box for manual
placement of the hologram in the holographic scene (cf. 3 in Figure 5.20(a)).
Actuator holograms also include a type-specific icon, an identifier, their current

states and available control options that can be directly activated via an air tap
gesture (cf. 1 in Figure 5.20(b)). They also show a connector box for creating con-
nections/workflows with other devices (cf. 2 in Figure 5.20(b)) and an anchor box for
manual placement of the hologram in the holographic scene (cf. 3 in Figure 5.20(b)).

5.7. Towards a CPS WfMS Reference Architecture for
Other Domains

When designing the WfMS for CPS workflows, we followed the general suggestions
of a reference architecture for WfMSes in [GdV98] and [DLRM+13]. PROtEUS
features a core process engine for executing formalized process models, a process
manager, process repository, external services, monitoring tools and user applica-
tions (cf. Sections 2.3.4 and 5.2). However, from the previous sections we conclude
that with CPS, additional components become necessary to implement a fully func-
tional workflow management system for CPS. The reference architecture has to be
extended with components for interacting with new CPS devices–namely sensors
and actuators–and with the physical environment. PROtEUS can be regarded as
an implementation of this extended reference architecture.
Due to the possibly high number of sensors and other event sources in CPS and

IoT, a complex event processing engine or a similar component for the processing
of event streams is indispensable to allow for a fast event stream processing and
context-sensitive behaviour related to multiple event sources and sensors. Service-
based communication–either synchronous or asynchronous–is currently the de facto
standard for communication with external IoT devices, which is why a component
for invoking these services via remote procedure calls or publish/subscribe (event-
driven) mechanisms has to be available as part of the CPS WfMS. However, this ser-
vice invoker and the corresponding external services have to be relatively lightweight
(e. g., relying on the REST paradigm) due to the limited availability of computing
resources in CPS. Along with these limited resources and a high level of mobility
there is a fluctuating availability of devices and services, which is why the under-
specification and dynamic selection and assignment of services from a process has
to be supported by the service invoker.
The process distribution component can be viewed as optional depending on

whether the network structure supports this mechanism and this functionality is
required for the respective domains and use cases. If there is a high number of CPS
devices and CPS workflows and instances to be managed in large smart spaces, then
a hierarchical overlay network of peers and super-peers executing process instances
in a distributed way provides a scalable way to manage the process resources and
executions. End-user applications have to be provided for designing and managing
CPS workflows–not only on stationary desktop computers but also on mobile de-
vices as these are the predominant class of interactive devices for future CPS and
ubiquitous systems [Wei91]. This requirement also includes flexible and lightweight

137

5. Architecture of a WfMS for Distributed CPS Workflows

(well-documented) bi-directional communication and programming interfaces to be
provided by the CPS WfMS to interact with the WfMS and develop applications
that use the WfMS programmatically.

Due to the large variety of possible CPS and IoT devices from various vendors
providing heterogeneous programming and control interfaces, a middleware for uni-
fying these CPS entities as well as for routing application calls to the respective
devices has to be a dedicated component working independently of the WfMS due
to its own complexity and use by other applications and systems. The middleware
also has to provide service-based interfaces to interact with it and with its associated
devices. Along with that middleware, a knowledge base containing the ontologically
founded descriptions and relations of the CPS entities has to be available as dedi-
cated external component to be accessed by the WfMS, middleware and other CPS
applications for the purpose of dynamic resource selection.

The Feedback Service implementing a MAPE-K-based control and adaptation loop
(cf. Section 6.2.1) also has to be considered as integral part of a more general refer-
ence architecture for a CPS WfMS to enable self-* capabilities. With new physical
error sources and dynamic availability of resources, the workflow executions and
WfMS have to be able to react autonomically to unanticipated situations as part of
the self-management capabilities. The feedback loops should be executed implicitly
as internal processes as corresponding process models having the MAPE-K steps
modelled and executed explicitly would become very bloated and complex. With
the requirement of being able to retrofit existing WfMSes with self-x capabilities,
we propose to have a dedicated external component (Feedback Service) to imple-
ment the corresponding feedback loops as it can be reused with other information
systems. More elaborations on this component and its applicability in other CPS
domains can be found in Chapter 6.

In this thesis, we show the application and feasibility of the PROtEUS system and
associated tools in Smart Home environments as examples for CPS. The applica-
bility of the generalized system’s structure as a reference architecture for other CPS
domains remains to be further investigated. Many of the requirements of smart home
environments can also be found in other domains (e. g., Smart Offices [FLSK13]
or Smart Factories [SHH+14]) and vice versa, which is why the PROtEUS sys-
tem as an implementation of a CPS WfMS reference architecture can be transferred
to these domains and may prove suitable for executing workflows in other smart
spaces (Smart Buildings [KA10]). With an active process distribution component
and a multi-level peer–superpeer hierarchy, the system of workflow systems can also
be scaled to the level of Smart Cities [PLM17]. All these environments have in
common that they consist of a large number of sensors and resource constraint het-
erogeneous devices interacting with the physical world, which is why sensor event
processing, dynamic resource selection, human interactions and resilient process exe-
cution are important requirements for these CPS domains, too. The generic concepts
and approaches identified in related work (cf. Section 3.8) and applied within the
PROtEUS system and the Feedback Service (cf. Chapter 6) have proven suitable to
be used in various CPS domains and smart spaces as discussed in this thesis.

Some CPS domains introduce new requirements to the WfMS, which have to
be evaluated further, though. The domain of Industrial IoT (Smart Production)
imposes additional requirements on a corresponding CPS WfMS due to stricter real-

138

5.7. Towards a CPS WfMS Reference Architecture for Other Domains

time and safety constraints [BS15]. The involved devices (production machines)
often do not provide open programming interfaces or service-based access, which
is why the WfMS has to be coupled tighter with the existing control applications
(e. g., the SCADA system [DS99]) or using the emerging OPC-UA standard for
industrial IoT [LM06]. The overheads regarding computations and communications
introduced by a SOA often do not suffice the corresponding real-time constraints.
Even stricter real-time and safety demands as well as closer software components and
many parallel process instances influencing each other can be found in the Avionics
and Automotive domains [LS16], which is why the suitability of our proposed
concepts and reference architecture needs to be further evaluated. Here, real-time
behaviour, safety guarantees/contracts as well as process execution verification have
to be provided by the core process engine and its associated components. We do
not discuss these aspects within the scope of this thesis. The proposed system
architecture addresses the orchestration of workflow tasks at a more abstract higher
level among multiple devices and across the boundaries of individual systems on
the business process level. The execution of safety-critical and real-time demanding
control actions is mostly left to the lower layers closer to the hardware within the
particular system’s or device’s control software (cf. Section 2.5.1). Security and
privacy are additional cross-cutting concerns not addressed in this thesis. However,
they are important for many CPS domains (e. g., Smart Hospitals [HRZ15] or
Smart Mobility [WBJ08]), which is why future developments and applications of
our proposed CPS WfMS reference architecture also have to cover these issues.

139

5. Architecture of a WfMS for Distributed CPS Workflows

140

6. Scalable Execution of Self-managed
CPS Workflows

“Any sufficiently advanced
technology is indistinguishable from
magic.”

Arthur C. Clarke

6.1. Introduction

Entities within CPS are characterized by being highly dynamic, resource constraint
and also influenced by the physical world (cf. Section 2.4). This leads to new
sources of errors, which the WfMS has to be able to handle in order to provide
a resilient process execution in CPS (Requirements R5–R7 in Section 2.6). In
this chapter, we present an extension to the basic PROtEUS process execution
system–the Feedback Service–that uses software-based feedback loops founded on
the MAPE-K framework to verify the execution of activities within CPS work-
flows and to adapt the process resources in case of errors. Besides maintaining
Cyber-physical Consistency (cf. Section 4.6), the Feedback Service is also capable
of guaranteeing other QoS and KPI constraints based on the goal definitions for
the individual process steps. Consistency levels and style sheets as well as the
support of distributed processes lead to various dimensions of scalability that the
CPS WfMS reaches. We show the exemplary application of the MAPE-K feedback
loop in different workflows regarding cyber-physical process executions and the dis-
tributed execution of processes. Along with that, we discuss aspects related to the
realization of cyber-physcial ACID properties and meta-adaptation for workflows.
The Feedback Service can be used in combination with other existing WfMSes to
add self-management capabilities to these systems (Requirement R8). We demon-
strate the interaction of three existing WfMSes with the Feedback Service in a
CPS workflow. The following elaborations are based on the information contained
in [SHS16, SHHA16, SHS17, SHA17, Sei15, SHHA17, SHA18a].

6.2. MAPE-K Control Loops for Autonomous Workflows

The MAPE-K approach from autonomous computing serves as the basic concept
to enable self-management for workflows in the context of this thesis. This feed-
back loop mechanism is the predominant technique to enable self-adaptation for
CPS [MSW16]. Figure 6.1 shows our adaptation of the MAPE-K concept as de-
scribed in Section 2.4.5 on the level of process steps. The Managed Element is a
process step (here: the SwitchOnLight activity from our smart home example in

141

6. Scalable Execution of Self-managed CPS Workflows

Section 2.2.1). Cyber-physical consistency (CPC) and other KPI and QoS criteria
can be checked and ensured by using MAPE-K based feedback loops.
The basic idea of applying this concept on the process step level is to use sensor

data from additional information sources to compare the effects of the execution
of the process step instance with the expected outcome defined within the goals
and objectives that are associated with the process step (cf. Section 4.5). With
the increasing development of micro-electronics and its pervasion of almost every
domain and object, new types of sensors, actuators and smart devices equipped
with electronics to collect and communicate data emerge every day (Internet of
Things). Many of these new sensors and actuators can be used to extend and
retrofit existing devices, machines and objects with additional capabilities regarding
data collection and other functionality. In comparison to the application on the
control software layer, the consideration of these new data sources on the workflow
layer (cf. Section 2.5.1) allows for an easier integration, reuse, extension and flexible
adjustment of these new data sources within one or more processes (cf. Section 2.5.2).
The following sections explain the individual phases and components of the MAPE-
K-based autonomic manager for workflows in more detail.

Figure 6.1.: Managing Process Steps with MAPE-K Feedback Loops in Accordance
with [IBM05].

6.2.1. PROtEUS Extension: Feedback Service

The autonomic manager is implemented as a dedicated software component with
a web service interface. This allows for a loose coupling of the PROtEUS process
execution system and also other WfMSes with the autonomic manager component.

142

6.2. MAPE-K Control Loops for Autonomous Workflows

With the implementation of this component–called Feedback Service1–we follow a
micro-service based approach to have a lightweight dedicated software component
to provide the MAPE-K functionality [NSS14]. Figure 6.2 shows the extension
of the PROtEUS base system and interaction with the Feedback Service. During
enactment of a process instance, the goals defined for the respective process step are
sent to the Feedback Service, which initializes the MAPE-K loop. While executing
the loop(s)–described in the following sections–the Feedback Service interacts with
sensors and actuators either directly via their service interfaces or via the middleware
(cf. Sections 2.5.1 and 5.3). Once finished, the result of the feedback loop executions
is published back to the PROtEUS system. The Feedback Service is composed of
individual components for each phase of the MAPE-K loop that interact with each
other. Figure 6.3 presents a detailed overview of the internal component structure
of the Feedback Service and its internal and external interfaces.

Process Execution Engine

Semantic

Access

Layer

PROtEUS

Process

Manager
CEP Engine

Local Service Platform

Service

Service

Service

Actuator

Service Invoker CEP Adapter

Human Task

Handler

WebSocket Server

Management

Client

Interactive

Client
Service

Actuator

Service

Sensor

Actuator
Sensor Sensor

Distribution

Manager

Remote

Engine Client

Feedback

Service

Monitor

Analyser

Planner

Executor

Knowledge

Base

Process
Goals

Result

Figure 6.2.: The Basic Process Execution System (PROtEUS) and its Feedback Ser-
vice Extensions.

Figure 6.3.: The MAPE-K Feedback Loop as a Component-based Web Service
Implementation.

1https://github.com/IoTUDresden/feedback-service

143

https://github.com/IoTUDresden/feedback-service

6. Scalable Execution of Self-managed CPS Workflows

6.2.2. Knowledge Base

The Knowledge (K) Base is the central component to store and update all relevant
process data as well as data concerning the CPS entities (sensors, actuators, ob-
jects, humans, software components, etc.) and their contexts. The structure and
models used within the knowledge base are described in Section 4.3. The contents
of the knowledge base are updated continuously at runtime during the execution of
the MAPE-K phases (Monitor, Plan, Analyse and Execute), as well as during the
enactment of process instances, and active connections to the IoT middleware.

6.2.3. Deployment and Instantiation

Depending on the availability of a Consistency Style Sheet for the respective pro-
cess model (cf. Section 4.7), the Process Manager parses the style sheet during the
deployment phase of a process (cf. Section 5.2.2) and sets the cyber-physical or man-
aged properties as well as the goals and their objectives of the respective process
steps. Otherwise, these attributes have to be contained in the process models. Upon
instantiation of a process model by the PROtEUS process manager, the Process En-
gine executes instances of the modelled process steps and evaluates the cyber-physical
or managed flags and Goal properties–either already set by the process modeller us-
ing the IDE or retrieved from the Consistency Style Sheet during deployment. In
case these properties are set, the MAPE-K loop is initiated as part of the execution
of the process step instance. A request containing the current goals of and informa-
tion about the process step instance is sent to the Feedback Service in parallel to
the execution of the particular process, process step, subprocess or activity by the
PROtEUS system. The MAPE-K loop for this particular process step instance is
then activated. The Feedback Service creates an internal workflow for every goal it
receives that links the execution of the MAPE-K loops to the specific process step
instances and the context data to be used from the knowledge base.

6.2.4. Monitor

In the Monitor (M) phase the dedicated Monitor component constantly updates the
knowledge base with Data from Sensors and other components that it is subscribed
to. A Monitoring Agent for each event source is used as an adaptor between the
Feedback Service and the individual source. This agent subscribes to the events and
unifies the received data to be stored in the knowledge base. During the monitoring
phase, a pre-analysis of the data is performed to evaluate the significance of the
data based on defined thresholds to filter jitter. Significant changes (Symptoms in
Figure 6.1) within relevant context data are then fed forward into the Analyser
component. The relevant context data is determined based on the context path
definitions CP = {cp1, ..., cpn} contained in the objectives O = {o1, ..., on} that
belong to the goal Go of the respective process step (cf. Section 4.5). Only symptoms
referring to these context paths are analysed in the next phase.

6.2.5. Analyse

In the Analyse (A) phase the Analyser component evaluates the received symp-
toms with respect to the satisfied condition sc and the compensation condition cc

144

6.2. MAPE-K Control Loops for Autonomous Workflows

as defined in the specific objectives–also considering the objective’s Consistency
Level LO–of the process step. The satisfied condition combined with the optional
consistency level defines a criterion for the successful execution of the respective pro-
cess step. If this defined condition can be evaluated positively for every objective the
process step contains, the step is assumed to be executed correctly. The Feedback
Service reports this result back to the WfMS and the “regular” process instance
execution continues. On the other hand, the criterion defined in the compensation
condition indicates that an error may have occurred during the execution of the
process step. In case this condition is evaluated positively for an objective, a change
request regarding this particular objective is issued and the Plan phase is entered. If
neither condition can be evaluated positively based on the symptoms received from
the Monitor component, no further action is taken within this particular iteration
of the MAPE-K loop. On receiving a new symptom from the Monitor, the Analyse
phase is entered again.
The approach of evaluating sensor data from external sources to verify the process

execution requires a stable and reliable sensor infrastructure. This topic is discussed
in relation with business processes in [Wom11a, Wom11b]. We provide a remedy to
possible errors in the sensor infrastructure by 1) having the possibility to define mul-
tiple objectives relating to different sensor nodes that can be analysed independently
from each other; and 2) by using the Cypher query language [Web12] to define the
respective context paths and the SpEL [JHA+13] to specify the compensation and
satisfied conditions. Both languages allow for complex rule and query operations
that can also pre-evaluate or filter data, e. g., calculate mean values of multiple sen-
sors or limit the evaluations to certain time frames [CK11]. Although the PROtEUS
base system already features a CEP engine to evaluate streams of complex sensor
data, we decided to use a separate component to realize this functionality in the
Feedback Service as it is intended to be a dedicated micro-service that can also be
used in combination with other WfMSes. The redundant access to the sensors and
actuators at this point separates the concerns of the basic CPS workflow execution
by the WfMS and the self-management of the execution by the Feedback Service
as an external supervisory component. A loose coupling of the CEP engine with
the Feedback Service as well as the tighter integration of the CEP engine with the
Feedback Service are subjects to future work. The application of more sophisti-
cated means to synthesize goals and to determine derivations between the expected
outcome of the execution and the actual outcome (e. g., by using machine learning,
temporal logics or Situation Calculus as proposed in [MMS14]) can also be part of
future research. Our approach is mostly based on rule definitions, which proofed
feasible for our application scenarios (cf. Chapter 7). As the architecture of the
Feedback Service is based on software components for each phase of the MAPE-K
cycle, the implementation and with that, the concrete algorithms used within the
Analyser can be easily exchanged by following the component interface definitions.

6.2.6. Plan

The Plan (P) phase executed by the Planner component is entered after a mismatch
between the expected process step instance execution and the actual execution was
determined based on a compensation condition defined in one of the objectives of
the respective process step. The change request issued within the Analyse phase

145

6. Scalable Execution of Self-managed CPS Workflows

and transferred to the Plan phase contains a simple description of the mismatch
that occurred. Currently, for numerical context values, this mismatch corresponds
to “too high” or “too low”, for other non-numerical context factors to “unequal”.
The Planner component contains an extensible Compensation Repository and mul-
tiple Compensation Queries that are consulted in combination with the Knowledge
Base to find a compensation for the occurred mismatch. Depending on the type of
mismatch and use case, a specific compensation action (cf. Section 4.5) is derived
by the Planner. We show concrete examples of determining these compensation
actions for cyber-physical process steps in Section 6.3 and for distributed processes
in Section 6.4. In general, the Planner looks for alternative process resources in the
same context of the original resource or of the related sensor node defined in the re-
spective context path [CL08]. Depending on the determined mismatch, the process
step could be repeated by the alternative resource or the commands for increasing
or decreasing the respective numerical values are selected from the Knowledge Base
to be executed. This Change Plan is then transferred to the Execute phase. In case
the Planner is not successful with deriving a compensation strategy (e. g., there are
no available replacement resources), the Error Case is entered.

In order to derive a suitable compensation action in a more sophisticated way,
a detailed classification (ontology) of possible errors and corresponding remedies is
necessary. We currently use a simple rule/query-based approach to find alterna-
tive resources to execute the erroneous process steps–either to repeat them or to
execute compensating actions for simple numerical mismatches. Especially in the
context of CPS, a repetition of the same action in the physical world or a sim-
ple rollback of an action is not possible to due the complexity and limitations of
the physical world. For that reason, a domain-specific description of error cases
and remedies (remedy workflows) has to be developed and integrated into the com-
pensation repository similar to Exlets proposed in [ATHVDAE07]. More advanced
approaches for deriving compensation actions exist (e. g,. using Case-based Reason-
ing [WRWR05], Classical Planning [MMS14] or other inference-based mechanism
involving the SAL [HSKS16b]), but are out of scope of this work. As the adaptation
strategies have to be derived at runtime, inference-based mechanisms may lack the
necessary performance to be applied in CPS [Lee08]. Similar to the Analyser com-
ponent, the actual implementations of the Planner component can be exchanged. A
tighter integration of the mechanisms for dynamic service discovery provided by the
SAL with the Feedback Service and a shared knowledge base for both components
in the Plan phase remains subject to future work.

6.2.7. Execute

In the Execute (E) phase the Executor component enacts the change plan received
from the Planner. This change plan contains the Commands/Compensation Actions
to be executed in order to compensate the occurred mismatch. In our current im-
plementation, this includes the selection of the appropriate resource (Actuator) and
executing the derived operation (e. g., ON, OFF, UP, DOWN), which is a REST
call to the service that represents the compensation operation as defined in the
Knowledge Base. Sections 6.3 and 6.4 show this process in more detail. During the
execution of the compensation action, the MAPE-K loop is used again to check if
the corresponding objective has been fulfilled with respect to the satisfied condition

146

6.2. MAPE-K Control Loops for Autonomous Workflows

of the particular process step. At this point, the consistency level defined comple-
mentary to the satisfied condition may reduce the number of necessary MAPE-K
iterations necessary to restore consistency. If the objective can be evaluated posi-
tively in subsequent feedback loops, the Feedback Service terminates the MAPE-K
cycle for the objective in question. In case all objectives belonging to a process step
can be fulfilled this way, a positive result is reported back to the WfMS and the
process execution continues. Due to the composite structure of our process meta-
model, the MAPE-K mechanism can be applied on various process levels: on atomic
process steps (activities), subprocesses or entire processes. This probably results in
multiple hierarchical MAPE-K loops running in parallel. It is up to the workflow
designer to specify reasonable goals and objectives for the process steps that will
not influence each other negatively.

With our approach, we focus on the adaptation of the process resources as the main
new error sources in CPS. However, rule-based and structural adaptations of work-
flows [RBA08, DR09, RRKD05, MGR04], the synthesis of new process steps [MMS14,
RSA10] or the replacement of activities or subprocesses [Sch08] can also be adapta-
tion strategies to be considered for future work. We currently follow the approach of
adapting the process instances in case of errors, creating a form of ad-hoc change to
increase the resilience of a process activity (ad-hoc workflows). With reoccurring de-
viations of the process executions from the expected outcome for multiple instances
of the same process step, the adaptation of the corresponding process model could
also be an option to improve the process quality (Process Evolution [RWRW05]).

6.2.8. Error Case

During the Plan phase, the Planner component tries to derive compensation actions
suitable to remedy the occurred error. This process relies on information contained
in the Knowledge Base regarding available instances of process resources and their
functionality. In case the enactment of the compensation actions does not lead to
the fulfilment of the corresponding objective or no alternative process resource can
be found, the execution of the MAPE-K loop terminates for the objective and an
error is reported back to the WfMS (Error Case). In our implementation, this will
activate a special Failure Port (cf. Section 4.2.7) and the corresponding error branch
that was modelled by the process designer. The process execution continues along
the error branch and the main process branch is deactivated. It is up to the process
designer to define the process steps contained in this branch. It could include a
Human Task (cf. Section 4.2.10) asking the user to take care of the problem or
recommend the execution of some manual tasks to solve the issue. After the user
confirms that the error has been fixed, which could again be monitored through
a feedback loop for the Human Task, the process could be designed to have an
exclusive gateway to merge with the main branch of the process again. The WfMS’s
internal exception handling mechanisms could be activated too to try to resolve the
errors the Feedback Service is not able to compensate or other advanced approaches
for exception handling in workflows (e. g., Exlets [ATHVDAE07]) could be applied.

147

6. Scalable Execution of Self-managed CPS Workflows

Listing 6.1: Goal and Objective for SwitchOnLight Process Step.

1 "SwitchOnLight" : {

2 "name": "enough light for working",

3 "objectives": [

4 { "name": "kitchen light > 700 lux in 5 seconds",

5 "satisfiedCondition": "#lightIntensity > 700",

6 "compensationCondition": "#objective.created.isBefore

(#now.minusSeconds (5))",

7 "contextPaths": [

8 "MATCH (thing) -[:type]->(sensor {name: ’LightSensor

’})",

9 "MATCH (thing) -[:isIn]->(room {name: ’

Kitchen_Mueller ’})",

10 "MATCH (thing) -[:hasState]->(state:

LightIntensityState)",

11 "MATCH (state) -[: hasStateValue]->(value)",

12 "WHERE toFloat(value.realStateValue) > 0",

13 "RETURN avg(toFloat(value.realStateValue)) AS

lightIntensity"

14] }] }

6.3. Feedback Loop for Cyber-physical Consistency

In this section we show the application of the MAPE-K-based feedback loop using the
Feedback Service to check and restore Cyber-physical Consistency (CPC) [SHHA16]
for the smart lighting process step of the Morning Routine scenario process (cf. Sec-
tion 2.2.1). The managed elements are the SwitchOnLight process step and the
corresponding process resource (cf. Figure 6.1). Additional scenarios and applica-
tions of the MAPE-K loop to maintain CPC can be found in Chapter 7.

6.3.1. Knowledge Base

This scenario refers to the specific sensor and actuator models contained in the
knowledge base. The involved sensors are light sensors to measure the light lev-
els (cf. Figure 4.11) and the actuators are dimmer switches to control the lights
(cf. Figure 4.12).

6.3.2. Goal and Objective

The corresponding goal definition written as a Cypher query can be found in List-
ing 6.1. The goal “enough light for working” (Line 2) contains the objective “kitchen
light > 700 lux in 5 seconds” (Line 4). The corresponding satisfied condition (Line 5)
defines light levels in the kitchen above 700 Lux as success criterion. If these levels
are not reached within 5 seconds after the execution of the basic process activity, then
an error is assumed and a compensation is searched for (Line 6). The context path
retrieves the light levels of sensors of type “LightSensor” in room “Kitchen Mueller”
(Lines 7–13). The execution of the MAPE-K feedback loops for this scenario is
depicted in Figure 6.4.

148

6.3. Feedback Loop for Cyber-physical Consistency

6.3.3. Deployment and Instantiation

The Process Engine executes the process instance containing the process step of
type RESTInvoke in the regular way. It initiates the Service Caller as a client
to invoke the specific REST method on the resource (web server) or middleware
controlling DimmerSwitch1. The web server reports the successful execution back
to the Process Engine. For this process step, the cyber-physical flag is set and
its Goal attribute corresponds to the contents of Listing 6.1. Consequently, the
Feedback Service (FB Service) is called from the Process Engine in parallel to the
REST service call to the dimmer switch. The FB Service receives the goal and
instantiates the MAPE-K loop to be run in parallel to verify the execution of the
process step instance for the specific objective.

6.3.4. Monitor

The Knowledge Base KB is subscribed to all available sensors. The Light Sensor
in question updates its values about once every second. Upon initiation of the
MAPE-K loop, the Monitor subscribes to the KB with respect to the light sensor
values ct as defined in the context path cp (cf. Section 4.8.3). From that point on,
it receives all updates concerning the sensor from the KB. With every significant
update (Symptom) of the light levels from the sensor, the corresponding monitoring
agent sends a request to the Analyser.

6.3.5. Analyse

The Analyser checks the compensation condition and satisfied condition w. r. t. the
received symptoms. As in our example the light levels from the sensor do not exceed
the defined threshold of 700 Lux, the Analyser triggers a timeout after 5 seconds
as defined in the compensation condition. At this point in time, we assume that
CPCt is violated due to the assumed state SC,t regarding the current light levels c

′
t

of DimmerSwitch1 (On) not matching the actual state SP,t (Off) and light levels ct
(cf. Equation 4.2). A Change Request is then issued and transferred to the Planner.

6.3.6. Plan

The Analyser determined that the mismatch regarding the relevant light levels is
too low. Based on this mismatch and the context of the MAPE-K execution (check-
ing for Cyber-physical Consistency CPC), the Planner queries the Compensation
Repository for a suitable compensation strategy. Parts of this repository are Com-
pensation Queries to be executed for the knowledge base. The compensation query
concerning CPC restoration can be found in Listing 6.2.

The essence of this query is that the Planner looks for actuators in the same room
(here: Kitchen Mueller) as the light sensor is in (Line 5). The devices–actuators and
sensors–have to be linked to the same context attributes (here: light levels) (Line 6).
The rest of the query is used to retrieve the actuator (here: DimmerSwitch2) based
on its functionality and with that, the control commands to influence the context
attribute (Lines 7–20) as modelled and contained in the Knowledge Base. Based
on the too low mismatch, the Planner then selects the found compensation action
(here: UP) to increase the value of the context attribute (here: light levels). The

149

6. Scalable Execution of Self-managed CPS Workflows

Figure 6.4.: Sequence Chart for the MAPE-K Loop applied to the Smart Lighting
Process Step.

150

6.3. Feedback Loop for Cyber-physical Consistency

Listing 6.2: Compensation Query regarding the Restoration of Cyber-physical
Consistency.

1 MATCH (sensor) -[:hasState]->(sensorState)

2 MATCH (actuator) -[:hasState]->(actuatorState)

3 MATCH (actuatorState) -[: hasStateValue]->(

actuatorStateValue)

4 MATCH (actuatorStateValue) -[: unitOfMeasure]->(

actuatorStateUnit)

5 MATCH (sensor) -[:isIn]->(room) <-[:isIn]-(actuator)

6 MATCH (sensorState) -[:type]->() -[: subClassOf *0..1] - >()

<-[:type]-(actuatorState)

7 MATCH (actuator) -[: hasFunctionality]->(function) -[:

hasCommand]->(command)

8 MATCH (command) -[:type]->(commandType)

9 MATCH (function) -[:type]->() -[: subClassOf *]->({ name: "

ControlFunctionality" })

10

11 WHERE id(sensorState) = {stateId} AND has(command.

realCommandName) AND has(commandType.name)

12

13 RETURN DISTINCT

14 actuatorState.name AS actuator ,

15 commandType.name AS commandType ,

16 command.realCommandName AS commandName ,

17 actuatorStateValue.realStateValue AS

actuatorState ,

18 actuatorStateUnit.name AS actuatorStateUnit

reference to the command including the respective service URI to be invoked is then
transferred as part of the Change Plan to the Executor.

6.3.7. Execute

The Executor invokes the corresponding command contained in the Change Plan to
activate DimmerSwitch2. The Monitor is still subscribed to the light levels as defined
in the context path. It receives the changed light levels, which are analysed again
with respect to the fulfilment of the compensation condition and satisfied condition.
The current light levels now match the criterion defined in the satisfied condition
leading to the termination of the MAPE-K loop and Feedback Service. Before
terminating, the Analyser updates the data related to the MAPE-K executions (goals
and objectives) in the knowledge base. Figure 4.17 shows the corresponding entries.
Cyber-physical Consistency is restored with the positive evaluation of the satisfied
condition and therefore, the fulfilment of objective and goal associated with the
process step is achieved.

151

6. Scalable Execution of Self-managed CPS Workflows

6.4. Feedback Loop for Distributed Workflows

In order to illustrate the applicability of the proposed MAPE-K framework and
Feedback Service component in other contexts, we apply the framework to the dis-
tributed execution of subprocesses on a mobile service robot (Turtlebot) as execution
peer [SHA17]. Figure 6.5 shows the adaptation of the Autonomic Manager to man-
age the process resource (Turtlebot) executing a subprocess. The exemplary subpro-
cess “Retrieve Insulin Injection” stems from the process shown in Figure 5.10. This
subprocess consists of multiple process steps instructing the service robot (Turtle-
bot) to drive to different destinations. The successful execution of this subprocess is
rather crucial, but the robot is vulnerable to various physical and technical errors and
obstacles, e. g., the drainage of its own battery, the navigation algorithms cancelling
due to unknown obstacles or loss of orientation, or the loss of WiFi connectivity.
In this example, we show the execution of the MAPE-K feedback loop to check the
reachability of the mobile robot and execute compensating actions in case it gets
disconnected from the network. This application of the MAPE-K mechanism shows
that, besides criteria concerning Cyber-physical Consistency, also QoS and arbitrary
other constraints can be defined to verify and possibly adapt the process execution
with our suggestion of using the MAPE-K feedback loop for self-management of
workflows. Additional scenarios and applications of the MAPE-K principles in the
context of distributed process executions can be found in Chapter 7.

Figure 6.5.: Managing Distributed Process Resources with MAPE-K Loops.

152

6.4. Feedback Loop for Distributed Workflows

6.4.1. Knowledge Base

In this scenario, we use the context model from the Knowledge Base (KB) that
refers to the Turtlebot robot as presented in Section 4.3.3. The robot acts as a
peer in the peer–super-peer architecture (cf. Section 5.5.1). It is able to execute
instances of process steps due to PROtEUS running on the robot and it publishes
various runtime metrics (e. g., last heartbeat and battery levels). The KB contains
information regarding super-peers and its associated peers as well as the process
instances that are running on super-peers and peers.

Figure 6.6.: Interaction between PROtEUS and the Feedback Service to Execute
Distributed Processes.

6.4.2. Goal and Objective

Listing 6.3 shows the goal and objective for this use case. It refers to the point of
time of the robots last liveliness signal (heartbeat) and the execution state of the
particular subprocess. The satisfied condition states that the execution went well if
the subprocess’s state is “executed” (Line 5). On the other hand, the compensation
condition states that there is a need for initiating the search for a compensation
when the last heartbeat was longer than 5 seconds ago and the subprocess was still
“executing”, i. e., the robot is very likely to have lost its network connection while
executing the process instance (Line 6). The context path is specified to retrieve
the peer’s (Turtlebot1) last heartbeat and the execution state of the subprocess
(Lines 7–9). The identifier of the subprocess instance is used to link the instance to
the specific execution peer (RUNS ON relation). Figure 6.6 shows the interaction
between the PROtEUS components and the Feedback Service for this setup. The
execution of the MAPE-K feedback loops for this scenario is depicted in Figure 6.7.

6.4.3. Deployment and Instantiation

The overall process is modelled in accordance with Figure 5.10. “Turtlebot1” is spec-
ified as the responsible process resource and the goal modelled for the “RetrieveIn-
sulinInjection” subprocess corresponds to Listing 6.3. As this example process is

153

6. Scalable Execution of Self-managed CPS Workflows

Figure 6.7.: Sequence Chart for the MAPE-K Loop applied to the Distributed Robot
Process.

154

6.4. Feedback Loop for Distributed Workflows

Listing 6.3: Goal and Objective for Distributed Subprocess Execution on Turtlebot.

1 "RetrieveInsulinInjection": {

2 "name":"execution conformance and liveliness",

3 "objectives" : [

4 { "name":"heartbeat < 5 seconds and executed",

5 "satisfiedCondition": "#processState == ’executed ’",

6 "compensationCondition": "#timeFrom (# heartBeat).

isBefore (#now.minusSeconds (5)) and #processState

== ’executing ’"

7 "contextPaths": [

8 "MATCH(n:NeoProcess {processId:’

RetrieveInsulinInjection ’}) -[r:RUNS_ON]->(p:

NeoPeer)",

9 "RETURN n.state AS processState , p.lastHeartbeat

AS heartBeat"

10] }] }

executed as a distributed process, the PROtEUS workflow system on the super-
peer (D-PROtEUS) instantiates the main process and begins its execution. Once
it reaches the subprocess in question, it evaluates the process resource attribute,
searches for the corresponding peer and the Distribution Manager of the super-peer
sends the subprocess to Peer1 (Turtlebot1). This requires the Turtlebot1 peer to be
connected to and registered with the super-peer and the PROtEUS WfMS also to be
running on this peer. In parallel to sending the request to execute an instance of the
subprocess to the peer, the super-peer D-PROtEUS system invokes the Feedback
Service (FB Service) with the goal to execute the MAPE-K loop for this distributed
subprocess instance, which is marked as managed process step (cf. Section 4.5.2).

6.4.4. Monitor

Upon receiving the request from the super-peer, the Feedback Service starts moni-
toring the data from the Knowledge Base (KB) as defined in the context path (CP).
Peer1 sends periodic status updates regarding the state of the subprocess execu-
tion. This information is used to update the process execution related data (“pro-
cessState”) contained in the KB and the message’s timestamp is used to set the
“heartBeat” property of the peer to indicate its last liveliness signal. Both val-
ues are monitored by the FB Service. With every relevant update of these values
(symptoms), the Analyser is triggered to evaluate the data.

6.4.5. Analyse

The Analyser processes the symptoms with respect to the compensation condition
and satisfied condition. It will not initiate any actions if the process is in state “exe-
cuting” and the last liveliness signal was received less than 5 seconds ago. Figure 6.7
shows that after sending three status updates, the Turtlebot1 peer is not publishing
messages anymore. Eventually, this leads to the Analyser sending a change request
to search for a compensation to the Planner as the compensation condition becomes

155

6. Scalable Execution of Self-managed CPS Workflows

Listing 6.4: Compensation Query regarding Distributed Process Execution.

1 Match(original:NeoProcess)

2 WHERE ID(original) = {processNodeId}

3 WITH original

4

5 Match(remote:NeoProcess) -[remoteFor:REMOTE_FOR]->(

original)

6 WITH remote , original

7

8 Match(original) -[runsOnSuper:RUNS_ON]->(originalPeer:

NeoPeer)

9 WITH originalPeer , remote , original

10

11 Match(remote) -[runsOnRemote:RUNS_ON]->(remotePeer:NeoPeer

)

12 WITH remotePeer , originalPeer , remote , original

13

14 MATCH (newPeer:NeoPeer)

15 WHERE newPeer <> originalPeer AND newPeer <> remotePeer

16

17 RETURN original , remotePeer , newPeer

true after 5 seconds of not receiving any new symptoms and the process still being
in state “executing”.

6.4.6. Plan

In the context of a peer failing during the distributed execution of a subprocess
instance, the Planner searches for an alternative peer registered with the super-peer
to repeat the execution of the subprocess instance. The compensation repository
contains the compensation query shown in Listing 6.4 that will be executed in this
context. From the data related to the subprocess execution on the peer (Lines 5–6),
it basically tries to determine the corresponding super-peer and main process on
the super-peer (Lines 8–9). It then tries to find a new peer for execution that is
distinct from the super-peer and the failed peer (Lines 11–17). This alternative peer
(Turtlebot2) is transferred as part of the Change Plan to the Executor.

The strategy of selecting an alternative peer to repeat the execution in case the
original peer fails is used here for the purpose of simplifying the explanations. More
sophisticated strategies and compensation queries regarding the capabilities of the
respective devices and also the progress of the process execution on the failed peer
should be considered for this and other cyber-physical scenarios. If Turtlebot1 al-
ready retrieved the injection and fails on its way to the resident, then the repetition
of the entire subprocess by Turtlebot2 could cause additional problems as there
may not be a second injection available in the shelf. As already discussed in Sec-
tion 6.2.6, a more sophisticated classification of errors and corresponding compensa-
tion strategies needs to be developed to ensure the successful execution of processes
and feedback loops in CPS.

156

6.5. Consistency Levels, Scalability and Scalable Consistency

6.4.7. Execute

Based on the Change Plan received from the Planner, the Executor informs the
Distribution Manager about the error that occurred during the execution of the
subprocess on Turtlebot1. It also submits the URI of the alternative peer to rein-
stantiate the subprocess on. The Distribution Manager invokes the Process Manager
of the PROtEUS instance running on Turtlebot2 to execute the subprocess again.
The Monitor is still active from its initiation by the super-peer and listens to updates
regarding the execution of the specific “RetrieveInsulinInjection” process. Once the
Turtlebot2 peer starts executing the process, the Monitor receives updates again
that are subsequently evaluated by the Analyser. The execution on Turtlebot2 is
successful–the Analyser receives the “executed” state for the subprocess without
reaching a timeout. Hence, the satisfied condition becomes true and the states of
the objective and goal in the Knowledge Base are updated. This then leads to the
termination of the feedback loop for this subprocess instance and the execution of
the main process continues on the super-peer.

6.5. Consistency Levels, Scalability and Scalable
Consistency

The number of repetitions of the MAPE-K loop can be adjusted by defining or mod-
ifying the Consistency Level for the respective satisfied conditions contained within
the process goal’s objectives. For mismatches regarding numeric context values–
physical or virtual–we search for Increase or Decrease operations in the planning
phase that are able to influence the values accordingly. For the lighting example,
this could mean a stepwise increase or decrease of a dimmer switch’s power levels
(e. g., by 10%) until the threshold defined by the consistency level is reached. By
scaling this level up or down, the number of necessary MAPE-K iterations can be
scaled resulting in Scalable Consistency. This leads to an increase or decrease of the
execution time based on the number of necessary MAPE-K loops to fulfil the consis-
tency/precision requirements as defined by the consistency level. In general, there is
a direct proportionality between the consistency level and the number of MAPE-K
iterations and with that, the overall execution time. The lower the required preci-
sion (consistency level), the lower the potential overall execution time (number of
MAPE-K iterations)–and vice versa. By this, the execution of self-managed pro-
cess steps becomes scalable with respect to the required level of precision, which is
depending on the concrete use case, workflow and domain (cf. Section 4.6).

The separation of concerns with respect to the goal definitions in Consistency Style
Sheets and the modelling of the basic workflow in the “traditional” way also con-
tributes to the scalability of our approach. The definition of cyber-physical workflows
and tweaking of their parameters and goals is often a cumbersome process that re-
lies on many experiments and various repetitions and variations of workflows to find
optimal configurations. The basic workflow defining the “base recipe” is specified
using the regular underlying workflow notation. The fine-tuning of more unreliable,
imprecise and vulnerable (physical) parameters is then done with the help of the
Consistency Style Sheets. This facilitates the execution of real-world experiments

157

6. Scalable Execution of Self-managed CPS Workflows

as only the parameters in the style sheet have to be modified and the workflow can
be repeated again more efficiently and at a larger scale.

The distributed execution of processes in the peer–super-peer hierarchy also allows
for scaling up the process execution with respect to the number of devices involved
in the process execution and the number of parallel process instances. With an
increased number of available peers that are possibly also specialized in executing
certain kinds of subprocesses (e. g., computing intensive tasks), more resources are
available in the CPS to execute the processes. Super-peers can take over the tasks
of managing the process executions and all other IoT devices may act as individ-
ual peers running the bare WfMS to execute subprocesses. Implementing multi-level
hierarchies of peer–super-peer networks allows for an efficient management and scal-
ing of the number of CPS devices as resources and of the workflow execution up to
the level of smart cities. An exemplary setup related to a smart city may view the
devices of a single room or floor of a house as peers, and one super-peer per room or
floor orchestrating/managing the processes within the room/floor and communicat-
ing with other super-peers managing the process execution in other rooms/floors.
These super-peers then act as peers to the super-peer managing the processes within
the smart building. This super-peer can then again play the role of a subordinate
peer to a higher-level super-peer orchestrating processes in a smart neighbourhood.
This can be continued to the scale of smart districts and smart cities. While this
discussion seems plausible on a theoretical level, the corresponding experiments need
be conducted within an adequate city-wide scale to evaluate the feasibility of the
hierarchical peer–super-peer concepts as part of future work.

6.6. Self-managed Workflows

The examples discussed in this chapter show how to react to a certain degree of
unanticipated situations and provide a basic self-healing mechanism for CPS work-
flows. Assuming the process designer knows the relevant expected outcome of the
execution of a process activity, the system is able to check and verify if the execu-
tion was successful by analysing additional sensor information from arbitrary sources
(self-awareness). Goals and objectives hereby provide a more declarative and flex-
ible approach as we do not need to explicitly specify the reaction to every possible
error scenario as part of the process model in advance. This modelling of possible
errors and their remedies as explicit branches within a process would lead to very
complex process specifications that may not be very flexible and hard to redesign
or adapt. Based on measurable mismatches and the goal specifications, the Feed-
back Service can derive simple known compensation actions from the compensation
repository to remedy the occurred errors or derivations.

Within our scenarios, we focus on the adaptation of process resources as the main
sources of errors and imprecision when interacting with the physical world. However,
besides the self-healing with respect to process resources, goal specifications may also
comprise other factors and parameters, e. g., throughput and latency of certain pro-
cess executions or the overall energy consumption [SGCG18] to address other self-*
properties. If the Knowledge Base contains these values and increase/decrease op-
erations linked to these QoS or KPI factors are available, then the Feedback Service
can also be used for other purposes regarding the implementation of additional self-*

158

6.7. Adaptations and Meta-adaptations

mechanisms, e. g., self-optimization, self-configuration or self-management of work-
flows in general (cf. Section 2.4.5). We investigate these aspects partially within
our smart home case study (cf. Chapter 7), but more detailed experiments are re-
quired as part of possible future work. The application of stream-based process
mining to check for process conformance at runtime (i. e., the correct process execu-
tion behaviour based on the predefined model) [JKM+17] is also a possible future
extension to facilitate the self-management of workflows. As already discussed in
Section 6.2.6, more sophisticated means of adapting the process instances–not only
on the resources level but also on the structural level [DR09, MGR04], selecting
dynamic subprocesses and services based on Worklets [ATHEVDA06] or synthe-
sizing new compensation/remedy workflows [RSA10]–could be integrated as future
improvements to achieve a higher degree of self-adaptation. Due to the relatively
generic implementation of the MAPE-K control loop by the Feedback Service, we
have a general framework for enabling self-management of workflows w. r. t. arbitrary
criteria and metrics that can also be used in other non-workflow related contexts.
As discussed in the previous section, Consistency Levels can be used to define the
level of precision or fulfilment of the respective objectives that define success or er-
ror criteria for the self-management of the workflows and information systems via
MAPE-K control loops.

6.7. Adaptations and Meta-adaptations

The implementation of the MAPE-K-based feedback loops in our approach follows
the three layer architectural model for self-management by Kramer and Magee as
shown in Figure 6.8 [KM07]. On the Component Control layer, processes and CPS
entities provide status updates and other sensor-related information to the Change
Management. Here, plans to react to the new situations are chosen and change
actions are propagated to the component control. The upperGoal Management layer
is responsible for deriving new change plans in accordance with the state updates,
available change actions and higher level goals. These higher level goals correspond
to the goal definitions for the workflow activities, the change actions correspond
to the actions to be derived to compensate for the determined mismatches during
process execution.

To make our implementation of the self-management capability based on the
MAPE-K approach more flexible, also the selection/creation of goals and the selec-
tion/creation of compensation strategies could be enhanced by applying MAPE-K
loops for the individual phases (Multi-level Feedback Loops). Currently, we rely on
rather static goal definitions regarding static sensors and sensor values evaluated
within static MAPE-K loops. Changing the sensors and thresholds used for defining
the context paths, satisfied conditions and compensations at runtime based on addi-
tional information related to other context factors could further increase the flexibil-
ity and degree of self-adaptation of our approach (Meta-adaptations [PRK+14]). A
possible way of implementing this approach based on our existing concepts is to also
model the phases of MAPE-K loop–currently viewed as an internal and integrated
process–as explicit process steps following the metamodel presented in Chapter 4
and adding goal definitions to the respective process steps that should be managed
and adapted at runtime. This MAPE-K process would then be enacted by PRO-

159

6. Scalable Execution of Self-managed CPS Workflows

tEUS and the Feedback Service would be responsible for executing the MAPE-K
loops for the MAPE-K subprocess steps (Monitor, Analyse, Plan, Execute), e. g., to
adapt the goal specifications of the Analyse process step. Extending the basic con-
cepts with this approach and testing the adaptation also regarding these dynamic
multi-level feedback loops could be part of future developments.

Figure 6.8.: Three Layer Architecture Model for Self-Management from [KM07].

6.8. Multiple Feedback Loops and Process Instances

As shown in the previous examples, there can be multiple instances of MAPE-K
loops executed on the peer level (e. g., for ensuring Cyber-physical Consistency;
cf. Section 6.3) and also on the super-peer level (e. g., for checking the liveliness
signals of peers; cf. Section 6.4). With every objective defined for a process step
and every instance of the process step to be executed, there is also an instance
of the MAPE-K loop running in the Feedback Service on the super-peer or peer.
Exemplary performance evaluations of the execution of single MAPE-K instances
can be found in Chapter 7. A more extensive evaluation regarding a larger number
of parallel feedback loops and with that potential performance issues is subject to
future work.

In general, we assume that the process modellers are responsible for defining rea-
sonable and non-conflicting processes and process goals. Consistency Style Sheets
support the designers with finding the correct parameters at this point. However,
this far, we mostly focussed on the modelling of individual CPS workflows and the
execution of single instances of these workflows. The number of parallel process
instances in CPS is likely to increase with the number of involved entities and in-
creasing complexity of CPS. In contrast with “traditional” business processes that
involve scalable virtual resources (software, services, memory, computations, etc.),
processes in CPS also interact with physical resources that may not be scalable and
thus result in conflicting accesses to these constraint resources. A partial remedy
for this issue is to design the goals and objectives used in the feedback loops accord-
ingly to define the local and global constraints for the process instances (e. g, the

160

6.9. Transactions and ACID for CPS Workflows

maximum energy consumption for all process steps in a certain amount of time).
This requires a global and shared knowledge base containing all relevant context
factors and resource limitations. Due to the occurrence of emergent behaviour in
CPS and especially CPSoS [CBF+16], it may not be possible to anticipate every
possible situation and feasible to specify all possible constraints in the respective
goals, though.

6.9. Transactions and ACID for CPS Workflows

The previous discussions and the detailed investigation of Cyber-physical Consis-
tency for workflows (cf. Section 4.6) as an extension of the “classical” Consistency
property for distributed systems [GR92] raise questions regarding the extensions of
the other ACID criteria towards cyber-physical ACID and cyber-physical transac-
tions for workflows in general. Here we briefly discuss how to possibly realize the
individual criteria for CPS workflows and potential pitfalls on the conceptual level:

Atomicity Atomicity refers to the “all or nothing” nature of actions in distributed
system or databases, i. e., the action is either completed successfully or in case of
failure, the action has to be undone and the previous state restored. In CPS this
requirement is harder to achieve as actions in the physical world cannot be undone
that easily. The rollback and undo mechanisms are often far more complex in the
physical world (e. g., repairing a broken window due to the service robot having
crashed into it), which requires complex undo and compensation strategies or a high
level of ensuring safety-critical behaviour to guarantee the successful execution or
to restore the previous states.

Consistency The topic of keeping the workflow execution in the physical world
and the cyber world in a consistent state has been discussed in detail in previous
sections of this thesis (cf. Sections 4.6 and 6.3). In case of errors in the physical or
virtual world, the state of the counterpart object, context factor or process has to
be kept in sync–either by updating the state of the (virtual) counterpart or by fixing
the error with respect to the original (physical) entity.

Isolation Isolation refers to the concurrent execution of actions and their result be-
ing the same as if they were performed in sequence. For CPS this property is again
very hard to achieve as actions performed in the physical world have a stronger im-
pact on the involved physical entities than in the virtual world. With many parallel
process instances and other entities (e. g., humans) continuously influencing one or
more physical objects, a software-based locking mechanism to handle concurrent ac-
cess to physical resources and objects seems to be only a partial solution. Increasing
the usability of the CPS control systems for users and notifying them about possible
conflicting interactions among processes and their own actions may help to remedy
this problem. A variety of mutually influencing context factors and processes have
to be considered at this point.

Durability Durability is meant to ensure/persist the state of an action after its
execution even in case of power outages or other unforeseen events. In CPS this

161

6. Scalable Execution of Self-managed CPS Workflows

property is again hard to guarantee as the states of physical objects influenced by
processes or other entities are harder to maintain. Many physical entities (e. g., hu-
mans or animals) are able to influence the resources affected by the execution of
actions and processes/workflows. On the other hand, these physical entities can-
not always be controlled by software and therefore, the state of a physical object
after or during the process execution cannot always be guaranteed. The access to a
cyber-physical object (cf. Section 6.10) cannot be completely locked with the help of
software. A way to at least detect failures with respect to Durability is to constantly
update the underlying world models including the states of the relevant objects with
the help of sensors to keep the states of the physical and virtual world consistent.

Cyber-physical ACID

The findings show that ACID properties for transactions and workflows are harder
to achieve and maintain in CPS due to the newly introduced physical dimension
and interactions with the physical world. Corresponding goal specifications and ex-
ecutions of the MAPE-K loops may facilitate the maintenance of the ACID criteria
(e. g., with respect to concurrent access or consistency). In [MMG08] Montagut
et al. discuss the implementation of Pervasive Workflows that also support long
running transactions. They basically define “critical” zones within processes and
corresponding rollback processes and actions to be able to revert the execution in
case of errors. These critical zones could also be part of our workflow definitions
that can be considered within the Analyse and Plan phases of the feedback loop
executions in future developments. The implementation of a Two-phase Commit
Protocol [Lec09] for CPS could also be a good starting point for further discussions.
Another approach to fulfil the ACID criteria to a certain degree could be to apply
principles of role-based programming to the processes and entities involved in the
execution in future work. Roles could be assigned to processes and cyber-physical
objects/resources. Goals and objectives in combination with Compartments could
then be used to specify allowed and forbidden concurrent interactions between multi-
ple processes (instances) and physical entities depending on different contexts as well
as consistency criteria to be maintained by the compartments [KLG+14]. Further
more detailed discussions of applying these concepts in the context of cyber-physical
workflows are required as part of future work.

6.10. Runtime View on Cyber-physical Synchronization for
Workflows

Figure 6.9 shows our view on Cyber-physical Synchronization and Cyber-physical
Objects at runtime illustrated with the help of the smart lighting example. Real
world objects (e. g., a lamp) belong to the physical MP 0 layer in accordance with the
MOF levels [Omg08]. These real world objects are represented by a corresponding
virtual software object on the cyber MC0 layer (Digital Twin). This object is an
instance of an abstract model (class) on cyber level MC1 describing the attributes
and methods that instances of the class will have (here: class Lamp). The level of
abstraction depends thereby on the requirements the corresponding software systems
need to fulfil. A complete coverage of all the attributes and behaviours of the physical

162

6.10. Runtime View on Cyber-physical Synchronization for Workflows

Figure 6.9.: Runtime View on Cyber-physical Objects and Synchronization Influ-
enced by a CPS Workflow.

object that the virtual object represents is usually not feasible or even possible. The
physical object (concrete physical lamp) on MP 0 and the representing cyber object
(Lamp1 object) on MC0 form a Cyber-physical Object (Lamp1CPO). This split-up
of the cyber-physical object in a physical and a virtual part raises the question with
respect to the existence and similar split-up of a cyber-physical model on level M1.
The Lamp class on level MC1 represents the abstract software (cyber) model of the
concrete lamp “Lamp1”. A more abstract physical model on level MP 1 could be a
physical blueprint or template of the model of the lamp.

The cyber part of the cyber-physical object is a software artefact that is able to in-
teract with its physical equivalent–either directly using the object’s control software
for sensing of states and actuating via control commands, or indirectly using services
and external sensors or actuators. These internal or external services, sensors and
applications are used for Cyber-physical Synchronization, i. e., keeping a consistent
state of the physical object and its virtual representation in the sense of Cyber-
physical Consistency (cf. Section 4.6). This can either be achieved by updating the
cyber object’s state after a change within the physical object’s state as determined
by corresponding built-in or external sensors, or by executing compensation actions
to influence the physical object’s state according to the cyber object’s state. The
selection of one of these ways depends on the assumed correctness of the physical
or cyber object’s state, which is defined within the process goals in our approach.
For our smart lighting example described in Section 6.3, we assume that the cyber
object’s state is the correct/desired state, hence we influence the physical object’s
state accordingly. The other choice would be to update the virtual object’s state to
Lamp1 being off and execute no further operations. However, the instance of the
“SwitchOnLight” process that influences the virtual object’s (Lamp1) state would
then run into an error or inconsistency of process states.

163

6. Scalable Execution of Self-managed CPS Workflows

As already pointed out in Section 4.6, there is no direct representation of a process
instance in the physical world (Physical Twin). Its physical effects can only be
observed within changes in the states of physical entities (objects, humans, etc.),
the physical environment, or other context factors. Therefore, the cyber-physical
synchronization aspect for workflows has to also cover the physical context factors
regarding the cyber-physical objects and the environment.

6.11. Applicability of Workflow Feedback Loops to other
CPS Domains

In Section 4.9 we elaborate on the compatibility of the proposed workflow notation
with related business process languages and in Section 5.7 we discuss the suitability
of the proposed WfMS for CPS to serve as reference architecture for other CPS
domains. Thus far, the examples used to describe the concepts related to the self-
management of CPS workflows refer to scenarios from the smart home domain.
However, the goals used to define the outcome of the process activities can also
be related to specific machine states, factory context values, geospatial locations or
quality attributes of component parts or produced goods in the context of smart
factories and associated supply chains. The examples from the logistics domain to
monitor the transport of goods using GPS data as part of supply chain processes
presented in [BCD+15] can also be investigated to be adapted within our feedback
loops for workflows in future work. In general, the relevant context attributes anal-
ysed in the MAPE-K loops need to be measurable via the Feedback Service and
integrated into the Knowledge Base. Goals can then be specified according to the
criteria related to cyber-physical consistency, QoS, KPIs or other arbitrary factors
related to various domains. The Compensation Repository has to contain the specific
Compensation Queries and strategies with respect to the occurred mismatches. The
compensation actions and the corresponding services to be invoked by the Executor
also have to be stored in the Knowledge Base.
The application of the MAPE-K approach for workflows in other CPS domains

(e. g., in smart hospitals, smart cities, smart factories or automotive) remains sub-
ject to future work. The concept of applying feedback loops to monitor, anal-
yse and adapt software systems controlling physical actuators is widely accepted
and used in practice on different levels of abstraction [GPGV14]. With relying on
service-based communication and a decoupled standalone micro-service application
for implementing the proposed feedback loops in form of the Feedback Service, we
are currently limited to CPS domains with relatively low requirements regarding
safety-critical and real-time demanding behaviour due to the computational and
communications overhead introduced by the SOA-based approach. We assume that
the basic mechanisms and processes related to the safety of the CPS devices and
interactions are implemented on a level close to the respective hardware’s control
applications (cf. Section 2.5.1)–very likely also applying feedback loops involving
sensors and actuators (e. g., the bumper sensor of the service robot indicates the
need for changing its movement direction).
With goal definitions and applying the MAPE-K loop on the business process level

and service-based interactions with sensors and actuators, we are able to support
non-critical, mostly asynchronous and long running process executions and adapta-

164

6.12. A Retrofitting Framework for Self-managed CPS WfMSes

tions, e. g., as shown with our case study in the smart home domain (cf. Chapter 7).
More real-time and safety-critical feedback loops in CPS workflows (e. g., for verifi-
cation and adaptation in the automotive domain [KGC+12]) have to be more tightly
integrated into the corresponding control applications or WfMSes due to possible
performance issues with a dedicated SOA-based software component. Goals can
still be used to define expected and undesired outcomes for these self-managed sys-
tems/workflows [KM07]. A more detailed discussion with respect to the support of
time-critical behaviour as well as safety and security-related aspects to be consid-
ered in feedback loops and supported by our approaches are given in Sections 7.6.9
and 7.6.10. An extended evaluation of the Feedback Service’s performance in the
case of executing multiple feedback loops for multiple process instances and an in-
vestigation of their mutual influences have to be part of future work when applying
the workflow feedback loops to other CPS domains.

6.12. A Retrofitting Framework for Self-managed CPS
WfMSes

In Section 3.2 a variety of existing WfMSes from industry and academia is presented
briefly. Despite a wide variety BPM systems being already used in different contexts
and domains, only a few systems possess capabilities that allow self-management to a
certain degree. With requirement R8, we identified the need of adding these capabil-
ities to existing WfMSes as there are already many systems deployed in industry and
academia. In the following, we discuss different ways of Retrofitting existing legacy
WfMSes with capabilities towards enabling the self-management of CPS workflows
using MAPE-K loops implemented by the Feedback Service [SHA18a].

6.12.1. Retrofitting Process

The main purpose of most existing WfMSes is to enable service orchestration across
(enterprise) applications and systems. The WfMSes investigated in Section 3.2 rely
on SOA principles to find and invoke external or internal web services. With the
Feedback Service as a dedicated web service providing a RESTful service interface
to be invoked from within a process or another service, the integration with other
WfMSes and existing worfklows is straightforward. The MAPE-K approach serves
as basic retrofitting framework. We distinguish between Invasive Retrofitting and
Non-invasive Retrofitting with and without the use of Consistency Style Sheets.

Invasive Retrofitting

The invasive way of retrofitting legacy WfMSes comprises modifications to the un-
derlying workflow metamodel as well as to the internal execution processes of the
WfMS. An example for the invasive retrofitting of the basic PROtEUS workflow
system is shown in this thesis regarding the modelling of CPS workflows (cf. Sec-
tion 4.5) and managed process steps in general (cf. Section 4.5.2), and regarding
their execution (cf. Section 6.2). The basic process step classes of the workflow
metamodel (activities, subprocesses, processes) have to be extended with new at-
tributes or classes to specify goals and objectives as described in Section 4.5. The

165

6. Scalable Execution of Self-managed CPS Workflows

corresponding workflow IDE should be adjusted accordingly to provide the designers
with the possibility of modelling goals for specific workflow activities and process
steps. When executing a (managed or cyber-physical) process activity augmented
with a new goal, the workflow engine has to issue an additional parallel service call
containing the relevant goals to the Feedback Service.
Figure 6.10 shows the process of executing a CPS activity by a retrofitted legacy

WfMS. Upon executing an instance of the CPS activity or subprocess, its goal
is extracted and used as parameter for an implicit parallel call to the Feedback
Service. The Feedback Service then executes the MAPE-K feedback loops during
the execution of the CPS activity to analyse context data with respect to the defined
satisfied and compensation conditions, and to try to reach the goal. The service
response including the state of the fulfilment of the goal is reported back to the
WfMS. In case of errors or the Feedback Service not being able to fulfil the goal, the
workflow system’s internal error handling mechanism or associated process failure
branches have to be activated.
Figure 6.11 shows the execution of a CPS activity by a retrofitted WfMS using a

Consistency Style Sheet, which contains the goal definitions for the process (cf. Sec-
tion 4.7). In this case, the particular Consistency Style Sheet is already known by
the Feedback Service as it was submitted by the process designer to the service be-
fore. The implicit parallel request invoking the Feedback Service in parallel to the
basic process step then only needs to contain the respective process step identifier.
The Feedback Service links this identifier to the corresponding goal from the style
sheet and executes the MAPE-K loops as described in Section 6.2 in parallel to
the “basic” workflow activity. By using the style sheet mechanism, the “original”
workflow needs to be only minimally modified by adding a flag that indicates if the
Feedback Service should be called for self-management.

Legacy WFMS

CPS Activity/
Subprocess

Feedback Service
Call

Goal from Process Step Goal State

Feedback Service

Service Request

MAPE-K
Check and Try to

Reach Goal

Service Response

Figure 6.10.: Retrofitting Process for Existing WFMSes with Self-* Capabilities via
the Feedback Service.

Non-invasive Retrofitting

The non-invasive way of retrofitting involves extending existing process models with
explicitly modelled additional activities to call the Feedback Service. It does not re-
quire modifications to the workflow metamodels or engines–compared to the invasive

166

6.12. A Retrofitting Framework for Self-managed CPS WfMSes

Legacy WFMS

CPS Activity/
Subprocess

Feedback Service
Call

Generate from
Process Step ID Goal State

Feedback Service

Consistency
Stylesheet

Service Request

Match Process Step
ID with Goal

Lookup

MAPE-K
Check and Try to

Reach Goal

Goal

Service Response

Figure 6.11.: Retrofitting Process for WFMSes with Consistency Style Sheets.

retrofitting. As the invocation of the Feedback Service is a simple additional service
call, the WfMS’s metamodel element for modelling a service invocation within a
process and the WfMS’s internal mechanism for calling the specified service can be
used. The Feedback Service Call process activities shown in Figures 6.10 and 6.11
can be viewed as explicitly modelled process activities to be executed in parallel
to the activity/subprocess to be managed. Goals and process instance information
can be specified as input parameters for the service call to the Feedback Service.
This service call then only has to be modelled as an additional process step to be
executed in parallel to the “original” process activity that should be managed by the
Feedback Service. The Consistency Style Sheets can be used similar to the invasive
retrofitting as shown in Figure 6.11.

Invasive vs. Non-invasive Retrofitting

The invasive retrofitting process requires more modifications to the existing WfMS
and its underlying metamodel. However, it provides a more intuitive integration
into the existing WfMS and process landscape. Only a few new properties have
to be added to the existing workflows. The workflow IDE can help to assist the
process designer with specifying the goals of the managed process activities. As not
all WfMSes are open source software or easily modifiable, this approach may not
always be feasible to be implemented, though.

On the other hand, the non-invasive retrofitting approach requires more modifi-
cations to the existing process models and is less intuitive w. r. t. the modelling of a
workflow as new process activities have to be added to the existing processes, which
increases the complexity of the process models and possibly leads to concurring or
blocking process executions due to the communication with the Feedback Service in
parallel. However, the additional process steps and modified processes are still com-
patible with–but also limited to–the original WfMS and workflow language. Within
the invasive retrofitting approach, modifications to the execution behaviours can be
more diverse and less complex to realize in case adjustments or special process exe-
cutions are required for specific use cases. Within the invasive approach, developers
and process designers are limited to the expressiveness of the underlying workflow
notation and to the capabilities of the corresponding WfMS.

167

6. Scalable Execution of Self-managed CPS Workflows

6.12.2. Application to Existing WFMSes

The necessary steps for the invasive retrofitting process to add the capability of self-
management to WfMSes are shown throughout this thesis–especially in Sections 4.5
and 6.2–for the basic PROtEUS WfMS. In this section, we briefly discuss the appli-
cation of the non-invasive retrofitting approach to three of the existing open source
WfMSes presented in Section 3.2. With Activiti, the YAWL Engine and Apache
ODE, we have three complete WfMSes that use different underlying workflow lan-
guages, namely BPMN 2.0, YAWL and WS-BPEL (cf. Section 2.3.3). For all three
WfMSes we show the retrofitting process of modifying the “basic” process with an
additional service invocation containing the particular goals as parameters to call
the Feedback Service in parallel to the invocation of the IoT (openHAB) middle-
ware service for switching on the lamp in the Morning Routine scenario process. The
results of the corresponding experiments using the three legacy WfMSes in combi-
nation with the Feedback Service in a non-invasive way and using PROtEUS with
the Feedback Service in an invasive way to execute the Smart Lighting processes can
be found in Section 7.5.

Sm
ar

t H
om

e

FBSInvoke

LightInvoke

input

Start process End

Figure 6.12.: Retrofitted Smart Lighting Process with Activiti.

Activiti Figure 6.12 shows the basic smart lighting process from our running exam-
ple augmented with the additional call to the Feedback Service in BPMN 2.0. The
input process step is used to provide input parameters. The basic process activity
is the LightInvoke service task to call a custom service deployed on the Activiti
system to trigger the dimmer switch via the openHAB middleware. In parallel, the
invocation of the FBSInvoke service task calling the Feedback Service with the goal
parameters to execute the MAPE-K feedback loops is specified. Activiti relies on
intermediate services that are locally deployed for executing external functionality.
In our example, these services are custom implementations that delegate the calls to
the actual RESTful services provided by the IoT middleware and Feedback Service.

YAWL Engine Figure 6.13 shows the basic smart lighting process from our running
example augmented with the additional call to the Feedback Service in the YAWL
notation, which is based on Petri nets [vdAtH05]. The YAWL system also relies on
custom services that are deployed in a local repository to execute functionality and
invoke other external applications. We implemented custom services for each step
of the process. The input and output services print input and output parameters for
debugging purposes. The LightInvoke step is the basic process activity that calls the

168

6.12. A Retrofitting Framework for Self-managed CPS WfMSes

Figure 6.13.: Retrofitted Smart Lighting Process with YAWL.

openHAB middleware delegated via our custom service to activate the light dimmer.
The FBSInvoke service is the “retrofitting” process step that invokes the Feedback
Service delegated via our custom service in parallel. Goals are provided as input
parameters for the FBSInvoke call. YAWL uses SOAP as internal communication
protocol. We see that also with the YAWL system, additional custom services need
to be implemented and deployed locally as intermediate services to call the external
services. PROtEUS shows advantages with this regard as it as able to invoke external
RESTful and SOAP-based web services directly.

Figure 6.14.: Retrofitted Smart Lighting Process with Apache ODE.

Apache ODE Figure 6.14 shows the basic smart lighting process from our running
example augmented with the additional call to the Feedback Service in graphical

169

6. Scalable Execution of Self-managed CPS Workflows

WS-BPEL notation. The first process step is used to receive input data and as-
sign it to the following service requests. The LightCall branch on the right side
of the process contains the assignment of input parameters to the following basic
LightInvoke step, which calls a custom service to then call the IoT middleware to
switch on the light. In the parallel FBSCall branch, the FBSInvoke process step
invokes a custom service to execute the MAPE-K loops via the Feedback Service
with goals provided as input parameters from the previous process step. The replies
are provided as output parameters. Similar to the previous examples, Apache ODE
assumes SOAP-based communication with external services. It requires a WSDL
description of the respective service requiring us to also provide intermediate services
to delegate the service calls to the actual REST-based services of the middleware
and Feedback Service.

6.12.3. Limitations

The examples for non-invasive retrofitting of the existing WfMSes show that usu-
ally only one additional process activity is required to add the capability of self-
management based on the MAPE-K framework to individual workflow steps. How-
ever, the focus of most of the existing WfMSes is still on the SOAP-based invocation
of custom services to implement a company’s business processes and integrate en-
terprise applications. In contrast to that, the IoT and CPS increasingly rely on
more light-weight service implementations and communication based on the REST
protocol [GIM11]. This technology is also one the basic principles of the IoT mid-
dleware (cf. Section 5.3) and Feedback Service (cf. Section 6.2.1) to provide service
based remote APIs. For that reason, we have to provide and deploy intermediate
services to enable the communication between the SOAP-based WfMSes and the
RESTful IoT services. A better support of direct REST service invocations would
be a desirable feature for future developments of these WfMSes. The PROtEUS
system already supports this kind of service calls. An alternative would be to add
support for the more heavy-weight SOAP protocol to the existing IoT services and
Feedback Service, which would probably be not always feasible due to resource con-
straints. In general, we assume that WfMSes are capable of service invocations and
parameter passing to apply the MAPE-K framework for self-management with the
help of Feedback Service, which is a dedicated standalone web service. In case the
workflow system is not capable of establishing a service-based communication with
the external Feedback Service or stricter performance requirements, the Feedback
Service has to be integrated as additional software component and coupled more
tightly to the basic WfMS as internal component. Running the Feedback Service
as external micro-service introduces additional overhead due the hosting, operation
and communication costs for the service.
Software or process engineers have to decide about which retrofitting process to

choose based on the impact of the retrofitting process–either extending the meta-
model and execution behaviour of the “basic” WfMS or extending the existing pro-
cess models, which would maintain compatibility with the original WfMS. The selec-
tion of an appropriate “basic” WfMS depends on features and properties the WfMS
has to provide and fulfil (e. g., formal verification or scalability) in the respective
application domain or enterprise.

170

7. Evaluation

“The true delight is in the finding
out rather than in the knowing.”

Isaac Asimov

7.1. Introduction

In this chapter, we evaluate the new concepts presented in Chapters 4, 5 and 6
with respect to various criteria and the identified requirements. The basis for this
evaluation are the two scenario processes introduced in Sections 2.2.1 and 2.2.2. We
use the underlying processes or more complex subprocesses from these scenarios to
provide a proof-of-concept evaluation of the new concepts regarding the modelling
and resilient execution of self-managed CPS workflows. First, the basic PROtEUS
system is used to execute the modelled Morning Routine and Emergency scenario
processes. Afterwards, we show the application of the MAPE-K feedback loops
using the Feedback Service to check for successful process execution and to deal with
errors that have occurred. To show the feasibility of our concepts, we correlate the
process instance executions with the corresponding changes in sensor and actuator
states, and with the execution of the MAPE-K feedback loops. The experiments
are partially based on the elaborations in [SHH17, HSKS16a, SHHA17, SKGA17,
SHA18b]. In contrast to related approaches discussing their evaluation of CPS
control and information systems based on just concepts or simulated data [MS17],
we put our focus on conducting real world experiments to collect actual data from
the physical world. Only with these kind of experiments, we are able to identify
new unanticipated sources for errors and unexpected behaviour to then use the
feedback loops to remedy situations and issues that occur due to the interactions
with the physical world. Following the quantitative evaluation of our concepts in
this smart home case study, we provide an extensive qualitative discussion regarding
the fulfilment of the requirements R1–R8 and additional aspects related to safety
and security as well as questions that arose during the preceding elaborations. The
results of these discussions show various advancements and improvements of our
proposed concepts and prototypes over related approaches regarding the fulfilment
of the individual requirements and also regarding the development of CPS WfMSes
in general.

7.2. Hardware and Software

The following Hardware components were used to conduct the experiments in
our smart home scenarios. Figure 7.1 shows the setup in our smart home lab.

171

7. Evaluation

Figure 7.2 shows the setup for a demo presented at the 2016 ACM International
Joint Conference on Pervasive and Ubiquitous Computing (UbiComp) [HSKS16a].

Figure 7.1.: Smart Home Lab Setup.

Figure 7.2.: UbiComp 2016 Demo Setup.

Sensors

• 2 Ambient light Bricklets and 1 infrared temperature Bricklet by Tinkerforge
attached to Tinkerforge Master Bricks connected via USB

• 1 NFC reader connected via USB

• 1 BeSpoon tracking system with 3 tags and 1 anchor connected via USB

Actuators

• 2 Dimmer switches, 1 Gong, 1 KeyMatic door lock by Homematic connected
to a HomeMatic CCU 1 via the BidCos radio protocol

172

7.2. Hardware and Software

• 2 LCD 20x4 Bricklets by Tinkerforge attached to Tinkerforge Master Bricks
connected via USB

• 1 Smarter SMC10UK coffee maker connected via WiFi

Robots

• 2 TurtleBot 2 service robots with a Kobuki base station and an ASUS Xtion
Pro 3D sensor

• Control laptop for TurtleBot 1: Asus X201E (Intel Celeron, 2 Cores at 1,1GHz,
4GB RAM, 100GB HDD) running Ubuntu Linux 12.04 LTS (32 Bit) and
ROS Groovy with ROSBridge 21 as WebSocket server, connected via WiFi

• Control laptop for second TurtleBot 2: Toshiba Satellite R630-14X (Intel
Core i5, 2 Cores at 2,6GHz, 8GB RAM, 500GB HDD) running Ubuntu
Linux 12.04 LTS (64 Bit) and ROS Groovy with ROSBridge 2 as WebSocket
server, connected via WiFi

Control Computer

• Dell XPS One 2710 (Intel Core i7, 4 Cores at 3,1GHz, 8GB RAM, 32GB SSD,
2TB HDD) running Ubuntu Linux 14.04 (64 Bit), connected via GB Ethernet

Miscellaneous

• ASUS AC200 RT as central network router with WiFi

• Acer Iconia Tab A510 Tablet with Android 4.1.2 for interactions with users

The following Software components were used to conduct the experiments:

• openHAB 2.0 2 running as Eclipse application on the control computer, with
standard bindings for Tinkerforge, Homematic, HTTP and the Kodi media
player, and with custom self-implemented bindings for the NFC reader, Be-
Spoon tracker and TurtleBots

• PROtEUS 3 WfMS running as Eclipse application on the control computer

• Feedback Service4 running as standalone application on the control computer

• SAL5 as plugin for openHAB

• Neo4j 2.3.26 as graph database running in a Docker7 container on the control
computer

• ElasticSearch 1.7.48 as logging and data analytics tool running in a Docker
container on the control computer

• Kibana 4.1.59 as data exploration and visualization tool running in a Docker
container on the control computer

1http://wiki.ros.org/rosbridge_suite
2https://github.com/IoTUDresden/openhab-distro
3https://github.com/IoTUDresden/proteus
4https://github.com/IoTUDresden/feedback-service
5https://github.com/IoTUDresden/openhab2-addons
6https://neo4j.com
7https://www.docker.com
8https://www.elastic.co/de/products/elasticsearch
9https://www.elastic.co/de/products/kibana

173

http://wiki.ros.org/rosbridge_suite
https://github.com/IoTUDresden/openhab-distro
https://github.com/IoTUDresden/proteus
https://github.com/IoTUDresden/feedback-service
https://github.com/IoTUDresden/openhab2-addons
https://neo4j.com
https://www.docker.com
https://www.elastic.co/de/products/elasticsearch
https://www.elastic.co/de/products/kibana

7. Evaluation

Figure 7.3.: Complete Morning Routine Scenario Process.

• iBrew10 as Web service to interact with the Smarter SMC10UK coffee maker
running on the control computer

• DROiT API 11 as Java-based programming abstraction for the TurtleBot robots

• Smart CPS 12 Android app for process and human task interactions on the
tablet device and for simulation of health status data via a custom app

• BeSpoonROS 13 for transformation and publishing of BeSpoon position data
via ROS running on the TurtleBot control laptops

• Kodi14 media center for user notifications running on the control computer in
version 16.1 and on the TurtleBot control laptops in version 14.2

7.3. PROtEUS Base System

The first two experiments relate to the processes described in Sections 2.2.1 and 2.2.2.
With these processes providing smart home residents with assistance in an emer-
gency situation and for comfort purposes, we will show the feasibility of the basic
PROtEUS WfMS interacting with the openHAB IoT middleware, SAL [HSKS16b],
service robots, other PROtEUS instances, and humans. These aspects address the
identified requirements R1–R4 (cf. Section 2.6).

7.3.1. Morning Routine Process

Figure 7.3 presents the complete Morning Routine process to be executed for this
experiment in our workflow notation: a robot is sent to the paper delivery boy to
get the paper; after the confirmation of the delivery the robot drives to the resident;
upon the robot’s arrival the light is switched on and the coffee maker starts brewing.

The first two process steps are used to get the position of the paper boy (GetPo-
sitionForPaperBoy, P1) and the reader (GetPositionForReader, P2) from the SAL.
The OpenHabSemanticInvoke process class is a specialization of a SemanticInvoke
process step type (cf. Section 4.4) allowing for dynamic service selection based on

10https://github.com/Tristan79/iBrew
11https://github.com/IoTUDresden/DROiTAPI
12https://github.com/IoTUDresden/smartcps
13https://github.com/IoTUDresden/BeSpoonROS
14https://kodi.tv/

174

https://github.com/Tristan79/iBrew
https://github.com/IoTUDresden/DROiTAPI
https://github.com/IoTUDresden/smartcps
https://github.com/IoTUDresden/BeSpoonROS
https://kodi.tv/

7.3. PROtEUS Base System

Listing 7.1: SPARQL Semantic Select Query for Retrieving the Reader’s Current
Position.

1 SELECT ?position

2 WHERE {

3 ?personClass rdfs:subClassOf* vicci:Person .

4 ?person rdf:type ?personClass .

5 ?person vicci:hasRobotPosition ?rP .

6 ?person vicci:hasFirstname ?personName .

7 ?rP vicci:hasOrientation ?o .

8 ?rP vicci:hasPosition ?p .

9 bind(concat(’P: ’, str(?p), ’ O: ’, str(?o)) as

?position).

10 FILTER (? personName = ’<{ Reader}>’) }

a SPARQL query. It contains additional parameters and a modified execution be-
haviour to use the SAL in combination with the openHAB middleware. The ex-
emplary SPARQL query to retrieve the current position of the reader from the
middleware and knowledge base can be found in Listing 7.1. The following REST
service invocation (MoveRobotToPaperBoy, P3) uses the paper boy’s current posi-
tion as target coordinates for the robot to drive to. As this driving activity is an
asynchronous action, the process engine waits for a specific ARRIVED event emit-
ted from the robot to trigger the (WaitForRobotToArriveAtPaperBoy, P4) event in
the process instance according to the corresponding EPL statement (cf. Figure 7.3).
After the triggering of the event, the paper delivery boy receives a human task (Pla-
cePaperOnTurtle, P5) to place the paper on the robot and confirm this action. Once
confirmed, the process instance continues and the robot is sent via a REST service in-
vocation to the reader (MoveRobotToReader, P6). Upon receiving the robot’s arrival
notification (WaitForRobotToArriveAtReader, P7) event, two subsequent REST ser-
vice invocations are executed to switch on the light (SwitchOnLight, P8) and start
brewing coffee (BrewCoffee, P9).

Experiments

We executed an instance of the MorningRoutine process as described above in the
lab environment using the hardware and software components listed in Section 7.2.
The positions of the reader and paper boy contained in the knowledge base are in
the same coordinate system that the robots use. TurtleBot1 is the robot involved in
this process starting from a random position. Figure 7.4 shows the robot’s internal
map of the room and the path it took to get from the the paper boy at the door to
the reader (about 6 meters long). The Smart CPS app is used to present a human
task dialogue to the paper boy to confirm the delivery of the paper to the robot. One
of the dimmer switches turns on a desk lamp and the Smarter SMC10UK is used
to brew the coffee. We used the ElasticSearch service to log the process execution
data and changes within the states of the involved sensors and actuators.

175

7. Evaluation

Figure 7.4.: Robot’s Path between Reader and Paper Boy for the Morning Routine
Process (Black Lines = Obstacles/Walls, White Area = Discovered,
Grey Area = Unknown).

Results

Table 7.1 shows the durations of the executions of the individual process step in-
stances P1–P9 and the overall execution time of an instance of the Morning Routine
process. A projection of these durations over time to show the flow of process step
executions can be found in Figure 7.5. We summarized the execution times of certain
process steps due the overall scale of the diagram and the large differences between
the virtual and physical process activity executions regarding their durations.

The robot published an ARRIVED event approx. 23 seconds after starting to
move to the paper boy, and approx. 51 seconds after starting to move to the reader,
which resulted in the corresponding TriggeredEvent process steps (P4 and P7) to
be executed. The corresponding asynchronous REST invocations calling the mid-
dleware to initiate the driving processes (P3 and P6) only took a few milliseconds.
It took the paper delivery boy approx. 13 seconds to place the paper on the robot
and confirm the human task on his tablet (P5). The iBrew web service responsi-
ble for communicating with the coffee maker responded after approx. 16 seconds to
confirm the execution of the Brew command (P9). Compared to the short time of
invoking the asynchronous web service for the light switch (P8), which is connected
to the IoT middleware, the relatively long time of the iBrew service execution is due
to the synchronous implementation and internal processes of the web service. The
durations of the interactions with the SAL to retrieve the positions (P1 and P2) are
also in the order of a few milliseconds.

Discussion

The results of the executions of an instance of the Morning Routine process using
the PROtEUS WfMS show that the purely virtual process steps and computations
are executed relatively fast–in the order of a few milliseconds, which indicates a
good performance of the basic PROtEUS system. The interactions with the SAL
for dynamic service discovery (Requirement R2), with the IoT middleware, robots,
humans (Requirement R3), and external services work as expected. The event

176

7.3. PROtEUS Base System

Table 7.1.: Execution Times for Process Steps of the Morning Routine Process.

ID Process Step Duration (in ms)

P1 GetPositionForPaperBoy 34
P2 GetPositionForReader 42
P3 MoveRobotToPaperBoy 35
P4 WaitForRobotToArriveAtPaperBoy 23,631
P5 PlacePaperOnTurtle 13,218
P6 MoveRobotToReader 27
P7 WaitForRobotToArriveAtReader 50,859
P8 SwitchOnLight 13
P9 BrewCoffee 15,586

MorningRoutine 103,334

0 15 30 45 60 75 90 105
Time in Seconds

M
o
rn
in
g
R
o
u
ti
n
e Robot arrived Robot arrived

P1–P4 P5 P6–P7 P8–P9

Figure 7.5.: Execution of the Process Step Instances of the Morning Routine Process
over Time.

processing mechanism listening for the arrival events from the robot triggers the
process-level events at the right moments in time, too (Requirement R1). The
executions of the process steps interacting with the physical world take significantly
longer than the purely virtual process steps, which is due to the mechanics and
nature of the physical world leading to long running asynchronous physical process
step executions. This shows the importance of supporting event-driven architectures
and mechanisms to realize asynchronous processes within a CPS WfMS.

The results display the successful execution of an instance of the Morning Routine
process. However, we had to restart the execution several times due to various errors
related to the interactions with the the physical devices. Especially the internal
autonomous navigation processes of the robot are very error-prone. The robot often
gets stuck in narrow spaces with obstacles or it completely looses its internal position
and cancels the whole process, which leads to the Morning Routine process to be
cancelled or continued assuming the robot was successful (Inconsistency). Despite
being stuck or not having arrived at the exact physical location, the robot often
reports the successful execution back to the middleware leading to the emission of
an ARRIVED event and an inconsistent cyber-physical state due to imprecisions of
the robot’s SLAM system. In this case, the WfMS assumes the correct final position

177

7. Evaluation

Listing 7.2: Semantic Command Query for Retrieving and Activating all TV-like
Devices Capable of Playing Media.

1 SELECT ?func ?tv

2 WHERE {

3 ?tvClass rdfs:subClassOf* dogont:Tv .

4 ?playClass rdfs:subClassOf* dogont:PlayCommand .

5 ?tv rdf:type ?tvClass .

6 ?tv dogont:hasFunctionality ?func .

7 ?func dogont:hasCommand ?cmd .

8 ?cmd rdf:type ?playClass . }

of the robot and with that, the successful execution of the corresponding process step.
The already described issues regarding the activation of the desk lamp–a broken or
worn off light bulb–by the dimmer switch may also appear without the dimmer
switch’s internal control software or the WfMS noticing. In later experiments, we
will show how to remedy these issues with the help of the Feedback Service.

7.3.2. Emergency Process

Figure 7.6.: Complete Emergency Scenario Process.

Figure 7.6 presents the complete Emergency scenario process to be executed for
this experiment in our graphical workflow notation: after receiving data from a health
monitor indicating a critical situation, all devices capable of displaying messages are
activated to draw the resident’s attention; in parallel, a human task is sent to the
resident’s tablet asking him/her to respond to the critical health situation; in case
of a timeout or negative response, an emergency service is called; upon arrival and
authentication of a medic, the door is opened automatically.
The first TriggeredEvent process step (HealthChanged, P1) uses the CEP engine

to analyse data from a health monitor with respect to the EPL statement shown
in the process model. If the heart rate is higher than 140BPM or the oxygen sat-
uration falls below 82% or somebody already called for help, then this event is
activated. Following, the human task (AskHumanIfOk, P6) is sent to the tablet
device. In parallel, a semantic invoke process step (ShowQuestionOnScreens, P2)

178

7.3. PROtEUS Base System

Listing 7.3: Semantic Command Query for Retrieving and Activating all Displays.

1 SELECT ?func ?display

2 WHERE {

3 ?displayClass rdfs:subClassOf* dogont:

DisplayFunctionality .

4 ?display dogont:hasFunctionality ?func .

5 ?func rdf:type ?displayClass . }

Listing 7.4: Semantic Command Query for Retrieving and Activating all Dimmer
Switches.

1 SELECT ?func ?dimmer

2 WHERE {

3 ?dimmerClass rdfs:subClassOf* dogont:DimmerSwitch .

4 ?onClass rdfs:subClassOf* dogont:OnCommand .

5 ?dimmer rdf:type ?dimmerClass .

6 ?dimmer dogont:hasFunctionality ?func .

7 ?func dogont:hasCommand ?cmd .

8 ?cmd rdf:type ?onClass . }

is issued to display a message on all available screens (cf. SPARQL query in List-
ing 7.2), followed by a request (ShowQuestionOnDisplays, P3) to show a message on
all displays (cf. SPARQL query in Listing 7.3), switch on the backlights of these dis-
plays (SwitchLcdBacklightsOn, P4), and switch on all available lights (cf. SPARQL
query in Listing 7.4) to gain the resident’s attention (AllLightsOn, P5). The hu-
man task process step contains an escalation port with a 15 seconds timeout. If
this timeout is triggered or the resident’s response regarding his/her health is neg-
ative, then an emergency service is called (ShowCallEmergency, P8) and a message
is displayed on all screens (ShowHelpIsCalled, P9). The process engine then waits
for an event triggered by the NFC reader (WaitforNfc, P10) in accordance with the
EPL statement shown in Figure 7.6 listening for NFC tags with specific identifiers.
Once the event is triggered, a REST service call is issued to the middleware to open
the door (OpenDoor, P11). The process steps of type OpenHabSemanticInvoke are
specializations of the SemanticInvoke process step type (cf. Section 4.4) allowing
for dynamic service selection (Semantic Command) and invocation via the SAL in
combination with openHAB.

Experiments

We executed an instance of the Emergency process as described above in a lab envi-
ronment using the hardware and software components listed in Section 7.2. A custom
Android app is used to simulate the health monitor and publish corresponding vital
signs to the openHAB middleware. A screenshot of this app allowing to adjust the
heart rate and oxygen levels is shown in Figure 7.7(a). The Smart CPS app is used
to interact with the resident via human tasks (cf. Figure 7.7(b)). The Kodi me-
dia center is used to display the messages “Do you need help?” (cf. Figure 7.8(a))
and “Automatic Emergency Call” (cf. Figure 7.8(b)) on the control computer and

179

7. Evaluation

(a) Health Monitor App. (b) Human Task in Smart CPS App.

Figure 7.7.: Android Apps used in Emergency Process.

(a) Help Message. (b) Emergency Service Call.

Figure 7.8.: Emergency Messages Displayed using the Kodi Media Center.

TurtleBot laptops. These messages are also displayed as text on the LCD units of
the TinkerForge devices. The NFC reader is used for detection and authentication
of a person at the door by specific NFC tags. The two HomeMatic dimmer switches
activate two lamps and the KeyMatic actuator opens the door automatically. All
devices and apps are connected to openHAB to publish events or trigger actions.

Results

Table 7.2 shows the durations of the executions of the individual process step in-
stances P1–11 and the overall execution time of an instance of the Emergency pro-
cess. A projection of these durations over time to show the flow of process step
executions can be found in Figure 7.9. We summarized the execution times of cer-
tain process steps due the overall scale of the diagram and the large differences
between the virtual and physical process executions regarding their durations.

Using the Android app, we let the heart rate and oxygen levels drop below the
defined threshold after approx. 28 seconds (P1) (cf. Figure 7.10). This triggered
the semantic invocations to display the messages on all available screens (P2) and
displays (P3), and to switch on the available displays (P4) and dimmers (P5). The
execution times of these semantic invocations range from 47 to 181 milliseconds de-
pending on the complexity of the semantic query and ontology, and on the number
of available instances [HSKS16b]. For this run of the experiment, we decided to not
answer the human task (P6) and let the timeout trigger the following process steps
after the defined timeframe of 15 seconds. The execution time of 7 milliseconds for

180

7.3. PROtEUS Base System

Table 7.2.: Execution Times for Process Steps of the Emergency Process.

ID Process Step Duration (in ms)

P1 HealthChanged 27,916
P2 ShowQuestionOnScreens 181
P3 ShowQuestionOnDisplays 47
P4 SwitchLcdBacklightsOn 57
P5 AllLightsOn 111
P6 AskIfHumanOk 15,046
P7 OR 7
P8 ShowCallEmergency 131
P9 ShowHelpIsCalled 55
P10 WaitForNfc 21,213
P11 OpenDoor 20

Emergency 64,389

0 10 20 30 40 50 60 70
Time in Seconds

E
m
er
ge
n
cy

Health Timeout NFC

P1 P2–P6 P7–P11

Figure 7.9.: Execution of the Process Step Instances of the Emergency Process over
Time.

the subsequent OR join shows that PROtEUS also performs well executing basic
logic functions. Following, two semantic invocations are executed to call the emer-
gency service (P8) and display this message (P9). Both calls to the SAL match the
execution times of previous interactions with the SAL. We waited approx. 21 sec-
onds to activate the NFC reader with a correct NFC tag (P10), which is followed
by a REST call to the middleware to open the door.

Discussion

For this scenario applying the basic PROtEUS WfMS to execute the process in-
stance, we focussed on using the SAL at various points in time to dynamically find
and invoke process resources (Requirement R2). Without prior knowledge of ac-
tual instances of available smart home devices, we can use the SPARQL queries to
specify required functionality, device classes and other context constraints in single
process steps that will trigger multiple devices at the same time (e. g., all available
dimmer switches or all available displays). The results show that these interactions
work as expected and with acceptable execution times of 47 to 181 milliseconds for

181

7. Evaluation

0 5 10 15 20 25 30 35 40 45 50 55 60 65 70
20

40

60

80

100

Time in Seconds

Heart Rate in BPM

Oxygen Saturation in %

Figure 7.10.: Simulated Data of the Health Monitor.

the smart home. However, we also see slightly longer execution times compared to
basic REST calls to the openHAB middleware. The results also show that the in-
teractions among PROtEUS, SAL, middleware and humans (Requirement R3) have
been executed successfully and the timeout mechanism as well as the CEP engine
worked as expected (Requirement R1). Within this scenario, we can also find new
crucial error sources regarding the interactions with the physical world (e. g., with
respect to the light switches and the door opener).

7.4. PROtEUS with Feedback Service

With the previous examples, we showed the feasibility of the basic PROtEUS WfMS
for executing complex CPS workflows, including the interactions with external ser-
vices, sensors, actuators and humans. During the experiments, we encountered var-
ious types of errors regarding the cyber-physical actuators that cannot be handled
by the basic PROtEUS system in a feasible way. The basic process descriptions need
to be modified to remedy these new errors leading to much more complex process
descriptions and additional process steps to handle all possible errors (e. g., with
respect to the robot navigation or the light control). In the following experiments,
we will use the Feedback Service [SHHA16, SHHA17] as additional component to try
to detect errors and cyber-physical inconsistencies and also to automatically repair
these errors by means of self-healing (Requirements R5–R7). We will also show
examples of the distributed process execution using multiple instances of PROtEUS
and D-PROtEUS in a peer–super-peer configuration (Requirement R4) supervised

182

7.4. PROtEUS with Feedback Service

Listing 7.5: Goal and Objective for MakeCoffee Process Step.

1 "MakeCoffee" : {

2 "name":"Coffee is ready",

3 "objectives":[

4 { "name":"coffee temperature > 37 degrees within 3

minutes",

5 "satisfiedCondition":"#coffeeTemp > 37",

6 "compensationCondition":"#objective.created.isBefore (#

now.minusSeconds (180))",

7 "contextPaths":[

8 "MATCH (ctemp {name: ’

State_tinkerforge_irTemp_irTemp_1 ’}) -[:

hasStateValue]->(value)",

9 "WHERE toFloat(value.realStateValue) > 0",

10 "RETURN toFloat(value.realStateValue) AS coffeeTemp ,

id(ctemp) AS stateId"

11] }] }

by the Feedback Service [SHA17]. The coffee maker, the light dimmers and the ser-
vice robots will be used as main cyber-physical actuators within these experiments.

7.4.1. Coffee Maker Verification

Figure 7.11.: Coffee Brewing Process.

For this experiment, we use the Feedback Service as additional software component
involved in the process execution to verify the success of a cyber-physical process
step: the brewing of coffee using the Smarter SMC10UK15 coffee maker. Figure 7.11
shows the standalone CoffeeProcess as an excerpt of the MorningRoutine process.
The MakeCoffee (P1) step is a REST service call to the iBrew web service enabling
the remote communication with the coffee maker. This process step is marked as
“cyber-physical” and contains the goal Coffee is ready presented in Listing 7.5. In
order to verify the successful execution, an additional infrared temperature sensor
mounted on the front of the coffee maker (cf. Figure 7.12) is used. This setup shows
the extension of existing devices/machines with new additional sensors to increase
the “smartness” of the respective device (Retrofitting). The objective states that this

15https://smarter.am/

183

https://smarter.am/

7. Evaluation

new sensor (tinkerforge irTemp irTemp 1) should report a temperature of over 37°C
within 180 seconds, which indicates that there is hot coffee in the cup. If this goal
can be fulfilled (satisfied condition in Line 5), then a human task (CoffeeSuccess, P3)
is executed notifying the user about the success. In case the temperature cannot be
reached within the defined time frame (compensation condition in Line 6), a human
task (CoffeeFailed, P5) is used to notify the user about a potential error. For this
experiment, we do not try to find a compensation with the help of the Feedback
Service but only to confirm the successful brewing or to detect errors within the
process instance execution.

Figure 7.12.: Retrofitted Coffee Maker with Additional Temperature Sensor.

Experiments

We executed one instance of the CoffeeProcess using the PROtEUS WfMS and the
Feedback Service to verify the execution of the service call to the coffee maker via the
iBrew web service. The TinkerForge infrared temperature sensor is used to publish
the additional temperature data to the IoT middleware and to the knowledge base.
We prepared the coffee maker to execute a successful brewing process for this run.

Results

Table 7.3 shows the durations of the executions of the individual process step in-
stances P1–P4 and the overall execution time of an instance of the Coffee process.
A projection of these durations over time to show the flow of process step executions
can be found in Figure 7.13. It took the MakeCoffee process step approx. 115 sec-
onds to complete (P1). As shown in Figure 7.13, this step consists of the basic REST
service invocation taking about 3 seconds to be enacted, extended by the execution

184

7.4. PROtEUS with Feedback Service

Table 7.3.: Execution Times for Process Steps of the Coffee Process.

ID Process Step Duration (in ms)

P1 MakeCoffee 114,940
P2 IF 38
P3 CoffeeSuccess 35,645
P4 OR 9

CoffeeProcess 150,632

0 25 50 75 100 125 150 175
Time in Seconds

C
o
ff
ee

Temperature

P1 FB Service for P1 P2–P4

Figure 7.13.: Execution of the Process Steps of the Coffee Process over Time.

of the Feedback Service (FB Service for P1). The durations of the MAPE-K phases
and the overall Feedback Service execution as well as the number of iterations can
be found in Table 7.4. The corresponding values of the infrared temperature sensor
over time are shown in Figure 7.15. We started the process with an initial tempera-
ture value of 28°C for the coffee cup. The threshold of 37°C defined in the satisfied
condition was reached approx. 112 seconds after the Feedback Service was called
to execute the MAPE-K loops for the instance of the “MakeCoffee” process step.
Within this timespan, the Feedback Service executed 148 iterations of the MAPE-
K loop taking on average 1023 milliseconds. The Monitoring (M) of the relevant
context attributes (here: infrared temperature) is done continuously. The Analyser
received 148 symptoms from the Monitor to evaluate new data. On average, the
Analysis (A) phase with respect to the compensation and satisfied conditions took
6 milliseconds to be executed. As the satisfied condition was fulfilled within the de-
fined maximum timeframe of 180 seconds, there was no need to initiate the Plan (P)
or Execute (E) phases. The implementation and internal processes of the Feed-
back Service rely heavily on asynchronous communication, event driven behaviour
and parallel threads. For that reason, a simple summation of the durations of the
individual phases does not lead to the total execution times for the iteration of a
MAPE-K loop or the entire Feedback Service. We inserted aspects regarding the
logging of timestamps and publishing these data to the Elastic Search service at
the relevant points within the source code of the Feedback Service to gather this
monitoring data.

After the successful execution of the “MakeCoffee” process step (P1) and the
evaluation of its outcome within the “IF” step (P2), a human task is sent to notify

185

7. Evaluation

Figure 7.14.: Human Task for Successful Coffee Brewing.

Table 7.4.: Number of Iterations and Durations of the Individual MAPE Phases and
Feedback Service for Process Step P1 of the CoffeeProcess.

❳❳❳❳❳❳❳❳❳❳❳Metrics
Phase

M A P E Loop FB Service

Iterations (#) – 148 – – 148 1
Duration (ø in ms) – 6 – – 1,023 112,135

the user about the successful coffee brewing (cf. Figure 7.14). It took the user
approx. 36 seconds to confirm this task (P3) and with that, to terminate the process
instance after the merge of control flow (P4).

Discussion

The results show the application of the Feedback Service to verify the successful
execution of a cyber-physical process step based on information from an additional
sensor. Using an infrared sensor to detect a change of the surface temperature of
the coffee cup and with that, to derive new knowledge about the state of the coffee
brewing process is one example of equipping existing devices or machines with new
sensors (Retrofitting). We use this data and the specified goal to verify the success-
ful execution of workflow activities including Cyber-physical Consistency of the CPS
workflow instance after process execution (Requirement R5). The measured execu-
tion times for the Feedback Service components show an acceptable performance of
the Feedback Service for the smart home context. The actual computations are in
the order of a few milliseconds. The arrival of new sensor values and interactions
with the physical world in general are the major influence factors for the overall
execution times.

186

7.4. PROtEUS with Feedback Service

0 10 20 30 40 50 60 70 80 90 100 110 120 130 140
25

30

35

40

Time in Seconds

In
fr
ar
ed

T
em

p
er
a
tu
re

in
°C

Figure 7.15.: Values from the Infrared Temperature Sensor over Time.

7.4.2. Continuous Light Control

This experiment refers to the automated light control within the Morning Routine
and Emergency scenario processes [SHHA17]. We use the Feedback Service as addi-
tional component to verify the successful execution, detect inconsistencies and errors,
and to repair these errors. Figure 7.16 shows the complete LightControl process.
First, a specific dimmer switch is triggered to switch on the light (SwitchOnLight),
then a loop (LightControlLoop) is used to enable a continuous control of the light
levels. The overall goal is to ensure optimal lighting levels between 650 and 750 Lux
in an energy efficient way by dimming the light switch up and down. In case of
unresolvable errors, the user should be notified via a human task (LightError).

The LightChange event triggers the subsequent process steps according to the EPL
statement to either dim up (IncreaseLight) or dim down (DecreaseLight) the light by
increasing or decreasing the dimmer switch power levels by 10% via REST service
calls to the middleware. The LightChange event is triggered if the current light
levels are below 650 Lux or above 750 Lux. We run an instance of the LightControl
process in three configurations: Baseline, MAPE-K+ and MAPE-K++.

Experiments

The PROtEUS WfMS and the Feedback Service are used to execute the process
instances. A TinkerForge light sensor is used to measure the light levels and two
HomeMatic dimmer switches are used to switch individual desk lamps on or off and

187

7. Evaluation

Figure 7.16.: Smart Lighting Process.

Figure 7.17.: Lab Setup for the Continuous Light Control Experiments.

to increase or decrease their power levels (cf. Figure 7.17). The sensors and actuators
are controlled via the openHAB middleware.

Baseline The Baseline configuration executes the LightControl process without
cyber-physical process steps (IncreaseLight, DecreaseLight)–thus without the Feed-
back Service–and without human task. Once a balance within the light levels is
reached–between 650 and 750 Lux–and the control loop will not trigger new actions,
we will turn of LightSwitch1 to simulate a burnt light bulb. The control loop will
then continue to send the Increase command to LightSwitch1 indefinitely as the
light switch and the WfMS are not able to detect or fix the error.

MAPE-K+ The MAPE-K+ configuration views the IncreaseLight and Decrease-
Light process steps as cyber-physical process activities. Listing 7.6 shows the goal

188

7.4. PROtEUS with Feedback Service

Listing 7.6: Goal and Objective for IncreaseLight Process Step.

1 "IncreaseLight" : {

2 "name": "enough light for working",

3 "objectives":[

4 { "name": "kitchen light intensity > 700 Lux within 5

seconds"

5 "satisfiedCondition":"#lightIntensity > 700",

6 "compensationCondition":"#objective.created.isBefore (#

now.minusSeconds (5))",

7 "contextPaths":[

8 "MATCH (thing) -[:type]->(sensor {name: ’LightSensor

’})",

9 "MATCH (thing) -[:isIn]->(room {name: ’Kitchen_Mueller

’})",

10 "MATCH (thing) -[:hasState]->(state:

LightIntensityState)",

11 "MATCH (state) -[: hasStateValue]->(value)",

12 "WHERE toFloat(value.realStateValue) > 0",

13 "RETURN avg(toFloat(value.realStateValue)) AS

lightIntensity , head(collect(id(state))) AS

stateId"

14] }] }

property of the IncreaseLight process step. The execution of the process step has to
lead to light levels above 700 Lux within 5 seconds to fulfil this goal (satisfied con-
dition in Line 5). Otherwise, the Feedback Service has to search for a compensation
action (compensation condition in Line 6). The respective light sensor values are re-
ferred to by the context paths (Lines 7–13). In analogy to the Baseline experiment,
after a balance is reached by executing the light control loops, we switch off the first
desk lamp, which will now trigger the Feedback Service to try to remedy this error.
For this run, we made sure that the second dimmer switch is available and set up so
that it is able to fulfil the goal. The goal for the DecreaseLight process step defines
a satisfied condition of reaching light levels below 750 Lux within 5 seconds.

MAPE-K++ TheMAPE-K++ configuration corresponds to the MAPE-K+ setup.
However, for this configuration, the second dimmer switch will also fail and no other
compensating devices will be available, which will result in the Feedback Service not
being able fulfil the goal. After the control loop reaches a balance, we switch off the
first desk lamp. Once the Feedback Service restored the desired light levels with the
help of the second dimmer switch by executing the increase and decrease operations,
we also turn off the second desk lamp. This triggers the Feedback Service again as
part of the next light control loop iteration. At this point, the Feedback Service is
not able to find any other compensations from the knowledge base. The Feedback
Service reports this error to the PROtEUS system, which leads to the execution of
the human task “LightError” after activating the IncreaseLight process step’s failure
branch to notify the user.

189

7. Evaluation

Results

Table 7.5.: Execution Times for Baseline Light Control Process.

ID Process Step Duration (in ms)

P1 SwitchOnLight 353
P2 DecreaseLoop 1,759
P3 DecreaseLoop 1,352
P5 DecreaseLoop 611
P6 DecreaseLoop 1,609
P7 DecreaseLoop 340
P8 IncreaseLoop 1,182
P9 DecreaseLoop 1,786

P10 IncreaseLoop 52,026
P11 IncreaseLoop 14,278
P12 IncreaseLoop 998

LightControl 76,294

0 12 24 36 48 60 72 84
Time in Seconds

Lamp1 off

L
ig
h
tC

o
n
tr
o
l

P1 DecreaseLoop IncreaseLoop

Figure 7.18.: Execution of the Process Step Instances of the Baseline Light Control
Process over Time.

Baseline Table 7.5 shows the durations of the individual process step executions.
We summarized the four process steps LightChange, IF, DecreaseLight or Increase-
Light and the following OR join as DecreaseLoop or IncreaseLoop respectively,
i. e., one loop iteration consists of waiting for the LightChange event to be trig-
gered, its evaluation to decide if the new light levels are too high or too low, and
the service invocation to dim up or dim down the lamp. Figure 7.18 shows the
flow of process step instance executions over time and Figure 7.19 presents the
corresponding values of the light sensor and power levels of the dimmer switch. Fol-
lowing the initial activation of LightSwitch1 to 100% power (P1), it takes several
DecreaseLoop (P2–P7, P9) and IncreaseLoop (P8) executions to reach stable light
levels between 650 and 750 Lux after approx. 10 seconds, which will not trigger the
LightChange event anymore. Approximately 60 seconds after the start of the pro-
cess execution (or 50 seconds after reaching the optimal lighting levels), we switch

190

7.4. PROtEUS with Feedback Service

0 6 12 18 24 30 36 42 48 54 60 66 72 78 84
0

10

20

30

40

50

60

70

80

90

100

Time in Seconds

P
ow

er
L
ev
el

in
%

0

90

180

270

360

450

540

630

720

810

900

L
ig
h
t
L
ev
el

in
L
u
x

LightSwitch1 (in %) LightSensor (in Lux)

Figure 7.19.: Power Levels of Light Switch and Values from Light Sensor for Baseline
Experiment over Time.

off the first lamp manually leading to a sudden drop within the lighting levels. The
light control loop detects this change and executes the IncreaseLight process step
to increase the power level of the same light switch repeatedly (P10–P12) without
reaching the optimal lighting conditions defined in the EPL statement. We terminate
the whole process instance 76 seconds after its start or it would have continued try-
ing to increase the power levels by repeating the execution of IncreaseLoop instances
indefinitely.

Table 7.6.: Execution Times for the MAPE-K+ Light Control Process.

ID Process Step Duration (in ms)

P1 SwitchOnLight 202
P2 DecreaseLoop 28,085
P3 DecreaseLoop 5,098
P4 IncreaseLoop 73,461

LightControl 106,846

MAPE-K+ Table 7.6 shows the durations of the executions of the individual pro-
cess steps of the Light Control process for the MAPE-K+ configuration. Figure 7.20
presents the flow of process executions over time accordingly. The illumination levels

191

7. Evaluation

0 16 32 48 64 80 96 112
Time in Seconds

Lamp1 off

L
ig
h
tC

o
n
tr
o
l

P1 DecreaseLoop IncreaseLoop FBS DL FBS IL

Figure 7.20.: Execution of the Process Step Instances of the MAPE-K+ Light Con-
trol Process over Time.

measured by the light sensor as well as the power levels of both light switches are
displayed in Figure 7.21. The initial switch on request to the IoT middleware (P1)
is executed within similar orders of magnitude as the service requests in previous
experiments. This initial request leads to power levels of 100% and exceeds the
light levels defined in the EPL statement, which triggers the light loop to execute
the decrease command (P2). For this phase of this particular run of the experiments,
the light sensor updated its current values rather slowly, which is why it took some
additional time to trigger the first DecreaseLoop. Contrary to the Baseline process
configuration leading to multiple DecreaseLoop executions to reach a balance within
the light levels, the Feedback Service (FBS DL) follows the execution of the first de-
crease command to fulfil the defined goal for the “DecreaseLight” process step. This
goal states that the light levels should fall below 750 Lux within 5 seconds. As the
execution of the initial decrease light process step does not lead to these light levels
(mismatch: too high), the Feedback Service has to initiate multiple planning and ex-
ecution phases to search for compensation actions to further decrease the light levels.
The corresponding Compensation Query to derive compensation strategies can be
found in Listing 6.2. The result of the Planner based on this query is to execute the
“Decrease” (DOWN) command for the light switch once more. After two iterations
of the MAPE-K loop decreasing the light levels by dimming down LightSwitch1 to
70% the goal was fulfilled successfully. However, the light levels just reached the
minimal threshold of 750 Lux to fulfil the specified goal approx. 28 seconds after the
process execution started. In the following seconds the threshold of 750 Lux was
surpassed again, which triggered the “LightChange” event and another execution of
the “DecreaseLight” process step. With that, the Feedback Service was executed
to check the light levels again. As the execution of the “Decrease” command for
LightSwitch1 to 60% was sufficient to reach the desired light levels and fulfil the
goal, there was no need to initiate the planning and execute phases.

Approximately 72 seconds after starting the process instance, we manually deacti-
vate the lamp of LightSwitch1 to simulate a burnt light bulb, which leads to a sudden
drop of the light levels. This again triggers the “LightChange” event and, due to
the insufficient illumination, to the execution of the “Increase” (UP) command for
LightSwitch1 to a power level of 70%. With that, the Feedback Service (FBS IL)

192

7.4. PROtEUS with Feedback Service

0 8 16 24 32 40 48 56 64 72 80 88 96 104 112
0

10

20

30

40

50

60

70

80

90

100

Time in Seconds

P
ow

er
L
ev
el

in
%

0

90

180

270

360

450

540

630

720

810

900

L
ig
h
t
L
ev
el

in
L
u
x

LightSwitch1 (in %) LightSensor (in Lux)

LightSwitch2 (in %)

Figure 7.21.: Power Levels of Light Switch and Values from Light Sensor for MAPE-
K+ Experiment over Time.

is triggered in order to check and try to reach the goal defined in Listing 7.6 for the
IncreaseLight process step (i. e., to reach light levels of at least 700 Lux). As the
execution of the “Increase” command for LightSwitch1 did not affect the current
values of the light sensor sufficiently within the timeframe of 5 seconds and the com-
pensation condition for the goal is evaluated positively (violation of Cyber-physical
Consistency), the Feedback Service initiates the planning phase, uses the previously
mentioned Compensation Query to find a compensation strategy, and executes the
compensation actions. For this case, the Planner component derived the execution
of the “Increase” (UP) command for LightSwitch2–being in the same context and
having the same functionality as LightSwitch1–as suitable compensation strategy
based on the determined mismatch (too low). The iterations and execution times of
the individual MAPE-K phases and the overall Feedback Service for this particular
IncreaseLoop instance (P4) can be found in Table 7.7. In total, the Feedback Service
analysed 64 relevant data values from the light sensor (Symptoms), 6 of which led to
the initiation of the Plan phase due to the compensation condition being evaluated
positively (i. e., the light level threshold was not reached after 5 seconds). The de-
rived compensation strategy–send “Increase” (UP) command to LightSwitch2–was
executed 6 times as a result of the Planning phase. The overall execution time for
the Feedback Service was 30 seconds for this IncreaseLoop to reach lighting levels
over 700 Lux by powering up LightSwitch2 to 60% (cf. Figure 7.21). After the
fulfilment of the goal and with that, the restoration of Cyber-physical Consistency,

193

7. Evaluation

Table 7.7.: Number of Iterations and Durations of the MAPE Phases and Feedback
Service for Process Step P4 of the MAPE-K+ Experiments.

❳❳❳❳❳❳❳❳❳❳❳Metrics
Phase

M A P E Loop FB Service

Iterations (#) – 64 6 6 64 1
Duration (ø in ms) – 4 1,699 8 1,332 29,925

the process instance was terminated. Due to the asynchronous internal processes of
the Feedback Service implementation and the different durations of loops with and
without Plan and Execute phases the simple summation of all loop iterations does
not yield the overall execution times.

Table 7.8.: Execution Times for the MAPE-K++ Light Control Process.

ID Process Step Duration (in ms)

P1 SwitchOnLight 193
P2 DecreaseLoop 3,192
P3 DecreaseLoop 14,219
P4 IncreaseLoop 82,054
P5 IncreaseLoop 55,348
P6 LightError 14,801
P7 DecreaseLoop 15,017

LightControl 184,824

0 27 54 81 108 135 162 189
Time in Seconds

Lamp1 off Lamp2 off

L
ig
h
tC

o
n
tr
o
l

P1 DecreaseLoop IncreaseLoop FBS DL FBS IL P6

Figure 7.22.: Execution of the Process Step Instances of the MAPE-K++ Light Con-
trol Process over Time.

MAPE-K++ Table 7.8 shows the durations of the executions of the individual
process steps of the Light Control process for the MAPE-K++ configuration. Fig-
ure 7.22 presents the flow of process executions over time accordingly. Similar to the
MAPE-K+ configuration, the initial activation of the LightSwitch1 (P1) is followed
by multiple DecreaseLoops (P2–P3) including the execution of the Feedback Service
(FBS DL) to reach the desired lighting levels. Figure 7.23 shows the corresponding

194

7.4. PROtEUS with Feedback Service

values of the light sensor and the power levels of both light switches used in this
experiment. A balance within the light levels was reached about 18 seconds after the
start of the process instance at a power level of 60% for LightSwitch1. We waited
approx. 46 seconds to deactivate the lamp of LightSwitch1 manually, which caused
the execution of the “IncreaseLight” process step for LightSwitch1 as part of the
IncreaseLoop (P4). As the “Increase” (UP) command does not lead to a change
within the light levels, the Feedback Service (FBS IL) is executed additionally for
this IncreaseLoop to restore Cyber-physical Consistency by means of dimming up
LightSwitch2 to 60% similar to the MAPE-K+ experiment. The execution of the
MAPE-K loops by the Feedback Service for this process step took approx. 36 seconds
to reach the specified goal of at least 700 Lux.

0 14 28 42 56 70 84 98 112 126 140 154 168 182 196
0

10

20

30

40

50

60

70

80

90

100

Time in Seconds

P
ow

er
L
ev
el

in
%

0

90

180

270

360

450

540

630

720

810

900

L
ig
h
t
L
ev
el

in
L
u
x

LightSwitch1 (in %)

LightSwitch2 (in %)

LightSensor (in Lux)

Figure 7.23.: Power Levels of Light Switch and Values from Light Sensor for MAPE-
K++ Experiment over Time.

Table 7.9.: Number of Iterations and Durations of the MAPE Phases and Feedback
Service for Process Step P5 of the MAPE-K++ Experiments.
❳❳❳❳❳❳❳❳❳❳❳Metrics

Phase
M A P E Loop FB Service

Iterations (#) – 67 6 6 67 1
Duration (ø in ms) – 3 13 2 844 38,092

195

7. Evaluation

For the MAPE-K++ run, we also deactivate the lamp of LightSwitch2 to simu-
late another error with the lighting system–approx. 17 seconds after LightSwitch2 re-
stored cyber-physical consistency. This triggered another IncreaseLoop instance (P5)
including the execution of the Feedback Service. The relevant statistics for this Feed-
back Service execution can be found in Table 7.9. First, the Feedback Service tried
to increase the power levels of LightSwitch2 from 60% to 100% in four Planning and
Execution phases (cf. Compensation Query in Listing 6.2 and Goal in Listing 7.6).
As this did not lead to the desired light levels and the too low mismatch was still
present, the Feedback Service powered up LightSwitch1 from 80% to 100% in two
iterations as well. The goal could still not be fulfilled by these actions and the Feed-
back Service was not able to derive any more compensation strategies, which is why
it reported back the goal as unsatisfied to the PROtEUS system. All in all, the
Feedback Service took approx. 38 seconds to execute 67 MAPE-K loops with 6 Plan
and Execute phases for this IncreaseLoop (P5). The result of the Feedback Service
reported back to PROtEUS led to the activation of a Failure Port that is part of
the definition of the “IncreaseLight” process step (cf. Figure 7.16). The execution of
the corresponding failure branch initiated the human task “LightError” (P6) to be
sent to the resident’s mobile interaction device to inform him/her about the broken
lights. The process engine then waits for a response from the user. Approximately
15 seconds after this notification, we manually reactivate the lamp of LightSwitch1
and confirm the human task, which causes the process execution to continue. As the
power level of LightSwitch1 is still at 100% the light levels are now too high again,
which triggers another DecreaseLoop (P7) to dim down LightSwitch1 to 70% with
the help of the Feedback Service to reach the optimal lighting conditions again after
about 15 seconds. We then terminate the process. The power levels of LightSwitch2
are still at 100% as its lamp is still deactivated.

Discussion

With these comprehensive experiments regarding the Smart Lighting scenario, we
show the interaction of the PROtEUS WfMS with the Feedback Service and its ben-
efits regarding the detection and autonomous repair of cyber-physical errors (Re-
quirements R5 and R6) based on the self-management capabilities of the Feedback
Service (Requirement R7). The Baseline experiments are used to show the lack
of functionality of the IoT devices (dimmer switches) and the basic workflow sys-
tem to detect the cyber-physical errors and violations of cyber-physical consistency
regarding the actual and assumed lighting levels. This leads to an infinite loop
of powering up LightSwitch1 and executing the IncreaseLoop indefinitely, which is
rather undesired behaviour.
The MAPE-K+ experiment shows the benefits of the Feedback Service to verify

the process execution and also to repair errors autonomously. We use the light
sensor as an additional information source that can link the process execution to its
physical effects. The Feedback Service evaluates the data from this sensor and uses
the context model as well as the compensation query to derive suitable compensation
strategies to be executed to restore cyber-physical consistency. This self-healing
mechanism is currently based on adapting or exchanging the process resources. From
the MAPE-K+ results, we see that the Feedback Service takes more control over
the executions of the process compared to the Baseline experiments. The Feedback

196

7.4. PROtEUS with Feedback Service

Service’s attempts to reach the defined goals by adapting the power levels of the
light switches replace the additional iterations of the IncreaseLoop and DecreaseLoop
executions within the Baseline workflow. The computational overheads introduced
by the Feedback Service’s MAPE-K loops are in the same order of magnitude as the
operations executed by the PROtEUS base system. The activities in the physical
world are again significantly slower than the computations within the Feedback
Service. Although we did not specify any Consistency Levels for this experiment,
their application can reduce the number of required MAPE-K iterations to reach the
lighting thresholds defined in the goals. This can contribute to a reduction of the
overall execution time for the Feedback Service and the underlying CPS workflow.

TheMAPE-K++ is experiment is used to illustrate the error handling mechanisms
of the PROtEUS base system in combination with the Feedback Service (Require-
ments R5 and R6) as well as the integration of human interactions in the workflows
(Requirement R3). At the point of the Feedback Service not being able to find
suitable compensations anymore, it reports its termination and the unsatisfied goal
back to the WfMS. The process step’s failure port and its attached failure branch
can be used to model a generic way of handling errors that cannot be resolved by
the Feedback Service–in our case to notify the user and wait for his/her actions
to remedy the problem manually. In our experiment, the user has to confirm the
execution of the human task manually for the process instance to continue. Adding
the “cyberPhysical” attribute and a similar goal (cf. Listing 7.6) to the human task
defining the required light levels in the satisfied condition can trigger the Feedback
Service for this process step instance again, and automatically detect when the user
performed the compensation actions successfully.

7.4.3. Robot Navigation Process

Figure 7.24.: Robot Navigation Process.

In this experiment, we investigate the aspect of using the autonomous driving and
navigation functionality of the TurtleBot service robots based on SLAM from within
a process (cf. Morning Routine scenario in Section 2.2.1) [SHA18b]. As already
discussed, the internal navigation processes of the robots are very fragile leading
to the robot getting stuck relatively quickly and assuming wrong coordinates for
its current location determined by the SLAM algorithms. We will use an external
indoor location application based on the BeSpoon16 tracking system as external

16http://bespoon.com/

197

http://bespoon.com/

7. Evaluation

data source for the Feedback Service to verify the correct position of the robot. The
process goal is to ensure a correct physical positioning of the robot in the target
area despite inaccuracies and various sources for errors and vulnerabilities within
the robot’s internal navigation system. This experiment is similar to the workflow-
based use case described in [MMS14], where GPS data is used to automatically
verify the position of people in a rescue scenario.

Experiments

(a) BeSpoon Tracking System. (b) TurtleBot 2 Robot with BeSpoon.

Figure 7.25.: Hardware Setup for Robot Navigation Experiments.

The underlying process model “RobotNavigation” can be found in Figure 7.24.
The aim is to send the robot to a specific location in the room based on the position
of the user. First, the position of the user is retrieved via a semantic select process
step from the middleware (GetPositionOfHuman, P1). The corresponding SPARQL
query can be found in Listing 7.1. The coordinates received from the IoT middle-
ware will then be used as target coordinates for the robot movement process. The
following loop MoveTurtleAndCheckForSuccess sends the robot to these specific co-
ordinates via a REST service call to the middleware (MoveTheTurtle process step).
This process step contains an active cyberPhysical flag and the goal attribute Robot
Position specified in Listing 7.7.
The satisfied condition of the objective refers to the coordinates of the external

BeSpoon tracking system. We implemented a custom service for ROS (BeSpoon-
ROS) that publishes data from the BeSpoon system as a dedicated ROS topic. The
BeSpoon system (cf. Figure 7.25(a)) is set up using three nodes placed statically in
the room and the anchor mounted on TurtleBot2 and connected to the TurtleBot’s
control laptop (cf. Figure 7.25(b)). BeSpoon uses trilateration based on the distances
between the nodes and the moving anchor to determine the position of the anchor
and with that, the position of the TurtleBot. The BeSpoonROS service transforms
the BeSpoon coordinates and the robot’s internal coordinates into a common simpli-
fied coordinate system to make them comparable. This step is necessary due to the
robot’s internal coordinates being very precise and highly fluctuating, which pre-
vents a check for equality with the BeSpoon coordinates. The basis of the simplified

198

7.4. PROtEUS with Feedback Service

Listing 7.7: Goal and Objective for MoveTheTurtle Process Step.

1 "MoveTheTurtle" : {

2 "name":"Robot Position",

3 "objectives":[

4 { "name":"robot reached the desired position",

5 "satisfiedCondition":"#robotReachedPosition (#position ,

5.8D , 13.0D , 1.0D) == true",

6 "compensationCondition":"#movement.contains(’ARRIVED ’)

",

7 "contextPaths":[

8 "MATCH(posNode {name: ’

State_proteus_turtle_simplePosition_1 ’})",

9 "MATCH(posNode) -[: hasStateValue]-(posValue)",

10 "MATCH(moveNode {name: ’

State_proteus_turtle_movement_1 ’})",

11 "MATCH(moveNode) -[: hasStateValue]-(moveValue)",

12 "RETURN id(posNode) as stateId , posValue.

realStateValue as position , moveValue.

realStateValue as movement"

13] }] }

coordinate system is a clustering of the respective room into squares of 25 x 25 cm.
The destination of the robot (position of the user) is at coordinates x = 5.8 and
y = 13.0. Within the satisfied condition, we use these coordinates to specify a cri-
terion for the successful process step execution (Line 5). The robotReachedPosition
function is a custom function that checks if the current position (as defined in the
context path; Lines 7–13) is within the vicinity of the specified target coordinates.
Due to the precision of the BeSpoon system and also some fluctuation, the fourth
argument of the function defines a range of ±1.0 for each coordinate to be fulfilled.
The compensation condition states that if the robot’s internal navigation processes
publish an “ARRIVED” event to the middleware (Line 6) indicating that the robot
has reached its destination based on its internal assumption of its position and the
satisfied condition was not evaluated positively, the Feedback Service should ter-
minate with the goal being unsatisfied. The PROtEUS system checks the state of
the goal within the “MoveTurtleAndCheckForSuccess” process loop condition and
initiates another loop iteration if the goal is not satisfied, i. e., it executes another
instance of the “MoveTheTurtle” process step with the initial destination as input
parameter and the Feedback Service checking if the desired position is reached based
on the simplified BeSpoon coordinates. The goal will only be fulfilled if the satisfied
condition becomes true (i e., the external BeSpoon coordinates confirm the correct
position). We extended the DROiT API [SSAS15] to also make the simplified po-
sitions of the robots based on the internal SLAM system and the external BeSpoon
system accessible via the middleware. These simplified coordinates were also added
as additional location attributes to the semantic models of humans and robots in
the knowledge base (cf. Section 4.3.3).

After starting the first loop iteration and initiating the “MoveTheTurtle” driving
process including the parallel invocation of the Feedback Service for this process

199

7. Evaluation

Figure 7.26.: Path of TurtleBot for RobotNavigation Process (Black Lines = Obsta-
cles/Walls, White Area = Discovered, Grey Area = Unknown).

step, we wait a few seconds to put a box as an obstacle in the way of the robot.
As it is moving within a narrow space, the robot is not able to circumnavigate
the obstacle, which results in the internal navigation processes to terminate and
the robot to publish an “ARRIVED” event. This leads to the Feedback Service
reporting the unsatisfied goal back to the workflow engine as the final destination
defined in the satisfied condition was not reached (as confirmed by the external
BeSpoon system). The process then restarts the “MoveTheTurtle” process step
within the “MoveTurtleAndCheckForSuccess” loop. We remove the obstacle and
the robot is instructed to repeat the driving process. After some more iterations
and “ARRIVED” events published by the robot due to errors and obstacles, it arrives
at its destination as defined and confirmed by the simplified BeSpoon coordinates
eventually. Figure 7.26 shows the robot’s map and its path from the random starting
to its destination after the repeated execution of the “MoveTheTurtle” process step
to remedy errors that occurred during driving. The distance from the random
starting point to the human is approx. 4.5 meters.

Results

Table 7.10 shows the durations of the executions of the individual process step in-
stances of the robot navigation process. Figure 7.27 presents the flow of process
executions over time accordingly. First, the target position for the robot to drive to
is fetched from the IoT middleware using a semantic invoke process step (P1). The
PROtEUS system then uses this parameter to initiate the driving process within
the “MoveTurtleAndCheckForSuccess” loop (P2). Approximately 5 seconds after
the start of the TurtleBots’s driving processes we put a large obstacle in its way,
which led to a replanning of the path to the destination. However, due to the
obstacle and narrow space, the robot cancelled the replanning after approx. 23 sec-

200

7.4. PROtEUS with Feedback Service

Table 7.10.: Execution Times for Process Steps of the RobotNavigation Process.

ID Process Step Duration (in ms)

P1 GetPositionOfHuman 1,079
P2 MoveTheTurtle (1) 22,924
P3 MoveTheTurtle (2) 7,530
P4 MoveTheTurtle (3) 10,065
P5 MoveTheTurtle (4) 7,759

MoveTurtleAndCheckForSuccess 48,278
RobotNavigation 49,357

0 8 16 24 32 40 48 56
Time in Seconds

M
o
ve
T
u
rt
le

P1 P2 P3 P4 P5

MoveTurtleAndCheckForSuccess

Figure 7.27.: Execution of the Process Step Instances of the RobotNavigation Pro-
cess over Time.

onds. This triggered an “ARRIVED” event to be published by the middleware.
The Feedback Service running the MAPE-K loops for the “MoveTheTurtle” process
step detected this event, evaluated the compensation condition positively as the cur-
rent BeSpoon position did not correspond to the criterion defined in the satisfied
condition, and initiated the planning phase. The number of MAPE-K iterations,
individual phases and durations of the Feedback Service execution for each repeti-
tion of the MoveTheTurtle process step can be found in Table 7.11. The current
coordinates of the TurtleBot according to the BeSpoon tracking system at the time
of publishing an ARRIVED event based on the TurtleBots internal localization are
shown in Figure 7.28.

Table 7.11.: Number of Iterations and Durations of the Individual MAPE Phases
and Feedback Service for the RobotNavigation process steps.

ID Process Step #M #A #P #E FBS Duration (in ms)

P2 MoveTheTurtle (1) – 17 1 1 21,084
P3 MoveTheTurtle (2) – 6 1 1 7,202
P4 MoveTheTurtle (3) – 9 1 1 10,028
P5 MoveTheTurtle (4) – 6 0 0 7,333

For each repetition (P2–P5) of the MoveTheTurtle process step, the Feedback Ser-
vice is executed in parallel once. Within the first loop execution, the Feedback Ser-

201

7. Evaluation

vice analysed 17 sensor values (i. e., the movement status and position data according
to the context paths in Listing 7.7). After the detection of the ARRIVED event
by the Feedback Service’s Analyser component, the Planner was not able to find
any compensation, which led to the Feedback Service’s Executor communicating its
termination and the unsatisfied goal back to the PROtEUS WfMS. The status of the
goal is mapped to an outgoing data port of the “MoveTurtleAndCheckForSuccess”
process loop and used as stop criterion for this loop. If the goal is left unsatisfied, the
loop will be repeated and the robot is instructed to drive to the same target location
again. In the following loop iterations (P3–P5), the robot again had some troubles
with its internal positioning, getting stuck at different obstacles or loosing its cur-
rent internal location. After three more iterations and lengthy reorientations taking
approx. 25 seconds in total, the robot arrived at its destination approx. 48 seconds
after beginning to move to the target location. At 48 seconds and the ARRIVAL of
the robot, the external BeSpoon coordinates were within the ranges defined by the
goal to fulfil the objective with respect to the satisfied condition (cf. Figure 7.28).
The corresponding MAPE-K instance of the Feedback Service published the satis-
fied goal back to PROtEUS and the RobotNavigation process terminated as the stop
criterion for the MoveTurtleAndCheckForSuccess loop was evaluated positively. The
robot’s final path for this experiment can be found in Figure 7.26.

0 5 10 15 20 25 30 35 40 45 50 55
4

6

8

10

12

14

16

Time in Seconds

X Coordinate
Y Coordinate

Figure 7.28.: Coordinates of the TurtleBot Robot Movement for the RobotNaviga-
tion Process over Time.

202

7.4. PROtEUS with Feedback Service

Discussion

This experiment shows the interactions among the PROtEUS base system, Feedback
Service, openHAB middleware and TurtleBot robots. As the robot’s internal navi-
gation processes are very fragile and imprecise, we use an external indoor tracking
system as additional data source to verify the robot’s correct location (Require-
ment R5) and detect possible cyber-physical inconsistencies (i. e., deviations within
the robot’s assumed location and its actual location). We designed the Robot Navi-
gation process in a way that the result of the Feedback Service executions is used to
decide whether to reinstruct the robot to repeat the execution of a certain process
step or to terminate the successful process. For the experiment, this strategy seems
suitable as there is no need to actually replace the “broken” robot and send another
robot instead, which would have been the compensation strategy of the Feedback
Service using the compensation query for cyber-physical consistency (cf. Listing 6.2)
with available replacement actuators. However, as there was no instance of a second
robot to be found in the knowledge base, the Feedback Service terminates not being
able to satisfy the goal, which leads to the repetition of the driving process. This
reinstantiation helped the robot in all cases to find its current position again after
taking some time to reorientate itself using its internal SLAM algorithms. The ex-
ample shows that the CPS processes have to be designed according to the use case,
desired behaviour, context and available resources.

It is worth noting that the external BeSpoon tracking system is also subject to
imprecisions and fluctuations as it is highly influenced by other objects and elec-
tromagnetic fields. It does not help to increase the precision of the robot’s internal
system. However, we can use these tracking sensors as external data sources to de-
tect major deviations from the TurtleBot’s assumption of its current location based
on the internal SLAM processes. For the use case of driving to the paper boy to
have the paper put on the robot (cf. Morning Routine process in Section 2.2.1),
a lower degree of precision should be sufficient to successfully execute the process.
The extended use case (“Retrieve Insulin Injection”) for distributed process execu-
tion described in Section 5.5 requires the robot to drive to a certain location to pick
up an insulin injection from a shelf. Here, a higher degree of precision regarding the
robot’s location and with that, a better indoor tracking system are necessary.

7.4.4. Distributed Robot Driving Process

In the following experiments, we use the PROtEUS base system and theD-PROtEUS
system in combination with the Feedback Service in a distributed process execution
setup (Requirement R4). The Feedback Service is used to manage the process execu-
tion on the Peers (here: robots) with respect to different criteria (Requirement R7):
the Liveliness of a peer as well as its Battery Levels. The simple scenario process
“MoveTurtle” is depicted in Figure 7.29. It contains a subprocess “MoveTurtleRe-
mote” that has an active distributed flag and resource attribute. This subprocess
is supposed to be transferred to the given resource (TurtleBot1 as identified by its
IP address) to be executed on this peer. TheMoveTurtleRemote subprocess contains
one process step “Drive” to invoke a specific ROS [QCG+09] service on the robot
locally, which instructs the robot to simply move forward one step. The experiments
are based on the elaborations in [SNS14b, SHA17] and Section 6.4.

203

7. Evaluation

Figure 7.29.: Distributed MoveTurtle Process.

Figure 7.30.: TurtleBot Robots used in Distributed Execution Experiments.

Experiments

We run an instance of the MoveTurtle process on the PROtEUS system of the
control computer set up as a Super-Peer with an active Distribution Manager com-
ponent (D-PROtEUS). Two TurtleBot robots (cf. Figure 7.30) running the basic
configuration of the PROtEUS WfMS act as regular Peers that are registered with
and managed by the super-peer. The Feedback Service (FBS) is running in par-
allel to the D-PROtEUS system on the super-peer (cf. Figure 7.31). As described
in Section 5.5, we use Subcontracting [vdA00] and Instance Migration [ZHKL10] as
mechanisms to transfer process fragments to peers and their responses/results back
to the super-peer. Upon its execution by the super-peer, the “MoveTurtleRemote”
subprocess is sent to TurtleBot1 identified by its IP address as defined by the Re-
source attribute of the subprocess. The Feedback Service then is initiated in parallel
to check for Peer Liveliness and Battery Levels by the super-peer.

Peer Liveliness In this experiment the super-peer periodically checks the liveliness
of the peer. The robots are good examples for mobile CPS devices with an unreliable
network connection. They move within the smart space while being connected to
the wireless local area network. When leaving the area of WiFi coverage, the robot

204

7.4. PROtEUS with Feedback Service

Figure 7.31.: Distributed Process Execution Setup.

becomes disconnected and is likely to not be able to reconnect or to fail executing
the assigned processes. For that reason, we check the robot’s (peer’s) liveliness
signal periodically while executing the MoveTurtleRemote subprocess instance. If
the execution takes longer than 15 seconds and the last signal regarding the process
execution has been received 15 seconds ago or longer, the super-peer assumes an error
regarding this peer and tries to find an alternative peer to repeat the distributed
execution of the subprocess on. This scenario is similar to the use cases described
in [PRS+13] referring to the offline distribution of workflow tasks with unreliable
connections; and in [DTB+15] referring to the periodic check of liveliness of workflow
resources and the search for substitutes after a timeout.

Listing 7.8 shows the goal attribute “process executed on peer” of the Move-
TurtleRemote subprocess regarding the Peer Liveliness setup. The context paths
are used to retrieve the state of the subprocess based on its identifier (ID) and the
ID of the executing peer (Lines 7–11). The satisfied condition defines the success
criterion as the subprocess being in state “executed” (Line 5). On the other hand,
the compensation condition refers to the objective being created more than 15 sec-
onds ago and the last command being sent to the peer related to this objective more
than 15 seconds ago (Line 6). With this compensation condition, we assume that
the remote execution of the MoveTurtleRemote subprocess should not take longer
than 15 seconds and that the super-peer should be able to successfully poll the peer
(TurtleBot1) for status updates within this time frame. The custom lastCommand-
SendBefore function implements this second factor. In this setup, the super-peer
polls the status from the TurtleBot1 peer every second. The compensation query
used to find an alternative peer to repeat the subprocess execution on is described

205

7. Evaluation

Listing 7.8: Goal and Objective for the MoveTurtleRemote Process Step Regarding
Peer Liveliness.

1 "MoveTurtleRemote" : {

2 "name":"process executed on peer",

3 "objectives":[

4 { "name":"process executed within 15 seconds",

5 "satisfiedCondition":"#state == ’executed ’",

6 "compensationCondition":"#objective.created.isBefore (#

now.minusSeconds (15)) && #lastCommandSendBefore (#

objective , 15)",

7 "contextPaths":[

8 "OPTIONAL MATCH (n:NeoProcess {processId :{piid }})",

9 "RETURN",

10 "CASE WHEN n IS NOT NULL THEN n.state ELSE ’unknown ’

END AS state ,",

11 "CASE WHEN n IS NOT NULL THEN id(n) ELSE 0 END AS

nodeId"

12] }] }

Listing 7.9: Goal and Objective for the MoveTurtleRemote Process Step Regarding
Peer Battery Levels.

1 "MoveTurtleRemote" : {

2 "name":"move turtlebot with enough battery power",

3 "objectives":[

4 { "name":"enough power for current executing turtlebot",

5 "satisfiedCondition":"#state == ’executed ’",

6 "compensationCondition":"#batteryValue < 50 && #

lastCommandSendBefore (#objective , 10)",

7 "contextPaths":[

8 "OPTIONAL MATCH (process:NeoProcess {processId: {piid

}}) ",

9 "OPTIONAL MATCH (peer1:NeoPeer {name: ’turtlebot2 -

X201EP ’}) -[: HAS_METRIC]->(metric1:NeoPeerMetric)",

10 "OPTIONAL MATCH (peer2:NeoPeer {name: ’tb-Satellite -

R630 ’}) -[: HAS_METRIC]->(metric2:NeoPeerMetric)",

11 "OPTIONAL MATCH (process) <-[:REMOTE_FOR]-(remote:

NeoProcess) -[runsOn2:RUNS_ON]->(peer2)",

12 "WITH process , remote , ",

13 "CASE WHEN runsOn2 IS NOT NULL THEN peer2 ELSE peer1

END AS peer , ",

14 "CASE WHEN process IS NOT NULL THEN id(process) ELSE 0

END AS nodeId , ",

15 "CASE WHEN runsOn2 IS NOT NULL THEN metric2 ELSE

metric1 END AS metric ",

16 "RETURN remote.state AS state , peer , nodeId , ",

17 "CASE WHEN metric IS NOT NULL AND metric.hasBattery

THEN metric.batteryValue ELSE 100 END AS

batteryValue"

18] }] }

206

7.4. PROtEUS with Feedback Service

in detail in Section 6.4. We prepared the first TurtleBot (Peer1) to not be able to
respond to the status update requests from the super-peer (SP) by shutting down
the peer’s PROtEUS WfMS immediately after receiving the MoveTurtleRemote sub-
process. This will lead to the Feedback Service running on the super-peer to detect
an issues with Peer1 and to find TurtleBot2 (Peer2) as replacement peer to redeploy
the subprocess on after the timeout defined in the compensation condition.

Peer Battery Levels In this experiment we use a process and peer–super-peer
setup similar to the Peer Liveliness configuration. The super-peer running the D-
PROtEUS system and Feedback Service instructs the peer TurtleBot1 to execute
the MoveTurtleRemote subprocess including the Drive process step invoking the
driving functionality of the robot. In parallel, the Feedback Service running on
the super-peer checks the battery level of the robot peer. In case the first peer’s
(Peer1) battery levels fall below 50%, the subprocess is redeployed and executed
on the second available TurtleBot peer (Peer2). This scenario corresponds to the
work described in [CLD+15] where entities collaborate automatically if the current
device’s battery levels fall below a certain threshold.

Listing 7.9 shows the goal attribute for the MoveTurtleRemote subprocess regard-
ing the Peer Battery Levels setup. The satisfied condition defines the subprocess
being in state “executed” as criterion for the successful process execution (Line 5).
The compensation condition states that the Plan phase should be initiated if the
battery levels of the current peer executing the subprocess fall below 50% and the
last status update regarding the process execution has been received 10 or more sec-
onds after starting the MAPE-K loops by the Feedback Service for the instance of
the MoveTurtleRemote subprocess (Line 6). This indicates a potential issue with the
robot executing the subprocess as the battery is draining but the process execution
is not progressing. The context paths (Lines 7–17) are used to retrieve the current
robot’s battery levels–identified by the corresponding host name of the peer associ-
ated with the subprocess instance that is running on this peer. This context path
definition is a good example for using more advanced features of the Cypher query
language (e. g., OPTIONAL MATCH and CASE WHEN statements) [Web12]. In
case the compensation condition can be evaluated positively by the Feedback Ser-
vice, the compensation query described in Section 6.4 is used to find an alternative
peer (TurtleBot2) and redeploy the subprocess on this peer. We set up the first
robot to start with a battery level of over 50% and drop under 50% during exe-
cution of the Drive process step, which is configured to take approx. 10 seconds.
During the execution of this process step, the super-peer will not receive any status
updates regarding the process execution. This will eventually lead to the Feedback
Service assuming an error and searching for an alternative peer and reinstantiat-
ing the MoveTurtleRemote subprocess on this peer. The robots’ battery levels are
checked periodically by the Feedback Service. They are published to the knowledge
base and middleware as sensor data via the DROiT API.

Results

Peer Liveliness The execution times for the process step instances of the Move-
Turtle process regarding the Peer Liveliness experiment are shown in Table 7.12.
The corresponding flow of executions over time can be found in Figure 7.32. The

207

7. Evaluation

Table 7.12.: Execution Times for Process Steps of the MoveTurtle Process Regarding
the Peer Liveliness.

ID Process Step Duration (in ms)

P1 MoveTurtleRemote (Peer1) 15,862
P2 MoveTurtleRemote (Peer2) 2,427
P3 Drive (Peer2) 2,409

MoveTurtle (SP) 18,289

0 3 6 9 12 15 18 21
Time in Seconds

M
o
ve
T
u
rt
le

(S
P
)

P1 (Peer1) P2 (Peer2)

Peer1 fail

Figure 7.32.: Execution of the Process Step Instances of the MoveTurtle Process
Regarding the Peer Liveliness Experiment over Time.

process starts with the super-peer (SP) WfMS instantiating the MoveTurtle process
model. Due to the “Distributed” flag and resource attribute pointing to the IP ad-
dress of TurtleBot1 (Peer1), the Distribution Manger called the Process Manager
of the PROtEUS WfMS running on Peer1 to execute the subprocess (P1). The
Feedback Service was initialized with the goal attribute for the MoveTurtleRemote
process step on the super-peer in parallel to the distribution of the subprocess. The
statistics of the MAPE-K executions for process step P1 are shown in Table 7.13.
After analysing 15 sensor values regarding the status of the subprocess execution
on Peer1 and approx. 15 seconds of not receiving any new status updates from the
peer, the criterion defined in the compensation condition became true (Peer1 fail).
As a result, the Planner determined a new peer to reinstantiate the subprocess on
(cf. Section 6.4). The Executor instructed the super-peer WfMS to repeat the ex-
ecution of the subprocess with the same parameters on TurtleBot2 (Peer2). The
Distribution Manager of the super-peer invoked the Process Manager of Peer2 to
execute the subprocess (P2) and with that, the execution of the MAPE-K loops by
the super-peer for this process step, again. Peer2 executed the subprocess success-
fully within approx. 2 seconds, which led to the satisfied assumption to become true
and the Feedback Service terminating with the successful execution of P2 on Peer2
and of the MoveTurtle process on the super-peer (SP) after approx. 18 seconds. As
the Drive process step was not executed successfully on Peer1, we do not list it in
Table 7.12.

208

7.4. PROtEUS with Feedback Service

Table 7.13.: Number of Iterations and Durations of the MAPE Phases and Feedback
Service for Step P1 of the Peer Liveliness Experiments.

❳❳❳❳❳❳❳❳❳❳❳Metrics
Phase

M A P E Loop FB Service

Iterations (#) – 15 1 1 15 1
Duration (ø in ms) – 5 17 44 1,018 15,455

Table 7.14.: Execution Times for Process Steps of the MoveTurtle Process Regarding
the Peer Battery Levels.

ID Process Step Duration (in ms)

P1 MoveTurtleRemote (Peer1) 10,325
P2 MoveTurtleRemote (Peer2) 2,420
P3 Drive (Peer2) 2,408

MoveTurtle (SP) 12,745

Peer Battery Levels The execution times for the process step instances of the
MoveTurtle process regarding the Peer Battery Level experiment are shown in Ta-
ble 7.14. The corresponding flow of executions over time can be found in Figure 7.33.
The process execution starts in a similar way as the previous experiment: the super-
peer distributes the MoveTurtleRemote process to Peer1, where it is executed (P1)
while being monitored by the Feedback Service from the super-peer. As defined in
the respective goal for the distributed subprocess, the Feedback Service triggered
the Planner to search for a compensation approx. 10 seconds after not receiving
any status updates regarding the process execution and the battery levels for Peer1
dropping below 50% (cf. Figure 7.34). The statistics of the MAPE-K executions for
process step P1 are shown in Table 7.15. The Feedback Service analysed 9 sensor
values regarding the state of the battery levels of the current peer, but it did not
receive any execution status updates. After 10 seconds and the battery levels falling
below the defined threshold (Peer1 fail) the Feedback Service finds the alternative
peer and reinstantiates the subprocess in a way similar to the Peer Liveliness ex-
periment. On Peer2, the execution of the MoveTurtleRemot process (P2) including
the Drive process step (P3) takes approx. 2 seconds, which is communicated to the
Feedback Service as an execution status update (executed). The overall MoveTurtle
process was executed on the super-peer (SP) after approx. 13 seconds. As the Drive
process step was not successful on Peer1, we do not list it in Table 7.14.

Table 7.15.: Number of Iterations and Durations of the MAPE Phases and Feedback
Service for Step P1 of the Peer Battery Levels Experiments.

❳❳❳❳❳❳❳❳❳❳❳Metrics
Phase

M A P E Loop FB Service

Iterations (#) – 9 1 1 9 1
Duration (ø in ms) – 9 28 38 962 9,975

209

7. Evaluation

0 2 4 6 8 10 12 14
Time in Seconds

M
o
ve
T
u
rt
le

(S
P
)

P1 (Peer1) P2 (Peer2)

Peer1 fail

Figure 7.33.: Execution of the Process Step Instances of the MoveTurtle Process
Regarding the Peer Battery Levels Experiment over Time.

Error Cases for Distributed Process Execution

Experiments We conducted further experiments with respect to the distributed
execution of processes using the two TurtleBots as peers and the control computer
as super-peer in a similar setting. The goal of these experiments was to detect and
fix different kinds of errors that may happen during the process execution and to
compare the success rates of the execution with the Feedback Service (MAPE-K+)
and without the Feedback Service (Baseline) [SHA17]. We used the goals presented
in Listings 7.8 and 7.9. The process shown in Figure 7.29 was executed 20 times for
the Baseline configuration and 20 times for the MAPE-K+ setup. The robot(s) were
sent to locations in the room opposite from their current location by the PROtEUS
system to have relatively long distributed navigation processes. In case of an error
related to the first TurtleBot (Peer1), the second robot (Peer2) was instructed to
re-execute the MoveTurtleRemote subprocess for the MAPE-K+ experiments. We
will give a short quantitative discussion of the results without presenting detailed
numbers regarding execution times and feedback loop iterations.

Results We determined four main types of errors that we are able to remedy with
the help of the Feedback Service based on the aforementioned objectives. They
are related to low battery levels (Battery) of the robots; the disconnection of the
robots from the WiFi during driving and their inability to reconnect (Disconnect);
the robots being not connected to the network or the workflow system not working
from the start (Unconnected); and the workflow system running on the peers be-
ing overloaded with tasks and therefore unresponsive or crashing (Overload). The
numbers of successful runs (Success) or erroneous runs related to the type of error
are shown in Figure 7.35 for the Baseline experiments and in Figure 7.36 for the
MAPE-K+ experiments.

For the Baseline experiments 8 out of 20 runs were executed successfully, i. e., the
robots reached their destinations without encountering any issues or errors. On
overage, the robot was driving for approx. 43 seconds to reach its destination. In
5 cases, the battery levels dropped below a defined threshold of 10% resulting in the
robot possibly not being able to complete the driving tasks. In 3 cases, the robot

210

7.4. PROtEUS with Feedback Service

0 2 4 6 8 10 12 14

40

50

60

70

80

90

100

Time in Seconds

Peer1 Battery in %

Peer2 Battery in %

Figure 7.34.: Battery Levels of Peer1 and Peer2 over Time.

lost its WiFi connection and with that, the connection to the super-peer during
driving and in 2 occasions, it was not connected to the super-peer in the first place.
Another 2 issues were related to an overloaded and stalling process engine.

For the MAPE-K+ experiments, we tried to reproduce the errors that occurred
with the first TurtleBot in the Baseline run. The Feedback Service runs on the
super-peer to check if the objectives can be fulfilled by the first peer or to choose
another peer to instantiate the subprocess on. The second TurtleBot used as re-
placement peer has a stronger control computer with a better processor and larger
battery. After the super-peer detected one of the aforementioned issues regarding
the distributed process execution on the first peer, it repeated the execution on the
second peer as a result of the Plan phase of the MAPE-K loops. The second robot
always started right next to the first robot’s starting position. The rate of successful
process executions increased to 18 out of 20 runs for this configuration. We made
sure that the second peer’s control laptop’s battery was always sufficiently charged
and it was connected to the super-peer before receiving the subprocess. The laptop
had more computing resources available, which prevented the process engine from
being overloaded. That way the success rate of the process executions increased
due to the application of the MAPE-K feedback loops. However, also the second
robot can still be subject to similar errors. We encountered 2 out of 20 cases where

211

7. Evaluation

also the second TurtleBot got disconnected from the network during execution of
the driving processes after replacing the first TurtleBot. On overage, the successful
driving processes resulting from a failure with Peer1 took 53 seconds to complete
with the help of Peer2. We tried to reproduce the errors that occurred for Turtle-
Bot1 in the Baseline configuration approx. 8 seconds after the start of the process
execution. The detection of the error, planning and redeployment on TurtleBot2 by
the Feedback Service introduced an overhead of approx. 2 seconds on overage.

Su
cc
es
s

Ba
tte
ry

D
is
co
nn
ec
t

U
nc
on
ne
ct
ed

O
ve
rlo
ad

0

2

4

6

8

Figure 7.35.: Number of Distributed Process Executions Correlated with Successful
Executions or Type of Error for Baseline Experiments.

Su
cc
es
s

Ba
tte
ry

D
is
co
nn
ec
t

U
nc
on
ne
ct
ed

O
ve
rlo
ad

0

2

4

6

8

10

12

14

16

18

Figure 7.36.: Number of Distributed Process Executions Correlated with Successful
Executions or Type of Error for MAPE-K+ Experiments.

Discussion

The results of the experiments show that the interactions between the PROtEUS
WfMS and the Feedback Service also work as expected for the distributed execu-

212

7.5. Feedback Service with Legacy WfMSes

tion of processes (Requirement R4). The application of feedback loops helped us to
reduce the cases of unsuccessful process executions significantly. In our hybrid over-
lay network architecture, the super-peer runs the D-PROtEUS setup for distributed
processes as well as the Feedback Service to monitor various defined aspects re-
lated to the process execution on the peers. By applying the MAPE-K feedback
loops, we are able to detect and remedy errors related to different objectives–not
only regarding cyber-physical aspects (e. g., battery levels) but also to other QoS
criteria (e. g., response times or heartbeats). This shows that the Feedback Ser-
vice based on the MAPE-K loop can be used as a general framework to implement
self-adaptive behaviour based on various criteria (Requirement R7). The Feedback
Service introduces a computational overhead and increases execution times, which
still seem reasonable for our uses cases, though. Peers can be lightweight comput-
ers only running the basic PROtEUS configuration. Super-peers have to run the
D-PROtEUS configuration and the Feedback Service additionally to perform the
peer management and process distribution tasks and to enable the self-management
for distributed workflows. These tasks are more resource demanding requiring more
powerful computers to act as super-peers. As seen in our evaluation setup, a stan-
dard desktop computer is sufficient to run the necessary super-peer components and
Feedback Service. Investigations regarding more complex distributed process exe-
cution setups involving multiple peers, super-peers and possibly several hierarchical
layers are subject to future work.

The TurtleBots are perfect examples of mobile IoT devices with rather limited re-
sources and unreliable network connectivity, which lead to the occurrence of multiple
types of device related errors. The process adaptations discussed in these scenarios
refer to the selection of alternative peers and the repeated execution of the entire
subprocess on the new peer in case of an error. These adaptations are rather simple
and often not reasonable for more complex processes in CPS. As already discussed
in Section 6.2.6, actions performed by processes in the physical world cannot always
be easily undone, rolled back or repeated as physical resources and objects are scarce
and more vulnerable. Adaptations have to consider the types of errors and actions
performed as part of the “original” process to remedy occurring issues.

7.5. Feedback Service with Legacy WfMSes

To complete the evaluation of our concepts and prototypes, we conducted some addi-
tional experiments regarding the retrofitting of existing WfMSes using the Feedback
Service in combination with these “legacy” systems (Requirement R8) [SHA18a].
A simplified version of the Smart Lighting process serves as basic process to be
executed by the respective WfMS and augmented with an additional call to the
Feedback Service to supervise and manage the execution. The goal added to the
basic process steps and used by the Feedback Service corresponds to the goal spec-
ified in Listing 7.6 with the slight change of the light levels being required to reach
600 Lux within 2 seconds for the process to be executed successfully. We deactivate
the first lamp to be switched on by the basic process so that the Feedback Service
has to find and dim up the second dimmer switch to reach the desired light levels.

213

7. Evaluation

7.5.1. Experiments

To demonstrate and evaluate the invasive retrofitting (cf. Section 6.12.1), we exe-
cuted the process depicted in Figure 7.37 with the PROtEUS system in combination
with the Feedback Service. A RESTful service call to the openHAB IoT middleware
requesting the dimmer to be activated is sent in the “LightInvoke” process step and
the WfMS uses the goal to issue a parallel call to the Feedback Service implicitly.

To evaluate the non-invasive retrofitting (cf. Section 6.12.1), we executed similar
“LightInvoke” processes with the same goal and basic process step. The WfMSes
Activiti (Version 6.0.0), Apache ODE (Version 1.3.8) and YAWL engine (Version 4.2)
were used to execute the respective processes shown in Section 6.12.2 consisting of an
invocation of the basic process activity to switch on the light and an explicit call to
the Feedback Service with the goal as input parameter in parallel. All WfMSes were
running on the control computer. Where necessary, we used an Apache Tomcat17

(Version 9.0.7) as server for the respective web applications. The particular processes
and additional services to delegate the service calls to the middleware and Feedback
Service are available on GitHub18.

Figure 7.37.: Retrofitted Smart Lighting Process for PROtEUS.

7.5.2. Results

The execution times for the specific “LightInvoke” activity and the overall process
including the execution of the MAPE-K loops can be found in Table 7.16. The
execution of the basic LightInvoke process step (cf. Figure 7.37) as an asynchronous
REST service call to the middleware took 193 milliseconds with PROtEUS. The
parallel invocation, error detection and compensation of the broken light switch by
the Feedback Service dimming up the second light source stepwise from 85 Lux to
657 Lux took approx. 24 seconds. The execution of the basic BPMN LightInvoke
step (cf. Figure 6.12) took 459 milliseconds with Activiti. The parallel invoca-
tion of the Feedback Service dimming up the second light stepwise from 89 Lux to
766 Lux took approx. 22 seconds. The execution of the basic YAWL LightInvoke
step (cf. Figure 6.13) took 171 milliseconds with the YAWL Engine and the par-
allel invocation of the Feedback Service dimming up the second light stepwise from
81 Lux to 685 Lux took approx. 22 seconds. The execution of the basic WS-BPEL
LightInvoke step (cf. Figure 6.14) took 98 milliseconds with Apache ODE. The

17http://tomcat.apache.org/
18https://github.com/IoTUDresden/fbs-retrofit

214

http://tomcat.apache.org/
https://github.com/IoTUDresden/fbs-retrofit

7.5. Feedback Service with Legacy WfMSes

parallel invocation of the Feedback Service dimming up the second light stepwise
from 93 Lux to 639 Lux took approx. 24 seconds.

Table 7.16.: Execution Times of the Basic “LightInvoke” Activity and the Overall
SmartLighting Process for the Investigated WfMSes.

WfMS LightInvoke (in ms) Process (in s)

PROtEUS 193 24
Activiti 459 22

YAWL Engine 171 22
Apache ODE 98 24

7.5.3. Discussion

The results of the retrofitting experiments show that the proposed retrofitting pro-
cesses are feasible to be applied for adding autonomous capabilities to the inves-
tigated WfMSes (Requirement R8). We were able to try to switch on the light,
detect the malfunction of the light switch and find an alternative light source to
be dimmed up successfully with all WfMSes. The overall process execution times
depend on different physical context factors (e. g., the initial light levels and the de-
tection rate of the light sensors), which is why a comparison of these execution times
is not reasonable. As already concluded from the previous experiments, activities
executed in the physical world have a much stronger impact on the overall execu-
tion times than the virtual computations. The comparison of the execution times
of the basic “LightInvoke” process activity either invoking the middleware directly
via a REST service or via intermediate services/applications shows good perfor-
mance benchmarks for PROtEUS with execution times being in the same order of
magnitude as the execution times of other WfMSes.

7.5.4. Summary

The experiments described in the previous sections and their results show that the
PROtEUS system in the basic configuration as well as in the D-PROtEUS setup is
capable of executing CPS workflows in the context of a smart home with respect
to the Requirements R1–R4 identified in Section 2.6 (Proof of Concept). With the
case study experiments, we were able to show that the processing of complex sensor
event streams and triggering of high-level process events; the dynamic selection of
services based on the IoT devices’ capabilities and context; the ubiquitous interaction
with and by humans; and the distribution of process fragments among execution
peers and managing super-peers can be modelled and executed with the PROtEUS
WfMS and its associated tools (e. g., the process editor, the process manager and
the human task manager app described in Sections 4.8.1 and 5.6). More complex
IoT devices consisting of multiple sensors and actuators (here: service robots) can
also be integrated as resources into CPS workflows by applying capability based
abstractions as shown with the DROiT API in [SSAS15] and Section 4.3.3. The
investigated example processes represent rather simple workflows in the smart home
with only few parallel activities and instances to be executed. The case studies have

215

7. Evaluation

to be extended to a larger scale as part of future work to evaluate the feasibility,
scalability and correct interactions of the PRotEUS WfMS, Feedback Service and
their individual components. Despite the processes that have been investigated being
relatively simple, a large number of software components and complex configurations
were necessary to implement a running WfMS including the required monitoring and
logging infrastructure.

The interactions of the CPS workflows with the physical world require additional
means for handling unanticipated errors due to the IoT devices being more unreliable
and physical obstacles and other new context factors influencing the outcome of the
process executions. These new error sources require feedback from additional data
sources about the process instance execution to check for Cyber-physical Consistency
and detect and repair these errors (Requirements R5–R7). From the experiments we
see that these requirements can be covered by the Feedback Service based implemen-
tation of the MAPE-K feedback loops extending the “regular” process execution.
By using additional externals sensors and other information sources, we are able to
define and check criteria/rules for the successful execution (satisfied condition) of
a process step or for a potential error (compensation condition). The experiments
show that this correlation also works as expected–to just verify the successful exe-
cution but also to adapt the process in case of errors–and we are able to increase the
rate of successful process execution with the help of the Feedback Service compared
to only using the basic WfMS. The Feedback Service is able to detect violations
with respect to the defined criteria regarding cyber-physical consistency (Require-
ment R5) but also more general criteria (Requirement R7). Simple adaptations
derived and executed by the Feedback Service facilitate the cyber-physical synchro-
nization and resolving of errors (Requirements R5 and R6) as well as more general
adjustments of the WfMS at runtime with respect to other self-* properties besides
self-healing (Requirement R7). The adaptation strategies are currently limited to
exchanging the process resources and repeating the respective process activities,
which are rather simple adaptations. More complex strategies can be defined based
on new compensation queries to be added to the compensation repository of the
Feedback Service to specify how to select new process resources or adapt the pro-
cess instance. We were also able to proof the feasibility of our proposed retrofitting
processes for existing WfMSes (Requirement R8) to add self-* capabilities to these
systems by using the Feedback Service. Similar to the basic PROtEUS system,
the Feedback Service shows a reasonable performance and execution times for the
smart home use case when executing the MAPE-K loops. The execution times of
the individual phases are also in the order of 100 milliseconds or less. The major
contributors to the overall MAPE-K executions are again the relatively slow sensors
measuring and reporting data from the physical environment. The overhead from
communicating with the Feedback Service as an external service can be neglected
at this point with a more integrated solution providing even better performance. In
general, with our smart home case study and experiments, we are able to address
all requirements R1–R8 and show their fulfilment by our concepts and prototypes.

The PROtEUS system in its various configurations and in combination with the
Feedback Service shows reasonable execution times for virtual and physical activi-
ties in the smart home context. The durations of virtual computations to execute
simple process logics, send service requests or retrieve data from the SAL are in the

216

7.6. Qualitative Discussion of Requirements and Additional CPS Aspects

order of 100 milliseconds or less, which makes the system also capable of executing
more crucial tasks demanding (soft) real-time like behaviour. An evaluation of the
system’s performance and its scalability in an extended case study with respect to
the execution of multiple and more complex process instances remains subject to fu-
ture work. The experiments show that the interactions with the physical world take
significantly longer due to the physical processes involving humans, objects and the
environment being much slower than the computations executed by the processor of
the WfMS’s hosting computer. These long running physical process activities also
show the importance for supporting event-driven (asynchronous) communication
and behaviour within the workflows and WfMS (Requirement R1) as the process
execution often has to wait for activities to finish–without knowing their actual ex-
ecution times–in a non-blocking way. As we focus on real-world experiments with
actual data from the physical world to verify the behaviour of the WfMS in specific
case studies and to identify new sources of potential errors, a performance compar-
ison with other approaches and WfMSes is not reasonable due to the long running
physical activities that are the major contributors to the overall execution times.
Despite not providing any guarantees or mechanisms for real-time executions, we
are able to define time-dependant behaviour and constraints using EPL statements
for the triggering of events, and using goals to specify deadlines for the successful ex-
ecution of process activities and to detect their violations with the Feedback Service
during or after execution.

7.6. Qualitative Discussion of Requirements and Additional
CPS Aspects

Following the detailed quantitative analysis of the experiments regarding CPS work-
flows in the smart home case study, we use the results to provide a qualitative dis-
cussion of the fulfilment of the requirements R1–R8 as well as of additional CPS
aspects–namely Real-time, Security and Safety–in the subsequent sections.

7.6.1. R1: Abstraction and Processing of Complex Sensor Events

Reactive, event-driven behaviour is identified as an important key property of CPS
that needs to be supported by a WfMS. As shown with the experiments, process ac-
tivities interacting with the physical world are relatively long running and should be
executed asynchronously, i. e., react to events emitted by the respective services to
signal relevant changes in the service execution. We introduce a special process step
(TriggeredEvent) to define the occurrence of a particular event on the process level
that triggers the activation of the connected process steps. EPL patterns provide an
expressive syntax to define event patterns–from the occurrence of a single low-level
event to complex fusions of multiple low-level events over time including arithmetic
operations to preprocess the events. With that, we can define event patterns re-
lated to a wide range of physical and digital event sources (sensors) with arbitrary
complexity, granularity and quantity of lower level sources. The CEP engine proved
itself to be an indispensable high-performance component of the WfMS to process
complex streams of sensor data and detect relevant patterns in these streams pro-
duced by the CPS entities. The specification of EPL patterns is a simple means for

217

7. Evaluation

enabling context recognition and context-dependant behaviour in workflows. Based
on detected sensor patterns (contexts), the corresponding process-level events can
trigger the activation of different branches within a process and thereby add a basic
level of context awareness to the processes. Our exemplary processes rely on rela-
tively simple event streams with sensor events from single sources occurring only a
few times per second. Simple event handling mechanisms suffice at this point to de-
tect certain patterns within the event streams. However, market researchers predict
multiple billion IoT devices–sensors and actuators–being sold and deployed in almost
every area of everyday life in the next decade [RW15]. The increasing number of sen-
sors and other event sources requires a more scalable form of event processing–CEP
being a suitable candidate to achieve the necessary performance [Luc02]. To increase
the robustness of the event detection and activation on the business process level,
multiple sensors sources and redundant sensors and types of sensors can be consid-
ered in EPL statements and processed by the CEP engine (Sensor Fusion [BI98]).
Regarding the granularity of events, we support the processing of events of arbi-
trary complexity–from low-level sensor events referring to specific sensor instances
to type-level specifications and aggregated events provided by more sophisticated
software-based event sources. The aggregation of events and derivation of higher
level events is left to the dedicated software components acting as event provider for
our CEP engine. One prerequisite for using these events is their containment in the
knowledge base so that EPL patterns can refer to them. With TriggeringEvents we
have a simple means of defining events and corresponding payloads on the process
level that can be injected into the event cloud and considered by the CEP engine
for other processes.

Regarding the aspect of Instance Correlation, i. e., correlating events with each
other as well as with specific workflow instances and vice versa, our experiments
show that by linking sensor events and the execution of event-related process steps
of a workflow instance, we are able to relate the execution with the respective low-
level events. The EPL statements provide a mechanism to specify these correlations
for an arbitrary number and granularity of sensors and the corresponding process
steps in the process model. By investigating the specific instance execution logs
and sensor history, a correlation of the appearance of specific events with the execu-
tion of the related process instance activities is possible for single process instances.
Vice versa, Goals can be used to link the process instance executions to their ef-
fects on the physical environment and with that, the appearance of specific (sensor)
events as consequences of the instance executions. The objectives associated with a
process step define expected changes within specific sensor values–event sources in
general–and error criteria related to these events. The main purpose of the MAPE-
K feedback loop is to monitor the relevant event data and correlate the process
instance execution with these data to detect success or error of the execution. With
our experiments, we were able to show how to establish these links based on the
feedback loops. Within the scope of this thesis, we only investigate the execution
of single process instances isolated from each other. Process models are only in-
stantiated and executed once, which is why the aspect of correlating the occurrence
of multiple (cyber-physical) events with the execution of multiple process instances
(e. g., by linking the process instance to the corresponding event instance via the
instance identifiers) has to be further investigated in larger scale experiments. Cur-

218

7.6. Qualitative Discussion of Requirements and Additional CPS Aspects

rently, the WfMS does not address and support this correlation explicitly as the
boarders of individual process instances may not always be clear in CPS. The in-
teractions of multiple process instances and feedback loops with the physical world
may also lead to additional issues regarding the access to limited physical resources
and appearance of concurrent or parallel events.

The specification of EPL statements in our approach is currently not supported by
convenient tools, which is why the definition of EPL patterns is rather complicated
and requires deep knowledge about the corresponding syntax as well as the under-
lying sensor and domain model. Only sensors described by the global sensor and
event model, and connected via their respective software adapters can be considered
during the operation of the CEP engine. The EPL statements currently have to be
specified at design time and are therefore rather static. Besides directly addressing
specific sensor instances as shown in our example processes, types of sensors can
also be considered to cope with the dynamic availability of resources. The process
designer has to specify these events for the particular processes in accordance with
the respective event data model. The learning of event patterns and EPL state-
ments or the automatic extraction of specific event patterns from business processes
as described in [WZG+14] can be first steps to further increase the flexibility of our
approach regarding the pattern-based specification and detection of events on the
business process level, as well as to facilitate the automatic discovery of business
processes from event streams [vZvDvdA18].

Advantages:

• Event-driven behaviour is enabled on the business process level.

• Event abstractions in processes on arbitrary levels and granularity w. r. t. the
event sources

• Complex arithmetic and time-related expressions/patterns with EPL state-
ments referring to multiple sensor and event sources

• Fast event stream processing with CEP engine

• Sensor fusion and context recognition in processes

Limitations:

• EPL statements are rather static and complex to define.

• Event models have to be known and event adapters developed.

• Limited correlation of the appearance of (sensor) events with the execution of
process instances.

7.6.2. R2: Integration and Dynamic Selection of Resources

By relying on services for accessing the functionality of all physical and virtual
CPS entities, we followed the suggestions of the IoT reference model described in
Section 2.4.4. Services provide a unified abstraction for communication with the
heterogeneous devices and virtual entities of the CPS that can be used as process
resources and invoked by the WfMS based on standard protocols and interfaces. The

219

7. Evaluation

WfMS supports an extensible set of IoT service invocations using standard or pro-
prietary protocols on the business process level. The description of the CPS devices,
their contexts, functionality, capabilities and associated services within an ontol-
ogy allows us to specify required functionality and constraints that the respective
process resource needs to execute a particular process step. The semantic queries to-
gether with the SAL provide us with means for finding and invoking suitable services
and resources at runtime based on their availability, properties, functionality and
context. The experiments show that the dynamic selection of process resources, re-
trieval of parameters and sensor values (SemanticSelect), the checking of conditions
related to sensor values (SemanticAsk), and the retrieval and invocation of actuator
functionalities (SemanticCommand) work well for CPS devices according to their
type, functionality and context in the smart home. More complex compounds of
sensors and actuators can be abstracted and integrated following a generalization of
the capability-based approach we presented for the service robots (cf. Section A).

Using IoT services as the basic abstraction and communication approach to invoke
functionality provided by CPS entities remotely is a feasible way of accessing the
heterogeneous devices in a platform-independent way. However, it also introduces
additional overhead as the respective control software needs to be augmented by a
dedicated server component hosted on the particular device or its control computer
(cf. Figure 2.15). We have seen that the underlying infrastructure for providing
access to the specific devices also plays an important role when designing the WfMS
and CPS architecture in general. In our examples, the openHAB middleware is the
central component to host services for accessing the sensor and actuator function-
ality. Other services can also be invoked via their specific URIs and the middle-
ware can be used in a decentralized setting. However, the SAL currently relies on
a central knowledge base containing the semantic descriptions of the entities and
their services. The underlying ontology is rather static and cannot be modified
with new elements at runtime. Similar to the EPL statements, the corresponding
SPARQL queries are also static and complex to define as part of the semantic pro-
cess steps and require deep knowledge regarding the specific syntax and domain
model (ontology). Compared to more traditional approaches for service discovery
(e. g., using UDDI [CDK+02]), we provide an advanced and more sophisticated
mechanism for finding services at runtime based on semantic data, which can be
further enhanced by using inference to discover new process resources from implicit
knowledge [DBBM11]. Many other approaches for CPS and IoT service discovery
exist [BK17, TFR17, DBBM11, SZY18], but they were not applied in the context
of business processes and process resource discovery with semantic contextual data.
We currently use the knowledge base and ontology as a sophisticated data model
and storage for semantic search, not exploiting the semantic information to infer
new knowledge. The performance and feasibility of these mechanisms for service
discovery and invocation at runtime have to be further evaluated in the context of
CPS and IoT, which usually require a certain level of responsiveness that reasoning
algorithms and large ontologies may not be able to achieve. An advancement of our
semantics-based process resource discovery and assignment approach in the context
of IoT processes using goals founded on the TROPOS approach [BPG+04], roles
and reasoning can be found in [Hub18].

220

7.6. Qualitative Discussion of Requirements and Additional CPS Aspects

Advantages:

• Unified abstraction of CPS resources as IoT services

• Complex actuators and sensors can be used as process participants.

• Extensible support of standard and proprietary service protocols

• Service discovery at runtime based on properties, functionalities, capabilities
and context of CPS entities

Limitations:

• Encapsulations as service necessary

• Semantic queries are rather static and complex to define.

• Central knowledge base with complex, rather static ontology

• No application of semantic reasoning techniques

7.6.3. R3: Ubiquitous Interaction with Humans

From the use cases and experiments, we have seen that the interaction with users
as part of the process execution as well as for managing the process execution is
an important requirement despite the overall goal of increasing the level of au-
tomation within the CPS with the help of workflows. With human tasks, we can
explicitly specify manual activities and tasks as process steps that need to be ex-
ecuted by humans on the business process level. These information can then be
used to create simple user interfaces based on UI components available from the
underlying platform to specify what to do, display input data and provide forms
for entering output data. The dynamic generation of more complex, more generic
and sophisticated user interfaces is out of scope of this work. The publish/subscribe
communication facilitates the loose coupling of arbitrary clients with the WfMS to
work on human tasks, to monitor the workflow execution or to control processes
on the corresponding channels (topics). Our prototypes feature stationary but also
mobile client applications and tools to model and manage processes. The modelling
and monitoring tools are rather complex to be used but mature implementations as
they are founded on well-established user interface frameworks. These applications
enable a deep inspection and debugging of the processes and process instances to
support the succeeding redesign and process improvement phases. Especially the
mobility and location aspects become more and more important with the develop-
ment of CPS towards ubiquitous systems. Our mobile applications are the first steps
to support a more end-user friendly management and creation of workflows and CPS
in general, which can be best experienced with the HoloFlows mixed reality appli-
cation (cf. Section 4.8.2). The mobile and augmented reality process management
apps as well as stationary tabletop application are working prototypes that still have
to be improved and matured towards useful process management applications.
Despite developing interactive applications with more end-user friendly user in-

terfaces, we do not focus on explicitly addressing specific characteristics or require-
ments of end-users or reaching a high level of user experience in general. The process
modelling and management tools are still rather complicated and require knowledge

221

7. Evaluation

about the specific domains as well as about the workflows themselves. Our focus is
on providing a set of sophisticated applications for workflow and CPS management.
Future research and developments should increase the usability of these applications
by simplifying certain modelling and management aspects and following a more user-
centred design process [AMkP04]. In addition, several modelling and configuration
tasks can be automated to reduce the complexity of the overall CPS management
processes (cf. Section 4.8.3). This could include the automatic discovery and configu-
ration of known and unknown CPS devices as process resources, up to the automated
learning and generation of complete CPS workflows based on activity recognition.

Advantages:

• Seamless integration of human interactions/manual tasks into processes

• Simple dynamic user interfaces for human tasks

• Flexible loose coupling of end-user devices with the WfMS

• Comprehensive means and tools for process management and modelling

• End-user friendly multi-modal applications for process management

Limitations:

• No explicit addressing of human capabilities and context

• No complex user interface generation

• No explicit focus on usability

• Complex modelling tools require workflow, CPS and domain knowledge.

7.6.4. R4: Distributed Process Execution

The hierarchical overlay (peer–super-peer) network infrastructure that we base the
distributed execution of processes on, provides a scalable architecture to manage
CPS devices involved in the process execution. Compared to a fully decentralized
system of systems, this approach reduces communication and coordination overhead
due to central management entities (super-peers) running the D-PROtEUS config-
uration of the WfMS [YGM01]. With our approach, the hierarchies available in
the typical network infrastructures for Fog Computing can be used to establish a
distributed process execution infrastructure of peers, super-peers and higher order
super-peers. We support the distribution of process steps on the level of individual
tasks, subprocesses or entire processes by relying on the subcontracting mechanism,
i. e., the particular process fragment and instance information are transferred to
the designated remote PROtEUS system and then executed locally (instance migra-
tion [ZHKL10])–possibly on specialized edge computing devices. That way, also a
certain level of data security can be reached as only required process data is trans-
ferred to the respective peer. The peers do not depend on a constant connection to
the super-peers or to the network in general and are therefore able to execute their
assigned subprocesses autonomously.

The actual distribution of process tasks to remote WfMS is currently done in a
relatively simple manner relying on the explicitly specified resource URI property

222

7.6. Qualitative Discussion of Requirements and Additional CPS Aspects

of the specific process step. More sophisticated means for automating this assign-
ment (e. g., based on a peer’s capabilities, available computing resources, proximity
or other context factors) could be investigated as part of future work. Similarly,
the assignment of the roles of peers and super-peers is currently done manually, but
can also be automated based on the aforementioned criteria. In general, super-peers
require more resources for managing the network infrastructure and a more reliable
network connection. Peers can be resource-constraint and more specialized. The
management of the network infrastructure on the super-peer level is currently out of
scope of our work but also needs to be considered in future developments (e. g., the
handling of super-peer failures). The implementation of the subcontracting mecha-
nism for transferring the respective process instance and its current state to a peer
is also relatively simple. In [BDH+11] Barkhordarian et al. discuss possible issues
with migrating business process instances to other execution systems. These aspects
should be studied and considered in future developments to increase the robustness
of our system. In addition, we do not implement any mechanisms for ensuring trans-
action safety when transferring and executing subprocesses on remote peers. The
mechanisms for handling long running transactions in pervasive workflows proposed
by Montagut et al. in [MMG08] are reasonable extensions of our system. All in all,
we provide a basic implementation of a distributed process execution system that
can be improved in future developments and tested in larger scale SoS.

Advantages:

• Distributed execution on the level of tasks, subprocesses or processes

• Hierarchical network enables locality of process execution and scalability.

• Data security through subcontracting and instance migration

• Offline execution and specialized task execution on specific devices

Limitations:

• Simple distribution of process tasks based on resource URI

• Simple assignment of peer and super-peer roles

• No communication among super-peers

• No failure handling w. r. t. super-peers

• No consideration of long running asynchronous transactions

7.6.5. R5: Cyber-physical Synchronization

With CPS workflows adding the new dimension of influencing the physical world
to business processes, the linking of the workflow execution to its real-world effects
becomes a key criterion for implementing a suitable WfMS for CPS. By relying on
the MAPE-K control loop and its implementation within the Feedback Service, we
are able to create this link with the help of additional physical information sources
measuring physical context factors (sensors) that are considered in order to con-
firm the success of the process execution and thereby the successful cyber-physical
synchronization, or to determine a possible error leading to an inconsistent state.

223

7. Evaluation

Both criteria (success, failure) are defined in a more declarative manner within Ob-
jectives that are part of an overall Goal for the execution of individual process step
instances. Goals define What is expected to happen when executing the respective
process step, but not How it is supposed to happen. This adds more flexibility to
the process execution and reduces complexity as error cases and failure handling
do not have to be specified explicitly as part of a process model. Goals may con-
tain objectives regarding multiple context factors from various sensors and complex
evaluation criteria–also considering time-related aspects–relevant for determining
Cyber-physical Consistency or the need for synchronization due to errors or devia-
tions. Our investigations show that, besides physical context factors, also arbitrary
other relevant context factors can be considered within the MAPE-K feedback loops
to verify the execution of individual process steps or to define more general con-
straints for the process execution.

The goals and objectives used to specify success and error criteria are currently
relatively complex to define and require deep knowledge about the used sensor mod-
els, domain-dependant workflow effects and syntax. The linking of the effects of
the workflow execution to their physical outcome is not always straightforward and
requires additional domain knowledge. As workflows are abstract virtual concepts
that do not have an explicit physical counterpart, changes within the physical envi-
ronment and related to the state of objects, CPS devices, things, humans or other
relevant entities and criteria have to be considered to realize the aspect of cyber-
physical synchronization for workflows. The specification of goals has to be simplified
and supported by the IDE in a more sophisticated way. Additional checking mecha-
nisms have to be considered to identify possibly conflicting and concurrent goals also
considering the semantics of the associated process step. The relevant context fac-
tors to be considered within the MAPE-K loops have to be part of the sensor model
and integrated as data sources. Goals are currently rather static, i. e., they have to
be defined at design time and cannot be modified at runtime. Adding the capability
of dynamic adaptations and meta-adaptations [PRK+14] to the goal management
as well as automated learning of goals are part of future work.

Advantages:

• Linking of workflow executions to their physical effect and vice versa with the
help of sensors

• Synchronization criteria defined in goals (success or failure) for Cyber-physical
Consistency–more flexible and less complex than explicit definition

• Complex expressions in goals possible, including multiple objectives, sensors
and time-dependant criteria

• Non-CPS related workflow effects/conditions can also be specified.

• MAPE-K loop and Feedback Service as suitable framework for cyber-physical
synchronization

Limitations:

• Knowledge base has to contain sensor model, sensors have to be integrated
and constantly updated.

224

7.6. Qualitative Discussion of Requirements and Additional CPS Aspects

• Goals are rather static and complex to define.

• No explicit physical representation of a CPS workflow possible

• Linking of workflow execution to physical effects not always straightforward,
requires domain knowledge

7.6.6. R6: Handling of Cyber-physical Errors

Based on the goal definitions and additional environmental sensors as well as state
changes within relevant CPS entities, we are able to verify the expected outcome
of the workflow execution (see satisfied condition in Section 4.5) or to detect errors
in case of deviations from and undesired states of the physical world (see compen-
sation condition in Section 4.5). As shown within the evaluation and discussions,
this approach is feasible for detecting cyber-physical mismatches and finding com-
pensation strategies automatically within the MAPE-K loops. The investigation of
other formalisms to specify these goals on a more abstract level, e. g., as proposed
in [KK12] or with the TROPOS methodology [BPG+04] remains subject to future
work. In case of an error, the Feedback Service can detect the type and quantity of
the mismatch, which is the basis for finding a compensation strategy. Currently, the
main strategy for deriving compensation actions is to look for a suitable replacement
resource as defined within custom compensation queries to repeat the execution of
the respective process step on and to check again for successful execution within the
MAPE-K loop. These compensation strategies/adaptations are rather simple but
suitable for our error cases as the process resources (CPS devices) are the main new
source for errors in CPS workflows. However, a simple repetition of the same process
step execution is often not feasible due to more complex and possibly concurrent
processes happening in the physical world. A more sophisticated classification of
process tasks, errors and corresponding rollback/undo/compensation actions is re-
quired to define suitable compensation queries, which are very complex to specify,
or to automatically derive compensation strategies. As compensations and rollbacks
cannot be discussed in their entire complexity within the context of this thesis, we
leave this as an open task for future work. With the help of Consistency Levels, we
are able to influence the level of precision and consistency required for the successful
execution of a process step, which usually results in execution times and number of
feedback loop iterations that are proportional to the desired consistency level.

The detection of errors is currently done based on simple rules/criteria defined
within a goal. These criteria may refer to several physical context factors that have
to be reached, also with respect to certain time frames. The error detection mech-
anism could be augmented in future work, e. g., by applying stream-based process
mining to check for conformance from process events [vZvDvdA18]. Currently, we
are not always able to detect the actual error source, but only that a desired state
cannot be reached, e. g., a process is supposed to switch on various lights in the
room but the expected light levels are not reached due to a broken light bulb. The
goals and processes have to be specified in more detail to address this issue. Our
approach enables the self-healing with respect to cyber-physical errors by adapt-
ing the process and thereby trying to synchronize the actual physical state with
the assumed state (target value) defined in an objective. This assumes that the
workflow designer is able to specify the outcome of the specific process step exe-

225

7. Evaluation

cution. More sophisticated process adaptation and error compensation strategies
have to consider the type of the basic process activity and failure that occurred
to find suitable remedies. We also do not explicitly consider concurrent processes
and process instances being executed in the physical world within our investigations.

Advantages:

• Error detection based on additional sensor data from physical environment

• Compensation of physical errors in MAPE-K loop

• Scalable precision and consistency through goal definitions

Limitations:

• Compensation strategies rather simple

• Localization of errors not always possible

• Classification of physical errors and remedies necessary

• No explicit handling of concurrency

7.6.7. R7: Self-management Capabilities

The elaborations regarding the handling of cyber-physical errors are also relevant
for discussing the self-management capabilities of the CPS WfMS proposed in our
work as self-management is a generalization of self-healing and other self-* properties
(cf. Section 2.4.5). Goals can be used to define success and error criteria regarding
arbitrary factors related to the process execution (e. g., QoS, KPIs or cyber-physical
context values). These factors have to be known in advance by the workflow designer,
be part of the sensor model and be connected to the Feedback Service via dedicated
Monitoring Agents (cf. Section 6.2.1). Currently, goals are static and cannot be
adapted at runtime. Future developments could comprise the implementation of
more dynamic goals and meta-adaptations, e. g., by regarding the phases of the
MAPE-K loop as individual process steps and specifying for goals for applying the
MAPE-K loop again to the individual phases.

The Feedback Service provides a generic and extensible implementation of the
MAPE-K control loop, which proves to be a suitable framework for enabling self-
awareness and self-management of software systems [MSW16]. Arbitrary data from
additional sources can be considered within the Analyser component of the Feed-
back Service and also considered when deriving suitable compensation strategies
in the Planning phase. The compensation repository may contain arbitrary com-
pensation queries and compensation actions to find suitable adaptations for the
process or process resources to reach the desired goal. This does not only relate
to the self-healing that we have shown with respect to cyber-physical processes
and distributed processes, but also to the implementation of other self-* proper-
ties (e. g., self-configuration or self-optimization). Our examples related to cyber-
physical processes and distributed processes show very simple adaptations of the
underlying process instances or process resources (ad-hoc adaptations) in the form
of repeated process step executions. These strategies are not always feasible, espe-
cially when repeating subprocesses containing physical actions that cannot be easily

226

7.6. Qualitative Discussion of Requirements and Additional CPS Aspects

repeated to due constraints of physical resources. As already mentioned, a more
sophisticated classification of process tasks and corresponding rollbacks in case of
errors are necessary to implement self-managed CPS workflows with transaction
safety [MM05]. To extend the compensation strategies and compensation queries
as well as to add new monitoring agents requires developers with in depth knowl-
edge of the underlying data models, syntax and interfaces of the Feedback Service.
Complementary to the proposed adaptations regarding the process resources and
process execution, structural modifications of the corresponding process instance
and process model should be considered in future developments. The investigation
of concepts regarding the implementation of flexible processes within the context of
the ADEPT project [DR09] to deal with errors and unanticipated situations in CPS
have to be part of future developments and improvements of the PROtEUS WfMS.

The MAPE-K feedback loop can be regarded as a process itself, which is exe-
cuted as part of the managed process step execution. The explicit modelling of each
phase of the MAPE-K loop including data analysis as well as planning of compensa-
tion strategies as dedicated process steps is not feasible though, due to an increasing
complexity of the respective process models and executions. The MAPE-K feedback
process should be transparent to the process designer and part of the integrated func-
tionality of the execution engine, only using the goals defined by the modeller for
executing the control loops and adapting the processes in case of exceptions.

Advantages:

• Goals define criteria for success or undesired behaviour during process execu-
tions w. r. t. to arbitrary factors.

• Self-* capabilities and self-awareness of workflow executions via MAPE-K
framework and additional data sources

• Self-management (self-healing) for distributed workflows

• Flexible and exchangeable analysis and compensation/adaptation strategies

Limitations:

• Workflow related effects (for success, failure) have to be known in advance.

• Rather simple workflow adaptations

• Classification of “undesired” situations and corresponding remedies is required.

• Compensation strategies complex to define

• No meta-adaptations

7.6.8. R8: Retrofitting Framework for Workflow Management Systems

The realization of the Deming cycle via the MAPE-K feedback loop proved itself to
be a suitable framework to add the capability of self-management to enable self-*
capabilities for processes to the PROtEUS CPS WfMS. With the Feedback Service,
we have a generic software component represented as a web service that implements
the MAPE-K control loop. Almost all of the existing WfMSes from industry and
academia are capable of invoking web services, which is why the coupling of an

227

7. Evaluation

existing WfMS with the Feedback Service to retrofit the “legacy” system with self-
management capabilities is relatively straightforward. Either modifications to the
basic processes are necessary to invoke the Feedback Service containing the goals for
the respective process step as parameters in parallel (Non-invasive Retrofitting); or
the process metamodel has to be extended with the goal specification for a process
step, and the execution engine has to place a service call to the Feedback Service in
parallel in the background (Invasive Retrofitting). Consistency Style Sheets facilitate
the separation of self-management aspects from the “original” process definition and
reduce the need for modifying the processes or WfMS even more.
Our proposal of loosely coupling the Feedback Service with the existing “legacy”

WfMSes currently relies on a service-oriented approach using RESTful web services.
As many existing WfMSes from the business process domain rely on other protocols
(mostly SOAP) to communicate with external services, we often have to provide
mediation web services to be deployed locally within the WfMS and to then call the
Feedback Service via REST. The extension of the Feedback Service with a SOAP
interface would be a simple solution for this issue. The Feedback Service can also be
integrated into the WfMS more tightly as a new software component communicat-
ing with the other internal components as specified by the legacy workflow system’s
component/software architecture. In order to implement self-managed workflows for
CPS or IoT, an additional component, information system or service-based appli-
cation (e. g., IoT middleware) has to be available besides the Feedback Service to
provide access from the WfMS to sensors and actuators via their respective services.

Advantages:

• MAPE-K as general framework to add self-* capabilities to existing WfMSes
via the Feedback Service

• Only minor modifications to processes or WfMSes necessary

• Separation of concerns with Consistency Style Sheets, “legacy” processes do
not have to be modified.

Limitations:

• Approach currently relies on service-oriented WfMSes.

• Additional service (Feedback Service) and optional mediation services have to
be available, which introduces overhead.

• New data sources have to be available via additional software components.

7.6.9. Time-dependant Behaviour

Despite being out of focus of our work, Time plays an important role in designing
and implementing CPS control systems. The results of our case study show that the
interaction with the physical world usually comprises long-running asynchronous in-
teractions, which need to be monitored and verified with additional data. Within our
realization of CPS workflows, we are able to specify and check time-related execution
criteria and aspects at various points. First, Escalation Ports can be used to define
timeouts regarding the execution of process steps. In case this timeout is reached,
the “regular” process execution is halted and the process branch belonging to the

228

7.6. Qualitative Discussion of Requirements and Additional CPS Aspects

escalation port is activated. Our Emergency scenario process shows the application
of this mechanism to deal with an unconscious human being (cf. Section 7.3.2). The
respective timeout has to be specified by the process modeller.
With CEP, we include a high-performance component for processing of complex

sensor and event streams. EPL statements provide means to define patterns within
the low-level event streams that also relate to specific time frames or points in time
to trigger a higher level event. TriggeredEvents specified on the business process
level and leading to the activation of their following process steps can be used to
model preconditions for the execution of subsequent process steps similar to EPCs
(i. e., a certain event has to be triggered before the respective process step can be
executed). Goals on the other hand, may contain objectives that need to be fulfilled
during or after the execution (postcondition) of a specific process step. As shown
with our experiments, the objectives belonging to a process step can also contain
time-related criteria defining the success or failure of the process step execution.
The experiments conducted in the context of a smart home show reasonable ex-

ecution times for a CPS WfMS. The purely virtual computations rely on the per-
formance of the underlying (Java) virtual machine and are in the order of a few
milliseconds indicating the capability of achieving soft real-time. The execution of
process activities that interact with the real world usually take much longer due
to the nature of the physical world and physical entities acting and reacting much
slower than a computer. Our CPS WfMS contains components that allow for a fast
processing of sensor data and the fast execution of process tasks. However, we are
not able to guarantee and implement real-time behaviour regarding the execution
of CPS workflows. None of the software components chosen for PROtEUS and its
associated services has an explicit focus on supporting hard real-time. With the
help of the Feedback Service, we are at least able to detect the violation of real-time
related aspects by evaluating time-dependant goals and objectives belonging to a
process step in the MAPE-K feedback loops. In order to evaluate the performance
and feasibility of our CPS WfMS in other domains, more extensive experiments and
discussions of the respective time-related requirements and possibly new software
components are necessary. These investigations have to be part of future work.

Advantages:

• Definition of timeouts in Escalation Ports for synchronous and asynchronous
process activities possible

• Definition of time-dependant behaviour and preconditions for process step ex-
ecutions based on events in EPL statements

• Definition and check of time-dependant success/failure criteria for workflow
executions in goals

• Violations of time constraints can be detected.

• WfMS-related components show execution times suitable for achieving soft
real-time.

Limitations:

• No strict real-time and real-time guarantees

• No explicit focus on time-related aspects

229

7. Evaluation

7.6.10. Security and Safety

Similar to the consideration of time-dependant behaviour, we have not explicitly in-
tegrated mechanisms regarding safety and security in the CPS WfMS. Safety-critical
actions to be executed as part of a cyber-physical process have to be handled and
implemented by the respective device closer to the hardware level (cf. Section 2.5.1).
However, not all safety related constraints can be built in to the respective devices as
in CPS, the devices interact with other devices, the environment and humans, which
leads to the emergence of new situations that cannot be completely anticipated by
the manufacturer of a single device. Basic mechanisms to consider safety-critical
behaviour on the workflow level were already discussed in the previous section with
respect to Time-dependant Behaviour. Currently, we do not support the explicit defi-
nition of preconditions and postconditions–possibly related to safety-critical criteria–
regarding the execution of individual process steps. The investigation of this aspect
may be subject to future work. However, events and EPL statements can be used
to define safety-relevant preconditions as process steps to be activated before the
safety-critical process step. Goals can be used to define success and error condi-
tions regarding the execution of process steps to be checked during and after the
execution within the MAPE-K loops. By specifying these preconditions and post-
conditions on the workflow level, we are able to flexibly use and compose additional
data from external sensors (e. g., light barriers or distance sensors) and other de-
vices (e. g., cameras or robots) to be linked to the execution of particular process
steps, and to check the compliance with safety-relevant context factors as precon-
ditions and postconditions. We also discussed more advanced concepts to realize
safety-critical behaviour related to the implementation of Cyber-physical ACID and
Cyber-physical Transactions (cf. Section 6.9), possibly applying Roles for handling
concurrent access to physical resources.

Data security is an important issue regarding the WfMS and also the other soft-
ware components, especially the IoT middleware collecting sensor and actuator data.
When transferring data between devices and components, we assume that the con-
nection is properly secured (e. .g, by using SSL/TLS or SSH). Persistent secure data
storage is only partially related to the implementation of a CPS WfMS, which is
why it is out of scope of our work. Standard encryption mechanisms can be applied
where needed. In case of the distributed execution of a subprocess, subcontracting
provides us with a basic means of additional data security as only the data required
to execute a specific instance of the subprocess is transferred to the remote peer
running the WfMS. More advanced mechanisms for implementing safety and secu-
rity for CPS workflows in the smart home domain and in other domains have to
be investigated in future research. Especially in more safety and time-critical en-
vironments (e. g., production, automotive or avionics), the suitability of the WfMS
developed in this work needs to be re-evaluated and further investigated as these
domains may require additional software components and new concepts.

Advantages:

• Safety related preconditions and postconditions for process activities can be
defined in goals or event process steps.

• Checking of safety-related criteria in MAPE-K loops

230

7.6. Qualitative Discussion of Requirements and Additional CPS Aspects

• Data security through subcontracting for distributed processes

Limitations:

• Safety-critical processes left to be considered closer to the CPS hardware (out-
side workflow layer)

• Cyber-physical transactions only on conceptual level

• No guarantees/contracts w. r. t. to safety or security

• No explicit focus on safety and security

7.6.11. Summary

Table 7.17 gives a brief summary of the qualitative discussion regarding the ful-
filment of the requirements R1–R8 identified as key requirements for designing a
WfMS for CPS in Section 2.6. The abstraction and integration of multiple complex
sensors in business processes with the help of CEP leads to a very good coverage
and fulfilment of requirement R1 (Complex Sensors) as special feature of the PRO-
tEUS WfMS. The unified service-based access and dynamic discovery of resources
using semantic data within the SAL also contributes to a very good coverage of
requirement R2 (Dynamic Services) as special feature of the PROtEUS WfMS.
With the explicit integration of manual tasks into business processes and flexible
communication with new process management applications–but no explicit focus on
usability–we achieve a good support of requirement R3 (Human Interaction) within
the PROtEUS WfMS. The autonomous execution of process fragments in a scalable
hierarchical infrastructure via subcontracting, but relatively simple distribution and
management algorithms as well as no considerations of transaction safety, lead to
a good fulfilment of requirement R4 (Distributed Processes) with the D-PROtEUS
and PROtEUS WfMSes. A very good coverage of requirement R5 (CPS Sync) as a
special feature is achieved via the correlation of workflows and physical effects with
the help of sensors in MAPE-K feedback loops by the Feedback Service and via
the flexible specifications of success criteria for Cyber-physical Consistency in goals.
The error detection based on physical sensors in combination with success and failure
criteria specified in goals for the process execution, as well as process adaptations
in feedback loops to remedy cyber-physical errors lead to a very good fulfilment of
requirement R6 (CPS Errors) via the Feedback Service. MAPE-K control loops in
combination with goals serve as a framework for enabling self-management of the
WfMS with respect to arbitrary criteria and self-* mechanisms–achieving a good
coverage of requirement R7 (Self-*). Complex extensions, compensation strategies
and goal definitions are necessary to apply the Feedback Service in other contexts,
though. With the MAPE-K-based Feedback Service as a general component to
extend existing service-based WfMSes with self-management capabilities through
minor modifications to the existing processes or WfMSes, we achieve a very good
coverage of requirement R8 (Retrofit) as a special feature of our concepts. Despite
being out of focus of our work, time and safety-relevant conditions for the process
execution can be specified and checked using Escalation Ports, Events and Goals.

231

7. Evaluation

7.7. Comparison with Related Work

The direct analysis of the requirements fulfilment compared to the two most relevant
related works–SmartPM by Marella et al. [MMS16] and SitOPT by Wieland et
al. [MMS16]–is shown in Figure 7.38. From this comparison, we see advances of our
concepts and prototypes concerning the development of a CPS WfMS in the areas
of complex sensor processing, dynamic resource selection, human interactions, the
remedy of cyber-physical errors and retrofitting of existing WfMSes.

Complex Sensors

Dynamic Resources

Human Interaction

Self-*

CPS Errors

Distributed Processes

CPS Sync

Retrofit

PhD Thesis

[WSBL15]

[MMS16]

[MMS16] & [WSBL15]

Figure 7.38.: Requirements Coverage of this PhD Thesis Compared to the two most
Relevant Related Works [WSBL15] and [MMS16].

Table 7.18 presents a summarizing evaluation of this thesis and highlight of its
advances with respect to the requirements and compared to related work. We dis-
tinguish between four levels of support regarding the fulfilment of the individual
requirement by the respective approach: Special Feature/Unique Selling Proposi-
tion (++); supported (+); partially supported (o); not supported (-). The CPS
workflow modelling concepts, system architecture for a CPS WfMS, and application
of feedback loops for enabling self-management of the CPS workflow execution, lead

232

7.7. Comparison with Related Work

to the manifestation of several special features and unique selling propositions of the
concepts and prototypes related to the CPS WfMS developed in this thesis.

The approach of using CEP to define specific event patterns in business processes
that lead to the activation of following process steps, as well as for the respective
processing of lower level events provides a scalable solution for fast and flexible
domain-independent event pattern detection in business processes comparable to
the proposal of Baumgraß et al. [BBDC+15, BCD+15]. Having an ontology that
describes the properties and relations of CPS entities semantically allows us to dy-
namically select appropriate process resources to execute specific tasks at runtime.
Compared to related approaches for dynamic resource selection in the context of
CPS and business processes [MMS16, WSBL15], we are more flexible due to the
ability to exploit the structure and context of the CPS described by the semantic
models and knowledge [RSI+17]. Human interactions and providing modern appli-
cations and user interfaces for process management are still neglected topics in the
current BPM domain. Besides Yousfi et al. [YBSD16] and Giner et al. [GCFP10]
putting an explicit focus on new ubiquitous interaction devices and sensors as well
as user context in business processes from the human-computer-interaction perspec-
tive, we cover the topic of human interactions to a high degree by providing mobile
and stationary process management applications to be used in the sense of ubiqui-
tous BPM. The topic of distributed processes is covered extensively for pervasive
environments and IoT in [MMG08] and [MCS16], and in more general in [Fri11]. We
propose some basic mechanisms for process distribution with a special focus on lever-
aging hierarchical network structures for a scalable but managed process execution
infrastructure, rather than having a completely decentralized device network.

By defining the effects of the workflow execution on the physical world in goals
based on success and failure criteria and a formalized model of the CPS, its entities
and contexts, we are able to specify the criteria for cyber-physical synchronization
similar to Marella et al. [MMS16]. Other approaches do not support this explicit
specification. We provide an extensible way of defining compensation strategies
to be used for exception treatment in MAPE-K loops when executing CPS work-
flows. Compared to SmartPM [MMS16] and SitOPT [WSBL15], our approach is
more suitable for dealing with CPS-related errors, and more flexible and extensible
regarding the introduction of new compensation strategies and error criteria regard-
ing the self-management of workflows in general. Other approaches for autonomous
workflows (e. g., proposed by Oliveira et al. [OCEP13] or Hoenisch et al. [HSDV13])
do not consider the specific properties of CPS and IoT environments. The aspect
of retrofitting existing WfMSes with self-* capabilities in the context of CPS has
not been discussed by any other related approaches. Only Parekh et al. discuss
a very generic framework for retrofitting autonomic capabilities onto legacy sys-
tems [PKGV06]–not related to WfMSes. With our work, we show multiple ways
of adding these capabilities based on the MAPE-K framework to existing “legacy”
WfMSes. In general, many related approaches propose their own extensions and
implementations of workflow languages and systems with respect to CPS-related
aspects, which ties their proposals to a specific version of modelling notation and
prototype [CSB16]. Although we also present a proprietary workflow metamodel
and management system for CPS in this work, we discuss the extension of existing
related approaches and systems with respect to applying our concepts on a more

233

7. Evaluation

general level. We suggest general extensions, system (reference) architectures and
frameworks that can be easily abstracted and applied to other WfMSes. Figure 7.38
shows a direct comparison with respect to the requirements coverage of this the-
sis compared to the two most closely related works by Marella et al. [MMS16] and
Wieland et al. [WSBL15]. All in all, the modelling concepts, system architecture and
framework proposed in this thesis cover the identified requirements for introducing
workflows to CPS to a higher degree than other related approaches and systems.

7.8. Conclusion

In this chapter, we first presented an extensive case study involving multiple exper-
iments conducted in the context of a smart home. To demonstrate the practical ap-
plicability of the developed CPS workflow modelling notation and the corresponding
CPS WfMS (PROtEUS), we evaluated the two complex scenario processes–Morning
Routine and Emergency process–from Section 2.2. By linking the process step execu-
tions with the corresponding effects in the physical world via sensors and actuators,
we were able to verify the correct execution of processes and interactions of the
individual components of the PROtEUS base system in combination with the SAL
to fulfil the requirements R1–R4 : Complex Sensors, Dynamic Resources, Human
Interaction and Distributed Processes. From the complex scenario processes, we
extracted some critical process steps that are likely to fail to due errors and incon-
sistencies from the interactions with the physical world. Those process steps were
further investigated in following experiments, being executed within dedicated pro-
cesses and supervised by the Feedback Service. With the MAPE-K feedback loops,
we have an advanced mechanism of linking the workflow executions to their physical
effects via sensor data and also detect and remedy errors and inconsistencies. The
experiments have shown that the implementation of the MAPE-K control loop and
its interaction with the PROtEUS system work as expected leading to reduced er-
rors rates and therefore, requirements R5–R8 can also be fulfilled: CPS Sync, CPS
Errors, Self-* and Retrofit. Based on the real-world experiments in the smart home,
we were able to show a working proof-of-concept implementation of our CPS WfMS
and associated components. The benchmarks show a reasonable performance for
the WfMS to be applied in a smart home context and other related CPS domains.
More real-time and safety-critical domains may not be fully supported, though.
The qualitative discussion of our concepts and their comparison with related work

have shown a high degree of requirements coverage and various advancements of our
approach compared to related concepts. We see a very good fulfilment of require-
ments R1 (Complex Sensors), R2 (Dynamic Resources), R5 (CPS Sync), R6 (CPS
Errors) and R8 (Retrofit) as special features and contributions of our concepts. Re-
quirements R3 (Human Interaction), R4 (Distributed Processes) and R7 (Self-*)
are also covered to a sufficient degree. With our concepts and implementation, we
propose a comprehensive WfMS suitable to be applied in the context of CPS. The
discussion of the WfMS and concepts has shown a lot of advantages of our work
compared to related approaches. It also helped to identify current limitations, open
issues and starting points for future research (e. g., regarding the simplification of
workflow modelling, increasing the level of flexibility of the modelled workflows, and
supporting real-time and safety-critical behaviour).

234

7.8. Conclusion

Table 7.17.: Summarizing Evaluation of Requirements Fulfilment.

Requirement Fulfilment Explanation

R1: Complex Sensors ++ Sensor abstraction and integration into
business processes using complex event
processing

R2: Dynamic Resources ++ Unified service-based access and dy-
namic discovery of resources using se-
mantic data

R3: Human Interaction + Explicit integration of manual tasks into
business processes and flexible commu-
nication with new process management
applications; no focus on usability

R4: Distributed Processes + Autonomous execution of process frag-
ments in a scalable hierarchical net-
work structure via subcontracting; sim-
ple distribution and management algo-
rithms and no considerations of transac-
tion safety

R5: CPS Sync ++ Correlation of workflows and physical ef-
fects via sensors in MAPE-K feedback
loops and flexible specification of consis-
tency, success and error criteria in goals

R6: CPS Errors ++ Error detection based on physical sen-
sors in combination with success and
failure criteria for process execution, and
process adaptations in feedback loops to
remedy CPS errors

R7: Self-* + MAPE-K control loop in combination
with goals as framework for enabling
self-management of the WfMS with re-
spect to arbitrary criteria and self-*
mechanisms; complex extensions, com-
pensation strategies and goal definitions
necessary

R8: Retrofit ++ MAPE-K-based Feedback Service as
general component to extend exist-
ing service-based WfMSes with self-
management capabilities by adding mi-
nor modifications to the existing pro-
cesses or WfMS

++ = Special Feature (USP); + = supported; o = partially supported; - = not supported

235

7. Evaluation

Table 7.18.: Related Work and Advances of this Thesis related to Requirements.
PPPPPPPPPWork

Req. R1
Complex
Sensors

R2
Dynamic
Resources

R3
Human

Interaction

R4
Distributed
Processes

R5
CPS
Sync

R6
CPS
Errors

R7
Self-*

R8
Retrofit

[DMC14] + o o - - - - -

[KSKP11] + - o - - - - -

[SSOK13] + + o o - - - -

[BBDC+15] ++ o o - - - - -

[AKF+14] ++ o o - - - - -

[MRM13] + + o - - - - -

[YBSD16] + o ++ - - - - -

[GKGK16] o + o - - - - -

[BDGP17] + o o - - - - -

[MD17] o o o - - - - -

[SGCG17] o + + - - - - -

[GEPF11] o o - - - - - -

[CS11] + o - - - - - -

[JDK15] o - o - - - - -

[MMG08] - ++ - ++ - - - -

[DTB+15] + + o + - - + -

[PRBA15] + o + + - - - -

[GCFP10] + o ++ o - - - -

[PRS+13] + + o + - - - -

[MCS16] + + o ++ - - - -

[PLM16] o - o - o - - -

[Sto15] - - - - + - - -

[CR15] - + o - + - - -

[RvWLB15] - - - - + - - -

[RSI+17] - ++ + - o - - -

[DRSA12] + o - - + + - -

[Wom11b] + - - - + o - -

[MDCM17] + o o - + - - -

[RBD+09] + + - - - - ++ -

[BDK+15] o o - - o o ++ -

[MMP06] - + - - o o + -

[Fri11] - o - ++ - - + -

[CL08] - + - - - - o -

[HSDV13] o + - o - - ++ -

[OCEP13] o o - - - - + -

[RSA10] o - - - - - ++ -

[Sch09] - - + + - - o -

[WSBL15] + + o - o o + -

[MMS16] + + o - ++ + + -

[XRK08] o - - - - - - o

[PKGV06] + o - - - - + +

[LBK15] o o - - - - + o

[LPS+09] o o - - - - + +

PhD Thesis ++ ++ + + ++ ++ + ++

++ = Special Feature (USP); + = supported; o = partially supported; - = not supported

236

8. Summary and Future Work

“Wisdom comes from experience.
Experience is often a result of lack
of wisdom.”

Terry Pratchett

8.1. Summary and Conclusion

In the beginning of this thesis, we discussed the possible advantages of using BPM
technologies to automate and orchestrate processes among systems and devices in
the context of CPS and IoT. With the ongoing digitalization and pervasion of al-
most all areas of everyday live by microcomputers and smart objects, the need
for defining and executing flexible and resilient processes in cyber-physical envi-
ronments (PACPS) on an abstract workflow-oriented level–without hard-wiring and
programming the respective applications–rises. Among others, CPS consist of a
variety of heterogeneous sensors, actuators, smart objects, more complex devices
(e. g., robots or production machines) and also virtual (software) services and ap-
plications that interact with humans and the physical environment–and vice versa.
Workflow management systems operating in the context of CPS (PACPS) have to
support the interaction with these heterogeneous and possibly resource constraint
entities in a proactive and reactive manner while being able to detect and react to
unanticipated situations and errors in the physical and virtual worlds. Based on the
specific properties of CPS and IoT environments (cf. Section 2.4.6) as well as two
scenario processes from the smart home domain (cf. Section 2.2), we derived a set
of eight requirements a WfMS has to fulfil in order to be used for process execu-
tion in CPS (cf. Section 2.6). These requirements address basic functionality of the
WfMS to interact with complex sensors (R1), dynamic services and resources (R2),
humans (R3) and other WfMSes in a distributed process execution setting (R4).
These requirements also comprise more advanced aspects to achieve a certain level of
self-management enabling cyber-physical resilience, namely the capabilities of cyber-
physical synchronization (R5) and handling of cyber-physical errors (R6), which
leads to the more general capability of the WfMS supporting self-management (R7)
and also adding this capabilities to existing WfMSes in a Retrofitting Process (R8).
Related to these requirements, we derived five central research questions to be inves-
tigated in the course of this thesis regarding the modelling of workflows in CPS (Q1),
the design of a CPS workflow management system (Q2), the synchronization of vir-
tual and physical world processes (Q3), the adding of self-* capabilities to a CPS
WfMS (Q4) and the retrofitting of existing WfMSes with self-management capabil-
ities (Q5) (cf. Section 2.6.3).

237

8. Summary and Future Work

Using the identified requirements and derived research questions as a basis, we
conducted an extensive literature study and evaluation that comprises related ap-
proaches and WfMSes with respect to: already existing BPM systems in industry and
academia; the modelling of CPS workflows; CPS workflow systems; cyber-physical
synchronization; self-* for BPM systems; and retrofitting frameworks for WfMSes.
We found that most WfMSes already in productive use in industry and academia
only fulfil a very small subset of the identified basic requirements to be suitable
WfMSes used in the context of CPS. Lots of approaches from related research cover
specific aspects and partial subsets of the requirements, also with respect to the
self-management and cyber-physical resilience. However, none of the investigated
works/WfMSes cover all of the identified requirements sufficiently to be suitable
systems for managing workflows in IoT and CPS.

From the findings of investigating related approaches, we started designing and
developing a WfMS for CPS in accordance with the BPM lifecycle [VDA13] to ad-
dress the specific research questions and requirements. Related to the Design phase,
we developed the basic CPS workflow modelling language to be able to specify con-
crete processes on a technical implementation-oriented level. The component-based
process notation enables the composition of hierarchical processes, subprocesses and
atomic process steps, which are connected with each other via typed ports and transi-
tions. Special process steps are used to define the activation of complex events with
the help of event patterns, service invocations, human interactions, and dynamic
service selection and invocation using semantic knowledge on the business process
level. As an extension to these basic elements, the workflow language also supports
the specification of the execution outcome in the form of goals and objectives con-
taining success and error criteria with respect to cyber-physical actions and more
general arbitrary aspects. Based on this specification, we derived the concept of
Cyber-physical Consistency to indicate if the assumed/expected state of the process
execution corresponds to the actual state. The goal definition for a complete cyber-
physical process can be outsourced into a Consistency Style Sheet to separate the
additional attributes regarding goals and objectives of individual process steps from
the “basic” process model. Following, we designed a corresponding system architec-
ture to execute the modelled processes (Implement/Configure phase): the PROtEUS
WfMS. The architecture consists of components for CEP of sensor streams; local
and remote service invocations to activate physical and virtual actuators; human in-
teractions and process management; dynamic service selection including a semantic
knowledge base (Semantic Access Layer); and the distributed execution of subpro-
cesses in a hierarchical network of peers running the basic PROtEUS configuration
and managing super-peers running the D-PROtEUS configuration. With respect
to the Run & Adjust phase, we added an additional external software component
(Feedback Service) that can be called from the basic WfMS. This component uses
the goals specified for a specific process step to execute MAPE-K feedback loops
for the particular process step to monitor and analyse relevant external sensor data
with respect to the success and error criteria defined in the objectives, and to con-
firm the successful execution or to adapt the process execution in case of errors and
undesired situations trying to remedy the occurred issues. Consistency Levels can
be defined as part of an objective to specify the level of precision and consistency to
be achieved during execution of the compensation actions in case of errors, which

238

8.1. Summary and Conclusion

may reduce the overall execution time (Scalable Consistency). Due to the Feed-
back Service implementing the MAPE-K feedback loop having been developed as
a standalone generic software component, it also allows for extending other exist-
ing WfMSes and software systems with self-management capabilities based on the
MAPE-K framework regarding arbitrary factors and extensible adaptation strate-
gies to compensate undesired and unanticipated situations. In the context of CPS,
we put a special focus on the process resources as the main sources of new errors
and adapt the process execution accordingly.

In order to evaluate our concepts and implementations as a proof-of-concept, we
conducted several experiments focussing on the WfMS and associated components
interacting with sensors, actuators, robots, humans and virtual services in a smart
home case study. By linking the effects of the CPS workflow execution to its effects
in the physical and virtual worlds via additional sensors, we are able to verify the
correct behaviour of the WfMS and its components. The PROtEUS system in its
basic configuration as well as the D-PROtEUS system show expected behaviour
when executing the scenario processes. The Feedback Service applying the MAPE-
K control loop to specific process steps shows a decrease of errors and imprecisions
for error prone processes–demonstrated for cyber-physical and distributed processes
involving robots, lights and a coffee maker. The times measured for the execution of
individual process instances attest the WfMS a suitable performance for executing
processes in the context of a smart home. The durations of virtual computations
are usually in the order of a few milliseconds. Performing a physical process activity
takes much longer time due to physical processes by nature being much slower
than a computer. The results of the following qualitative discussion have shown
a high degree of fulfilment for the addressed requirements by our concepts, with
some special unique features (e. g., with respect to the dynamic service discovery,
cyber-physical synchronization or retrofitting) compared to related approaches. We
were also able to identify limitations of our concepts, which may serve as starting
points for future work, e. g., related to the simplification and increase of flexibility for
goals, EPL statements and SPARQL queries; the application of more sophisticated
mechanisms for process distribution and adaptation; the realization and ensuring
of time and safety-critical behaviour; and the conduction of large scale experiments
involving multiple concurrent process instances in other CPS domains. All in all,
the concepts and implementations related to the development of a WfMS for CPS
presented in this thesis prove to be feasible for introducing the concept of workflows
into CPS and IoT environments, which allows us to leverage the advantages of having
a flexible and easy way of specifying and configuring resilient automated processes on
top of cyber-physical devices, objects, humans, applications, services and systems.

In summary, we were able to address all requirements identified for introducing
BPM technologies into CPS. CEP and dynamic service selection based on a seman-
tic model of the CPS entities allow for dealing with complex streams of sensor data
(Requirement R1) and dynamic availability of resources (Requirement R2) on the
business process level. Human interactions (Requirement R3) are addressed mostly
on the technical level by providing new and innovative means and applications for the
management of and interaction with and as part of the business processes. Regard-
ing the distributed process execution and interactions of multiple WfMSes (Require-
ment R4) we propose to establish a hierarchical structure of managing super-peers

239

8. Summary and Future Work

and regular process execution peers that interchange and execute partial processes.
Goals and objectives are used as additional process-related information to specify
the effects and consistency criteria for successfully executing a process instance in
the physical world (Requirement R5). The verification of the process execution out-
come is realized based on the MAPE-K loop in combination with external sensors;
compensations for determined cyber-physical inconsistencies or errors are derived
and executed automatically as part of the MAPE-K executions (Requirement R6).
Besides realizing this self-healing mechanism for cyber-physical errors based on pre-
defined goals, the MAPE-K control loop can be used as a more general framework
to add arbitrary self-x capabilities to workflows and WfMSes (Requirement R7).
With the implementation of the MAPE-K framework as a standalone service-based
software component, we are also able to add these capabilities to existing “legacy”
WfMSes by either extending the internal process execution logics and metamodel
of the WfMS in an invasive way, or by extending the existing process models with
additional service invocations in a non-invasive manner (Requirement R8).

8.2. Advances of this Thesis

From the comparison with and evaluation of related work with respect to the re-
quirements R1–R8 in Section 7.7, we see contributions and advances of our concepts
and prototypes with respect to all requirements and in multiple areas regarding the
following aspects:

With our extensible process modelling notation, we are able to specify the inter-
action with heterogeneous and dynamic entities that form a CPS–namely multiple
complex sensors, actuators of varying complexity, humans, smart objects, and virtual
software services–on the abstract level of business processes. None of the investi-
gated related approaches provides a modelling notation with a comparable degree
of expressiveness for CPS. In addition, we are able to specify success and error cri-
teria for the execution of process steps as separate aspects, which allows us to verify
and restore cyber-physical consistency at runtime. Our workflow notation is there-
fore able to fulfil the identified requirements on the modelling level and presents an
answer to research question Q1 regarding the modelling of CPS workflows.

With our component-based (reference) architecture of a CPS WfMS (PROtEUS),
we are able to implement and execute the modelled CPS workflows interacting
with the aforementioned CPS entities. Compared to other approaches, our con-
cepts hereby support a wider range of features (e. g., with respect to human in-
teractions, distributed process execution or dynamic service selection) to fulfil the
requirements R1–R4 on the implementation level to a higher degree, which answers
research question Q2 w. r. t. the design of a CPSWfMS for executing CPS workflows.

The Feedback Service as a standalone software component implementing a generic
variant of the MAPE-K feedback loop enables us to add the capability of self-
management to the basic WfMS. With that, we are able to check cyber-physical
consistency for the execution of individual process steps based on the specified goals
as well as to detect and repair errors by adapting the process execution. This com-
ponent fulfils requirements R5–R7 in a more flexible, extensible and generic way
than other approaches. The MAPE-K concept in combination with goal specifica-
tions proved to be a suitable framework for realizing the aspect of cyber-physical

240

8.2. Advances of this Thesis

synchronization and adding self-* capabilities to the WfMS, which answers research
questions Q3 and Q4. As the Feedback Service is implemented in the form of a
standalone micro-service, we can also add the cyber-physical synchronization and
self-* capabilities to other existing WfMSes by only requiring minor modifications
to the “legacy” process or “legacy” WfMS and its metamodel. This answers re-
search question Q5, which is an important advance of our work, as there is a very
diverse and heterogeneous landscape of existing WfMSes already in use in industry
and academia. Despite it being an important requirement for future WfMSes to
be used in the context of CPS and IoT, no other related research addresses the
issue of adding autonomous capabilities to existing WfMSes explicitly. With our
modelling language, system architecture and autonomous manager it is possible to
establish links between the execution of process instances and the cyber-physical
environment–and vice versa–to a new extend compared to other approaches.

With answering the research questions and fulfilling all identified requirements
by our concepts and prototypes, we are able to verify the automation hypothesis
identified in Section 2.6.3 and provide a holistic solution for using workflows in CPS
to facilitate the linking of components, increase the level of automation, and enable
resilient autonomous processes. Compared to related approaches, we developed a
comprehensive WfMS for CPS enabling a higher degree of automation and auton-
omy in CPS via resilient processes on top of the individual CPS components. Due
to the successful implementation of workflows for CPS and IoT, we are able to lever-
age the advantages of using workflow technologies discussed in Section 2.5.2 in the
context of CPS, e. g., the flexible combination of active and reactive functionality
across devices and systems; the easy integration of heterogeneous systems on the
workflow layer without alterations to these systems; the high-level programming
of workflows oriented towards end-user programming; or the abilities to document,
analyse and optimize processes. With our CPS workflow notation, CPS WfMS and
implementation of the MAPE-K feedback loop, we are able to address all identified
requirements and research challenges for applying BPM technologies in CPS in the
scope of this thesis. We focussed on the integration aspects regarding the combina-
tion of existing and newly developed software components as part of the software and
systems engineering processes. Special attention was paid to the interactions of the
WfMS with the physical world resulting in new concepts regarding Cyber-physical
Synchronization and Cyber-physical Consistency.

The increased level of automation is listed as one of the advantages that the appli-
cation of BPM technologies in CPS entails. The main purpose of (business) processes
is to enable the automation of manual tasks to increase efficiency and decrease the
need for manual work. While in some CPS domains this is the desired outcome of
the CPS workflow applications (e. g., in the smart factory), other domains (e. g., the
smart home) are centred around humans and their activities, which can only be
partially automated and supported via workflows. The users have to be in control
of the CPS all the time. They have to be provided with information about process
instances currently being executed and they have to be able to control all processes
as well as the CPS devices. However, workflows and the associated automations of
activities can also provide advantages in the smart home/AAL domain as shown
with the Emergency scenario processes (cf. Section 2.2.2). Here we assume that
the resident is not able to perform manual tasks anymore due to health issues and

241

8. Summary and Future Work

the WfMS supports the user by calling the emergency service and opening the door
automatically according to the underlying process. Hence the CPS workflows have
to be carefully identified and designed by the domain expert to add value to having
automated workflows supporting users with everyday tasks and routines (e. g., in
case of their absence or emergencies). In the smart home, the modelled workflows
provide the basic recipes of the automated activities; to cope with the need for flexi-
bility and adaptations at runtime (cf. Section 2.4.6) the MAPE-K feedback loop for
autonomous systems is applied to the execution. In the domain of smart factories a
high-level of automation without human interventions and highly adaptive and flex-
ible CPS entities (production machines, robots, etc.) are the desired goals [Jaz14].
CPS workflows in combination with the MAPE-K loops as proposed in this thesis
can also help to achieve this high level of automation and flexibility. However, hu-
mans will still play an important role in Industry 4.0 in the roles of supervisors and
co-workers [GLR+15], which requires context-adaptive and safety-aware workflows.
In summary, we can observe a conflict between the need for dependable processes
according to the requirements of the individual domain on the one hand; and on the
other hand there is a need for flexibility to cope with the unpredictable and not fully
controllable nature of CPS. We try to address these contradictory requirements with
our concepts and prototypes for a CPS WfMS and the associated MAPE-K-based
autonomic manager.

8.3. Contributions to the Research Area

As already mentioned in the introductory sections of this thesis, the application of
BPM technologies in the context of IoT and CPS is still a young and vibrant research
field. With this work, we present a comprehensive approach of introducing workflow
technologies to CPS and IoT with the aim of increasing the level of automation in
these environments. Besides an extensive discussion of a first set of requirements
related to the application of workflows in CPS and the corresponding evaluation
of related work to identify potential research gaps, our main contributions to the
research area of BPM in CPS comprise:

• A domain-independent modelling notation for executable workflows and en-
tities in CPS that supports the specification of the process outcome using
Consistency Style Sheets;

• A system architecture of a distributed WfMS for CPS able to execute CPS
workflows interacting with the physical world via sensors, actuators, smart
objects and humans (PROtEUS and D-PROtEUS);

• A generic software component for adding multi-level feedback loops founded
on the MAPE-K concept to workflows and WfMSes to enable cyber-physical
synchronization based on the concept of Cyber-physical Consistency and self-
management with scalable precision (Feedback Service);

• A retrofitting framework and processes for extending existing WfMSes with
(autonomic) self-* capabilities in an invasive and non-invasive way by using
MAPE-K feedback loops.

242

8.4. Relevance

The overall objective of this thesis is the development of a holistic WfMS that
can be used in the context of CPS and IoT. We developed concepts and prototypes
to model, implement and enact complex interactions among all the involved CPS
entities–sensors and sensor compounds, actuators and actuator compounds, smart
objects, humans, software services and applications–and with the physical environ-
ment on a business process-oriented level in PACPS. The CPS workflows and CPS
WfMS are able to react to dynamic changes in the structure of the CPS and to
increase fault-tolerance and resilience due to their autonomic capabilities. With our
modelling language, system architecture and autonomous manager it is possible to
establish links between the execution of process instances and the cyber-physical
environment, and vice versa. Our focus is on addressing the identified require-
ments R1–R8 (cf. Section 2.6) in sum–not isolated–with a holistic WfMS that in-
tegrates well-established components and technologies together with self-developed
components and engineering concepts into a WfMS for CPS and IoT. The individual
software components of the CPS WfMS and associated services use and implement
state-of-the-art technologies (cf. Sections 5.2 and 7.2). With our concepts, we present
a new holistic engineering approach and framework for modelling, implementing and
executing self-managed workflows in CPS and IoT.

As discussed in Section 7.7, we show with our new concepts regarding the develop-
ment of a CPS WfMS advancements with respect to various aspects across all phases
of the BPM lifecycle with a special focus on CPS-related properties and concepts.
The quantitative evaluation presents a possible way of evaluating the feasibility of
the proposed concepts and their implementations within a case study in the context
of a smart home as a CPS example. From the qualitative discussion, we are able to
identify advantages and also limitations and open issues regarding our new concepts,
which can be used as relevant starting points and basis for future developments in
the field of BPM for CPS and IoT.

8.4. Relevance

In the beginning of this thesis, we discussed the importance of being able to specify
and execute flexible processes in the context of Industry 4.0 involving future CPS
and IoT environments. With our work, we present various concepts to implement
workflows in cyber-physical domains to achieve the flexibility and resilience required
by emerging smart spaces that consist of software and physical world components
interacting with each other. With our work, we present new concepts regarding spe-
cific aspects with respect to the modelling and execution of workflows in CPS, but
also a holistic approach to implement workflows in CPS along the BPM lifecycle.
The comparison of our work with related approaches shows advances of our concepts
regarding various aspects and an in-depth discussion of the topic of CPS workflows to
a new extend. This work is highly relevant for both the fields of BPM and CPS/IoT
research, but also shows more general contributions to the fields of software en-
gineering, systems engineering and architecture, and human-computer-interaction.
We were able to prove this relevance with the help of multiple peer-reviewed publi-
cations at respective renown scientific conferences.

243

8. Summary and Future Work

In Section 2.5.3 we briefly mention relevant challenges showing the interaction be-
tween IoT and BPM identified by Janiesch et al. of the BPM community in [JKM+17].
With our work, we see contributions regarding the following challenges:

• C1: Placing sensors in a process-aware way (by retrofitting machines/devices
with sensors and using them in processes in MAPE-K feedback loops)

• C2: Monitoring of manual activities (by using additional environmental sensors
and interactive devices)

• C3: Connection of analytical processes with IoT (by analysing the CPS process
execution in feedback loops and with event patterns)

• C4: Integrating IoT into the correctness check of processes (by using additional
IoT sensors in feedback loops to verify process executions)

• C5: Dealing with unstructured environments (by using feedback loops to adapt
processes at runtime in case of new and undesired situations)

• C9: Specifying the autonomy level of things (by defining the respective goals
for the process execution to be used in feedback loops)

• C11: Concretizing abstract process models (by using our more technical work-
flow notation for CPS)

• C12: Dealing with new situations (by applying feedback loops to adapt pro-
cesses at runtime in case of new situations)

• C13: Bridging the gap between event-based and process-based systems (by
applying CEP-based event pattern detection at the process level)

• C14: Improving online conformance checking (by applying feedback loops with
additional data to verify the process execution)

• C15: Improving resource utilization optimization (by distributing process frag-
ments to special peers and defining optimization criteria in goals)

• C16: Improving resource monitoring and quality of task execution (by using
the respective data in feedback loops to analyse and adapt the processes).

In addition to the previous discussion of challenges for BPM and IoT from the point
of view of the BPM community with respect to our work, Figure 8.1 shows a re-
search roadmap for Business Process Management Systems for Internet of Things
(BPMS4IoT) drawn up by Chang et al. from the systems architecture commu-
nity [CSB16]. With our work, we see contributions regarding the following aspects:

• Generic IoT-driven BP model specification (by using our more technical work-
flow notation for CPS)

• Edge computing-driven BP modelling (by defining specific resources to execute
certain parts of a distributed process)

• Hybrid (Fog/Mist) BPMS architecture (by using a hierarchical overlay network
of peers and super-peers for distributed process execution)

• Resource-awareness (by having a semantic model describing the properties of
and relations among process resources)

244

8.5. Open Questions

Figure 8.1.: Research Roadmap in BPMS for IoT from [CSB16].

• Discoverability/interoperability (by using semantic data to dynamically dis-
cover resources/services and having a service-based middleware to provide
unified access)

• Process distribution in Fog/Mist environments (by utilizing subcontracting for
distributed process execution in a hierarchical network)

• Inter-organisational BP execution (by utilizing subcontracting to exchange
process fragments among the involved resources in distributed processes)

• Mobility-aware BP execution (by defining specific mobility/location-related
process execution aspects in goals and using them in MAPE-K feedback loops)

• Scalability (in various ways: by supporting distributed process execution; by
defining consistency levels; by using Consistency Style Sheets)

• Context-awareness, cost efficiency and fault tolerance (by using the related
data in feedback loops and adapting the respective processes).

8.5. Open Questions

A detailed discussion regarding the limitations of the individual concepts and pro-
totypes with respect to the respective requirements can be found in Section 7.6.

Open questions concerning the modelling (design) of CPS workflows comprise:

245

8. Summary and Future Work

• the evaluation of the CPS workflow notation with respect to the workflow
patterns [vDATHKB03] and their extension towards Workflow Patterns for
CPS ;

• the use of more declarative modelling concepts [RSS13];

• the application of the CPS modelling language to other CPS domains;

• the application of the proposed modelling concepts to existing workflow nota-
tions (e. g., WS-BPEL or BPMN 2.0);

• the simplification of the modelling tools and concepts towards end-user mod-
elling of CPS workflows;

• the automated learning (synthesis) and dynamic adaptation of specific work-
flow attributes (e. g., EPL patterns or goals) and entire CPS workflows.

Open questions concerning the implementation of the CPS WfMS comprise:

• the formal verification of the execution behaviour of the process engine based
on Petri nets;

• the evaluation of the proposed WfMS in large scale experiments, also with a
more complex hierarchical peer–super-peer network;

• the application of the system architecture as a reference architecture for other
CPS domains;

• the investigation of multiple workflows and instances being executed in parallel
in the same CPS and with that, the handling of concurrency, implementation
of cyber-physical transactions, and the optimization of task scheduling.

Open questions related to the running and adjustment of CPS workflows comprise:

• the integration of more sophisticated algorithms regarding the analysis of the
CPS process execution (possibly in combination with online process mining
and conformance checking);

• the development of an extensive classification of cyber-physical errors and cor-
responding rollback actions/compensations/remedies;

• the application of more sophisticated algorithms to derive strategies for com-
pensation of errors and undesired behaviour in the planning phase of the
MAPE-K loop at runtime (e. g., based on logics or planning [Mar17]);

• the integration of more complex process adaptation strategies, including the
evolutionary learning of instance adaptations and process model adaptations
(e. g., based on machine learning);

• the deeper investigation and implementation of concepts regarding security,
safety and real-time.

With respect to the challenges concerning the interaction between IoT and BPM
discussed by Janiesch et al. in [JKM+17], we mostly see open questions regarding the
detection of new processes from data (C8), breaking down end-to-end processes (C7)
and managing the link between micro-processes (C6), because we currently rely on

246

8.6. Future Work

the workflow designers to specify most of the processes and process landscape. We
also did not investigate the “social” role of agents in the phase of prediction and
adaptation (C10). Other challenges were only discussed briefly or we provide only
little contributions respectively, e. g., regarding the autonomy level of things (C9),
online conformance checking (C14) or improving resource utilization and quality of
task execution (C15,C16).

Regarding the research roadmap for BPMS4IoT by Chang et al. [CSB16], we
see open research topics related to the process mining and discovery schemes for
Fog/Mist involved business processes and the implementation of a lightweight busi-
ness process execution engine. Other subjects that we not addressed explicitly in-
clude the adaptive big data provisioning, intelligence, energy efficient data acquisi-
tion, and adaptive runtime event streaming. These topics are not only relevant in
the context of BPMS, but for IoT and CPS in general.

8.6. Future Work

From the open questions discussed in the previous section, we see a lot of potential
for future developments and extensions of our concepts and prototypes regarding
the application of BPM technologies in the context of CPS and IoT. Our next steps
will mostly focus on the improvement of the augmented reality app HoloFlows pre-
sented in Sections 4.8.2 and 5.6.3 to simplify the modelling of more complex CPS
workflows and configurations for end-users. We will also investigate the use of more
flexible and declarative workflow modelling concepts as well as the application of
more sophisticated adaptation and analysis mechanisms to adjust the workflows
at runtime while still conforming to general constraints defined with the workflow
model and by the CPS themselves. This includes more dynamic EPL, SPARQL and
goal definitions, and also applying the MAPE-K loop on the meta-levels to adapt
the respective parameters at runtime. The automated derivation and synthesis of
CPS workflows from recorded activity logs and event streams (Cyber-physical Pro-
cess Mining) is also a highly interesting topic for future research. The discussion
and implementation of advanced compensation strategies for dealing with unfore-
seen errors from the physical world in CPS and in more general the realization of
cyber-physical transactions are necessary steps to mature the presented concepts
and establish BPM technologies in CPS and IoT in the future. A list of additional
open issues regarding research in BPM and CPS/IoT not covered in this thesis can
be found in Section 8.5.

The next steps also include the application and deployment of our prototypes in
other domains, specifically in the context of smart facility management and smart
manufacturing to model and execute respective CPS workflows in Industry 4.0 sce-
narios. With the help of these larger scale case studies, we will be able to evaluate
the requirements fulfilment and performance of the prototypes and also to identify
new issues and requirements that have to be met in these new cyber-physical do-
mains (e. g., related to safety and security). Along with these larger scale studies, we
will put a special focus on the execution of multiple process instances and feedback
loops in parallel, which will possibly influence each other. Here the correlation of
events occurring in CPS with the execution of the corresponding process instances
is a difficult challenge that has to be addressed. The application and adaptation of

247

8. Summary and Future Work

the OPC-UA standard [LM06] may simplify the implementation of CPS workflows
in industrial contexts and already provide built-in mechanisms to realize parts of our
proposed concepts. We will also work on the application and tighter integration of
our concepts and components to existing open source WfMSes–primarily to Activiti,
the YAWL engine, Apache ODE and IBM Node-RED, and thereby further advance
the establishment of BPM technologies for CPS and IoT.

248

Bibliography

[AAD+07] Ashish Agrawal, Mike Amend, Manoj Das, Mark Ford, Chris
Keller, Matthias Kloppmann, Dieter König, Frank Leymann, Ralf
Müller, Gerhard Pfau, et al. Web services human task (ws-
humantask). White Paper, 2007.

[AAH98] Nabil R Adam, Vijayalakshmi Atluri, and Wei-Kuang Huang. Mod-
eling and analysis of workflows using petri nets. Journal of Intelli-
gent Information Systems, 10(2):131–158, 1998.

[ABD+16] Rajeev Alur, Emery Berger, Ann W Drobnis, Limor Fix, Kevin
Fu, Gregory D Hager, Daniel Lopresti, Klara Nahrstedt, Elizabeth
Mynatt, Shwetak Patel, et al. Systems computing challenges in the
internet of things. arXiv preprint arXiv:1604.02980, 2016.

[AE14] Bilgin Avenoğlu and P Erhan Eren. A context-aware and workflow-
based framework for pervasive environments. Journal of Ambient
Intelligence and Humanized Computing, pages 1–23, 2014.

[AFG+07] Liliana Ardissono, Roberto Furnari, Anna Goy, Giovanna Petrone,
and Marino Segnan. Context-aware workflow management. In In-
tern. Conference on Web Engineering, pages 47–52. Springer, 2007.

[AIM10] Luigi Atzori, Antonio Iera, and Giacomo Morabito. The internet
of things: A survey. Computer networks, 54(15):2787–2805, 2010.

[AKF+14] Stefan Appel, Pascal Kleber, Sebastian Frischbier, Tobias Freuden-
reich, and Alejandro Buchmann. Modeling and execution of event
stream processing in business processes. Information Systems,
46:140–156, 2014.

[Ald03] Frances K Aldrich. Smart homes: past, present and future. In
Inside the smart home, pages 17–39. Springer, 2003.

[All03] OSGi Alliance. Osgi service platform, release 3. IOS Press, Inc.,
2003.

[AMkP04] Chadia Abras, Diane Maloney-krichmar, and Jenny Preece. User-
centered design. In In Bainbridge, W. Encyclopedia of Human-
Computer Interaction. Thousand Oaks: Sage Publications. Publi-
cations, 2004.

[AMT+12] Anil Aswani, Neal Master, Jay Taneja, David Culler, and Claire
Tomlin. Reducing transient and steady state electricity consump-
tion in hvac using learning-based model-predictive control. Pro-
ceedings of the IEEE, 100(1):240–253, 2012.

249

Bibliography

[ATHEVDA06] Michael Adams, Arthur HM Ter Hofstede, David Edmond, and
Wil MP Van Der Aalst. Worklets: A service-oriented implemen-
tation of dynamic flexibility in workflows. In OTM Confederated
International Conferences” On the Move to Meaningful Internet
Systems”, pages 291–308. Springer, 2006.

[ATHVDAE07] Michael Adams, Arthur HM Ter Hofstede, Wil MP Van Der Aalst,
and David Edmond. Dynamic, extensible and context-aware excep-
tion handling for workflows. In OTM Confederated International
Conferences” On the Move to Meaningful Internet Systems”, pages
95–112. Springer, 2007.

[BAJ17] Borja Bordel, Ramón Alcarria, and Antonio Jara. Process exe-
cution in humanized cyber-physical systems: Soft processes. In
Information Systems and Technologies (CISTI), 2017 12th Iberian
Conference on, pages 1–7. IEEE, 2017.

[BBDC+15] Anne Baumgraß, Mirela Botezatu, Claudio Di Ciccio, Remco Dijk-
man, Paul Grefen, Marcin Hewelt, Jan Mendling, Andreas Meyer,
Shaya Pourmirza, and Hagen Völzer. Towards a methodology for
the engineering of event-driven process applications. In Int. Conf.
on Business Process Management, pages 501–514. Springer, 2015.

[BBDL+13] Martin Bauer, Nicola Bui, Jourik De Loof, Carsten Magerkurth,
Andreas Nettsträter, Julinda Stefa, and Joachim W Walewski.
Iot reference model. In Enabling Things to Talk, pages 113–162.
Springer, 2013.

[BC08] Dario Bonino and Fulvio Corno. Dogont-ontology modeling for
intelligent domotic environments. In International Semantic Web
Conference, pages 790–803. Springer, 2008.

[BCD+15] Anne Baumgraß, Claudio Di Ciccio, Remco Dijkman, Marcin
Hewelt, Jan Mendling, Andreas Meyer, Shaya Pourmirza, Math-
ias Weske, and Tsun Yin Wong. GET Controller and UNICORN :
Event-driven Process Execution and Monitoring in Logistics. BPM
(Demos), (i), 2015.

[BCG12] Manfred Broy, MaraVictoria Cengarle, and Eva Geisberger. Cyber-
physical systems: Imminent challenges. In Large-Scale Complex IT
Systems. Development, Operation and Management, volume 7539,
pages 1–28. 2012.

[BD11] Paolo Bocciarelli and Andrea D’Ambrogio. A bpmn extension for
modeling non functional properties of business processes. In Pro-
ceedings of the 2011 Symposium on Theory of Modeling & Simula-
tion: DEVS Integrative M&S Symposium, pages 160–168. Society
for Computer Simulation International, 2011.

250

Bibliography

[BDGP17] Paolo Bocciarelli, Andrea D’Ambrogio, Andrea Giglio, and Emil-
iano Paglia. A bpmn extension for modeling cyber-physical-
production-systems in the context of industry 4.0. In IEEE 14th
International Conference on Networking, Sensing and Control (IC-
NSC), pages 599–604. IEEE, 2017.

[BDH+11] Angineh Barkhordarian, Frederik Demuth, Kristof Hamann, Minh
Hoang, Sonja Weichler, and Sonja Zaplata. Migratability of bpmn
2.0 process instances. In International Conference on Service-
Oriented Computing, pages 66–75. Springer, 2011.

[BDK+15] Victor Braberman, Nicolas D’Ippolito, Jeff Kramer, Daniel Sykes,
and Sebastian Uchitel. Morph: A reference architecture for con-
figuration and behaviour self-adaptation. In Proceedings of the 1st
International Workshop on Control Theory for Software Engineer-
ing, pages 9–16. ACM, 2015.

[BDK+17] Victor Braberman, Nicolas DIppolito, Jeff Kramer, Daniel Sykes,
and Sebastian Uchitel. An extended description of morph: A refer-
ence architecture for configuration and behaviour self-adaptation.
In Software Engineering for Self-Adaptive Systems III. Assurances,
pages 377–408. Springer, 2017.

[BG11] Radhakisan Baheti and Helen Gill. Cyber-physical systems. The
impact of control technology, 12:161–166, 2011.

[BGT17] Björn Butzin, Frank Golatowski, and Dirk Timmermann. A survey
on information modeling and ontologies in building automation. In
Industrial Electronics Society, IECON 2017-43rd Annual Confer-
ence of the IEEE, pages 8615–8621. IEEE, 2017.

[BI98] Richard R Brooks and Sundararaja S Iyengar. Multi-sensor fusion:
fundamentals and applications with software. Prentice-Hall, Inc.,
1998.

[BK17] A Bhuvaneswari and GR Karpagam. Semantic web service dis-
covery for mobile web services. International Journal of Business
Intelligence and Data Mining, 13(1-3):95–107, 2017.

[BLLJ98] Bert Bos, H̊akon Wium Lie, Chris Lilley, and Ian Jacobs. Cascading
style sheets, level 2, css2 specification. w3c recommendation 12-
may-1998. World Wide Web Consortium, 1998.

[BMP13] Antonio Bucchiarone, C Mezzina, and Marco Pistore. Captlang:
a language for context-aware and adaptable business processes. In
Proceedings of the Seventh International Workshop on Variability
Modelling of Software-intensive Systems, page 12. ACM, 2013.

[BMZA12] Flavio Bonomi, Rodolfo Milito, Jiang Zhu, and Sateesh Addepalli.
Fog computing and its role in the internet of things. In Proceedings
of the first edition of the MCC workshop on Mobile cloud comput-
ing, pages 13–16. ACM, 2012.

251

Bibliography

[Bör12] Egon Börger. Approaches to modeling business processes: a crit-
ical analysis of bpmn, workflow patterns and yawl. Software and
Systems Modeling, 11(3):305–318, 2012.

[Bor14] Eleonora Borgia. The internet of things vision: Key features, ap-
plications and open issues. Computer Communications, 54:1–31,
2014.

[BPG+04] Paolo Bresciani, Anna Perini, Paolo Giorgini, Fausto Giunchiglia,
and John Mylopoulos. Tropos: An agent-oriented software develop-
ment methodology. Autonomous Agents and Multi-Agent Systems,
8(3):203–236, 2004.

[BPR07] Jörg Becker, Daniel Pfeiffer, and Michael Räckers. Domain specific
process modelling in public administrations–the picture-approach.
Electronic Government, pages 68–79, 2007.

[BR16] Stefan Boschert and Roland Rosen. Digital twin –the simulation
aspect. In Mechatronic Futures, pages 59–74. Springer, 2016.

[Bro13] Manfred Broy. Engineering cyber-physical systems: Challenges and
foundations. In Complex Systems Design & Management, pages 1–
13. Springer, 2013.

[BS15] Hongyu Pei Breivold and Kristian Sandström. Internet of things for
industrial automation–challenges and technical solutions. In IEEE
International Conference on Data Science and Data Intensive Sys-
tems (DSDIS), pages 532–539. IEEE, 2015.

[BSMD11] Soma Bandyopadhyay, Munmun Sengupta, Souvik Maiti, and Sub-
hajit Dutta. Role of middleware for internet of things: A study.
Intern. Journal of Computer Science and Engineering Survey,
2(3):94–105, 2011.

[BtHS01] Alistair P Barros, Arthur HM ter Hofstede, and C Szyperski.
Retrofitting workflows for b2b component assembly. In 25th An-
nual International Computer Software and Applications Confer-
ence, COMPSAC 2001, pages 123–128. IEEE, 2001.

[Bur14] Sebastian Burckhardt. Principles of eventual consistency. Founda-
tions and Trends® in Programming Languages, 1(1-2):1–150, 2014.

[CBF+16] Andrea Ceccarelli, Andrea Bondavalli, Bernhard Froemel, Oliver
Hoeftberger, and Hermann Kopetz. Basic Concepts on Systems of
Systems, pages 1–39. Springer Intern. Publishing, Cham, 2016.

[CDB+12] Marco Conti, Sajal K. Das, Chatschik Bisdikian, Mohan Kumar,
Lionel M. Ni, Andrea Passarella, George Roussos, Gerhard Trster,
Gene Tsudik, and Franco Zambonelli. Looking ahead in pervasive
computing: Challenges and opportunities in the era of cyberphys-
ical convergence. Pervasive and Mobile Computing, 8(1):2 – 21,
2012.

252

Bibliography

[CDK+02] Francisco Curbera, Matthew Duftler, Rania Khalaf, William Nagy,
Nirmal Mukhi, and Sanjiva Weerawarana. Unraveling the web ser-
vices web: an introduction to soap, wsdl, and uddi. IEEE Internet
computing, 6(2):86–93, 2002.

[Cha15] Stuart Chandler. Unlocking the power of the internet of things
through bpm. BPM Everywhere: Internet of Things, Process of
Everything, pages 183–189, 2015.

[Che10] Guihai Chen. Internet of things towards ubiquitous and mobile
computing. Microsoft Research Asia Faculty Summit, Shanghai,
2010.

[CK11] Alexandru Caracaş and Thorsten Kramp. On the expressiveness of
bpmn for modeling wireless sensor networks applications. Business
Process Model and Notation, pages 16–30, 2011.

[CL08] Chii Chang and Sea Ling. Towards a context-aware solution for
device failures in service-oriented workflow. In Proceedings of
the 10th International Conference on Information Integration and
Web-Based Applications & Services, pages 77–83. ACM, 2008.

[CLD+15] Chii Chang, Seng W Loke, Hai Dong, Flora Salim, Satish N Sri-
rama, Mohan Liyanage, and Sea Ling. An energy-efficient inter-
organizational wireless sensor data collection framework. In IEEE
International Conference on Web Services (ICWS), pages 639–646.
IEEE, 2015.

[Coa96] Workflow Manage Coalition. Terminology & glossary. WFMC Doc-
ument WFMCTC-1011, Workflow Management Coalition, Avenue
Marcel Thiry, 204:1200, 1996.

[Cor16] Angelo Corsaro. Cloudy, foggy and misty internet of things. In
Proceedings of the 7th ACM/SPEC on International Conference
on Performance Engineering, pages 261–261. ACM, 2016.

[CPFJ04] Harry Chen, Filip Perich, Tim Finin, and Anupam Joshi. Soupa:
Standard ontology for ubiquitous and pervasive applications. In
The First Annual Intern. Conf. on Mobile and Ubiquitous Systems:
Networking and Services, MOBIQUITOUS, pages 258–267. IEEE,
2004.

[CR15] Angelo Croatti and Alessandro Ricci. Programming abstractions
for augmented worlds, 2015.

[CS11] Wei-Chih Chen and Chi-Sheng Shih. Erwf: Embedded real-time
workflow engine for user-centric cyber-physical systems. In IEEE
17th International Conference on Parallel and Distributed Systems
(ICPADS), pages 713–720. IEEE, 2011.

253

Bibliography

[CSB15] Chii Chang, Satish Narayana Srirama, and Rajkumar Buyya.
Mobile cloud business process management system for the inter-
net of things: Review, challenges and blueprint. arXiv preprint
arXiv:1512.07199, 2015.

[CSB16] Chii Chang, Satish Narayana Srirama, and Rajkumar Buyya. Mo-
bile cloud business process management system for the internet of
things: a survey. ACM Computing Surveys, 49(4):70, 2016.

[CSOL15] Sejin Chun, Seungmin Seo, Byungkook Oh, and Kyong-Ho Lee.
Semantic description, discovery and integration for the internet
of things. In IEEE Intern. Conference on Semantic Computing
(ICSC), pages 272–275, Feb 2015.

[DBBM11] Suparna De, Payam Barnaghi, Martin Bauer, and Stefan Meissner.
Service modelling for the internet of things. In Federated Conference
on Computer Science and Information Systems (FedCSIS), pages
949–955. IEEE, 2011.

[DCMR12] Claudio Di Ciccio, Andrea Marrella, and Alessandro Russo.
Knowledge-intensive processes: An overview of contemporary ap-
proaches. In KiBP@ KR, pages 33–47, 2012.

[Dey01] Anind K Dey. Understanding and using context. Personal and
ubiquitous computing, 5(1):4–7, 2001.

[DFZ+15] Yucong Duan, Guohua Fu, Nianjun Zhou, Xiaobing Sun, Nanjan-
gud C Narendra, and Bo Hu. Everything as a service (xaas) on
the cloud: origins, current and future trends. In IEEE 8th Intern.
Conf. on Cloud Computing (CLOUD), pages 621–628. IEEE, 2015.

[DG09] Akshay Dabholkar and Aniruddha Gokhale. An approach to mid-
dleware specialization for cyber physical systems. In 29th IEEE
Intern. Conf. on Distributed Computing Systems Workshops, pages
73–79. IEEE, 2009.

[DGLLS09] Giuseppe De Giacomo, Yves Lespérance, Hector J Levesque, and
Sebastian Sardina. Indigolog: A high-level programming language
for embedded reasoning agents. In Multi-Agent Programming:,
pages 31–72. Springer, 2009.

[DLGM+13] Rogério De Lemos, Holger Giese, Hausi A Müller, Mary Shaw, Jes-
per Andersson, Marin Litoiu, Bradley Schmerl, Gabriel Tamura,
Norha M Villegas, Thomas Vogel, et al. Software engineering for
self-adaptive systems: A second research roadmap. In Software En-
gineering for Self-Adaptive Systems II, pages 1–32. Springer, 2013.

[DLRM+13] Marlon Dumas, Marcello La Rosa, Jan Mendling, Hajo A Reijers,
et al. Fundamentals of business process management, volume 1.
Springer, 2013.

254

Bibliography

[DLV12] Patricia Derler, Edward A Lee, and Alberto Sangiovanni Vincen-
telli. Modeling cyber–physical systems. Proceedings of the IEEE,
100(1):13–28, 2012.

[DMC14] Dulce Domingos, Francisco Martins, and Carlos C. Internet of
Things Aware WS-BPEL Business Processes - Context Variables
and Expected Exceptions. J. UCS 20.8, 20(8):1109–1129, 2014.

[DMLYE18] Beniamino Di Martino, Kuan-Ching Li, Laurence Tianruo Yang,
and Antonio Esposito. Trends and Strategic Researches in Internet
of Everything, pages 1–12. Springer Singapore, Singapore, 2018.

[DR09] Peter Dadam and Manfred Reichert. The adept project: a decade
of research and development for robust and flexible process support.
Computer Science-Research and Development, 23(2):81–97, 2009.

[dR12] Auke Jan de Roo. Managing software complexity of adaptive sys-
tems. PhD thesis, Centre for Telematics and Information Technol-
ogy, University of Twente, 2012.

[DRRM+09] Peter Dadam, Manfred Reichert, Stefanie Rinderle-Ma, Andreas
Lanz, Rüdiger Pryss, Michael Predeschly, Jens Kolb, Linh Thao Ly,
Martin Jurisch, Ulrich Kreher, et al. From adept to aristaflow bpm
suite: a research vision has become reality. In International Con-
ference on Business Process Management, pages 529–531. Springer,
2009.

[dRSA11] Arjan de Roo, Hasan Sozer, and Mehmet Aksit. Runtime verifica-
tion of domain-specific models of physical characteristics in control
software. In Fifth Intern. Conf. on Secure Software Integration and
Reliability Improvement (SSIRI), pages 41–50. IEEE, 2011.

[DRSA12] Arjan De Roo, Hasan Sözer, and Mehmet Akşit. Verification and
analysis of domain-specific models of physical characteristics in
embedded control software. Information and software technology,
54(12):1432–1453, 2012.

[dRSA14] Arjan de Roo, Hasan Sözer, and Mehmet Akşit. Composing
domain-specific physical models with general-purpose software
modules in embedded control software. Software & Systems Mod-
eling, 13(1):55–81, 2014.

[DS99] Axel Daneels and Wayne Salter. What is scada? In International
Conference on Accelerator and Large Experimental Physics Control
Systems, 1999.

[DTB+15] Kashif Dar, Amir Taherkordi, Harun Baraki, Frank Eliassen, and
Kurt Geihs. A resource oriented integration architecture for the
Internet of Things: A business process perspective. Pervasive and
Mobile Computing, 20:145–159, 2015.

255

Bibliography

[DTRE11] Kashif Dar, Amirhosein Taherkordi, Romain Rouvoy, and Frank
Eliassen. Adaptable service composition for very-large-scale inter-
net of things systems. In Proceedings of the 8th Middleware Doctoral
Symposium, page 2. ACM, 2011.

[DVdATH05] Marlon Dumas, Wil M Van der Aalst, and Arthur H Ter Hofstede.
Process-aware information systems: bridging people and software
through process technology. John Wiley & Sons, 2005.

[Erl05] Thomas Erl. Service-oriented architecture (soa): concepts, tech-
nology, and design, 2005.

[Fer99] Jacques Ferber. Multi-agent systems: an introduction to distributed
artificial intelligence, volume 1. Addison-Wesley Reading, 1999.

[FLSK13] Karol Furdik, Gabriel Lukac, Tomas Sabol, and Peter Kostelnik.
The network architecture designed for an adaptable iot-based smart
office solution. International Journal of Computer Networks and
Communications Security, 1(6):216–224, 2013.

[FP10] Marc Eduard Fr̂ıncu and Dana Petcu. Osyris: a nature inspired
workflow engine for service oriented environments. Scalable Com-
puting: Practice and Experience, 11(1):81–97, 2010.

[Fri11] Marc Eduard Frincu. D-osyris: A self-healing distributed workflow
engine. In Int. Symposium Parallel and Distributed Computing,
pages 215–222, 2011.

[FVH18] Christian Friedow, Maximilian Völker, and Marcin Hewelt. Inte-
grating iot devices into business processes. In International Con-
ference on Advanced Information Systems Engineering, pages 265–
277. Springer, 2018.

[Gam95] Erich Gamma. Design patterns: elements of reusable object-
oriented software. Pearson Education India, 1995.

[GBF85] Andrew Goldenberg, Beno Benhabib, and Robert Fenton. A com-
plete generalized solution to the inverse kinematics of robots. IEEE
Journal on Robotics and Automation, 1(1):14–20, 1985.

[GBMP13] Jayavardhana Gubbi, Rajkumar Buyya, Slaven Marusic, and
Marimuthu Palaniswami. Internet of things (iot): A vision, archi-
tectural elements, and future directions. Future Generation Com-
puter Systems, 29(7):1645–1660, 2013.

[GCB07] Mike Graves, Adam Constabaris, and Dan Brickley. Foaf: Con-
necting people on the semantic web. Cataloging & classification
quarterly, 43(3-4):191–202, 2007.

[GCFP10] Pau Giner, Carlos Cetina, Joan Fons, and Vicente Pelechano. De-
veloping mobile workflow support in the internet of things. IEEE
Pervasive Computing, 9(2):18–26, 2010.

256

Bibliography

[GCFP11] Pau Giner, Carlos Cetina, Joan Fons, and Vicente Pelechano. Im-
plicit interaction design for pervasive workflows. Personal Ubiqui-
tous Comput., 15(4):399–408, April 2011.

[GdV98] Paul Grefen and Remmert Remmerts de Vries. A reference ar-
chitecture for workflow management systems. Data & Knowledge
Engineering, 27(1):31 – 57, 1998.

[GEPF11] Nils Glombitza, Sebastian Ebers, Dennis Pfisterer, and Stefan Fis-
cher. Using bpel to realize business processes for an internet of
things. In International Conference on Ad-Hoc Networks and Wire-
less, pages 294–307. Springer, 2011.

[GGAAPE+11] A Gonzalez-Garcia, A Alvarez-Alvarez, Jordán Pascual-Espada,
Oscar Sanjuan-Martinez, Juan Manuel Cueva Lovelle, and
B Cristina Pelayo G-Bustelo. Introduction to devices orchestra-
tion in internet of things using sbpmn. International Journal of
Interactive Multimedia and Artificial Intelligence, 1(4), 2011.

[GGBG13] Levent Gurgen, Ozan Gunalp, Yazid Benazzouz, and Mathieu Gal-
lissot. Self-aware cyber-physical systems and applications in smart
buildings and cities. In Proceedings of the Conference on Design,
Automation and Test in Europe, DATE ’13, pages 1149–1154, San
Jose, CA, USA, 2013. EDA Consortium.

[Gie16] Holger Giese. Formal models and analysis for self-adaptive cyber-
physical systems. In International Workshop on Formal Aspects of
Component Software, pages 3–9. Springer, 2016.

[GIM11] Dominique Guinard, Iulia Ion, and Simon Mayer. In search of
an internet of things service architecture: Rest or ws-*? a de-
velopers perspective. In Intern. Conf. on Mobile and Ubiquitous
Systems: Computing, Networking, and Services, pages 326–337.
Springer, 2011.

[GKGK16] Imen Graja, Slim Kallel, Nawal Guermouche, and Ahmed Hadj
Kacem. Bpmn4cps: A bpmn extension for modeling cyber-physical
systems. In 2016 IEEE 25th International Conference on Enabling
Technologies: Infrastructure for Collaborative Enterprises (WET-
ICE), pages 152–157, June 2016.

[GLR+15] Philipp Gerbert, Markus Lorenz, Michael Rüßmann, Manuela
Waldner, Jam Justus, Pascal Engel, and Michael Harnisch. In-
dustry 4.0-the future of productivity and growth in manufacturing
industries. The Boston Consulting Group, 2015.

[GPGV14] Volkan Gunes, Steffen Peter, Tony Givargis, and Frank Vahid. A
survey on concepts, applications, and challenges in cyber-physical
systems. KSII Transactions on Internet & Information Systems,
8(12), 2014.

257

Bibliography

[GR92] Jim Gray and Andreas Reuter. Transaction processing: concepts
and techniques. Elsevier, 1992.

[GSRU07] Debanjan Ghosh, Raj Sharman, H Raghav Rao, and Shambhu
Upadhyaya. Self-healing systems–survey and synthesis. Decision
support systems, 42(4):2164–2185, 2007.

[HCLB15] Robert R Harmon, Enrique G Castro-Leon, and Sandhiprakash
Bhide. Smart cities and the internet of things. In Management
of Engineering and Technology (PICMET), 2015 Portland Inter-
national Conference on, pages 485–494. IEEE, 2015.

[HDG+06] Matthew Horridge, Nick Drummond, John Goodwin, Alan L Rec-
tor, Robert Stevens, and Hai Wang. The manchester owl syntax.
In OWLed, volume 216, 2006.

[HHGR06] Gregory Hackmann, Mart Haitjema, Christopher Gill, and Gruia-
Catalin Roman. Sliver: A bpel workflow process execution en-
gine for mobile devices. In ICSOC, volume 4294, pages 503–508.
Springer, 2006.

[HJS89] Peter Huber, Kurt Jensen, and Robert M Shapiro. Hierarchies in
coloured petri nets. In International Conference on Application and
Theory of Petri Nets, pages 313–341. Springer, 1989.

[HMW13] Nico Herzberg, Andreas Meyer, and Mathias Weske. An Event
Processing Platform for Business Process Management. 17th IEEE
International Enterprise Distributed Object Computing Conference,
pages 107–116, 2013.

[HO13] Jie Han and Michael Orshansky. Approximate computing: An
emerging paradigm for energy-efficient design. In 2013 18th IEEE
European Test Symposium (ETS), pages 1–6, May 2013.

[HRR+08] Dirk Habich, Sebastian Richly, Andreas Ruempel, Wolfgang
Buecke, and Steffen Preissler. Open service process platform 2.0.
In IEEE Congress on Services-Part I, pages 152–159. IEEE, 2008.

[HRZ15] Andreas Holzinger, Carsten Röcker, and Martina Ziefle. From
smart health to smart hospitals. In Smart health, pages 1–20.
Springer, 2015.

[HSDV13] Philipp Hoenisch, Stefan Schulte, Schahram Dustdar, and Sriku-
mar Venugopal. Self-adaptive resource allocation for elastic pro-
cess execution. In IEEE Sixth International Conference on Cloud
Computing (CLOUD), pages 220–227. IEEE, 2013.

[HSK+16] Steffen Huber, Ronny Seiger, André Kühnert, Vasileios Theodorou,
and Thomas Schlegel. Goal-based semantic queries for dynamic
processes in the internet of things. International Journal of Se-
mantic Computing, 10(02):269–293, 2016.

258

Bibliography

[HSKS16a] Steffen Huber, Ronny Seiger, André Kühnert, and Thomas
Schlegel. A context-adaptive workflow engine for humans, things
and services. In Proc. of the ACM International Joint Conference
on Pervasive and Ubiquitous Computing: Adjunct, UbiComp ’16,
pages 285–288, New York, NY, USA, 2016. ACM.

[HSKS16b] Steffen Huber, Ronny Seiger, André Kühnert, and Thomas
Schlegel. Using semantic queries to enable dynamic service invo-
cation for processes in the internet of things. In IEEE Intern.
Conference on Semantic Computing (ICSC), pages 214–221, Feb
2016.

[Hub18] Steffen Huber. Goal-based Workflow Adaptation for Role-based Re-
sources in the Internet of Things. PhD thesis, 2018.

[HWS+16] Pascal Hirmer, Matthias Wieland, Holger Schwarz, Bernhard
Mitschang, Uwe Breitenbücher, Santiago Gómez Sáez, and Frank
Leymann. Situation recognition and handling based on execut-
ing situation templates and situation-aware workflows. Computing,
pages 1–19, 2016.

[IBM05] IBM. An architectural blueprint for autonomic computing. Tech-
nical report, IBM, June 2005.

[Jaz14] Nasser Jazdi. Cyber physical systems in the context of industry
4.0. In IEEE International Conference on Automation, Quality
and Testing, Robotics, pages 1–4. IEEE, 2014.

[JDK15] Dávid Juhász, László Domoszlai, and Barnabás Králik. Rea: Work-
flows for cyber-physical systems. In Central European Functional
Programming School, pages 479–506. Springer, 2015.

[JGVDSJ14] Niels Joncheere, Sebastian Günther, Ragnhild Van Der Straeten,
and Viviane Jonckers. Improving workflow modularity using a
concern-specific layer on top of unify. Science of Computer Pro-
gramming, 87:62–94, 2014.

[JHA+13] Rod Johnson, Juergen Hoeller, Alef Arendsen, Colin Sampaleanu,
and R Horrop. The spring framework-reference documentation, 2.0.
5, 2013.

[JKM+17] Christian Janiesch, Agnes Koschmider, Massimo Mecella, Barbara
Weber, Andrea Burattin, Claudio Di Ciccio, Avigdor Gal, Udo
Kannengiesser, Felix Mannhardt, Jan Mendling, et al. The internet-
of-things meets business process management: Mutual benefits and
challenges. arXiv preprint arXiv:1709.03628, 2017.

[Joh02] Corinne N Johnson. The benefits fo pdca. Quality Progress,
35(5):120, 2002.

259

Bibliography

[JROK11] Jae-Yoon Jung, Pablo Rosales, Kyuhyup Oh, and Kyuri Kim. edu-
flow: An event-driven ubiquitous flow management system. In
International Conference on Business Process Management, pages
427–432. Springer, 2011.

[KA10] Jan Kleissl and Yuvraj Agarwal. Cyber-physical energy systems:
Focus on smart buildings. In Design Automation Conference
(DAC), 2010 47th ACM/IEEE, pages 749–754. IEEE, 2010.

[KAK16] Meesun Kim, Hyun Ahn, and Kwanghoon Pio Kim. Process-aware
internet of things: A conceptual extension of the internet of things
framework and architecture. KSII Transactions on Internet & In-
formation Systems, 10(8), 2016.

[KBG13] Dmitry G. Korzun, Sergey I. Balandin, and Andrei V. Gurtov.
Deployment of smart spaces in internet of things: Overview of
the design challenges. In Sergey Balandin, Sergey Andreev, and
Yevgeni Koucheryavy, editors, Internet of Things, Smart Spaces,
and Next Generation Networking, pages 48–59, Berlin, Heidelberg,
2013. Springer Berlin Heidelberg.

[KGC+12] Pratyush Kumar, Dip Goswami, Samarjit Chakraborty, Anuradha
Annaswamy, Kai Lampka, and Lothar Thiele. A hybrid approach
to cyber-physical systems verification. In Proceedings of the 49th
Annual Design Automation Conference, DAC ’12, pages 688–696,
New York, NY, USA, 2012. ACM.

[KK12] Falko Koetter and Monika Kochanowski. Goal-Oriented Model-
Driven Business Process Monitoring Using ProGoalML, pages 72–
83. Springer Berlin Heidelberg, Berlin, Heidelberg, 2012.

[KKL+05] Matthias Kloppmann, Dieter Koenig, Frank Leymann, Gerhard
Pfau, Alan Rickayzen, Claus von Riegen, Patrick Schmidt, and
Ivana Trickovic. Ws-bpel extension for people–bpel4people. Joint
white paper, IBM and SAP, 183:184, 2005.

[KKMZ17] Samuel Kounev, Jeffrey O. Kephart, Aleksandar Milenkoski, and
Xiaoyun (eds.) Zhu. Self-Aware Computing Systems. Springer,
2017.

[KKS11] Romina Kühn, Christine Keller, and Thomas Schlegel. A context
taxonomy supporting public system design. In Proceedings of the
1st International Workshop on Model-based Interactive Ubiquitous
Systems, EICS, to appear, 2011.

[KKSF10] Gerd Kortuem, Fahim Kawsar, Vasughi Sundramoorthy, and
Daniel Fitton. Smart objects as building blocks for the internet
of things. IEEE Internet Computing, 14(1):44–51, 2010.

[KLB+17] Samuel Kounev, Peter Lewis, Kirstie L Bellman, Nelly Bencomo,
Javier Camara, Ada Diaconescu, Lukas Esterle, Kurt Geihs, Holger

260

Bibliography

Giese, Sebastian Götz, et al. The notion of self-aware computing.
In Self-Aware Computing Systems, pages 3–16. Springer, 2017.

[KLG+14] Thomas Kühn, Max Leuthäuser, Sebastian Götz, Christoph Seidl,
and Uwe Aßmann. A metamodel family for role-based modeling and
programming languages. In International Conference on Software
Language Engineering, pages 141–160. Springer, 2014.

[KLW11] Henning Kagermann, Wolf-Dieter Lukas, and Wolfgang Wahlster.
Industrie 4.0: Mit dem internet der dinge auf dem weg zur 4. in-
dustriellen revolution. VDI nachrichten, 13:11, 2011.

[KM07] Jeff Kramer and Jeff Magee. Self-managed systems: an architec-
tural challenge. In Future of Software Engineering, 2007. FOSE’07,
pages 259–268. IEEE, 2007.

[Kop13] Hermann Kopetz. System-of-systems complexity. arXiv preprint
arXiv:1311.3629, 2013.

[Kou11] Samuel Kounev. Engineering of self-aware it systems and services:
State-of-the-art and research challenges. Computer Performance
Engineering, pages 10–13, 2011.

[KP15] Attila Kertesz and Tamas Pflanzner. Towards enabling scientific
workflows for the future internet of things. In International Internet
of Things Summit, pages 399–408. Springer, 2015.

[KPGV03] Gail Kaiser, Janak Parekh, Philip Gross, and Giuseppe Valetto.
Kinesthetics extreme: An external infrastructure for monitoring
distributed legacy systems. In Proceedings of the Autonomic Com-
puting Workshop, pages 22–30. IEEE, 2003.

[KSKP11] Nikos Kefalakis, John Soldatos, Nikolaos Konstantinou, and
Neeli R Prasad. Apdl: A reference xml schema for process-centered
definition of rfid solutions. Journal of Systems and Software,
84(7):1244–1259, 2011.

[LBK15] Jay Lee, Behrad Bagheri, and Hung-An Kao. A cyber-physical
systems architecture for industry 4.0-based manufacturing systems.
Manufacturing Letters, 3:18–23, 2015.

[Lec09] Jens Lechtenbörger. Two-phase commit protocol. In Encyclopedia
of Database Systems, pages 3209–3213. Springer, 2009.

[Lee08] Edward A. Lee. Cyber physical systems: Design challenges. In
Object Oriented Real-Time Distributed Computing (ISORC), 2008
11th IEEE International Symposium on, pages 363–369, 2008.

[LFK+14] Heiner Lasi, Peter Fettke, Hans-Georg Kemper, Thomas Feld, and
Michael Hoffmann. Industry 4.0. Business & Information Systems
Engineering, 6(4):239–242, 2014.

261

Bibliography

[LM06] Stefan-Helmut Leitner and Wolfgang Mahnke. Opc ua–service-
oriented architecture for industrial applications. ABB Corporate
Research Center, 2006.

[LM16] Lúıs Lopes and Francisco Martins. A safe-by-design programming
language for wireless sensor networks. Journal of Systems Archi-
tecture, 63:16–32, 2016.

[LMM15] Francesco Leotta, Massimo Mecella, and Jan Mendling. Applying
process mining to smart spaces: Perspectives and research chal-
lenges. In Advanced Information Systems Engineering Workshops,
pages 298–304. Springer, 2015.

[Lok03] Seng Wai Loke. Service-oriented device ecology workflows. In In-
ternational Conference on Service-Oriented Computing, pages 559–
574. Springer, 2003.

[LPR98] Hector Levesque, Fiora Pirri, and Ray Reiter. Foundations for the
situation calculus, 1998.

[LPS+09] Kevin Lee, Norman W Paton, Rizos Sakellariou, Ewa Deelman,
Alvaro AA Fernandes, and Gaurang Mehta. Adaptive workflow
processing and execution in pegasus. Concurrency and Computa-
tion: Practice and Experience, 21(16):1965–1981, 2009.

[LRD10] Andreas Lanz, Manfred Reichert, and Peter Dadam. Robust and
flexible error handling in the aristaflow bpm suite. In Forum
at the Conference on Advanced Information Systems Engineering
(CAiSE), pages 174–189. Springer, 2010.

[LS16] Edward Ashford Lee and Sanjit A Seshia. Introduction to embedded
systems: A cyber-physical systems approach. Mit Press, 2016.

[Luc02] David Luckham. The power of events, volume 204. Addison-Wesley
Reading, 2002.

[Mar17] Andrea Marrella. What automated planning can do for business
process management. arXiv preprint arXiv:1709.10482, 2017.

[MBBF17] Jan Mendling, Bart Baesens, Abraham Bernstein, and Michael Fell-
mann. Challenges of smart business process management: An in-
troduction to the special issue. Decision Support Systems, 2017.

[MCS16] Jakob Mass, Chii Chang, and Satish Narayana Srirama. Wiseware:
A device-to-device-based business process management system for
industrial internet of things. In IEEE Intern. Conf. on Inter-
net of Things (iThings), Green Computing and Communications
(GreenCom), Cyber, Physical and Social Computing (CPSCom)
and Smart Data (SmartData), pages 269–275. IEEE, 2016.

[MD17] Francisco Martins and Dulce Domingos. Modelling iot behaviour
within bpmn business processes. Procedia Computer Science,
121:1014–1022, 2017.

262

Bibliography

[MDCM17] Giovanni Meroni, Claudio Di Ciccio, and Jan Mendling. An
artifact-driven approach to monitor business processes through
real-world objects. In International Conference on Service-Oriented
Computing, pages 297–313. Springer, 2017.

[Mez16] Jan Meznaric. Extending BPMN for integration of internet of
things devices with process-driven applications. PhD thesis, 2016.

[MGR04] Robert Müller, Ulrike Greiner, and Erhard Rahm. Agentwork: a
workflow system supporting rule-based workflow adaptation. Data
& Knowledge Engineering, 51(2):223–256, 2004.

[MHW17] Sankalita Mandal, Marcin Hewelt, and Mathias Weske. A frame-
work for integrating real-world events and business processes in
an iot environment. In OTM Confederated International Confer-
ences” On the Move to Meaningful Internet Systems”, pages 194–
212. Springer, 2017.

[MJPL12] Luis E Gonzalez Moctezuma, Jani Jokinen, Corina Postelnicu, and
Jose L Martinez Lastra. Retrofitting a factory automation system
to address market needs and societal changes. In 10th IEEE Int.
Conf. on Industrial Informatics (INDIN), pages 413–418. IEEE,
2012.

[MM02] Petar Maymounkov and David Mazieres. Kademlia: A peer-to-
peer information system based on the xor metric. In International
Workshop on Peer-to-Peer Systems, pages 53–65. Springer, 2002.

[MM05] Frederic Montagut and Refik Molva. Enabling pervasive execution
of workflows. In Int. Conf. on Collaborative Computing: Network-
ing, Applications and Worksharing, pages 10 pp.–, 2005.

[MM17] Andrea Marrella and Massimo Mecella. Cognitive business process
management for adaptive cyber-physical processes. In Int. Conf.
on Business Process Management, pages 429–439. Springer, 2017.

[MMG08] Frederic Montagut, Refik Molva, and Silvan Tecumseh Golega. The
pervasive workflow: A decentralized workflow system supporting
long-running transactions. IEEE Transactions on Systems, Man,
and Cybernetics, 38(3):319–333, May 2008.

[MMHS15] Andrea Marrella, Massimo Mecella, Patris Halapuu, and Sebastian
Sardina. Automated process adaptation in cyber-physical domains
with the smartpm system (short paper). In IEEE 8th Interna-
tional Conference on Service-Oriented Computing and Applications
(SOCA), pages 59–64. IEEE, 2015.

[MMP06] Stefano Modafferi, Enrico Mussi, and Barbara Pernici. Sh-bpel:
a self-healing plug-in for ws-bpel engines. In Proceedings of
the 1st workshop on Middleware for Service Oriented Computing
(MW4SOC 2006), pages 48–53. ACM, 2006.

263

Bibliography

[MMS14] Andrea Marrella, Massimo Mecella, and Sebastian Sardina.
Smartpm: an adaptive process management system through sit-
uation calculus, indigolog, and classical planning. In Principles of
Knowledge Representation and Reasoning, pages 1–10. AAAI Press,
2014.

[MMS16] Andrea Marrella, Massimo Mecella, and Sebastian Sardina. Intel-
ligent process adaptation in the smartpm system. ACM Trans.
Intell. Syst. Technol., 8(2):25:1–25:43, November 2016.

[MMS17] Andrea Marrella, Massimo Mecella, and Sebastian Sardiña. Sup-
porting adaptiveness of cyber-physical processes through action-
based formalisms. AI Communications, (Preprint):1–28, 2017.

[Mod11] Business Process Model. Notation (bpmn) version 2.0. OMG Spec-
ification, Object Management Group, pages 22–31, 2011.

[Mon13] Olivier Monnier. A smarter grid with the internet of things. Texas
Instruments, 2013.

[Mon14] László Monostori. Cyber-physical production systems: roots, ex-
pectations and r&d challenges. Procedia Cirp, 17:9–13, 2014.

[MPMR16] Simon Mayer, Dominic Plangger, Florian Michahelles, and Simon
Rothfuss. Ubermanufacturing: A goal-driven collaborative indus-
trial manufacturing marketplace. In Proc. of 6th Int. Conf. on
the Internet of Things, pages 111–119, New York, NY, USA, 2016.
ACM.

[MPO+17] Luca Mottola, Gian Pietro Picco, Felix Jonathan Opperman,
Joakim Eriksson, Niclas Finne, Harald Fuchs, Andrea Gaglione,
Stamatis Karnouskos, Patricio Montero, Nina Oertel, et al. make-
sense: Simplifying the integration of wireless sensor networks into
business processes. IEEE Trans. on Software Engineering, 2017.

[MRH15] Sonja Meyer, Andreas Ruppen, and Lorenz Hilty. The things of
the internet of things in bpmn. In Advanced Information Systems
Engineering Workshops, pages 285–297, 2015.

[MRM13] Sonja Meyer, Andreas Ruppen, and Carsten Magerkurth. Internet
of things-aware process modeling: Integrating IoT devices as busi-
ness process resources. Lecture Notes in Computer Science, 7908
LNCS:84–98, 2013.

[MRM14] Juergen Mangler and Stefanie Rinderle-Ma. Cpee - cloud process
execution engine. In BPM (Demos)’14, pages 51–51, 2014.

[MS17] Henry Muccini and Mohammad Sharaf. Caps: a tool for architect-
ing situational-aware cyber-physical systems. In IEEE Interna-
tional Conference on Software Architecture Workshops (ICSAW),
pages 286–289. IEEE, 2017.

264

Bibliography

[MSDPC12] Daniele Miorandi, Sabrina Sicari, Francesco De Pellegrini, and Im-
rich Chlamtac. Internet of things: Vision, applications and research
challenges. Ad Hoc Networks, 10(7):1497–1516, 2012.

[MSW16] Henry Muccini, Mohammad Sharaf, and Danny Weyns. Self-
adaptation for cyber-physical systems: A systematic literature re-
view. In Proceedings of the 11th International Symposium on Soft-
ware Engineering for Adaptive and Self-Managing Systems, SEAMS
’16, pages 75–81, New York, NY, USA, 2016. ACM.

[MVKM16] Simon Mayer, Ruben Verborgh, Matthias Kovatsch, and Friede-
mann Mattern. Smart configuration of smart environments. IEEE
Transactions on Automation Science and Engineering, 13(3):1247–
1255, 2016.

[MVSA16] Mohammad Masdari, Sima ValiKardan, Zahra Shahi, and
Sonay Imani Azar. Towards workflow scheduling in cloud com-
puting. J. Netw. Comput. Appl., 66(C):64–82, May 2016.

[Nac12] Nachwuchsforschergruppe VICCI. Vicci: Visual and interactive
cyber-physical systems control and integration, 2012.

[NND+17] Matteo Nardelli, Stefan Nastic, Schahram Dustdar, Massimo Vil-
lari, and Rajiv Ranjan. Osmotic flow: Osmotic computing+ iot
workflow. IEEE Cloud Computing, 4(2):68–75, 2017.

[NSKS14] Florian Niebling, Daniel Schropp, Romina Kühn, and Thomas
Schlegel. Model-based multi-touch gesture interaction for diagram
editors. In International Conference on Human-Computer Interac-
tion, pages 121–130. Springer, 2014.

[NSS14] Dmitry Namiot and Manfred Sneps-Sneppe. On micro-services ar-
chitecture. International Journal of Open Information Technolo-
gies, 2(9):24–27, 2014.

[NSW13] Fernando Niroshinie, W Loke Seng, and Rahayu Wenny. Mobile
cloud computing: A survey. Future Generation Computer Systems,
29(1):84–106, 2013.

[OAS14] OASIS. Web Services Business Process Execution Language (WS-
BPEL), 2014.

[OCEP13] Karolyne Oliveira, Jaelson Castro, Sergio España, and Oscar Pas-
tor. Multi-level autonomic business process management. Enter-
prise, Business-Process and Information Systems Modeling, pages
184–198, 2013.

[OG17] Roy Oberhauser and Gregor Grambow. Towards autonomically-
capable processes: A vision and potentially supportive methods. In
Advances in Intelligent Process-Aware Information Systems, pages
79–125. Springer, 2017.

265

Bibliography

[OHG17] Julius Ollesch, Marc Hesenius, and Volker Gruhn. Engineering
events in cps: experiences and lessons learned. In Proceedings of
the 3rd International Workshop on Software Engineering for Smart
Cyber-Physical Systems, pages 3–9. IEEE Press, 2017.

[Omg08] QVT Omg. Meta object facility (mof) 2.0 query/view/transforma-
tion specification. Final Adopted Specification (November 2005),
2008.

[Pap03] Mike P Papazoglou. Service-oriented computing: Concepts, char-
acteristics and directions. In Proc. of the Fourth Intern. Conf. on
Web Information Systems Engineering, pages 3–12. IEEE, 2003.

[PD11] Harald Psaier and Schahram Dustdar. A survey on self-healing
systems: approaches and systems. Computing, 91(1):43–73, 2011.

[PDB+08] Carlos Pedrinaci, John Domingue, Christian Brelage, Tammo
Van Lessen, Dimka Karastoyanova, and Frank Leymann. Seman-
tic business process management: Scaling up the management of
business processes. In IEEE International Conference on Semantic
Computing, pages 546–553. IEEE, 2008.

[Pet81] James L Peterson. Petri net theory and the modeling of systems.
1981.

[PKGV06] Janak Parekh, Gail Kaiser, Philip Gross, and Giuseppe Valetto.
Retrofitting autonomic capabilities onto legacy systems. Cluster
Computing, 9(2):141–159, 2006.

[PLM16] Riccardo Petrolo, Valeria Loscri, and Nathalie Mitton. Cyber-
physical objects as key elements for a smart cyber-city. In Manage-
ment of Cyber Physical Objects in the Future Internet of Things,
pages 31–49. Springer, 2016.

[PLM17] Riccardo Petrolo, Valeria Loscri, and Nathalie Mitton. Towards
a smart city based on cloud of things, a survey on the smart city
vision and paradigms. Transactions on Emerging Telecommunica-
tions Technologies, 28(1), 2017.

[PNC+14] Milan Patel, B Naughton, C Chan, N Sprecher, S Abeta, A Neal,
et al. Mobile-edge computing introductory technical white paper.
Mobile-edge Computing (MEC) industry initiative, 2014.

[PRBA15] Rüdiger Pryss, Manfred Reichert, Alexander Bachmeier, and Jo-
hann Albach. Bpm to go: Supporting business processes in a mobile
and sensing world. 2015.

[PRK+14] Christian Piechnick, Sebastian Richly, Thomas Kühn, Sebastian
Götz, Georg Püschel, and Uwe Aßmann. Contextpoint: An archi-
tecture for extrinsic meta-adaptation in smart environments, 2014.

266

Bibliography

[PRS+13] Tao Peng, Marco Ronchetti, Jovan Stevovic, Annamaria Chiasera,
and Giampaolo Armellin. Business process assignment and execu-
tion from cloud to mobile. In International Conference on Business
Process Management, pages 264–276. Springer, 2013.

[PSS12] Georg Püschel, Ronny Seiger, and Thomas Schlegel. Test mod-
eling for context-aware ubiquitous applications with feature petri
nets. In Proc. Workshop Model-based Interactive Ubiquitous Sys-
tems (MODIQUITOUS), 2012.

[PTDL07] Michael P Papazoglou, Paolo Traverso, Schahram Dustdar, and
Frank Leymann. Service-oriented computing: State of the art and
research challenges. Computer, (11):38–45, 2007.

[PTKR10] Rüdiger Pryss, Julian Tiedeken, Ulrich Kreher, and Manfred Re-
ichert. Towards flexible process support on mobile devices. In
Forum at the Conference on Advanced Information Systems Engi-
neering (CAiSE), pages 150–165. Springer, 2010.

[PWLK03] Sang Hyun Park, So Hee Won, Jong Bong Lee, and Sung Woo
Kim. Smart home–digitally engineered domestic life. Personal and
Ubiquitous Computing, 7(3-4):189–196, 2003.

[QCG+09] Morgan Quigley, Ken Conley, Brian Gerkey, Josh Faust, Tully
Foote, Jeremy Leibs, Rob Wheeler, and Andrew Y Ng. Ros: an
open-source robot operating system. In ICRA workshop on open
source software, volume 3, page 5. Kobe, Japan, 2009.

[RBA08] Sebastian Richly, Wolfgang Buecke, and Uwe Aßmann. A bdi-
based reflective infrastructure for dynamic workflows. In 2008 12th
Enterprise Distributed Object Computing Conference Workshops,
pages 112–119, Sept 2008.

[RBD+09] Romain Rouvoy, Paolo Barone, Yun Ding, Frank Eliassen, Svein
Hallsteinsen, Jorge Lorenzo, Alessandro Mamelli, and Ulrich
Scholz. Music: Middleware support for self-adaptation in ubiq-
uitous and service-oriented environments. In Software engineering
for self-adaptive systems, pages 164–182. Springer, 2009.

[RBK+12] Heorhi Raik, Antonio Bucchiarone, Nawaz Khurshid, Annapaola
Marconi, and Marco Pistore. Astro-captevo: Dynamic context-
aware adaptation for service-based systems. In IEEE Eighth World
Congress on Services (SERVICES), pages 385–392. IEEE, 2012.

[RG+95] Anand S Rao, Michael P Georgeff, et al. Bdi agents: from theory
to practice. In ICMAS, volume 95, pages 312–319, 1995.

[RPTC15] Alessandro Ricci, Michele Piunti, Luca Tummolini, and Cristiano
Castelfranchi. The mirror world: Preparing for mixed-reality living.
IEEE Pervasive Computing, 14(2):60–63, 2015.

267

Bibliography

[RRD03] Manfred Reichert, Stefanie Rinderle, and Peter Dadam. Adept
workflow management system. In Wil M. P. van der Aalst and
Mathias Weske, editors, Business Process Management, pages 370–
379, Berlin, Heidelberg, 2003. Springer Berlin Heidelberg.

[RRKD05] Manfred Reichert, Stefanie Rinderle, Ulrich Kreher, and Peter
Dadam. Adaptive process management with adept2. In Proceed-
ings. 21st International Conference on Data Engineering,. ICDE,
pages 1113–1114. IEEE, 2005.

[RS16] Daniel Ritter and Jan Sosulski. Exception handling in message-
based integration systems and modeling using bpmn. International
Journal of Cooperative Information Systems, 25(02):1650004, 2016.

[RSA10] Sebastian Richly, Sandro Schmidt, and Uwe Aßmann. A Semantic-
BDI-based approach to realize cooperative, reflexive workflows.
Proceedings of the World Congress on Intelligent Control and Au-
tomation (WCICA), pages 1680–1685, 2010.

[RSI+17] Michele Ruta, Floriano Scioscia, Saverio Ieva, Giuseppe Loseto,
Filippo Gramegna, and Agnese Pinto. Knowledge discovery and
sharing in the iot: the physical semantic web vision. In Proc. of the
Symposium on Applied Computing, pages 492–498. ACM, 2017.

[RSS13] Hajo A Reijers, Tijs Slaats, and Christian Stahl. Declarative
modeling–an academic dream or the future for bpm? In Business
Process Management, pages 307–322. Springer, 2013.

[RvWLB15] Roland Rosen, Georg von Wichert, George Lo, and Kurt D Betten-
hausen. About the importance of autonomy and digital twins for
the future of manufacturing. IFAC-PapersOnLine, 48(3):567–572,
2015.

[RW15] F. J. Riggins and S. F. Wamba. Research directions on the adop-
tion, usage, and impact of the internet of things through the use of
big data analytics. In 2015 48th Hawaii International Conference
on System Sciences, pages 1531–1540, Jan 2015.

[RWE15] Ian Robinson, JimWebber, and Emil Eifrem. Graph databases: new
opportunities for connected data. ” O’Reilly Media, Inc.”, 2015.

[RWRW05] Stefanie Rinderle, Barbara Weber, Manfred Reichert, and Werner
Wild. Integrating process learning and process evolution-a seman-
tics based approach. Business Process Management, 3649:252–267,
2005.

[SAEJ18] Stefan Schönig, Ana Paula Aires, Andreas Ermer, and Stefan
Jablonski. Workflow support in wearable production information
systems. In International Conference on Advanced Information
Systems Engineering, pages 235–243. Springer, 2018.

268

Bibliography

[SASS15] Ronny Seiger, Bashar Altakrouri, Andreas Schrader, and Thomas
Schlegel, editors. Proceedings of the 1st Workshop on Large-
scale and Model-based Interactive Systems: Approaches and Chal-
lenges (LMIS 2015), number 1380 in CEURWorkshop Proceedings,
Aachen, 2015.

[SBW99] Clemens Szyperski, Jan Bosch, and Wolfgang Weck. Component-
oriented programming. In Object-oriented technology ecoop99 work-
shop reader, pages 184–192. Springer, 1999.

[SCA+17] Kunal Suri, Juan Cadavid, Mauricio Alferez, Saadia Dhouib, and
Sara Tucci-Piergiovanni. Modeling business motivation and under-
lying processes for rami 4.0-aligned cyber-physical production sys-
tems. In 22nd IEEE International Conference on Emerging Tech-
nologies And Factory Automation, At Limassol, Cyprus, 2017.

[Sch08] Thomas Schlegel. Laufzeit-Modellierung objektorientierter interak-
tiver Prozesse in der Produktion. PhD thesis, 2008.

[Sch09] Thomas Schlegel. Object-oriented interactive processes in decen-
tralized production systems. In Human Interface and the Manage-
ment of Information. Designing Information Environments, vol-
ume 5617 of Lecture Notes in Computer Science, pages 296–305.
Springer Berlin Heidelberg, 2009.

[Sch13] August-Wilhelm Scheer. ARISvom Geschäftsprozess zum Anwen-
dungssystem. Springer-Verlag, 2013.

[SDA+15] Karolj Skala, Davor Davidovic, Enis Afgan, Ivan Sovic, and Zorislav
Sojat. Scalable distributed computing hierarchy: Cloud, fog and
dew computing. Open Journal of Cloud Computing (OJCC),
2(1):16–24, 2015.

[SDFGB09] Hong Sun, Vincenzo De Florio, Ning Gui, and Chris Blondia.
Promises and challenges of ambient assisted living systems. In
Sixth International Conference on Information Technology: New
Generations, ITNG’09, pages 1201–1207. Ieee, 2009.

[SECP13] Gunar Schirner, Deniz Erdogmus, Kaushik Chowdhury, and Taskin
Padir. The future of human-in-the-loop cyber-physical systems.
Computer, (1):36–45, 2013.

[Sei15] Ronny Seiger. Modelling and execution of consistent and dis-
tributed workflows for cyber-physical systems. In Business Process
Management (Doctoral Consortium), 2015.

[SG07] H. Sahin and L. Guvenc. Household robotics: autonomous devices
for vacuuming and lawn mowing. Control Systems, IEEE, 27(2):20–
96, April 2007.

269

Bibliography

[SGCG17] Kunal Suri, Walid Gaaloul, Arnaud Cuccuru, and Sebastien Ger-
ard. Semantic framework for internet of things-aware business
process development. In IEEE 26th International Conference on
Enabling Technologies: Infrastructure for Collaborative Enterprises
(WETICE), pages 214–219. IEEE, 2017.

[SGCG18] Kunal Suri, Walid Gaaloul, Arnaud Cuccuru, and Sebastien Ger-
ard. Semantic framework for energy-aware resource management
of iot in business processes. International Journal of Systems and
Service-Oriented Engineering (IJSSOE), 8(1):21–43, 2018.

[SGLW08] Lui Sha, Sathish Gopalakrishnan, Xue Liu, and Qixin Wang.
Cyber-physical systems: A new frontier. In IEEE International
Conference on Sensor Networks, Ubiquitous and Trustworthy Com-
puting, SUTC’08., pages 1–9. IEEE, 2008.

[SGS11] Ronny Seiger, Stephan Groß, and Alexander Schill. Seccsie: A
secure cloud storage integrator for enterprises. In 2011 IEEE 13th
Conference on Commerce and Enterprise Computing, pages 252–
255, Sept 2011.

[SH05] Roy Sterritt and Mike Hinchey. Apoptosis and self-destruct: A
contribution to autonomic agents? In Michael G. Hinchey, James L.
Rash, Walter F. Truszkowski, and Christopher A. Rouff, editors,
Formal Approaches to Agent-Based Systems, pages 262–270, Berlin,
Heidelberg, 2005. Springer Berlin Heidelberg.

[SHA17] Ronny Seiger, Stefan Herrmann, and Uwe Aßmann. Self-healing
for distributed workflows in the internet of things. In IEEE Int.
Conference on Software Architecture (ICSA) Workshops, 2017.

[SHA18a] Ronny Seiger, Peter Heisig, and Uwe Aßmann. Retrofitting of work-
flow management systems with self-x capabilities for internet of
things. In BP-Meet-IoT Workshop, Int. Conference on Business
Process Management (BPM) Workshops, 2018.

[SHA18b] Ronny Seiger, Stefen Huber, and Uwe Aßmann. A case study for
workflow-based automation in the internet of things. In IEEE Int.
Conference on Software Architecture (ICSA) Companion, 2018.

[SHH+14] Stefan Schulte, Philipp Hoenisch, Christoph Hochreiner, Schahram
Dustdar, Matthias Klusch, and Dieter Schuller. Towards process
support for cloud manufacturing. In IEEE 18th Int. Enterprise
Distributed Object Computing Conf. (EDOC), pages 142–149, 2014.

[SHH17] Ronny Seiger, Steffen Huber, and Peter Heisig. Proteus++: A self-
managed iot workflow engine with dynamic service discovery. In
9th Central European Workshop on Services and their Composition
(ZEUS), 2017.

270

Bibliography

[SHHA16] Ronny Seiger, Steffen Huber, Peter Heisig, and Uwe Aßmann. En-
abling Self-adaptive Workflows for Cyber-physical Systems, pages
3–17. Springer International Publishing, 2016.

[SHHA17] Ronny Seiger, Steffen Huber, Peter Heisig, and Uwe Aßmann. To-
ward a framework for self-adaptive workflows in cyber-physical sys-
tems. Software & Systems Modeling, Nov 2017.

[SHS15] Ronny Seiger, Steffen Huber, and Thomas Schlegel. PROtEUS: An
Integrated System for Process Execution in Cyber-Physical Systems,
pages 265–280. Springer International Publishing, 2015.

[SHS16] Ronny Seiger, Steffen Huber, and Thomas Schlegel. Toward an ex-
ecution system for self-healing workflows in cyber-physical systems.
Software & Systems Modeling, pages 1–22, 2016.

[SHS17] Ronny Seiger, Steffen Huber, and Thomas Schlegel. An execu-
tion system for self-healing workflows in cyber-physical systems. In
Software Engineering 2017, number Lecture Notes in Informatics
(LNI), pages 75–76. Gesellschaft für Informatik, 2017.

[SHVD12] Stefan Schulte, Philipp Hoenisch, Srikumar Venugopal, and
Schahram Dustdar. Introducing the vienna platform for elastic
processes. In International Conference on Service-Oriented Com-
puting, pages 179–190. Springer, 2012.

[SJV+15] Stefan Schulte, Christian Janiesch, Srikumar Venugopal, Ingo We-
ber, and Philipp Hoenisch. Elastic business process management:
State of the art and open challenges for bpm in the cloud. Future
Generation Computer Systems, 46:36–50, 2015.

[SKGA17] Ronny Seiger, Mandy Korzetz, Maria Gohlke, and Uwe Aßmann.
Mixed reality cyber-physical systems control and workflow compo-
sition. In Proc. of the 16th Int. Conf. on Mobile and Ubiquitous
Multimedia, MUM ’17. ACM, 2017.

[SKNS13] Ronny Seiger, Christine Keller, Florian Niebling, and Thomas
Schlegel. Modelling complex and flexible processes for smart cyber-
physical environments. In Proceedings of 25th European Modeling
and Simulation Symposium (EMSS), pages 73–82, September 2013.

[SKNS15] Ronny Seiger, Christine Keller, Florian Niebling, and Thomas
Schlegel. Modelling complex and flexible processes for smart cyber-
physical environments. Journal of Computational Science, 10:137
– 148, 2015.

[SLI08] Sucha Smanchat, Sea Ling, and Maria Indrawan. A survey on
context-aware workflow adaptations. In Proceedings of the 6th In-
ternational Conference on Advances in Mobile Computing and Mul-
timedia, pages 414–417. ACM, 2008.

271

Bibliography

[SLSS16] Ronny Seiger, Diana Lemme, Susann Struwe, and Thomas Schlegel.
An interactive mobile control center for cyber-physical systems. In
Proc. of the Int. Joint Conf. on Pervasive and Ubiquitous Comput-
ing: Adjunct, pages 193–196, New York, NY, USA, 2016. ACM.

[SNK+15] Ronny Seiger, Florian Niebling, Mandy Korzetz, Tobias Nicolai,
and Thomas Schlegel. A framework for rapid prototyping of mul-
timodal interaction concepts. Large-scale and Model-based Interac-
tive Systems, pages 21–28, 2015.

[SNS14a] Ronny Seiger, Tobias Nicolai, and Thomas Schlegel. A framework
for controlling robots via brain-computer interfaces. In Andreas
Butz, Michael Koch, and Johann Schlichter, editors, Mensch &
Computer 2014 - Workshopband, pages 003–006, Berlin, 2014. De
Gruyter Oldenbourg.

[SNS14b] Ronny Seiger, Florian Niebling, and Thomas Schlegel. A dis-
tributed execution environment enabling resilient processes for
ubiquitous systems. In IEEE International Conference on Per-
vasive Computing and Communications Workshops (PERCOM
Workshops), pages 220–223, March 2014.

[SS12] Erwin Schoitsch and Amund Skavhaug. Introduction to the
ercim/ewics cyberphysical systems workshop 2012. In International
Conference on Computer Safety, Reliability, and Security, pages
343–346. Springer, 2012.

[SSAS15] Ronny Seiger, Christoph Seidl, Uwe Aßmann, and Thomas
Schlegel. A capability-based framework for programming small do-
mestic service robots. In Proc. of the 2015 Joint MORSE/VAO
Workshop., pages 49–54, New York, NY, USA, 2015. ACM.

[SSKK15] Thomas Schlegel, Ronny Seiger, Christine Keller, and Romina
Kühn. Model-based interactive ubiquitous systems (modiquitous).
In Proceedings of the 7th ACM SIGCHI Symposium on Engineer-
ing Interactive Computing Systems, EICS ’15, pages 296–297, New
York, NY, USA, 2015. ACM.

[SSMS14] Ronny Seiger, Susann Struwe, Sandra Matthes, and Thomas
Schlegel. A resilient interaction concept for process management
on tabletops for cyber-physical systems. In Human Interface and
the Management of Information. Information and Knowledge in
Applications and Services, pages 347–358. Springer, 2014.

[SSOK13] C Timurhan Sungur, Patrik Spiess, Nina Oertel, and Oliver Kopp.
Extending BPMN for Wireless Sensor Networks. 2013 IEEE 15th
Conference on Business Informatics, pages 109–116, 2013.

[STA05] August-Wilhelm Scheer, Oliver Thomas, and Otmar Adam. Pro-
cess modeling using event-driven process chains. Process-Aware
Information Systems, pages 119–146, 2005.

272

Bibliography

[Sto15] André Stork. Visual computing challenges of advanced manufactur-
ing and industrie 4.0 [guest editors’ introduction]. IEEE Computer
Graphics and Applications, 35(2):21–25, Mar 2015.

[SVDS12] Thomas Schlegel, Krešimir Vidačković, Sebastian Dusch, and
Ronny Seiger. Management of interactive business processes in de-
centralized service infrastructures through event processing. Jour-
nal of King Saud University - Computer and Information Sciences,
24(2):137 – 144, 2012.

[SW14] Ivan Stojmenovic and Sheng Wen. The fog computing paradigm:
Scenarios and security issues. In Federated Conf. on Computer Sci-
ence and Information Systems (FedCSIS), pages 1–8. IEEE, 2014.

[SWC+18] Rongjia Song, Ying Wang, Weiping Cui, Jan Vanthienen, and
Lei Huang. Towards improving context interpretation in the iot
paradigm: a solution to integrate context information in process
models. In 2nd Int. Conf. on Management Engineering, Software
Engineering and Service Sciences, pages 223–228. ACM, 2018.

[SWYS11] Jianhua Shi, Jiafu Wan, Hehua Yan, and Hui Suo. A survey of
cyber-physical systems. In International Conference on Wireless
Communications and Signal Processing (WCSP), pages 1–6, 2011.

[SYY07] Jun Shen, Yun Yang, and Jun Yan. A p2p based service flow
system with advanced ontology-based service profiles. Advanced
Engineering Informatics, 21(2):221 – 229, 2007.

[SZY18] Yuan Sun, Xingshe Zhou, and Gang Yang. Location sensitive multi-
task oriented service composition for cyber physical systems. Inter-
national Journal of Innovative Computing, Information and Con-
trol, 14(3), 2018.

[SZZ14] Lukas Smirek, Gottfried Zimmermann, and Daniel Ziegler. Towards
universally usable smart homes-how can myui, urc and openhab
contribute to an adaptive user interface platform. In IARIA Con-
ference, Nice, France, pages 29–38, 2014.

[Tal08] Carolyn Talcott. Cyber-physical systems and events. In Software-
Intensive Systems and New Computing Paradigms, pages 101–115.
Springer, 2008.

[TFR17] P. Tsoutsa, Panos Fitsilis, and Omiros Ragos. Role modeling of iot
services in industry domains. In Proc. of the Intern. Conf. on Man-
agement Engineering, Software Engineering and Service Sciences,
pages 290–295, New York, NY, USA, 2017. ACM.

[TGD+08] Feilong Tang, Minyi Guo, Mianxiong Dong, Minglu Li, and
Hu Guan. Towards context-aware workflow management for ubiq-
uitous computing. In Intern. Conference on Embedded Software
and Systems, 2008. ICESS’08, pages 221–228. IEEE, 2008.

273

Bibliography

[TMS+12] Matthias Thoma, Sonja Meyer, Klaus Sperner, Stefan Meissner,
and Torsten Braun. On iot-services: Survey, classification and en-
terprise integration. In IEEE Intern. Conf. on Green Computing
and Communications (GreenCom), pages 257–260. IEEE, 2012.

[TSD+12] Stefano Tranquillini, Patrik Spieß, Florian Daniel, Stamatis
Karnouskos, Fabio Casati, Nina Oertel, Luca Mottola, Felix Op-
permann, Gian Picco, Kay Römer, et al. Process-based design and
integration of wireless sensor network applications. Business Pro-
cess Management, pages 134–149, 2012.

[VDA96] Wil MP Van Der Aalst. Three good reasons for using a petri-net-
based workflow management system. In Proceedings of the Interna-
tional Working Conference on Information and Process Integration
in Enterprises (IPIC96), pages 179–201. Citeseer, 1996.

[VdA98] Wil MP Van der Aalst. The application of petri nets to work-
flow management. Journal of circuits, systems, and computers,
8(01):21–66, 1998.

[vdA00] Wil van der Aalst. Loosely coupled interorganizational workflows:
modeling and analyzing workflows crossing organizational bound-
aries. Information & Management, 37(2):67 – 75, 2000.

[VDA13] Wil MP Van Der Aalst. Business process management: a compre-
hensive survey. ISRN Software Engineering, 2013, 2013.

[VDAADM+11] Wil Van Der Aalst, Arya Adriansyah, Ana Karla Alves
De Medeiros, Franco Arcieri, Thomas Baier, Tobias Blickle, Ja-
gadeesh Chandra Bose, Peter van den Brand, Ronald Brandtjen,
Joos Buijs, et al. Process mining manifesto. In Intern. Conference
on Business Process Management, pages 169–194. Springer, 2011.

[vDAPS09] Wil MP van Der Aalst, Maja Pesic, and Helen Schonenberg. Declar-
ative workflows: Balancing between flexibility and support. Com-
puter Science-Research and Development, 23(2):99–113, 2009.

[vdAtH05] W.M.P. van der Aalst and A.H.M. ter Hofstede. Yawl: yet another
workflow language. Information Systems, 30(4):245 – 275, 2005.

[vDATHKB03] Wil MP van Der Aalst, Arthur HM Ter Hofstede, Bartek Kie-
puszewski, and Alistair P Barros. Workflow patterns. Distributed
and parallel databases, 14(1):5–51, 2003.

[VGC+15] Mario Villamizar, Oscar Garcés, Harold Castro, Mauricio Verano,
Lorena Salamanca, Rubby Casallas, and Santiago Gil. Evaluating
the monolithic and the microservice architecture pattern to deploy
web applications in the cloud. In Computing Colombian Conference
(10CCC), 2015 10th, pages 583–590. IEEE, 2015.

274

Bibliography

[vZvDvdA18] Sebastiaan J van Zelst, Boudewijn F van Dongen, and Wil MP
van der Aalst. Event stream-based process discovery using abstract
representations. Knowledge and Information Systems, 54(2):407–
435, 2018.

[WBJ08] Daniel Work, Alexandre Bayen, and Quinn Jacobson. Automo-
tive cyber physical systems in the context of human mobility. In
National Workshop on high-confidence automotive cyber-physical
systems, pages 3–4, 2008.

[WCL+05] Sanjiva Weerawarana, Francisco Curbera, Frank Leymann, Tony
Storey, and Donald F Ferguson. Web services platform architecture:
SOAP, WSDL, WS-policy, WS-addressing, WS-BPEL, WS-reliable
messaging and more. Prentice Hall PTR, 2005.

[Web12] Jim Webber. A programmatic introduction to neo4j. In Proceed-
ings of the 3rd annual conference on Systems, programming, and
applications: software for humanity, pages 217–218. ACM, 2012.

[Wei91] Mark Weiser. The computer for the 21st century. Scientific amer-
ican, 265(3):94–104, 1991.

[Wes12] Mathias Weske. Business Process Management Architectures, pages
333–371. Springer Berlin Heidelberg, Berlin, Heidelberg, 2012.

[Whi05] Stephen White. Using bpmn to model a bpel process. BPTrends,
3(3):1–18, 2005.

[WN14] Jonas Westman and Mattias Nyberg. Environment-centric con-
tracts for design of cyber-physical systems. In Int. Conf. on
Model Driven Engineering Languages and Systems, pages 218–234.
Springer, 2014.

[Wom11a] Andreas Wombacher. A-posteriori detection of sensor infrastruc-
ture errors in correlated sensor data and business workflows. In
Proc. of the 9th Intern. Conference on Business Process Manage-
ment, pages 329–344, Berlin, Heidelberg, 2011. Springer-Verlag.

[Wom11b] Andreas Wombacher. How physical objects and business workflows
can be correlated. Proceedings - 2011 IEEE International Confer-
ence on Services Computing, SCC 2011, pages 226–233, 2011.

[WRWR05] Barbara Weber, Stefanie Rinderle, Werner Wild, and Manfred Re-
ichert. CCBR–Driven Business Process Evolution, pages 610–624.
Springer Berlin Heidelberg, Berlin, Heidelberg, 2005.

[WSBL15] Matthias Wieland, Holger Schwarz, Uwe Breitenbucher, and Frank
Leymann. Towards situation-aware adaptive workflows: Sitopt–a
general purpose situation-aware workflow management system. In
PerCom Workshops, pages 32–37. IEEE, 2015.

275

Bibliography

[WSJ15] Roy Want, Bill N Schilit, and Scott Jenson. Enabling the internet
of things. Computer, 48(1):28–35, 2015.

[WvdAD+06] Petia Wohed, Wil MP van der Aalst, Marlon Dumas, Arthur HM
ter Hofstede, and Nick Russell. On the suitability of bpmn for
business process modelling. In International conference on business
process management, pages 161–176. Springer, 2006.

[WZG+14] Matthias Weidlich, Holger Ziekow, Asaf Gal, Jan Mendling, and
Mathias Weske. Optimizing event pattern matching using business
process models. Knowledge and Data Engineering, IEEE Transac-
tions on, 26(11):2759–2773, 2014.

[WZZ+14] Jiafu Wan, Daqiang Zhang, Shengjie Zhao, Laurence Yang, and
Jaime Lloret. Context-aware vehicular cyber-physical systems with
cloud support: architecture, challenges, and solutions. IEEE Com-
munications Magazine, 52(8):106–113, 2014.

[XRK08] Kun Xiao, Shangping Ren, and Kevin Kwiat. Retrofitting cyber
physical systems for survivability through external coordination. In
Proc. of the 41st Annual Hawaii Intern. Conf. on System Sciences,
pages 465–465. IEEE, 2008.

[YBSD16] Alaaeddine Yousfi, Christine Bauer, Rajaa Saidi, and Anind K.
Dey. ubpmn: A bpmn extension for modeling ubiquitous business
processes. Information and Software Technology, 74:55 – 68, 2016.

[YCZM07] Zhixian Yan, Emilia Cimpian, Michal Zaremba, and Manuel Maz-
zara. Bpmo: Semantic business process modeling and wsmo ex-
tension. In IEEE Intern. Conf. on Web Services, ICWS, pages
1185–1186. IEEE, 2007.

[YGM01] Beverly Yang and Hector Garcia-Molina. Comparing hybrid peer-
to-peer systems. In 27th International Conference on Very Large
Data Bases (VLDB 2001), September 2001.

[YHBW17] Alaaeddine Yousfi, Marcin Hewelt, Christine Bauer, and Mathias
Weske. Towards ubpmn-based patterns for modeling ubiquitous
business processes. IEEE Trans. on Industrial Informatics, 2017.

[ZHKL10] Sonja Zaplata, Kristof Hamann, Kristian Kottke, and Winfried
Lamersdorf. Flexible execution of distributed business processes
based on process instance migration. Journal of Systems Integra-
tion, 1(3):3, 2010.

276

Acronyms

AAL Ambient Assisted Living. 22, 23, 32, 56, 85, 127, 241

ACID Atomicity, Consistency, Isolation, Durability. 100, 104, 141, 161, 162, 230

API Application Programming Interface. 84, 90, 124, 170, 293, 294

BPM Business Process Management. 15, 16, 19–21, 23, 25, 26, 30, 38, 41, 42, 44,
45, 47–49, 52, 53, 58, 63, 71, 72, 98, 111, 112, 165, 233, 237–239, 241–244,
246–248, 281

BPMN Business Process Model and Notation. 21, 23, 26–28, 46–53, 56, 58, 62, 67,
75, 80, 81, 84, 85, 95, 111–113, 120, 168, 214, 246, 281

BPMS Business Process Management System. 24, 28–30, 48, 57, 63, 65, 69, 71,
244, 247, 281

CEP Complex Event Processing. 46, 48, 50, 53, 55, 57, 58, 72, 75, 84–86, 88, 121,
122, 145, 178, 182, 217–219, 229, 231, 233, 238, 239, 244, 282

CPPS Cyber-physical Production Systems. 17, 52

CPS Cyber-physical Systems. 15–26, 31–50, 52–54, 57–59, 62, 63, 66–72, 75–77, 83–
88, 90–92, 94–101, 103–108, 110–113, 115–117, 120, 122, 124–126, 128, 130,
132–139, 141, 144–147, 156, 158–166, 170, 171, 175, 177, 179, 182, 186, 197,
203, 204, 213, 215–217, 219–235, 237–248, 281–283, 285, 297

CPSoS Cyber-physical Systems of Systems. 36, 37, 161

DSL Domain-specific Language. 49, 54, 108

EAI Enterprise Application Integration. 15, 16, 40

ECA Event–Condition–Action. 26, 48, 49, 72, 85, 108, 109

EMF Eclipse Modeling Framework. 107, 124, 133

EPC Event-driven Process Chain. 26, 50, 84, 229

EPL Event Processing Language. 50, 55, 84, 85, 108, 111, 113, 121, 122, 175, 178,
179, 187, 191, 192, 217–220, 229, 230, 239, 246, 247

IDE Integrated Development Environment. 107, 108, 110, 111, 118, 123, 132, 133,
144, 166, 167, 224

277

Acronyms

IoT Internet of Things. 15, 16, 18, 21, 30–32, 34, 38, 41, 42, 45, 47–58, 60, 62,
63, 65, 66, 68, 69, 71, 72, 75, 83, 88, 91–93, 96, 101, 111, 116, 117, 121, 124–
126, 137–139, 144, 158, 168, 170, 174, 176, 184, 192, 196, 198, 200, 213–216,
218–221, 228, 230, 233, 237–239, 241–244, 246–248, 281, 282

JSON JavaScript Object Notation. 81, 82, 106

KPI Key Performance Indicator. 99, 105, 112, 141, 142, 158, 164, 226

MAPE-K Monitor–Analyse–Plan–Execute over a shared Knowledge. 35, 36, 64, 65,
68–72, 87, 95, 96, 98, 100, 105, 112, 120, 138, 141–155, 157, 159, 160, 162,
164–166, 168, 170, 171, 185, 187–189, 191–197, 201, 202, 207–211, 213, 214,
216, 218, 223–231, 233–235, 238–242, 244–247, 281, 283

MOF Meta-Object Facility. 76, 162

openHAB Open Home Automation Bus. 38, 87, 88, 121, 122, 124, 125, 168, 169,
173–175, 179, 180, 182, 188, 203, 214, 220

OSGi Open Services Gateway initiative. 46, 83, 84, 117, 123, 124, 297

PACPS Process-aware Cyber-physical Systems. 38, 39, 41, 42, 91, 237, 243

PAIS Process-aware Information System. 25

PDCA Plan–Do–Check–Act. 25

QoS Quality of Service. 64, 65, 99, 105, 112, 141, 142, 152, 158, 164, 213, 226

RDF Resource Description Framework. 88

REST Representational State Transfer. 30, 39, 47, 82–84, 98, 111, 122, 124, 125,
131, 137, 146, 149, 165, 168–170, 175, 176, 179, 181–184, 187, 198, 214, 215,
228, 297

ROS Robot Operating System. 39, 83, 89, 173, 174, 198, 203, 291

RPC Remote Procedure Call. 123

SAL Semantic Access Layer. 122–125, 146, 173–176, 179, 181, 182, 216, 220, 231,
234

SLA Service-level Agreement. 64, 65

SLAM Simultaneous Localization and Mapping. 39, 177, 197, 199, 203, 293

SOA Service-oriented Architecture. 15, 28–30, 48, 54, 56, 65, 83, 139, 164, 165, 281

SOAP Simple Object Access Protocol. 39, 46, 47, 83, 111, 169, 170, 228, 297

SoS System of Systems. 31, 95, 126, 223

278

Acronyms

SPARQL SPARQL Protocol And RDF Query Language. 92, 93, 108, 111, 125, 175,
179, 181, 198, 220, 239, 247, 287

SpEL Spring Expression Language. 97, 145

SQL Structured Query Language. 85

UML Unified Modeling Language. 20, 47, 76, 95

URI Uniform Resource Identifier. 83, 88, 122, 125, 126, 129, 151, 157, 220, 222, 223

WADL Web Application Description Language. 29, 83

WAMP Web Application Messaging Protocol. 123, 132

WfMS Workflow Management System. 16–20, 23–25, 28, 30, 33, 35, 39, 41–49, 53,
56, 58, 62, 67–69, 71, 72, 77, 87, 101, 105, 108, 111–113, 115–118, 125–129,
132, 137–139, 141, 142, 145, 147, 155, 158, 164–168, 170, 171, 173, 174, 176–
178, 181, 182, 184, 187, 188, 196, 197, 202, 204, 207, 208, 212–217, 219–223,
226–235, 237–243, 246, 248, 282, 285

WS-BPEL Web Services Business Process Execution Language. 26–28, 46, 47, 49,
53, 54, 56–58, 65, 66, 75, 78, 81, 95, 168, 170, 214, 246, 281, 287

WSDL Web Services Description Language. 29, 83, 170

WSN Wireless Sensor Network. 50, 54

XML Extensible Markup Language. 27, 49, 81, 82

XML-RPC Extensible Markup Language Remote Procedure Call. 83

XPDL XML Process Definition Language. 49

YAWL Yet Another Workflow Language. 26, 28, 47, 49, 112, 168, 169, 214, 248,
281, 283

279

Acronyms

280

List of Figures

1.1. Smart Home as Envisioned by the VICCI Research Project. 17
1.2. Synchronization of the Cyber and Physical Worlds in Smart Lighting

Scenario. 18
1.3. Autonomous Robot Navigation Scenario in a Smart Home. 19

2.1. Morning Routine Process. 22
2.2. Emergency Scenario Process. 22
2.3. Taxonomy of Basic BPM Terminology. 24
2.4. The BPM Lifecycle. 25
2.5. Partial Emergency Scenario Process in BPMN 2.0. 26
2.6. Partial Emergency Scenario Process in WS-BPEL. 27
2.7. Partial Emergency Scenario Process in YAWL. 28
2.8. The Architecture of a BPMS. 29
2.9. The Basic SOA. 29
2.10. Deployment Models for IoT. 30
2.11. Relation between IoT and CPS. 32
2.12. Architecture for the Implementation of CPS. 33
2.13. IoT Reference Model. 34
2.14. Functional Details of the MAPE-K-based Autonomic Manager. . . . 35
2.15. Workflows on Top of Common Implementation Layers of CPS. . . . 38
2.16. High-level Overview of Challenges Showing the Interaction between

IoT and BPM. 41

3.1. BPMN4WSN Class Diagram. 50
3.2. Examples for IoT-driven Business Process Notations. 51
3.3. System Architecture of the ERFW System. 54
3.4. High-level Architecture for Real-time Monitoring of Business Pro-

cesses through CEP. 55
3.5. Methodology for Implementing Transactional Workflows. 55
3.6. Example for a Mirror World. 59
3.7. Overview of the Verification and Analysis Process of Physical Models. 61
3.8. The MORPH Reference Architecture. 64
3.9. Architecture of the SitOPT System and its Layers. 66
3.10. The Architecture of SmartPM. 67
3.11. Reference Architecture of the Retrofitted Autonomic Software Infras-

tructure. 70

4.1. Process Meta-Level Hierarchy. 76
4.2. Composite Components of the Core Process Metamodel. 77
4.3. Ports and Transitions between Process Steps. 78
4.4. Example of a Process Containing Several Connected Subprocesses. . 79

281

List of Figures

4.5. Extensions of Process Steps via Inheritance. 80

4.6. Metamodel for Process Data Definition. 81

4.7. Meta-classes for Data Flow Modelling and Data Flow on Process and
Service Level. 82

4.8. Emergency Scenario Process Model with Control Flow, Data Flow
and Escalation Port in our Graphical Modelling Notation. 83

4.9. Metamodel Extensions for Service Calls. 84

4.10. Event Extension and Human Task Extension of Atomic Process Steps. 85

4.11. Parts of the Context Model for an Instance of a Light Sensor. 87

4.12. Parts of the Context Model for a Dimmer Switch. 88

4.13. Parts of the Context Model for a TurtleBot Robot. 90

4.14. Extension of the Workflow Metamodel for Dynamic Service Selection. 92

4.15. Metamodel Extensions for Specifying Effects/Success Criteria in Ob-
jectives for the Workflow Execution regarding CPS Aspects. 95

4.16. Example Process with Failure Port and Human Task in Failure Branch. 97

4.17. CPS-related Workflow Data in the Knowledge Base. 98

4.18. Generic Metamodel Extensions for Specifying the Effects/Success Cri-
teria in Objectives for Managed Process Step Executions. 99

4.19. Synchronization Between Cyber World SC,t and Physical World SP,t. 100

4.20. Inconsistent States of the Movement Path Coordinates of a Service
Robot controlled by a Process. 103

4.21. Eclipse-based Process Model Editor. 107

4.22. Mixed Reality App HoloFlows for Simple Workflow Composition. . . 109

4.23. Modelling Activities of Different Types of Users of CPS. 110

5.1. Components and Technologies of the PROtEUS WfMS. 116

5.2. Lifecycle of a Process Step Instance. 119

5.3. Complex Event Pattern Detection. 121

5.4. Communication between Process Engine and CEP Engine During
Process Instance Execution. 121

5.5. Message Flow during the Execution of Static Service Invocations and
Dynamic Service Invocations via the SAL. 123

5.6. Management Application for PROtEUS Resources in IoT Middleware. 124

5.7. Semantic Access Layer (SAL) as Mediator between WfMS and IoT
Services. 125

5.8. Subcontracting as Means for Process Distribution among Peers and
Super-Peers. 126

5.9. Hierarchical Overlay Network Structure of Peers and Super-Peers. . 127

5.10. Message Flow during Distributed Process Execution. 129

5.11. Mobile Dashboard Application for Managing PROtEUS Resources. . 130

5.12. Interacting with PROtEUS via Different Devices and Modalities. . . 130

5.13. Message Flow during Execution of a Human Task. 131

5.14. Mobile Human Tasks Management App. 132

5.15. Execution Trace for Emergency Scenario Process in the PROtEUS
Desktop Application. 133

5.16. Mobile Process Management App SmartCPS. 134

5.17. Overview Screen of the Tabletop Process Management Application. . 134

282

List of Figures

5.18. Special Gestures for Process Management on Tabletops. 135
5.19. Live View of HoloFlows. 136
5.20. Sensors and Actuators in HoloFlows. 136

6.1. Managing Process Steps with MAPE-K Loops. 142
6.2. The Basic Process Execution System (PROtEUS) and its Feedback

Service Extensions. 143
6.3. The MAPE-K Feedback Loop as a Component-based Web Service

Implementation. 143
6.4. Sequence Chart for the MAPE-K Loop applied to the Smart Lighting

Process Step. 150
6.5. Managing Distributed Process Resources with MAPE-K Loops. . . . 152
6.6. Interaction between PROtEUS and the Feedback Service to Execute

Distributed Processes. 153
6.7. Sequence Chart for the MAPE-K Loop applied to the Distributed

Robot Process. 154
6.8. Three Layer Architecture Model for Self-Management. 160
6.9. Runtime View on Cyber-physical Objects and Synchronization Influ-

enced by a CPS Workflow. 163
6.10. Retrofitting Process for Existing WFMSes with Self-* Capabilities via

the Feedback Service. 166
6.11. Retrofitting Process for WFMSes with Consistency Style Sheets. . . 167
6.12. Retrofitted Smart Lighting Process with Activiti. 168
6.13. Retrofitted Smart Lighting Process with YAWL. 169
6.14. Retrofitted Smart Lighting Process with Apache ODE. 169

7.1. Smart Home Lab Setup. 172
7.2. UbiComp 2016 Demo Setup. 172
7.3. Complete Morning Routine Scenario Process. 174
7.4. Robot’s Path between Reader and Paper Boy for the Morning Routine

Process. 176
7.5. Execution of the Process Step Instances of the Morning Routine Pro-

cess over Time. 177
7.6. Complete Emergency Scenario Process. 178
7.7. Android Apps used in Emergency Process. 180
7.8. Emergency Messages Displayed using the Kodi Media Center. 180
7.9. Execution of the Process Step Instances of the Emergency Process

over Time. 181
7.10. Simulated Data of the Health Monitor. 182
7.11. Coffee Brewing Process. 183
7.12. Retrofitted Coffee Maker with Additional Temperature Sensor. . . . 184
7.13. Execution of the Process Steps of the Coffee Process over Time. . . . 185
7.14. Human Task for Successful Coffee Brewing. 186
7.15. Values from the Infrared Temperature Sensor over Time. 187
7.16. Smart Lighting Process. 188
7.17. Lab Setup for the Continuous Light Control Experiments. 188
7.18. Execution of the Process Step Instances of the Baseline Light Control

Process over Time. 190

283

List of Figures

7.19. Power Levels of Light Switch and Values from Light Sensor for Base-
line Experiment over Time. 191

7.20. Execution of the Process Step Instances of the MAPE-K+ Light Con-
trol Process over Time. 192

7.21. Power Levels of Light Switch and Values from Light Sensor for MAPE-
K+ Experiment over Time. 193

7.22. Execution of the Process Step Instances of the MAPE-K++ Light
Control Process over Time. 194

7.23. Power Levels of Light Switch and Values from Light Sensor for MAPE-
K++ Experiment over Time. 195

7.24. Robot Navigation Process. 197
7.25. Hardware Setup for Robot Navigation Experiments. 198
7.26. Path of TurtleBot for RobotNavigation Process. 200
7.27. Execution of the Process Step Instances of the RobotNavigation Pro-

cess over Time. 201
7.28. Coordinates of the TurtleBot Robot Movement for the RobotNaviga-

tion Process over Time. 202
7.29. Distributed MoveTurtle Process. 204
7.30. TurtleBot Robots used in Distributed Execution Experiments. . . . 204
7.31. Distributed Process Execution Setup. 205
7.32. Execution of the Process Step Instances of the MoveTurtle Process

Regarding the Peer Liveliness Experiment over Time. 208
7.33. Execution of the Process Step Instances of the MoveTurtle Process

Regarding the Peer Battery Levels Experiment over Time. 210
7.34. Battery Levels of Peer1 and Peer2 over Time. 211
7.35. Number of Distributed Process Executions Correlated with Successful

Executions or Type of Error for Baseline Experiments. 212
7.36. Number of Distributed Process Executions Correlated with Successful

Executions or Type of Error for MAPE-K+ Experiments. 212
7.37. Retrofitted Smart Lighting Process for PROtEUS. 214
7.38. Requirements Coverage of this PhD Thesis compared to the two most

Relevant Related Works. 232

8.1. Research Roadmap in BPMS for IoT. 245

A.1. Abstraction Levels for Service Robot Platforms. 291
A.2. Main Abstractions used within the DROiT API for Small Domestic

Service Robots. 292
A.3. Service Robot Platforms Supported by the DROiT API. 292
A.4. Abstractions for the Capability of Semi-automatic Movement. 293
A.5. Abstractions for the Capability of Semi-automatic Grabbing. 293
A.6. Abstractions for the Capability of Communication. 294

C.1. Complete Process Metamodel as an Ecore Model. 298

284

List of Tables

3.1. Evaluation of Existing WfMSes with respect to Requirements. 46
3.2. Evaluation of Related CPS Workflow Modelling Approaches with re-

spect to Requirements. 53
3.3. Evaluation of Related CPSWorkflow System Approaches with respect

to Requirements. 57
3.4. Evaluation of Related CPS Cyber-physical Synchronization Approaches

for Workflows with respect to Requirements. 62
3.5. Evaluation of Related Self-* Approaches for Workflows with respect

to Requirements. 68
3.6. Evaluation of Related Retrofitting Approaches w. r. t. Requirements. 71
3.7. Evaluation of Related Work with respect to Requirements. 73

7.1. Execution Times for Process Steps of the Morning Routine Process. 177
7.2. Execution Times for Process Steps of the Emergency Process. 181
7.3. Execution Times for Process Steps of the Coffee Process. 185
7.4. Number of Iterations and Durations of the Individual MAPE Phases

and Feedback Service for Process Step P1 of the CoffeeProcess. . . . 186
7.5. Execution Times for Baseline Light Control Process. 190
7.6. Execution Times for the MAPE-K+ Light Control Process. 191
7.7. Number of Iterations and Durations of the MAPE Phases and Feed-

back Service for Process Step P4 of the MAPE-K+ Experiments. . . 194
7.8. Execution Times for the MAPE-K++ Light Control Process. 194
7.9. Number of Iterations and Durations of the MAPE Phases and Feed-

back Service for Process Step P5 of the MAPE-K++ Experiments. . 195
7.10. Execution Times for Process Steps of the RobotNavigation Process. 201
7.11. Number of Iterations and Durations of the Individual MAPE Phases

and Feedback Service for the RobotNavigation process steps. 201
7.12. Execution Times for Process Steps of the MoveTurtle Process Re-

garding the Peer Liveliness. 208
7.13. Number of Iterations and Durations of the MAPE Phases and Feed-

back Service for Step P1 of the Peer Liveliness Experiments. 209
7.14. Execution Times for Process Steps of the MoveTurtle Process Re-

garding the Peer Battery Levels. 209
7.15. Number of Iterations and Durations of the MAPE Phases and Feed-

back Service for Step P1 of the Peer Battery Levels Experiments. . . 209
7.16. Execution Times of the Basic “LightInvoke” Activity and the Overall

SmartLighting Process for the Investigated WfMSes. 215
7.17. Summarizing Evaluation of Requirements Fulfilment. 235
7.18. Related Work and Advances of this Thesis related to Requirements. 236

285

List of Tables

286

List of Listings

3.1. Example of the When–Then Extension for WS-BPEL. 49
3.2. Device Shadow Example for the State of a Traffic Light. 60

4.1. Instance of a HomeMatic KeyMatic Door Opener in RDF Description. 89
4.2. Semantic Select Query for Retrieving Current Luminance Levels. . . 93
4.3. Smenatic Ask Query for Checking Current Illuminance Levels. . . . 93
4.4. Semantic Command Query for Retrieving Dimmer Actuators. 94
4.5. Query Specifying the Context Path to a Specific Light Sensor. 96
4.6. Satisfied Condition for Successful Light Switching. 97
4.7. Compensation Condition for Erroneous Light Switching. 97

6.1. Goal and Objective for SwitchOnLight Process Step. 148
6.2. Compensation Query regarding the Restoration of Cyber-physical

Consistency. 151
6.3. Goal and Objective for Distributed Subprocess Execution on Turtlebot.155
6.4. Compensation Query regarding Distributed Process Execution. . . . 156

7.1. SPARQL Semantic Select Query for Retrieving the Reader’s Current
Position. 175

7.2. Semantic Command Query for Retrieving and Activating all TV-like
Devices Capable of Playing Media. 178

7.3. Semantic Command Query for Retrieving and Activating all Displays. 179
7.4. Semantic Command Query for Retrieving and Activating all Dimmer

Switches. 179
7.5. Goal and Objective for MakeCoffee Process Step. 183
7.6. Goal and Objective for IncreaseLight Process Step. 189
7.7. Goal and Objective for MoveTheTurtle Process Step. 199
7.8. Goal and Objective for the MoveTurtleRemote Process Step Regard-

ing Peer Liveliness. 206
7.9. Goal and Objective for the MoveTurtleRemote Process Step Regard-

ing Peer Battery Levels. 206

B.1. Exemplary Consistency Style Sheet with Multiple Goals for the Ex-
tended Morning Routine Scenario Process. 295

287

List of Listings

288

Appendices

289

A. DROiT API

Figure A.1.: Abstraction Levels for Service Robot Platforms [SSAS15].

The high-level programming framework (DROiT API [SSAS15]) uses capabili-
ties of robots–namely Grabbing, Movement and Communication–as abstractions for
adding the class of service robots as representations of complex sensor–actuator
compounds to the set of CPS devices. Compared to using concrete operations
(e. g., open/close grabber, drive), this leads to a more abstract view on robot
platforms, which hides implementation details and internal processes. Figure A.1
presents an overview of different abstraction levels for domestic service robots rang-
ing from concrete hardware platforms on the lowest level to capability-based abstrac-
tions on the highest level. ROS enables robot integration on the level of concrete
functionality [QCG+09], whereas the DROiT API programming abstraction facil-
itates integration and robot programming on the capability level [SSAS15]. We
modelled the robot’s actuating functionalities regarding driving, grabbing and com-
munication based on the actuator properties described in Section 4.3.2 and the
abstractions presented in the following sections. The relationship hasCapability is
used to define a robot’s capabilities in the knowledge base (cf. Figure 4.13). The
DROiT API supports the capabilities of (remote controlled and semi-automatic)
Movement, (remote controlled and semi-automatic) Grabbing of items and two-way-
Communication. These capabilities were added as nodes to the knowledge base and
connected to the specific robot types.

291

A. DROiT API

<<Interface>>

RoboticDevice

EngineRobot AbstractRoboticDevice

YouBotTurtleBot

-engine

0..1

Grabber

Nao YouBotGrabber Jaco

-grabber

0..1

Figure A.2.: Main Abstractions used within the DROiT API for Small Domestic
Service Robots.

Figure A.2 shows the core classes of the DROiT API. The abstract Robot class
serves as base class for concrete robot types (e. g., TurtleBot1, YouBot2 and Nao3

robots). A robot’s movement capability is enabled by the Engine class and its
grabbing capability is represented by the Grabber class and its concrete subclasses
(e. g., the YouBotGrabber or the Jaco4 arm). Both robot components are viewed
as AbstractRoboticDevice. Robots and abstract robotic devices implement a com-
mon interface (RoboticDevice) handling a device’s network connection. Figure A.3
presents the robotic platforms supported by the DROiT API : a) TurtleBot 2; b) Nao
robot; c) Kuka YouBot with Grabber; and d) Jaco arm.

Figure A.3.: Service Robot Platforms Supported by the DROiT API.

1http://www.turtlebot.com/turtlebot2/
2http://www.youbot-store.com/
3https://www.ald.softbankrobotics.com/en/robots/nao
4http://www.kinovarobotics.com/assistive-robotics/products/robot-arms/

292

http://www.turtlebot.com/turtlebot2/
http://www.youbot-store.com/
https://www.ald.softbankrobotics.com/en/robots/nao
http://www.kinovarobotics.com/assistive-robotics/products/robot-arms/

A. DROiT API

+moveTo(MovementTarget)
+moveTo(Position,Orientation)

<<Interface>>

SemiAutomaticMovement

Engine Robot-engine

0..1

Location

<<Interface>>

MovementTarget

Item

Figure A.4.: Abstractions for the Capability of Semi-automatic Movement.

Movement One of the basic capabilities of a domestic service robot is its ability
to move within its environment. The API abstracts two modes of movement: direct
control and semi-automatic movement. On the one hand, it is possible to use the
movement capability to directly control the robot, moving it to various directions at
various speed levels, e. g., via a remote gamepad or keyboard sending control com-
mands to the robot. Many domestic robots offer different means of basic or more
advanced SLAM functionalities to navigate within their environment (e. g., using
camera-based processes). Therefore the capability to move semi-automatically to
given destinations within the robot’s world model is added to the knowledge base.
Using internal path and obstacle avoidance processes, the robot moves to a provided
target on a map (e. g., selected on a user interface within our mobile SmartCPS
app [SSAS15]). Figure A.4 depicts details regarding this capability. Robots or their
Engines have to implement the SemiAutomaticMovement interface depending on
whether the robot has a dedicated locomotion engine or built-in movement func-
tionality. The robot has to be provided with a position and orientation–based on
coordinates of its internal map–or with a specific MovementTarget, which can be a
location, item or robot.

+positionGrabber(GrabbingTarget)
+positionGrabber(Position,Orientation)
+positionGrabber(Orientation)
+grab(GrabbingTarget)

<<Interface>>

SemiAutomaticGrabbing

GrabberRobot
-grabber

0..1

<<Interface>>

GrabbingTarget

Item

-heldItem

0..1

Figure A.5.: Abstractions for the Capability of Semi-automatic Grabbing.

293

A. DROiT API

Grabbing The capability of Grabbing can be enabled by robots equipped with a
grabbing unit or standalone robotic grabbers. Direct remote-controlled grabbing
uses the movement and rotation of a virtual point in the palm of the grabbing unit
and inverse kinematics as basic control mechanism [GBF85]. This level of abstraction
makes technical details such as the degrees of freedom of the grabber transparent to
programmers using the API. Analogous to the semi-automatic movement capability,
the grabbing of items can also be performed semi-automatically. The SemiAuto-
maticGrabbing interface defines operations a robot or a grabber has to implement
in order to grab a target item based on its position and orientation (cf. Figure A.5).

Communication Basic input/output communication in the form of speech synthe-
sis/recognition or textual I/O to communicate with users is also provided by the
DROiT API. Based on the way the robot is able to handle input/output (e. g., via
microphone/speakers for the Nao robot or keyboard/screen for the TurtleBot robot),
textual or acoustic communication channels can be used. Figure A.6 shows the ab-
straction of different communication methods. Basic I/O capability for communi-
cating with users is achieved by the RobotIO class providing abstractions for console
and audio input/output. Textual I/O is realized by the ConsoleRobotIO class for
robots that possess a display and means for textual input. Audio I/O is implemented
by means of the AudioRobotIO class relying on speakers and microphones.

Figure A.6.: Abstractions for the Capability of Communication.

294

B. Exemplary Consistency Style Sheet

Listing B.1: Exemplary Consistency Style Sheet with Multiple Goals for the Ex-
tended Morning Routine Scenario Process.

1 Process:"MorningRoutineExtended"

2

3 "SwitchOnLight" : {

4 "name": "enough light for working",

5 "objectives": [

6 { "name": "kitchen light > 700 lux in 5 seconds",

7 "satisfiedCondition": "#lightIntensity > 700",

8 "compensationCondition": "#objective.created.isBefore

(#now.minusSeconds (5))",

9 "consistencyLevel":0.9,

10 "contextPaths": [

11 "MATCH (thing) -[:type]->(sensor {name: ’LightSensor

’})",

12 "MATCH (thing) -[:isIn]->(room {name: ’

Kitchen_Mueller ’})",

13 "MATCH (thing) -[:hasState]->(state:

LightIntensityState)",

14 "MATCH (state) -[: hasStateValue]->(value)",

15 "WHERE toFloat(value.realStateValue) > 0",

16 "RETURN avg(toFloat(value.realStateValue)) AS

lightIntensity"]

17 }

18]

19 }

20

21 "MakeCoffee" : {

22 "name":"Coffee is ready",

23 "objectives":[

24 { "name":"coffee temperature > 37 degrees in 3 mins",

25 "satisfiedCondition":"#coffeeTemp > 37",

26 "compensationCondition":"#objective.created.isBefore (#

now.minusSeconds (180))",

27 "contextPaths":[

28 "MATCH (ctemp {name: ’

State_tinkerforge_irTemp_irTemp_1 ’}) -[:

hasStateValue]->(value)",

29 "WHERE toFloat(value.realStateValue) > 0",

30 "RETURN toFloat(value.realStateValue) AS coffeeTemp"

]

31 }

32]

33 }

34

295

B. Exemplary Consistency Style Sheet

35 "MoveRobotToPaperBoy" : {

36 "name":"Robot Position",

37 "objectives":[

38 { "name":"robot reached the desired position",

39 "satisfiedCondition":"#robotReachedPosition (#position ,

5.8D , 13.0D , 1.0D) == true",

40 "compensationCondition":"#movement.contains(’ARRIVED ’)

",

41 "contextPaths":[

42 "MATCH(posNode {name: ’

State_proteus_turtle_simplePosition_1 ’})",

43 "MATCH(posNode) -[: hasStateValue]-(posValue)",

44 "MATCH(moveNode {name: ’

State_proteus_turtle_movement_1 ’})",

45 "MATCH(moveNode) -[: hasStateValue]-(moveValue)",

46 "RETURN posValue.realStateValue as position ,

moveValue.realStateValue as movement"]

47 }

48]

49 }

50

51 "RetrievePaper": {

52 "name":"robot has sufficient battery",

53 "objectives" : [

54 { "name":"battery level > 30%"

55 "satisfiedCondition": "#batteryValue > 0.6,

56 "compensationCondition": "#batteryValue < 0.3"

57 "contextPaths": [

58 "MATCH(n:NeoProcess {processId:’RetrievePaper ’})

-[r:RUNS_ON]->(p:NeoPeer)-[hm:HAS_METRIC]->(m

:NeoPeerMetric)",

59 "RETURN toFloat(m.batteryValue) AS batteryValue"

]

60 }

61]

62 }

63

64 "MoveRobotToReader": {

65 "name":"execution conformance and liveliness",

66 "objectives" : [

67 { "name":"heartbeat < 5 seconds and executed",

68 "satisfiedCondition": "#processState == ’executed ’",

69 "compensationCondition": "#timeFrom (# heartBeat).

isBefore (#now.minusSeconds (5)) and #processState

== ’executing ’"

70 "contextPaths": [

71 "MATCH(n:NeoProcess {processId:’MoveRobotToReader ’})

-[r:RUNS_ON]->(p:NeoPeer)",

72 "RETURN n.state AS processState , p.lastHeartbeat

AS heartBeat"]

73 }

74]

75 }

296

C. Complete Process Metamodel

Figure C.1 shows the complete metamodel developed in the course of this thesis to
model CPS workflows. Following, we provide an overview of important metaclasses:

• ProcessStep: The central abstract class representing a process step.

• Process: A closed self-contained process ready to be executed.

• AtomicStep: An activity in a process that cannot be decomposed any further.

• CompositeStep: An activity in a process that consists of other process steps.

• Invoke: The abstract class representing a service invocation as process step.

• RESTInvoke: An atomic process step to execute a call to a REST service.

• SOAPInvoke: An atomic process step to execute a call to a SOAP service.

• OSGIInvoke: An atomic process step to execute a call to an OSGi service.

• SemanticAskInvoke: A dynamic service call to evaluate sensor data.

• SemanticSelectInvoke: A dynamic service call to retrieve sensor data.

• SemanticCommandInvoke: A dynamic service call to activate actuators.

• GoalBasedInvoke: A dynamic service invocation based on a goal definition.

• HumanTask: A manual human activity within a process.

• TriggeredEvent: An event triggered in the process based on event patterns.

• TriggeringEvent: An event produced by the process.

• LoadClassStep: An atomic process step to execute custom program code.

• ControlPort: Defines ingoing and outgoing activations of a process step.

• DataPort: Defines ingoing and outgoing data of a process step.

• DataType: Defines the type of the data of a data port.

• EscalationPort: Used to define timeouts for process step executions.

• Transition: Used to connect ports of succeeding process steps.

• CpsStep: Used to define goals for cyber-physical process steps.

• ManagedStep: Used to define goals for managed process steps.

297

C. Complete Process Metamodel

Figure C.1.: Complete Process Metamodel as an Ecore Model.

298

	Introduction
	Motivation
	Research Issues
	Scope & Contributions
	Structure of the Thesis

	Workflows and Cyber-physical Systems
	Introduction
	Two Motivating Examples
	Business Process Management and Workflow Technologies
	Cyber-physical Systems
	Workflows in CPS
	Requirements

	Related Work
	Introduction
	Existing BPM Systems in Industry and Academia
	Modelling of CPS Workflows
	CPS Workflow Systems
	Cyber-physical Synchronization
	Self-* for BPM Systems
	Retrofitting Frameworks for WfMSes
	Conclusion & Deficits

	Modelling of Cyber-physical Workflows with Consistency Style Sheets
	Introduction
	Workflow Metamodel
	Knowledge Base
	Dynamic Services
	CPS-related Workflow Effects
	Cyber-physical Consistency
	Consistency Style Sheets
	Tools for Modelling of CPS Workflows
	Compatibility with Existing Business Process Notations

	Architecture of a WfMS for Distributed CPS Workflows
	Introduction
	PROtEUS Process Execution System
	Internet of Things Middleware
	Dynamic Service Selection via Semantic Access Layer
	Process Distribution
	Ubiquitous Human Interaction
	Towards a CPS WfMS Reference Architecture for Other Domains

	Scalable Execution of Self-managed CPS Workflows
	Introduction
	MAPE-K Control Loops for Autonomous Workflows
	Feedback Loop for Cyber-physical Consistency
	Feedback Loop for Distributed Workflows
	Consistency Levels, Scalability and Scalable Consistency
	Self-managed Workflows
	Adaptations and Meta-adaptations
	Multiple Feedback Loops and Process Instances
	Transactions and ACID for CPS Workflows
	Runtime View on Cyber-physical Synchronization for Workflows
	Applicability of Workflow Feedback Loops to other CPS Domains
	A Retrofitting Framework for Self-managed CPS WfMSes

	Evaluation
	Introduction
	Hardware and Software
	PROtEUS Base System
	PROtEUS with Feedback Service
	Feedback Service with Legacy WfMSes
	Qualitative Discussion of Requirements and Additional CPS Aspects
	Comparison with Related Work
	Conclusion

	Summary and Future Work
	Summary and Conclusion
	Advances of this Thesis
	Contributions to the Research Area
	Relevance
	Open Questions
	Future Work

	Bibliography
	Acronyms
	List of Figures
	List of Tables
	List of Listings
	Appendices
	DROiT API
	Exemplary Consistency Style Sheet
	Complete Process Metamodel

