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Abstract 
This deliverable specifies the main concepts of the CHOReOS middleware architecture. 
Starting from the Future Internet (FI) challenges for scalability, heterogeneity, mobility, 
awareness, and adaptation that have been investigated in prior work done in WP1, we 
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1. Introduction 
Service-Oriented Computing (SOC) is now largely accepted as a well-founded reference 
paradigm for Internet computing [PTDL07]. Under SOC, networked devices and their hosted 
applications are abstracted as autonomous loosely coupled services within a network of 
interacting service providers and consumers (a.k.a. clients). Middleware plays a key role in 
the realization of the aforementioned paradigm as it provides mechanisms that enable the 
registration of services that become available over time, the discovery of services, the 
composition of services and, finally, the access to services. 

Still, despite the remarkable progress of the SOC paradigm and supporting technologies in 
the last ten years, new challenges now arise by the foreseen evolution of the Internet 
towards the Future Internet (FI). As discussed in detail in [D1.2], in the FI, the typical issues 
of scale, heterogeneity, mobility, awareness, and adaptability shall be magnified, calling for 
new middleware solutions that are able to cope with these issues.  

Practically, the FI vision challenges all the aspects of SOC middleware. In particular, service 
discovery should allow the discovery of different kinds of services that range from business 
services (BSs) to Thing-based services (TSs), while coping with the anticipated scaling up of 
the amount of service providers, service consumers, and services. Service discovery should 
be able to integrate multiple discovery protocols and adapt the protocols used with respect to 
the particular service discovery situation (e.g., discovery of business services published in 
the Web, discovery of services available in a local network). Similarly, service access to 
different kinds of services should be provided, while dealing with the increasing amount of 
these services and the consumers that access them. Access to the services should be 
provided based on different interaction protocols that may be suitable for the different kinds 
of services (e.g., client-server access to business services, publish-subscribe/tuple-space 
access to Thing-based services), while providing an integrated view of these protocols and 
the ability to adapt them. Finally, service composition should be scalable, with respect to the 
number of entities involved, and adaptable so as to deal with unforeseen situations (e.g., 
changes in the quality of composed services).   

In this context and according to the CHOReOS work-plan, the main research outcome of 
WP3 in M12 is the specification of the CHOReOS middleware architecture, which is further 
detailed in this deliverable. This architecture shall serve as a basis for the first 
implementation of the CHOReOS middleware components that is scheduled for M18. 
Naturally, the design and development of the CHOReOS middleware is an iterative process. 
Therefore, we anticipate that the proposed middleware architecture shall be further refined 
after we get experience with the first implementation of the middleware. The refined 
architecture shall constitute the blueprint for the second version of the CHOReOS 
middleware implementation, which is scheduled for M24. At M24, the proposed middleware 
architecture shall be further enhanced with the specification of the CHOReOS 
reconfiguration facilities. By M36, the implementation of the CHOReOS middleware shall be 
integrated in the CHOReOS IDRE and assessed using the CHOReOS use cases.  

Motivated by the main FI challenges and requirements that have been discussed in [D1.2], 
the CHOReOS middleware aims at supporting the execution of large-scale service 
choreographies, which is the foreseen service composition paradigm of the FI. To this end, 
the CHOReOS middleware provides mechanisms for multi-protocol service discovery, multi-
protocol service access, choreography execution and adaptation. The provided mechanisms 
focus on the two main domains that are tackled in CHOReOS: the Internet of Business 
Services (IoBS) and the Internet of Things-based Services (IoTS). Hereafter, we use the 
term Internet of Services (IoS) to refer to the union of these domains, which covers the 
widest possible variety of services that is expected in the FI. Last, but very important 
regarding the FI challenges and requirements, the CHOReOS middleware architecture 
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incorporates the Cloud & Grid middleware, which supports computational- and storage- 
intensive tasks performed by service discovery, service access, and choreography execution 
and adaptation mechanisms. Moreover, the Cloud/Grid infrastructure may also be used by 
the choreographies that are built on top of the CHOReOS middleware.  

Concerning the specification of the CHOReOS middleware, we undertake the typical 
approach [PA06] that starts from the specification of a conceptual view of the middleware 
architecture, which highlights the main concepts of the CHOReOS middleware mechanisms 
that enable service discovery, service access, large-scale choreography execution, and 
Cloud/Grid computing. The conceptual view of the CHOReOS middleware architecture will 
be refined in subsequent versions into corresponding technical design views that reflect the 
implementation of the CHOReOS middleware. In accordance with the above, this deliverable 
starts by setting the overall challenges and requirements posed by the FI, which in particular 
relate to its foreseen ultra-large scale, heterogeneity, mobility, awareness, and adaptability.  

The deliverable is then structured in relation to the essential functionalities of the CHOReOS 
middleware, i.e., service discovery, access, composition, and Cloud/Grid computing. 
Precisely, in Chapter 2, we provide the necessary background on our definition of the FI 
vision and major challenges and requirements that come along with it, which have been 
discussed in detail in [D1.2]. In Chapter 2, we further discuss the overall CHOReOS 
middleware architecture. Then, in Chapter 3 we focus on service discovery, in Chapter 4 we 
concentrate on service access, and in Chapter 5 we discuss choreography execution 
middleware. In Chapter 6, we provide details regarding the Cloud & Grid middleware that 
supports the CHOReOS service discovery, access, and choreography execution 
mechanisms. Finally, the conclusions that summarize the main contributions of this 
deliverable are presented in Chapter 7.  

This deliverable is further accompanied by four appendices and a companion deliverable. 
Appendices A and B provide more details on the middleware mechanisms that target the 
IoTS domain. Appendix C provides technical insight on the SCA standard1, which is 
employed by some of the proposed middleware mechanisms to support the execution of 
service compositions. Appendix D, provides a detailed view of the API offered by the Cloud 
& Grid middleware. Finally, the companion deliverable [D3.1-comp] contains a survey of the 
DPWS standard for accessing TSs.    

                                                 
 
1 http://www.osoa.org/display/Main/Service+Component+Architecture+Specifications  
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2. CHOReOS SOM FI Requirements and Architecture 
The overall CHOReOS Service-Oriented Middleware (SOM) architecture is aligned with the 
FI high-level challenges that were extensively discussed in [D1.2]. In this chapter, we 
summarize the main points derived from this study. Then, we present the basic concepts of 
the CHOReOS middleware architecture, which are further detailed in Chapters 3, 4, 5, and 6. 

2.1. FI High-Level Requirements & Challenges  

The FI has become the main focus of several research and development initiatives all over 
the world, including initiatives in the EU2, USA3, China4, Korea5, and Japan6.  

However, despite the great interest in the FI, no common definition of it has been adopted 
yet. Still, considering that the FI will result from the evolution of today's Internet, the FI can 
be defined as the union and cooperation of the Internet of Content, Internet of Services, and 
Internet of Things, supported by an expanding network infrastructure foundation. Those core 
domains, which we find already in today's Internet in a preliminary stage, are not fully 
established yet and will emerge with the foreseen evolution of services, content, things, and 
networks, as summarized in Table 2-1. 

 

FI Constituent Definition 

Internet of Content 

Content is any type and volume of media. Content may be pre-
recorded, cached or live, static or dynamic, monolithic or modular. 
Content may be combined, mixed or aggregated to generate new 
content and media. It may vary from a few bits (e.g., the 
temperature that a sensor measured) to interactive multimedia 
sessions and immersive complex and multi-dimensional 
virtual/real worlds representations [Daras09]. 

Internet of Services 

An umbrella term to describe several interacting phenomena that 
will shape the future of how services are provided and operated on 
the Internet. The Internet of Services also comprises the various 
sets of Internet Applications including pervasive/immersive/ 
ambient, industrial/manufacturing, vehicular/logistics, financial/ 
ePayment/eBusiness, power network control/eEnergy, eHealth, 
and eGovernment applications [ETP09]. 

Internet of Things 

A global network infrastructure, linking physical and virtual objects 
through the exploitation of data capture and communication 
capabilities. This infrastructure includes existing and evolving 
Internet and network developments. It will offer specific object-
identification, sensor and connection capability as the basis for the 
development of independent cooperative services and 
applications. These will be characterized by a high degree of 
autonomous data capture, event transfer, network connectivity 
and interoperability [CASAGRAS09]. 

Table 2-1.The FI constituents. 

                                                 
 
2 http://www.future-internet.eu  
3 http://www.nets-find.net  
4 http://www.cstnet.net.cn/english/cngi/cngi.htm  
5 http://fif.kr  
6 http://akari-project.nict.go.jp/eng/overview.htm  
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The FI is setting significant challenges over the computing and networking environments in 
general and the middleware in particular, as it magnifies the features of the already 
challenging Internet of today (see [D1.2], [IGHZ11]). Specifically, key challenges posed by 
the FI relate to and are amplified by the highly correlated nature of the requirements for 
scalable, heterogeneous, mobile, aware, and adaptive Internet, summarized in Table 2-2. 

 

FI Requirements FI Challenges 

Scalability 

The Internets of Content, Services, and Things face scalability issues 
that should be handled by the underlying middleware infrastructure 
that supports them [IGHZ11]. These challenges derive from the 
increasing number, size, and quality of their networked entities, which 
is further exacerbated by the empowerment of users who are now 
becoming prosumers [Pereira08,ETP09,SZ09]. For instance, simply 
considering the Internet of Things, the large amount of new 
information available through things needs to be comprehensively 
managed and aggregated to provide useful services [ETP09]. 

Heterogeneity 

The FI will be heterogeneous in many dimensions that should be 
handled by the middleware [ETP09, TSFH09]. These dimensions 
relate to the diversity witnessed in the following aspects [IGHZ11]: 

 Domains of service-based entities that are incorporated in the FI 
(business services, Thing-based services). 

 Standards and technologies derived from the various service-
oriented paradigms involved in the FI (WS* services, RESTfull 
services).  

 Service discovery protocols related to the aforementioned 
domains, standards, and technologies. 

 Service access protocols related to the aforementioned domains, 
standards, and technologies. 

 Service composition models, that concern the aforementioned 
domains, standards, and technologies. 

Mobility 

Unlike the current Internet, the middleware should seamlessly 
integrate mobility in the design of the FI [IGHZ11]. Indeed, an 
essential challenge for the FI lies in the explicit design of service 
access protocols, service discovery protocols, and service 
composition models for a mobile wireless world given that the majority 
of the connected entities are now mobile. 

Awareness & 
Adaptability 

Awareness and related adaptability are common requirements over 
the middleware for sustaining the FI, be it at the service, content, or 
Things level. Issues to be addressed include [IGHZ11]: being aware 
and adapting to the service access protocols, the service discovery 
protocols, and the service composition models involved in different FI 
environments. Moreover, being aware and adapting to changes in the 
services that become available and to the services non-functional 
properties is another key issue for the middleware.  

Table 2-2. Summary of the FI requirements and related challenges. 
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2.2. Overview of the CHOReOS Middleware Architecture 

Despite the FI requirements and the novel challenges derived from these requirements, 
which were discussed in Section 2.1, the CHOReOS middleware still remains a service-
oriented middleware (SOM). Therefore, it consists of mechanisms that facilitate the access 
to services, the discovery of services, and the composition of services. Nevertheless, even at 
this level of abstraction, the CHOReOS middleware architecture is characterized by two 
main features: 

 The CHOReOS middleware targets two different but interrelated domains of services: 
business services and Thing-based services. Based on this inherent characteristic, the 
high-level architecture of the CHOReOS middleware comprises corresponding domain-
specific mechanisms that support the discovery of services, the access to services, and 
the execution of service compositions (see Figure 2-1 for the domain-specific 
mechanisms of the CHOReOS middleware architecture). The specificities of the 
functionalities offered by the domain-specific mechanisms are hidden by corresponding 
unified “eXtensible” middleware mechanisms that unify the access to the domain-
specific middleware mechanisms.  

 Computationally- and storage-intensive tasks of both the middleware and 
the choreographies are supported by the CHOReOS Cloud & Grid middleware.  

Specifically, Figure 2-1 provides an overall view of the CHOReOS middleware architecture. 
As discussed in Chapter 1, this is a conceptual view that focuses in the main features of the 
middleware architecture and their relations, rather than a concrete technical design that is 
perfectly inline with the CHOReOS middleware implementation. Concerning the notation 
used in  Figure 2-1, components correspond to middleware mechanisms, which may consist 
of further components. Nodes denote different service domains, such as the IoBS and the 
IoTS, or supporting infrastructures. Some special symbols and stereotypes are used to 
depict discovery protocols and registries involved in these protocols. Finally, associations 
denote semantic relationships between the concepts of the middleware architecture.   

The main constituents of the CHOReOS middleware are the following: 
 The eXtensible Service Discovery (XSD) service provides functionalities for the 

organization and the discovery of available business and Thing-based services. To 
deal with the FI requirements that relate to heterogeneity, mobility, awareness, and 
adaptability, the XSD service enables the use of multiple service discovery protocols 
that range from legacy (for the discovery of business services), to Thing-based. On the 
one hand, to deal with scalability issues related to the increasing amount of available 
business services, the XSD employs the abstraction-oriented organization and 
discovery mechanisms (i.e., the mechanisms that constitute the AoSBM component) 
developed as part of WP2 (see [D2.1] for further details); these mechanisms operate 
on top of the legacy service discovery protocols. Moreover, to deal with scalability 
issues raised by the increasing amount of available Thing-based services, the XSD 
comprises a specialized Things Discovery protocol (TD) that leverages the concept of 
semantic abstractions for the organization of Thing-based services and provides 
facilities for the probabilistic registration and discovery of these services.   

 Access to business and Thing-based services is realized by the mechanisms of the 
eXtensible Service Access (XSA). Specifically, to deal with the FI requirements that 
relate to heterogeneity and mobility, an abstract eXtensible Service Bus (XSB) 
provides means for the integration of multiple interaction protocols that range from 
protocols suitable for the interaction with business services to protocols suitable for the 
interaction with Things-based services. The integration of different protocols and the 
adaptation from one protocol to another, is based on a unified set of interaction 
primitives that constitute the Generic Application (GA) connector model presented in 
[D1.3]. The XSB is realized by corresponding concrete buses. Specifically, the 
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Distributed Service Bus (DSB) targets business services, while the Light Service 
Bus (LSB) targets Thing-based services. The unified interaction primitives serve as a 
bridge for deriving pair-wise mappings between the semantics of different interaction 
protocols. Technically, these mappings are realized by GA Bridge and Adapter 
elements.    

 

Figure 2-1. CHOReOS Middleware Architecture. 

 The mechanisms that enable the execution of business and Thing-based service 
compositions are encapsulated in the eXecutable Service Composition (XSC) 
element. In particular, the XSC comprises mechanisms that realize the mapping of 
choreography models developed according to the CHOReOS development process 
defined in WP2 and described in [D2.1]. Moreover, XSC enables the execution of 
massive compositions of Thing-based services via the Composition & Estimation (C&E) 
component. The C&E focuses specifically on the scalability issues introduced by the 
need to compose an ultra-large number of Thing-based services towards calculating a 
required outcome. To deal with these issues, it relies on the concept of approximate 
composition. 

 General scalability issues are handled by the Cloud & Grid middleware, which 
supports all the other middleware mechanisms that lie on top of it, by 
providing an execution platform, which can scale as the resource demands 
on the upper layers increase. However, the Cloud & Grid middleware is not yet another 
cloud infrastructure. Instead, it is a middleware layer that provides unified access to 
multiple cloud infrastructures (e.g., Amazon EC2, HP Open Cirrus, private clouds) 
under a common API.   
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Based on this overall conceptual view that introduces the main concepts of the CHOReOS 
middleware, the next subsections focus, respectively, on the main concepts of the 
mechanisms for the discovery, access, and composition of business services and on the 
main concepts of the mechanisms that target discovery, access, and composition of Thing-
based services. Finally, we introduce the contribution that relates to the Cloud & Grid 
middleware. 

2.2.1. The CHOReOS Middleware for Business Services 

As mentioned previously, the key ideas for dealing with the FI requirements in the context of 
IoBS are: the use of abstractions and multiple protocols to enable business service discovery 
and access and the use of Cloud & Grid computing to support the execution of scalable 
choreographed business services.  

More specifically, the contributions of the CHOReOS IoBS middleware are: 
 Business Service Discovery: To facilitate the querying and the browsing of the 

constantly increasing amount of business services that are expected in the FI, the 
CHOReOS XSD employs the use of clustering mechanisms that allow to group 
services, which provide similar functional/non-functional properties and construct 
functional/non-functional abstractions that represent the aforementioned groups of 
services. As already discussed, these clustering mechanisms along with the proposed 
querying and browsing facilities are part of the AoSBM, developed in WP2 [D2.1]. 
However, a main issue that should be addressed to enable the abstractions-oriented 
organization of available business services is to provide a flexible mechanism that is 
capable of finding, and feeding to the AoSBM, information about the business services, 
which become available over time. Dealing with this issue amounts to putting in action 
the multi-protocol service discovery capabilities of the XSD. The discovery protocols 
are integrated in the XSD via a customizable plug-in architecture that can be configured 
and adapted with respect to the particular discovery situation based on a dedicated 
Plug-in Manager (Figure 2-1). The plug-in architecture may be used along with legacy 
plug-ins to retrieve information about available business services published in well-
known service portals, in local networks, etc. Nevertheless, information about these 
services may be imprecise and unreliable. To deal with this issue the plug-in 
architecture comprises a plug-in that is dedicated to connect the XSD with the 
CHOReOS Governance registry, which provides information about business services 
that are controlled by the CHOReOS Governance framework developed in WP4 [D4.1].     

 Business Service Access: To enable access to business services, the CHOReOS 
DSB relies on the PEtALS ESB (Enterprise Service Bus) technology, developed by the 
EBM partner.  In particular, we aim at two complementary incarnations of the DSB. The 
first one, called native-DSB, employs the CHOReOS Cloud middleware to support the 
execution of the basic interaction protocols that are currently provided by the PEtALS 
ESB. The native-DSB avoids the overhead of supporting multi-protocol adaptation and 
consequently does not deal with choreographies where such support is needed. On the 
other hand, the extended DSB version, called XSB-over-DSB focuses on 
choreographies with requirements for interaction heterogeneity. To this end, the XSB-
over-DSB adds to the PEtALS ESB the capabilities of adapting among multiple 
interaction protocols, based on the GA interaction primitives.   

 Business Service Composition: Concerning the executable mapping of business 
choreography models developed according to the WP2 CHOReOS development 
process, we also consider two complementary approaches (Figure 2-1) that rely on 
corresponding integration technologies, which are popular in industry. The first 
approach, called BPEL-based XSC, builds upon the ESB technology (specifically the 
PEtALS ESB) and maps a choreography model and specifically the coordination 
delegates, derived according to the choreography synthesis method as part of the 
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CHOReOS development process, into distributed BPEL scripts. The second approach, 
called SCA-based XSC, relies on the SCA technology (specifically the FraSCAti SCA 
implementation) [SMFD09] and consequently maps the coordination delegates into 
SCA composite components. 

2.2.2. The CHOReOS Middleware for Things 

Many of the challenges related to the Internet of Things are directly inherited from the 
existing Internet, and therefore it is natural that some approaches that have been proposed 
for one can be adapted for the other. An approach that makes natural sense for the IoT is 
that of the Internet of Things-based Services (IoTS), which employs service-orientation to 
abstract each thing as a service. However, in some key areas, we find that we must make 
drastic changes as direct consequence of the IoT physical aspect, which does not exist in 
the current Internet. These changes are discussed in detail in the following.   

First, the very scale of IoTS will necessarily be orders of magnitude greater than the existing 
Internet, since the IoTS requires things to be spread over large geographical areas, in 
spatially dense arrangements. This clearly differs from IoBS where business services, do not 
have a meaningful geographical aspect and therefore need not be duplicated all over the 
world (except for QoS purposes). Second, the IoTS also displays a trait that we call a deep 
heterogeneity: more so than business services, in the IoTS it makes a difference that things 
are produced by an assortment of vendors, with highly varying sensing/actuating 
characteristics, such as error distributions, sampling rates, spatial resolution, and so on. 
Many of these variations arise from differences in the manufacturing processes, in the exact 
hardware design, in the quality of materials, etc. — all of which are issues of the physical 
world and are absent in the realm of software-only services. 

Finally, the IoTS also brings with it all the problems related to the interpretation of physical 
information. There are entire scientific fields devoted to making sense of the physical world 
(signal processing, estimation theory, robotics, etc.), and if things were simply handled as 
common services (without any special treatment) this would demand that application 
programmers assume the role of domain experts to use them to their fullest. 

We address these issues in the CHOReOS IoTS middleware, which is discussed in 
Appendix A. This middleware takes sensing and actuation requests as input, and returns a 
desired result as output. At the highest level, its architecture consists of three parts 
incorporated in the overall CHOReOS middleware as shown in Figure 2-1: the Things 
Discovery (TD) protocol, the Knowledge Base (KB) and the Composition & Estimation 
(C&E) component. The element that is directly in charge of processing incoming requests is 
the C&E. In this process, the C&E must interact with both the KB and the TD to parse the 
incoming requests and generate the compositions of services that resolve it. Our 
contributions for each of these components are the following: 

 Things Discovery: In a network where each discovery query may return millions of 
matching things, traditional discovery techniques become too onerous on the network 
infrastructure. To address this, we propose probabilistic discovery as a way to 
leverage well-known statistical properties of physical quantities and return only a much 
reduced — but still representative — subset of all matching things. 

This heavily relies on the Knowledge Base, which consists of three parts: a domain  
ontology (containing structured physical knowledge), a device ontology (carrying 
information about different sensors and actuators), and an estimation ontology 
(carrying mathematical methods for data estimation and interpretation). More details on 
the Knowledge Base are provided in Appendix B. 

 Things Access: We propose six interaction paradigms that can be used to access 
sensors and actuators. More concretely, thing access can be (1) instantaneous, to 
perform a one-time sensing/actuating request; (2) periodic, to return a reply or execute 
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a command at a constant rate; or (3) event-based, as things may return a reply after 
being triggered by a specific event only (or controlled by sensors in the actuation case). 

 Things Composition and Estimation. Similarly to the discovery case, the massive 
scale and heterogeneity of the IoTS make it unrealistic to look for an optimal solution 
within the combinatorially-large number of different service compositions that can 
answer a given query. As such, in our middleware, we instead pursue an 
approximately-optimal composition. The idea is to reduce the problem space 
considerably and still come up with a solution that is equally useful for the application 
that originally requested it. Furthermore, to address the previously-mentioned 
challenges of data interpretation, the C&E component is also in charge of automatic 
estimation. That is, by applying physical/statistical models on the historical dataset 
from surrounding things, the C&E component is able to estimate the most likely true 
value of the data at any given spatiotemporal point — whether there was a sensor at 
that exact location or not. 

Meanwhile, in a proof-of-concept implementation, the CHOReOS IoTS middleware is 
implemented for Android- or Java-SE-compatible things or gateways and provides a unified 
interface for two aspects of thing interactions (registration and access) in addition to a things 
lookup interface. Furthermore, in terms of its actual hardware configuration, the CHOReOS 
IoTS middleware follows a dual approach where: 

 Things that are programmable and have processing capabilities (such as mobile 
phones and smart sensor nodes) allow us to install software to directly interact with 
them. 

 Other Things that use legacy/proprietary protocols to communicate in a closed network 
are interfaced by adapting their existing gateway device to interact with the IoTS 
middleware. 

2.2.3. Cloud computing to sustain FI scale 

Cloud computing plays a significant role for the CHOReOS middleware as it provides an 
execution platform that enables scalability for CHOReOS choreographies. In addition, 
research in CHOReOS will extend the state-of-the-art in Cloud computing by providing a 
novel mechanism for the execution of complex, distributed SOA systems on the Cloud. 

The CHOReOS Cloud & Grid middleware will abstract different Infrastructure as a Service 
(IaaS) implementations in a common interface, providing a high-level API for the instantiation 
of choreographies. Thus, CHOReOS will act as a Platform as a Service (PaaS) system, 
enabling the enactment of choreographies that, if desirable, can work in the Software as a 
Service (SaaS) model. 

Finally, CHOReOS will provide a novel solution for the execution of complex services on the 
Cloud. Current Cloud computing technologies focus on the allocation of virtual machines and 
on low-level resource management. The CHOReOS Cloud & Grid middleware, on the other 
hand, will raise the level of abstraction by providing the means to specify sophisticated 
distributed systems composed of multiple heterogeneous services in the end-user 
application level. The CHOReOS Cloud & Grid middleware will then map this specification to 
a real, large-scale distributed system that will be validated, automatically deployed, and 
executed on Cloud machines, monitored, verified, and dynamically adapted if necessary. 

In summary, this model will enable the enactment of large-scale choreographies envisioned 
by the CHOReOS project and will advance the state-of-the-art of Cloud computing. A 
detailed description of the components and services to be provided by the CHOReOS Cloud 
& Grid layer is provided in Chapter 6. 
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3. Service Discovery 
In this chapter, we concentrate on the CHOReOS middleware mechanisms that deal with 
service discovery (Figure 3-1). As already mentioned in Section 2.2, the CHOReOS service 
discovery has to deal with three main challenges: 

1) The heterogeneity of service discovery protocols that are widely in use in both the IoBS 
and the IoTS domains. 

2) The ultra large populations of services and service consumers in both domains.  

3) The advanced and diverse requirements in terms of service registration and lookup 
capabilities rose by different components and purposes of the CHOReOS Integrated 
Development and Runtime Environment (IDRE) described in [D5.2]. 

Figure 3-1. Service discovery mechanisms for the CHOReOS middleware. 

Hence, we have opted for a highly extensible, scalable, customizable, and accessible 
solution for the CHOReOS service discovery, provided by the eXtensible Service 
Discovery service. XSD integrates the following features: 

 XSD is exposed as a service, via the XSD API (comprising the Discovery and 
Federation APIs introduced below), so that it can be discovered, accessed, and 
composed as any other service. With respect to discovery, we envision an extensible 
distributed collaborative architecture for CHOReOS service discovery integrating 
multiple instances of XSD for ensuring scalability in the ultra large scale of FI. The 
definition of this architecture and the related Federation API will be done later in the 
course of the project. 

 XSD is also internally extensible and customizable: it relies on a plug-in based 
architecture, which enables incorporating support for any current or future service 
discovery solution applying to IoBS and IoTS. XSD is adaptable, in the sense that the 
available discovery solutions can be adapted to different service discovery situations. 
As shown in Figure 3-1, plug-ins interact with service discovery protocols and/or 
service registries to collect information on services deployed in the related 
environments. To deal with the organization of services, the Plug-in Manager 
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coordinates all the different plug-ins and interacts with the Abstraction-oriented 
Service Base Management (AoSBM) to supply the CHOReOS Abstraction Base 
with the collected service information (see [D2.1] for further details). We detail our plug-
in based solution in Section 3.1. In particular, we provide plug-ins for supporting certain 
legacy SDPs commonly found in IoBS and IoTS environments. Furthermore, we will 
develop a plug-in for incorporating the CHOReOS Governance Registry, which 
contains service information for all business services that are governed by the 
CHOReOS Governance framework and deployed on the DSB (see Section 4.2). We 
present this registry in Section 3.2. Finally, we will develop a plug-in for supporting the 
CHOReOS Things Discovery protocol, which is our solution to service discovery in 
IoTS. We introduce this protocol in Section 3.3. 

 To accommodate the ultra large numbers of IoBS and IoTS services, XSD integrates a 
number of advanced techniques applying to the registration, storing, and lookup of 
service-related information. In particular, the AoSBM applies abstraction methods for 
organizing services in groups of similar services (see [D1.3, D2.1]), while the Thing 
Discovery protocol enables probabilistic registration and lookup (see Section 3.3). 

 Finally, XSD provides a rich Discovery API, supporting advanced service lookup 
capabilities, which address the needs of the CHOReOS dynamic development process 
(WP2), the CHOReOS choreography execution middleware (WP3), and the CHOReOS 
governance and V&V (WP4). More specifically, this API supports the following features: 

 Governance-related lookup, where business services can be discovered based on 
properties of interest to governance (see Section 3.2). 

 Scalable lookup and browsing with respect to desired properties, which leverage the 
abstraction-based classification of services in the abstractions base (see [D1.3, 
D2.1]). Both functional and non-functional properties are supported. 

 Discrete and continuous lookup queries, where the latter enables receiving push-
based discovery results over time whenever new discovery information is available. 
In Section 3.3, we explain more about the introduction of continuous lookup queries 
specifically in IoTS. 

 Probabilistic lookup queries for scalable discovery over large service populations. 
This is based on applying some statistical distribution function to a sought property 
to enable sampling a service population instead of browsing the entire population, 
nevertheless ensuring a reliable discovery result. In Section 3.3, we explain more 
about the introduction of probabilistic lookup queries specifically in IoTS. 

3.1. Multi-Protocol Service Discovery 

Our XSD plug-in architecture enables extensible multi-protocol service discovery. Our 
approach to plug-in based service discovery applies the following phases: 

1. First, services advertise themselves by using a legacy protocol, such as UPnP SSDP7 
or DPWS WSDD [D3.1-Comp], or by registering in the Governance Registry, or by 
probabilistic registration employing the Thing Discovery protocol.  

2. Next, service advertisements are discovered by the corresponding plug-ins and 
translated to a common representation. The representation is based on our definitions 
of component interfaces introduced in [D1.3] on the CHOReOS architectural style and 
on our definition of the Abstractions-oriented Service Base Management presented in 
[D2.1].  

                                                 
 
7 http://www.upnp.org/ 
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3. Descriptions of services, following the common representation are passed via the 
Plug-in Manager to the AoSBM. After being properly classified, information related to 
the classification of the service descriptions is stored in the Abstractions Base (see 
[D2.1] on the Abstractions Base).  

4. Service lookup can then be performed based on the internal organization of service 
descriptions and matching mechanisms of the Abstractions Base and via the 
Discovery API (see [D2.1] on the Abstractions Base). 

Our plug-in design builds upon existing platforms for SDPs and experience learned from 
them, in particular, the MUSDAC discovery platform [RICL07], the UbiSOAP discovery 
platform [CRI10], and the CONNECT Discovery Enabler [CONN-D1.2]. We extend these 
past-work solutions to deal with the advanced requirements of CHOReOS. More specifically, 
these solutions provide the runtime environment for plug-ins and a structured way for 
developing a new plug-in. Plug-ins have already been developed for the UPnP SSDP and 
DPWS WSDD protocols mentioned above. The set of plug-ins can be updated and extended 
dynamically by making changes to a configuration file, which is read by the Plug-in Manager.  

The following two code snippets prescribe the API provided for developing plug-ins. The first 
one, is a part of the class definition of the Plug-in Manager (Table 3-1). Plug-ins interact with 
the Plug-in Manager via this class API. The second one (Table 3-2), is a part of the base 
class to be extended for developing a new plug-in. 

 

Class PluginManager 

Methods Description 

public static PluginManager getInstance(       

  DiscoveryManagerInterface cbInterface 

) 

public static PluginManager getInstance() 

Factory methods for getting a singleton instance of PluginManager. 

public void Terminate() Terminate the operation of the PluginManager. 

public void Restart() Restart the operation of the PluginManager. 

public boolean addPlugins()  Opens a file containing the list of plugin classes to load. Each line 
of the file follows a pattern like: 

org.connect.enablers.discovery.plugins.cdp.CDPPlu
gin=ENABLED.  

 Then iterates through the list calling addPlugin (className). 
New plugins must be added to this file. 

public boolean addPlugin ( 

  String pluginClasseName 

) 

Construct plugin classes via reflection. Each plugin is stored in the 
hashmap (classname -> plugininstance). If the plugin implements an 
"active" rather than passive protocol, then the discovery request is 
initiated through calling getNS() on the plugin. 

public void delPlugin( 

   String sdpName 

) 

Removes the plugin associated to the specified SDP. 

public void delPlugins() Deletes all plugins. 

public CNSState registerNS ( 

   DiscoveredNSDescription nsDescription,  

   String nsLocation,  

   Integer lifetime 

) 

 Called by plugins to place a discovered description (of a 
networked system NS) in the description repository.  

 Plugins get the PluginManager reference by calling the static 
method to get the instance 

public boolean updateNS ( 

   DiscoveredNSDescription nsDescription, 

   Integer lifetime 

Called by plugins to update a discovered description in the repository. 
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) 

public boolean unregisterNSbyUID( 

   String serviceUuid 

) 

Called by plugins to remove a discovered description from the 
repository. 

public boolean unregisterNSbyAddress ( 

   String address 

) 

Called by plugins to remove a discovered description from the 
repository.   

Table 3-1. Plug-in Manager. 
 

Class Plugin – plugins must extend this class 

Methods Description  

public Plugin( 

  String pluginName, int supportedMode 

) 

Constructor. The mode indicates active or passive. UPnP and DPWS 
are passive. 

public Vector<DiscoveredNSDescription> getNS () Returns the services matching the provided service descriptions (if the 
plugin is active). NS stands for networked system. 

public int getDiscoveryMode() 

public String getPluginName() 

Returns information about the plugin 

public boolean Terminate()  

public boolean Restart() 

Terminate / Restart the operation of a plugin 

Plugins inform the manager of discovered NSs by calling 
PluginManager.registerNS () somewhere in their 
implementation. 

Table 3-2. Plug-in. 

3.2. Governance Registry for Business Services 

The Governance Registry for business services enables the registration and discovery of 
services deployed on the DSB (Section 4.2) and fully supports their lifecycle from design to 
run-time. The need for covering the whole lifecycle comes from the fact that in ultra large-
scale systems, information about services should be available at distinct phases of their 
lifecycle. Consequently, it is essential to provide a common and uniform abstraction level 
easing the service-related information retrieval and querying.  

The Governance Registry enables governance activities such as V&V, SLA creation and 
negotiation and, finally, the runtime quality evaluation ([D4.1]). It provides functionality for 
testing, verifying, and validating a service before involving it in a choreography. Moreover, it 
makes it possible to look for services according to non-functional requirements and with 
regard to service level agreements.  

Service consumers may access the governance registry functionalities via the XSD 
Discovery API and negotiate usage contracts. Once agreed, the service can participate in a 
choreography and be deployed on top of the XSB middleware, more precisely, on the DSB. 
At runtime, the governance framework serves for runtime quality evaluation to ensure that 
SLAs shall not be violated. This functionality is addressed by the CHOReOS Governance 
Framework presented in [D4.1]. 

In ULS systems, a significant number of services that are described in different and 
heterogeneous languages may be discovered. To tackle this issue, the Governance Registry 
for business services relies on a uniform service representation, which is inline with the 
model specified in [D1.3]. The latter is able to capture the most relevant information about 
services. Services are then published and discovered uniformly regardless of their initial 
respective descriptions.  



 

CHOReOS  14 
FP7-257178  

Besides the governance-related capabilities, the Governance Registry enables the runtime 
discovery of the services deployed in the environment. To fulfil this, it is synchronized with 
the DSB.  

The Governance Registry benefits from the PETaLS Naming Service that is internal to the 
DSB.  As discussed in Section 4.2.1, the naming service maintains the relevant data about 
services deployed on the DSB. Service location, identification, and names are stored in a 
unique lightweight registry. This way, the bus identifies easily and efficiently service 
endpoints. The naming service is populated automatically, upon the deployment of new 
services on the DSB. It relies on the Java Business Integration specification and the APIs 
that are dedicated to handling the service discovery within the DSB middleware.  

The naming service is populated as follows. When services are deployed on the DSB, a 
context is automatically created for them. Then, a reference endpoint is automatically 
created for each service. Once deployed, it is possible to activate and deactivate the service 
endpoint. Further, more advanced functionality is provided such as: endpoint registration, 
endpoints and data query and logging.  

The CHOReOS project will provide an enhanced discovery protocol for business services 
based on the integration of both the naming service and the governance capabilities. Both 
will be integrated to provide an innovative synchronized view that conciliates the design time 
with the runtime environments. Indeed, we will be able to deploy services from the 
governance registry on top of a highly distributed service access middleware, and at the 
same time it will be possible to populate the registry automatically based on the data 
gathered from the several distributed runtime naming services of the DSB nodes.  

Benefiting from the CHOReOS runtime middleware, the Governance Registry will enable the 
discovery of heterogeneous running services. Its discovery capabilities are augmented with 
V&V and quality runtime evaluation of services. Finally, further extensions shall be realized 
to enhance the naming service with awareness abilities. Actually, the naming service will be 
able to represent, in a common way, all services available in several DSB nodes. A peer-to-
peer discovery approach could be adopted. Further studies will be realized to elucidate these 
contributions. 

3.3. Thing Service Discovery Protocol  

In our view, the existing state-of-the-art in service discovery is not sufficient to address the 
scalability and heterogeneity of the IoTS. While these approaches work well for the existing 
Internet (where traffic is made up of a relatively small amount of service interactions) they 
are not fit for the complex weave of interactions that will be commonplace in the IoTS. In the 
IoTS, a large number of requests will involve coordination among thousands of things and 
services, whereas on today's Internet most requests are largely point-to-point.  Therefore, 
the number of packets transmitted in the network will grow strongly nonlinearly as the 
number of available services increases. In such an environment, performing even a simple 
service discovery may exceed acceptable time, processing, and memory constraints.  

In our approach, we address these issues by introducing approximations and probabilistic 
properties into the discovery process, therefore leading to what we call probabilistic 
discovery.  

Any discovery process can be defined as taking place in two phases: registration and look-
up. Registration is the phase where each thing connects to a server (called a registry) to 
give some information about itself, including a network address and some relevant metadata.  
Look-up is when an external entity queries the discovery layer to find the things/services that 
match a given set of desirable metadata attributes (for instance, sensing modality, 
geographic location, error characteristics, etc.). 

In probabilistic discovery realized by the TD protocol showed in Figure 2-1, we modify both 
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the registration and look-up phases to better support a massive, deeply heterogeneous 
network. These modifications can be summarized as follows: 

 Probabilistic Registration: As billions of things are introduced into the network, the 
registries can quickly become overloaded with information. However, taking the 
physical aspect of things into account, one finds that much of this information is 
redundant, as neighboring devices can often replace one-another. Exploiting this fact, 
an approach often taken in the sensor-networking literature is to selectively utilize only 
a subset of all things at a time, in a process called duty-cycling. The idea behind 
probabilistic registration is inspired on the same principles, except that, in an unknown 
topology, there is likely no deterministic function that can oversee the duty-cycling 
process in an optimal manner. Therefore, we instead opt to pursue an approach where 
each thing uses a number of non-deterministic functions to effectively duty-cycle by 
registering/deregistering itself probabilistically at different times. The main research 
questions for probabilistic registration are which combinations of probability 
distributions should be used for each of the random variables above. For this purpose, 
the protocols used in traditional discovery methods do not necessarily have to change 
– instead, the only difference is how each thing uses these protocols. That is: 

 Which randomly-chosen registry or registries they should register with; 

 At what randomly-chosen times the registration process should take place; 

 What randomly-selected metadata attributes should be registered with each registry. 

 Probabilistic Look-Up: We define as probabilistic look-up the act of querying the 
things repository to find the set of things and services that can best approximate the 
result that is being sought after. The main purpose of this process is to use predefined 
probability distributions to find approximate sets of services when exact solutions would 
be too costly to compute. For instance, if an application would like to find out the 
average temperature in Paris, the CHOReOS IoTS middleware should proceed by first 
fetching the definition of “average” from the Knowledge Base, which includes a 
description of the well-known equation for the sampling distribution of the mean. This 
equation states that in a network of M sensors, we can afford to instead use only N 
sensors (N < M) to calculate the average temperature within some mean error of e. 
With this information the discovery should, then, perform the following actions: 

1. Use the provided error equation to estimate the number N of sensors that will 
be needed for this request. 

2. Produce a random sample of N points in time, space, and other dimensions 
(such as sensor/actuator orientation in space, their coverage area, or any other 
attribute of a device).  

3. Discover N devices in the network that approximately match those N points.  

4. Given this set of devices, recalculate the error estimate.  

5. Repeat 2–5, depending on whether the new error estimate is satisfactory. 
 Continuous look-up: In a traditional discovery protocol the look-up operation is 

instantaneous and pull-based. That is, an application usually sends a one-time query to 
a repository and pulls the query result containing all matching devices. However, for the 
IoTS, we propose an additional look-up approach, push-based, where an application 
continuously receives information about matching devices whenever the query results 
change over time. To illustrate this, consider an application that wishes to keep track of 
the temperature readings around a moving user. As the user changes his location, the 
relevant set of sensors will also change. Therefore, the CHOReOS IoTS middleware 
should continuously inform the application about any appropriate sensors discovered at 
the user's coordinates, as well as any sensors that have suddenly become too far away 
to be useful. Furthermore, the mobility of the application/user is not the only motivation 



 

CHOReOS  16 
FP7-257178  

behind continuous look-up queries. Two other key reasons are: (1) the mobility of the 
things themselves, since the things in question could be moving cars, for instance; and 
(2) the dynamicity of the network, since new things that match a given look-up query 
may enter/leave the network at any point in time. 

The probabilistic discovery approach should be implemented based on existing protocols. 
However, we are currently investigating which one of the existing protocols to adopt and 
implement as the Things Discovery protocol (among which is WSDD).  
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4. Service Access 
In this chapter, we focus on the CHOReOS middleware mechanisms that address service 
access for both the IoBS and the IoTS domains in the FI (Figure 4-1).  

As discussed in Section 2.2, the major issue for service access towards dealing with the FI 
requirements is to be able to cope with the diversity of interaction protocols involved in IoBS 
and IoTS and, specifically, the integration and the pair-wise adaptation of these protocols. To 
this end, the ESB paradigm is the established solution in Service Oriented Architecture 
(SOA) for dealing with interaction protocol diversity, due to its extensibility and scalability. 
Thus, we consider the ESB paradigm as the starting point in designing the CHOReOS 
mechanisms for service access.  

 
Figure 4-1. Service access mechanisms of the CHOReOS middleware. 

In general, the ESB paradigm leverages best practices from EAI (Enterprise Application 
Integration) mechanisms and the service oriented architecture paradigm. ESB is based on 
an open, standard message backbone dedicated to enable the implementation, deployment 
and management of SOA-based systems. ESB exploits Web services, Message Oriented 
Middleware, smart message routing, and transformation mechanisms. In principle, ESB 
supports systems that involve a large number of services and high distribution and thus 
provides a scalable and manageable integration infrastructure. ESB acts as a mediator 
between service providers and consumers.  

As depicted in Figure 4-2, ESB allows connecting applications, data sources, customer 
portals, and B2B interactions. Remote application integration is based on sophisticated 
mechanisms such as brokering, message transformation and routing, quality of service 
support, and service composition.  

Services are discovered dynamically thanks to a common registry where service descriptions 
are stored and retrieved. The registry of the bus is technical in the sense that it stores the 
physical addresses of the services. The registry further holds meta-data related to providers 
and consumers. Service access related mechanisms allow heterogeneous applications and 
services to communicate with the bus. These mechanisms support heterogeneous protocols 
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and programming languages. Communication between services and applications is fulfilled 
through XML native messages. Messages are stored in a queue until their consumption by 
service consumers. Communication is further assisted by means of mediation patterns for 
routing, transformation, encoding, and mapping. The mediation patterns ensure the 
transformation of the message issued from an application to another application even if 
these are heterogeneous, as well as its encoding and its mapping to the right destination. 
Business processes and services are choreographed and orchestrated using a powerful 
engine. This engine is the cornerstone mechanism of integration in ESB solutions. 

 
Figure 4-2. Functionalities of the Distributed Service Bus. 

The main functionalities of an ESB are supported by components that can be both 
centralized or distributed over a network.  All the above features make ESB a promising 
technological choice for Future Internet systems. 

Nevertheless, CHOReOS aims to cover much larger interaction protocol diversity than the 
one commonly found in current SOA environments. In [D1.3], on the CHOReOS architectural 
style, we detail the CHOReOS vision for the connectors employed in the FI to interconnect 
Business Services and Thing-based Services. There, besides the typical Client/Server (CS) 
connector, we prescribe Publish/Subscribe (PS) and Tuple Space (TS) connectors, while we 
intend to add to these discrete connectors continuous ones, based on streaming, as well as, 
possibly additional connectors, representing other interaction paradigms; our objective is to 
be comprehensive. In this context, we claim that current ESBs fall short when it comes to 
supporting interoperability among such diverse interaction paradigms.  

More specifically, common ESB implementations provide a common bus protocol that 
incorporates messaging semantics and is Web service-compatible, since SOA and Web 
services are the key targets of ESB-based infrastructures. This means that any system 
plugged into the bus is represented as a Web service, and its interaction protocol is mapped 
to message exchanges. Still, we have to note that the latest ESB implementations have 
included event-based communication to the bus protocol: this new semantics is supported in 
parallel with messaging [PH07]. In any case, we point out that common ESB semantics does 
not cover cross-integration of heterogeneous interaction paradigms, e.g., interoperability 
between CS and PS, or any other pair combination including TS, streaming, etc. The ESB 
solution in the example would be able to map both CS and PS to the same common bus 
semantics, i.e., choosing either messaging or events (when both are available) and map 
both CS and PS to the same single choice. This means that at least one mapping implies 
passing to a different semantics than the original one, which may introduce loss of 
semantics. Briefly stated, current ESB solutions are based on wrapping heterogeneous 
systems behind Web service interfaces, which, due to the loss of native semantics, hinders 
system integrators from accessing the fine-grained features of the individual systems being 
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integrated. The loss of native semantics may cause suboptimal functioning of the overall 
system of systems, i.e., the choreography of services in the CHOReOS context. 

Hence, our solution to service access relies on an enhanced bus paradigm, the eXtensible 
Service Bus showed in Figure 4-1. XSB features richer interaction semantics than common 
ESB implementations to deal effectively with the increased IoBS/IoTS heterogeneity. 
Moreover, from its very conception, XSB incorporates special consideration for the cross-
integration of heterogeneous interaction paradigms. When mapping between such 
paradigms, special attention is paid to the preservation of interaction semantics. 

4.1. Multi-protocol Service Access  

The XSB paradigm is based on our modeling of FI connectors presented in [D1.3] on the 
CHOReOS architectural style. More specifically, we introduced there a systematic 
abstraction of interaction paradigms, as depicted in Figure 4-3, with the following features: 

 

 
 

Figure 4-3. Abstraction of interaction paradigms. 

 We abstract first from diverse middleware platforms (e.g., Web Services, JMS, LIME) to 
connector types representing the inherent interaction paradigms, i.e., CS, PS and TS 
(lower arrow numbered with 1) in Figure 4-3. As already mentioned, we intend to 
include streaming and others in these paradigms. In particular, we are currently 
surveying IoTS-oriented solutions, such as middleware for wireless sensor network 
architectures, to identify interaction paradigms in use in this domain (see Section 4.3). 
Our objective is to comprehensively cover both the IoBS and IoTS domains with our 
supported connector types. 

 Then, we further abstract these connector types to a single higher-level connector type, 
which we call Generic Application (upper arrow numbered with 1). GA is a 
comprehensive connector type based on the union of the CS, PS, and TS connector 
types, where precise identification of the commonalities or similarities between the 
latter have enabled the optimization of the former. Further, GA preserves by 
construction the semantics of CS, PS, and TS. With the completion of CS, PS, and TS 
with more connector types, GA will represent a complete common abstraction solution 
for IoBS/IoTS. 

 For both the above abstraction transformations, we provide counterpart concretizations, 
which enable transforming GA connector primitives to CS, PS, or TS connector 
primitives and then to concrete middleware platforms primitives (arrows numbered with 
2).    
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 Furthermore, based on the GA abstraction we introduce mapping transformations 
between any pair from the set {CS, PS, TS} via GA. The fine knowledge of CS, PS, and 
TS semantics, as embedded in GA, enables these mappings to be precise: differing 
semantics are mapped to each other in such a way that loss of semantics is limited to 
the minimum. Thus, GA enables interoperability between heterogeneous interaction 
paradigms and, further, corresponding middleware platforms (sequence of arrows 
numbered with 1 and then 2). 

Based on this abstraction approach, we introduce XSB as having the following features (see 
Figure 4-4): 

 
Figure 4-4. XSB support for multiple interaction protocols/paradigms. 

 XSB can be seen as an abstract bus that prescribes only the high-level semantics of 
the common bus protocol. The XSB common bus protocol features GA semantics. 

 Heterogeneous systems (or CHOReOS services) can be plugged into the XSB by 
employing adapters that adapt between the native middleware of the deployed system 
and the common bus protocol. This adaptation is based on the systematic abstraction 
discussed above (Figure 4-3), and in particular on the two-way transformation 
mappings between the native middleware platform, the corresponding CS/PS/TS 
abstraction, and the GA abstraction (arrows numbered with 1 and 2). Furthermore, 
adapters can resolve interoperability between heterogeneous interaction paradigms in 
the case where a GA primitive received from the bus represents an interaction 
paradigm other than the one of the native middleware platform.   

 XSB, being an abstract bus, can have different implementations. This means that it 
needs to be complemented with a substrate which at least supports: (1) deployment 
(i.e., plugging) of various systems on the bus and (2) a common bus protocol 
implementing GA semantics. With respect to the latter, we envision that a GA protocol 
realization may either be designed and built from scratch (still supposing at least an IP-
based transport substrate) or be implemented by conveying GA semantics on top of an 
existing higher-level protocol used as transport carrier. The latter solution can be 
attractive, as it facilitates GA protocol realizations in different contexts and domains.  

Building upon the introduced XSB paradigm, the CHOReOS solution to service access lies in 
proposing a specialized bus proper to each one of the IoBS and IoTS domains, as an 
implementation of XSB: 
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 The Distributed Service Bus (Figure 4-1) targets the IoBS domain. DSB is based on 
PEtALS8, which is a complete ESB solution brought by the EBM partner and is evolving 
in multiple ways within the CHOReOS project to support FI choreographies. To ensure 
flexibility and optimality with respect to different contexts and requirements, we have 
opted for providing two realizations of DSB:  

1. The native-DSB version, where the original PEtALS common bus protocol is 
preserved. This version applies to business service domains where interaction 
paradigms are rather homogeneous and mostly SOA-based. Thus, the extra 
processing overhead introduced by the GA semantics can be spared. 

2. An extended DSB version, which we call XSB-over-DSB, where the GA 
semantics is conveyed on top of the PEtALS common bus protocol. This 
version applies to business service domains that incorporate heterogeneous 
interaction paradigms. Thus, the enhanced GA semantics enables dealing 
effectively with the increased interaction heterogeneity. 

DSB is presented in Section 4.2. 

 The Lightweight Service Bus (Figure 4-1) targets the IoTS domain. LSB is a 
lightweight bus introduced in CHOReOS, proper to IoTS specifics such as dynamics, 
resource constraints, data orientation, etc. From its very conception, LSB features GA 
semantics to deal with the increased IoTS interaction heterogeneity. LSB is presented 
in Section 4.3. 

As stated from the beginning, CHOReOS service access primarily targets the integration of 
the IoBS and IoTS domains. Thus, we introduce further a bridging solution between DSB 
and LSB, which is naturally based – when applicable – on the common XSB heritage of the 
two buses. DSB-LSB bridging is presented in Section 4.4. 

4.2. DSB for Business Services 

DSB (Figure 4-1) is the CHOReOS service access solution for business services. In the 
following sections, we present the two identified realizations of DSB, native-DSB and XSB-
over-DSB. 

4.2.1. Native DSB 
PEtALS is an Open Source ESB distributed by the OW2 middleware consortium under the 
LGPL license. It is built on top of the following agile technologies: 

 The Java Business Integration (JBI) v1.0 specification, the Java standard for enterprise 
application integration. PEtALS DSB is fully compliant with the JBI specification.  

 The Fractal Software Component Framework provided by the OW2 consortium. This 
framework is based on a modular and extensible component model that can be used 
with various programming languages to design, implement, deploy and reconfigure 
various systems and applications, from operating systems to middleware platforms and 
graphical user interfaces. The PEtALS DSB implements the mechanisms that deal with 
the registration, message routing, message transport and discovery as Fractal 
components. This is a major feature, which allows core developers to specialize a 
PEtALS DSB distribution by choosing the software components they need.  

                                                 
 
8 http://petals.ow2.org/ 
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Figure 4-5. PEtALS Distributed Service Bus. 

The PEtALS DSB (Figure 4-5) can be distributed across several processing nodes. These 
behave as a single unified PEtALS ESB node. Dealing with distribution in the PEtALS ESB 
was part of the work developed in the SOA4All FP7 EU project. The distribution is realized 
based on a transparent approach that ensures that all services remain accessible just as in a 
typical standalone service runtime environment.  

Technical information related to service access, such as endpoints and container locations 
(physical network address) are managed by the PEtALS naming service. This service is 
used by the PEtALS container to deploy services in the PEtALS DSB and to route messages 
to the right endpoint. The naming service is replicated among all the PEtALS nodes using a 
Distributed Hash Table (DHT) over a multicast channel. This is equivalent to data flooding 
between networked entities, i.e., when an entry is added to the naming service, the data is 
sent to all the networked naming services. This way, all the naming services have a 
complete view of the services deployed in all the PEtALS containers. The routing of 
messages is realized by the PEtALS messaging mechanism, which implements the 
exchange of messages between distributed PEtALS containers. Indeed, In the PEtALS 
approach, once the endpoint is retrieved from the local naming service, the message and the 
endpoint reference are sent to the transport layer which is in charge of delivering the 
message to the endpoint regardless of its local or remote location. 

In the context of CHOReOS, the PEtALS DSB shall evolve to the CHOReOS native-DSB so 
as to deal with the high-level FI requirements discussed in Section 2.1. More specifically, the 
evolution of the PEtALS DSB shall be towards the following innovations/developments:     

 The CHOReOS native-DSB should be able to handle the constantly increasing amount 
of services and users that become available over time in the FI. To this end, the 
PEtALS DSB will exploit the CHOReOS Cloud middleware and benefit from its 
elasticity. 

 The CHOReOS native-DSB must cope with highly distributed, mobile, and dynamic 
environments where services and users constantly appear/disappear. To deal with 
such environments, the PEtALS DSB will be enhanced with functionalities that allow it 
to be aware and adaptable to changes.  

4.2.2. XSB over DSB  

XSB-over-DSB is a complete DSB infrastructure, as presented in Section 4.1, where we 
enhance the common bus protocol with XSB semantics. In particular, GA semantics is 
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communicated on top of the PEtALS common bus protocol to enable interoperability among 
heterogeneous interaction paradigms, where preservation of semantics is a primary concern. 

We have carried out an early realization of XSB-over-DSB. This work was done in 
collaboration with the ANR ITEmIS project9, which shares some common interests with 
CHOReOS. In particular, we addressed the workflow-based orchestration of heterogeneous 
systems, which is a preliminary step before dealing with service choreographies. This work 
already provides a successful feasibility study of the XSB concept, as reported in the 
following. 

The typical solution to system orchestration employs SOA workflow and ESB-based 
interoperability, as depicted in Figure 4-6 for a realization based on the PEtALS ESB. A 
number of systems are deployed or plugged on the bus via binding components – another 
term for adapters – which adapt the middleware platforms employed by the systems to the 
common bus protocol. Moreover, public native interface descriptions of the deployed 
systems are adapted to the common SOA/ESB-related interface description, which is most 
often a Web service description. Thus, plugged systems can identify each other and interact 
via the bus. Furthermore, ESBs typically support developing and deploying new applications 
that integrate plugged systems into orchestrations. This is much facilitated with the 
employment of a workflow language, most commonly BPEL. Application workflows provide 
application business logic and adapt between the potential application-level heterogeneity of 
the orchestrated systems. The application workflow can then be readily executed on a 
workflow engine embedded in the bus. Coordination between the workflow and the 
orchestrated systems is ensured by the interaction primitives of the workflow language, 
which are compatible with the common bus protocol: they are both Web-service compatible, 
i.e., they follow the CS interaction paradigm. As already pointed out, this results into 
undesirable loss of semantics when systems following heterogeneous interaction paradigms 
are integrated. 

 

 
 

Figure 4-6. Workflow-based system orchestration on the PEtALS ESB. 

 

We extend the typical SOA & ESB-based orchestration solution with support for multiple 
interaction paradigms, based on our abstraction approach, as depicted in Figure 4-7. 

Second, at workflow execution time, encapsulated GA semantics are received and extracted 
by the binding component. Then, the binding component performs two successive 
transformations of the received GA primitives, first to the corresponding CS, PS or TS 
primitives, and then to the specific middleware platform primitives of the plugged system, by 
applying the transformation mappings discussed in Section 4.1. By employing the necessary 

                                                 
 
9 www.itemis-anr.org 
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middleware library, the adapter can then interact with the system over its native middleware 
platform.  

 

 
 

Figure 4-7. Extended orchestration supporting heterogeneous interaction paradigms. 

First, we extend the BPEL workflow language with GA API primitives (see the definition of 
GA in [D1.3] on the CHOReOS architectural style). This enables the application developer to 
develop a workflow by employing the advanced GA API. We further introduce transformation 
between the GA-extended BPEL and the standard BPEL. This transformation consists in 
encapsulating GA primitives into standard BPEL primitives. This enables conveying GA 
semantics on top of BPEL primitives and subsequently on top of the common bus protocol 
primitives. Thus, we manage to communicate the advanced GA semantics without altering 
the standard SOA/ESB orchestration infrastructure. In this way, we are actually applying the 
XSB concept on PEtALS; hence, this is an early realization of XSB over DSB. In particular, 
checking the GA API primitives introduced in [D1.3] we can easily see that:  

 Primitives with only input parameters, such as post() (sends out data in the networking 
environment) and end_set_get() (closes a reception channel), can be conveyed on top 
of outgoing one-way asynchronous messages of the PEtALS  messaging protocol; 

 Primitives with both input and return parameters, such as set_get() (sets up reception 
resources at the connector) and get_sync() (executes synchronous reception of data), 
can be conveyed on top of two-way synchronous invocations; and 

 notify() (called by the connector, enables asynchronous reception) can be conveyed on 
top of an incoming one-way asynchronous message. 

 Third, besides transformations of primitives at runtime, transformations of system 
interface descriptions should be performed at design-time. Our early work towards 
prescribing CS, PS, TS and GA-related interface descriptions is outlined in [D1.3]. 
Based on this work, public native interface descriptions of the orchestrated systems are 
transformed to CS/PS/TS interface descriptions, and then the latter are transformed to 
GA interface descriptions. GA interface descriptions are used by the application 
developer when designing the GA-enabled workflow. CS/PS/TS interface descriptions 
are used by the binding component to retrieve information about the corresponding 
orchestrated system at runtime.   
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Figure 4-8. Architecture of the binding component. 

The internal architecture of the binding component is depicted in more detail in Figure 4-8. 
On its upper part, the binding component communicates with the ESB, while on its lower 
part, it communicates with the middleware platform of the corresponding system. We 
distinguish three layers, as presented in the following. The ESB layer is devoted to the 
communication with the bus, and to the support of system deployment on the bus. These are 
standard functionalities, which are developed on top of the ESB APIs. The model layer 
concentrates the generic functionalities of the binding component, while the middleware 
layer provides functionality templates that need to be specialized for the specific middleware 
platform. Targeting facilitated extensibility of our solution, we provide a highly-optimized 
design, where the major part of the binding component functionalities are already 
implemented by the model layer, while a small part of additional specialization needs to be 
carried out at the middleware layer for introducing a new middleware platform. 

The generic model-layer and specific middleware-layer functionalities form four columns, 
which we discuss hereafter. The second column from the left concerns processing of 
coordination primitives, and comprises, from top to bottom, extraction of GA primitives from 
the communication with the bus, mapping to CS/PS/TS primitives, abstract execution of 
these primitives, and finally execution of the actual middleware platform primitives. Only the 
latter template element needs to be completed for incorporating a new middleware platform. 
Upon primitives processing, the above functionality column interacts: 

 With the first column, with regard to data adaptation between the specific middleware 
data types and the GA/CS/PS/TS model data types; 

 With the third column, with regard to retrieving information from the CS/PS/TS interface 
description of the plugged system; and 

 With the fourth column, with regard to managing the lifecycle of connections to the 
middleware platform of the plugged system.  
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Again, only the bottom-part, middleware-layer template elements need to be completed for a 
new middleware platform. 

We provide next some more details about our implementation of the above architecture and 
of the overall support of extended orchestrations. We use the PEtALS inherent support for 
BPEL provided by the embedded EasyBPEL workflow engine. Furthermore, BPEL allows 
enhancing the base language with extension activities (EAs). We exploit this powerful 
feature to implement the GA API primitives. More specifically, we introduce new BPEL EAs 
(in the form of XML Schema or XSD) representing the GA primitives. Regarding interface 
descriptions, we implement the CS/PS/TS/GA interface descriptions as XSDs, inspired from 
WSDL, the Web Services description language. Moreover, we propose two XSLT-based 
transformations [Kay04]: 

 Transformation between GA-extended BPEL (i.e., the introduced EAs) and standard 
BPEL; and 

 Transformation of CS/PS/TS interface descriptions to GA interface descriptions. 

Finally, we implement in Java a generic binding component, which is the base for any 
binding component specialized for a middleware platform. For providing support for a new 
middleware platform, a developer additionally needs to: 

 Specialize the base binding component for the specific middleware platform; and 

 Introduce a transformation of native interface descriptions specific to this middleware 
platform to CS/PS/TS interface descriptions. 

For designing an application workflow, the application developer needs to: 
 Generate GA interface descriptions of the systems to be integrated; and 

 Design a GA-enabled BPEL workflow, based on these descriptions, and then transform 
this workflow to standard executable BPEL workflow. 

We have evaluated the applicability of our approach by implementing an orchestration 
workflow that integrates a Jini JavaSpaces TS system10, a JMEDS DPWS Web Service11, 
and a JMS PS system based on Apache ActiveMQ12. We have provided support for these 
three heterogeneous middleware platforms by specializing appropriate binding components, 
and have shown how our approach supports heterogeneous interaction paradigms on the 
PEtALS bus. Hence, we have demonstrated the feasibility of the XSB concept and provided 
an early realization of XSB-over-DSB. Besides showing feasibility, the further use of this 
early architecture and implementation can be two-fold: 

1. The architecture and implementation of the binding component is perfectly valid for 
supporting heterogeneous service choreographies as well, besides service 
orchestrations. Nevertheless, we have supposed that an orchestration workflow 
interacts with a system deployed on the bus by employing the precise GA semantics 
that abstracts the interaction paradigm of this system. What needs to be additionally 
incorporated in the binding component architecture is the support for resolving 
interoperability between heterogeneous interaction paradigms (in the case where a 
GA primitive received on the bus by the binding component represents an interaction 
paradigm other than the one of the plugged native middleware platform, as discussed 
in Section 4.1). We prescribe the required mapping between heterogeneous 
interaction paradigms in Deliverable D1.3 [D1.3] on the CHOReOS architectural style. 

2. Our solution to the incorporation of GA semantics in BPEL can serve as a guide for 
adding GA semantics to BPMN so as to enable designing service choreographies that 

                                                 
 
10 http://www.jini.org/wiki/JavaSpaces\_Specification 
11 http://ws4d.e-technik.uni-rostock.de/jmeds/ 
12 http://activemq.apache.org/ 
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can transparently accommodate heterogeneous interaction paradigms (see the 
CHOReOS vision on Connectors as well as Coordination Protocols in [D1.3]). Both 
GA-enhanced BPMN and BPEL can serve in designing and executing CHOReOS 
choreographies (see also Deliverable D2.1 [D2.1] on the CHOReOS dynamic 
development process). 

4.3. LSB for Thing-Based Services  

LSB (Figure 4-1) is the CHOReOS service access solution for Thing-based Services. We are 
introducing LSB from scratch in CHOReOS, and thus we are currently in the process of 
identifying: 

 Interaction paradigms that are common in the IoTS domain and are not yet covered by 
the connector abstractions introduced in [D1.3] and discussed above in Section 4.1. 
Hence, we are currently surveying state-of-the-art protocols in IoTS-oriented solutions, 
such as middleware for wireless sensor network architectures. The first outcomes of 
this study confirm the importance and wide use of the already identified interaction 
paradigms, i.e., client/server [GTW10, PKGZ08], publish/subscribe [DGV09, TGDK10, 
HBD09, RG07, HTS08], and tuple space [CMMP07, WSBC04, FRL09], while database 
querying [MFHH05, NLZ07, GKKN03, CCDF03], combined or not with streaming 
[DLW08, NLZ07, GKKN03, HHLL03, CCDF03, KNLZ07] are additional paradigms that 
are largely used due to the data-oriented nature of IoTS-oriented solutions. 
Furthermore, Web protocols, as in the WS-* and REST approaches, seem to provide 
the right common integration infrastructure where all diverse interaction solutions can 
be plugged [GTW10, PKGZ08]. We still need to investigate the above more precisely. 
Our intention is to provide support for the new identified interaction paradigms in our 
connector abstractions, and hence provide support for them in the LSB. We note also 
that possible enhancements to our connector abstractions will apply globally to the 
XSB, and thus as well to the enhanced XSB-over-DSB. 

 The CHOReOS access protocol for the IoTS, i.e., the protocol that we will develop for 
accessing mobile Thing-based Services based on the CHOReOS vision of the IoTS. 
We present our initial considerations for this protocol in Section 4.3.1. Certainly, we will 
provide support for this protocol in the LSB, thus making it interoperable with existing 
IoTS protocols.  

 The LSB common bus protocol, which will enable interoperability among all IoTS-
related access protocols. Relying on our initial survey of IoTS-oriented solutions 
outlined above, we present our initial considerations for this protocol in Section 4.3.2. 

4.3.1. CHOReOS Protocol for Accessing Mobile Things  

Of crucial importance to mobile things access is the existence of a consistent and well-
defined set of interaction paradigms to support the interaction with things, so as to abstract 
away the low level details of the things specificities. As such, we consider that each thing 
necessarily implements at least one of the following:  

 Instantaneous sensing. This is one of the simplest ways a thing can be accessed. It 
consists of simply querying a thing for its latest sensing value. For instance, consider 
an application that would like to find out whether or not it is windy at this moment. Then 
it may ask a nearby anemometer: “what is the wind speed right now?”. This returns a 
reply immediately. 

 Periodic sensing. Examples of periodic sensing requests are: “record a 10s audio 
sample every minute”, and “measure the water level every hour”. This is an 
asynchronous request that returns a reply at a constant rate (until cancelled). 

 Event-based sensing. Some sensors are inherently event-based (such as a motion 
sensor which sends an alert when movement is detected) while others are simply 
periodic sensors that have been coupled with a condition on its output (for instance, an 
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air pollution sensor that can be asked to transmit the detected pollution level if it 
exceeds some threshold value). Therefore, this is an asynchronous request that returns 
a reply at unpredictable times (until cancelled). 

 Instantaneous actuation. Similarly to instantaneous sensing, instantaneous actuation 
consists of a one-time request to actuate a thing. For instance, a request to turn on the 
lights, to open a door, or to play a sound file. 

 Periodic actuation. This is the actuation counterpart to periodic sensing. Some 
examples of periodic actuation are “starting the sprinklers on the lawn every night at 
10PM”, “cooling down the freezer every hour”, “playing an alarm every morning at 
8AM”. 

 Sensing-controlled actuation. Many actuators can also report on their own status (or 
the status of the physical entity which they are actuating) by either performing the 
function of a sensor (many actuators are bidirectional transducers) or by including a 
discrete sensing component within the same hardware housing. For these, it is 
important to allow sensing-controlled actuation as a first-class operation to create 
simple control loops locally and avoid unnecessary network communications. Examples 
include “heating a room until the thermostat reaches 20C”, or “rotate the camera until 
the face-detector finds a face”. 

As presented in Appendix A, we have implemented a preliminary prototype that is narrowed 
down to sensors reading within the same physical device (and especially smart-phone). This 
prototype will serve as a building block of the overall prototype of the CHOReOS Thing-
based SOM.  

4.3.2. Lightweight XSB  

As introduced previously, LSB is a lightweight realization of XSB for the IoTS domain. The 
following list summarizes the features of LSB already pointed out: 

 GA semantics. 

 Fits to the IoTS specifics, in particular, dynamics and resource constraints. 

 Enables interoperability among heterogeneous interaction paradigms abstracted by 
GA, including the paradigms and/or protocols discussed in Sections 4.3 and 4.3.1. 

As prescribed in Section 4.1 for XSB realizations, the LSB core must support a deployment 
substrate for plugging Things and a common bus GA protocol; the latter is to be designed 
and built on top of an IP-based transport or a higher-level protocol transport. Targeting the 
IoTS domain and based on our ongoing survey of IoTS-oriented solutions that we briefly 
sketched in Section 4.3, it seems that a higher-level Web protocol and deployment 
infrastructure is most appropriate for the LSB core. We are considering DPWS as the most 
probable choice for the LSB common bus protocol. DPWS supports Web services on top of 
resource constrained devices and can provide a suitable transport for conveying GA 
semantics. We have carried out an extensive survey on the DPWS standard and its various 
existing implementations in a separate companion deliverable; the interested reader can 
check in [D3.1-Comp]. REST could be another possible choice. We are currently evaluating 
the advantages and disadvantages of both protocols to make our final choice. Another 
essential consideration is scale, which is a key concern in IoTS and the FI in general. We still 
need to evaluate this factor in our choice of the LSB common bus protocol. 

4.4. DSB-LSB Bridging 

DSB and LSB, as introduced before, realize service access in the IoBS and IoTS domains, 
respectively. DSB-LSB bridging (Figure 4-1) will enable the integration of the two domains in 
the FI as envisioned by CHOReOS. Based on the dual realization of DSB, i.e., as native-
DSB and XSB-over-DSB, we consider three cases requiring a bridging solution, as depicted 
in Figure 4-9: 
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Figure 4-9. DSB-LSB Bridging. 

a. Native-DSB to XSB-over-DSB. This bridging solution requires extracting/inserting 
native DSB semantics on the native-DSB bus, extracting/inserting GA semantics on 
the XSB-over-DSB bus, and bridging in the middle between native-DSB and GA 
semantics. The latter functionality is based on our abstraction of interaction paradigms 
discussed in Section 4.1 and depicted in Figure 4-3, as the native-DSB protocol can 
be considered as one more interaction paradigm covered by our abstractions. The 
bridging functionality also includes proper addressing space mapping between the 
two buses. Since both buses are DSBs, this is inherently tackled by the DSB 
federation feature, as presented in Section 4.2.1.  

b. Native-DSB to LSB. The same bridging solution as in (a) applies here, where LSB 
takes the place of XSB-over-DSB. Nevertheless, addressing space mapping is not 
direct between the two buses, as they cover the two distinct IoBS and IoTS domains. 
We will devise an overall addressing space mapping solution for service access in 
CHOReOS when the two individual bus solutions, and in particular LSB, are settled.   

c. XSB-over-DSB to LSB. This bridging solution is simpler, as both XSB-over-DSB and 
LSB directly feature GA semantics. Hence, it suffices to enable extracting/inserting 
GA semantics on both buses and then link them almost directly. Still, addressing 
space mapping as in (b) should be taken care of also here by a lightweight bridge in 
the middle. 

The implementation and deployment of the above bridging solutions can take different forms 
and will rely on the deployment (plugging-in) facilities provided by DSB and LSB including 
adapters that adapt between a deployed component and the common bus protocol. 
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5. Executable Service Composition 
In this chapter, we concentrate in the CHOReOS middleware mechanisms that enable the 
execution of service compositions. Specifically, XSC (shown in Figure 5-1) is the CHOReOS 
solution to the aforementioned goal. As already introduced in Section 2.2.1 the XSC 
comprises mechanisms that facilitate the execution of business choreographies developed 
according to the CHOReOS development process, specified in [D2.1]; these mechanisms 
are further detailed in Section 5.1. Moreover, as introduced in Section 2.2.2 the XSC 
comprises mechanisms that facilitate the execution of massive Thing-based service 
compositions; this part of XSC is detailed in Section 5.2.   

Figure 5-1. Service composition execution mechanisms of the CHOReOS middleware. 

5.1. XSC for Business Choreographies 
The main issue towards enabling the execution of business choreographies is to map them 
into a certain executable form. Specifically, the key point is to map the coordination 
delegates, derived from the CHOReOS development process [D2.1], to a certain executable 
form.  

The coordination delegates play a main role in a choreography model as they encapsulate 
the coordination logic that is needed to coordinate the choreography participants, specifically 
the concrete services that are actually chosen (via the AoBM component of the  CHOReOS 
XSD – Chapter 3) to play the roles of the participants (Figure 5-2). As reported in [D1.3] (see 
the beginning of Chapter 4), the problem solved by coordination delegates is to coordinate 
the global interaction behaviour of the participant services in order to guide their 
collaboration so as to fulfil the specified choreography. This calls for a suitable notion of 
coordination protocol since it might be the case that the collaborating services, although 
potentially suitable in isolation, when interacting together can lead to undesired interactions. 
The undesired interactions are those interactions, that can happen by letting the discovered 
participant services collaborate (in an uncontrolled way), which do not belong to the set of 
interactions modelled by the choreography specification. In fact, by introducing in the 
choreography-based system, the synthesized coordination delegates, hence 
controlling/supervising the collaboration of the participant services, we want to restrict the set 
of all possible interactions among the collaborating participant services to the set of those 
interactions modelled by the choreography specification. 

As discussed in Section 2.2.2, in CHOReOS we consider two alternative mappings for 
coordination delegates, based on BPEL and SCA. These alternative mappings are realized, 
respectively, by the BPEL-based XSC which is discussed in Section 5.1.1 and the SCA-
based XSC, which is discussed in Section 5.1.2. The main reason behind this choice is the 
increased interest for the aforementioned technologies in industry. However, both of the 
proposed solutions are inline with the same view concerning the mapping of choreographies 
models to a certain executable form. Based on this view, the two alternative XSCs take in 
charge of automatically, or semi-automatically translating a given choreography model, into 
an executable form, deploying the necessary elements of the executable choreography and 
further managing non-functional requirements that relate to the executable choreography.     
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Figure 5-2. Mapping of choreography models.  

 

5.1.1. BPEL-based XSC 

BPEL-based Mapping of Coordination Delegates 

Figure 5-3, highlights the main concepts of the BPEL-based mapping of business 
choreographies.   

Starting from the choreography development process that synthesizes from the 
choreography specification a set of coordination delegates, the BPEL-based XSC interprets 
the coordination logic dictated by the coordination delegates and executes it. More 
specifically:   

 Once the participants are identified and the coordination delegates implemented, the 
coordination delegates are deployed on top of the XSB middleware and precisely on 
top of the DSB.  

 In an ultra large-scale context, the coordination delegates will be widely spread and 
distributed. Hence, to access each other they rely on the capabilities of the distributed 
service bus that allows reaching remote coordination delegates in multiple distributed 
service bus nodes. 

As discussed in [D2.1], in CHOReOS, we use the BPMN2.0 language for the specification of 
choreographies. This language is able to express, in a synthetic way, the collaboration of 
remote partners involving several services. However, the coordination logic of coordination 
delegates should be defined in an executable language. The CHOReOS DSB embeds a 
BPEL engine that supports the execution of the coordination delegates since the language 
used for their specification can be mapped onto BPEL. Noteworthy, BPEL is a widely 
adopted and standardized language for developing coordination logic between business 
services. Regarding the service description, WSDL is also a widely used standard. Hence, 
the coordination delegates generated from the work in WP2 should be compliant with both of 
the aforementioned standards to support choreographies of business services. The 
coordination delegates may be extended to support other composition languages. 
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 Figure 5-3. BPEL-based mapping of choreographies. 

To support the coordination delegates, the CHOReOS DSB relies on dedicated libraries for 
both WSDL and BPEL for managing service descriptions and workflows, respectively. Each 
coordination delegate is interpreted as an executable service dependency graph, while the 
whole choreography is interpreted as a set of connected and distributed graphs of services. 
The XSC needs to cope with the new complexity brought by the choreography level. 

Deployment & Execution 

After being translated to BPEL, the coordination delegates are deployed on top of the DSB. 
Each BPEL-based implementation of the coordination delegate is interpreted as an 
executable graph. Indeed, collaborations within a choreography of services are considered 
as dependency graphs where the services are nodes and the message flows between them 
are arrows. From a conceptual point of view, the whole choreography is described as a 
complex graph. The deployment of this graph of graphs is done over a distributed 
infrastructure consisting of DSB enabled nodes. Each DSB node will host one or several 
coordination delegates. Benefiting from the DSB service access capabilities, the coordination 
delegates are able to realize the choreography in a highly distributed manner.  

Business services involved in a given choreography model are also deployed and accessed 
on the DSB nodes. Messaging, routing, and transformation capabilities are ensured by the 
DSB capabilities as discussed in Section 4.2. 

Management of Non-Functional Choreography Requirements 

The management of non-functional choreography requirements is handled by the BPEL-
based XSC in close collaboration with the Governance framework developed in WP4. In 
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particular, the business service monitoring capabilities of the Governance framework are 
employed to monitor the good behaviour of coordination delegates. This task involves a 
dedicated communication monitoring component that monitors the distributed delegates that 
execute a given choreography. Business service monitoring is responsible for detecting the 
violation of the choreography specification. 

The provided monitoring functionality relies on an event-based architecture. Indeed, 
considering the BPEL-based mapping of coordination delegates, each coordination delegate 
within a choreography can be an event producer. The benefit from adopting an event-based 
architecture resides in its adaptation to a highly dynamic and distributed environment. Within 
CHOReOS, the communication monitoring service is in charge of monitoring the 
choreographies and, to this purpose, it subscribes to the events produced by each delegate. 
The events are agreed patterns described in the coordination delegates and expressing the 
collaboration as sending, receiving, loops, conditional structures, etc. This way the 
communication monitoring is notified by any violation of the expected behavior. 

We briefly highlight the monitoring functionality in Figure 5-4. In this figure, we illustrate, in a 
layered view, the correspondence between the choreography model and the monitoring 
activities.  

 

Figure 5-4. Monitoring the choreography services. 
 

A specific structure called MEMB (for Message Exchange Monitoring Behavior) is dedicated 
to implementing the choreography monitoring; to this purpose, we assign to each 
coordination delegate a MEMB. Each MEMB subscribes to specific topics related to the 
coordination logic. Then, it waits for the expected notifications and checks the several 
timestamps validity. In case of timeout or not acceptable timestamps, alerts are sent to the 
Governance and V&V Framework. 

5.1.2. SCA-based XSC 

SCA-based Mapping of Coordination Delegates 

Motivations to implement this SCA-based runtime range from environment-related 
constraints to more technical aspects. Indeed, from an industrial point-of-view (Thales being 
a leading industrial partner), SCA is of great importance since it allows economies of scale 
by fostering reuse in software products. As such, Thales leverages, in CHOReOS, its 
specific knowledge of SCA to implement the SCA-based XSC. Moreover, as illustrated in the 
context of the “Passenger-friendly Airport” scenario (see WP6 – [D6.1]), multiple legacy 
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systems may need to be integrated into CHOReOS choreographies. Relying on SCA eases 
the direct integration of these legacy systems (through SCA bindings) in the runtime. From a 
technical standpoint, compared to other component approaches such as OSGi, SCA has the 
advantage of being directly targeted at SOA-environments and designed to support a 
distributed communication and computation context.  

Based on the SCA modular binding mechanism, the SCA-based XSC will be well integrated 
with other CHOReOS middleware mechanisms for the execution of service compositions 
and for service access. Indeed, Coordination delegates implemented over SCA will be able 
to target indistinctively and transparently business services and Thing-based services 
available directly or through the CHOReOS eXtensible Service Bus (XSB). 

As highlighted in Figure 5-5, the SCA framework is directly leveraged to provide the 
realization of coordination delegates, as well as implementation of their encapsulated 
coordination logic. Moreover, the SCA framework is directly used to realize bindings between 
the coordination delegates and the targeted services: as shown in the figure, these services 
are then accessed through the XSB (composed of the DSB for business services, and LSB 
for Thing-based services) or directly, as made possible by any SCA container.  

 
Figure 5-5. Use of Coordination delegates. 

A more detailed view of the building blocks of the proposed SCA-based mapping is given in 
Figure 5-6. Specifically, according to the proposed mapping, the coordination delegates 
are implemented as SCA composites. Two distinct Coordination delegates are shown in 
Figure 5-6, both are connected to business (squares) and Thing-based (triangles) services. 
A Coordination delegate consists of: 

 The coordination logic encapsulated that is implemented as BPEL-based SCA 
components13 inside the composite; there is one BPEL-based component of this type 
per composite. 

 Simple and complex proxies that realize the binding to the available services. These 
proxies, which are CHOReOS specific, relying on SCA bindings to link to actual 

                                                 
 
13 BPEL-based components are a standard SCA feature. FraSCAti includes a BPEL runtime, as such a 
separate dedicated BPEL runtime is not necessary. 
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business and Thing-based services, available through the XSB or directly (as shown 
in Figure 5-6), at runtime. Binding between an SCA-based Coordination Delegate and 
other Coordination Delegates available on the XSB is made through the same DSB 
and/or LSB bindings. A key principle of the proposed mapping is that services are 
addressed transparently. As such, a coordination delegate can consume business 
services, Thing-based services, or both at the same time, depending on its 
requirements. This is made possible by the proxies. The respective role of simple and 
complex proxies is discussed below. 

Both simple and complex proxies are implemented as standard SCA elements (components 
and composites) and have a dedicated purpose: 

 Simple proxies are used to separate service access and protocol heterogeneity 
aspects from business logic aspects. To do so, as a middleman between a BPEL-
based component and an actual service, a simple proxy exposes a SCA service whose 
interface matches a specific reference required from a business logic component. The 
business logic component is linked to this reference through an SCA wire. In other 
words, the functional requirements of the business logic component, expressed via the 
required reference, are mapped to a concrete service. The required reference is bound 
to a service at runtime, using the right SCA binding depending on the access 
mechanism and/or protocol used by the service. 

 Complex proxies deal with protocol discrepancies when simple proxies are not 
enough. For instance when a functional requirement of a BPEL component cannot be 
directly satisfied by service available at runtime, the goal of a complex proxy is to 
compose multiple available services to match the functional requirement and expose a 
corresponding SCA service. The coordination delegate in the center of Figure 5-6 relies 
on a complex proxy to bind and combine S1 and S2 Web-services and provide a 
missing feature. The bottom part of the figure shows the internals of a complex proxy. It 
is implemented as a composite that uses simple proxies for binding to services and a 
Proxy logic component that composes features offered by those targets.  

In a typical SCA fashion, the interfaces and references of proxies (which are realized as SCA 
composites) are indirectly connected to external systems (such as business services and 
Thing-based services), as can be seen in Figure 5-6. In particular, the SCA composites are 
linked to external systems, instead of the constituent elements of SCA composites.  This 
relies on the promotion mechanism that exposes internal services and references. In our 
model, a generated composite (either Coordination delegate or Complex proxy) will expose 
its business logic / BPEL process through a single SCA service. Moreover, the generated 
composite may require multiple references, corresponding to the external targets that the 
generated composite needs to bind to. 

Finally, it is to be noted that complex proxies bear a striking resemblance to coordination 
delegates, except for their two distinct internal components: business logic and proxy logic, 
respectively. This can be seen in Figure 5-6. At implementation time in WP3, we will thus 
study the possibility of directly implementing Complex proxies as Coordination delegates. If 
done right, our SCA mapping will then be greatly simplified and be more efficient. What 
would remain, though, is the conceptual distinction between both these constructs, used in 
our mapping for two distinct purposes. 
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Figure 5-6. SCA mapping building blocks. 

 

The implementation of coordination delegates and complex proxies will be based on the 
FraSCAti implementation of SCA.   

Deployment & Execution 

After their implementation, coordination delegates as well as simple and complex proxies, 
need to be deployed in the FraSCAti execution environment. To do so, they need to be 
packaged in a SCA domain. An SCA domain is a complete runtime configuration that defines 
the boundaries of all the deployed artefacts: components, but also wires and composites. 
The domain is described through: 

 A virtual domain-level composite whose components are deployed and running. 

 A set of installed contributions in order to execute components. 

 A set of logical services to handle the virtual domain-level composite and the installed 
contributions. 
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All our components will be composed of a set of XML documents to configure them at 
runtime and other additional files required to enable their execution. These files can be 
packaged as a contribution in SCA, using one of the following interoperable formats: file 
system directory, OSGi bundle, compressed directory or JAR file. 

Management of Non-Functional Choreography Requirements 

As in the case of the ESB-based XSC, the management of non-functional choreography 
requirements is handled in close collaboration with the Governance framework developed in 
WP4 through the use of the business service monitoring capabilities of the Governance 
framework to monitor the good behaviour of a choreography.  

To deal with this business service monitoring, we plan to investigate the use a FraSCAti 
extension to the SCA model that enables the runtime management of components and 
composites. This FraSCAti extension allows the dynamic binding of “technical” services (the 
business service monitoring in our case) to concrete SCA artifacts.  The aforementioned 
binding is realized by means of interception techniques put in place by the FraSCAti 
platform.  

Using interception mechanisms to integrate technical services with business code, allows 
keeping these concerns cleanly separated not only at design time, but also at runtime. 

5.2. XSC for Thing-based Service Compositions 
Differently from other choreographies described earlier in this chapter, most choreographies 
in the IoTS will require the coordination between numerous similar services. This is because 
any time an observation is made (or when an action is taken), it is necessarily tied to 
numerous sources of uncertainty that end up negatively influencing the result. The solution, 
then, is to add more information into the system by accessing additional sensors and 
actuators.  

For this reason, choreographies in the IoTS will often require the interaction of a large 
number of things, many of which will be of the same general category (for instance 
“temperature sensor”), but perhaps located at different geographical coordinates, or 
produced by a different manufacturer. This process of combining numerous things to perform 
a sensing/actuation request is what we call a composition. 

As described in Section 2.2.2, in the IoTS middleware, all incoming sensing/actuation 
requests are resolved by the Composition & Estimation component (Figure 5-1). C&E is in 
charge of coordinating the entire composition process, by relying heavily on semantic 
information stored in the XSD Knowledge Base (Figure 2-1). In addition, the C&E also 
interacts with the XSD Things Discovery protocol (Figure 2-1) to gain information regarding 
which things are available within the current network topology. Below, we describe each of 
these steps in further detail. 

 “Composition” consists of finding a dataflow graph that, given a description of the input 
parameters and the format of the desired output, connects the available things to produce 
the desired output from the parameters. To clarify, let us consider a brute-force 
implementation of the composition process, consisting of the following phases: 

 Expansion: This step expands the initial query by replacing each term in the query 
with an equivalent expression, found by traversing the domain ontology.  In this brute-
force implementation, the final result of the expansion phase is a set of all possible 
combinations of service dataflows that answer the initial query.  

 Mapping: This step takes all dataflows produced by the expansion step and maps 
them to the actual network topology. As such, mapping is necessarily performed by 
interacting closely with the XSD Things Discovery (Figure 2-1). This phase also 
interacts with our device ontology (present in the Knowledge Base) that models real 
world devices, to complement any information found to be missing during the discovery 
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process. The output of the brute-force mapping step is the set of all possible mappings 
of the input dataflows onto the network topology. 

 Optimal mapping selection: Once all feasible dataflows have been mapped (in the 
mapping phase), C&E must choose one dataflow to enact. In this phase, therefore, a 
dataflow that is (in some predefined way) optimal is found and passed on to the 
execution block, below. 

 Execution: Now that the best composition of services has been determined for the 
query, in the execution step the services are actually accessed (using the CHOReOS 
LSB showed in Figure 2-1) and the result is returned (or stored).  

In an ultra-large-scale network with a large-scale Knowledge Base, seeking an optimal 
composition becomes an intractable problem. So, instead of pursuing an exact solution as 
was done in the brute-force case above, in our research we will pursue the idea of 
approximately-optimal composition, where the concepts of expansion and mapping are 
modified as follows: 

1. Smart expansion: To avoid exhaustively calculating all possible equivalent sets of 
dataflows, only one of which will eventually be selected during the optimization phase, 
a much smarter approach to expansion is to instead produce a reduced set of good 
candidate dataflows. These candidates are the dataflows that have the highest 
likelihood of having a matching overlay in the network that satisfies a set of predefined 
constraints. An example constraint could be that the predicted execution time should 
fall within a certain acceptable interval.  

2. Probabilistic mapping: Taking as input the set of candidate dataflows from the 
previous phase, the probabilistic mapping phase differs from regular mapping in that it 
does not attempt to find all possible mappings of the input dataflows into the network 
topology. Instead, this phase will randomly pick a small subset of all implementable 
mappings by making small, atomic queries to the probabilistic Discovery component. 
The result is a much reduced set of dataflow mappings that are computed in 
considerably less time and using (hopefully) orders of magnitudes less resources. 

A consequence of the IoTS massive size and its unknown topology is that sometimes there 
will be no suitable device at the desired geographical location or, other times, the device has 
not collected/stored the data-point that is desired. However, often the missing data-points 
can be estimated with a very high degree of accuracy.  

For instance, if an application would like to know the temperature at a location where no 
thermometer exists, then a sensing/actuation expert should be able to estimate the result 
using the values of the temperature readings in the surrounding area (for example, with a 
Kalman filter). 

As such, to remove the dependency on the availability of a sensing/actuation expert, one of 
the goals of the C&E is to perform automated estimation. This is accomplished through the 
use of physical/statistical models that are provided a priori by field experts and made 
available in the Knowledge Base. Then, when an application makes a request for a data-
point that is unavailable the network, the middleware can simply apply the provided models 
onto the time series of measurements from a set of sensors, and therefore estimate the most 
likely true value of the data at the desired spatiotemporal point. This process takes place in 
three steps: 

 Model discovery: Look in the Knowledge Base for models related to the desired 
devices. 

 Optimal model selection: Pick the most appropriate models based on a few 
parameters and a cost function (also specified in the ontology). 
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 Estimation execution: Apply the models to the existing historical data from sensors, 
using as input parameters the sensor and deployment metadata.  This will be done 
using pre-developed engines for each model. 
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6. Cloud & Grid Computing 
The CHOReOS middleware must be capable of providing the required runtime support to 
deploy, enact, monitor, and dynamically reconfigure large-scale choreographies. These 
choreographies might be large scale in one or more of the following dimensions: number of 
requests, users, participants, services, nodes, and communication among services. At this 
time in our research, we do not yet know the exact scale we will be able to achieve. But we 
expect, for instance, that the middleware should be scalable enough to accommodate a 
choreography with 1 thousand simultaneous users or with 100 different participants, or with 
100 services for a given participant, or with thousands of messages exchanged per second. 
The exact scalability numbers will be known after the experiments carried out in the third 
year of the project. 

To be able to accommodate such large magnitudes, the current solution provided by the 
state of the art of parallel and distributed computing relies on clusters of machines, often 
organized in federated groups across the Internet in geographically distributed locations. The 
CHOReOS middleware will benefit from two modern technologies developed within the last 
10 years: Cloud and Grid Computing. Cloud Computing will be the default mechanism for 
providing scalability within CHOReOS while Grid Computing will be used in more specific 
cases in which parallel computation is required. 

6.1. Cloud for CHOReOS 

The allocation of Cloud machines for the execution of the choreographies is performed by 
the CHOReOS middleware in a way that is transparent to the choreography users, 
designers, and developers. The CHOReOS middleware uses the Service Deployer 
component to allocate new nodes from the Node Pool Manager and then execute new 
services in these nodes. In these nodes, CHOReOS will execute major choreography 
components (e.g., proxies, adapters, coordination delegates) for service access at runtime 
(Figure 2-1). To this end, the Enactment Engine will use the Node Pool Manager and the 
Service Deployer to set up the choreography environment and enable its execution. 

To achieve the required level of scalability, the Node Pool Manager is able to allocate new 
nodes in multiple underlying execution platforms. As depicted in Figure 6-1, a CHOReOS 
node may be part of a Cloud Infrastructure as a Service (IaaS) platform; these can be 
provided by a public Cloud such as Amazon EC2, HP Open Cirrus, or a private Cloud, for 
example, executing the Open Nebula open source Cloud middleware. Both middleware and 
application services deployed on these Cloud nodes will rely on the CHOReOS XSB 
middleware for communication (Figure 2-1). After that moment, the CHOReOS monitoring 
service developed in WP4, in collaboration with WP3, will monitor the communication and 
the resource utilization in the Cloud nodes and provide up to date information to the runtime 
QoS and V&V enforcers that will guarantee that the choreography is executing correctly and 
that the SLAs are being met. If the system detects QoS violations, it might be needed to 
perform reallocation of services in the Cloud, requiring strict collaboration between 
components developed within WP3 and WP4. 

Besides node provisioning, the CHOReOS Cloud middleware also provides storage 
capabilities. The Storage Service provides the proper infrastructure to store data in a 
scalable and robust way, facility that can be useful both to applications running on top of 
CHOReOS and to middleware components such as the AoSBM and the IoTS middleware 
elements. The CHOReOS Storage Service follows the Simple Storage Service (S3) API 
proposed by Amazon14, which is becoming a de facto standard in the industry. 

                                                 
 
14 See http://aws.amazon.com/s3 
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In the following subsections, we describe the interface provided by the Node Pool Manager 
to allocate new nodes, by the Service Deployer to instantiate new services on these nodes, 
by the Storage Service to provide access to storage in the Cloud and by the Enactment 
Engine to set up the execution of choreographies. 

6.1.1. Node Pool Manager  

The Node Pool Manager is composed of three main components: Controller, Configuration 
Management Engine, and Cloud Deployer as described in Figure 6-1. 

Figure 6-1. Node Pool Manager components. 

The core component is the Controller, which provides the basic functionality of the Node 
Pool Manager; it implements a RESTful API that offers node management services to other 
Middleware components. The API can be implemented using a pure HTTP service or using 
Java JAX-RS, which basically converts a Java class to a REST service. The main entity 
created by this API is the CHOReOS Node. Each CHOReOS Node represents a logical 
machine created and managed by the CHOReOS Middleware. A CHOReOS Node can be 
created in any Cloud service (following the IaaS model) supported by the middleware. This 
will be transparent to other components that use the Node Pool Manager. Each CHOReOS 
Node also has a set of configurations. Each configuration is related to a node role and leads 
the middleware to install a set of software components in this node. The configuration 
management engine used by the Node Pool Manager provisions this installation.  

The second component is the Configuration Management Engine, which is responsible for 
executing operating system level commands in CHOReOS Nodes, such as installing 
packages, starting and stopping services, creating and changing configuration files within the 
nodes. There are a few open source Configuration Management (CM) systems widely used 
such as Chef, Puppet, and CFEngine. After some studies, for the CHOReOS middleware, 
we chose to use Chef because it is easy to use, has an active community that keeps it up to 
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date, and is based on a simple Ruby-based domain-specific language, providing a good 
degree of flexibility and scalability. Nevertheless, the middleware architecture will be 
decoupled from specific details of the Chef tool, allowing us to replace it by another CM 
without affecting other components in the CHOReOS middleware, in case it does not satisfy 
our needs in the future. Chef has some core concepts that will be briefly described just for 
better understanding of how each node will be configured. Further details can be found in the 
Opscode Chef website (www.opscode.com/chef). In Chef, the system administrator or 
developer write Recipes that describe how a part of the server (such as Apache, MySQL, or 
Hadoop) must be configured. These recipes describe a series of Resources that should be in 
a particular state - packages that should be installed, services that should be running, or files 
that should be written. The CM makes sure each Resource is properly configured, and gives 
a safe, flexible, easily-repeatable mechanism for ensuring that the servers are always 
running exactly the way they are supposed to. 

Every server in the infrastructure is a Node, which can have many Roles. The Role defines 
the purpose of that Node in the whole infrastructure. In a complex system, one can have 
nodes as web servers running Apache, others having MySQL databases, another with an 
LDAP server and a load balancer, and so on. Each Node can play one or more Roles. 

After writing a Recipe, the administrator must put them in Cookbooks and store all this 
information in the Chef Server. After recipes are created, all that it is needed is to inform 
what recipes each Role will have. That is, all the recipes configured in a Role will be applied 
to each Node that has that specific Role assigned to it.  

For the Node Pool Manager, every CHOReOS Node is a Node in the Chef environment. In 
addition, each Configuration applied to a Node is related to a Role in the Chef environment. 

The third component of the CHOReOS Cloud/Grid infrastructure is the Cloud Deployer, 
which is responsible for the communication with the Cloud service providers. Since there can 
be multiple Cloud providers in a single choreography, this component will call each one of 
them properly, optimizing the resources and also granting redundancy in case of individual 
provider failure. This component will rely on the Open Cloud Computing Interface (OCCI) 
published by the Open Grid Forum (http://occi-wg.org), one of the first standards for Cloud 
computing. However, it is still possible to implement other patterns and use other 
specifications later if necessary.  

The first version of the Node Pool Manager API has methods for creating nodes, deleting 
nodes, modifying existing node attributes, listing available nodes, showing existing node 
details, adding configuration to existing nodes, and removing configuration from nodes. 
These operations are the basic set that abstracts the cloud infrastructure to the rest of the 
Middleware components. The whole set of operations is described in Appendix D.1. As an 
example, we will describe here one of these operations in detail: the node creation operation.  

 

HTTP 
Method 

URI Request Content Sample Responses 

POST /nodes <node> 

   <cpus>2</cpus> 

   <ram>1024</ram> 

   <storage>100</storage> 

   <so>Ubuntu 10.4</so> 

   <zone>eu-west-1</zone> 

</node> 

201 CREATED 

<node 
link="/nodes/{id}"/> 

 

500 ERROR 

Table 6-1. CHOReOS Node creation. 
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A CHOReOS Node is created when there is a service call using the HTTP POST method on 
the /nodes URI. The content body for this POST is an XML request similar to the example 
given in Table 6-1. The Node attributes are explained in more detail in Table 6-2. 

 

Name Required Type Description 

cpus yes Integer Number of CPUs in a node. 

ram yes Integer Amount of RAM (in MB). 

storage yes String Amount of storage space (in GB).  

hostname
* 

no String The node hostname. 

IP* no String The node IP address (if applicable).   

so yes String The operating system to be installed in the node. 
The SO is related to the bootstrap image that will 
be used to create the node. Nodes are, in 
essence, a SO installation plus a set of 
configurations. 

zone no String The zone attribute can be any String. Nodes with 
the same zone name will be prioritized to be 
created in the same cloud infrastructure.  

* The IP and hostname attributes are not passed on node creation time, since they are 
set by the Cloud provider after the node is created. These attributes will be available 
later on the GET node details service. 

Table 6-2. CHOReOS Node attributes. 

 

The CHOReOS Node creation sequence diagram (Figure 6-2) describes how information 
flows: 

1. Another component (Service Deployer on this case) calls the node creation service; 

2. The service delegates the real node creation to the Cloud Provider via the Cloud 
Deployer component; 

3. Before the server is ready, the Node Pool Manager returns to the caller a message 
saying that this node is being created; 

4. Once the Cloud provider finishes the server creation, the relevant information about 
the node is stored on the Node Pool Manager database; 

5. The Node Pool Manager is asked to create a new configuration for that node; 

6. It delegates this configuration to the Configuration Management tool; 

7. It returns that this configuration is created; 

8. The calling component asks for details about the Node; 

9. The Node Pool Manager asks the Configuration Management tool for node details; 

10. The Configuration Manager returns node information; 

11. The Node Pool Manager joins its own information about nodes with the information 
provided by the Configuration Management tool and returns it to the caller. 
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Figure 6-2. The CHOReOS Node creation sequence diagram.  

 

6.1.2. Service Deployer  

The Service Deployer is defined using a RESTful API. This component will deploy a given 
service to be later used by a choreography. Most deployment details are hidden from the 
client, such as in which machine to deploy the service and the number of instances. The 
client may provide hints as to the expected resource consumption for each instance and 
request non-mandatory increases or decreases in available processing power (which means 
modifying the number of instances according to an estimate). 

The Deployer is capable of deploying the following kinds of elements: 
 Web services 

 BPEL orchestrations (not recursively, the needed services must be already available) 

These elements are enough for running services choreographies. To deploy these kind of 
services, the Service Deployer needs the corresponding code in executable form (e.g., war 
files, BPEL specs, etc.). 

The Service Deployer will also be able to remove (undeploy) these elements. The complete 
Service Deployer API can be found on Appendix D.2 

6.1.3. Storage Service  

Choreographies running within CHOReOS nodes may need to store and process large 
amounts of data. CHOReOS nodes responsible for running choreography business logic 
could store in their own file system the data required by these choreographies. If these data 
need to be accessed from other nodes, this would start to become complicated and error 
prone, since the nodes would need to be configured with a shared file system, or provide 
ways for other nodes to access their files. Scalability would also be compromised, as 
replicated services executed on multiple nodes would possibly need to share some data. 
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Another problem of storing data inside CHOReOS nodes is that some of them will not have 
disk space for storage. Since nodes can also be things (in the IoTS), these devices have 
limited storage space and must use external services to store large files (or also large 
amounts of small files). 

Figure 6-3. Storage service sequence diagram.  

A more reasonable approach is using storage services in the Cloud. When a participant in 
the choreography needs to save or retrieve data, it just calls a public Storage Service API. 

The CHOReOS Storage Service implements the Simple Storage Service (S3) API defined by 
Amazon. S3 is a Web service that enables any application to store data in the Cloud. One 
can then download the data or share it with other services. Amazon and Google Storage are 
examples of providers that already implement the S3 API, which is becoming a standard for 
storage services. The CHOReOS Storage Service usage is explained in Figure 6-3: 

1. When any choreography service needs to store or retrieve data, it will call the Storage 
Service API and ask for a storage provider (getStorageProvider() call). 

2. The Storage Service will infer the best provider for this service (based on the service 
node, its geographical location, etc.) and return the URI. 

3. From this point, the service can start issuing as many calls as desired to the storage 
provider, using any S3 API call (documented in http://docs.amazonwebservices.com/ 
AmazonS3) 

Another usage example for storing data would be the relational database model. There are 
currently ad hoc solutions in Cloud infrastructures that provide Relational Database Services 
(e.g., Amazon RDS). Unfortunately, there is yet no established standard for a relational 
database service in the cloud industry; so, to provide a platform-independent cloud database 
service it would be necessary to create a common abstraction and mappings for each 
platform. Another simpler option, instead of using Cloud databases, since the Node Pool 
Manager can easily provision any kind of Node, would be to create new relational database 
nodes (e.g., using MySQL or PostgreSQL) or relational database clusters using existing 
configuration management open source recipes. During the second year of the project this 
topic will be further studied to define which approach CHOReOS will adopt. 
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6.1.4. Enactment Engine 

The Enactment Engine will be the middleware component that will use the aforementioned 
services to set up the choreography environment and enable its execution on the Cloud. For 
that, it needs to receive as input, from the CHOReOS XSC, the following artifacts: (1) set of 
coordination delegates defining the interaction logic among the choreography services (e.g., 
in BPEL or jar files) and (2) services referenced by the coordination delegates, i.e., either 
already existing service URIs or binary code (e.g., war, jar, aar files) of the services that are 
not already deployed. 

Provided the above input, the Enactment Engine will: (1) instantiate the coordination 
delegates using the Service Deployer; (2) deploy services that are not running using the 
Service Deployer; and (3) register services that are not already registered in the XSD. 

The Service Deployer will make the services available through the DSB, abstracting details 
such as Petals Service Assembly specification. 

The Enactment Engine will be used not only in production time, to enact the choreographies, 
but also at design and development time to validate and assess the choreography in an 
offline testing environment. In this latter case, not all choreography services may be 
available, thus mock services will need to be instantiated by the testing framework, with the 
help of the Enactment Engine. 

A very preliminary version of the Enactment Engine API is presented in [D5.2] but this 
component will be developed in fact during the second year of the project. 

6.2. Grid as a Service 

Applications can be run in a Grid computing environment by interacting with the InteGrade 
Web Service Interface. Users will be able to start different types of applications (e.g., MPI, 
bag-of-tasks, and BSP), keep track of their progress, and receive the results. CHOReOS will 
also provide a similar service, following the map-reduce model, based on the Apache 
Hadoop infrastructure. 

Grid Computing may be particularly interesting for end-user applications or middleware 
components that require a high degree of parallelism for computationally-intensive tasks. For 
example, the CHOReOS Grid could be used by a citizen journalism choreography that needs 
to convert large quantities of images and videos to different formats in a relatively short 
period (e.g., thousands of pictures and tens of videos per hour). 

In this sense, the integration of Grid computing into CHOReOS does not intend to bring 
scientific advances to the area of Grid computing. Instead, the goal here is to incorporate a 
useful technology to be provisioned to CHOReOS applications and middleware. 

6.2.1. CHOReOS InteGrade Interface 

The Grid Computing Service in CHOReOS will provide the means for submitting a new 
application to the Grid (by providing its executable code) and for executing it in a large 
quantity of machines in parallel. Three programming models will be supported: bag-of-tasks, 
MPI, and BSP. The InteGrade grid middleware will be available as a Web Service through a 
REST API that allows users to upload applications and input data, specify constraints, check 
execution status and, finally, download output data (files, whole directories, simple text 
output or error messages). 

As a usage example, consider the citizen journalism scenario. Thanks to technology, 
creating and disseminating news and information are not exclusive to professional journalists 
anymore. Inexpensive mobile phones with video camera are able to cover an increasingly 
growing area. Suppose somebody was in a singular event and has interesting videos to 
share. The user could post his video to a news portal and the portal will have to transcode 
that video as well as many others it receives from all its users into multiple formats that offer 
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more advantages to multiple types of viewing devices (e.g., more compatibility and less 
bandwidth usage). Using our REST API, portal developers had already uploaded an 
application (POST /applications) that, provided an input video file, produces a set of video 
files in the target formats. The same application will be used thousands of times with 
different input data. When the video is uploaded, another API operation is used (POST 
/executions), this time to send more input data to the application. It answers with an 
execution identifier, which the portal application uses to get its status periodically (GET 
{identifier}). When the status is “finished”, the portal downloads the result (GET 
{identifier}/result) and makes it available to its viewers. The complete Grid Computing API 
can be found in Appendix D.3. If needed, a simple call-back mechanism can be implemented 
in the future so that the Grid infrastructure calls back a web service in the video portal to 
notify which videos have been converted and can be retrieved. Another possible 
improvement would be to make the grid middleware install the converted videos directly in 
the Cloud infrastructure and simply return a reference to where the videos are located. 

6.2.2. CHOReOS Hadoop Interface 

The CHOReOS middleware will also enable the execution of Hadoop applications based on 
the map-reduce processing model. Choreography services will be able to deploy and run 
Apache Hadoop applications on the cloud via the CHOReOS Hadoop Web Service.  

The Hadoop Web Service will use almost the same interfaces described for the CHOReOS 
InteGrade interface. The only difference will be the way that data input and output for grid 
applications will be performed. In the Hadoop Web Service, the middleware will provide the 
NameNode configuration that is used to access the Hadoop Distributed File System, where 
the input and output files will be stored. Thus, the only modification with regard to the 
InteGrade interface will be the GET method described in Table 6-3.  

 

HTTP 
Method 

URI Request 
Content 

Responses 

GET /applications/ 
{application_id}/ 
namenode 

- 200 OK    

<configuration> 
<property> 
<name>fs.default.name</name> 
<value>hdfs://localhost:54310/</valu
e> 
</property> 
<property> 
<name>mapred.job.tracker</name> 
<value>localhost:54311</value> 
</property> 
</configuration> 

404 NOT FOUND  

500 ERROR 
Table 6-3.  Hadoop specific operation. 
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7. Conclusion 
This deliverable introduced the basic features of the CHOReOS middleware architecture. 
Starting from the FI challenges for scalability, heterogeneity, mobility, awareness, and 
adaptation that have been extensively discussed in prior work done in WP1, we identified the 
aforementioned features to satisfy the requirements derived from the FI challenges. 
Specifically, the CHOReOS middleware contributions are summarized in the following: 

 The CHOReOS XSD approach for the organization and discovery of services for both 
the IoBS and the IoTS domains. For the organization of services, XSD employs 
clustering mechanisms developed in WP2 for IoBS. XSD supports service discovery 
through an extensible set of service discovery protocols that range from legacy 
protocols to protocols dedicated to IoTS. Concerning the latter, we introduced the 
concept of probabilistic discovery that is encapsulated in the XSD.    

 The CHOReOS XSB approach to the FI requirements for service access. Building upon 
a unified set of interaction primitives that constitute the Generic Application (GA) 
connector model developed in WP1 and the service bus paradigm, the XSB facilitates 
the integration of multiple interaction protocols that range from protocols suitable for the 
interaction with business services to protocols suitable for the interaction with Things-
based services. Based on the same model, the XSB enables the adaptation from one 
protocol to another. The aforementioned integration and adaptation facilities are 
supported by the two CHOReOS service buses, namely the DSB and the LSB, which 
target the IoBS and the IoTS domains, respectively.     

 The CHOReOS XSC solutions for the execution of FI service compositions. The 
proposed solutions cover both the IoBS and the IoTS domains. Regarding the former 
domain, the XSC provides approaches that facilitate the execution of business service 
choreographies defined according to the CHOReOS development process, developed 
in WP2. Concerning the latter domain, we introduced the concept of approximate 
service composition to deal with the massive composition of things.  

 Finally, the CHOReOS Cloud & Grid middleware that supports the overall middleware 
and the choreographies that rely on it, via a unified API that provides access to multiple 
cloud infrastructures (e.g., Amazon EC2, HP Open Cirrus, private clouds).  

Based on the aforementioned features that characterize the architecture of the CHOReOS 
middleware, we proceed with the first prototype implementation of the middleware, which 
shall serve for further refining, extending, and concretizing the proposed ideas.   
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Appendix A – Middleware for the IoTS 
The Internet of Things is characterized by the integration of large numbers of real-world 
objects (or “things”) onto the internet, with the aim of turning high-level interactions with the 
physical world into a matter as simple as is interacting with the virtual world today. As such, 
two devices that will play a key role in the IoT are sensors and actuators (S&A). 

In fact, such devices are already seeing widespread adoption in the highly-localized systems 
within our cars, mobile phones, laptops, home appliances, etc. In their current incarnation, 
however, sensors and actuators are used for little more than low-level inferences and basic 
services. This is partly due to their highly specialized domains (signal processing, estimation 
theory, robotics, etc.), which demand application programmers to also be domain experts, 
and partly due to a glaring lack of interconnectivity between all the different devices. 

To be truly useful, sensors and actuators must be ubiquitous rather than constrained to an 
area around a small set of personal devices, such as a mobile phone or a car. This 
translates to having a network with a massive number of “things”, spread over a large area 
— possibly the entire world. As the number of sensors and actuators in a network grows to 
the millions, however, several challenges arise. In this appendix, we present our Middleware 
for the Internet of Thing-based services, which addresses the following challenges of the 
IoTS: 

 Scale: When performing a sensing or actuation task that pertains to millions of devices, 
it is often infeasible to coordinate every one of the required devices due to constraints 
such as time, memory, processing power, and energy consumption. To put this into 
perspective, consider the simple case of an application that requires to know the 
average air temperature on the city of Paris at this very moment. The answer to this 
query can be “easily” found by calculating the mean value of the set of temperature 
readings all the thermometer-carrying devices in the region. However, if there are 
millions15 of such devices in Paris, then the information being accessed in this query 
can quickly grow unmanageable. Thus even a simple-looking query such as this often 
leads to unattainable results when the scale is factored in. (In this example, a better 
solution is to approximate the average temperature within an acceptable level of 
precision by using the well-known equations for the sampling error of the mean.) 

→ As a result, any realistic middleware for the IoTS must be able to manage on-the-fly 
approximations to sensing/actuation tasks. For this, we introduce the concept of 
probabilistic discovery to find the subset of devices that can provide a useful 
approximation when an exact result is not attainable. 

 Deep heterogeneity: An important aspect of the IoTS that is usually not emphasized 
enough is that services representing things are much more heterogeneous than typical 
services on the current Internet. For one, due to cost considerations, new 
sensing/actuating hardware will often not replace older generations in already-deployed 
networks --- rather, different generations of devices will operate alongside one another.  
Likewise, it is probable that the future Internet will be composed of numerous 
sensor/actuator networks deployed by distinct entities, for distinct reasons. In all of 
these cases, these networks are bound to contain devices from an assortment of 
vendors, with highly varying sensing/actuating characteristics, such as error 
distributions, sampling rates, spatial resolution, and so on. All of these parameters 
(including functional and non-functional properties) lead to a deep heterogeneity that 
makes S&A networks extremely hard to work with, even for experts. And as networks 
increase in size, delegating these types of coordination tasks to humans will simply not 

                                                 
 
15 This can happen if all cell-phones are instrumented with thermometers, for instance. 
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be feasible. In such a dynamic environment, with so many unknowns, it is clear that 
fully automated methods for high level inference will become a necessity. 

→ Our middleware aims to solve this challenge by making extensive use of metadata and 
semantics (ontologies) as building blocks that allow us to handle this heterogeneity. 

 Unknown topology: Much like the existing Internet, one of the IoTS's main 
characteristics is the fact that its topology is both unknown and dynamic. As a 
consequence, applications will often end up depending on services which are not 
actually available from any single preexisting component of the network at that given 
time. For instance, if an application would like to obtain the value of the wind-chill factor 
at a certain location, it may happen that the network does not have a wind-chill sensor 
in that exact neighborhood. However, if instead the network does have temperature 
and wind speed sensors (i.e. anemometer), then a field expert could easily obtain the 
desired information through the composition of the temperature and wind speed 
readings using the well-known wind-chill equation. This is possible because the 
function of a wind-chill sensor is equivalent to the function provided by the 
thermometer/anemometer combination put together by the expert. The question is, 
then: can an IoTS middleware perform these types of functional substitutions on its own 
without supervision? How can this type of service composition be performed in an 
optimal manner when the network is massive in scale, with unknown topology? 

→ Our middleware will solve this using service composition, which is able to use sensor 
metadata and semantics to create new services by connecting existing pieces. 

 Unknown data-point availability: A second consequence of the unknown topology is 
that sometimes there will be no suitable device at the desired geographical location or, 
other times, the device has not collected/stored the data-point that is desired. However, 
oftentimes the missing data-points can be estimated with a very high degree of 
accuracy. For instance, if an application would like to know the temperature at a 
location where no thermometer exists, then an expert should be able to estimate the 
result using the values of the temperature readings in the surrounding area (for 
example, with a Kalman filter). Or when the application requires access to the location 
of a car at some time t1, but only the locations at time t0 and t2 are known (t0 < t1 < t2), 
then a user versed in Newton's laws of motion should be able to calculate the midpoint-
speed t1. But how can these estimations take place in an automated fashion, without 
the need for human intervention? 

→ Our middleware will make use of physical and statistical models (stored in an 
domain-specific ontology) to achieve automated estimation of missing data and 
indirect sensing. 

 Incomplete or inaccurate metadata: The solution to many of the challenges above 
likely lies on the extensive use of metadata. However, since much of this metadata 
must be manually entered by a human operator at installation time, in a massive 
network this will surely result in a large amount of incomplete/inaccurate information 
due to human error. In addition, some of this information includes characteristics that 
change over time (e.g., calibration parameters). Therefore, even discounting human 
error, the state of the metadata in the network is bound to degrade until it no longer 
represents reality. In these scenarios, how can missing metadata be recovered? And 
how can existing information be monitored and updated when necessary? 

→ The previously-mentioned support for automated estimation in our middleware can also 
provide auto-calibration and metadata-mining procedures in order to constantly 
recheck the suitability of its calibration parameters. We do not address this at the 
moment, leaving it for future work. 

 Conflict resolution: Conflict resolution is an issue that arises mainly with actuators, 
but not so much with sensors. Conflicts arise, for instance, when multiple applications 
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attempt to actuate the same device in opposing ways, or when they would like to exert 
mutually-incompatible changes on the environment. For example, in a scenario where 
a smart building is able to adapt to people's personal temperature preferences, one 
person may want a choose a temperature of 17C while the other 25C. A human 
mediator would likely resolve this conflict using the average of the two temperatures, 
21C. However, a much tougher example presents itself in the actuation of pan-tilt-zoom 
cameras: if one application requires the camera to turn left, and the other requires it to 
turn right, how can the network satisfy both applications — or at least gracefully 
degrade their quality of service?  

→ This issue is not yet considered in our middleware, since its initial focus is on sensors 
rather than actuators. However, this is a clear direction for future work and should not 
be kept too far out of sight. 

 
Figure A-1. Architecture of the CHOReOS IoTS Middleware. 

Following, in Section A.1 we consider related work from the current literature and discuss the 
how our approach differs from them. In Section A.2 we provide an overview of the IoTS 
middleware, while in Sections A.3 to A.6 we discuss in more detail the elements of the 
proposed middleware. In Section A.7 we present our first prototype. Finally, in Section A.8 
we summarize the discussion on the proposed middleware for IoTS.    

A.1. Related Work 

Most solutions towards an Internet of Things identify common challenges that should be 
addressed in order to successfully integrate devices with services in the Future Internet. 
Challenges include mobility of nodes, the dynamic nature of the network, heterogeneity of 
devices and data, availability of nodes and scalability (in terms of the number of nodes, 
users, data streams, etc.). A popular solution to these issues is the adoption of a middleware 
architecture where devices are abstracted as services. Those solutions can be divided in two 
categories: those that abstract devices as services (such as in HYDRA [ZH09, ERA10, 
ZH08], SENSEI [PBEV09], SOCRADES [GTKS10], and COBIS [COBIS07]), and those that 
devote attention to data/information abstractions and their integrations with services (among 
which are SOFIA1 [HLBT10], SATware [MDMV09], and Global Sensor Networks GSN 
[AHS07]).  

A common thread throughout all these solutions is that they handle the challenge of 
unknown topology through the use of traditional service/device discovery techniques of the 
existing Internet, ubiquitous environments and Wireless Sensor & Actuator networks (e.g. 
SOCRADES uses DPWS, COBIS and HYDRA use UPnP). They focus on supporting 
discovery for devices hosting Web services (as done in SOCRADES) and/or RESTful 
services (as done in Stribu08, GTMW10, SENSEI). COBIS supports WS-Discovery but it 
provides its own language (COBIL, Collaborative Business Item Language) for service 
description, where service functions and keywords are annotated with a verbal description. 
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SOCRADES, for instance, supports both discovery techniques and goes a step further by 
providing an expansion approach, where additional information about services can be 
extracted from readily-available public sources such as Web search engines or 
encyclopedias. A similar approach was adopted in [LDMD11] where online information 
services such as EPC information services can be queried to provide additional information 
about sensors and actuators. Another important contribution by SOCRADES is the support 
for context aware discovery where services are selected based on the context they satisfy.  

A common point of agreement in the state of the art is in the use of semantic technologies 
[ZH09, ERA10, ZH08, HLBT10, PBEV09]. These technologies have two main benefits: 
overcome heterogeneity challenges by abstracting device/service/information low-level 
details; increase the visibility of and the criteria by which services/devices can be discovered 
through the annotations of service and device information with metadata. Indeed it is 
standard practice to use ontologies to model sensors, their domains, and sensor data 
repositories [ELS07, LZ05, ERA10]. Some projects even go a step further and also include 
context information [PBEV09], or service descriptions [ZH09, ERA10, ZH08].  Semantic 
technologies are also used for service composition, as many projects support the concept of 
virtual/semantic sensors (for instance, in HYDRA, GSN and SATware), i.e. entities that 
abstract several aggregated physical devices under a single service.  A different 
implementation of a similar idea, though, is provided in the SATware project: in their work, 
virtual sensors actually correspond to transformations applied to a set of raw sensor streams 
to produce another semantically meaningful stream. Although it can be said that the concept 
of virtual sensors is a sort of service composition, one must be careful to point out that this 
composition is not fully dynamic, in that the services are first specified at design time, and 
only then are they dynamically mapped onto the network at run time. In contrast, a much 
more flexible type of composition is to perform both operations at run time, through the help 
of small predefined composition building blocks as supported by the SENSEI and 
SOCRADES projects.  

Regarding scalability, most IoT projects address this challenge by pursuing modifications in 
the underlying network topology. At times, this is done by adopting fully-distributed 
infrastructures (such as in COBIS and SOFIA), and at other times through an architecture of 
peer-to-peer clusters (e.g., GSN). In our view, however, while these approaches work well for 
the existing Internet (where traffic is made up of a relatively small amount of service 
interactions) they are not fit for the complex weave of interactions that will be commonplace 
in the Internet of Things. Some solutions focus on scaling the discovery process by 
proposing the use of DHT-based discovery [ZPAG10, KKLK08, JLKY08]. However, in our 
view these approaches fall short of fully addressing the scale of the IoT, which we estimate 
will consist of billions of nodes. For instance, authors in [JLKY08] assume topology-aware 
networks, which is something that is clearly not achievable at these projected scales. 
Meanwhile other solutions do not offer a convincing argument when it comes to evaluating 
their systems through either experiments or simulations. For example, in [KKLK08], service 
discovery is simulated in a 100-node mobile ad-hoc network, a number too small to 
represent the anticipated size of IoT. In our view, DHT-based routing on its own is not 
sufficient to address the problems of the Internet of Things, where a large number of 
requests will require intricate coordination among thousands of things, services and 
information they produce. In such an environment, the number of packets transmitted in the 
network will grow strongly nonlinearly as the number of available services and devices 
increases. As a result, routing tables will consist of either an ultra large number of nodes 
(each hosting a small portion of information), or a smaller number of nodes holding a huge 
amount of information each. Performing even a simple service discovery query in these 
scenarios may result in unacceptable response delays due to the propagation time of the 
request to large number of nodes in the routing table, not to mention the processing and 
memory overhead on each node itself. 
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Figure A-2. Examples of types of relations that exist in our semantic Knowledge Base. 

Finally, among the aforementioned projects, to the best of our knowledge, none considers 
the challenges of data-point availability, inaccurate metadata, and conflict resolution. 
To address such issues, in our proposed work, we plan to go a step further by considering 
situations where the system must smartly estimate sensor readings at time instants and 
geographic locations for which there is no appropriate device (this is what we call estimation 
throughout the text), and where the system's massive scale is handled through the 
widespread use of approximations. Our middleware extends ontologies with physical and 
statistical models that can be used to “fill in the blanks” where appropriate. By supporting 
concepts from signal processing, estimation theory, machine learning, and data mining, we 
provide a framework through which experts in those fields can program their latest 
estimation models that can then be used without burdening application writers with the 
concerns of field experts.  

In some ways, it can be said that this aspect of our approach bears some similarity with 
Google's new Prediction API16. This Google service allows application writers to train and 
use classifiers on their own datasets without requiring any knowledge of machine learning or 
data mining. The main distinction to our proposed work, however, is that in our system we 
rely on the highly-structured nature of physical information to relieve the application writer 
from the responsibilities to even perform the training, classification, and interpretation steps. 
Instead, our semantic models allow the middleware to perform all of these transparently, in 
the background, without ever burdening the application with the internal details of this 
process. 

A.2. Middleware Overview 

We envision that the Internet of Things will intersect with the Internet of Services leading to 
services that are aware of their surrounding physical environment. To achieve this goal, we 
adopt a service-oriented architecture that allows our middleware to abstract 
sensors/actuators and provide their functionalities as services. With this, we support the 
needed interoperability and flexibility within the Internet of Things through a loose coupling of 
components and orchestration of services. We use a semantic approach to represent 
devices, data, and their physical attributes, in order to answer high-level queries. Sensors 
and actuators are represented in an device ontology, and a domain-specific ontology is used 
to link keywords to related devices. Note, however, that we initially focus on sensors only, 
leaving actuators for future work. 
  

                                                 
 
16 http://code.google.com/apis/predict/ 
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The overall architecture for our IoTS middleware is shown in Figure A-1. As can be seen in 
the figure, the core part of our middleware is the Composition & Estimation module. It 
receives sensing and actuation requests from applications, interprets them using a semantic 
Knowledge-Base, maps them to the existing network topology, optimizes the execution 
dataflow, executes it, and provides a result. Throughout this process, our main research 
contributions lie in the following characteristics of our system: 

 Probabilistic discovery: Discovery is the ability to find the services that match a given 
set of desirable attributes (sensing modality, geographic location, error characteristics, 
etc.). However, more than that, to address the challenges of scale mentioned in the 
beginning of this appendix we introduce the concept of probabilistic discovery as a tool 
to find the set of services that best approximates the one that is being sought after. 
This is described in more detail in Section A.4. 

 Smart expansion: Given a description of the input parameters and of the desired 
output, composition consists of finding a dataflow graph that connects the available 
services in order to produce the desired output from the parameters. Within the 
composition process, our key research contribution are the use of smart expansion and 
approximately-optimal composition, as described in Section A.5. 

 Automated estimation: By applying physical/statistical models on the historical 
spatiotemporal dataset from a set of services, our middleware estimates the most likely 
true value of the data at a given spatiotemporal point. This is done in a fully-automated 
manner, allowing people who are not experts in signal processing or estimation theory 
to fully utilize the IoTS. This is the subject of Section A.6. 

In addition, a contribution that is fundamental to all others listed above is a comprehensive 
set of ontologies describing sensors, actuators, physical concepts, physical units, etc., as 
well as spatiotemporal and statistical correlation models of the data. In Figure A-1 this set of 
ontologies is called by the name “Knowledge Base”, consisting of three parts: a domain 
ontology, an estimation ontology, and a device ontology. We describe these in greater detail 
in Section A.3 that follows and in Appendix B. 

A.3. The Semantic Knowledge Base 

As mentioned earlier, in our IoTS middleware three distinct ontologies comprise what we call 
collectively as a Knowledge Base. To give a high-level view of the structure of this 
Knowledge Base, we briefly outline its main classes below. 

 

 
Figure A-3. The infrastructure related to the discovery process can be abstracted as a data-store that 

supports two instructions: insert (for service registration) and query (for service look-up). 

 Device Ontology: The device ontology stores information regarding actual hardware 
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devices that may exist in the network, including manufacturers, models, type of 
device, etc., and connects each device to related concepts in other ontologies (for 
example, which physical units it uses when outputting data, etc.). The main 
subclasses of this ontology are: 

1. Sensors 

2. Actuators 

3. Processors 

4. Composite (devices) 

 Domain ontology: The (physics and mathematics) domain ontology carries information 
about how different physical concepts are related to one another. For instance, in 
Figure A-2 the “wind chill” concept is shown to be a function two other concepts: 
“temperature” and “wind speed”. This ontology also links each physical concept with a 
set of physical units (“km/h”, “m/s”, …) as well as with the known sensors/actuators 
that can measure/change them. In Figure A-2 the physical concept of “location” is 
linked to the device ontology by declaring it to be measurable by GPS, by WiFi 
fingerprinting, and GSM triangulation. 

The main subclasses of the domain ontology are: 

1. Physical concepts 

2. Physical units 

3. Data structures 

4. Mathematical formulas 

 Estimation Ontology: The estimation ontology contains information about different 
estimation models (“linear interpolation”, “Kalman filter”, “naïve Bayesian learning”, 
etc.), the equations that drive them, the services that implement them, their QoS,  and 
so on. These are subdivided into: 

1. Data models 

1. Spatio-temporal 

2. Statistical 

2. Error/Uncertainty models 

Note that each of the branches above contains several levels of subclasses, attributes, and 
instances, which are omitted here. One of the most important tasks that we have yet to 
complete in this project, is to clearly specify the sub-structure that we have omitted above. 
This is currently in progress. 

Building upon these ontologies, the three core parts of our system (discovery, composition, 
and estimation) are described in the three sections that follow. 

A.4. Discovery 

Discovery Problem: Find the services in the network that match a given a set of desired 
attributes. 

In networks of unknown topology, it is the job of a discovery layer to inform an application 
how to address each desired service. In this process, applications describe the service that 
they are looking for, and the discovery layer returns the set of devices that best match that 
request. At its core, the device discovery is composed of two parts:  

 Registration: Registering services either as they come online or as they are 
discovered; 
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 Look-up: Querying the network to find desired services.  

We contend that, in traditional discovery scenarios, much of the infrastructure related to 
registration and look-up can be abstracted as a general data store. This is shown in Figure 
A-3. That is, the act of registering a new service can be abstracted as inserting the service's 
address and metadata into the data-store, and the act of looking a service up can be 
abstracted as querying the data-store for the services that match a set of metadata 
attributes. Hence, the infrastructure for these two parts inherit much of the work that already 
exists in the Databases domain. To address the scale challenge, which can cause the data-
store to grow too large and unwieldy, we propose to modify the traditional discovery process 
with the addition of non-deterministic behavior at several levels, as described next. 

Probabilistic Discovery 

The key difference between our discovery layer and those in the literature is the support for 
what we call probabilistic discovery, which is meant to allow our middleware to continue to 
operate within reasonable time, memory, processing, and power constraints as the network 
size grows into the millions. To better understand the concept of probabilistic discovery, let us 
return to the example from the introduction: an application requires to know the average air 
temperature at the city of Paris at this very moment, and it is up to our middleware to find a 
reasonable approximation. For this, the middleware fetches the definition of “average” from 
the ontology, which includes a description of the well-known equation for the sampling 
distribution of the mean. This equation states that in a network of M sensors, we can afford 
to instead use only N sensors (N < M) to calculate the average temperature within some 
mean error of e. Then, the job of the discovery layer is to pick a set of N temperature 
sensors in Paris that is uniformly-distributed in space in order to provide the result with error 
e. For this, the discovery layer must perform the following actions:  

 Use the error equation to estimate the number N of sensors that will be needed for this 
request.  

 Produce a random sample of N points in time, space, and other dimensions (such as 
sensor/actuator orientation in space, their coverage area, or any other attribute of a 
device).  

 Discover the N devices in the network topology that best match those N points.  

 Recalculate the error given this set of devices to produce the final error estimate.  

 Possibly repeat 2-5, depending on whether the final error estimate is satisfactory. 

The example above is an instance of what we call a probabilistic lookup. That is, an 
intelligently-constructed query that makes use of probabilities to look up approximate 
information when exact values would be too costly to compute. In a similar manner, another 
aspect of discovery that can also be made probabilistic is the registration process. In 
probabilistic registration, services use non-deterministic functions to determine (1) at what 
times registration should take place, (2) which server it should register with, and (3) what 
attributes it should register with each server. 

Part of our upcoming research will consist of characterizing the different combinations of 
probability distributions that can be used throughout the discovery process (in both the 
probabilistic query and probabilistic registration), in order to establish what are the 
advantages and disadvantages of each discovery scheme. 

A.5. Composition 

Composition Problem:  Given a description of the input parameters and of the desired 
output, find a dataflow graph that connects the available services in order to produce the 
desired output from the parameters. 
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Figure A-4. Example of “composition” in the Internet of Things. 

Considering the problem summary above, from now on we will use the word “query” to 
denote the input to the composition problem. That is, a query is a description of the input 
parameters and of the desired output. Thus, given a query, the middleware must compose 
services into a dataflow diagram originating at the described input and ending at the desired 
output. 

Figure A-4 illustrates the main idea behind the composition process. In that example, a 
moving user wishes to keep track of the wind-chill factor at his location. He has no 
knowledge of the underlying sensors, actuators, or any technical information that is required 
to fulfill his request. Instead, he accesses an end-user application which takes a query from 
him and contacts our middleware in order to compose the required services and provide a 
solution. More specifically, it is up to the IoTS middleware to identify all services in the 
current network topology which can provide (in this example) location measurements, as 
well as all sources for wind-chill measurements. For wind-chill, it is found that by using a 
certain mathematical function it is possible to calculate the wind-chill based on temperature 
and wind-speed data, provided by a thermometer and an anemometer respectively (Figure 
A-2). For location, the middleware discovers that the user is carrying a location-capable 
device (a GPS), and uses it to pinpoint his/her latitude and longitude. With this, the 
middleware can search for wind-chill–compatible services in the network topology, thus 
discovering the existence of a thermometer and anemometer nearby. Finally, these two 
sensors are sampled, and a response is calculated by applying the wind-chill formula on the 
two resulting measurements. Part of this process, then, repeats every-so-often to continue 
providing the user with information about the wind-chill around him as he changes his 
position in the environment. 

From the example, it is clear to see that composition queries can be of two types, regarding 
their duration: one-time queries are those that return data to the requester only once, 
similar to how standard database queries operate; and continuous queries are those where 
the results are returned at multiple different times, executing either forever or for a limited 
lifetime. The wind-chill example is an instance of a continuous query. Another example of a 
simple continuous query is “give me the value of the temperature sensor in room 1 every 2 
minutes”.  

In addition, differently from most database systems, queries may also specify sequences of 
conditions (instead of just conjunctions and disjunctions). For instance, “if X=1 and 10 
minutes later Y=2, do action1(); Then, if Z becomes < 3 within 5 minutes, do action2()”. As 
such, composition queries differ from standard database queries in that they incorporate a 
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concept of time and sequential ordering. In the literature, spatio-temporal extensions of 
databases are handled by data-stream management systems (DSMS) such as [CCEG03, 
ABBC03 MVOP08, SPDM08, WXCJ98, KGB10], and complex-event processors (CEP). 

An exact solution to the service composition problem can be achieved in a brute-force 
manner through the four steps listed below, and pictured in Figure A-1. Note that while this 
solution is mathematically correct, it clearly does not fit in the large-scale Internet that we 
envision, as we anticipate the ontologies to be too large, and the services too numerous. 
Instead, we plan on adopting an approximate approach, as detailed later. In the meantime, 
though, the brute-force, exact solution to the composition problem can be described as 
follows: 

 Expansion: This step expands the initial query by replacing each term with an 
equivalent expression, found by traversing the domain ontology. Every term in the 
query is mapped to a concept, in the ontology, that in turn can be substituted with one 
or several sub-concepts.  Sub-concepts can be either a (set of) mathematical 
function(s) that is equivalent to the concept itself or an information source that can 
provide real-world information about its parent. The query expansion process stops 
when leaf nodes in the ontology are reached, to provide, as a final result, a set of all 
possible combinations of service dataflows that answer the initial query.  

 Mapping:  This step takes all queries identified in the expansion step, above, and 
maps them to the actual network topology. As such, mapping is necessarily performed 
by interacting closely with the service discovery layer. When the set of queries is 
received, this step decomposes each query into atomic sub-queries that can be 
mapped, each, to a single service in the network. The query takes advantage of our 
device ontology, that models real world devices, to complement any missing 
information during the discovery process. If a query cannot be mapped, due to a 
service not being present in the network, or the requester lacking the necessary 
permissions, the system reacts by dropping that query from the expanded set. The 
output of the mapping step is the set of all possible dataflows that can answer the 
expanded queries (and, therefore, also the initial query) in the current network 
topology. 

 Optimal mapping selection: Once all possible dataflows have been defined (mapping 
step), the IoTS middleware must choose one dataflow to enact. In this step, 
therefore,we find one dataflow that is, in some predefined way, optimal, and pass it to 
the execution block, below. 

 Execution: Now that the best composition of services has been determined for the 
query, in the execution step the services are actually accessed and the result is 
returned (or stored). In addition, during execution, the middleware must check for any 
conflicts that may arise at run-time, in a process that we call multi-agent conflict 
resolution. This is currently left as future work, when we will develop access control 
policies to manage concurrent access to service providers, especially actuators. 

Approximate Composition 

As mentioned earlier, the brute force approach to composition is not suitable for the large 
scale of the Internet of Things. As an alternative, therefore, we propose an approach that 
avoids calculating all equivalent sets of queries (which grows very large very quickly), by 
modifying only the expansion and mapping processes from the brute-force approach:  

 Smart query expansion: To avoid exhaustively calculating all possible equivalent sets 
of data-flows, only one of which will eventually be selected during the optimization 
phase, a much smarter approach to expansion is to instead produce a reduced set of 
good candidates. To perform this step, we assume certain knowledge of the network 
including the estimation of the category or number (or other attributes) of available 
services. Based on these estimations, a computation function will produce a set that 
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contains the candidate queries along with the time needed to execute each query and 
the number of services it requires. These candidates are the dataflows that have the 
highest likelihood of having a matching overlay in the network that satisfies a set of 
predefined constraints. An example constraint could be that the predicted execution 
time should fall within a certain acceptable interval.  

 Probabilistic mapping:  Taking as input the set of candidate dataflows from the 
previous phase, the probabilistic mapping phase differs from regular mapping in that it 
does not attempt to find all possible mappings of the input dataflows into the network 
topology. Instead, this phase will randomly pick a small subset of all implementable 
mappings by making small, atomic queries to the probabilistic Discovery module. The 
result is a much reduced set of dataflow mappings that are computed in considerably 
less time and using (hopefully) orders of magnitudes less resources. Similarly to the 
brute force based query mapping, probabilistic mapping will utilize the device ontology 
to complement the network’s knowledge of services in order to facilitate the 
composition process. 

Data Streaming and Storage Support 

Once all the steps above successfully take place, the system still has to execute the original 
request by enacting the optimal dataflow found in the previous step, and returning the results 
as appropriate. In this process, it will often happen that in addition to the latest sensor 
measurements, some amount of past data will also need to be accessed.  

Therefore, it is of utmost importance that the IoTS middleware supports not only live data 
streams but also historical data where measurements and other information are stored for 
later access. Although we have not yet started our work in this area, the literature includes 
several solutions that lay the groundwork for the main requirements that this imposes on our 
middleware: data storage, continuous queries, temporal queries, and spatial queries. One 
example is TinyDB [MFHH05], which support in-network processing and sensor queries. The 
advantage of TinyDB is that it is deployed and widely used although it supports only limited 
aggregate functions and does not support injection. It also does not focus on scalability, nor 
mobility and it does not provide long-term storage. Data Centric Storage [RKSE03] is 
another implemented solution that stores data on the nodes closest to the event’s location 
and stores replicas on the surrounding nodes but it gets inefficient when the number of 
events increases.  TSAR/PRESTO [Desnoyer05] supports in-network storage of data but 
requests information from sensors only if their readings differ from the reading prediction 
model built by proxies, which are powerful nodes in the network that are in charge of one 
cluster of sensors each. TinyPEDS [GWMA06] also supports in-network storage where data 
is stored on elected cluster-heads, which store the data of the cluster they are responsible 
for.  

A.6. Estimation 

Estimation Problem: Using physical/statistical models and historical spatiotemporal dataset 
from a set of devices, estimate the most likely true value of the data at a given 
spatiotemporal point.  

Except for the simplest situations, estimation is currently a process that is performed in a 
rather manual manner. As it is, it befalls a system designer to search the literature for a fitting 
model to use, extract deployment information, calibrate data sources, train classifiers, fill in 
matrices of parameters, etc. Then, when another system designer faces a similar situation, 
he is again tasked with repeating most of that work for his own system. At best, this 
constitutes a clear duplication of labor. But more than this, as new devices are added to the 
system, as old ones are removed, and as existing ones slowly deteriorate, much of this 
laborious process must be repeated every-so-often, to keep the system's error margins in 
check. Further, in a system of unknown topology, taking a full-knowledge design approach in 
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this manner is simply not possible. 

As a solution, in our IoTS middleware, we propose to automate this entire process. For this, 
we once again rely on a large ontology of device types and physical concepts. However, 
more than that, for this purpose the ontology must be augmented with error models, 
spatiotemporal propagation models, and statistical correlation models. With all of this 
information, solving the estimation problem becomes a 3-step process: 

 Model discovery: Searching the ontology for all the models related to the devices 
providing the desired services.  

 Optimal model selection: Picking the most appropriate models based on a few 
parameters and a cost function (also specified in the ontology). 

 Estimation execution: Applying the models to the existing historical data from 
sensors, using as input parameters the sensor and deployment metadata. This will be 
done using pre-developed engines for each model. 

In addition, to make sure the metadata is up-to-date, the middleware can also continuously 
execute recalibration procedures on the sensors by applying calibration models described 
in the ontology to historical sensor data. In many cases, even, the same spatiotemporal and 
statistical models used during estimation can also be employed for calibration. This is 
because the estimation process is a function f: parameters × input data → estimated values, 
while calibration is a function g: true values × input data → parameters. That is, the two 
processes are duals of one another, so the entire estimation process can be made self-
correcting. 

Note that the key to the estimation procedure described above is that we do not propose a 
one-size-fits-all solution to the estimation problem. Instead, we heavily rely on models that 
are entered by field experts into the device ontology. These same experts also develop 
processing engines, such as a Kalman filter engine, a particle filter engine, a naïve-Bayes 
classifier engine, etc., which act as plug-ins to the IoTS middleware in order to enact the 
models. This will make the middleware agnostic to the different estimation solutions and, in a 
major way, future-proof. 

A.7. Current status: Mobile-phone-level middleware 

To understand the fundamental requirements related to modeling the different types of 
devices in a network and creating the related ontologies, we initially narrowed down our 
target from the domain of large sensor/actuator networks to that of sensors residing within 
the same physical device. That is, our initial focus has been on modeling the different 
sensors in current mobile phones. 

This bottom-up approach is interesting for two reasons: first, it helps us solve the modeling 
problem at its simplest form, without the distractions of specifying communications protocols 
and so on. But, secondly, this approach also lays the groundwork for the deployment of 
large-scale sensor/actuator networks, by using the largest class of sensor/actuator-carrying 
devices on the Internet at this moment: mobile phones.  

Our solution is written in Java, with initial target OS being Android. Architecturally, the code is 
organized as shown in Figure A-5, that is: 

Applications access sensors in the system by instantiating a Thing/Sensor Mediator object, 
which is in charge of accessing a Thing/Sensor Daemon singleton running in the system. 
Through the Mediator, the application may perform basic discovery and sensing actions, 
including: discovering all sensors in the device, discovering sensors that belong to a certain 
class in the sensor ontology, sampling a desired sensor, setting up periodic sensing tasks, 
and setting up event-based sensing tasks. Each of these is done with a single method call, 
abstracting away all the logical details such as creating separate processes in the OS, 
executing inter-process communication calls, synchronization, etc. All of these lower-level 
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issues are all handled by the Mediator and the Daemon in an OS-independent manner. In 
addition, all sensors are treated homogeneously under a common API, whether they are 
microphones, thermometers, accelerometers, or cameras.  

 
Figure A-5. Mobile-phone middleware architecture. 

For this, at the other end of the Daemon's responsibilities is the task of communicating with 
the sensors themselves. This is done through the use of plug-ins called Drivers. 

A Thing/Sensor Driver is an OS-specific piece of software that abides by our Sensor API by 
implementing the Sensor interface. This interface defines a small set of low-level methods 
for extracting sensor metadata and sampling a sensor. Each Driver declares some simple  
metadata, such as full name, version, author, etc., as well as two properties that tie the driver 
into our device ontology. These properties are the sensor ID (for instance 
“com.mycompany.cameras.Supercam123”) and an interface (“org.standardsbody.sensors. 
cameras.ConsumerCameraStandardV2”). 

The sensor ID is a key with which the exact entry for this specific Sensor Driver's maker and 
model can be found in the ontology. Similarly, the interface ID points to the exact entry in the 
ontology where a specification of the sensor's data structures, data ranges, physical units, 
etc., can be found. Therefore, any two sensors that implement the same interface are, for 
most intents and purposes, interchangeable. 

All sensor data is transferred using a common Sensor Data object, which can be extended 
and customized for each sensor interface. The common information carried Sensor Data 
instances are the ID of the sensor that produced it, and the timestamp of when that specific 
data point was sampled. Sensor Data objects also carry their own tie-ins to the device 
ontology, through the form of a datatype ID, similar in purpose to the sensor ID. 

Data flows from the sensor hardware, through the OS-specific handlers, to the Sensor 
Driver, the Sensor Daemon, the Mediator, and, finally, reaches the application that requested 
it. When this happens, data is also attached a status code to inform the application of any 
errors or warnings that may have been triggered in the process. 

All of this is already implemented. The next step in the development of this mobile-phone 
middleware is to add support for data sinks (while sensors can be seen as data sources) 
which allow us to extend the scope of our mobile-phone middleware into applications that 
require actuation and communication with other services through the Internet. 

A.8. Conclusion 

We have presented our vision for a middleware for the Internet of Things-based services. 
Our middleware allows applications to request information from heterogeneous 
sensor/actuator service providers distributed on a global scale. We adopt a service-oriented 
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architecture to abstract all sensors and actuators as services in order to hide their 
heterogeneity. Our approach is heavily based on a Knowledge Base that carries information 
about sensors, actuators, manufacturers, physical concepts, physical units, data models, 
and error models. To address challenges of scale and heterogeneity, we concentrate on 
three core research contributions: probabilistic discovery, functional composition, and 
estimation. Together, these three contributions allow our middleware to respond to sensing 
or actuation requests while managing the complex relationship between accuracy and time, 
memory, processing, and energy constraints. 
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Appendix B – Ontologies for IoTS 
In this appendix, we focus on modelling a set of ontologies that describe devices and their 
functionalities and thoroughly model the domain of physics. The physics domain is indeed at 
the core of the IoTS, as it allows the approximation and estimation of functionalities usually 
provided by things. Those functionalities will be deployed as services on appropriate devices 
through the middleware presented in Appendix A. 

Following, in Section B.1 we discuss related work and point out our contribution with respect 
to these efforts, in Section B.2 we detail the proposed ontologies for IoTS and finally in 
Section B.3 we conclude our discussion on the proposed ontologies.  

B.1. Related Work 

Semantic technologies within the IoT context are perceived as having three main benefits: 
high-level abstractions of complex information and incremented knowledge that provides a 
support for service composition and better interoperability. 

Abstractions in IoT solutions, that integrate ontologies in their approach, can be divided in 
two categories: On the one hand, some IoT projects take advantage of ontologies as they 
abstract devices as services (such as in HYDRA[ZH09, ERA10], SENSEI [PBEV09]). On the 
other hand, others use them as they abstract data/information as services (among which are 
SOFIA [HLBT10], SATware [MDMV09], Global Sensor Networks GSN[AHS07], and Sensor-
Masher[PH09]). A common approach towards this purpose is the use of virtual/semantic 
sensors [ZH09, ERA10, AHS07] to abstract one or several physical devices. Similarly, 
[WZL06, PH09, MDMV09] adopt the concept of semantic sensors and semantic streams. 
However, their implementation is different as they focus on abstracting data streams into 
higher level semantically rich knowledge. Semantic devices provide composition in some 
manner where the composed functions are specified at design time, and the mapping onto 
the network devices happens dynamically at run time. 

To provide better interoperability, three aspects of the real world are modelled thoroughly in 
ontologies created within IoT solutions: things [PBEV09, ERA10], information and reasoning 
over data generated by things [ELS07, ERA10, Phoc09], and services [ZH09, ERA10]. Some 
projects go a step further by using ontologies to model context information [PBEV09], or 
dynamic reconfiguration, and adaptive resource management [KKKN08]. The target in 
[PH09], however, is the integration of sensor data streams into the World Wide Web rather 
than into an Internet of Things. 

It should be noted that none of these solutions try to model and combine knowledge domains 
representing the real world into one global ontology as we do, to address the challenges 
presented at the beginning of this Appendix. They are however, mostly focused on modelling 
their ontologies for specific purposes only. Further, it is not clear how any of those ontologies 
are modelled to address scalability. 

B.2. IoTS Ontologies 

An ontology is defined as “a formal, explicit specification of a shared conceptualization” 
[GCG94] and is used to represent knowledge within a domain as a set of concepts related to 
each other. There are four main components that compose an ontology: Classes, relations, 
attributes and individuals. Classes are the main concepts to describe. Each class can have 
one or several children, known as subclasses, used to define more specific concepts. 
Classes and subclasses have attributes that represent their properties and characteristics. 
Individuals are instances of classes or their properties. Finally, relations are the edges that 
connect all the presented components. 
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Global Ontology for The IoTS 

We envision the representation of the IoTS-based real world to be divided into 3 layers: a 
physical layer, i.e., things; an information layer, i.e., data and metadata about knowledge 
provided by things; and a functional layer comprising services provided by things. To match 
our vision of the real world and its representation by the Internet of Things, we aim at 
building an ontology that actually models all three layers. In fact, the physical layer is 
represented by the Device Ontology. The information and service layers are represented by 
the (Physics and Mathematics) Domain Ontology and Estimation Models Ontology. To 
describe the ontologies more precisely: 

Device Ontology: The Device Ontology models actual hardware devices that may exist in 
the network. For our middleware, it can be regarded as the device description repository that 
can be accessed for discovery. 

Domain Ontology: The (Physics and Mathematics) Domain Ontology models information 
about real world physical concepts and their relations among each other. For our 
middleware, it can be regarded as the main repository to access for service composition. 

Estimation Ontology: The Estimation Ontology contains information about different 
estimation models (“linear interpolation”, “Kalman filter”, “naive Bayesian learning”, etc.), the 
equations that drive them, the services that implement them, and so on. For our middleware, 
it can be mainly regarded as the repository describing the device’s quality of service, and 
provides information needed for service composition. We aim at providing this ontology to be 
used as a reference by any middleware or application requiring IoTS services, i.e., services 
provided by real world things. Those services, in most cases, generate approximate but 
never 100% accurate outcomes. 

Most existing ontology work focused on modelling either devices as done, e.g., in MMI17 
ontology and [NC09, Gomez08], or physics [Kuhn09, CMNG08] separately. The novelty of 
our approach is that it combines and takes advantages of the three ontologies by linking, all 
together, the domain of knowledge for sensing, actuating, and processing tasks and the real 
world representation through IoTS services, that are aware of their environment. An 
important contribution is the level of abstraction at which we represent things, as we allow 
users to describe devices in an expressive manner while still avoiding complex details. In 
fact, as we target scalability, we consider simplicity in modelling knowledge to be an 
essential criteria. We argue that too much details might hinder the readability and quick 
traversability of the ontologies, thus effecting their scalability and usability. Of course the full 
ontologies are too large to be described in this appendix. So, in the following, we outline only 
the most important concepts. 

Device Ontology 

As mentioned earlier, the Device Ontology is accessed to identify what things should be 
looked up to satisfy an application’s requirements. We consider that applications built on top 
of an IoTS middleware should be network and device agnostic. Therefore, it becomes the 
task of the middleware to identify what devices to seek in order to provide needed services. 
For this purpose, the ontology should clearly describe and yet not over-specify device 
metadata. 

Our main contribution is the high-level abstraction for device metadata, especially 
regarding the internal components of devices. Internal components are the electronic chips 
and hardware parts, built inside the device, that together define its technical functionalities. 
Hence, looking at each of them separately as independent entities is not informative, as their 
functionalities are tightly related to one another’s. That being said, understanding the 

                                                 
 
17  http://marinemetadata.org/community/ teams/ontdevices 
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characteristics of a singular chip requires an understanding of the whole device’s internal 
schema, which grows to be too complex to include. We can further argue that they can just 
be considered as a black box, especially that those components are not directly accessible 
by applications. However, we chose to allow users to describe the internal components of 
devices (also done in [NC09, Gomez08]) by their name and type only. 

Another main contribution is that our ontology holds knowledge that is independent of 
device deployments, e.g., information related to the device’s actual location. Instead, 
deployment information is presented in the metadata, reported by devices, during the 
discovery registration process. The ontology becomes thus easily pluggable with any 
middleware or application. 

 
Figure B-1. Sensor and related first class entities. 

To elaborate on the ontology, we consider that IoTS devices can be divided in four main 
classes: 

 Sensor: A device that has the capability to measure a physical property of the real 
world. 

 Actuator: A device that has the capability to perform an operation on or control a 
system/physical entity in the real world. 

 Processor: A device that has the capability to perform computation operations on data. 

 Composite: A device that consists of at least 2 of the devices above. 

In the following, we focus on modelling sensors, as they are representative of things and 
models of other devices adhere to the same conceptualization approach. Based on the cur- 
rent literature [ELS07, LZ05], we have identified several ontology concepts that are 
commonly used to model sensors (sensorML18). As shown in Figure B-1, those concepts 
are: 

 Manufacturer: The manufacturer of the sensor.  

 Sensor component type: The sensor internal hardware components. 

 Physical concept: The real world property measured by the sensor (e.g., temperature, 
wind speed, etc.). This concept is the main link between the Device Ontology and the 
Physics Ontology. 

 Sampling method: The way the sensor is triggered to sample its environment (e.g., 
periodic). 

                                                 
 
18 http://www.opengeospatial.org/standards/sensorml 
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 Data transfer method: The way the sensor is triggered to transfer its readings (e.g., 
push). 

 Transition function: The process used to convert the input phenomenon to a digital 
value. 

We chose the entities above as we consider that a sensor can be properly identified given 
any of their respective values. With the exception of the last entity, which we introduce as it 
clarifies what and how phenomena or values are output by a sensor after a measurement is 
performed. This is needed so that a sensor’s outputs can be meaningful to and usable by 
other applications. 

Physics Domain Ontology 

The Physics Domain Ontology is created with two main goals. The first is to model real 
world entities as physical concepts so that any IoTS middleware can extract knowledge 
about the real world, as this is a common task to be performed within the Internet of Things. 
The second is to model mathematical formulas and functions as they are the first alternative 
to be utilized when no device can provide needed services. The main classes of the Domain 
Ontology are: 

 Physical concept: A real world object or property that can be measured. 

 Physical unit: The output unit of the real world property measurement. 

 Mathematical datatype: The set of numbers that can represent a real world property 
measurement. 

 Formula: Mathematical expression that computes a numerical value representing a real 
world property. 

 Function: Formulas are implemented by functions that define the required input and 
output machine datatypes. 

Our main contribution in this ontology is that we model and establish a direct relation 
between physical concepts, mathematical formulas and functions. We argue that this 
relation is essential as it allows services to be provided as mathematical computations over 
physical concepts. This process can be used by any middleware to substitute services of 
unavailable devices with alternative services that can be deployed on any other appropriate 
device, which is a very familiar scenario within the highly dynamic IoTS. This relation further 
allows our ontology to be useful in any context requiring mathematical and physical 
knowledge by clearly modelling formulas that can compute mathematical values as 
measurements over a physical property. 

However, a same physical concept can have several formulas that vary based on the units of 
measurement of input/output parameters. Hence, our second contribution is to introduce two, 
not previously described, first class entities: unit constraints and conversion formulas. The 
former allows users to specify if a formula can have only one output and one input unit per 
concept, or can have a defined set of such units, or it stands correct for any input/output 
units, linked to a physical concept. For instance, the formula speed = distance/time stands 
correct for any distance unit over any time unit. On the other hand, a windchill formula for 
temperature in Celsius and wind speed in km/h is different than that of a temperature in 
Fahrenheit and wind speed in mph. As for the conversion formulas class, it allows users to 
model conversion formulas between one measurement unit to another. By adding the 
constraints class and conversion functions to our ontology, we introduce a higher degree of 
flexibility as it allows any middleware or application using our model to dynamically adapt to 
unit constraints. 

A common reference model for representing and categorizing physical concepts is the 
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DOLCE19 representation. It is adopted by several works such as [DNJC10, Kuhn09], as it 
has a well-organized vocabulary. However, it does not categorize entities by their physical 
properties but rather by the human perception of those entities. This organization is not in 
line with our representation of concepts that should be both intuitive and physics oriented. In 
our ontology, each physical concept is linked to: 

 Sensor: All sensors that can measure its value. 

 Units of measurement: All units by which it can be measured. 

 Mathematical datatype: Set the mathematical values the concept can be represented 

 Formula: All mathematical formulas that can compute its value. 

Regarding formulas, authors in [CMNG08] provide an approach to modelling physics in an 
ontology. However, their model is only applicable for the biological domain as they focus on 
mapping laws of physics to biological processes. SPACE is another ontology that models 
physics but it only applies in the space physics domains [NSM10]. In our ontology, each 
formula is linked to: 

 Mathematical expression: Mathematical equation. 

 Input parameters: Measurements of physical concepts that will be used to evaluate 
another physical concept and their measurement units. 

 Output parameter: Computed output and its measurement unit. 

 Physical concept: The physical concept being evaluated. 

 Unit of measurement: It is in fact the output’s unit. 

We argue that those concepts are well representative of physics and mathematical models 
and they specify all the parameters needed to define a mathematical equation. The Sensei 
project [PBEV09] models a decomposition of physical concepts into a set of other physical 
concepts. This decomposition can be similar to a direct link between our formula output and 
input concepts. However, the relation between their concepts is not clearly specified and 
therefore, their decomposition cannot substitute our formula model. 

Estimation Ontology 

The Estimation Ontology is, perhaps, the most unusual among the three described here. 
This ontology is in charge of storing the different mathematical models that make up the 
mental toolbox carried by expert system designers in fields such as Robotics, Estimation, 
Sensor Networking, etc. However, in addition to simply storing these models, the Estimation 
Ontology must also organize them in a way that makes them machine-accessible. After all, 
our middleware must be able to discern (1) which models are appropriate for a given 
situation, and (2) which model is, in some sense, optimal. 

For this reason, the Estimation Ontology must provide a well-designed set of attributes for 
each model, as well as an intricate web of relationships between models, devices, and 
physical concepts. These rather indispensable elements, and how to best express them in 
this ontology, are something that we are currently investigating. For now, we limit ourselves 
to providing below a first-level set of classes that group the different types of mathematical 
models: 

 Estimation & Prediction Models: These models are used during the automated 
estimation process, as well as before the look-up phase in probabilistic discovery. An 
example of such a model is a Kalman filter where each component in its matrices and 
vectors are functions of physical concepts from the Domain Ontology (for instance, an 
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input vector for use in target-localization could be defined as a triplet of 3D-
acceleration, 3D-velocity, and 3D-position). 

 Association & Correlation Models: These describe the numerous conditional probability 
relations that are used in Estimation Theory, relating one physical phenomenon as a 
function of another. For instance, the probability of the value of a temperature sensor 
given the value of a daylight sensor. In addition, these models can also be used to 
solve the Association Problem that occurs, for instance, with multiple-target tracking. 

 Error Models: These models describe the different ways that uncertainties can be 
introduced into measurements and actuations. These are usually represented in the 
form of a stochastic model (for instance, a simple additive Gaussian noise model). 

B.3. Conclusion 

We presented in this appendix a Global Ontology we are building for IoTS. The ontology 
models three aspects of the real world present in the Internet of Things. The first aspect is 
the “things” aspect described in a Device Ontology. The second aspect consists of real world 
concepts and functionalities of things, modelled in a Domain Ontology as mathematical 
formulas, and third is a real world approximation aspect that describes models to be used to 
approximate unavailable services and estimate missing information. The proposed ontology 
is at the core of a Service Oriented middleware for the Internet of Things, we are developing, 
that is scalable, flexible and provides the needed interoperability between deeply 
heterogeneous IoTS components as detailed in [THVG11]. 

Our future work will consist of further investigating the sensor modelling approach on 
different levels of details, as we plan on performing deeper comparison with existing 
solutions. We pay special attention to SensorML as it provides an appropriate modelling 
approach, although too detailed for our purposes. We later plan on investigating actuator and 
processor modelling approaches, but we consider they will strongly adhere to sensor 
models. Furthermore, we plan on modelling the estimation ontology comprising 
spatiotemporal and statistical correlation models of data. As for the middleware solution, we 
plan on implementing our vision and integrating the ontology to evaluate its feasibility. 
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Appendix C – SCA technical information 
Both the business and Thing-based facets of the SCA-based XSC rely on an SCA model. In 
this appendix we give definitions for the elementary concepts of this model. 

SCA stands for Service Component Architecture, which comprises a set of specifications20, 
actually stabilized at v1.00, aiming at providing the basis to create and compose services. 
These specifications have been written by a group of industrials called the OSOA 
collaboration21 which counts among its participants the following companies: BEA, IBM, 
IONA, Oracle, Red Hat, SAP, Sun and Sybase. 

The SCA specifications define most notably a language-neutral programming model and an 
assembly mechanism for components implemented using various technologies. The 
specifications also cover the non-functional requirements through the SCA policy framework. 

The SCA binding mechanism allows to plug existing EJB sessions beans or JCA connectors 
into an SCA component, thus easing the integration of this technology in the enterprise 
world. 

Philosophy and main concepts 

In a SOA perspective, as in CHOReOS, building a business application consists of creating 
services matching a business need or using existing ones. SCA provides a programming 
model to encompass both these two aspects, the creation and composition of services. 

The main idea of SCA is to see a business application as a set of components linked 
together. A component is actually a key concept in SCA: it offers services through an 
interface and consumes services from other components, called references. SCA also 
defines larger structures, known as composites. Composites are assemblies of components, 
services, references, properties and the wiring between the different artefacts. These 
artefacts are all detailed in Figure C-1 that gives the anatomy of an SCA composite. They 
also are more formally defined in the SCA meta-model defined at OSOA.org (the official site 
of the SCA and SDO specifications) [OSOA07], as represented in Figure C-2. 

 
Figure C-1. Anatomy of an SCA composite. 

 

                                                 
 
20 http://www.osoa.org/display/Main/Service+Component+Architecture+Specifications 
21 http://www.osoa.org/ 
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Figure C-2. SCA meta-model. 

 

SCA embraces a wide range of technologies. Regarding to service creation, specifications 
exist to support the development of service components in different programming languages 
including Java, C++, Cobol, C and BPEL.  

Likewise, SCA specifications also deal with the communication between services and 
provide bindings to do so. A binding describes the access mechanism to be called by a client 
for a service, and the access mechanism used to call a service for a reference. SCA 
currently supports the following binding types: Web services, JMS, EJB Session Bean and 
JCA. New binding types can be added through an extensibility mechanism. 

The complete runtime configuration which contains components and composites is called the 
SCA domain. An SCA domain defines the boundaries for every component and composite. 
The boundaries  are limited to a single SCA domain and cannot cross over multiple domains. 
An SCA component is therefore configured for a specific SCA runtime.  

Communication between different domains and other external entities (such as Web services 
or Things) is still made possible through bindings. As such, SCA composites and 
components can interact with Web-based services  using the existing Web services binding, 
which is SOAP based. Nevertheless a REST-based binding can also be implemented and 
tailored to CHOReOS needs.  

In CHOReOS we further plan to specify and develop a binding that targets Thing-based 
services. This binding shall rely on a Device Profile for Web Services (DPWS). 

SCA artefacts definition 

In order to have a portable representation of its artefacts, SCA defines an XML file format 
which is used for the SCA domain configuration when deploying composites. This format is 
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referenced as the Service Component Definition Language (SCDL). For example, the 
following excerpt defines a composite with two components: 

<?xml version="1.0" encoding="UTF-8"?> 

<composite xmlns="http://www.osoa.org/xmlns/sca/1.0" 

 targetNamespace="http://example" 

 name="ExampleComposite"> 

 

    <component name="Component1"> 

        ... 

    </component> 

 

    <component name="Component2"> 

        ... 

    </component> 

 

</composite> 

Focus on Components and Composites 

A component (Figure C-1) is a fundamental element to build a business application. It is 
defined by specifying: 

 The component implementation (a component may have no implementation in a top 
down approach). 

 The services it provides. 

 The references it needs from others (components and composites within the same 
SCA domain and external applications or systems). 

 The properties that configure data values in its implementation. 

All these artefacts are declared in the SCDL file, as the following snippet shows: 

    <component name="CalculatorServiceComponent"> 

        <implementation.java class="calculator.CalculatorServiceImpl"/> 

        <service name="CalculatorService"> 

            ... 

        </service> 

        <reference name="addService"> 

            ... 

        </reference> 

        <reference name="subtractService"> 

            ... 

        </reference> 

        <reference name="multiplyService"> 

            ... 

        </reference> 

        <reference name="divideService"> 

            ... 

        </reference> 
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        <property name="pi">3.14</property> 

    </component> 

The component implementation represents how a concrete business function is achieved. 
SCA allows implementations in a wide range of technologies. Currently specifications exist 
for Java, Spring, BPEL, C, C++ and Cobol. 

The configurable part of a component is called the component type. It includes the services 
offered by the component, the references to other services and the settable properties. All 
these artefacts are made available by introspection of the implementation, as provided by 
the FraSCAti platform (see Section 5.1.2). 

A composite (Figure C-1) is a SCA structure used to assemble components, services, 
references, properties and the wiring between these artefacts. A composite can also include 
other composites to build higher level business functions. 

Composite services, as well as composite references are actually provided by components 
contained in the composite. This mechanism is called promotion. Within a composite, the 
components services and references can also be wired. 

Focus on services and references 

A service allows to represent what a component may provide to the others whereas a 
reference allows to represent what a component needs from the others, where the term 
others refers to components and composites within the same SCA domain and external 
applications or systems. 

Defining a service or a reference consists in specifying both: 
 Interfaces, to give a description of the business functions. 

 Bindings, to access the business functions 

An interface describes the business functions provided by a service and used by a 
reference. SCA currently supports the following interface types: Java/C++ interface, WSDL 
1.1 PortTypes and WSDL 2.0 Interfaces. New interface types can be added through an 
extensibility mechanism. 

A binding describes the access mechanism to be called by a client for a service and the 
access mechanism used to call a service for a reference. As mentioned before, SCA 
supports Web services binding types, among other binding types, and is also extensible 
concerning this aspect via a corresponding extensibility mechanism.  

The FraSCAti SCA platform 

SCA implementations are made available by four different open source communities: 

 Apache Tuscany22 

 Frabric323 

 FraSCAti24 

 Service Conduit25 

For the SCA-based XSC though, we rely on the FraSCAti SCA platform as it offers specific 
means for runtime manageability (including introspection and reconfiguration) of SOA 
applications and of their supporting environment [SMFD09]. While these features are not part 

                                                 
 
22 http://tuscany.apache.org/ 
23 http://www.fabric3.org/ 
24 https://wiki.ow2.org/frascati/Wiki.jsp?page=FraSCAti 
25 http://www.service-conduit.org/ 
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of the baseline SCA specification, they are leveraged in our implementation to deal with 
functional and non-functional concerns. 
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Appendix D – CHOReOS Cloud & Grid API 
 
In this appendix we provide further details concerning the API that is offered by the 
CHOReOS Cloud & Grid middleware. In particular, D.1 refers to the Node Pool Manager 
API, D.2 refers to the Service Deployer API and finally D.3 provides the Grid API. 

D.1. Node Pool Manager API 

Create new node 

 

HTTP 
Method 

URI Request Content Sample Responses 

POST /nodes <node> 

   <cpus>2</cpus> 

   <ram>1024</ram> 

   <storage>100</storage> 

   <so>Ubuntu 10.4</so> 

   <zone>eu-west-1</zone> 

</node> 

201 CREATED 

<node 
link="/nodes/{id}"/> 

 

500 ERROR 

 

Delete an existing node 

 

HTTP 
Method 

URI Request Content 
Sample 

Responses 

DELETE /nodes/{id} - 200 OK 

 

404 NOT FOUND 

 

500 ERROR 

 

Modify an existing node 

 

HTTP 
Method 

URI Request Content Sample Responses 

PUT /nodes/{id} <node> 

   <storage>2</storage> 

</node> 

200 OK 

 

404 NOT FOUND 

 

500 ERROR 
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Get existing node details 

 

HTTP 
Method 

URI Request 
Content 
Sample 

Responses 

GET /nodes/{id} - 200 OK 

<node> 

   <cpus>2</cpus> 

   <ram>1024</ram> 

   <storage>100</storage> 

   <so>Ubuntu 10.4</so> 

   <zone>eu-west-1</zone> 

   <ip>20.10.9.8</ip>    

   <hostname>h1.choreos.eu</hostname> 

</node> 

 

404 NOT FOUND 

 

500 ERROR 

 

List existing nodes 

 

HTTP 
Method 

URI Request Content Responses 

GET /nodes?{search+criteria} - 200 OK 

<nodes> 

  <node> 

    <cpus>2</cpus> 

    <ram>1024</ram> 

    … 

  </node> 

  <node> 

    … 

  </node> 

</nodes> 

 

500 ERROR 

The seach criteria can be anything like this: 

{field1}={value1}&{field2}={value2}&...&{fieldN}={valueN} 

Where fields are all available attributes in nodes (see Nodes attributes bellow) 
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Deploy a configuration to an existing node 

 

HTTP 
Method 

URI Request Content 
Sample 

Responses 

POST /nodes/
{id}/co
nfigs 

<config> 

  
<name>MYSQL</name> 

</config> 

201 CREATED 

<config 
link="/nodes/{node_id}/configs/{confi
g_id}"/> 

 

404 NOT FOUND 

 

500 ERROR 

 

Get the configurations list from an existing node 

 

HTTP 
Method 

URI Request Content 
Sample 

Responses 

GET /nodes/{id}/configs - 200 OK 

<configs> 

  <config> 

    <name>MYSQL</name> 

  </config> 

  <config> 

    <name>APACHE</name> 

  </config> 

  ... 

</configs> 

 

500 ERROR 

 

Delete a configuration from a node 

 

HTTP 
Method 

URI Request Content 
Sample 

Responses 

GET /nodes/{id}/configs/{config_id} - 200 OK 

 

500 ERROR 
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D.2. Service Deployer API 

 

Deploy a service 

 

HTTP 
Method 

URI Request Content 
Sample 

Responses 

POST /services <service type="BPEL"> 

   <codeLocation> 

      URI 

   </codeLocation> 

 

   <resourcesImpact> 

      <memoryImpact> 

         light 

      </memoryImpact> 

 

      <cpuImpact> 

         medium 

      </cpuImpact> 

 

      <ioImpact> 

         heavy 

      </ioImpact> 

 

      <region> 

         France 

      </region> 

   </resourcesImpact> 

</service> 

201 CREATED 

<service 
link="/services/{id}"/> 

 

500 ERROR 

 

List deployed services 

 

HTTP 
Method 

URI Request Content Sample Responses 

GET /services - 200 OK 

500 ERROR 

 

 

 

Modify service performance 
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HTTP 
Method 

URI Request Content Sample Responses 

PUT /services/{id} <service> 

   <increase 
factor="200%"/> 

</service> 

200 OK 

 

404 NOT FOUND 

 

500 ERROR 

 

Undeploy a service 

 

HTTP 
Method 

URI Request Content 
Sample 

Responses 

DELETE /services/{id} - 200 OK 

 

404 NOT FOUND 

 

500 ERROR 

 

D.3. Grid Computing API 

The Grid computing API will be used to access both the InteGrade middleware developed at 
USP and the Hadoop system developed by the Apache Foundation. 

Submitting an application 

 

HTTP 
Method 

URI Request Content Sample Responses 

POST /applications/ <application> 

 <name>VideoTranscoder</name> 

 <description> 

  Beta version 

 </description> 

 <architecture> 

  Linux_i686 

 </architecture> 

 (application binary 
attached) 

 <hash>7cc…42</hash> 

</application> 

201 CREATED 

<application 
link="/application/{id}"/> 

 

500 ERROR 

 

Modify an existing application 

 

HTTP URI Request Content Sample Responses 
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Method 

PUT /application/{id} <application> 

 <description> 

  Transcode mobile phone  

  videos into other  

  formats. 

 </description> 

</application> 

200 OK 

 

500 ERROR 

 

Delete an existing application 

 

HTTP 
Method 

URI Request Content Sample Responses 

DELETE /application/{id} - 200 OK 

 

500 ERROR 

 

Get existing application details 

This method works almost like returning what was sent to create the application, except that 
the application binary is not uploaded back to the user. 

HTTP 
Method 

URI Request 
Content 

Responses 

GET /application/{id} - 200 OK 

<application> 

 <name>VideoTranscoder</name> 

 <description> 

  Transcode mobile phone  

  videos into other  

  formats. 

 </description> 

 <architecture> 

  Linux_i686 

 </architecture> 

 <hash>7cc…42</hash> 

</application> 

 

404 NOT FOUND 

 

500 ERROR 
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List existing applications 

This operation lists applications related to the term specified by the “query” value. If “query” 
is empty or missing, all applications are listed. 

HTTP 
Method 

URI Request 
Content 

Responses 

GET /applications?query=vid
eo 

- 200 OK 

<applications> 

 <application> 

  <name>VideoTranscoder</name> 

  <description> 

   Transcode mobile phone  

   videos into other  

   formats. 

  </description> 

 </application> 

 <application> 

   … 

 </application> 

</applications> 

 

500 ERROR 

  

Execute an application 

This application will run on machines that satisfy the constraints condition. The ones that 
also satisfy the preferences attributes will be given higher priority in usage. The grid 
middleware will create parallel tasks, each of them running in a different node (if 
forceDifferentNodes is false, two or more tasks can be run by one node). Later, after 
execution is finished, the user will receive the specified outputs. 

 

 

 

HTTP 
Method 

URI Request Content Sample Responses 

POST /executions <execution> 

 <applicationId> 

  {application_id} 

 </applicationId> 

 <constraints> 

  freeRAM >= 1024 

 </constraints> 

 <preferences> 

  freeCPU >= 30 

201 CREATED 

<execution link="/  

execution/{id}"/> 

 

500 ERROR 
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 </preferences> 

 <applicationType> 

  Bag of tasks 

 </applicationType> 

 <arguments> 

  --size 480x800 

  --format xvid 

 </arguments> 

 <numberOfTasks> 

  8 

 </numberOfTasks> 

 <forceDifferentNodes> 

  True 

 </forceDifferentNodes> 

 <storeStdout> 

  False 

 </storeStdout> 

 <storeStderr> 

  True 

 </storeStderr> 

 <storeOutputFiles> 

  <outputDirectory> 

   xvidVideos 

  </outputDirectory> 

 </storeOutputFiles> 

 (binaries of input files 

  attached) 

</application> 

 

 

Cancel an execution 

 

HTTP 
Method 

URI Request Content Sample Responses 

DELETE /execution/{id} 

 

 

- 200 OK 

 

500 ERROR 
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Get existing execution details 

All the information given in the execution creation will be returned, except binaries and there 
is also the status tag to inform if execution was finished, is still running, waiting for available 
machines, etc. In case it is finished, the output is returned. 

 

HTTP 
Method 

URI Request Content Responses 

GET /execution/{id} - 200 OK 

<execution> 

 <applicationId> 

 … 

 <constraints> 

 … 

 <status> 

  Finished 

 </status> 

</execution> 

 

404 NOT FOUND 

 

500 ERROR 

 

 

 

 

 

 

 

 

 

 

List existing executions 

Existing executions can be retrieved in two different ways: one by listing executions of a 
specific application and another by listing all executions (if  “applicationId” is not specified). 

 

HTTP 
Method 

URI Request 
Content 

Responses 
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GET /executions?applicati
onId={applicationId} 

- 200 OK 

<executions> 

 <application id=”{appId}”> 

  <execution id=”{id}”> 

   <status> 

    Finished 

   </status> 

  </execution> 

 </application> 

</executions> 

 

404 NOT FOUND 

 

500 ERROR 

 

Getting execution results 

 

HTTP 
Method 

URI Request 
Content 

Responses 

GET /execution/{id}/result 

 

- 200 OK 

<execution> 

  (binary output  

   attached) 

</execution> 

 

404 NOT FOUND 

500 ERROR 

 

 

 

Get NameNode configuration 

This operation is Hadoop specific and does not apply to the InteGrade API. 

 

HTTP 
Method 

URI Request 
Content 

Responses 

GET /applications/ 
{application_id}/ 
namenode 

- 200 OK   

<configuration> 
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<property> 
<name>fs.default.name</name> 
<value>hdfs://localhost:54310/</value>
</property> 
<property> 
<name>mapred.job.tracker</name> 
<value>localhost:54311</value> 
</property> 
</configuration> 

404 NOT FOUND 

500 ERROR 

 


