9,300 research outputs found

    Automatic generation of human machine interface screens from component-based reconfigurable virtual manufacturing cell

    Get PDF
    Increasing complexity and decreasing time-tomarket require changes in the traditional way of building automation systems. The paper describes a novel approach to automatically generate the Human Machine Interface (HMI) screens for component-based manufacturing cells based on their corresponding virtual models. Manufacturing cells are first prototyped and commissioned within a virtual engineering environment to validate and optimise the control behaviour. A framework for reusing the embedded control information in the virtual models to automatically generate the HMI screens is proposed. Finally, for proof of concept, the proposed solution is implemented and tested on a test rig

    Generator Power Optimisation for a More-Electric Aircraft by Use of a Virtual Iron Bird

    Get PDF
    A prodedure is developed to minimise the generator design power within the electric power system of a future more-/ all-electric aircraft. This allows to save weight on the generators and on other equipment of the electic power system. Execution of the optimisation procedure by hand demonstrates the complexity of the problem. An automation of the process shows the capabilities of integrated modelling, simulation and optimisation tools

    Connected and shared X-in-the-loop technologies for electric vehicle design

    Get PDF
    The presented paper introduces a new methodology of experimental testing procedures required by the complex systems of electric vehicles (EV). This methodology is based on real-time connection of test setups and platforms, which may be situated in different geographical locations, belong to various cyber-physical domains, and are united in a global X-in-the-loop (XIL) experimental environment. The proposed concept, called XILforEV, allows exploring interdependencies between various physical processes that can be identified or investigated in the process of EV development. The paper discusses the following relevant topics: global XILforEV architecture; realization of required high-confidence models using dynamic data driven application systems (DDDAS) and multi fidelity models (MFM) approaches; and formulation of case studies to illustrate XILforEV application

    An integrated opto-mechanical measurement system for in-process defect measurement on a roll-to-roll process

    Get PDF
    This paper reports on the recent work carried out to develop and implement a high precision on-line optical measurement system with the aim of providing defect detection and characterisation for ALD coated vapour barrier films produced by a roll-to-roll process. This proof-of-concept system is designed to detect and measure pre-existing defects on the film and define their size, location, form and density. The aim is to be able to detect defects in a thin film Al2O3 layer that are critical to vapour barrier performance, and eventually provide valuable process control information. Such an inspection system must be fast in order to evaluate large areas involved (500 mm width foil) at high magnifications. In addition the flexibility of the foil introduces challenges in terms of dealing with surface deviation away from an ideal plane and vibrations. Our solution is a wavelength scanning interferometer (WSI) combined with two kinematic stages, vertical (for auto-focus) and a traverse stage to provide full coverage of the foil. A porous air-bearing conveyor system is used to hold the foil at a fixed height and improve the flatness of the film relative to the measurement plane. This paper describes the principle and design of the inspection system

    The design of more-electric engine power systems

    Get PDF
    The More-Electric Aircraft (MEA) concept is now a well-established concept, following its introduction and development over the previous couple of decades. MEA systems are underpinned by state-of-the-art technologies to realise the reduction of CO2 emissions and increased the effectiveness of on-board power transmission. The More-Electric Engine (MEE) concept is increasingly being seen as a complementary solution for MEA applications. Within this concept, the engine auxiliary systems such as fuel pumps, oil pumps and actuation systems will be replaced by electrically driven equivalents and power will be extracted from multiple different engine shafts for electrical generation, with the potential to achieve significant fuel savings. However, with these changes, a dedicated high-integrity and flexibly reconfigurable MEE multiple-channel power architecture is required. When designing a multiple-channel power architecture for MEE,it should comply with relevant power system design certification standards, requiring the application of a multi-disciplinary design methodology. In this thesis, key design certification and airworthiness standards are reviewed in order to identify those applicable to MEE design. Combining these with traceable qualitative and quantitative design logic, the first power system design rule set for MEE power system architecture baselining is established. Building on this foundational knowledge base, candidate novel multiple-channel power architectures are proposed and evaluated. These studies determine that a high degree of controllability and redundancy is key to achieving high system reliability and resilience in MEE power system architectures. In addition, a review of the research literature in this thesis is shown to reveal a shortage of proposed design and optimisation processes for flexible and redundant MEE-type power systems, making it difficult to maximise the design value of a feasible solution. As interdisciplinary and multi-system design processes can be time-consuming and laborious, this thesis instead presents a concurrent design (Co-design) methodology, addressing both MEE power architecture concepts and power management functions. This novel design process includes an initial coarse optimisation to determine the design space boundaries and exclude unsuitable and over-designed solutions for further detailed design, reducing design iterations. A subsequent collaborative synthesis stage for the concurrent design process is then proposed, in which fault scenario case studies and load shedding factor are used to verify the robustness of the combined MEE architecture and power management solutions to off-nominal operating conditions. This enables the refinement of the solution-space by using the simulated results to highlight the areas of the MEE power architecture that can be further optimised, demonstrating the benefits of knowledge-based collaborative design as a process for multi-criteria design. The contributions to the design of MEE power systems architectures presented in this thesis hence provide end-to-end value to the academic and industrial research community in the formation and design of new MEE concepts, with wider application to technologically-adjacent applications (such as hybrid electric aircraft, or high-integrity dc microgrids) also possible.The More-Electric Aircraft (MEA) concept is now a well-established concept, following its introduction and development over the previous couple of decades. MEA systems are underpinned by state-of-the-art technologies to realise the reduction of CO2 emissions and increased the effectiveness of on-board power transmission. The More-Electric Engine (MEE) concept is increasingly being seen as a complementary solution for MEA applications. Within this concept, the engine auxiliary systems such as fuel pumps, oil pumps and actuation systems will be replaced by electrically driven equivalents and power will be extracted from multiple different engine shafts for electrical generation, with the potential to achieve significant fuel savings. However, with these changes, a dedicated high-integrity and flexibly reconfigurable MEE multiple-channel power architecture is required. When designing a multiple-channel power architecture for MEE,it should comply with relevant power system design certification standards, requiring the application of a multi-disciplinary design methodology. In this thesis, key design certification and airworthiness standards are reviewed in order to identify those applicable to MEE design. Combining these with traceable qualitative and quantitative design logic, the first power system design rule set for MEE power system architecture baselining is established. Building on this foundational knowledge base, candidate novel multiple-channel power architectures are proposed and evaluated. These studies determine that a high degree of controllability and redundancy is key to achieving high system reliability and resilience in MEE power system architectures. In addition, a review of the research literature in this thesis is shown to reveal a shortage of proposed design and optimisation processes for flexible and redundant MEE-type power systems, making it difficult to maximise the design value of a feasible solution. As interdisciplinary and multi-system design processes can be time-consuming and laborious, this thesis instead presents a concurrent design (Co-design) methodology, addressing both MEE power architecture concepts and power management functions. This novel design process includes an initial coarse optimisation to determine the design space boundaries and exclude unsuitable and over-designed solutions for further detailed design, reducing design iterations. A subsequent collaborative synthesis stage for the concurrent design process is then proposed, in which fault scenario case studies and load shedding factor are used to verify the robustness of the combined MEE architecture and power management solutions to off-nominal operating conditions. This enables the refinement of the solution-space by using the simulated results to highlight the areas of the MEE power architecture that can be further optimised, demonstrating the benefits of knowledge-based collaborative design as a process for multi-criteria design. The contributions to the design of MEE power systems architectures presented in this thesis hence provide end-to-end value to the academic and industrial research community in the formation and design of new MEE concepts, with wider application to technologically-adjacent applications (such as hybrid electric aircraft, or high-integrity dc microgrids) also possible

    BS News March/April

    Get PDF

    A component-based virtual engineering approach to PLC code generation for automation systems

    Get PDF
    In recent years, the automotive industry has been significantly affected by a number of challenges driven by globalisation, economic fluctuations, environmental awareness and rapid technological developments. As a consequence, product lifecycles are shortening and customer demands are becoming more diverse. To survive in such a business environment, manufacturers are striving to find a costeffective solution for fast and efficient development and reconfiguration of manufacturing systems to satisfy the needs of changing markets without losses in production. Production systems within automotive industry are vastly automated and heavily rely on PLC-based control systems. It has been established that one of the major obstacles in realising reconfigurable manufacturing systems is the fragmented engineering approach to implement control systems. Control engineering starts at a very late stage in the overall system engineering process and remains highly isolated from the mechanical design and build of the system. During this stage, control code is typically written manually in vendor-specific tools in a combination of IEC 61131-3 languages. Writing control code is a complex, time consuming and error-prone process. [Continues.

    Ancient and historical systems

    Get PDF

    Modelling and Co-simulation of hybrid vehicles: A thermal management perspective

    Get PDF
    Thermal management plays a vital role in the modern vehicle design and delivery. It enables the thermal analysis and optimisation of energy distribution to improve performance, increase efficiency and reduce emissions. Due to the complexity of the overall vehicle system, it is necessary to use a combination of simulation tools. Therefore, the co-simulation is at the centre of the design and analysis of electric, hybrid vehicles. For a holistic vehicle simulation to be realized, the simulation environment must support many physical domains. In this paper, a wide variety of system designs for modelling vehicle thermal performance are reviewed, providing an overview of necessary considerations for developing a cost-effective tool to evaluate fuel consumption and emissions across dynamic drive-cycles and under a range of weather conditions. The virtual models reviewed in this paper provide tools for component-level, system-level and control design, analysis, and optimisation. This paper concerns the latest techniques for an overall vehicle model development and software integration of multi-domain subsystems from a thermal management view and discusses the challenges presented for future studies
    corecore