3,547 research outputs found

    Big data analytics:Computational intelligence techniques and application areas

    Get PDF
    Big Data has significant impact in developing functional smart cities and supporting modern societies. In this paper, we investigate the importance of Big Data in modern life and economy, and discuss challenges arising from Big Data utilization. Different computational intelligence techniques have been considered as tools for Big Data analytics. We also explore the powerful combination of Big Data and Computational Intelligence (CI) and identify a number of areas, where novel applications in real world smart city problems can be developed by utilizing these powerful tools and techniques. We present a case study for intelligent transportation in the context of a smart city, and a novel data modelling methodology based on a biologically inspired universal generative modelling approach called Hierarchical Spatial-Temporal State Machine (HSTSM). We further discuss various implications of policy, protection, valuation and commercialization related to Big Data, its applications and deployment

    A General Purpose Neural Architecture for Geospatial Systems

    Full text link
    Geospatial Information Systems are used by researchers and Humanitarian Assistance and Disaster Response (HADR) practitioners to support a wide variety of important applications. However, collaboration between these actors is difficult due to the heterogeneous nature of geospatial data modalities (e.g., multi-spectral images of various resolutions, timeseries, weather data) and diversity of tasks (e.g., regression of human activity indicators or detecting forest fires). In this work, we present a roadmap towards the construction of a general-purpose neural architecture (GPNA) with a geospatial inductive bias, pre-trained on large amounts of unlabelled earth observation data in a self-supervised manner. We envision how such a model may facilitate cooperation between members of the community. We show preliminary results on the first step of the roadmap, where we instantiate an architecture that can process a wide variety of geospatial data modalities and demonstrate that it can achieve competitive performance with domain-specific architectures on tasks relating to the U.N.'s Sustainable Development Goals.Comment: Presented at AI + HADR Workshop at NeurIPS 202

    A Health Monitoring System Based on Flexible Triboelectric Sensors for Intelligence Medical Internet of Things and its Applications in Virtual Reality

    Full text link
    The Internet of Medical Things (IoMT) is a platform that combines Internet of Things (IoT) technology with medical applications, enabling the realization of precision medicine, intelligent healthcare, and telemedicine in the era of digitalization and intelligence. However, the IoMT faces various challenges, including sustainable power supply, human adaptability of sensors and the intelligence of sensors. In this study, we designed a robust and intelligent IoMT system through the synergistic integration of flexible wearable triboelectric sensors and deep learning-assisted data analytics. We embedded four triboelectric sensors into a wristband to detect and analyze limb movements in patients suffering from Parkinson's Disease (PD). By further integrating deep learning-assisted data analytics, we actualized an intelligent healthcare monitoring system for the surveillance and interaction of PD patients, which includes location/trajectory tracking, heart monitoring and identity recognition. This innovative approach enabled us to accurately capture and scrutinize the subtle movements and fine motor of PD patients, thus providing insightful feedback and comprehensive assessment of the patients conditions. This monitoring system is cost-effective, easily fabricated, highly sensitive, and intelligent, consequently underscores the immense potential of human body sensing technology in a Health 4.0 society

    Data Science, Data Visualization, and Digital Twins

    Get PDF
    Real-time, web-based, and interactive visualisations are proven to be outstanding methodologies and tools in numerous fields when knowledge in sophisticated data science and visualisation techniques is available. The rationale for this is because modern data science analytical approaches like machine/deep learning or artificial intelligence, as well as digital twinning, promise to give data insights, enable informed decision-making, and facilitate rich interactions among stakeholders.The benefits of data visualisation, data science, and digital twinning technologies motivate this book, which exhibits and presents numerous developed and advanced data science and visualisation approaches. Chapters cover such topics as deep learning techniques, web and dashboard-based visualisations during the COVID pandemic, 3D modelling of trees for mobile communications, digital twinning in the mining industry, data science libraries, and potential areas of future data science development
    corecore