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ABSTRACT 

In recent years, the automotive industry has been significantly affected by a number of challenges 

driven by globalisation, economic fluctuations, environmental awareness and rapid technological de-

velopments. As a consequence, product lifecycles are shortening and customer demands are becoming 

more diverse. To survive in such a business environment, manufacturers are striving to find a cost-

effective solution for fast and efficient development and reconfiguration of manufacturing systems to 
satisfy the needs of changing markets without losses in production. 

Production systems within automotive industry are vastly automated and heavily rely on PLC-based 

control systems. It has been established that one of the major obstacles in realising reconfigurable 
manufacturing systems is the fragmented engineering approach to implement control systems. Control 

engineering starts at a very late stage in the overall system engineering process and remains highly 

isolated from the mechanical design and build of the system. During this stage, control code is typi-

cally written manually in vendor-specific tools in a combination of IEC 61131-3 languages. Writing 

control code is a complex, time consuming and error-prone process. The lack of effective tools for of-
fline verification of control code further reduces the reliability of the current programming practice. 

As a result, a large number of errors remain undetected until the commissioning phase, which results 

in a significant increase in the cost and the lead-time of a project. 

The work presented in this thesis focuses on addressing the limitations of the traditional PLC pro-

gramming practice by proposing a novel approach for generation of control code and HMI screens 

based on the control behaviour of the component-based virtual model of an automation system. The 

main contributions of this research are 1) a method for the definition of control logic within 3D-based 
virtual engineering tools to enable direct deployment of the complete control code, 2) the design and 

implementation of a target PLC control software architecture that complies with the current industrial 

best practice used in the automotive industry and 3) the automatic generation of PLC code and HMI 

screens for this architecture utilising the control information defined in virtual models of manufactur-

ing cells. 

The approach presented integrates the controls engineering with manufacturing process planning and 

mechanical engineering using a collaborative 3D-based Virtual Engineering (VE) tool and thus ena-

bles the definition and validation of the control logic of a system within VE tools before the physical 
build of a machine. The approach has been experimentally evaluated from various perspectives to 

identify its strengths and limitations during the development, reconfiguration and operational phases 

of automation systems.  

Keywords: Component-based automation, automatic code generation, PLC programming, virtual 

commissioning, control systems, assembly automation.  
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1  Introduction 

1.1 Background 
Due to the changing business environment, manufacturing industry is facing greater challenges and 

risks than ever before [1]. Globalisation, economic fluctuations, innovations in technology, 

environmental concerns, and demanding customers are just some of the factors that are triggering 

frequent changes in market requirements [2-5]. It is becoming evident that the era of mass-production 

of one-of-a-kind product is now being replaced by the era of market niches. As a consequence, 

product lifecycles are constantly shortening and introduction of new products is becoming more 

frequent [6, 7]. 

The automotive industry is considered as a backbone of the European economy [8]. The effects of the 

changing manufacturing landscape are also evident within the automotive industry [9]. Automotive 

manufacturers are facing severe risks due to economic downturns, overcapacity and volatility of 

demand. The ability of a company to quickly respond to changes by offering innovative, customised 

and competitively priced products to meet customer demands on a timely basis is fundamental to 

maintaining market share in both existing and emerging markets [10].  

Due to ever-increasing need to introduce new products frequently, the traditional mass-production 

model of the automotive industry is under direct attack [11]. The automotive industry is under 

immense pressure to cope with rapid product changes (such as low-emission internal combustion 

engines, hybrid drive systems and electric power packs) to fulfil changing customer demands and 

local market requirements all over the world [12]. Reducing the time-to-market while maintaining 

high quality and low cost is becoming a challenge. It has been reported that a few months delay in the 

launch of products, such as motor vehicles or large sub-assemblies, can cause a significant loss in the 

market share [12, 13]. For instance, a delay in production of a powertrain assembly line at Ford Motor 

Company results in a loss of £20,000/hour. This together with increasing pressure to achieve lower 

manufacturing costs and high quality, motivates vehicle manufacturers to find efficient and cost 

effective solutions for fast adaption of their resources to respond to market requirements without 

losses in production [14]. As a consequence, new visions and technologies are urgently required to 

support fast and cost-effective development, reconfiguration and reuse of manufacturing systems. 

1.1 Problem Statement 

1.1.1 Motivation 

To capture short windows of opportunity, meeting customer demand by introducing innovative 
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vehicles in short time is increasingly becoming critical to automotive manufacturers. As a 

consequence, the responsiveness of automation systems to adapt quickly and economically to produce 

new generations of products is now fundamental for a company’s success.  

Despite the improvements made through just-in-time and lean production strategies, manufacturing 

industry struggles to respond efficiently and effectively to the changing business requirements [15]. 

This is in-part due to the fixed configuration of the manufacturing systems which cannot support 

reconfigurability and reuse with changing market needs. The current approach of built-in flexibility to 

perform a number of machining/assembly operations in the production systems to handle the 

responsiveness addressed the issue to some extent. However, such flexibility comes with high initial 

investment and may suffer from obsolescence when significant changes are required in the 

manufacturing process that cannot be attained with the built-in flexibility [16].  

To realise reconfiguration, one of the approaches is the use of component-based modular production 

systems. Modular systems are designed at the onset to be reconfigurable by standardising the 

interfaces and created from basic hardware and software modules that can be re-arranged with 

changing requirements. Using a modular approach, machine builders are able to build a standard 

library of pre-validated components. A new system can be built by reconfiguring and assembling the 

required components without the need to understand their internal complexity [9, 16]. The use of 

component-based modular systems addressed the requirements of hardware reconfiguration to a great 

extent. However, reconfiguration at the logical level is still a challenging task. This is because the 

current modular approach at the logical level is typically based on a parameterisation approach, which 

involves changing parameters of the standard software components. Such solutions (e.g., FOM, 

section 2.5.2.3) typically lead to large amount of monolithic control code able to cover a wide range 

of system configuration variants. This increases the complexity of a system and of each component’s 

internal code, and thus making them more difficult to develop and maintain individually. 

It has been established that a major obstacle in realising an efficient and reconfigurable approach for control 

code development is the currently fragmented approach to the engineering of manufacturing systems [16]. The 

current engineering approach is well established and follows a classical sequential model. The mechanical de-

sign and build, electrical design and installation, and control engineering occur independently in a sequence and 

integration occurs only during commissioning. This is due to the use of heterogeneous tools, proprietary data-

structures, department-specific engineering methods and a lack of cross engineering domain and cross organisa-

tion collaboration tools, which leads to repetition of work and loss of information [12, 17].  

Control engineering normally starts at a late stage of the machine development process and remains 

highly isolated from mechanical design and build. Control logic is coded by interpreting process 

charts and timing diagrams. This interpretation is typically carried out in an ad-hoc manner that re-

quires extensive manual effort, expertise, and time [18]. In addition, the control code cannot be 

verified until the machine is assembled and ready for commissioning. This leads to inconsistencies 
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which are only discovered at a very late stage of the machine development process, which in turn re-

sults in high unexpected cost and prolonged commissioning and ramp-up phases [19-21]. In such an 

engineering approach, commissioning and production ramp-up becomes the most challenging phases 

[22]. 

Figure 1-1 shows the time and cost profiles that might be associated with the lifecycle phases of an 

automotive powertrain assembly system. It can be seen that the peak cost incurs at the commissioning 

and ramp-up phase. This is because of the issues that arise when fragmented solutions are integrated 

at these stages and the unseen errors translate into non-working machines, unmatched control func-

tionality, catastrophic failures and additional redesign phases. It has been reported that the correction 

of defective control software consumes up to 60% of commissioning time and accounts for 15% of 

time-to-delivery [23]. 

 

Figure 1-1 Cost and time profiles associated with the lifecycle phases of powertrain assembly systems [24] 

In order to improve engineering practice, both academia and industry are conducting extensive 

research to facilitate an integrated engineering approach that can enable efficient information reuse 

and dynamic reconfiguration. Over the past decade, a most promising research outcome is the virtual 

engineering of automation systems which provides a 3D-based collaborative engineering 

environment. Industry has shown significant interest in virtual prototyping and commissioning of 

manufacturing systems using virtual engineering tools to validate and optimise manufacturing 

resources before the physical build [25]. The objective of virtual commissioning is to ensure design 

robustness and check for inconsistencies by mimicking the actual shop-floor setup before investing 

significant resources to implement the physical prototype build [26]. With virtual commissioning, the 

engineers are able to mock-up a manufacturing system to simulate component assembly, mechanical 

movements to determine clashes, human operator work processes and overall station layout and 

processes. The immediate effect and benefit is a substantial reduction in the machine build time and 

significant savings, realised by virtual validation before the physical build [27]. 

It can be seen that the inherent attributes of component-based modular systems combined with virtual 
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commissioning can potentially compress the development time, and thus relieve the challenges of the 

manufacturing industry. Over the past decade, there has been a considerable progress in the 

development of virtual engineering tools to provide a coherent collaborative environment to assess 

and optimise the performance of component-based reconfigurable automation systems [28].  

1.1.2 Justification of Research 

The recent trend of the use of IT tools allows engineers to carry out commissioning activities in a 3D 

virtual environment without having real production facilities. Thus providing a platform to check 

inconsistencies and optimise the performance of a manufacturing system before physical 

commissioning. Virtual commissioning does not eliminate the need for physical commissioning; 

however, it can significantly compress the machine build time by identifying structural defects and 

inconsistencies in control behaviour before the physical build [21, 29]. This creates a new parallel 

process and lessens the time pressure that exists in the classical sequential approach for machine 

development [30].  

Virtual commissioning can be categorised into Full Simulation of Machinery (FSM) and Hardware-

In-Loop (HIL) [23]. FSM is essentially a 3D simulation study of a manufacturing system for process 

validation. FSM is a mature research area and a growing number of industries are now using it to val-

idate the manufacturing processes. On the other hand, HIL commissioning is used for testing of the 

control software by connecting the virtual prototype of a machine to real control hardware, thereby 

avoiding making changes to the control software afterwards on the shop-floor. However, due to poor 

integration of 3D simulation tools and control engineering tools, the control logic defined within the 

simulation tools cannot be reused [31]. As a result, the current HIL commissioning methods rely on 

classical manual programming practice to translate the specified control behaviour into control code. 

Any change in the configuration of a machine requires corresponding modification of both the virtual 

model as well as the control code. This results in repetition of work and many technical problems in-

herent in the manual programming approach remain unresolved while machines are programmed. 

Andersson et al. [20] emphasise the need for control information reuse and the direct deployment of 

control code with  the help of the following phrase:  

“The control function is first defined by the mechanical engineer and then implemented in a robot 

simulation tool where robot paths are added. After that the mechanical design is verified by a 3-D 

simulation, and finally the same control function is implemented in the PLC program. In addition, 

manually programmed control programs often suffer from inadequacies and errors, and the result is 

a rather rigid and inflexible control function that does not allow work to proceed other than in the 

specified sequence.” 

To overcome these problems, there is an increasing interest in the reuse of control information from 

the 3D-based manufacturing process simulation tools to automatically generate a deployable control 
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code.  Such approach of generating control code will eliminate the manual programming, and thus en-

ables the dynamic reconfiguration of the control software.  

Automatic generation of control code is an integrated and seamless IT solution but very little research 

is found in this area. In recent years, a number of academic researchers and control vendors have in-

troduced methods and tools to generate the control code from 3D-based manufacturing process 

simulation tools. However, none of these tools and methods is as yet adopted by industry. There are a 

number of reasons for this. According to Bergert [32], solutions based on commercial tools have 

problems with tool-specific inflexibility and open programming interfaces, which leads to simplified 

program with limited control functions. According to Andersson et al. [20], the current research out-

comes mainly focus on nominal production operation of a machine (i.e. automatic cycle) only. 

Nevertheless, the nominal production cycle is the most prominent but is only a small part of the re-

quired control functionality. In reality, the code for the automatic cycle only represents 10-20% of the 

required control code. In addition, control functions, such as manual mode control, interlocking of 

mechanisms, fault diagnostics, and HMI screen generation are often neglected [17]. Such incomplete 

programs require manual rework before deployment, and thus make them prone to errors. Moreover, 

most of the new proposed methodologies are carried out with minimal understanding of the actual 

logic design methods used in industry. The generated programs are often unstructured, and thus are 

difficult to understand and debug. This lack of compliance with the current industrial practice and 

software standards results in a poor reception for these approaches from industry. 

Given the demanding requirements of industrial control systems, this research area is still in its infan-

cy and a complete practical solution simply does not exist. It is very unlikely that industry will agree 

to utilise tools which provide partial and non-standard solutions for the development of control logic 

for their manufacturing systems. Research is therefore needed in order to further explore the potential 

of the virtual engineering for complete control code deployment which is acceptable to industry and 

meet the demand for efficient and cost-effective manufacturing system engineering. 

1.2 Research Description 

1.2.1 Research Background 

Since mid-nineties, Automation Systems Group (ASG) at the University of Warwick1 has conducted 

research on the component-based approach for the development of manufacturing automation sys-

tems. This research has been conducted in collaboration with Ford Motor Company, ThyssenKrupp 

System Engineering, Bosch-Rexroth and Schneider Electric. The primary objective of the group’s on-

going research is to enhance the collaborative engineering approach and enable the robust launch of 

manufacturing automation systems within the automotive industry by developing engineering tools to 

                                                        
1 Formerly known as Manufacturing System Integration (MSI) Research Institute based at Loughborough Uni-
versity 
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support the efficient and integrated development and deployment of production system. 

Key aspects of the group’s research are i) the development of a 3D-based virtual engineering tool to 

virtually construct and commission production facilities out of generic set of components to validate 

and optimise them before the physical build and ii) the deployment of runtime control systems based 

on the validated behaviour of a production system defined within virtual engineering tools. 

The development and implementation of the 3D-based virtual engineering tool and the deployment of 

the runtime system has been achieved via a number of EPSRC, TSB and FP7 funded research pro-

jects, such as COMPAG (COMponent-based Paradigm for AGile automation) and COMPANION 

(Common Model for PArtNers in automatION), RI-MACS (Radically Innovative Mechatronics and 

Advanced Control Systems), SOCRADES, BDA (Business Driven Automation) and 3Deployment 

(Direct Digital Deployment). 

Figure 1-2 shows an overview of the research and development work of the group as a whole. The 

boxes with a blue background indicate the specific areas of the author’s work. The focus of the au-

thor’s contributions was realising a new approach to code generation for the deployment of PLC-

based runtime control systems. 

 

Figure 1-2 Development work conducted by the author and other members of the research group 
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1.2.2 Research Hypothesis 

The principle hypothesis of this research is that if the logic control behaviour defined within virtual 

process planning tools to carry out virtual commissioning is in accordance with the current best prac-

tice and fulfils all the runtime control systems requirements then the same control information can be 

reused to automatically generate the complete control code for the target PLC.  

1.2.3 Research Aim and Objectives 

The aim of this research is to enable the generation of control code from the control behaviour defined 

within 3D based virtual manufacturing process simulation tools. Once a machine is virtually validated 

by simulating it in a process simulation tools then by reusing the same control information, bug-free 

control software can be generated automatically. This will enable a dynamic and efficient response to 

changes by eliminating the time-consuming and error-prone method of manually writing low-level 

control code in vendor specific tools. As a result, a significant reduction in the cost and time associat-

ed with the commissioning and ramp-up phases can be achieved.  

The objectives of this research are: 

! Objective 1: To review existing PLC programming practice within the automotive manufac-

turing sector, to identify the limitations of existing programming practices, and to recognise 

the control software structural and functional requirements. 

! Objective 2: To enhance control information and specify a method for the definition of con-

trol logic within a virtual process simulation tool, the CCE, to enable direct deployment of the 

complete control code. 

! Objective 3: To design a software architecture that complies with the current PLC software 

structures used in automotive industry production machines and to design an approach to au-

tomatically generate PLC control code according to this software architecture by utilising 

control information defined in virtual models of manufacturing cells developed in the manu-

facturing process planning tool, the CCE. 

! Objective 4: To design and develop and an approach for integrated and automatic generation 

of HMI Screens. 

! Objective 5: To implement a prototype system to validate the research hypothesis, evaluate 

the approach and show the achievement of research objectives.  

1.2.4 Research Methodology 

In order to undertake this research effectively and systematically, the research work was conducted in 

five phases. Various research methods [33] such as exploratory, explanatory, descriptive, grounded 

theory and experimental were adopted in these research phases. A brief description of the work 

involve at each phase is given below: 
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Phase 1 – Literature and Technology Review 

The objective of this phase was to explore the research area and understand the problem. During this 

phase current research, technologies, engineering practices and tools were critically studied in order to 

recognise their strengths and limitations to help identify research gaps.  

 

Phase 2 – Studying Industrial Practice and Developing Specifications 

In this phase, several visits were made to end-user and machine builder sites to study the engineering 

process for developing powertrain assembly systems. The requirements of end-user and machine 

builders from control engineering perspective were documented. The outcome of this research phase 

was in the form of documentation of the functional and architectural specifications for 

implementation of the PLC control software. 

Phase 3 – Synthesis of a New Control Software Deployment Method 

In this research phase, the concept of the control software deployment method was developed, ex-

ploiting information reuse from virtual engineering tools. The control logic definition method within 

VE tool was devised to enable the direct deployment of the control software. A novel control software 

architecture was proposed to enable direct deployment and to fulfil the industrial requirements. In ad-

dition, an engineering tool was designed and developed for the generation of control code using the 

proposed software architecture. Its applicability within the automotive powertrain assembly systems 

was then verified against the requirement specifications developed in the previous phase. 

Phase 4 – Pilot Application 

The objective of this phase was to show a proof-of-concept application. In this phase, the proposed 

control engineering method was applied to the commissioning and programing of a Festo test rig. Af-

ter the successful implementation of this table-top system additional experiments were carried out 

using two industrial demonstration machines; the Automation System Demonstrator (ASD) at the 

University of Warwick and automotive engine assembly line test loop from ThyssenKrupp System 

Engineering GmbH located at Manufacturing Technology Centre (MTC), UK. 

Phase 5 - Evaluation and Future Developments 

This research phase aimed to evaluate the potential benefits of the proposed research concept. In this 

phase, the pilot applications were tested by creating various scenarios to evaluate the performance of 

the proposed and implemented approach. A number of factors were considered during this evaluation, 

such as ease of system design, reconfigurability and runtime performance. The test results were then 

compared with the traditional manual programming to appraise the advantages of the proposed ap-

proach. Based on the evaluation, a number of gaps to be solved by future developments are suggested 

to enhance this new approach and make it useable in the industry.  

1.2.5 Research Scope and Limitations 

This thesis demonstrates the applicability of the proposed concept within the automotive powertrain 
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assembly sector. The control system specifications are based on the requirements of Powertrain Oper-

ations, Ford Motor Company. However, the proposed concept is applicable in a wider context, such as 

body-in-white manufacturing, airport baggage handling, and warehouse automation systems. Whilst 

this research has only targeted generating code for the Siemens SIMATIC STEP 7, Schneider Electric 

Unity Pro and PLCopen platforms, the method is potentially applicable for other platforms imple-

menting distributed systems and Service Oriented Architecture (SOA).  

1.3 Thesis Structure 
The rest of the thesis is structured as follows. Chapter 2 provides a background study and reviews the 

state-of-the-art technology and practices to identify their limitations in the context of business re-

quirements. To address these limitations, Chapter 3 proposes and implements a methodology for logic 

definition within virtual prototyping tools and a framework for logic generation to enable the direct 

deployment approach. For proof of concept and evaluation of the proposed approach, Chapter 4 de-

scribes the conducted experimental work and analysis of the empirical results. Based on the 

evaluation of the experimental work, Chapter 5 summarises the main contribution of the work, the 

lessons learned from the research and presents potential future research work. 
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2 Literature and Technology Review 

2.1 Introduction 
The manufacturing world has undergone a number of major paradigmatic shifts in the past century 

[34]. In the early twentieth century, the focus was to increase productivity and decrease cost by using 

mass-production techniques. By the middle of the century, the focus shifted towards product variants 

and quality. In the eighties, the debate on the restructuring of the manufacturing resources started due 

to the success of Japanese companies adopting lean production strategies [35]. In the nineties, the end 

of the cold war, introduction of free trade, and advances in Information and Communication Technol-

ogies (ICT) resulted in business globalisation [35]. The world progressively became a global village 

and as a result new business strategies were adopted to penetrate into new markets. Outsourcing, off-

shoring, and migration of production to developing countries became common business norms [36]. 

Over the past decade, exceptionally dynamic and unprecedented market demands are forcing the 

manufacturing landscape to undergo a transformational shift once again [37]. In contrast with the past, 

product variants are increasing while product lifecycles are decreasing [2]. These changes have a di-

rect impact on the business model of the automotive industry. The traditional mass-production model 

of the automotive industry is now under direct attack [11]. 

To achieve long-term business goals, manufacturing industry not only needs to deal with the dilem-

mas of today but also has to prepare itself for completely different future requirements [1]. It is 

becoming increasingly important to devise cost effective and efficient mechanisms to enable manu-

facturers to instantly respond to any change by fast adaptation of manufacturing resources to cope 

with the new market requirements [14].  

2.2 Evolution of Manufacturing Paradigms 
A manufacturing paradigm can be defined as a philosophy that underpins the techniques and practices 

required for companies to sustain their internal and external business environment. This is commonly 

associated with the phrase “paradigm shift” that refers to the significant change in these principles 

[38]. 

Since the birth of modern manufacturing, industries have gone under several paradigm shifts due to 

changing market conditions, economic trends and technology. In response, manufacturing philoso-

phies have evolved over time to fit the business requirements. This section briefly reviews the 

traditional manufacturing paradigms and systems. The aim is to provide an understanding of why the 

previous manufacturing philosophies can no longer cope with the current business requirements of in-

dustry.  
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2.2.1 Mass Production 

Mass-production refers to the production of large amounts of standardised products. The concept of 

the mass production paradigm emerged in the nineteenth century as an outgrowth of the industrial 

revolution brought by Henry Ford, also known as Fordism. Henry Ford’s intention was to manufac-

ture the largest number of cars with lowest possible cost to produce affordable vehicles for the general 

public [39].  

The production of the Ford Model-T is the first and most famous example of the mass production par-

adigm. Henry Ford modernised the manufacturing process of the Model-T with his concepts of 

production of a single model, interchangeable parts, work specialisation and the moving assembly 

line. This significantly reduced the average cycle time (from 514 to 1.19 minutes) required for car as-

sembly. The moving assembly line and breaking the assembly process into simple tasks increased the 

capital cost and the worker ratio. Nevertheless, tremendous reduction in the cost per unit was 

achieved [40]. 

The reduction in the unit cost resulted in the increased sales as more people could afford the products. 

Due to this, the Ford Motor Company was able to increase its production from slightly over 10,000 

automobiles per year to 500,000 in 1916, and to 2 million in 1923. This achievement brought by Ford-

ism caught the attention of other manufacturers and soon gained worldwide acceptance in all 

manufacturing sectors [41].  

To further increase the productivity, Taylor of the Bethlehem Steel Company introduced the princi-

ples for Scientific Management, which led to specialisation and task allocation by breaking down the 

production process into smaller and simple tasks with a set target time for each. The principle also in-

cluded the payment of bonuses to those that achieved them [34, 42]. Breaking down production 

process resulted in simple and smaller tasks, which were not only easy to specialise by humans but al-

so to automate them to achieve higher production rates. This resulted in replacing the general-purpose 

machines with special-purpose dedicated manufacturing systems to achieve high repeatability of op-

erations. The dedicated systems abolished the demand for highly skilled versatile labour. As a 

consequence, the labour became interchangeable and in some cases eliminated by automation [43].  

Taylor’s approach resulted in significant improvement in the production rate. Nevertheless, this re-

sulted in many negative consequences in regard to the human aspects in the industry. A number of 

disadvantages of the Tayloristic approach were reported, including high turnover of employees, health 

issues and poor motivation [34].  

2.2.2 Lean Production 

The mass production era continued for more than half a century, with its peak around 1955, when six 

models from GM, Ford, and Chrysler accounted for 80% of all cars sold in the US. However, in 1970s 

the increasing intensity of competition, increase of consumer power and the decrease in the demand of 



Chapter 2   Literature Review 

12 
 

products due to a growing number of industries resulted in a need to optimise production resources by 

eliminating waste. The consequence was a paradigm shift from mass production to lean production 

[44].  

The philosophy of lean production originated at Toyota Motor Inc. by Taiichi Ohno and Eiji Toyoda. 

After studying the mass production model of the Ford Motor Company, Taiichi Ohno and Eiji Toyoda 

came to the conclusion that the mass production model would never work in Japan. This was because 

of the smaller Japanese market, strong tradition of craftsmanship and the post World War starved 

economy that could not afford the Western technology.  In contrast to the mass production model, a 

new philosophy was introduced that emphasised “less of everything” [40, 45].  

Lean Production is essentially a management philosophy that targets the achievement of operational 

efficiency through elimination of non-value adding activities (muda, i.e. wasted effort, material and 

time) and perfect workflow in every area of production. The principles behind lean production includ-

ed: produce only what is pulled by customer, perfect first-time quality, waste minimisation, reduced 

inventory, continuous improvement, flexibility, design for rapid changeover, empowering workers, 

building and maintaining a relationship with suppliers, load levelling and maximising production flow 

and visual control [40]. 

Lean production is now having a repercussion across all enterprise functions. According to a lean 

manufacturing survey, the lean production practice has proven instrumental. Only around 0.02% of 

respondents described it as not very important to the prosperity of their organisation [46]. According 

to this survey, UK manufacturers found lean principles beneficial in: improving efficiency, removing 

waste, reducing costs, reducing lead times, reducing inventory and reducing the workforce.  

2.2.3 Agile Manufacturing 

Since the 1990s, the business environment has started changing dramatically. The manufacturing sec-

tor is facing tremendous challenges due to the growing consumer influence and continuing 

globalisation. The results of this could be seen in the form of demand for product variety and reducing 

product lifecycles. In the past, the product lifecycles were long and demand was quite stable with a 

steady increase and then decrease at the beginning and the end of the lifecycle respectively. Today, 

the product demand climbs to its highest peak almost immediately after product launch. Shortly the 

demand starts decreasing momentarily but increases again to a second peak with promotion activities. 

A sudden reduction in the demand then occurs that leads to discontinuation of the product, mainly due 

to launch of a more competitive rival product [47]. In such a situation, due to the rigid configuration 

and limited flexibility, companies are now required to modify and renew their manufacturing systems 

much earlier than their useful life. This earlier obsolescence of the manufacturing systems is tremen-

dously increasing the production cost and time to market [48]. 

In response to the challenges faced by industry, a study conducted at the Iacocca Institute at Lehigh 
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University in 1991, coined the term agile manufacturing [49]. The study emphasised on growing need 

for the ability to adapt quickly and profitably to continuous and unexpected changes in the manufac-

turing environment [50].  

The agile manufacturing philosophy aims at addressing the responsiveness dimension that is not evi-

dent in lean manufacturing. Lean implies high productivity and quality. Whereas agile stresses the 

importance of being highly responsive to meet the customer demands while simultaneously striving to 

be lean [51].  

Agile manufacturing is defined by a number of researchers in different ways from different perspec-

tives. Nevertheless, all definitions of manufacturing agility insist on the capabilities of industry to 

quickly respond to changes. Some common definitions are given below.  

! According to Gunasekaran agile manufacturing is “the capability to survive and prosper in a 

competitive environment of continuous and unexpected change by reacting quickly and effec-

tively to changing markets, driven by customer-designed products and services” [52].  

! Kidd defines manufacturing agility as “the ability to thrive and prosper in a competitive envi-

ronment of continuous and unanticipated change, to respond quickly to rapidly changing 

markets driven by customer-based valuing of products and services” [53].  

! Gupta and Mittal define it as a “concept that integrates organisations, people and technology 

into a meaningful unit by deploying advanced information technologies and flexible and nim-

ble organisations structures to support highly skilled, knowledgeable and motivated people” 

[54].  
 

The key enablers of agile manufacturing include virtual enterprise formation, distributed manufactur-

ing architecture, rapid partnership formation, concurrent engineering, integrated product, production 

and business formation tools, rapid prototyping and electronic commerce [51].  

It is worth noting that agile manufacturing is not only concerned with being flexible and responsive to 

current demands but also requires an adaptive capability to be able to respond to future changes. The 

concept of agility is often confused with flexibility. Though closely related, there are distinct differ-

ences between them. Agility is the ability of an enterprise to adapt to unpredicted changes in the 

external environment whilst flexibility is the ability of companies to respond to a variety of customer 

requirements that exist within defined constraints [55].   

2.3 Need for Reconfigurable Manufacturing Systems 
Since the birth of modern manufacturing, industries have gone under several paradigmatic shifts due 

to changing market conditions, economic trends, and technology. In response, manufacturing systems 

have evolved over time to fit the business requirements. In the early 20th century the lack of 

competition and the high-volume demand resulted in the demand of dedicated manufacturing systems 
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to attain a high production rate and tight tolerances [56]. In the latter half of the twentieth century, the 

regression of the industrial growth and changes in the customers’ attitude demanded for high quality, 

low cost and greater product mix. During this period, flexible manufacturing systems became a central 

theme of competitiveness. The built-in flexibility to perform a variety of manufacturing processes was 

a promising way to produce small batches of mixed products.   

Dedicated and flexible manufacturing systems are still dominant in the automotive industry. However, 

due to the fixed configuration and rigid structures, these systems cannot be easily modified to cope 

with changing production requirements and thus face a constant threat of obsolescence [16].  As a 

consequence, companies are required to modify or renew their production facilities much earlier than 

their lifetime. To address this failing it is necessary to reconsider current manufacturing systems and 

find solutions to aid their rapid design and reconfiguration to respond to the changing market 

requirements in an efficient manner [14]. 

Following the initiative of agile manufacturing by the Iacocca Institute, the concept of the 

Reconfigurable Manufacturing Systems (RMS) was introduced at the University of Michigan to 

address the need for agility within manufacturing systems. The aim of the concept was to enable cost 

effective and rapid system changes to “exact functionality and capacity as needed and when needed” 

[57]. This aimed to allow an RMS to evolve over time to changes in required functionality and 

production capacity with changing market demands. 

Koren [58] defines RMS as a system that is “designed at the outset for rapid changes in the structure, 

as well as in hardware and software components, in order to quickly adjust production capacity and 

functionality within a part family”. Such a system must have an open ended architecture and 

modularity that possess plug-and-play capability to allow the addition, removal or modification of 

machine hardware and software components with minimum effort [59]. The components may include 

sensors, actuators, conveyor systems and their underlying control algorithms.  

According to Koren et al. and Bi et al. to achieve true reconfigurability, reconfigurable systems have 

six core characteristics: modularity, integrability, customised flexibility, scalability, convertibility, 

and diagnosability [58, 60]. A brief description of these characteristics is given in Table 2-1. Of these 

six characteristics, modularity and integrability are the most essential characteristics and sufficient to 

enable reconfiguration [44]. When possessing these characteristics, the responsiveness of a 

manufacturing system to unpredicted events increases, such as changes in product demand or 

unexpected machine breakdown. 
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Table 2-1 Core characteristics of RMS [44] 

Attribute Description 

Customisation The ability to apply a customised flexibility to production or inspection machines to meet new 
requirements within a part family 

Scalability The ability to efficiently change the machines’ production throughput by altering or augmenting the 
components in the machine 

Convertibility The ability to efficiently redirect the functionality of the machine and it controls to suit new 
production requirements  

Modularity The compartmentalisation of operational functions and hardware into units that can be manipulated 
between alternate machine configurations 

Integrability The ability to integrate machine modules rapidly and precisely by a set of mechanical, informational, 
and control interfaces 

Diagnosability The capability of monitoring the current state of a machine and controls so as to detect and diagnose 
the root cause of output product defects 

 

2.4 Manufacturing Automation Systems 
Manufacturing automation systems refer to the technology that utilises control system to manage ma-

chines and processes to reduce the need for human intervention. Control systems are used to send 

commands to physical devices (such as actuators) to perform specific manufacturing tasks. These 

commands depend upon their software based control logic and the input data from physical devices 

such as sensors. Control systems are generally application-specific devices, so these are associated 

with many definitions depending on their applications. However with regard to automation systems in 

manufacturing industry, a control system can be broadly defined as “a device or set of device(s), 

which can be used to manage, command, direct or regulate the behavior of other devices or systems” 

(Lee, 2004). 

2.4.1 Automations System Architecture 

Industrial automation systems comprise of a hierarchy of levels with specific control functionalities at 

each level. These hierarchical levels based on ISA-95 reference model are shown in Figure 2-1 [61].  

The corporate management level is the highest in the hierarchy. This level controls mainly managerial 

activities, such as human resource planning, manufacturing resource planning, sales and distribution.  

The operations management level is primarily concerned about the scheduling and monitoring of the 

production facility such as manufacturing resource allocation, detailed scheduling and manufacturing 

data acquisition.  

The control level is concerned with the actual control of production processes i.e. runtime control of 
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manufacturing systems. This level typically employs controllers and human machine interface devices 

to operate and monitor individual workstations. The Programmable Logic Controllers (PLCs) are of-

ten considered as the main work-horses at this level.  

The field level is the lowest level is hierarchy. This level is comprised of devices (such as sensor and 

actuators) that perform basic data acquisition and manufacturing processes. They are typically con-

nected with the PLCs via remote I/Os modules that communicate with the PLC via field area 

networks.  

The scope of research in this thesis is limited to the lowest two levels of automation systems. 

 
Figure 2-1 ISA-95 control architecture of factory floor automation systems 

2.4.2 Example Shop-Floor Architecture of an Assembly Automation System 

The typical shop-floor control architecture of an engine assembly line is shown in Figure 2-2. Engine 

assembly is a highly automated process within the automotive industry. An assembly line typically 

consists of a long S-shaped conveyor, divided into zones. Each zone consists of a number of work-

stations, built around the conveyor. Engine blocks are loaded on to pallets and transported from 

station to station. At each station a set of assembly operations are performed, such as nut running. Ra-

dio frequency identification (RFID) tags, also known as data-tags, are installed on the pallets for 

storing product and process information associated with the engine block.  
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Figure 2-2 A typical layout of engine assembly line (Courtesy of Ford Motor Company, UK) 

Typically, at each station, an engine pallet waits at a pre-stop. Once allowed to enter, the pallet then 

moves to the machine-stop. At the machine-stop the controller reads information from the data-tag to 

determine the operations to be carried out.  The required operations are then performed and the infor-

mation about the operations is written back to the data-tag to keep the history of the operations carried 

out. 

On the basis of the degree of automation, stations are typically categorised into three types: automatic, 

semi-automatic, and manual. Automatic stations represent the highest degree of automation and do 

not require operators for their normal operation. On the other hand, manual stations represent the low-

est degree of automation and an operator is required to perform operations manually. The operations 

performed at manual stations are often difficult to automate (such as spark plug assembly) or the la-

bour cost is much lower than the cost to automate the process. For example, in countries such as India 

and China, semi-automatic and manual stations are most commonly used because of low labour cost.  
 

An assembly line is controlled by a number of PLCs; typically known as Resources1. As shown in 

Figure 2-3, a Resource (PLC) can support a number of Areas of machine control; an Area can consist 

of a number of Stations; a Station is based on a number of processes performed by a number of mech-

anisms. An Area operates autonomously and has its own power supply but reports back to a 
                                                        
1 The terms Resource, Area and Station are adopted from ThyssenKrupp System Engineering GmbH 
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centralised controller, zone PLC. Stations of an Area shares power supply but have their own operat-

ing mode control, dedicated HMI screens1, RFID and stack lights.  

 

Figure 2-3  A typical architecture of machine control area controlled by a PLC (Courtesy of ThyssenKrupp Sys-

tem Engineering GmbH) 

The purpose of the Resource PLCs is to coordinate all the machine operations in a sequential manner. 

The centralised controller, known as zone PLC, synchronizes the work between all stations for inte-

grated plant operation. Semi-automatic and automatic stations have their own local HMIs, but can 

also be controlled from zone HMI. However, manual stations are typically controlled via hard 

pushbuttons and have no local HMIs. All PLCs, HMIs and remote I/Os are today usually intercon-

nected via industrial Ethernet cables. Ethernet is also used for connections to the corporate IT network 

for communicating productivity information. 

2.4.3 Automation Systems Lifecycle 

The design and build of automation systems is one of the key competitive areas of automotive 

manufacturing. The lifecycle engineering of automation systems involves geographically distributed 

teams of end-user, machine builders and control vendors [62]. End-users are the automotive 

production companies. Machine builders, also known as Original Equipment Manufacturers (OEMs), 

are the tier-1 suppliers to the end-users. They are responsible for the design and build of 

manufacturing systems. Machine builders may also sub-contract some parts of the machine 

construction to specialist component builders or system designers. The control vendors are tier-2 

suppliers and provide control hardware to the end-user. Collectively all these partners are responsible 

for the implementation and lifecycle support of the manufacturing systems [24].  

                                                        
1 An HMI panel can host HMI screens for one or more Stations. The number of stations hosted by HMI depends 
on the complexity of Stations.  
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The lifecycle model of automation systems development within Ford Motor Company is shown in 

Figure 2-4. The lifecycle model consists of three primary phases: planning, realisation and installation 

& production. Each phase is composed of a number of sub-phases that are typically shared by many 

actors across organisations within the supply chain. A brief description of the activities within each 

phase is given below. 

2.4.1 Planning 

2.4.1.1 Study 

The planning phase starts with a study, where the end-user defines the strategic intent of the 

programme, sets objectives, defines the sourcing strategy and creates a supplier shortlist.  

 

 

Figure 2-4 Lifecycle model of manufacturing automation systems development [63] 

2.4.1.2 Specifications 

The study phase is followed by the definition of product and manufacturing process specifications. At 

this phase, the controls vendors specify appropriate control technology and ensure the necessary 

control components are available to cover the scope of the programme. In addition, the work-plan and 

milestones are specified.  

2.4.1.3 Simultaneous Engineering 

A simultaneous engineering team typically consists of the end-user, control vendors and machine 

builder representatives. Simultaneous engineering enables identification of technical and economic 

issues associated with the new project at an early stage. During this stage, details such as the overall 

design, part lists, purchase lists, layout drawings are prepared.  

2.4.1.4 Vendor Selection 

The last phase of the planning is the machine builders and control vendors selection by the end-user. 
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The selection is typically based on the cost, technology, engineering solution and lifecycle support.  

2.4.2 Realisation 

2.4.2.1 Machine Design 

Machine builders are responsible for the design of machines. The design stage starts with the 

mechanical design of the machine followed by electrical design and the design of the control system 

architecture. To reduce the time and cost the reuse of previous machine designs are widely 

considered. Typically CAD tools and virtual engineering tools are used to support these activities.  

2.4.2.2 Machine Build 

The machine build phase starts after the approval of the machine design by the end-user.  Typically, 

the mechanical build, electrical cabinets build and the control software engineering are carried out in 

this phase. All the related activities of three engineering disciplines are carried out independently. 

Once the machine is assembled then the electrical wiring and installation of electrical cabinets are car-

ried out. Finally, the control engineers download their program to the controllers and conduct the 

testing.   

2.4.2.3 Commissioning at Machine Builder 

This stage is also known as try out. At this stage end-user’s engineers visit the machine builder site to 

test all the individual stations. Various checks are carried out to prove the machine robustness and 

production rate.   

2.4.2.4 Dismantle and Ship 

Once the machine is approved, the machine builder dismantles and ships the machine to the end-user 

site.  

2.4.3 Installation and Production 

2.4.3.1 Commissioning at End-User 

This phase starts with the installation of the entire production line at the end-user site by machine 

builder engineers. The production line is integrated with the surrounding facilities, and sections of the 

system are tested one by one and a series of tests are conducted to validate the proper operation of the 

production line. The commissioning phase ends with the production of a first good product. 

2.4.3.2 Part Sample Warrant 

The commissioning phase is followed by part sample warrant. At this stage, the quality of the 

produced product is tested. The system remains under the inspection of machine builder to ensure that 

the machine is in stable working order. Usually, the line further undergoes modifications, optimisation 

of cycle time and further testing to achieve the desired product quality and the specified production 
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rate. Typically, production of 250 parts is carried out during this stage. 

2.4.3.3 Job 1  

Once the desired production rate and quality is achieved, Job 1 is announced. Job 1 denotes the 

official beginning of production. During production machines are monitored for their production rate 

to ensure that the production targets are being met.  

2.4.3.4 Lessons Learned 

After Job 1, a number of scheduled meetings are held for up to a year to formally identify and capture 

the lessons learned in the project. These meetings involve personnel from all of the supply chain 

partners. The information is documented and used to bring improvements to future projects.  

2.5 Control System Engineering  

2.5.1 Programming Languages 

The control system programming is typically carried out in IEC 61131-3 languages. This is a 

worldwide recognised standard for the programming and configuration of industrial control devices 

and is used in most industrial applications [64]. IEC 61131-3 consists of three graphical and two 

textual languages. All of these languages can be used separately or in combination to form a complete 

application. The choice of programming language depends on the programmer’s skill, the nature of 

the programming task, the level and structure of the problem, and the need for future modifications 

[65, 66]. A brief description of the IEC 6113-31 languages is given below. 

Ladder Diagram 

Ladder Diagram (LD) is based on graphical symbols laid out in networks in a similar way to the rungs 

of a relay ladder. A network represents the flow of the power from left to right between two rails. The 

elements contained by a network are contacts, timers, counters and logical blocks [67]. Ladder logic is 

a widely used language for sequence and interlock programs but has no inherent structure. The com-

plexity of the program increase tremendously when used for designing large and complex systems 

[68]. 

Function Block Diagram 

Function Block Diagram (FBD) provides a mechanism to enhance the reusability of code by encapsu-

lating functionality in a black box with a common external interface [69]. It is used for programming 

complex procedures with graphical objects or blocks that represent functions, function blocks or pro-

grams, similar to electronic circuit diagrams. The direction of signal flow between function blocks is 

always from left to right, except in the feedback paths [67]. 
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Sequential Function Chart 

Sequential Function Chart (SFC) was derived from Grafcet, a graphical language based on a French 

national standard and itself an evolution of the Petri Net [70]. Unlike LD and FB, an SFC has inherent 

structure to better organise and visualise the control program flow [65]. A sequential function chart 

consists of two main elements, steps and transitions. A transition is fired when the step above it is ac-

tive and the transition condition is true. A set of action is associated with each step and a condition is 

associated with each transition. Both conditions and actions can be programmed by using any of the 

IEC standard programming languages, including SFC itself [71].  

Instruction List 

Instruction List (IL) is a low level textual language, similar to the assembly code. This language cor-

responds to the programming technique that has traditionally been used in embedded controllers [71]. 

It consists of a chunk of text lines where each line describes an operation instruction. An instruction 

consists of an operator or a function and an operand. Labels are necessary in order to enable jumps in 

the program. 

Structured Text 

Structured Text (ST) is a high level textural language with syntax similar to Pascal and is designed to 

make PLCs more accessible to programmers familiar with traditional programming languages [69]. 

2.5.2 PLC Software Structure Standards 

The ever-growing complexity and size of control software in automotive manufacturing has led to 

considerable research into structured programming methods. Today, almost every automobile 

manufacturer uses its own structured programming standard. However, all contain the same basic 

principles. The purpose of these standards is to ensure the consistency and quality of the programs. 

Automotive manufacturers force their machine builders to be compliant with their programming 

standard and often provide training courses to machine builders prior to writing control code for their 

machines. 

These programming standards have tremendously helped to overcome many past problems such as 

consistent software quality from different vendors, standardised and efficient diagnostics, coding 

minimisation, reduced training costs, and easy program modification and reusability. However, these 

standards limit the flexibility of the programmer as the structure of the PLC code is determined by the 

end-user rather than the machine builder [69]. An overview of some of the structured programming 

methods used in Ford Motor Company is given below. 

2.5.2.1 Error Diagnostic Dynamic Indication 

Error Dynamic Diagnostic Indication (EDDI) is the first known structured programming method used 



Chapter 2   Literature Review 

23 
 

in the automotive industry. EDDI originated in the 1980’s to address discrepancies in PLC control and 

diagnostic code. Traditionally, sequential control code and diagnostics code were implemented as 

separate entities. It was a common practice to add the diagnostic part of the code at the end of the 

programming process. As the diagnostic part was not integrated with the machine control code, this 

often led to inaccurate and misleading diagnostic messages being presented to the operator. In addi-

tion, it was a very common mistake to modify the machine control code without updating the 

diagnostic code [72].  

EDDI was a European initiative led by engineers of Ford Motor Company from the body and assem-

bly division. EDDI is essentially a design template and a set of directions to programmers and can be 

applied to a variety of PLC and PC based platforms. It incorporates the diagnostics by default as a re-

sult of the logic for controlling the machine. As a result, the diagnostics are accurate from the very 

start and remain aligned throughout the machine’s lifecycle. EDDI is the most widely used vendor in-

dependent programming structure. 

The Mondeo assembly project in 1989/90 at Genk, Belgium, was the first occasion when Ford Motor 

Company insisted that all OEMs must use Fords’ specific programming structure for all machines in 

the plant. According to Ford engineers that was the most successful launch they had ever achieved till 

that time [73].  

The EDDI philosophy pioneered a number of major achievements including [74]: 

• First non-proprietary software structure for use with PLC systems, 

• A mapped sequence making the process apparent to the operator, 

• Fully integrated diagnostics, i.e. the diagnostics are integral part of the sequence control 
program, 

• The realisation of manual diagnostic capability known as manual cross-interlock 
checking. 

Over the last decade, Ford Motor Company has released a number of control software standards. 

However, the basic principles of these standards are still based on EDDI. Other examples of these 

standards are STEPS (Structured Transfer-Machine EDDI Programming System) and FAST (Ford 

And Siemens Transline). STEPS is the most widely accepted standard at Ford Motor Company and 

has been used for more than two decades in a number of plants across the world. STEPS consist of a 

control logic framework made up of ladder logic code and function blocks [68]. So far, numerous 

versions of STEPS have been released, such as Ladder STEPS and Function Block STEPS. FAST is 

the most recent control software standard and was released in 2013 for powertrain manufacturing 

operations [75, 76].  

2.5.2.2  Zone Logic 

Zone Logic originated as a result of the joint efforts of Septor Electronics and Lamb Technicon to 
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make the control system intelligent in response to unforeseen failures. Zone Logic is essentially a con-

trol scheme that could analyse the condition of a machine, automatically trap machine faults and 

compose error messages based on the allowable machine state matrix. This eliminates the need for a 

programmer to have anticipated the fault. In addition the system was able to indicate the actions 

available to the operator and give the reason why the other actions were inhibited. 

Instead of programming the operation of devices in a conventional manner, the allowed conditions of 

each device are entered into the system. The operating system then continually compares the current 

conditions of each device to its possible valid conditions. In case of any non-matching condition an 

error message is automatically generated. Thus any condition that is not an allowed state of the device 

is an error state. This tremendously reduces the amount of coding when a programmer has to code 

each and every fault condition.  

Several other features made Zone Logic an important milestone in machine control including: distrib-

uting the control to a station level, connecting the controllers via a fibre optic bus and integrating 

numerical motion control into the architecture were all innovative concepts at the time [77]. 

Unfortunately, Lamb Technicon’s controlling interest in the system restricted the market with the oth-

er rival machine tool builders refusing to use the system.  In June 1988, a subsidiary of Daimler-Benz 

gained a controlling interest in Septor which reduced appeal to the US automotive sector [74]. 

2.5.2.3  Function Oriented Modularity 

Function Oriented Modularity (FOM) is a control software structure introduced by ThyssenKrupp 

System Engineering (TKSE) GmbH in 2007 for programming assembly automation systems. The 

purpose of the introduction of this structured programming is to enhance the reusability of the control 

code and avoid end-user specific standards by offering a common solution to their customers. The re-

use of the control code is handled by encapsulating generic code in function blocks for a family of 

mechanisms. Instead of cutting and pasting sections of the code, a function block can be instantiated 

and configured as required. 

The overall software structure is shown in Figure 2-5. Unit and Process Step are the basic building 

blocks of the software structure. Unit is the smallest and lowest level of enclosed working functionali-

ty and represents a single, or combination of, mechanical, electrical, and software elements. The 

software is encapsulated in a blackbox that can be parameterised.  A Unit not only controls the behav-

iour of mechanisms but also includes integrated fault diagnostics and generates the required HMI 

screens for manual mode control. A Process Step is a function for defining sequence of operations of 

a specific task (such as nut running) and typically consists of one or more Units. A Process Step can 

also be used as an enclosed object, which reads the RFID data-tag at the start of an operation and 

writes the status back to the tag when the operation is complete. A Process Step consists of a number 

of sub-tasks (such as open clamp, close clamp) knows as ‘Process Single Step’. All subtasks are coor-
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dinated via a process coordinator and implemented in a combination of FBs and LD [78].  

FOM has been used on production lines by a number of automotive companies such as Ford and Vol-

vo. One clear advantage of FOM, from a programming perspective, is ease of use for the OEM. 

However, FOM acceptance amongst end users was mitigated. Feedback from end-user (i.e. Ford Mo-

tor Company) collected for the purpose of this research has shown that FOM function blocks are 

written to be generic (i.e. small number of FOM blocks can cover a wide variety of device control) 

and covers a wide range of functions. This practically results in: a) increased program scan time be-

cause of large number of lines of code and hence lowers performance and b) an excessive code 

complexity that makes it difficult to interpret and debug compared to more conventional program-

ming structures based on LDs and SFCs. 

 

Figure 2-5 FOM software structure (Courtesy of ThyssenKrupp Krause System Engineering GmbH) 

2.5.3 The Current Controls Software Development Practice 

As witnessed in the automotive industry, the development of current automation system follows a 

classical sequential model, see Figure 2-6. The development of a system involves process 

engineering, mechanical engineering, electrical engineering and control software engineering 

processes in sequence.  In the current workflow, control software engineering starts at a very late 

stage in the overall system engineering process and remains highly isolated from the mechanical 

design and build of the system.  

The control software usually provides a wide range of control functions. The control logic must 

warrant that production is carried out by sequencing the required manufacturing operations in smallest 

cycle time. In addition to the nominal production behaviour of the machine, functions are provided to 

allow the operators to run the machine in various operating modes and cycles, such as automatic, 

manual, step, dry-run, to provide operators with full control of the machine in various situations. It is 

critical to provide the ability to restart the machine safely by returning to its initial position from all 

possible positions that the machine can have during operation without any human intervention. To 

ensure the safety of both human and machine, it is necessary to envisage and program machine 

Station M

Station 1
Operation 

Modes

HMI

RFID

Stack Light

Process Step N

Process Step 1

Unit 1.1.P

Unit 1.1.1



Chapter 2   Literature Review 

26 
 

behaviour for every possible situation that could occur during machine operation. These include 

sensor failures, mechanical breakdown, power loss and operator mistakes. Typically, interlock logic is 

added to inhibit the movements of mechanisms to react in a safe manner in case of operator error or 

hardware faults. Finally, diagnostic code is needed to generate fault alarms. Text messages are usually 

associated with each alarm to clearly define the fault and the required corrective actions to get the 

machine back into production in the shortest possible time [79].  

 

Figure 2-6 Overview of the current engineering workflow 

A flow diagram of control software development process is shown in Figure 2-7. The end-user 

typically provides controls specification to the machine builders, which define the structure of the 

control software, the required control functionality and the control hardware. In order to write control 

logic, timing diagrams, assembly drawings and electrical drawings are usually provided to control 

engineers. Timing diagrams typically describe the sequential behaviour of a machine in a time-

dependent manner. Assembly drawings are used to identify the positions of components (e.g., sensors 

and actuators) as well as schematics of the whole machine. Electrical drawings define the electrical 

wiring, the physical addresses of the components (such as sensors and actuators) and the hardware 

configuration. In addition to this, the control engineers typically have access to the control software 

from previous similar projects and will often reuse the relevant sections of this code.   
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Figure 2-7 Control software development V-model 

Coding of the control logic is typically achieved manually using proprietary engineering tools and is 

based on the interpretation of timing diagrams and process charts. This coding process requires 

extensive resources i.e. considerable time and skilled engineers, and is prone to misinterpretation and 

errors [18]. The control code is usually implemented in a combination of IEC 61131-3 languages. 

Typically the main structure is based on ladder logic and the sequence of operations is based on SFC 

or LL-based step logic with the mechanisms control based on LL, ST or IL encapsulated in FBs. 

The software development starts with the preparation of a generic template usually based on software 

structure specifications provided by the end-user. The template determines the overall structure of the 

software, the required control functionality and the languages to be used for each segment of the 

program. The template also consists of some common functions such as control modes, electrical 

cabinet faults, and bus faults. After template preparation, the memory map is defined. The memory 

map is the allocation of the memory locations to the physical I/Os and data for program execution as 

well as for communication with other devices. Memory map management is usually considered to be 

the most painstaking, time-consuming and error prone task. The software is typically written in a 

modular way in small segments. The code for mechanisms is added one by one to the template and 

necessary interlocks and fault messages are added and tested. The code for mechanisms is 

encapsulated in Function Blocks (FBs), which are written and tested individually. FBs for 

mechanisms are written once and stored in a standard FB library for reuse. Finally, the logic for the 

automatic mode machine behaviour (i.e. sequence of operations) is added by interpreting the timing 

diagram. To operate and monitor the machine, an HMI is created in parallel to the PLC coding. The 

HMI design is usually based on user-defined template.  

After the program has been written, it is important to verify that it works as intended before it is used 

in production. Currently, due to the lack of suitable tools and methods for doing so, testing and de-
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bugging is not carried out until the machine is assembled and ready for commissioning. During com-

missioning the machine is operated in different ways to ensure the fail-safe behaviour. Sections of the 

machine are tested one by one and a series of predefined tests are conducted to validate the control 

behaviour [12]. The final stage of software testing is running the machine for a long period of time, 

known as dry run. The dry run is considered essential because some errors will only appear until the 

machine has run for a several thousand cycles. The commissioning process takes more time than the 

actual control software development. This is because of the unforeseen errors that will be discovered 

during commissioning, resulting in non-working machines, unmatched functionality, and sometimes 

even catastrophic failure [80].  

2.5.4 Challenges in the Controls Engineering Approach 

In the current business environment, manufacturing systems must be designed to adapt rapidly and 

reliably with changing market demands. The current approach to control system implementation 

whilst well established and based on well-proven methods, still follows a classical rigid sequential 

model and uses an ad-hoc collection of poorly integrated tools and mechanisms to take customer 

requirements and translate them into desired systems. From extensive literature review and 

discussions with engineers from ThyssenKrupp Krause, Ford Motor Company, and Schneider 

Electric, a number of limitations within the current engineering approach were identified. A brief 

description of these limitations is presented in this section. To align with the scope of this research, 

the discussion is mainly from the control software development perspective. 

2.5.4.1 Lack of Integrated Engineering 

The design and development of automation systems involves a number of engineering disciplines. In 

the current engineering approach, the engineering process for each discipline is carried out 

independently from the others in a sequential fashion. The engineering activities are performed using 

well established but department specific and proprietary engineering tools [81]. At each development 

stage, a set of specifications and information are documented, and passed onto other engineering 

departments further down the process chain as required. Due to the use of department specific tools, 

data types, formats and structure, information exchange often becomes a bottleneck. As a 

consequence, information exchange is largely paper-based and requires constant re-implementation at 

various stages to suit the individual requirements [20]. This re-implementation is typically carried out 

via manual translation and interpretation, which are highly prone to errors and costly in terms of time 

and resource utilisation.  

2.5.4.2 Late Verification of Control Logic 

The correctness of the control logic plays an important role in the proper functioning of 

manufacturing systems [82]. The current practice shows that the testing of the control logic is not 

possible until machines have been built. This is because of the lack of means to check the consistency 



Chapter 2   Literature Review 

29 
 

of mechanical, process, and control system designs collectively during the design stage. As a 

consequence, the control programs are usually only tested during commissioning when a machine has 

been constructed and all mechanical, electrical and control parts have been assembled.  

According to Harrison and Colombo 80% of the software engineering is performed at machine-

builder, with the remaining 20% carried at the end-user site [83]. Haq [48] reported that out of this 

80% only 20% is validated during implementation while the remaining 80% validation is carried out 

during commissioning.  

At the commissioning stage, a large number of errors and discrepancies are typically discovered. 

These results in often unforeseen delays (typically up to several days for an automatic station) that 

eventually lead to hold-ups in system delivery. It has been reported that the control software 

engineering accounts for a large number of errors that occur during commissioning and run-up phases 

of machine implementation [84-86].  

Figure 2-8 shows the time consumed by the control software correction in the overall project duration. 

Typically, the control software engineering takes up to 60% of commissioning and accounts for up to 

15% of time to deliver [23]. According to Harrison and Colombo [83] there is a pressing need to 

optimise the commissioning phase as it has a direct impact on the production ramp-up times. 

Projections show that on a typical European automotive engine production line installation project, a 

reduction of the ramp-up time of 50% could translates in a financial saving of €20 million. 

 

Figure 2-8 Contribution of control software errors to project delay [23] 

2.5.4.3 Lack of Reuse 

Discussions with the machine builders during this research have shown that about 3/4 of automotive 

engine assembly projects are re-designs of previous similar projects because of the similarity of 

assembly operations and machine components. However, the re-design of existing systems requires 

major rework of the underlying control logic. Reuse of the control code is carried out via copy-paste 

of fragments of the control software from previous projects and altering them to fit the existing 

scenario. Such reuse is not only prone to errors and time consuming, but it also requires engineers to 

have knowledge of the legacy system in order to be able to effectively interpret and possibly rewrite 
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the control software of the legacy system. 

Another common problem is the “not invented here” syndrome. The software developers often prefer 

to reuse solutions from previous projects developed by themselves and do not trust common solutions 

from other engineers [87]. Moreover, highly experienced engineers often leave companies without 

their knowledge being passed on to other relatively less experienced engineers. 

2.5.4.4 Fragmented Control Software Development 

Although structured programming techniques have the potential to increase the robustness of the 

process, the chances of errors are still high since the control functions, fault diagnostic and HMI 

screens are often treated as separate entities. Changes conducted in the control function require 

extensive re-work of the other related parts of the control code. It is a very common mistake that 

control engineers modify the control functionality of the machine but forget to conduct the 

corresponding modifications in diagnostic and HMI codes. This results in incorrect and misleading 

diagnostic messages being presented to operators. For this reason, the ability to view the control code 

at machines on the shop-floor is still considered as an essential feature by the end-users. In order to 

address such problems, high-level and process oriented programming techniques are required that 

focus on defining system behaviour with integrated diagnostic and screen generation rather than 

coding individual parts and checking for consistency at a later stage [69]. 

2.5.4.5 Lack of Reconfiguration 

The objective of system reconfiguration at control software level is to enable the quick and cost-

effective modification of a system from its current configuration to another configuration without 

being taken offline or disrupting production when changes are required or unpredictable events occur 

[58]. If a software component is not designed at the onset to be reconfigurable then any change in the 

system will require major rework to tailor to specific needs. 

Currently, reconfiguration is usually achieved by manually modifying the control code offline. Any 

change in the control code also requires updating respective sections of the fault management and 

HMI systems. The change in the configuration often results in severe instability and disruptions in the 

production [88].  

2.5.4.6 Lack of Interoperability of Control Programs 

The choice of control hardware is often one of the most difficult decisions to be made during a new 

automation system project for end-users. End-users tie themselves to a specific control vendor at a 

project level. However, their choice of control vendor often changes in future projects for a number of 

reasons, such as the cost of developing control programs from machine builder, the cost of the 

hardware itself, the expertise of its technicians and global support from control vendor. This makes 

interoperability of the control code or vendor neutral control logic one of the important issues. 
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Because of vendor specific programming environments, interoperability of PLC programs does not 

exist i.e. a program written for one PLC cannot be executed on another PLC and thus results in a 

painstaking reusability of control code. In addition, due to entirely different programming 

environment and user-interfaces, even expert logic designers are often unable to use other systems 

and development tools efficiently [79]. 

2.6 Enabling Technologies for Reconfigurable Automation Systems 
Current market constraints are forcing industry to rapidly develop and reconfigure manufacturing 

systems in order to reduce the delivery time of new products to the market. The limitations of the 

traditional engineering methods and tools and the increased complexity of manufacturing systems 

have made it difficult to develop reliable manufacturing systems that can be changed rapidly. In 

particular, unforeseen delays often occur during machine development and installation, which 

consequently hold-up the system delivery date. Even a small change in a system could drastically 

increase the lead-time [89], and thus can result in a major loss in revenue.  

There is still significant potential to improve the efficiency of the engineering process by enabling the 

efficient reuse of existing solutions, dynamic reconfiguration of the control systems and providing a 

collaborative engineering platform to support seamless integration across various engineering 

disciplines. In the past decade, a number of technologies and methods have been introduced to realise 

this. Those that have had a significant impact on the system design and reconfiguration are discussed 

below.  

2.6.1 Modular Mechatronic Engineering 

Modularity is the application of the standardisation principle to create components that can be config-

ured into a wide range of products.  The principles of modularity have been discussed for decades and 

have remained mainly focused on the product design to satisfy the wide range of customer needs. 

However, the concept has recently gained great attention within manufacturing systems engineering 

due to the resulting reconfigurability and reusability the approach can offer, which are required in or-

der to cope with frequent production systems’ re-design and changes.  

Modularity is a general concept applied in many areas. At the most abstract level, it is defined as the 

capability of a system’s components to be separated and re-combined [90]. Baldwin and Clark [91] 

define a module as a unit in a large system that is functionally integrated but structurally independent. 

The prime purpose of making modular system architecture is to enable heterogeneous inputs to be re-

combined into a variety of heterogeneous configurations. Thus, a modular architecture allows 

system’s components to be disaggregated and recombined into new configurations with minimum loss 

of functionality [92].  

In the context of manufacturing systems, modularity allows manufacturing systems to be decomposed 
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into functional sub-systems, which interact with each other to perform a task. In the past, the func-

tionality of a system has been determined to a large extent by the mechanical design, and thus 

mechanical aspects of a system are mainly considered during decomposition of a machine into mod-

ules while the control system has been given little attention. However, to enable effective 

reconfiguration, a mechatronic-oriented approach is required, which requires that all three facets of an 

automation system (i.e. mechanical, electrical and control software) should be decomposed and inte-

grated at the same level of granularity in order to achieve encapsulation of complete mechatronic 

functionality.  

Conforming to the above, a module in a manufacturing system can be defined as a generic reusable 

and reconfigurable mechatronic device consisting of mechanical, electrical and control elements with 

a well-specified interface that carries out a specific process-oriented function. A module may be used 

alone or combined with other modules to perform a specific manufacturing process. This definition of 

modularity is complemented by the Figure 2-9 [93].  

 

 

Figure 2-9 UML representation of mechatronic module, adopted from [93] 

In modular systems, the most important characteristics are the interface and the granularity level of a 

module. To achieve true reusability and reconfigurability the interface should be standardised and 

universal. Standardisation of interfacing implies that all three interfaces (i.e. mechanical, electrical 

and control software) must possess plug and play capabilities [93]. This enables quick changes in the 

structure of a machine to allow alternative functionality or change in capacity by simply adding or 

removing modules without affecting the functionality of other modules [94].  

Figure 2-10 portrays how different types of manufacturing systems can be developed using standard 

mechatronic modules on the basis of product requirements. This allows manufacturers to buy a sim-

pler machine that can be altered with changing requirements rather than investing in highly complex 

and expensive general-purpose machines. A typical example of modular systems is the Modular Pro-

duction Systems (MPS) manufactured by Festo. The modular stations of an MPS can be easily 

arranged in various combinations to significantly change the desired operations [2]. 
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Figure 2-10 Development of manufacturing systems from mechatronic modules, adopted from [93] 

In addition, it is important to carefully investigate how much functionality a given module should 

provide. A pragmatic approach is to create a system of coarse granularity that still offers the ability to 

provide the necessary system variants and avoid making integration over complicated. Correct modu-

larity can make system complexity easier to manage [9, 16]. Figure 2-11 illustrates the trade-offs of 

selecting the granularity level.  

 

Figure 2-11 Comparison of trade-off between cost and the granularity of modular systems, cited from [16]  

Unlike conventional dedicated or customised machines, modular systems offer several benefits. The 

advantages of modular approaches have been reported by a number of researchers in the literature. 

These include reusability, re-configurability, pre-testability, reduced development time and better 

forecast of production cost and lead-time [2, 83, 93, 95]. However, due to the high optimisation of 

mechanical configuration for a specific production process, the productivity of traditional standard 

machines tends to be higher than that of modular systems [93]. This is mainly due to finely adjusted 

mechanical configuration of traditional machines.  
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2.6.1.1 Existing Modularity Approaches 

In the past two decades, extensive research has been conducted to enable the reconfigurability of 

manufacturing systems using modular approaches. A number of modular system design approaches 

can be found in the literature to match the control system modularity with the mechanical modularity 

of a machine. The research approaches either fall in the category of utilising intelligent system design 

tools to reduce the manual programming tasks or deploying intelligent control software units that can 

accommodate changes when change in system is required. 

Multi-agent systems have been recognised as a promising paradigm for implementing distributed and 

reconfigurable automation control systems [96]. The agent-based approach in manufacturing control 

derives from the Distributed Artificial Intelligence (DAI) field, being characterised by decentralisa-

tion and parallel execution of activities based on autonomous entities, called agents. An agent is 

typically defined as an autonomous component that represents physical or logical objects in a manu-

facturing system, capable of acting in order to achieve its goals, and being able to interact with other 

agents, when it does not possess the knowledge and skills to reach alone its objectives (i.e. requires 

collaboration). An agent can represent physical manufacturing resources and logical objects. The ap-

plication of agent technology in the manufacturing field has been carried out by several research 

teams, in different application domains, such as enterprise integration and manufacturing planning 

and control [97]. 

To ensure real-time responsiveness and extend the agent-based approach to field-level control, a so 

called holonic agent architecture has been introduced. At the lowest level of manufacturing control, 

the agents are typically known as holons. This holonic vision has resulted in the development of the 

IEC 61499 standard. This standard represents the key results of the HMS initiative and has a great po-

tential to enable dynamic reconfiguration of runtime control [98]. A holon is a compound object 

embedded with a low-level control (LLC) part that processes the real-time data from sensors and ac-

tuators and a high-level control (HLC) part that coordinates the manufacturing tasks. LLC is 

implemented in languages of the IEC 61131-3 or IEC 61499 standards for the programming of PLCs 

[98-100]. 

A number of prototypes have been developed and reported in the literature. Most of these approaches 

are however aimed at addressing manufacturing execution systems. On the other hand, modular ap-

proaches that focus on low-level logic control are rare. Of these approaches, the ADACOR, RIMACS 

and COMPAG research projects are briefly presented below. 

ADACOR (ADAaptive holonic Control aRchitecture for distributed manufacturing systems) has been 

researched at Ploytechnic Institute of Braganca. ADACOR aimed to provide modularity, decentralisa-

tion, autonomy, scalability, and re-use of manufacturing resources. The ADACOR architecture is built 

upon autonomous and cooperative units, known as holons. The term holon refers to an identifiable 

part of a manufacturing system that has a unique identity, yet is made up of sub-ordinate parts. An 
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ADACOR holon comprises of the physical resource and the logical control device needed to perform 

a manufacturing task autonomously. The logical control device is composed of three components: de-

cision, communication and physical interface [101]. 

RIMACS, a European FP6 research project, proposed a collaborative automation paradigm based on 

an autonomous and modular component-based approach for flexible and agile manufacturing systems 

to enable mass customisation with reduced lead-time. The RIMACS approach uses open architecture 

standards, modular mechatronics devices and virtual engineering environments. The approach consid-

ers the set of production entities as a conglomerate of distributed, autonomous, intelligent and 

reusable units, which operate as a set of cooperating entities at production runtime. Each entity is typ-

ically constituted from hardware and control software with embedded intelligence (such as fault 

diagnostics) and provides common communication capabilities [94]. 

The COMponent-based Paradigm for AGile Automation (COMPAG) developed at Loughborough 

University allows an automation system to be decomposed into a set of distributed control compo-

nents. The control components comprise actuators and sensors that contain embedded sequence and 

interlock capabilities. The control functionality can be constructed to match the physical modularity 

of the machine. The component-based paradigm can eliminate the traditional centralised PLC control-

ler, and the system is not programmed using conventional relay ladder logic [16, 102, 103]. The 

control software is embedded into the individual components supporting the control behaviour, error 

checking, diagnostics and lifecycle data acquisition. The application logic that defines the desired 

state behaviour for a specific manufacturing resource is configured via parameters rather than re-

programming. The machine configuration and application logic is designed and generated via 3D vir-

tual process engineering tools. It should be noted that the COMPAG project focused on low-level 

realtime machine control systems that exhibit predominantly reactive behaviour rather than proactive 

high-level agent-based systems [83]. 

2.6.2 Virtual Commissioning 

In the past decade, virtual engineering has gained a great attention and is recognised as a major driver 

of productivity and competitiveness in a number of engineering domains. The use of the virtual 

engineering tools allows the continuous planning of changes in product, process and resources in a 

virtual environment, thus eliminating the need for physical prototyping and testing. As a consequence, 

development time can be radically reduced and several design alternatives can be tested. Such 

capabilities of the VE system are very valuable in automotive and aerospace industries, where the 

physical models are expensive and require long development times. 

A recent trend in the automation systems engineering domain is the use of virtual engineering 

environments to virtual prototype manufacturing systems including 3D CAD of the systems. This is 

often referred to as virtual commissioning or virtual manufacturing. Virtual engineering tools 
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typically provide a digital collaborative engineering environment in which mechanical design, process 

engineering and control engineering can be integrated into a three-dimensional dynamic model of a 

manufacturing system [80]. As a result, the engineering process becomes concurrent because of 

valuable intra-discipline collaboration and integration between mechanical, process, electrical and 

control engineering over the lifecycle of manufacturing systems, see Figure 2-12. In particular, it 

allows control engineers to work closely with mechanical engineers to validate and optimise the 

control behaviour at an early stage [30]. 

 

Figure 2-12 Virtual collaborative engineering environment 

Like the application of the CAD/CAM technologies in product design, virtual prototyping of 

manufacturing systems has similar effects on the design and development of manufacturing systems. 

With the help of virtual prototyping tools, manufacturing systems can be visualised, optimised and 

validated before the physical build, thus ensuring “the right first time” build of automation systems. 

Once a machine is virtually built, the validation of a system can be carried out via visual inspection of 

a 3D CAD model of a machine, which is executed against the actual control logic [6]. A number of 

designs, configurations, and “what-if?” scenarios can be easily simulated that are otherwise difficult 

and time consuming if performed on the shop-floor [104]. 

A typical workflow of virtual commissioning is shown in Figure 2-13. The workflow is composed of 

four stages: virtual modelling and process planning, PLC and HMI programming, OPC (Open 

Platform Communications) link creation and testing. The virtual modelling and process planning 

involves the use of 3D CAD models of manufacturing cells and humans to mock-up the plant layout, 

production lines and manufacturing cells. The 3D models are typically composed of pre-developed 

and reusable standard mechatronic units. These mechatronic units consist of geometry, kinematic and 

control behaviour. Once the machine is modelled then the sequence of operations is defined to 

simulate the manufacturing processes in a required sequential manner. The simulation of a 3D model 

allows visual inspection to analyse component assembly, mechanical clashes and validate the 
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systems’ behaviour. At this stage the sequence of operations and the position of actuators and sensors 

can be edited to adjust the mechanical inconsistencies and optimise manufacturing processes and 

cycle time. 

 

Figure 2-13 Virtual commissioning workflow 

In process planning the intent is only to simulate the manufacturing process and therefore the focus is 

a sequence of operations. The sequence of operations is typically defined at a higher level of 

abstraction and often lacks the requirements of runtime controls engineering (such as safety 

interlocks). Such generalised control logic definition allows the testing of runtime behaviour only on a 

pseudo-code basis. 

The second stage is offline-programming. Offline-programming allows testing of the actual control 

code against a virtual 3D model of the system to validate the runtime control behaviour. At this stage 

PLC program is manually written in the vendor specific programming tools (as described in section 

2.5). The program is then downloaded into the real control hardware (or soft-controller) and 

connected to the virtual model of the manufacturing cell via OPC (Object linking and embedding for 

Process Control) link. The OPC enables the communication of the I/O signals between the virtual 

modelling environment and the PLC. The virtual model of the cell is then operated using the actual 

runtime controller thus enabling the testing of a cell under more realistic conditions [23], as shown in 

Figure 2-14. 

 

Figure 2-14 Virtual commissioning of a manufacturing cell 

Virtual Engineering Tools PLC Programming Tools 

I/O signals  (via OPC) Download/Online Connection 
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Using the offline programming approach, machine behaviour can be thoroughly tested to check the 

robustness of the control code.  This provides the opportunity for controls engineers to debug and 

optimise the control logic before the physical build. Testing of actual control code in a virtual 

environment offers a number of significant benefits including [105, 106]:  

• Efficient control code debugging,  

• Reduced commissioning time and accelerated ramp-up,  

• Decreased downtime during production due to validated control logic, 

• Testing without risking both man and machine, and 

• Operator training before physical build  

Commissioning of manufacturing systems in a virtual environment does not eliminate the need for 

real commissioning [107] but creates a new parallel process to conduct planning, validation and 

optimisation outside the project critical path. This removes much of time pressure that exists in the 

classical sequential approach [30]. As a consequence, the commissioning time is significantly 

compressed by identifying structural defects and verifying the control behaviour in the early stage of a 

machine build process [21, 29]. Figure 2-15 compares the classical machine build process with the 

one that involve virtual commissioning. As virtual commissioning is able to move a number of 

commissioning activities from the project critical path, a significant reduction in the overall project 

lead-time can be achieved. 

 

Figure 2-15 Impact of virtual commissioning on the machine development time [23] 

In academia, virtual manufacturing has been acknowledged for more than a decade as an approach for 

the identification of the design flaws and inter-domain problems. Recently industry has also 

recognised the significance of the virtual manufacturing solutions. Especially in the automotive 

industry, virtual commissioning is becoming more common in a number of production areas, such as 

body-in-white and engine assembly. According to a study conducted by Reinhart [23] the 
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commissioning time was reduced to 75% using virtual commissioning. David [30] reported the use of 

virtual commissioning in a number of robotic welding and assembly operations that results in a saving 

of two to three man-weeks in a project lead-time. One of the main hindrances of a wide acceptance of 

VE in the industry is the additional effort of creating the simulation models. However, the use of pre-

defined library components can significantly reduce the model development time.   

2.6.3 Automatic Logic Generation 

Automatic logic generation refers to the information reuse and transformation of machine control 

behaviour data defined at a higher level of abstraction into executable control code. Automatic logic 

generation tools aim to make the programming of the control systems intuitive so that the control 

behaviour can be defined at higher level of abstraction during the process planning phase without 

considering the complicated low-level control code [68]. Depending on the source of information to 

generate the control programs, the existing research work can be generally categorised into 3D virtual 

engineering based automatic logic generation and formal modelling languages based automatic logic 

generation. The research efforts focusing on logic generation using formal modelling languages are 

reported in section 2.6.4. 

To enable seamless integration between mechanical and controls engineering, the concept of 

automatic logic generation based on the 3D virtual engineering has emerged in the past decade. The 

virtual machine models used for virtual commissioning have embedded control behaviour; therefore, 

the same data can potentially be reused and converted into control code [20]. This can not only reduce 

the efforts to manually write the control code but can also ensure consistency in the structure and 

quality of the control software [31]. As the control code for both the HMI and PLC could be 

generated from the same model, discrepancies between HMI and PLC programming can also be 

avoided. Automatic logic generation based on 3D virtual models is considered as a very promising 

way to significantly compress the development and commissioning time of control programs. 

Automatic generation of programs from virtual engineering tools is a relatively novel research area 

and very little implementation work can be found in literature. Bergert [32] has presented a 

framework for the automatic generation of PLC programs from digital process information extracted 

from manufacturing cells modelled in DELMIA Process Engineer. In the case study presented, a cell-

specific process plan is developed that consists of all process information related to a cell, such as 

human, robots, and PLC driven activities. To generate a PLC program, the process plan is filtered for 

PLC-relevant information to remove the data which is not required for PLC program generation. The 

filtered data is converted into an SFC for Unity Pro. Within Unity Pro, the SFC is then connected to 

resource-specific library function blocks. The resource-specific function blocks describe the 

behaviour of the manufacturing resources and contain all I/O signals from the resource. The research 

presented by Bergert is however mostly conceptual and the implementation is very limited [32]. 

Manual editing of the generated program is required to map SFCs with resource-specific function 
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blocks to make the program deployable. In addition, the work mainly discusses the automatic cycle 

and does not cover diagnostics, mode control, and integration with the HMI. These usually form a 

large part of the control code. 

Researchers at Chalmers University have presented a framework to enable reuse of information from 

the mechanical design of a manufacturing cell to generate control programs. The framework identifies 

the part of the control program that can be generated by using control information extracted from 

robot simulation and design of a cell. The control information is synthesised using formal methods 

(such as Petri Net modelling) to ensure the work in the cell is well coordinated and no operational 

condition is violated. The control information is then used together with standard components to 

generate the control program. The components are essentially function blocks, which represent the 

devices and the basic cell functions. These component blocks are instantiated from a standard library. 

The concept mainly focuses the automatic control and does not include other parts of control 

programming, such as manual mode control, HMI integration, and integration with business execution 

systems. The details of this work can be found in [6, 7, 108, 109]. 

Steinegger [110] presented a general paradigm for the generation of PLC program by integrating 

related data from manufacturing process simulation tools. However, the proposed method is 

conceptual and no further practical solution has as yet been presented yet.  

A number of PLC vendors have also launched tools to generate executable PLC programs from 

virtual engineering tools. Two such tools are discussed below:  

SIMATIC Automation Designer 

SIMATIC Automation Designer builds on the Siemens Tecnomatix tool, Process Simulate, to enable 

the reuse of information from the planning phase CAD design to develop the control software; thus 

integrating the real and digital factory. It allows integrated engineering of the mechanical, electrical, 

and control aspects of a component and enables modular configuration of a system [111].  

Automation Designer includes tools for the automatic generation of PLC code for Siemens Step7 and 

HMI screens for Siemens WinCC Flexible. The PLC code and HMI screen generation is essentially 

based on the use of standard templates. A template in Automation Designer represents a real world 

object, such as a robot, and contains information about the object, such as hardware information, PLC 

code, and HMI screens. The templates for the generation of the PLC programs can either be written 

inside Automation Designer or be imported from a STEP7 library. 

Enterprise Controls and RS TestStand 

Enterprise Controls and RS TestStand, from Rockwell Automation, were designed to improve the 

efficiency of the logic development process in the automotive industry. The concept was essentially 

based on visual verification of the manufacturing process and reusable control libraries. RS TestStand 

and Enterprise Controls do not use common database, therefore an application has to be written twice, 
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i.e. once for the virtual model and again for code generation. 

RS TestStand allows simulation of the behaviour of a machine in a virtual environment using 

animation elements or importing CAD models. Once verified, the logic can then be developed in 

Enterprise Control by creating device templates to control a particular class of mechanisms. Each 

device template includes integrated HMI generation, error handling and diagnostic capabilities. Once 

tested, these generic templates are then stored in a library for re-use and automatically translated into 

ladder logic code. 

A control application is prepared by creating a required sequence of operations. The sequence of 

operation calls relevant actions predefined in the device template. The inputs and outputs can be 

associated with physical inputs and outputs or a virtual model created in RS TestStand. Once the 

application definition is complete, the control code is automatically generated for an Allen-Bradley 

HMI and PLC, which can be connected back to the virtual model in the RS TestStand via OPC for 

virtual verification. 

Pilot demonstrator projects at Loughborough University, University of Michigan, and the University 

of Warwick have shown the potential benefits and limitations of the Rockwell software suite. The 

details can be found in [68, 70, 112]. Enterprise controls did not generate sufficient attention from 

industry and was eventually discontinued in 2007. 

eM-PLC 

eM-PLC aimed to provide an integrated virtual environment to streamline the engineering process and 

to provide a seamless path from process design to shop-floor automation. eM-PLC provided functions 

to import CAD models, assemble them to make components and define their kinematic and control 

behaviour. The sequence of operations is defined in a Gantt chart. eM-PLC is integrated with Siemens 

Step 7 Professional and can automatically create Step 7 project mainly consisting of a number of 

SFCs [113]. The SFCs can be tested against an in-house simulated PLC, and verified using the virtual 

plant model. The PLC program can also be tested using a real PLC and HMI against the virtual plant 

via open connectivity (OPC) [68]. eM-PLC has been discontinued and replaced by Automation De-

signer from Siemens following the takeover of UGS by Siemens in 2007.  

2.6.4 Formal Methods in Controls Engineering 

Formal methods refer to the mathematical reasoning about system model properties [6]. The 

complexity of programming and verifying large systems has resulted in interest in the possibility of 

using formal modelling and analysis techniques [19, 112]. The key benefits of formal methods in 

controls engineering are to define the control logic in a graphical way at a higher level of abstraction 

and then to authenticate the control code by performing mathematical analysis, e.g., to check stability, 

reachability and deadlock of a controller over all possible operating conditions. These methods 
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typically comprise the formalisation of informal specifications (such as timing diagrams, sequence 

charts and interlocks) followed by automatic synthesis and implementation of the PLC code [114]. 

The most common languages used for formal modelling are Petri Net (PN) and finite state automata 

[114]. 

The use of PN gained the interest of many academic researchers as a potential tool for designing PLC 

programs [68]. A Petri Net is essentially a graphical method of defining discrete event systems, 

consisting of places, tokens, transition, and arcs. A number of PN-based methods have been reported. 

Uzam et al. [115] proposed the use of Petri Net to synthesise a supervisor. This supervisor can be 

converted to Ladder Logic via a token passing logic controller. Frey presented Signal Interpreted Petri 

Nets (SIPN) to model a controller using a graphical description. The control algorithm was then 

verified and translated into IEC standard PLC code written in Instruction List. Feldmann et al. 

presented ordered colored PN to design and implement logic control for PLCs. The approach allowed 

combination of advantages of formal validation and as well as traditional PLC programming for the 

development of PLC control code.  The PN model is then automatically converted into standard IEC 

61131-3 code [116].  

The collective view of researchers about the use of Petri Nets seems to be divided. Some researchers, 

such as Lee [117], refer to PN as a flexible method, easier to use than Ladder Logic. This statement is 

based on comparing the number of logical elements or conditions in Ladder Logic and PN programs. 

However, Ljungkrantz [113] states that the number of logical conditions and elements does not reflect 

the work required to configure a control system. Hajarnavis [118] states that such comparison method 

is “questionable and not fair”. Industrial practitioners have shown very little enthusiasm for the use of 

Petri Net [118].  

Finite state automata have been considered by many researchers to model and analyse manufacturing 

systems. However, finite state automata (as well as Petri Nets) suffer from the problem of state 

explosion when the reachability analysis is conducted for a complex system with a large number of 

reachable states. To avoid state explosion, Endsley et al. [119] used an extension to finite automata 

called modular finite state machines to generate a verifiable controller. The control system is divided 

into modules. From the modules control behaviour can be built and verified. However, the control 

behaviour is not translated into standardised IEC language. Thapa [19, 89, 120] presented a model-

based architecture. The presented approach is very similar to the SIPN approach. A system is 

modelled using formalism using timed-MPSG (Message-based Part State Graph), an extended version 

of finite state automata. The model is then converted into textual specification for formal verification 

using a model checker tool (SMV). The formal model of the system can also be interfaced with a 3D 

model based simulator for validation. The simulator matches the formal model with the corresponding 

3D model and then executes the motion in the virtual environment to validate the system. After 

validation, the input and outputs of the formal model are then mapped to the I/O addresses and 
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executable PLC code is generated for Siemens STEP7. Before downloading into a PLC, the program 

requires minor manual modifications. 

 The use of formal methods has received considerable attention from academia, however there has 

been very little interest has been shown by industry. As a consequence, these methods are mainly still 

confined to research laboratories [121]. The modelling complexity and non-familiarity of the 

modelling languages to control engineers is one of the main reasons for the lack of interest in formal 

methods from industry. According to Thapa et al. [19] the PN approach is new to control engineers 

and technicians and thus does not fit well within the current engineering practices. Logic design using 

PN is quite different and complex when compared to the existing approaches used in industry. For 

example, enabling/firing of transitions can be quite a cumbersome task. According to Danielsson et al. 

[108] formal methods require users to learn new skills (such as new modelling languages and 

computer programming methods), which are complex when compared to conventional PLC 

programming methods. Some researchers have also developed tools for the formalisation of existing 

IEC 61131 PLC code but this still requires the user to learn new languages and tools for the 

specification development [122]. However, Lucas argues that the benefits of these new methods over 

the current practice have not been well demonstrated [123]. 

2.7 Review and Discussion 
Due to a high degree of automation in the automotive industry, control systems are critical to the op-

erations of their production lines. However, due to highly rigid and fragmented process of machine 

development, control engineering remains highly isolated from mechanical design and starts at a very 

late stage of the engineering process. Control engineers typically rely on paper-based machine speci-

fications and use proprietary engineering tools. The control logic is typically written by interpreting 

timing diagrams and process charts. As the complexity and the size of the production machines in-

creases, the task of writing control code becomes difficult and relies heavily on the experience of 

control engineers. The control codes developed for such systems are often monolithic and unstruc-

tured, making them difficult to understand, modify, maintain and reuse. Due to this, alterations to the 

automation system software are potentially time consuming, complex, error prone and expensive. In 

addition to this, the unavailability of tools to verify control programs further reduces the reliability of 

the whole process. As a consequence, a large number of errors are only detected during commission-

ing. This results in a long ramp-up phase and hence leads to a loss of potential revenue. 

As industries are trying to adopt changeable and reconfigurable systems, the limitations in the 

conventional practice of logic development for programmable controllers are becoming more 

apparent. To overcome these limitations, both academia and industry are conducting extensive 

research to develop new methods and tools for the more efficient engineering of automation systems. 

The component-based modular engineering approach has become an established method to bring 
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modularity to systems. The industry has also noticed that potential improvements can be achieved 

through the use of IT tools to virtually develop and commission automation systems. A number of 

automation suppliers have launched virtual engineering tools for the more efficient development of 

automation systems. The advent of virtual engineering tools has made it possible to engineer 

automation systems concurrently and in an integrated manner. This engineering concept is essentially 

based on smart components, which consist of graphical representation, kinematic modelling, and 

control information that describe the behaviour of the required machine or cell. 

The current virtual engineering approach is mainly oriented to process modelling and optimisation. 

The approach is not yet fully exploited from the mechatronic perspective [124]. There is a lack of tool 

integration which can be clearly seen in virtual engineering environments and in control software 

development for runtime controllers (such as PLCs and Robot controllers) [125]. Due to this lack of 

integration, control logic must often be defined more than once in different engineering tools. The 

control behaviour is first defined within the virtual engineering tools to simulate the machine 

behaviour. However, the same control logic must then be re-implemented manually in the proprietary 

control software development tools [20]. In order to cope with these limitations, new methodologies 

are necessary to fill the gap between mechanical and controls engineering [19]. 

In recent years, the potential for information reuse from virtual engineering tools for the automatic 

generation of control logic has been recognised as a promising area in control engineering practice. In 

contrast to the existing approach, automatic generation can significantly reduce the manual coding 

work by automatically translating machine specifications into control code from the previous engi-

neering phases. By reusing information created in early phases of an engineering project, not only can 

the overall engineering efficiency be improved, but the gap between mechanical and controls engi-

neering can also be bridged.  

The generation of control logic from virtual engineering tools is a novel research area. Very few tan-

gible results from research in this field have been found. Most of the available approaches are focused 

on generating the source code for part of the required program and target only automatic operation of 

a machine. In reality, this only represents a small percentage of a machine control program. Further-

more, most of these methods do not support fault diagnostics and integration with the HMI and 

manufacturing execution systems. 
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3  Methodology and Implementation  

3.1 Introduction 

A current trend in manufacturing engineering is the use of IT tools, referred to as virtual engineering 

(VE) tools, to support virtual prototyping and validation of automation systems design. Most VE 

software solutions provide 3D CAD based simulation environment, which allows the control configu-

ration of a system to be visualised and validated against its physical layout. The simulation helps to 

identify discrepancies in the control behaviour and overall process at an early stage, and thus provides 

the capability to significantly decrease the cost and the lead-time of a project. The ability to directly 

reuse modelling data (i.e. from 3D machine layout and process plans) to generate deployable control 

software is potentially very promising to replace the error-prone and time-consuming manual coding 

of the control software. 

As reported in Chapter 2, the reuse of information for control software generation has been applied al-

ready in the manufacturing sector and a number of prototype systems have been developed. The 

approach can significantly compress the project lead-time and bridge the gap between mechanical and 

control engineering by working concurrently. However, the current implementations only present par-

tial and non-standard solutions and thus cannot be deployed in real production systems in the industry. 

There are two main reasons for the current partial implementation of the control software. The first 

reason is that the current solutions do not address the necessary functional and structural requirements 

of control software. The second reason is the unavailability of the required control information within 

VE tools to generate the complete control software. This is because most of the modelling, simulation 

and analysis capabilities of VE tools are primarily intended only for manufacturing systems process 

planning only. Such VE tools often focus on a high-level description of the intended production pro-

cess of a machine to control the sequence of operations and simulate the 3D machine without taking 

into account the requirements of the logic definition for the runtime control systems. A direct conse-

quence is that VE tools lack specialised control engineering functions (such as machine safety), and 

the control behaviour definition methods often do not support the definition of the runtime control 

logic.  As a result, the control behaviour is of limited use for control logic generation. 

Given the above facts, this chapter proposes an approach for the generation of the control code aimed 

at addressing the aforementioned limitations. The required enhancement of control information within 

VE tools is discussed. Finally, the proposed control software architecture and the methodology for 

control software generation are presented. 
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3.2 VE Based Control Software Generation Framework  

The proposed framework for generation of control code from VE tools is shown in Figure 3-1. The 

framework is aimed at addressing the limitations of the current control software engineering ap-

proaches by using 3D-based manufacturing process planning and simulation tools referred to here as 

Virtual Engineering (VE) tools to generate control code, while fulfilling all the industrial control sys-

tem requirements.  

 

Figure 3-1 Proposed framework for logic generation 

The work carried out in this research by the author is shown in Table 3-1. To propose and implement 

an acceptable approach, the control software requirements of the automotive industry are documented. 

The existing approach for defining the control behaviour of a manufacturing cell within a VE tool (the 

CCE software product was used) is analysed to identify the limitations from the control engineering 

perspective. To enhance the control information within VE tools for the direct deployment of the con-

trol software, a new method for the control behaviour definition is proposed.  

Table 3-1 Summary of the author’s contributions 

Author’s Contributions Description 

Control Software Require-
ments 

Documentation of functional and non-functional requirements of control systems. 

Enhancement of Control In-
formation within VE Tools 

A new logic definition method for defining control behaviour of a manufacturing sys-
tem within virtual engineering tool to enable the direct deployment of control software. 

Deployable Control software 
architecture 

A new PLC and HMI control software architecture, which supports the direct deploy-
ment approach as well as architectural requirements of the end-user. 

Software Generation Ap-
proach 

Methodology of generating the PLC control code and the HMI screens automatically 

according to the proposed control software architecture by reusing the control behav-
iour defined within VE tools 

The proposed code generation framework adopts the template-based approach used within the auto-
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motive industry to write control software, wherein the template is populated from the machine specif-

ic control data imported from the virtual model of a manufacturing cell. A control software 

architecture that facilitates the direct deployment of control code from the virtual model of manufac-

turing cell is proposed. The methodology for automatic code generation is then designed and 

implemented. 

3.3 Control Software Requirements 

The purpose of this section is to identify control software requirements. The control software re-

quirements presented in this section are based on the powertrain assembly systems of Ford Motor 

Company. The requirements can be categorised into software structural requirements and functional 

requirements. The purpose of the structural requirements is to promote commonality and common 

best practices in software development. The software structure requirements are based on the Ford 

Motor Company’s FAST (Ford And Siemens Transline) PLC programming standard for Powertrain 

Operations Manufacturing Engineering. The functional requirements of assembly automation systems 

are presented in the remainder of this section. 

3.3.1 Machine’s Modes of Operation 

In order to fulfil a wide range of activities (i.e. commissioning, normal operation, and fault diagnos-

tic) the following three modes of operations are required: 

Automatic Mode allows execution of a complete sequence of operation of a machine without any 

operator intervention. Automatic mode allows a machine to start auto cycle if all the safety and 

interlock conditions are met. During auto-cycle, respective automatic interlocks should are checked 

just before starting the move and continually checked until end of the movement. Any machine fault 

will drop-out the machine form automatic cycle. The automatic cycle can be terminated by requesting 

stop-end-of-cycle or run-out via respective pushbuttons.  

Manual Mode allows manual control of machine movements (motors, cylinders, stops, nut runners 

etc.). This mode is typically used during commissioning and maintenance for testing and error 

recovery. In this mode, actuators can be moved between home and work positions regardless of the 

sequence of operations via pushbuttons provided on HMI screens. In this mode, the movement of 

actuator remains active as long as the manual movement button is being pressed. Manual interlocks 

and safety conditions are checked before initiating any movement and are continually checked as long 

as the movement is active. Any violation of interlock or safety condition should inhibit the movement. 

For example, if a part is clamped then pushing the transfer button (to transfer the part) should not 

cause an action as the movement would cause a clash. 

Semi-Automatic Mode allows manual execution of a group of motions in the required sequence of 
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operations. A specific button is provided for each group of motions. 

3.3.2 Cycle Types of Machine Operations 

A brief description of the required cycle types of machine operations is given below: 

Continuous Cycle is used for normal production mode of operation. Continuous cycle is requested 

through a ‘start cycle’ command initiated from the HMI.  

Runout Cycle does not allow introduction of new parts in a machine. Machine remains in auto cycle 

until it finishes processing parts that are already in the station.  

Single Cycle is used to process one part at a time. In single cycle mode, the machine processes part 

that is currently in the machine or the next part if machine is empty. The machine allows introduction 

of a new part, but operation on the new part are not performed.  

The machine will process part currently (or the next part if machine is empty) in the machine and 

release, allowing introduction of a new part. Operation on the new part shall not be performed. 

Dry Cycle is used to test the robustness of mechanical equipment and control software. In dry cycle 

machine is typically operated in ‘automatic cycle’ without parts for about 24 hours. To execute dry 

cycle, the part present sensors are bypassed. Dry cycle is typically activated by setting up a ‘dry run 

flag’ in the PLC program. 

Return to Initial Position enables the automatic return of all actuators of a machine back to their 

initial positions. During the return it must be ensured that all actuators follow a safe return path to 

avoid any mechanical clash.  

3.3.2.1 Machine Safety 

Machine safety functions enable the safe operation of a machine. The safety function can be catego-

rised into interlock checking, constantly monitored zone and general safety checks.  A brief 

description of these is given below:  

Interlock Checking is required to prevent mechanical clashes during machine operation. An interlock 

is a relationship between two or more functions such that one must be maintained whilst the other 

function is performed, e.g. a workpiece must be clamped during the drilling operation.  To ensure safe 

machine operation, all movements are interlocked to ensure that machine damage cannot be 

inadvertently made using machine controls.  

Interlocks are provided both in manual and automatic mode, usually known as manual interlocks and 

automatic interlocks respectively. Manual interlocks are to prevent operator’s mistakes during the 

manual mode of operation, while automatic interlocks are required to avoid any unexpected move-

ment during the automatic sequence, e.g. a clamp moving off its limits due to low air pressure. 

Constantly Monitored Zone (CMZ) is a set of input signals that should be present throughout the ma-
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chine operation to ensure human and machine safety. These include emergency stops, safety gates, air 

pressure, overload thermal trips etc. All CMZs have the highest priority and immediately stop a ma-

chine if activated. 

General Safety Checks are required to ensure that: 

• There should be no machine movement machine as a result of switching on power. 

• No unexpected movements or hazard should exist after starting up a machine from a stopped 

condition or in recovering or returning a machine to a required position. 

• Selection of a mode shall not initiate movement, and there must be visual indication that a 

particular mode has been selected. 

• A machine shall prevent automatic restart of any motion or motor when power is restored after 

power failure. 

• Where memory devices are used then correct operation, retention and recovery must be ensured in 

case of power supply interruption to prevent a hazardous situation resulting from a shutdown. 

• Loss of supply voltage shall stop the machine without damage and require a manual restart with at 

least these two deliberate acts by the operator to: 

1. first select the machine mode, and 

2. then press a button to initiate a particular manual function or automatic cycling 

3.3.2.2 Machine Diagnostics 

Machine diagnostics is one of the most important aspects of the machine control logic. The purpose of 

the diagnostics functions are concerned with finding faults as well as waiting for states arising in ma-

chines. Diagnostics should occur by default of the logic for controlling a machine. The control 

software must make certain that the machine operation is safe and should present a correct diagnosis 

of problems in case of any hardware failure. This part of the control logic requires significant time 

and can increase the cycle time substantially.  

Machine diagnostic is usually classified into two categories: 

Machine Fault is defined as any non-waiting state that is not manually initiated, stops the machine 

from producing and normally requires intervention for recovery. A machine fault is raised if a 

machine voids a predefined safe operation procedure. A machine needs to be stopped when a machine 

fault is raised. A number of standard fault checks are usually performed, e.g., pairs checking, 

supervisory time, position monitoring etc. 

Each machine fault is assigned a priority number such that more critical faults are displayed in prefer-

ence to less critical errors. When a machine enters the fault mode it latches the fault that has highest 

priority. This highest priority fault is most likely to be the primary fault responsible for the machine 



Chapter 3   Methodology and Implementation 

50 
 

breakdown (for example, an emergency stop discharges air and can trigger low air pressure fault mes-

sage as well).  

Machine warning is defined as any event that does not require the machine operation to stop but 

needs to be corrected. In general, a machine warning is an event or condition detectable by the ma-

chine logic that could indicate a reduction in the overall performance of the machine, e.g. bad PLC 

batteries, low lubrication level, no workpiece to process. Warnings may occur while a machine is run-

ning or not. Warning messages do not have any priority numbers associated with them. 

Warnings are mostly machine specific but there may also be some warnings that apply across an en-

tire plant. Typically the controls, process and productivity groups will produce a set of warnings lists 

after a careful review of specific needs and capabilities. Warnings are usually categorised as plant, 

programme, line or machine-specific warnings. 

3.3.2.3 Operator Messages 

Presenting messages on an HMI in a meaningful way has always been an essential part of machine 

control. The messages must be presented in a way to enable the detection of the machine state and any 

faults with minimum effort. Operator messages must not only reflect the status of a machine but also 

should guide the operator during error recovery. 

3.4 CCE, Virtual Engineering Environment 

In this research, the Core Component Editor (CCE) VE software has been used to implement manu-

facturing process simulation models from which the basic information required to generate control 

code is derived. The CCE is a set of engineering tools, developed at Loughborough University, that 

provide 3D and process modelling functions for automation systems. The CCE software was designed 

based on the requirements of the automotive industry to support engineering of assembly automation 

system over their entire lifecycle. 

The CCE toolset is a lightweight modelling and simulation package based on the use of non-

proprietary and open standards data formats. The CCE tool set uses standard VRML formats for 3D 

modelling and a generic State-Transition Diagrams definition to support the control logic editing and 

visualisation. The CCE software architecture includes interfaces to external environments, such as 

OPC client/server interface that allows control-related events to be sent/received. A so-called 

Broadcaster enables linking to Web-based applications (e.g., Web-based HMI, Web-based VRML 

models). 

In the CCE, machine geometry (CAD), kinematic behaviour and control behaviour are integrated 

around a common data structure, referred as common model architecture that describes a hierarchical 

system as a composition of components. A set of system representations (3D visualisation, state-

transition diagrams and timing diagrams) provide a variety of specialist and non-specialist views that 
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are designed to support both detailed engineering tasks and general collaboration between project 

partners and engineers from different domains. 

The CCE tools development was driven by the concept of component-based system architecture [12, 

126], which seeks to enable re-usability and re-configurability of basic modelling constructs. The 

concept of a “Component”, which is defined as a re-usable, reconfigurable unit providing the data 

integration mechanisms for control, 3D modelling, kinematics and other data types describing a 

particular resource (e.g. component faults), is central to the CCE tool development [127]. 

Using the CCE tool, the overall modelling and simulation workflow can be broken down into two 

main stages, which are the “component modelling” and “system modelling”. A brief description of 

these stages is given below. 

3.4.1.1 Component Modelling 

Component modelling is the first step for modelling a manufacturing system. In CCE, Component 

Builder Module is provided to create components and store them in a component library. The 

Component Builder Module functions cover three domains, namely 3D geometry modelling, 

kinematic modelling and control behaviour modelling. A component could consist of one or a 

combination of these three domains. An outline of the component modelling is provided in Figure 

3-2.  

 

 

Figure 3-2 An overview of component modelling in CCE 

3D geometry facilitates visualisation and description of the physical attributes of machine 

components, such as dimensions and shape. CCE does not provide any CAD modelling functions. 

Instead, 3D CAD geometry in a VRML (Virtual Reality Modelling Language) format can be imported 

into the CCE Graphic Library. The imported VRML models are surface models only, which greatly 

reduce the memory size of the simulation models. The Component Builder Module uses the geometry 

in the Graphic Library to enable Lego-like assembly of components with the help of Link Points. Link 
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Points are location points within the model space of the parent geometry. Example link points created 

for assembling a gripper are shown in Figure 3-3.  

Once a component is assembled, kinematic behaviour can be defined to animate the 3D geometry. In 

CCE, two types of kinematic joints, i.e. translational and rotational, can be modelled. The Component 

Builder Module provide functions to define the complete kinematic behaviour of joints required for 

simulation, such as type of joint, displacement, acceleration and velocity.  

 

 

Figure 3-3 Link Points for assembling gripper 

Finally, the control behaviour of a component can be described via State-Transition Diagram (STD). 

STD outlines the high-level functional states in which a component can exist. The transition from one 

state to another is controlled by transition conditions between the states. The transition conditions are 

configured during system modelling. An example STD to define the control behaviour of a 2-position 

actuator component that moves between home and work positions is shown in Figure 3-4. 

An STD within CCE consists of three types of states: Home Initial, Static State and Dynamic State. A 

brief description of these states is given below. 

Home Initial is the first state of a component and represents the home position of a component. This 

state is essentially a static state. 

Static State is a known position of a component. In a static state, a component waits for a transition 

to become true to move to the next state.   

Dynamic State is a state in which component moves between static states. In a dynamic state, the 

time required to complete the action is defined. This time is used to drive the simulation and calculate 

the cycle time, while a maximum allowable time is used to set the time-out period for run-time 

Link%Point%for%
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diagnostic purposes.  

 

Figure 3-4 STD for a 2-position actuator 

To facilitate simulation of a number of manufacturing resources, CCE supports modelling of the 

following types of components: 

1. Actuator component 

Actuator component is defined as an electro-mechanical component, such as clamp.  An 

Actuator has a physical geometry and control behaviour (for example, a proximity sensor 

turns ON and OFF depending on presence or absence of a part and its electrical configuration, 

i.e. PNP or NPN). 

2. Sensor Component 

Sensor component detects external stimuli and responds in a distinctive manner. A Sensor 

component has a physical geometry and control behaviour.  

3. Virtual Component 

Virtual component has no physical geometry but has behaviour that may affect the 

automation system such as a timer or a routing algorithm that based upon its inputs, controls 

the flow of workpiece through the automation system.  

4. V-Man 

V-Man (virtual mannequin) represents a human operator in the simulation environment. An 

inverse kinematics engine for the limbs allows intuitive work sequence editing. V-Man has a 

physical geometry and control behaviour. 

5. V-Rob 

V-Rob represents 6-axis industrial robots. Inverse kinematics functions of V-Rob allow 
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intuitive editing of a robot’s axis position. 

6. Geometry 

Geometry component has no inputs or outputs but is used to build automation systems provid-

ing a capability to represent a machine’s standard framework such as guarding, frames and 

railings.  

3.4.1.2 System Modelling 

Figure 3-5 gives an overview of the system modelling. At system modelling level, components of the 

system are instantiated from the “component library”. Components are instantiated one by one and 

assembled via link points. Once components are assembled, the sequence of operation of the system is 

then complemented by defining transition conditions to interlock components with states of other 

components (i.e., adding transition conditions to the STDs of the components).  

 

 

Figure 3-5 An overview of system modelling in CCE 

The last step of system modelling is the workpiece routing logic. Workpiece routing logic is used to 

simulate triggering of sensor components and the routing of the workpiece through the system. An 

example workpiece routing screen is shown in Figure 3-6. Workpiece routing logic is essentially a 

sequential flowchart composed of steps, actions and transitions. Each state describes position of the 

workpiece in the system. Actions are associated with a state to turn sensors ON and OFF. The 

transition conditions are states of actuator components. 
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Figure 3-6 An example workpiece routing logic 

Routing of workpiece is accomplished by transferring the link point of the workpiece from one 

component to another component. For example, when an engine is clamped from a pallet then to 

transfer engine from pallet to clamp, the link point of engine is transferred from pallet to clamp in the 

respective state of the workpiece routing logic. 

In workpiece routing logic, triggering of sensors is done by associating states of sensor components 

(e.g. ON and OFF in case of proximity sensor) to the states of workpiece routing logic. In such an 

approach, simulation of the behaviour of sensor relies on the knowledge and experience of engineers 

to predict which sensors will be triggered as the workpiece travels through the system. 

Finally, machine simulation is executed to verify the machine design and operation. Simulation 

enables the control logic to be executed and viewed in conjunction with a set of visualisation tools i.e. 

the 3D viewer and timing chart. Once the control behaviour has been verified, the machine 

configuration and control logic can be exported in XML format for further use at later phases of the 

engineering process, such as for control logic generation, discrete event simulation and energy 

consumption analysis.  
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3.5 Enhancement of CCE Tools for Control Code Deployment 

As aforementioned, the runtime control code generated from the control behaviour (state-transition 

diagrams) defined within the CCE must fulfil the industrial control system requirements and fits well 

in the framework of current industrial practice. The existing method of logic definition within the 

CCE is well suited for simulation purposes but has the following major limitations when viewed from 

the control system requirements perspective: 

1. The existing control logic definition method for actuator components does not provide a flag 

to distinguish between start and end of work cycle of actuators. This results in re-initialisation 

of the work cycle of actuators without any handshake signal typically used in runtime control 

systems to indicate end of operation. As CCE supports simulation of a single workpiece only, 

the abnormal behaviour of a system due to re-initialisation remains undetected during virtual 

commissioning. This can potentially leads to errors in the generated control code. It has been 

observed that in those scenarios where the workpiece remains at the same position at the end 

of the work cycle, the re-initialisation results in processing of a single workpiece again and 

again in a loop during runtime. 

For instance, the control behaviour of a two-position actuator shown in Figure 3-4 is defined 

with the help of four states. The last state (i.e. “moving to home pos”) in the work cycle is a 

dynamic state. As soon as the actuator reaches home position, the work cycle re-initialises 

and “Home Initial” state becomes active state.  

2. The identity number of a component’s states (Component State ID) plays a critical role in 

mapping actuator components with Runtime Components (RCs). However, in CCE the as-

signment of State IDs does not follow a rigorous rule, which results in inconsistent numbering 

of State IDs. This makes the automatic code generation process prone to errors, which can po-

tentially lead to an abnormal behaviour of a machine. Such errors in control code are often 

very difficult to debug.  

3. The control logic used for simulating some mechanisms is not consistent with the runtime 

control logic required to run physical mechanisms. As a consequence, the control logic defini-

tion of such mechanism cannot be used for control code generation. For example, the 

behaviour of the conveyor system shown in Figure 3-7 can only be simulated with the help of 

five states STD. However, from control logic perspective conveyor is run by electric motor, 

which has only two logical states (i.e. ON and OFF). As a result, the control behaviour used 

for simulation of such components cannot be used to control the physical components in 

runtime.  

4. The control logic definition of actuators does not support definition of interlock conditions 

during dynamic states, which is critical requirement for any control system to prevent me-

chanical clashes. 
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Figure 3-7 CCE model of a conveyor system transporting part from ‘entry position’ to ‘separator position’ and 
subsequently from ‘separator position’ to end position’ after separator release 

 

5. There is no top-level logic to drive the sequence of operations. Instead, the sequence of opera-

tions is controlled by the component logic itself.  

6. The current data model underlying the CCE software functionalities does not distinguish be-

tween (PLC) control and non-control components. This results in difficulties while filtering 

information required for the program generation. 

7. There are no functions to map the physical I/O addresses and the mapping of RCs with Sensor 

and Actuator components. 

8. The simulation supports one workpiece only. However, for validating the control behaviour 

and cycle time calculation, simulation of machine operation involving more than one work-

piece is critical.  

9. To debug the control logic defined within VE tools, it is important to have a live view of state 

and transitions during simulation.  

10. The workpiece routing logic often confuses users. It has been observed that users often con-

fuse the workpiece routing with the control behaviour of a machine. In addition, it was found 

that firing sensors using workpiece routing logic fails to simulate the behaviour of sensors in 

some instances. For example, a proximity sensor used to detect the workpiece presence in an 

indexing table is triggered both by the workpiece as well as by the indexing table itself when 

the table rotates. Such scenarios are difficult to model using workpiece routing logic and can 

potentially leads to bugs in the control code that can cause a catastrophic failure. Therefore, a 

more realistic, intuitive and user-friendly method for simulating sensors and workpiece rout-

ing would be desirable.  
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Of these limitations, 1-7 are critical for control software generation and are addressed in this research, 

while 8-10 are critical for testing and debugging of the control logic, they are not required for 

software generation.  

To overcome the critical limitations, a number of changes were implemented as a part of the research 

work achieved by the author in this thesis, summarised in Table 3-2. A brief description of these 

changes is given below. 

Table 3-2 A summary of the changes in CCE 

S. No Limitations Solution 

1 Three types of states, i.e. Home Initial, Static 
and Dynamic 

A new state Home Finished is introduced 

2 Inconsistent State ID numbering 
Consistent rule based State ID numbering and ed-
itable State IDs 

3 
No provision for modelling actuator compo-
nents, which have a different runtime behaviour 

than simulation behaviour 

Simulation-Only component is introduced 

4 No provision for definition of interlocks 
Provision for definition of interlock conditions in 

dynamic states 

5 No provision for top-level logic to define se-

quence of operations 

Process Logic is introduced to define sequence of 

operations 

6 
No categorisation of components to aid filtering 
of components required for control code gener-

ation 

Categorisation of components into control and 

non-control components 

7 No function for assigning PLC I/O addresses 

for runtime deployment 

Mapper function developed for PLC I/O address 

allocation 

 

3.5.1 Control Behaviour of Actuator Components 

As stated in section 3.5, the existing practice of defining the control behaviour of actuators does not 

flag end of work cycle of actuator components, which can potentially results in bugs in generated 

control code. To address this issue, a static state ‘Home Finished’ is introduced as the last state of the 

internal sequence (i.e. STD) of actuator components to mark end of work cycle.   

‘Home Finished’ is a virtual state which becomes active when an actuator moves back from work 

position to home position. The ‘Home Finished’ state remains active until it is acknowledged by a 

‘Handshake’ signal from another component (i.e. Process Logic). Upon receipt of the 

acknowledgement signal, the internal sequence of component loops back to the ‘Home Initial’ state. 

Experience has shown that the use of ‘Home Finished’ state makes the definition of the control logic 

easy and safe. 

For illustration, an STD of an actuator component is shown in Figure 3-8. This STD defines the 
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control behaviour of a two-position actuator that can move between ‘Home Pos’ and ‘Work Pos’. The 

control behaviour of this actuator is represented by five discrete states. Each static state requires 

satisfaction of its respective transition condition(s) before moving to the subsequent dynamic state. 

The last state of the STD is “Home Finished” which represents the end of the working cycle of the 

component. The actuator remains in this state until the transition condition is fired by a ‘Handshake’ 

signal from a Process Logic. 

 
Figure 3-8 STD of a two-position actuator with a Home Finished state 

3.5.2 Component State IDs 

In the PLC runtime environment, the actuator components are mapped with the Runtime Components 

(RCs) to drive the physical devices. For mapping actuator components with RCs, the State IDs of 

actuator components must be identical to the State IDs of RCs. Any inconsistency in State IDs can 

result in a non-working machine and even catastrophic failure due to a mechanical clash.  

In CCE, the State ID numbering is indistinct because it does not follow a rigorous rule. State IDs are 

assigned in ascending order, which does not take into account branching or later changes in the STDs 

(such as deleting a state). State ID is simply incremented each time when a new state instance is 

inserted in a STD. As a result, State ID depends on the state instantiating order and thus State IDs of 

two similar components can be significantly different if states are instantiated in a different order. The 

inconsistency in the State ID numbering is depicted in Figure 3-9.  

To address this problem, State IDs are made visible and editable. To ensure the consistency of State 

IDs, a rule for the State IDs is defined. According to this rule, the State IDs are incremented from “top 

to bottom” and “left to right”.   
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Figure 3-9 Ambiguous numbering of ‘State ID’ 

3.5.3 Simulation-Only Actuators  

As aforementioned, the logic behaviour required to simulate some actuators in CCE is entirely differ-

ent than the runtime control logic. As a result, control code generated from simulation model 

composed of such actuators requires manual rework to make the generated code deployable. To ad-

dress this issue, Simulation-Only component is introduced. Both Actuator component and Simulation-

Only component are used to model such actuators. The Actuator component represent the runtime be-

haviour and the Simulation-Only component represent the control behaviour required for simulation. 

To maintain the integrity of the model for a realistic virtual commissioning, Actuator component act 

as a driver of the Simulation-Only component. Simulation-Only component is categorised as a non-

control component, which is filtered out during the control logic generation process. As a result, con-

trol code is generated for Actuator component only.  

3.5.4 Component Interlocking 

In machine control logic, interlocks are one of the prime features that prevent mechanical clashes 

between components. In CCE, interlocks are defined as transitional conditions. However, such a 

definition of interlocking cannot avoid a mechanical clash if the condition is void during movement 

(i.e. in a dynamic state). To address this issue, the component logic (STD) was modified to allow 

definition of interlocks in dynamic states, as shown in Figure 3-10. When a dynamic state is active, 

the respective interlock conditions are constantly monitored. The dynamic state goes into a halt state 

if any of the respective interlock conditions are violated.  

In order to facilitate the definition of interlocks for both automatic mode and manual mode separately, 

each dynamic state accepts two sets of interlocks, i.e. one for manual interlocks and the other one for 
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automatic interlocks. Each set of interlocks can be viewed and specified separately.  

 

Figure 3-10 Definition of interlocks in STD of actuator components 

3.5.5 Process Logic 

To define the sequence of operations, Process Logic is introduced. Process Logic provides a set of 

services, which combine and orchestrate the service functionalities of a group of components to run a 

machine in a sequential manner. A machine can have several Process Logic sequences, 

communicating with each other to work in an integrated and controlled manner.  

 

Figure 3-11 Example Process Logic sequence 
 

Process Logic is modelled as a set of step and transition pairs, as shown in the Figure 3-11. The 

output of a step remains active until all conditions in the successive transition become true. Process 

Logic has following four types of step and transition pairs: 
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a. Initialisation 

The first state of Process Logic is Initialisation. The purpose of this state is to flag the initial step of 

the Process Logic.  

b. Action 

An action state is used to drive components by firing their transitional conditions. Typically, an action 

step remains active until its transition condition receives feedback signal from the driven component 

to make sure that the action is completed.  

c. Release 

This step is used for communication between Process Logic sequences. The release step sends a 

release signal to another Process Logic sequence to resume its operation. The Release step remains 

active until its transition receives a Release signal back from the respective Process Logic.  

d. Handshake 

This step is used to acknowledge the “Finished” signal of actuator components. The process logic 

remains in this state until all accompanying components move back to their home state. 

3.5.6 Component Categorisation 

A manufacturing system consists of a range of resources to accomplish a manufacturing process. The 

virtual modelling environment integrates all these resources and thus contains diverse data. However, 

not all of these resources are controlled by PLCs. Consequently, filtering-out irrelevant data, such as 

virtual operators and robots, is an important step in control code generation.  

To enable the filtering of control information, components are categorised into control and non-

control components, as shown in Table 3-3. Control component can be defined as a sensor or actuator 

component that is controlled by a PLC and its underlying control logic behaviour is required for the 

control code generation (such as gripper, proximity sensor etc.). Whereas, non-control components 

are those components which are required for simulation or visualisation of a system but do not make 

part of a runtime control system. For example, modelling of a mannequin is essential for visualisation, 

cycle time calculation and operator trainings, however the behaviour of a mannequin is not required 

for control code generation.    

Table 3-3 Categorisation of components 

Control Components Non-Control Components 
Actuator Geometry 

Sensor V-Man 

Virtual Simulation-Only Actuator 

Process Logic - 

V-Rob - 
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3.5.7 PLC I/O Address Allocation 

For PLC I/O address allocation, a mapper function known as CCE Mapper has been designed and de-

veloped. I/O addresses can either by typed within the Mapping tool or imported from third party tools 

in XLS (eXceL Spread Sheet) file format. The I/O addressed can then be allocated to the actuator and 

sensor components using an intuitive graphical interface, shown in Figure 3-12.    

 

Figure 3-12 GUI of CCE Mapper for I/O address mapping 

3.6 Alternative Approaches to Logic Generation 
One of the very important aspects of the logic generation approach is the structure of the generated 

control code. The control logic can be generated either in a structure or unstructured manner. Howev-

er, due to the requirement of the automotive industry FBs based structure code generation approach 

was only considered in this thesis.  

Three different control logic structures were initially considered, namely SFC based structured logic 

generation, Logic Engine based logic generation and Structured Text (ST) based logic generation. The 

difference between the approaches is mainly in the structure of the code to control the sequence of 

operations of the machine. SFC based logic generation approach, as its name indicates, is based on the 

conversion of the Process Logic STDs into platform-specific equivalent SFC code. The Logic Engine 

based approach is based on conversion of the STDs into a data structure (i.e., Control System Data 

Model). While, the ST based approach is based on the conversion of the STDs into Structured Text 

code.  

Due to a number of reasons, such as industrial acceptability and openness of the approach, the Logic 

Engine based approach was selected for the deployment of the control code in this research work. The 

strengths and limitation of the considered code generation approaches based on the author’s experi-

ence form initial prototyping of each approach are presented in Table 3-4. 
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Table 3-4 Strengths and limitations of the alternative code generation approaches 

Code Generation Approach Attributes 

ST Based Code 

! Complexity level of developing the code generation tool is low 

! The ST-based code generated for controlling sequence of operations can be 
used across a number of PLC platforms 

! Difficult to understand the generated control code 
! Fault diagnosability of the generated code is low 

! Requires less memory than SFC based approach  
! Fast PLC scan time compared to SFC based approach  

! Does not support the dynamic HMI screens generation (presented in Section 
3.9) 

! Limited support for remote monitoring 

SFC Based Code 

! Complexity level of developing the code generating tool is high 

! The generated SFCs for one PLC platform cannot be used for other platforms 
! Easy to understand the generated control code 

! Fault diagnosability of the generated code is high 
! Requires more memory than the other two approaches 

! Long PLC scan time compared to the other two approaches 
! Does not support the dynamic HMI screens generation (presented in Section 

3.9) 
! Limited support for remote monitoring 

Logic Engine Based code 

! Complexity level of developing the code generating tool is low 
! The same Logic Engine can be used across a number of PLC platforms 

! Easy to understand the generated control code except the data structure 
! Fault diagnosability of the generated code is high 

! Requires less memory than the other two approaches 
! Faster PLC scan time compared to the other two approaches 

! Supports the dynamic HMI screens generation (presented in Section 3.9) 
! Supports remote monitoring 

 

3.7 Proposed Control Software Architecture 

A typical PLC control software architecture is shown in Figure 3-13. The control software can be cat-

egorised into machine-specific and machine non-specific sections. The machine-specific part of the 

program refers to the control logic that is unique to each machine. This includes the application-

specific sequence of operations, logic for driving machine mechanisms (such as clamp), interlocks 

and fault diagnostic. Whereas, the machine non-specific part of the program refers to the section of 

control logic that are generically required to run a machine.  
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Figure 3-13 Basic parts of a typical PLC program, adopted and modified from [6] 

The focus of this research is to deploy a complete program i.e. both machine specific and non-specific 

parts of the program. However, only the machine-specific part of the program is automatically gener-

ated from the control logic defined in the VE tools. Most of the machine non-specific part is pre-

defined in a template.  

In order to facilitate the implementation of the control software generation approach, a new control 

software architecture is designed in this research. The basic concept behind this software architecture 

is to generate the control programs using standard library components, which are driven by the control 

logic defined in the manufacturing process simulation tools. The overall architecture of control 

software is shown in Figure 3-14.  

 

Figure 3-14 Overall control software architecture 
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It is worth noting that the designed software architecture is generic in nature and can be used for any 

control platform (e.g., from Siemens, Schneider or PLCopen). The architecture supports the automatic 

generation of both PLC software and the HMI screens, with consideration given to end-user software 

structure standards.  

The working detail of the PLC software and the HMI software are presented in the following two 

subsections.   

3.7.1 PLC Software Architecture 

As shown in in Figure 3-14, the PLC software architecture is composed of three system components: 

Control System Data Model, Runtime Components, and Logic Engine. The description of these 

system components is given below: 

3.7.1.1 Control System Data Model 

It is a generic data structure defined to effectively store and organise the control information to run a 

system. It consists of different types of information, such as a system structure, operating modes, 

process control behaviour, component control behaviour, interlocks, fault messages. The Control 

System Data Model is generated on the basis of the control information defined within the VE 

simulation model of a machine cell.  

The Control System Data Models can be further classified into the following three sub-models: 

System Data Model  

The system data model contains all the necessary control information to run a machine according to a 

specific sequence of operations. This control model is generated by automatically translating the 

control logic of the control components (i.e. actuator components, sensor components, virtual 

components and process logic) that compose a system. During the runtime, this data model is used as 

the interface between the Logic Engine and the Runtime Components. 

The system data model defines the entire system’s logical architecture (i.e. system, components, 

states, transitions, interlocks and the sequence checks in a system), as shown in Figure 3-15.  A 

system consists of a number of components. A component can have two or more states. A state can 

have one or more transitions. A transition can have one or more sequence conditions. In addition, a 

state can have interlock conditions.  

HMI Data Model 

The HMI data model contains the data necessary to realise the automatic generation of the template-

based HMI screens for manual mode operation and online control logic monitoring. This data model 

consist of two sub-models i.e. a data model for manual mode control and a data model for generation 

of process/control logic monitoring screens. The manual mode control model is used to generate the 
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manual control rows (pushbuttons) for manually driving movements of actuators. It is generated from 

the state behaviour of the actuator components only. While, the data model for process monitoring is 

used to generate the live view of the STDs for the Process Logic and Actuator Components on the 

HMI screen. It is generated from the state behaviour of the Actuator and Process Logic components. 

The architecture of the HMI Data Model is shown Figure 3-16.  

 
Figure 3-15 Architecture of System Data Model 

 

 

Figure 3-16 Architecture of HMI data model: (a) depicts the data model for manual mode control and (b) depicts 

the data model for process monitoring   
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Fault Management Model 

Fault management models are used to store fault messages, which are displayed on the HMI screen. 

Component level fault messages are extracted from the CCE components while system level fault 

messages are defined manually. Faults are triggered by RCs, which are then communicated to the cor-

responding Control Models and then written into the Fault message models by the Logic Engine. 

3.7.1.2 Logic Engine 

Logic Engine is a principal component of the control software. It is a pre-validated and ready to use 

Function Block, which handles machine operations in a controlled manner. The entire source code of 

Logic Engine is generic and remains same for any system configuration.  A simplified flow diagram 

of Logic Engine is shown in Figure 3-17. 

Logic Engine is composed of a four functional modules, namely Operating Mode Handler, Compo-

nent Orchestrator and Fault Manager. A brief description of each module is given below.  

Operating Mode Handler 

Operating Mode Handler is responsible for enabling and disabling the buttons on the HMI according 

to the selected mode of operation and state of the machine. For instance, it disables the automatic cy-

cle start if all of the machine components are not at their initial position.   

Component Orchestrator 

Component Orchestrator continually scans Control System Data Model to evaluate the current work-

ing state and respective transition conditions of all components of the machine. If the logic conditions 

of any component are satisfied, a command for next working state is then generated according to the 

selected operating mode and cycle type.  

In automatic mode, the next working state of a component is activated when the respective sequence 

and interlock conditions are satisfied. Whereas in manual mode, the next working state is defined by 

the command received from the HMI.  

Fault Manager 

Fault Manager periodically scans the fault status of all components. In case of any fault, all machine 

operations are inhibited and respective fault messages are triggered and saved in the Fault Manage-

ment Model, which are then communicated to the HMI.  



Chapter 3   Methodology and Implementation 

69 
 

 

Figure 3-17 Flow diagram of Logic Engine 

3.7.1.3 Runtime Components 

Runtime Components (RCs) are pre-validated and ready to use resource-specific function blocks. An 

RC represents a machine actuator or sensor component in a PLC runtime environment. It is embedded 

with the control behaviour of a family of actuators and sensors with integrated diagnostics. As the 

RCs are generic and pre-validated, they are developed once and stored in a library for future reuse.  

All events and faults of RCs are communicated to the calling instance i.e. the Logic Engine. RCs are 

directly deployable in a PLC program and are interfaced via direct parameterisation of the Control 

System Data Model as shown in Figure 3-18. The direct parameterisation refers to the interfacing 

through the input/output connection lines on the interface of the function block, which increase visi-
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bility of the input/output variables. CCE Mapper carries out this automatic interfacing during program 

generation process.  

 
Figure 3-18 Structure of Runtime Component: (a) Interface (b) Internal structure 

3.7.1.4 Inputs/Outputs 

A number of inputs/outputs are provided on the RC interface. Some of the most common in-

puts/outputs are described below: 

• State Command (cmd) is an integer input from the Logic Engine. It dictates the component 

to move to a specific state.  

• Operation Mode (OpMode) is an integer input that controls the machine operating mode 

such as automatic mode and manual mode. 

• State Message (Status) is an integer output that works as a feedback signal to the Control 

System Data Model. It updates the current working state of the Component in the Control 

System Data Model.  

• Fault is the output of the integrated fault diagnostic part of the RC. This output is communi-

cated to the Fault Management Model for a further action as required.  

• Timer is an input (supervisory time) and is used to monitor the time required for an action to 

complete. 

• Process Digital Input (PDI) is an input directly connected to the hardware, e.g. limit switch.  

• Process Digital Output (PDO) is an output directly connected to the hardware e.g. electric 

motor. 

• Fault Reset is an input to reset the active RC fault 

3.7.1.5 Step Sequence 

Step sequence resembles the STD of a corresponding component. The purpose of the step sequence is 

to a) compute the current working state of a component and b) to drive the component to next work-

ing state as required. The step sequence is driven by the PDIs, PDOs and ‘State Command’. The 

output of the step sequence is communicated to the ‘State Message’ and PDO.  

3.7.1.6 Fault Diagnostics 

Several types of faults can be detected by RCs. A brief description of some of the most common fault 
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diagnostics is given below: 

Pair Checking is used to make sure that the limit sensors of an actuator are working correctly. Exam-

ple code for pair checking is shown in Figure 3-19. In this example, if the PDIHomePosition and 

PDIWorkPosition are true at the same time for more than 500ms, a fault will be triggered. The time 

delay is required to distinguish between a real fault and a switch bounce.  

A #PDIHomePosition
A #PDIWorkPosition
= #tmpStartLimitSwitchFault
JCN LT03
L T#500MS
T #tmpTIme
LT03: NOP 0

 
Figure 3-19 Example code for pair checking 

Position Monitoring monitors the end positions (static position) of the actuators. A fault is triggered 

if an actuator leaves its position unexpectedly. Example code for position monitoring is shown in Fig-

ure 3-20. The code shown is for two-positions actuator, and monitors the home and work position. A 

fault is triggered when the actuator leaves its position in the absence of the movement command.  

A #HomePositionReached
AN #PDOWorkPosition
AN #PDIHomePosition
= #tmpHomePositionLost

A #WorkPositionReached
AN #PDOHomePosition
AN #PDIWorkPosition
= #tmpWorkPositionLost  

Figure 3-20 Example code for position monitoring 

Time-Out Fault is a supervisory timer. It is a classic method of detecting machine faults. The timer 

starts as soon as an actuator initiates a movement. A fault is raised if the actuator does not reach the 

destination position within the specified supervisory time. Example code for time-out fault supervi-

sion is shown in  

Figure 3-21. 

 

Figure 3-21 Example code for time-out fault supervision 

A( 
A   #tmpToHomePosition 
O  #tmpToWorkPosition 
)   
=  #tmpStartMonitoringTime 
JCN XYZ 
L  #MonitoringTime 
T  #tmpTime 
XYZ: NOP 0 
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3.7.2 HMI Software Architecture 

As shown in Figure 3-14, the HMI system architecture is composed of three system components: 

Screen Generator, Alarm Handler and HMI Data Model. A brief description of these system compo-

nents is given below: 

• Data Tags 

In HMI application, data tags represent internal and external variables. Data tags work as a com-

munication link for the exchange of data between HMI and with other devices, such as PLC, 

required for the HMI operations. For automatic HMI generation, the external data tags are derived 

from the Control System Data Model to enable exchange of data between PLC and HMI during 

runtime. 

• Screen Templates 

Screen templates are pre-developed generic HMI screens. These templates are automatically con-

figured from the Control System Data Model during runtime.   

• Screen Generator  

Screen Generator generates screens to support control operations, alarms screens and machine 

monitoring. It is composed of a number of functions to analyse HMI Data Model in order to ana-

lyse the structure of a machine configuration and the current status of machine components. When 

a screen is requested from HMI device, Screen Generator populates the corresponding pre-

designed template of screen and displays it on the HMI device.   

• Alarm Handler 

Alarm Handler is responsible for reporting faults and warning messages to the operator. It dis-

plays the active fault messages on the screen according to their priority order. It also provides a 

function to access the fault history from the PLC software and displays it on the HMI. 

3.8 Generation of PLC Control Code 

This section presents a novel approach to generate complete and directly deployable control software 

from the control information derived from the CCE tools. To generate the control code, the software 

architecture was decomposed into the following three types of program elements: 

• Reusable static elements:  refers to the RCs, Logic Engine and the data structure of the Con-

trol System Data Model and a template of the structure of the control software, which are 

used. These elements are developed during pre-engineering phase and stored in the CCE 

Mapper library. During the code generation process, these elements are instantiated from the 

library and used directly without any change.  

• Dynamic elements:  refers to the logic repository and programs for actuator and sensor com-

ponents. The logic repository is dynamically populated with runtime control models created 



Chapter 3   Methodology and Implementation 

73 
 

by translating the control behaviour of CCE components. For certain PLC platforms, some 

platform-specific elements might also need to be generated dynamically. For instance, in case 

of Siemens STEP 7, a data block for each RC has to be generated dynamically.  

• PLC platform-specific elements: refers to PLC platform-specific information required to 

implement the source code of executable control software. These typically include header in-

formation for the overall control software and other blocks. For a specific platform, this 

information is identical for any system configuration. This information is defined once and 

stored in the reusable templates library of CCE Mapper. 

The workflow for code generation is depicted in Figure 3-22. The code generation process was divid-

ed into pre-engineering phase and system engineering phases. The reusable elements and the platform 

specific elements are developed during the pre-engineering phase. These program elements are devel-

oped once and stored in a library. These library elements are reused for any number of systems. 

During the system engineering phase, dynamic elements are generated automatically from the simula-

tion models of manufacturing cells and are combined with reusable and common system data to 

generate the complete control software. It can be seen from the Figure 3-22 that the only manual pro-

cess required during the system engineering phase is the component mapping.  

 
Figure 3-22 Workflow of the PLC code generation 

The pre-engineering and system engineering tasks are explained in the following subsections.  

3.8.1 Pre-Engineering Phase 

The pre-engineering phase involves development of component library and PLC platform-specific el-

ements. A brief description of these is given blow.  

Pre-Engineering Phase 

Virtual 
Components 

Runtime 
Components 

Control 
Information 

  I/O   
Variables 

Create Runtime Data Models 

Extract Resource Components 

Component Mapping 

Parsing Mapping info to Create Main 
Function 

Control Code  

Combine with Common Data 

Generate Code 

CCE Mapper 

System Engineering Phase 

PLC-Specific 
Common Data 

Virtual System 
Modelling 

Represent manual work 



Chapter 3   Methodology and Implementation 

74 
 

3.8.1.1 Component Library Development 

The component library development task involves development of virtual machine components in 

CCE and the corresponding resource specific RCs in vendor-specific PLC programming tools. These 

components are validated and stored in their respective libraries.  

3.8.1.2 Data Types Definition for Control System Data Model  

The structure of the Control System Data Model cannot be described using the IEC61131-3 standard’s 

elementary data types. This led to the definition of user Defined Data Types (UDTs). Six data types 

were defined to describe the structure of the elements of the Control System Data Model. A brief de-

scription of these data types is given in Table 3-5. 

Table 3-5 Derived data types for component-based control logic 

Type Name Description Constituent Elements 

Component 
STRUCT for describing control-related info of 
a component. 

Name, Type, ID, Working 
State ID, index, etc. 

State STRUCT for the state of STD Name, Type, ID, index, etc. 

Transition STRUCT for the transition of a state 
ID, destination state ID, index, 
etc. 

Condition STRUCT for the condition of a transition 
ID, operator, related state ID, 
etc. 

Error STRUCT for describing error messages ID, error description 

ActComponent 

STRUCT for data models used to generate a 

row on HMI panel for controlling an actuator 
component 

ComponentID, component 
name, position1, position2 

3.8.1.3 Development of PLC Platform-Specific Elements  

For the development of the platform-specific information, a reverse engineering process was used, as 

illustrated in Figure 3-23. For this purpose, a template of the PLC project is created in the PLC pro-

gramming tool and the source code is exported. The information contained in the source code can be 

classified into reusable common information and project-specific information. The reusable common 

information is then decomposed into different elements and saved in the database as structured infor-

mation. This reusable common information is used during the control software deployment phase to 

generate the control systems software.  
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Figure 3-23 Reverse engineering process of direct deployment 

The reusable common information typically includes: 

Project header information: Most PLC programs require header information. However, some plat-

forms, such as STEP 7, have no uniform project header information. This is because STEP 7 project is 

exported into multiple independent text files, instead of one single project file.  

Software blocks header information:  Software blocks refer to the objects that compose a control 

software project. According to the structure specification in IEC61131-3, software blocks include data 

types, program organisation units (POU), variable tables, instances and configurations. However, 

IEC61131-3 does not specify the data structure of these blocks and as a consequence their implemen-

tation is specific to each PLC platform.  

3.8.2 System Engineering Phase 

3.8.2.1 Generation of System Data Model 

The workflow of the System Data Model generation is outlined in Figure 3-24. The System Data 

Model was generated by translating and describing the control behaviour of control components as in-

stances of the predefined derived data types, as discussed in section 3.8.1.2.  

In the translation process, each control component was analysed and translated in order to populate 

the corresponding control model described using the predefined derived “Component” data type. The 

states of each component were then translated to populate the corresponding control models described 

by the derived data type “State”. All the transitions and constituent condition groups were translated 

into the corresponding control models. Finally, the interlock conditions of dynamic states were trans-

lated into control models (similarly to transitional conditions).  
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The data model for a component and its interfacing is discussed below.  

A control model component is represented as: 

 

 

 

 

Figure 3-24  Workflow of system data model generation 

Of the attributes of the component, the following are static attributes: 

• ID: the unique ID of the component. 

• name: the name of a component. 

• type: the type of a component, which can be “actuator”, “sensor” or “process”. 

• sindex: the index number of the first component’s state. The states of all the components in 

a system are stored in a structured collection of data models. Each state model has an index 

number for data access and all the states of the same component are saved in order. There-

fore, the index number of the first state can be used as data access reference.  

• stcount: the number of states a component has. 

 The attributes “wsid” and “scid” are defined as variables. The attribute “wsid” refers to the current 

working state ID. It is used to collect the current working state information of the corresponding 
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runtime actuator component. The “scid” refers to the ID of the state command and is used to send the 

command to the runtime component. The data models of states, transitions and conditions are moni-

tored by the Logic Engine during the runtime. According to the current working state of each 

component, the relevant Data Model is updated by the Logic Engine. Real-time state commands are 

sent to the corresponding Runtime Components in order to drive the physical components.  

The attributes “wsid” and “scid” are updated with real-time data at runtime. Therefore, they are set to 

their initial values during the control model generation process, whose main purpose is to set the val-

ues of static attributes for all control models by encoding the virtual control models’ corresponding 

items.  

3.8.2.2 Generation of HMI Data Model 

As discussed in section 3.7.1.1, HMI Data model is composed of the data models required for manual 

control for the generation of process monitoring screens. The process of generating data model for 

process monitoring is same as of System Data Model Generation. The workflow of generating manual 

mode control models for an actuator component is illustrated in Figure 3-25. As the manual control is 

only required for actuator components, only the state behaviour of actuator components are analysed. 

Based on the state behaviour of each component, described as State Transition Diagram (STD), the 

static and dynamic states are identified and the position pairs are created.  

 

Figure 3-25 Workflow of manual mode control model generation 
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The position pairs created were used for the generation of manual rows for the HMI (see section 3.9) 

that controls the movement between two positions. The number of position pairs depends on the num-

ber of the dynamic states. The relation between the number of position pairs and the number of 

dynamic states is given by: 

Npp = Nds – 1 (if Nds >1) 

Npp = Nds  (if Nds =1)   

Where,  

Npp is the number of position pairs 

 Nds is the number of dynamic states 

If the number of dynamic states is lower or equal to two, only one row (two pushbuttons) will be gen-

erated.  Otherwise, Nds-1 rows are generated. 

3.8.2.3 Generation of Logic Repository  

The Logic Repository is the hierarchical organisation of control models. The control models are au-

tomatically converted into structured data sets using arrays. The size of each array is determined by 

the number of the runtime control models contained in a system. For example, the array of runtime 

control model “Component” for a system composed of ten components can be declared in STEP 7 as:   

lsaComponent: ARRAY[0..9] of  “Component” 

Where, ‘lsaComponent‘ is the name of the array and “Component” is the name of the derived data 

type for describing actuator components. 

In order to support the functionalities for both the automatic and manual control modes, the logic re-

pository consists of six arrays of control models described in the derived data types (section 3.8.1.2). 

The declared arrays are then populated with their respective runtime control data models, which are 

generated according to the process described in the section 3.5.3.  

3.8.2.1 Component Mapping  

Component mapping refers to a) the mapping of RCs with respective actuator and sensor components 

and b) the interfacing of each actuator and sensor component of a system to their corresponding phys-

ical I/O addresses. Component mapping is performed manually during the program generation 

process. Automation of the component mapping is possible.  However, due to the limited access to the 

CCE database during this research the automation of component mapping has not been investigated in 

this research. This work is the subject of future R&D project such as the EPSRC Knowledge Driven 

Configurable Manufacturing (KDCM) programme.  
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Figure 3-26 GUI for component mapping and I/O allocation 

To carry out component mapping in this research, a graphical user interface (GUI) software module 

was implemented to enable intuitive and effective component mapping. The GUI screen is shown in 

Figure 3-26. For each CCE component a corresponding RC is selected from the list of available RCs. 

Once a CCE component and RC is paired, the graphical representation of the RC appears on the 

screen with I/O pins. I/O address is then allocated to each I/O pin.  

The author was heavily involved in the requirement specification and design phase of this software 

module. Details of the software implementation carried out by other member of the research group 

can be found in [128]. 

3.8.2.2 Generation of POUs 

In IEC 61131-3, blocks from which programs and projects are built are known as POUs (Program Or-

ganisation Units). There are three types of POUs in a PLC project: Function, Function Block and 

Program. The number of the POUs to be generated in a project depends on the PLC platform-specific 

software structure.  

RCs and Logic Engine appear as FBs in the control software. Therefore, one POU is created for each 

instance of the RC and the Logic Engine. The number of instances of the RCs depends on the number 

of Sensors and Actuators components.  

In this thesis the POUs generation refers to the generation of the control logic for Logic Engine and 

RCs (for actuator and sensor components). As mentioned in section 3.7.1, all these components are 

pre-defined and stored in a library. The Logic Engine only appears once in a program while the num-

ber of instances of RCs of sensor and actuators depends on the number of sensor and actuator 

components in a system. For each instance of these components in a program, a POU is required. 

CCE Components RCs 
I/O Allocation 
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POUs for Logic Engine and RCs are created by calling the instances of these pre-defined components 

from the RC library.  

As mentioned before, the logic engine appears in a program as a function block without any I/O map-

ping parameters. This is because the communication of the Logic Engine with other program elements 

is complemented via internal indirect parameterisation. Thus the POU for the Logic Engine does not 

require the I/O interfacing. On the other hand, RCs for sensor and actuators communicates to other 

system components via direct parameterisation and thus require I/O mapping for POU generation. The 

I/O mapping of physical addresses of these sensors and actuators is carried out manually during the 

aforementioned component mapping phase. Other communication parameters are mapped automati-

cally to corresponding runtime control models by a mapping function.  

 

Figure 3-27 Process of generating POUs 

The workflow of POUs generation is outlined in Figure 3-27. Firstly, the I/O mapping data and the 

RC mapping data for all the actuator components and sensor components are analysed and processed. 

According the identification number (CID) of each component included in the mapping data, the cor-

responding runtime control model is identified and then the I/O parameters, which should be 

connected to corresponding related attributes of its control runtime model, are mapped automatically. 

For actuator components, the respective I/O parameters for reporting working state (swid), sending 

state command (scid), resetting (reset) and reporting error (alarm) are mapped. For sensor compo-

nents, only one parameter for reporting status needs to be mapped. Lastly, the Logic Engine function 
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is called automatically.  

In addition to the declaration code specific to control platforms, some additional blocks may need to 

be created for calling RCs. For example, in Step 7, an instance data block needs to be created when a 

RC is called. To address this, during the software generation, functions are provided to automatically 

generate these platform-specific blocks. 

3.8.2.3 Generation of the Complete Source Code 

The last step in the PLC program generation is the dynamic generation of the complete source code of 

the control software. This process is shown in Figure 3-28. The complete source code generation is 

the combination of the source code of the I/O variable table, User defined Data Types (UDTs), Logic 

Depository and POUs. This process involves the population of the platform-specific template of the 

PLC template project with source code for these elements. The format and the number of source code 

files depend on the PLC platform. For example, for STEP 7 a number of text files are generated, 

while for Unity Pro only one XML file of source code is generated.   

 

Figure 3-28 Complete source code generation 

3.9 Generation of HMI Screens 

In this research, two methods were initially evaluated for screen generation, namely static and 

dynamic approaches. The static approach refers to the automatic generation of source code for the 

HMI application, whereas the dynamic approach refers to the automatic population of generic screen 

templates from the PLC code at runtime. Prototype screens for both static and dynamic approach were 

developed using SIMATIC WInCC to evaluate the strengths and weaknesses of both approaches. Due 

to numerous benefits of dynamic approach over static approach, the dynamic template-based 
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approach was favoured. A comparison of the two methods is given in Table 3-6.   

Table 3-6 Comparison of static and dynamic approach for HMI screen generation 

Characteristics Static Approach Dynamic Approach 

Openness  ✗ ✔ 

Data Transfer ✗ ✔ 

Program Generation Effort ✗ ✔ 

Complexity ✗ ✔ 

PLC Scan Time ✔ ✗ 

PLC Program Memory ✔ ✗ 

✔ represents advantage over the alternative method 

 

The main objective of HMI screen generation is to automate the process of generating machine-

specific screens. The standard screens are pre-designed and embedded in the HMI software while the 

machine specific screens are generated with the help of system components within the HMI software 

from the information derived from the PLC software during runtime. Thus, the HMI software remains 

consistent for every machine cell.  

3.9.1 Manual Mode Screen Generation 

The HMI screens for the manual mode control are system specific, and thus unique for each manufac-

turing cell. Typically, rows of two pushbuttons are provided on the manual mode screens for each 

actuator. Using these pushbuttons the operator can control a machine by driving the actuators inde-

pendently.  

For the manual screen generation a template screen, consisting of screen objects and tags, was devel-

oped as shown in Figure 3-29. Based on the HMI screens specifications of Ford Motor Company, the 

template was composed of five pushbutton rows. The number of instances of the template depends on 

the number of position pairs in the HMI Data Model. As the template consists of five rows of 

pushbuttons, the unutilised rows are hidden from the user. To map the tags of the template with the 

HMI Data Model a ‘mapper function’ has been developed, which automatically maps the tags in the 

template with the corresponding position pairs in the HMI Data Model.  
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Figure 3-29 Manual mode screen template 

The workflow of the mapper function is shown in Figure 3-30. The offset calculation for indexing 

variables during mapping is critical during the screen generation. The mapper function is divided into 

three sub-functions. One function is to set the index variables to default values. The default values are 

the addresses of the data array elements of first five actuators in the HMI Data Model. The second 

function adds a offset to each of the indexing tags to show the next five actuators. The offset is de-

fined by the length of the UDT used for the Data Model and the number of manual rows that are used 

on one screen. The third function decrements the tag values by a particular offset. The first function is 

called whenever the manual screens are requested from the HMI. The other two functions are used for 

navigation of manual screens if more than one screen are required for a system.  

3.9.1 Control Logic Monitoring Screen Generation 

The control logic monitoring screens provide functionality to show the live view of the control logic 

(STDs), which is defined using the CCE tools. The control logic monitoring screens are categorised 

into Process Logic monitoring and Actuator monitoring screens.  
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Figure 3-30 Workflow of mapper function for manual mode screens navigation 

3.9.1.1 Process Logic Monitoring Screens Generation 

As aforementioned in section 3.5.5, Process Logic is used to define the sequence of operations of a 

machine. The live view of the Process Logic STDs gives technicians an overview of the machine 

sequence. The Process Logic STDs are translated into a data model and are stored in the HMI Data 

Model in the PLC program. To generate Process Logic monitoring screens, a dynamic template-based 

approach has been used. To simulate the template, a mapping function has been developed to map the 

corresponding runtime data model on the PLC with the objects in the template.   
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Figure 3-31 Template of Process Logic monitoring screen 

Figure 3-31 shows an example template created for the online moitoring of the STDs. The colour of 

the active state changes from grey to green. The template consists of five states and five transitions. 

Since, the number of states in process logic varies, the visibility of the objects is modified 

dynamically and the tags for the text fields are automatically indexed. On the right-hand side of the 

template the two navigation buttons are provided to navigate screen up and down in case if process 

logic has more than five states.  

3.9.1.2 Actuator Monitoring Screens Generation 

Actuator monitoring screens shows the runtime visualisation of the STDs of actuator components and 

their corresponding RCs. The actuator monitoring screen is generated with the help of visualisation 

objects, object tags and a mapper function. The mapper function dynamically maps the object tags of 

the template screen with the corresponding runtime data model within the PLC program.  

The screen template used for actuator monitoring is shown in Figure 3-32. The STD in the template 

consists of five states and three transitions. Since, the number of states of an actuator can vary, the 

visibility of objects is dynamically modified and the tags are multiplexed. At the bottom of the 

template navigation buttons are provided to navigate through the STDs if an STD consist of more than 

5 states. In the STD, the active state is highlighted in a green colour.  
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Figure 3-32 Example of actuator monitoring screen template 

To show the online status of the RCs, the instance data of the RC (which consists of the current status 

of inputs and outputs) is mapped with the graphical representation objects of the RC in the screen 

template. 

3.9.2 Alarm Handling  

As stated in section 3.7, the faults and warning messages are stored in a Fault Management Data 

Model. When a fault or warning is triggered, Logic Engine locates the corresponding message in the 

Data Model and copies it into the fault accumulator.  If there is more than one fault message only the 

high priority fault is processed. The fault accumulator stores the active fault as well as the fault 

history.  

A schematic diagram of the fault handling is shown in Figure 3-33. To display fault messages, a text 

banner is provided on the ‘home screen’ template. The Alarm Handler continually scans the ‘fault 

accumulator’ within the PLC program and displays the active fault on the Home screen. The Alarm 

Handler also provides a function to acknowledge active fault to resume machine operation. Alarm 

Handler also provides function to show the fault history. The alarm history screen displays the ten 

most recent faults.  
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Figure 3-33 Schematic diagram of fault handling 

3.10 Summary 

This chapter has presented a framework and control software architecture that enabled the automatic 

generation of control software from the control behaviour defined in 3D-based manufacturing process 

planning tools. The functional and structural industrial requirements of the control software were 

identified in detail in order to propose a realistic approach. The method of defining control behaviour 

within the Virtual Engineering Environment (i.e. CCE tool) has been redesigned to enhance the con-

trol information and hence enable the generation of a complete control code. A novel control software 

architecture has been designed that enables the direct deployment of both the PLC control code and 

HMI screens. This new architecture is vendor-independent and can be adopted for any control plat-

form.  

To design the methodology for the implementation, the proposed PLC software architecture was bro-

ken down into reusable, dynamic and platform-specific elements. The reusable elements consist of 

RCs and the data structure of the Control System Data Model. The reusable elements are manually 

developed and stored in a library. To develop the platform-specific elements, a reverse engineering 

approach has been used. This involved the writing of template software in a PLC programming tool 

and then analysing the data structure of the source code. The dynamic elements were developed from 

the control logic defined within the CCE tools. The process of generating complete and executable 

source code from these software elements was described. 

The methodology of generating machine-specific HMI screens was also presented in this chapter. 

Two methods (i.e. static and dynamic approaches) for the implementation of the HMI screens were 

initially considered. However, dynamic approach was selected for the implementation due to its in-

herent benefits. The dynamic approach is essentially a template-based approach that uses a mapper 
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function to dynamically populate the screens from the HMI Data Model at runtime. The generated in-

terface consists of manual mode control screens, process monitoring screens and alarm screens.  
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4 Case Study and Evaluation 

4.1 Introduction 

The purpose of this chapter is to demonstrate the feasibility, features and performance of the proposed 

VE based automatic code generation approach based on the use-cases to evaluate the proposed ap-

proach from various perspectives, such as application development time, reconfiguration time and 

runtime performance. The control code was generated for three PLC platforms (i.e., Siemens SIMAT-

IC STEP7, Unity Pro and PLCopen) using the code generation approach presented in Chapter 3. To 

test the generated control code three different test beds were used, namely Festo test rig, Automation 

System Demonstrator (ASD) machine and MTC test loop (based at Manufacturing Technology Cen-

tre, UK). Each of the application use-case required a physical automation system, virtual modelling of 

the system in the CCE tool, and development of RCs. A brief description of the test beds is given be-

low.  

The Festo test rig, shown in Figure 4-1, used for the use case is a modular automation system de-

signed for educational training. This small-scale rig was used for the initial development as a proof-

of-concept to ensure the validity of the proposed concept with a minimum of safety issues as com-

pared to a full-scale machine. 

 
Figure 4-1 Festo test rig 

The ASD machine is a multi-station machining and assembly automation system, designed and build 

by Ford Motor Company in collaboration with its OEMs and control vendors. The machine uses au-

tomation equipment from various automation suppliers and is based on traditional master-slave 

control system architecture. The machine represents a small-scale model of engine assembly line con-

sisting of 12 automatic workstations. The engine blocks are placed on a pallet by a robot and are 
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Buffer Station Processing Station Handling Station 
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transported on a conveyor to workstations to perform various manufacturing processes such as profil-

ing, assembly of engine block and head, nut running, air wash and inspection. Each workstation has 

its own mobile plug-and-play type control unit. 

The MTC test loop is built by ThyssenKrupp Krause System Engineering GmbH, which features a 

robotic pick and place station, an IMS+ lift-rotate station and a manual assembly station. For code 

generation only IMS+ station was targeted. This type of station has been used in a number of automo-

tive engine assembly lines by various automotive industries, including Ford Motor Company.  

The test beds used cover a wide range of automation equipment and control system architecture used 

in industry and thus gave an understanding of the strengths and limitations of the proposed control 

system engineering approach in various scenarios. The features of each test bed from control perspec-

tive are highlighted in Table 4-1. 

Table 4-1 Features of test beds used for use-cases 

Test Bed Control Hardware 
Vendors 

PLCs and HMIs Other Control Hardware 

Festo Test Rig 

! Siemens 
! Schneider Electric 

! SIMATIC ET 200s PLC 
! SIMATIC MP277 8” 

Touch HMI 
! Modicon TSX P57 PLC 
! Magelis Advanced XBT 

HMI 

! Pneumatic actuators 
! Electrical actuators 
! Proximity sensors 
! Safety devices 

 

ASD Machine 

! Siemens 
! Schneider Electric 
! ABB 
! Bosch Rexroth 
! Allen-Bradley 

! SIMATIC S300 PLC 
! SIMATIC MP277 8” 

Touch HMI 
! Modicon TSX P57 PLCs 
! Magelis iPC 
! IPC System 200 
! BTV20 HMI 

! Pneumatic actuators 
! Hydraulic actuators 
! Electrical actuators 
! Servo drives 
! Robot 
! Vision system  
! Barcode scanner 
! Proximity sensors 
! Proximity, temperature, pressure, 

current and vibration sensors 
! Safety devices 

IMS+ Test Loop 

! Siemens 
! ABB 

! SIMATIC ET 200s Pro 
PLC 

! SIMATIC MP277 10” 
Touch HMI 

! SIMATIC MP277 8” 
Touch HMI 

! Pneumatic actuators 
! Electrical actuators 
! Servo drives 
! Robot  
! Proximity sensors, pressure and 

current sensors 
! Safety devices 

 

In order to enable a one to one comparison of the automatic control code generation method with the 

traditional manual programming practice, as required for this thesis, the Festo test rig was selected. 
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For comparison of the generated programs with the state of the art programming practice, the test rig 

utilised was programmed to the Global Sigma programming structure specified and used by the Ford 

Motor Company. Further to this, the reconfigurability of both programming approaches was assessed 

by changing the physical configuration of the Festo test rig stations.  

4.2 Case Study 

The Festo test rig used for the case study is shown in Figure 4-1. This type of test rig is used by Ford 

Motor Company to test new control systems and to train their staff. The rig provides a realistic auto-

mation problem and thus effective testing and evaluation of the runtime system may be achieved. 
 

The test rig is composed of four stations, i.e. Distribution Station, Buffer Station, Processing Station 

and Handling Station. Each station is composed of various kinds of components. A taxonomy of the 

components of the test rig is given in Figure 4-2. A complete list of components of each station is giv-

en in Table 4-2.  

 

Figure 4-2 A taxonomy of components of Festo test rig 

The basic operation of the test rig is to convey a workpiece from one end of the machine to the other 

while performing a number of operations such as gripping, transferring, indexing, clamping, drilling 

and gauging. An important characteristic of the system is that several operations have to occur simul-

taneously on various workpieces passing through the system.  

 

Components 

Actuators Sensors 

Electrical Pneumatic 

2-Position 5-State 
Clamp 

 2 State Digital Sensors  

Linear Solenoid DC Motor Stepper Motor Vacuum/Blow Linear Rotary 

Checker 

2-Position 5-State 

Drill Slide 
Unloader 

3-State  
Indexing 
Table 

2-Position 5-State 
Vacuum 
Gripper 

2-Position 5-State 

2-Position 5-State 
Swivel Arm 

3 State 
Conveyor 

3-Position 7-State 
Pusher 
Gantry-Y 
Gripper 

Gantry-Y 

Separator 

Separator 



Chapter 4   Case Study and Evaluation 

92 
 

Table 4-2 List of sensors and actuators of the Festo test rig 

Stations Components 

Distribution 
Station 

Sensors/Actuators Type 
Digital 
Inputs 

Digital 
Outputs Positions/States 

Pusher Pneumatic actuator 2 1 2 
Part in Magazine Digital Sensor - - 2 
MagXfer Mechanical switch - - 2 
Swivel Cylinder Pneumatic actuator  2 2 2 
Vacuum Gripper Pneumatic actuator 1 2 2 

Buffer   
Station 

Separator  Pneumatic actuator 2 2 2 
Conveyor Electrical actuator  0 1 2 
Part at Start Proximity sensor - - 2 
Part at separator Proximity sensor - - 2 
Part at end Proximity sensor - - 2 

Processing 
Station 

Checker Electrical 2 1 2 
Drill slide Electrical  2 2 2 
Drill Machine Electrical 0 1 2 
Clamp  Electrical 2 1 2 
Unloader Electrical  2 1 2 
Indexing Table Electrical 0 1 2 
Part at Entry Proximity - - 2 
Part at Check Proximity  - - 2 
Part at drill Proximity - - 2 
Part at unload Proximity sensor - - 2 

Handling 
Station 

Gantry Z-Axis Pneumatic actuator 2 2 2 
Gantry Y-Axis  Pneumatic actuator 3 2 3 
Gripper Pneumatic actuator 2 2 2 
Part Not Black Reflective sensor - - 2 
Part Available Proximity sensor - - 2 

 

In this case study a Siemens SIMATIC S300 PLC with distributed I/O modules and a SIMATIC 

MP277 8” Touch Panel was chosen as the control hardware. For runtime communication, PROFINET 

was used to connect the devices. The software tools used were SIMATIC STEP7 V5.4 for PLC pro-

gramming and SIMATIC WinCC Flexible 2008 for HMI development.  

The test rig was programmed with both automatic control code generation method and traditional 

manual programming. Only the details of automatic control code generation method are presented 

here.  

As explained in detail in section 3.8, the automatic code generation process can be broken down into 

the pre-engineering phase and the system engineering phase. The pre-engineering phase is composed 

of RC development and control code template development. This phase is performed once and the da-
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ta generated and stored in the CCE Mapper library is application independent.  This data is reused 

during system engineering phase. The tasks conducted during the system engineering phase are spe-

cific to the targeted system. A brief description of the tasks performed during pre-engineering phase 

and system engineering phase to program the Festo test rig is given in the following sub-sections. 

4.2.1 Pre-Engineering Phase 

4.2.1.1 RC Library Development 

In the automatic code generation approach, each actuator and sensor component requires RC, which is 

a pre-validated resource specific generic FB. For sensors, the design of an RC depends on the number 

of states. While for actuators, it depends on the number of states and driving power (such as 

pneumatic or electrical) of actuator component. If the numbers of states and driving power are similar 

then the same RC can be used for mechanically dissimilar actuators.  For instance, in the Festo test 

rig, the component Pusher and the component Swivel Arm, which are both actuated by pneumatic 

power and have five states and two positions, use the same RC (id: LFB_HP_2P5S_2I2O). 

Similarly, because the test rig comprises only 2-state digital sensors, only one type of RC (LFB_SEN) 

was needed. For the actuator components, eight RCs were developed in total. Each RC was developed 

and tested individually in STEP 7 using SCL programming language. The source code of these RCs 

was exported and saved in the RC Library of the CCE Mapper tool. A list of the developed RCs and 

their corresponding sensor and actuator components is given in Table 4-3. 

Table 4-3 Runtime components for the Festo test rig 

RCs Comments Related Components 

LFB_SEN For all the digital 2-state sensors All the 15 sensor components 

LFB_HP_2P5S_2I2O For 2-position 5-state pneumatic actuators 
Eject Cylinder, Swivel Arm, Unloader, 
Gantry-Z, Gantry Clamp, Gantry Grip-
per and Separator 

LFB_SwiGripper_2P5S_1I2O For pneumatic grippers Pneumatic Gripper 

LFB_ED_2P5S_2I2O For 2-position 5-state electrical actuators Drill Slide 

LFB_PartChecker_2P3S_1I1O For 2-position 3-state electrical actuators Part Checker 

LFB_RotTable_3S_1I1O For indexing table Indexing Table 

LFB_ED_2P2S_0I1O For two state electrical actuators Drill Machine 

LFB_HP_3P7S_3I2O For 3-position 7-state pneumatic actuators Gantry-Y 

4.2.1.2 PLC Program Template Development 

The PLC program template serves two purposes: 1) it defines the structure of the software and 2) it is 

used for extraction of the platform-specific common information for the generation of the PLC soft-

ware. The program templates are developed once and then imported into the database of CCE Mapper 



Chapter 4   Case Study and Evaluation 

94 
 

to be reused for the code generation of any machine application on that PLC. 

SIMATIC STEP 7 programs are based on a proprietary data structure. Therefore, the common information tem-

plates were created using a reverse engineering approach. An example project was first created in STEP 7 and 

the source code of the parts of the project was then exported as text files. The source code within the text files 

was then analysed and the required S7-specific templates were created and stored in the CCE Mapper library. 

The created templates are listed in Table 4-4. 

Table 4-4 Components of STEP 7 templates 

Name Dynamic data Description 

UDT None User-derived Data Types for describing control models 

Instance Data Block Definition of variables A data block for an instance of a FB 

Shared Data Block Size of arrays, Main Body of arrays A shared data block for storing runtime control models 

Organisation Block Name, Main Body The organisation block of the project 

4.2.2 System Engineering Phase 

4.2.2.1 Virtual Modelling of the Festo Test Rig 

According to the proposed workflow, the test rig was first virtually prototyped and commissioned 

using the CCE tools. Conforming to the architecture of the component-based approach, each station of 

the rig was decomposed into separate components. The detail of the decomposition of the test rig is 

given in Table 4-2. The virtual model of the test rig was built by modelling and assembling these 

components in the CCE tool. The virtual prototype of the test rig is shown in Figure 4-3. 

 

Figure 4-3 Virtual prototype of the Festo test rig 
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For illustration, the virtual modelling of Distribution Station is described in the remainder of this 

section. As the focus of this thesis is the control logic generation, the virtual modelling is therefore 

mainly explained here from the control behaviour definition perspective.   

A. Process Description of Distribution Station 

In order to define the control logic for the Distribution Station, it is important to have a description of 

the station’s process. The Distribution Station consists of Magazine, Pusher, Swivel Arm, Vacuum 

Gripper and two proximity sensors. The Magazine stores parts and presents them to the Pusher. The 

Pusher delivers parts from the Magazine to the Swivel Arm pickup position. The Swivel Arm picks 

up a part and transfers it to the Conveyor of Buffer Station. One of the proximity sensors (Part in 

Magazine) indicates the presence of a part in the magazine, while the other proximity sensor 

(MagXfer) indicates the presence of a part for swivel arm pickup. The flowchart of process sequence 

is shown in Figure 4-4.  

 

Figure 4-4 Sequence of operations of Distribution Station 

B. Component Logic Definition 

The Distribution Station consists of three control components, i.e. three Actuator components and two 

Sensor components. The control behaviour of the Sensor components is described using a two-state 

STD.  The actuators (Pusher, Swivel Arm and Vacuum Gripper) have quite different mechanisms, but 

the control behaviour of these actuators is similar, i.e. all three actuators have two static states and two 

dynamic states. The control behaviour of these actuators was defined with a five-state STD. As an ex-
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ample, the virtual model and STD of the Pusher component is shown in Figure 4-5.  

 

Figure 4-5 Example of an actuator component – Pusher 

C. Process Logic Definition 

The operation of the Distribution Station was defined using Process Logic sequences, i.e. Process 

Pusher and Process Swivel. Process Pusher controlled the sequence of operations of the Pusher and 

Process Swivel controlled the movements of the Swivel Arm and the Vacuum Gripper. The Process 

Logic sequences also communicate with each other using ‘Release’ signals for to ensure safe 

operation.  

The STDs of the Process Logics, actuators and sensors for the Distribution Station are shown in 

Figure 4-6. The sequence checks are represented with the help of arrows.   

 
Figure 4-6 Definition of sequence of operations of the Distribution Station using Process Logic 
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D. Interlocking of Actuator Components 

The final step of the control behaviour definition was the interlocking of components states to other 

components to avoid mechanical clashes during operation. The interlocking of the components of the 

Distribution Station is illustrated in Figure 4-7. 

 

Figure 4-7 Interlock conditions for Distribution Station 

4.2.2.2 Control Code Generation 

The workflow and the dataflow of the control logic generation are shown in Figure 4-8. The only 

manual work required during the control code generation phase was mapping of components with 

RRs and mapping of the physical I/O addresses.  

To generate the control code for the test rig, the virtual model of the test rig (XML file) and I/O varia-

bles, RCs and platform-specific templates were imported into the CCE Mapper. For component and 

I/O mapping, the CCE Mapper displays all resource components (i.e. sensors and actuators) and RCs 

on the screen, as shown in Figure 4-9. For mapping sensor components only the I/O variables were al-

located to the RC interface. For actuator components mapping, each actuator component and its 

corresponding RC was selected and added to the system one by one. Once pairing of actuator compo-

nents and corresponding RCs has been completed then the I/O variable mapping is carried out then 

the physical I/O address mapping is carried out.  

After the mapping was completed, the code generation functions of the CCE Mapper were executed to 

generate the source code with the help of ‘Generate Code’ user interface button. The generated code 
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was exported as a source code file. For SIMATIC STEP 7, the source code was exported into multiple 

plain-text files. The information of exported files is outlined in Table 4-5. As shown in the table, dif-

ferent items are represented in different programming languages and saved in different data formats.  

This is one of the reasons why the source codes for Step 7 must be exported into multiple files. An-

other important reason is that these items must be compiled in a specific order as listed in the table. 

This is because of the dependency relationship between these items.  For example, the instance DBs 

must be compiled after the compilation of FBs since all the variables in an instance DB are dependent 

on the variables of the related FB. 

 
 

Figure 4-8 Workflow and dataflow of the control code generation process 
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Figure 4-9 GUI for component and I/O mapping of the CCE Mapper 

 

Table 4-5 Source codes export for Step 7 

File Name Contained items Languages File Format Order 
Symbol.asc I/O Variables N/A ASC 1 

UDT&SharedDB.awl UDTs, Shared DBs Statement List AWL 2 

FBs.scl All the FBs and FCs Structured Control Language SCL 3 

InstanceDB.awl All the instance DBs Statement List AWL 4 

OB1.awl Organisation Block Statement List AWL 5 

4.2.2.3 PLC Code Installation 

The first step of the PLC installation was to create a new project in STEP 7 and perform the necessary 

hardware configuration. The generated source code files were imported into the STEP 7 and compiled 

in the order shown in Table 4-5. By compiling in this order, the UDTs (User Data Types) were gener-

ated first, followed by the shared DB that contains instances of the UDTs.  Since the Logic Engine 

uses the data of the Shared DB, the FBs and FCs were generated after the generation of the shared 

DB. The Organisation Block (OB1) must be generated lastly as it contains the instances of the Func-

tion Bocks and the data of the shared DB. The project was compiled and downloaded to the PLC.  

4.2.2.4 HMI Screens Generation 

As described in section 3.9, template based approach was favoured for the HMI screen generation. A 

WinCC project was created with predefined templates of screen objects (such as home screen, manual 

mode screen, logic monitoring screen), screen generation and mapping functions. The template 
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screens are shown in Figure 4-10 in a hierarchical manner. These template screens consist of both 

machine specific and non-specific screen objects. The non-specific objects are standard functions, 

such as Home Screen. Such objects are static and are developed during template preparation stage. 

Machine specific objects are dynamically populated from the HMI Data Model by the corresponding 

mapper function in realtime when a screen is requested. The HMI Data Model for describing the ma-

chine specific HMI screens are automatically generated by the CCE Mapper and saved in the shared 

DB of the PLC program. The HMI communicates with this shared DB during runtime to send/receive 

the required information. A brief description of the dynamically generated screens is given in the rest 

of this section.  

 

Figure 4-10 Overview of the HMI screens 

A. Manual Mode Screen 

Manual mode screen consists of pushbuttons for each actuator of a machine to move it between its 

home and work positions independent of the sequence of operations. In the traditional manual pro-

gramming approach, these pushbuttons are manually created and mapped to the manual control 

function of the actuators, which is a time consuming and error prone process. In addition, any modifi-

cation of a system requires respective changes in the control function as well as manual mode screens, 

which make the manual method of HMI screen development error prone.  

In the automatic code generation approach, a novel methodology is used to automate the process of 

manual mode screens development. The manual mode screen is composed of generic template of five 

rows of pushbuttons, which are dynamically populated from the HMI Data Model according to the 

dynamic position pairs. A pushbutton row is composed of five objects: component name, the names 

for two reachable positions and two pushbuttons. Each of these objects is associated with an indexed 
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variable. The mapper function dynamically performs indexing of the indexed variables to associate 

them with the respective memory location within the HMI Data Model. 

The manual mode screen generation method was presented in section 3.9.1. The approach was tested 

via the Festo test rig system. For illustration, an example of the pushbuttons row for component 

‘VActConveyor’ is shown in Figure 4-11, which depicts the correlation and mapping of the graphical 

objects of the manual row template, indexed variables, the mapper script and the HMI Data Model. 

Each graphical object of the template, marked in red, is associated with the respective indexed varia-

bles in the template. The mapper script dynamically maps the indexed variables with the 

corresponding memory locations in the HMI Data Model. As a result of the mapping, the string varia-

bles of the memory locations are copied and displayed on the graphical objects. 

 

 

Figure 4-11 Manual pushbutton row generation 

 

To explain the runtime control of the Festo test rig in manual mode, the manual mode control process 

of component Pusher is depicted in Figure 4-12. When the button “Workposition” on the screen for 

moving Pusher to its working position is pressed, the command ID is sent to the related data location 

in the HMI Data Model (Shared DB). The Logic Engine detects the data change and updates the State 

Command within the Control Model of the component Pusher, which connects with the RC Pusher. 

The RC Pusher decodes the State Command and sends output command to the I/O variable “Push-

er_ToWork” in order to drive the Pusher to move to its working position. 
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Figure 4-12 Dataflow for manual control of component Pusher 

4.2.2.4.1 Process Logic Monitoring Screen 

The Process Logic monitoring screen is used to monitor the sequence of operations of the test rig at 

runtime. This eliminates the need to connect a programming terminal to the PLC required by the tra-

ditional programming approach. A screen capture of the Process Logic monitoring screen is shown in 

Figure 4-13. The generic template of the screen is shown in Figure 4-13 (a) and the runtime view of 

the generated screen is shown in Figure 4-13 (b). When a Process Logic screen is requested, the map-

per function dynamically populates the screen template with the relevant Data Model. The mapper 

function also continually scans the HMI Data Model and refreshes the active state ID. With the help 

of the active state ID, the background colour of that state changes from grey to green. 

1
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Figure 4-13 Generated Process Logic monitoring screen 

Figure 4-14 shows the navigation of the Process Logic monitoring screen by switching the memory 

area within the HMI Data Model by changing the offset of indexed variables. The green markers are 

pointing the entire memory area of the Process Logic. The red markers are pointing the default offset 

and the blue markers are pointing the next offset to navigate the Process Logic screen. As the position 

of the active state also changes with screen navigation, the value of the active state is re-calculated 

each time with the navigation by using case-structure in the mapper function. 

(a) 

(b) 
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Figure 4-14 Navigation of Process Logic monitoring screen via indexing offset 

4.2.2.4.2 Actuator Monitoring Screen 

Similar to the Process Logic monitoring screens, the actuator monitoring screen is used to monitor the 

STD and the RC of actuators of the test rig at runtime. This eliminates the need to connect program-

ming terminal to the PLC required by the traditional programming approach for runtime monitoring 

of FBs of actuators. The actuator monitor screen generated for the component Pusher is shown in Fig-

ure 4-15. The animated graphical view of the STD of the actuator Pusher is displayed on the left side 

of the screen. The active state of the STD is highlighted with the help of background colour change 

from grey to green. On the right-hand side of the screen, the graphical representation of the RC is dis-

played. The current values of both binary and integer inputs, as discussed in section 3.7.1.4, are 

displayed. The binary inputs and outputs of the RC are animated by changing their color from red 

(false) to green (true), while the integer inputs displays their current values in a text field.  
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Figure 4-15 Generated actuator monitoring screen for component Pusher 

4.2.2.4.3 Fault Message Screen  

The generated fault message screen is shown in Figure 4-16. The active fault is displayed on a banner 

on the home screen as well as on the fault history screen. When a fault occurs then the background 

colour of the banner changes from grey to red and the fault message is displayed on the banner. The 

ACK Fault buttons is provided on the home screen to reset the fault. The fault history screens display 

the previous ten faults. This fault history screen can be accessed via a pushbutton provided on the 

home screen.  

 

Figure 4-16 Fault history screen 
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4.3 Evaluation 

This section evaluates the proposed automatic code generation approach against the limitations of the 

current control engineering practice and the research gap outlined in chapter 2. The evaluation method 

was based on the approaches presented in the relevant literature by Lucas and Tilbury [129] and 

Hajarnavis and Young [130] and the information drawn from discussions with engineers at Ford Mo-

tor Company and TKSE. In addition to the case studies presented, a set of use-cases was designed in 

order to evaluate the proposed approach from various perspectives and to assess its strengths and 

weaknesses over the entire automation system lifecycle. Each scenario was carried out using the pro-

posed automatic code generation approach as well as a manual programming approach. 

To minimise the effect of the programmers’ experience and other human factors, the same person, 

having good knowledge of both approaches, created the control software using both the manual pro-

gramming and automatic generation approaches.  

The time estimates in study are based on the results recorded by the author together with extensive 

discussions of the results with control programming experts at Ford and TKSE. However, it is appre-

ciated that an independent evaluation of the time estimates would be needed in the future to confirm 

these results. This work is likely to be the subject of a future research and development project such 

as the new TSB funded 3Deployment project but was beyond the scope of the author’s research.  

The evaluation spans control software development, reconfigurability, portability, diagnostics and 

maintenance, and runtime performance.  

4.3.1 Control Software Development 

To comparison of the control software development, the Festo test rig was programmed using both 

manual programming approach and automatic generation approach. For manual programming, Ford’s 

Global Sigma PLC programming standard was used, which is currently considered as one of the best 

programming standard within Ford’s Powertrain Operations (PTO) Manufacturing Engineering. The 

same control functions were manually programmed and automatically generated wherever practical. 

The control hardware and software used in this study included an S300 PLC, MP 277 Touch HMI, 

STEP 7 and WinCC. 

Although a pre-requisite for automatic control code generation, the resources (i.e. time and skills) re-

quired to develop the Virtual Prototype using the CCE tools was not included in this comparison. This 

decision was based on the hypothesis that in practice, the Virtual System Modelling and Virtual Pro-

cess Planning tasks were carried out prior to, and regardless of, whether automatic or manual is 

conducted.  
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4.3.1.1 Results and Observations 
A. Development Time 

For the comparison of time required to produce both manual and auto-generated control code, the 

software development process was decomposed into a number of tasks. The time for each task was 

then recorded independently. The approximate times (in hours) taken for both programming ap-

proaches are listed in Table 4-6 and Table 4-7 from same control functionality. By comparing the 

total time taken via each approach, it can be seen that the manual programming approach account for 

approximately twice the time taken by the automatic generation approach which represents a total 

saving of 4 days of work for the test system. 

Table 4-6 Manual programming tasks and their respective time 

Task Time (hr) 

Pre-Engineering Template development 3.0 
FBs development and testing 16 

System Engineering Instantiating FBs and creating DBs 1.0 
I/O mapping 1.0 
Writing SFCs 16 
Writing diagnostic code 4.0 
Developing HMI screens 8.0 
Installation and Commissioning 16 

Total Time 65 
 

Table 4-7 Automatic code generation tasks and time 

Task Time (hr) 
Pre-Engineering Template development 4.0 

RCs development and testing 16 
System Engineering Defining control behaviour in CCE 8.0 

Virtual commissioning  2.0 
RCs and I/O Mapping 1.5 
Installation and Commissioning 2.0 

Total Time 33.5 
 

B. Impact of Virtual Commissioning 

As seen from Table 4-6 and Table 4-7, the installation and commissioning time taken by automatic 

generation approach was much lesser than the installation and commissioning time taken by manual 

programming. One of the reasons is that the control logic validation was carried out during the virtual 

commissioning phase, using the CCE tools. As the virtual commissioning was performed offline, a 

significant potential improvement in the project critical path was envisaged. In this study, the test rig 

was a laboratory-based machine and was available for programming, which is usually not the case 

when a new machine is developed. It was anticipated that the project lead-time difference for the two 

approaches would have further increased if the test rig was not readily available for programming. 

In addition, it can be noted from the time comparison that even the combined time required to achieve 
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virtual commissioning and subsequent physical commissioning using automatic code generation, is 

still lower than the time required to conduct manual control code programming. This is due to the fact 

that the debugging of the control logic of manual programming approach was cumbersome and time 

consuming compared to the control behaviour debugging within CCE tools. Moreover, during com-

missioning of manually written program a number of mechanical clashes were witnessed (such as 

rotation of the indexing table during checking process) due to missing interlocks, which in turn re-

quired some amount of code re-writing.  

C. Required Knowledge and Programming Skills 

The required knowledge and programing skills for both approaches are shown in Table 4-8 and Table 

4-9. The Manual programming approach requires extensive experience of PLC and HMI program-

ming for both the pre-engineering and system engineering tasks. In addition, the programmers must 

possess a good knowledge of the programming standard used (in this case Global Sigma). In compari-

son, for the automatic generation approach only the template and RCs development requires PLC 

programming skills. As these are pre-engineering tasks and are performed only once, it can be con-

cluded that system engineering using the proposed approach only requires basic PLC programming 

skills. 

 As the HMI screen is automatically generated, no HMI programming experience is required. In addi-

tion, the software is structured automatically, so the engineers involved in the system engineering do 

not require extensive knowledge of the PLC structured programming standard.  

Table 4-8 Required knowledge and programming skills for the manual programming approach 

Task Knowledge/ Skills Skill / knowledge 
Level 

Pre-Engineering 
Template development 

! STEP 7 
! WinCC 
!  Software architec-

ture 

Advanced 

FBs development and testing ! STEP 7 
! Software architecture Advanced 

System Engineer-
ing 

Instantiating FBs and creating 
DBs 

! STEP 7 
! Software architecture Basic 

I/O mapping ! STEP 7 
! Software architecture Basic 

Writing SFCs 
! STEP 7 
! Software architecture 
! Process planning 

Advanced 

Writing diagnostic code ! STEP 7 
! Software architecture Advanced 

Developing HMI screens 
! STEP 7 
!  WinCC 
! Software architecture 

Advanced  

Installation and Commissioning ! STEP 7 
! Process Planning Advanced 
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Table 4-9 Required knowledge and programming skills for the automatic code generation approach 

Task Knowledge Skill / Knowledge 
Level 

Pre-Engineering 
Template development ! STEP 7  

! Software architecture Expert 

RCs development and test-
ing 

! STEP 7 
! Software architecture Advanced 

System Engineer-
ing 

Defining control behaviour 
in CCE ! Process planning Basic 

Virtual commissioning  ! Process planning Basic 

RCs and I/O Mapping ! No specialised Skills Basic 

Installation and Commis-
sioning 

! STEP 7 
! Process planning 
! Software architecture 

Basic 

 

D. Integration of Control Code 

The integration of the control functions, diagnostic code and the HMI screen generation is completely 

automated using the automatic code generation approach. Only the control behaviour needs to be de-

fined within the CCE, while the diagnostic code and HMI screens are generated automatically. On the 

other hand, the manual programming approach requires the control functions, fault diagnostic code 

and the HMI screens to be handled individually which makes the programming process time consum-

ing and prone to mistakes.  The Ford’s Global Sigma programming standard used for manual 

programming approach integrates the control functions with the diagnostic code and HMI code. How-

ever, this integration of code is only from the software structure perspective, which still requires 

manual modification of code. 

4.3.2 Reconfigurability  

As discussed earlier, reconfigurability of a system is a key requirement. Reconfiguration is required to 

modify an existing system in order to accommodate with changing production requirements. The re-

configuration capability provided by a programming approach can be measured by analysing the ease 

with which a system can be altered to meet new requirements. This can be quantified by measuring 

the time required to conduct a change in a system. 

In order to evaluate and compare reconfigurability of the automatic code generation approach with the 

manual programming approach, the Buffer Station (which consists of Conveyor, Separator and three 

proximity sensors) was removed from the test rig. After removing Buffer Station, work piece was 

transported directly to Processing Station. This reconfiguration experiment required physical recon-

figuration as well as control software reconfiguration. Since this study was only aimed at evaluating 

the reconfigurability of the control code, the time required for physical reconfiguration was not taken 

in account but was the same in both cases. The physically reconfigured test rig is shown in Figure 

4-17. 
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Figure 4-17 Reconfigured Festo test rig 

For the manual programming approach, the reconfiguration was performed by modifying the corre-

sponding parts of the program. The following tasks were performed to reconfigure the control code: 

• Delete the related I/Os from the variables table 

• Delete the FBs and SFC for Conveyor and Separator 

• Delete the relevant diagnostic code 

• Modify the HMI program to remove the relevant pushbuttons rows from the manual mode 

screen and do the related changes in the PLC program 

• Modifying the SFCs to change the sequence of operations of Swivel Arm, Vacuum Gripper 

and Rotary Table. 

• Download the modified programs to PLC and HMI 

• Re-commission the test rig 

The step-by-step tasks performed to reconfigure the control code using automatic code generation ap-

proach are given below:  

• Reconfigure the system in CCE tools by deleting the related components and modifying the 

transition conditions of STDs of Swivel Arm, Vacuum Gripper and Rotary Table for the new 

process flow.  

• Perform virtual commissioning to validate the control behaviour 

• Load the reconfigured project file and generate the control code 

• Import the control code to STEP 7 and download to the PLC 

Distribution 

Station 

Processing 

Station 

Handling 

Station 
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• Re-commission the test rig 

4.3.2.1 Assessment and Observations 
A.    Reconfiguration Time 

The time taken for each approach is shown in Table 4-10. By comparing the total time, it can be seen 

that the automatic generation approach requires less reconfiguration time compared to the manual 

programming approach for this potential test case.  A number of factors contribute to the time saving 

achieved during automatic code generation. Some of these factors include:  

• automation of the program generation 

• dynamic reconfiguration approach used in the HMI software design, and 

• ease of editing STDs as compared to the editing of low-level PLC control code.  

Table 4-10 Time to reconfigure the test rig 

Manual Programming Approach Automatic Generation Approach 

Tasks   Time (hr) Tasks Time (hr) 

PLC code modifications 1.2 Virtual model reconfiguration 1.0 
HMI modifications 0.5 Virtual Commissioning 0.5 
Installation and re-commissioning 1.0 Installation and re-commissioning 0.2 
Total Time 2.7  1.7 

 

B.     Impact of Virtual Commissioning 

The most important factor during the reconfiguration process is the production downtime. During the 

reconfiguration process, the production downtime is the time required to re-commission the machine. 

As the virtual commissioning was performed offline, the time spent during virtual commissioning did 

not contribute to the production downtime. As a consequence, the production downtime during the re-

configuration process for automatic code generation approach was five times smaller than the manual 

programming approach.  

C.    Required Programming Skills and Knowledge 

To achieve reconfiguration, the manual programming approach requires alteration of the PLC control 

code and the HMI screens. These alterations required knowledge of process planning, extensive PLC 

programming experience (both STEP 7 and WinCC) and knowledge of the PLC program structure. 

While the reconfiguration process for the automatic code generation approach required knowledge of 

process planning and basic knowledge of the PLC programming. As the program generation and the 

HMI screen reconfiguration are automated, no knowledge of the PLC software structure and HMI 

programming is required. The knowledge and programming skills required for reconfiguration using 

the manual programming approach and the automatic code generation approach are given in Table 

4-11 and Table 4-12. 
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Table 4-11 Knowledge and programming skills required for reconfiguration using the manual programming ap-

proach 

Task Knowledge/ Skills Skill / knowledge Level 

PLC code modifications 
- STEP 7 
- Process Planning 
- Software architecture 

Advanced 

HMI modifications 
- STEP 7 
- WinCC 

-  Software architecture 

Advanced 

Installation and re-commissioning 

- STEP 7 

- Software architecture 
- Process planning 

Advanced 

 

Table 4-12 Knowledge and programming skills required for reconfiguration using the automatic generation ap-

proach 

Task Knowledge/ Skills Skill / knowledge Level 

Control logic editing in CCE - Process Planning Basic 

Virtual Commissioning - Process Planning Basic 

Installation and re-commissioning 

- STEP 7 

- Software architecture 
- Process planning 

Basic 

4.3.3 Portability of Control Logic across PLC Platforms 

As discussed in Chapter 2, the portability of PLC code is a well-known issue. To enable portability, 

PLCopen introduced an XML based portable neutral format for import/export of source code, but the 

standard has not been widely adopted by control vendors. The automatic generation approach ad-

dresses the portability of the control logic to a great extent due to the vendor neutral control behaviour 

definition within CCE, mapping of the I/O variables and mapping of RCs.  

To assess the extent of the portability of the control logic of both approaches, the Siemens S300 PLC 

and STEP 7 were changed to Schneider Electric’s Modicon TSX P57 PLC and Unity Pro. The activi-

ties of both programming approaches and the time taken to re-program the Festo test rig using 

Modicon TSX P57 PLC are shown in Table 4-13 and Table 4-14.  

As shown in Table 4-13, the portability of code in the manual programming approach was very lim-

ited and was based on ad-hoc procedures. The true portability of code was attained to some extent by 

porting the code of the library Function Blocks from STEP 7 to Unity Pro via cut-paste method. How-

ever, the code needed slight modifications due to differences in the STEP 7 and Unity Pro syntaxes. 

The rest of the code written in STEP 7 in the pre-engineering phase and system engineering phase 

was not portable. As a consequence, paper prints of the STEP 7 project were taken and the code was 

re-typed in the Unity Pro. A total time of 29.8 hours was required to achieve manual duplication of 
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the code.  

The automatic code generation approach provides a limited amount of portability for the code written 

in the pre-engineering phase. However 100% of the control logic (defined in CCE) and mapping in-

formation were successfully ported, without manual code re-writing. As a result, the system 

engineering phase only required 15 minutes (0.25 hours) for completion. This portability was only 

possible because the control logic defined in CCE and the consequent I/O mapping and RCs mapping 

information are stored in a vendor neutral format.   

Table 4-13 Control logic portability of the manual programming approach  

Activity Time (hr) Comments  

Pre-Engineering Template development  2 .0 Not portable 

FBs library development and test-

ing 

7.0 Portable to some extent 

System Engineering Instantiating FBs  0.3 Not portable 

I/O mapping 0.5 Not portable 

SFCs 10 Not portable 

Diagnostic code 2 Not portable 

HMI development 6 Not portable 
 Installation and commissioning 4 A number of bugs were 

found 

Total Time 29.8  

 

Table 4-14 Control logic portability of the automatic code generation approach 

Activity Time (hr) Comments 

Pre-Engineering Template development 1.5 Not portable 

RCs development and testing 8.0 Portable to some extent 

System Engineering Defining control behaviour in 

CCE 

0.0 Portable 

Virtual commissioning  0.0 Portable 

RCs and I/O mapping 0.0 Portable 

Installation and commissioning 0.25 No debugging was required 

Total Time 9.75  

4.3.4 Fault Diagnosis and Maintenance 

This section evaluates the effort required for fault detection and maintenance of the auto-generated 

code during the commissioning and machine operation phase. Diagnosis is needed when an unex-

pected event happens in the controlled process. The cause of unexpected event can be the result of a 

hardware fault or a bug in the control code. The corrective action varies in each scenario and depends 

on the root cause of the error.  For diagnosis and maintenance of the control system, the two most im-
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portant aspects are the visibility of control logic and the ease of debugging.  

A. Visibility of Control Logic 

In this thesis the term visibility refers to the ease of accessibility and interpretability of the control 

code, which facilitates the identification of the causes and effects of an event or fault that requires di-

agnosis. Diagnosis is carried out by monitoring the status of sensors, actuators and sequential logic in 

realtime, which makes the runtime visibility of control code a significant requirement. This is one of 

the reasons why the LD and SFC are commonly used to program PLCs rather than languages such as 

IL and ST.  

Unlike the traditional manual programming approach that needs a programming terminal to monitor 

the control logic in realtime, the automatic code generation approach allows the Process Logic and 

RCs to be monitored by connecting PLC programming terminal to the PLC as well as from the HMI 

screens.  

In the auto-generated code, actuators are controlled by RCs and Process Logic. Therefore, in order to 

find actuators malfunctions, the respective Process Logic and RC need to be examined. Within the 

PLC program, Process Logic appears as a runtime control model, which is difficult to access and di-

rectly interpret. However, the HMI program converts the runtime model into STDs, which depict the 

sequence of operations via a simple graphical user interface. The STDs of Process the Logic are dis-

played on the HMI screen (see Figure 4-13) with active states highlighted in green which makes 

tracing of the current state in a sequence of operation very intuitive compared to the manual program 

code interpretation.  

RCs appear as FBs in the generated program. RCs have well-defined interfaces that can readily depict 

the status of an actuator, its related sensors and the intended control operation. RCs can be monitored 

from the HMI as well as by using the online monitoring function of the PLC programming tool. An 

example RC for the Pusher component is shown in Figure 4-18. Checking whether a fault has oc-

curred in the hardware (such as faulty I/O connection), or spotting a bug in the sequential logic or in 

the RC is a simple task when looking at the interface variables of the RC. 

On the other hand, in order to view the code for the control logic the user would need to connect the 

PLC to the programming terminal to locate and understand the intended control behaviour. In order to 

do so, the user must have knowledge of the complete programming structure. This often implies a 

great degree of complexity and requires higher level of expertise in the PLC languages to understand 

the system behaviour.   
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Figure 4-18 RC for actuator Pusher 

B. Debugging of Control Code 

The auto-generated code is based on the RCs and the defined sequential logic in the CCE. The control 

code of RCs is pre-validated, the chances of bugs occurrences in the RCs are very rare. During physi-

cal commissioning of the Festo test rig, no faults were observed in the RCs. However, debugging and 

diagnostic of the control code of RC, is the same as that of traditional control software. The RC can 

be directly diagnosed in the PLC programming tool. Once the bug is found, it can be directly fixed by 

modifying the code of the runtime component.  

On the other hand, the sequential logic defined within the CCE is debugged during virtual commis-

sioning phase. However, due to some limitations of the CCE tools’ simulation capabilities (such as 

lack of multiple part simulation) the virtual commissioning phase could not validate the sequential 

control logic completely. During commissioning of the test rig, a number of bugs were noticed. The 

debugging of the sequential control logic could only be achieved within the CCE tools. This is be-

cause the sequential control logic defined within the CCE tools is converted into Runtime Data 

Models and stored in a database. The runtime control models are described in a machine-

understandable format, but are not readable by control engineers. The reduced readability of the 

runtime data models makes the code very hard to debug within the PLC programming tool. However, 

this should be considered as the limitation of the simulation capability of the CCE tool rather than the 

limitation of the auto-generated code.  

4.3.5 Runtime Performance 

The runtime performance of the control code generated by the automatic generation approach is ana-

lysed by measuring the program memory size and scan time. The control software developed by the 

manual programming approach (Ford’s Global Sigma format) is widely acceptable to industry and 

thus used in this thesis as a benchmark for evaluation of the runtime performance of the automatically 

generated control code.  
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A. Program Memory 

The memory occupied by the control software can be classified into load memory, system memory 

and main memory. The load memory is used for storing all the control software information when the 

project is downloaded to the PLC. The system memory is random access memory (RAM) that con-

tains elements such as markers, timers, counters, block stack and interrupt stacks. The main memory, 

also a RAM, is optimised for high-speed access.  At start-up the PLC copies the parts of the load 

memory necessary for program execution to the main memory. The main memory is further divided 

into two parts. One part is used for storing the runtime-relevant code, process input image (PII), pro-

cess output image (POI) and the diagnostics buffer for the code. The other part is used for the 

runtime-relevant data and also contains the data from the local data stack [131]. 

The memory occupied by the control code of both approaches is given in Table 4-15. It can be seen 

that the auto-generated code requires less program memory, less load memory and less work memory, 

than the manually written program, the main reason being the difference in the software architecture 

of the two programming approaches. The sequence of operations in the automatic code generation ap-

proach is based on Logic Engine and Control System Data Model, which require much less memory 

compared to the SFCs used in the manual programming approach.   

Table 4-15 Comparison of PLC program memory 

Programming Approach Load Memory Main Memory System Memory 

Automatic Generation Approach 24378 bytes 21610 bytes 12170 bytes 

Manual Programming Approach 48462 bytes 27058 bytes 12170 bytes 

B. Scan Time 

Unlike event-based systems, PLCs execute programs in a cyclic manner as shown in Figure 4-19. One 

complete cycle is known as a scan. The scan begins by reading the inputs and updating the process 

input image (PII). The control code is then executed based on the PII. The outputs are written to the 

process output image (POI). Once the application program execution is completed, the PLC performs 

diagnostic and communication tasks. The time required to execute one cycle is known as the scan 

time. Because a manufacturing control system is a hard-realtime system, large scan times directly 

affect the accuracy of the PII and can result in unintended operation.  
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Figure 4-19 PLC scan cycle 

To determine the scan time, a function block that records and calculates the scan time was used for 

both programming approaches. During the automatic test rig operation, the maximum scan time and 

the minimum scan time were recorded and the average scan time was calculated (see Table 4-16). It 

can be seen that the scan time for the auto-generated code is lower than the scan time required to pro-

cess the manually written code.  

Two factors possibly contribute to the better scan time performance of the auto-generated code. The 

first reason lays in the smaller memory requirement of the auto-generated code. The second reason is 

the way control commands are realised in the auto-generated code, which is simple and faster than 

that in a manually written program. This is because the machine control logic is modelled as runtime 

control data models and saved in a Data Block. During each scan cycle, the Logic Engine scans these 

runtime control models and generates commands for the RCs. For the manually written program the 

command for controlling resource FBs is generated by the respective SFC, which might still need to 

communicate with other SFCs to generate the command. This potentially leads to increased scan time.  

Table 4-16 Comparison of scan time 

Programming Approach Maximum Scan Time Minimum Scan Time Average Scan Time 

Auto-generated 8ms <0.5ms 3ms 

Manually written  19ms <0.5ms 14ms 

4.4 Summary 
This chapter has presented a proof-of-concept case study to show the applicability, comparative ad-

vantages and performances of the proposed automatic code generation approach relative to a state-of-

the-art manually coded control software. A representative assembly automation test rig was chosen 

for the case study. Control code was developed for Siemens and Schneider Electric PLCs using both 
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automatic code generation and manual programming. A number of experimental studies were con-

ducted to test and compare the approaches against a set of key qualitative and quantitative 

performance criteria.  

Numerous advantages were observed through the evaluation of the prototype automatic code genera-

tion. The generated control code could be complied to comply with the program structural template 

requirements of the automotive industry, which is a fundamental requirement for industry for accept-

ability. The automatic generation approach allowed the control software development time, 

commissioning time and the need for specialised programming skills to be significantly reduced, and 

thus could shrinks the cost and lead-time of a project compared to the manual programming approach. 

The generation of structured control code and logic monitoring functionality now integrated to the 

HMI screens resulted in the enhanced visibility of the control code to readily diagnose faults without 

the need to connect a programming terminal to the PLC. The runtime performance of the auto-

generated code was far better than the manual programming approach with 400% improvement in 

overall scan time and a 30% reduction in memory requirements for the test application. This better 

runtime performance could not only increase the reliability of a system by preventing excess scan-

time related issues but could also allow the use of smaller lower cost PLCs for complex applications.  

Due to some limitations in the simulation capabilities of the CCE tool, the auto-generated control 

code needed some minor debugging of the sequential control logic (originally defined within the CCE 

tool) during physical commissioning. However, this should be considered a current limitation of the 

simulation capability of the CCE tool rather than the limitation of the new programming approach.  

 

 

 

 

 

 

 

 



 

 119 

5 Conclusion 

This chapter concludes the research work documented in this thesis. A comprehensive summary of 

the achievements, contributions and benefits of this research are outlined. At the end recommenda-

tions for the future work are given.  

5.1 Achievement of Research Objectives 

The aim of this research was to investigate the automatic generation of control code by reusing con-

trol information defined within manufacturing process simulation tools, referred to as virtual 

engineering (VE) tools. To realise the aim, a number of research objectives were outlined in Section 

1.2.3. This section summarises the achievement of the research objectives in this work.   

! Objective 1: To review existing PLC programming practice within the automotive manufac-

turing sector to recognise the control software structural and functional requirements, 

identify the current challenges and future requirements. 

An extensive review of the development of the automation systems and current PLC programming 

practices within automotive sector is presented in Chapter 2. The limitations of the existing PLC 

programming practice in the context of future requirements are highlighted. In addition to this, 

relevant emerging approaches in controls engineering are reviewed. From the literature review, it was 

established that the use of IT tools for integrated development of automation systems, virtual 

commissioning and automatic code generation can potentially address the existing limitation of the 

control engineering practices in PLC programming. It was further concluded that for industrial 

acceptability of any new approach for PLC programming, it is important that it should fit within the 

existing engineering workflow and must address the functional and structural requirements of the 

industry.    

! Objective 2: To enhance control information and specify a method for the definition of con-

trol logic within a virtual process simulation tool, the CCE, to enable direct deployment of 

the complete control code. 

The existing method of control behaviour definition within the CCE tools was critically reviewed in 

Chapter 3. A number of limitations of CCE from control code deployment and control behaviour 

validation perspective were documented. To address these limitations, a number of changes were 

implemented in CCE tools. These changes enabled control code generation from the control 

information defined within virtual models.   

! Objective 3: To design a software architecture that complies with the current PLC software 

structures used in automotive industry production machines and to design an approach to au-
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tomatically generate PLC control code according to this software architecture by utilising 

control information defined in virtual models of manufacturing cells developed in the manu-

facturing process planning tool, the CCE. 

A novel control software architecture is designed and implemented, which is presented in Section 3.7. 

The software structure is derived from the FAST (Ford and Siemens Transline) specification for PLC 

based automation systems at Ford Motor Company. An approach for code generation according to the 

software architecture is presented in Section 3.8. The approach enabled generation of complete 

executable PLC control code in an automated manner from virtual models of automation systems 

developed in CCE tools. The generated code provides functions for automatic mode control, manual 

mode control and fault diagnostics. 

! Objective 4: To design and develop an approach for integrated and automatic generation of 

HMI Screens. 

A novel approach for automatic HMI screen generation is designed and implemented. The details of 

the approach are given in Sections 3.7.2 and 3.9. The method of HMI screens generation 

automatically integrates the objects of the HMI screens with the runtime data models within the PLC 

code, thus enabling the dynamic generation and reconfiguration of HMI screens. The approach also 

enabled monitoring of the control logic using on-machine HMI screens instead of an external 

programming terminal.  

! Objective 5: Implementation of a prototype system to validate the research hypothesis and 

evaluate the approach. 

A case study of a prototype application is presented in Chapter 4. Using the developed approach for 

PLC code generation and automatic HMI screens generation, STEP 7 control code and WInCC HMI 

screens for a Festo test rig were automatically generated. The control code was compiled and 

downloaded without any manual application coding to an S300 PLC installed on the test rig.  The test 

rig was then commissioned in both manual and automatic modes, thus validating the research 

hypothesis presented in Section 1.2.2.  

Based on the case study and some additional experiments, evaluation of the approach was carried out 

from various perspectives. The evaluation revealed several benefits of the approach over the 

traditional manual programming approach, such as reduced application development time, reduced 

reconfiguration time, ease of debugging control logic and improved PLC runtime performance. 

5.2 Research Contributions 

This thesis makes the following original contributions to the field of the virtual engineering and 

control engineering of automation systems: 

! A detailed understanding of the requirements that must be met and current limitations that 



Chapter 5   Conclusion 

121 
 

must be resolved in order to design an acceptable approach for VE-based automatic PLC code 

generation applicable to the automotive manufacturing sector. 

! A methodology for control logic definition within component-based VE tools to enable the 

direct deployment of validated PLC control code. 

! An approach for structured PLC control software generation (conformant to current industry 

standards) based on the control information from component-based virtual models of 

manufacturing cells and utilising pre-validated runtime components.  

! An approach for the automatic generation of HMI screens from the state behaviour of the 

component-based virtual models. 

! An approach for control logic visualisation on HMI 

5.3 Research Benefits 

The case studies and evaluation (described in Chapter 4) have demonstrated a number of benefits of 

adopting the proposed approach for PLC code deployment. A summary of these benefits is given 

below.  

5.3.1 Integrated Engineering of Automation Systems 

Instead of writing control code independently in PLC programming tools at the system engineering 

phase, the use of VE tools enabled control engineers to define the control logic in close collaboration 

with mechanical and process engineers. In contrast to the traditional programming approach, the 3D 

visualisation of the machine during the control logic definition stage was considered very helpful. In 

addition, the control logic was defined at a high-level of abstraction by using STDs, which allowed 

mechanical engineers and process engineers to understand and edit the control logic directly.  

5.3.2 Deployment of Virtually Verified Control Logic 

The integration of control logic with the 3D CAD model of a machine in the VE tools facilitated 

commissioning of machine control behaviour in a virtual environment. The case studies showed that 

the control logic could be optimised and substantially debugged by simulating machine model in 

virtual environment. The benefit of the early debugging and optimisation of the control logic could be 

seen in the form of reduced time for physical commissioning during the machine development phase 

and negligible downtime during the machine reconfiguration phase (see Sections 4.3.1 and 4.3.2) for 

the use-cases demonstrated on the test rig.  

5.3.3 Integrated Control Software Development 

The control logic, fault diagnostic and HMI screen generation realised here are all based on a com-

mon machine configuration data i.e. the Control System Data Model. Thus, any change in the Control 

System Data Model is automatically reflected in all three areas of the control software. This approach 
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enables a seamless and dynamic integration of the control behaviour, fault diagnostic and HMI 

screens.  

5.3.4 Reduced System Development Time 

The evaluation presented in Section 4.3.1 showed that for the investigated use-case the proposed au-

tomatic code generation approach significantly reduced the system development time as compared to 

the traditional manual programming approach. The reduction in the system engineering time is mainly 

due to the automation of the PLC code generation and HMI screen generation.  

5.3.5 Reduced Level of Required PLC Programming Skills 

In contrast to the traditional manual programming approach, the proposed approach reduced the need 

for PLC programming skills at the application programming stage to a large extent. It can be seen 

from Table 4-12 that only a basic understanding of PLC programming is required at application spe-

cific system engineering phase.   

5.3.6 Enhanced Reconfigurability  

The reconfigurability evaluation presented in Section 4.3.2 showed that for the investigated scenario 

the proposed automatic code generation requires less effort, time, programming expertise and 

knowledge of the existing control code to reconfigure a system as compared to the traditional manual 

programming approach. Reconfiguration is carried out offline by editing the STDs within the VE 

tools. The control information of the reconfigured system is then automatically converted into control 

code using the CCE Mapper. Once the generated code is downloaded into the PLC, the HMI screens 

are automatically updated using machine configuration data shared through the Control System Data 

Model at runtime. 

5.3.7 Enhanced Reuse of Control Code 

In the proposed approach, low-level PLC programming is only required during the pre-engineering 

phase to develop the program template and RCs. The program template and RCs are then stored in the 

CCE Mapper library. This proven pre-developed control code is retrieved from the library and direct-

ly used during system engineering phase without the need to understand its underlying low-level 

details.  

5.3.8 Platform Independent Logic Definition 

The evaluation related to control code portability presented in Section 4.3.3 showed that the automatic 

code generation approach enhances the portability of control logic. This is because the control logic 

defined during system engineering phase (i.e. control behaviour definition within CCE, mapping of 

the I/O variables and mapping of RCs) is in a vendor neutral format, which via the approach presented 

in this thesis is automatically converted into a vendor specific format by selecting the type of PLC.  
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5.3.9 Monitoring of Control Logic from HMI 

Traditionally, PLC control code can be monitored only by connecting a programming terminal to the 

PLC. However, the proposed software architecture enables monitoring of the sequence of operations 

(i.e. Process Logic) and actuators (i.e. RCs and STD of actuator components) in real time directly 

from the machine HMI screens. This novel functionality is provided by the proposed automatic code 

generation approach. 

5.4 Future Research Directions 

The research work presented in the thesis provided the fundamental groundwork to achieve the aim of 

this research outlined in Section 1.2.3. However, it is envisioned that further developments and 

appraisal of the approach could be made by researching the following additional research objectives. 

5.4.1 HIL Commissioning  

In the proposed framework for automatic code generation, the virtual commissioning can only verify 

the control logic defined within the VE tools. Thus, the RCs developed during the pre-engineering 

phase, the I/O mapping of the physical addresses and RC mapping with components cannot be 

validated until the physical commissioning phase. As a result any error in the RCs code, I/O mapping 

or RC mapping will remain undetected in the generated code until physical commissioning occurs. To 

validate the control logic 100% in a virtual environment, there is a need for HIL virtual 

commissioning of the generated control code, i.e., to enable the control code to be executed on the 

physical PLC whilst in control of a virtual machine model. The HIL virtual commissioning can be 

performed by creating connections between the generated control code and the virtual model of the 

machine during runtime. A suitable communication link between the PLC and VE tools can be 

realised by using the OPC protocol over TCP/IP.  

5.4.1 Web-based Remote Monitoring and Support 

The data model in the VE tools consists of 3D CAD geometry, kinematics and control information. 

This common data model can be used for the development of web-based applications with realtime 

3D-based visualisation and control logic monitoring (described in Section 3.9.1) capabilities. This 

will enable to monitor and support machines remotely regardless of machine’s geographical location. 

Such a web-based application can be connected with the PLC using an OPC link for realtime data 

communication. The performance of data transfer via TCP/IP Ethernet using OPC needs to be 

analysed to investigate the runtime performance of such applications. 

5.4.2 Automatic Generation of OPC UA Configuration 

For HIL virtual commissioning and web-based remote monitoring applications, the connections 

between the control systems and virtual prototypes need to be created and configured based on OPC. 

Manual creation and configuration of such a connection is a complicated process and can decrease the 
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feasibility of additional functions due to the associated time and cost. This task can however be 

automated by automatically generating the OPC Unified Architecture (OPC UA) client objects based 

on the virtual common data model. This will significantly enhance further reuse of the virtual data 

models for HIL virtual commissioning and remote monitoring applications during the machine 

operation phase. 

5.4.3 Deployment of SFC Based Sequence of Operations 

In the software architecture proposed and implemented via this thesis, the sequence of operations is 

controlled by a Logic Engine. The logic engine works as a system orchestrator, which scans the 

control information related to the sequence of operations, interlocks, actuators and HMI stored within 

the Control System Data Model and send control commands to the actuators and HMI. During 

runtime it is impossible for maintenance engineers to directly visualise the intended machine 

sequence from the control code. This limitation of the control code is complemented by the control 

logic monitoring screens of the HMI. However, it could be considered preferable to represent the 

sequence of operations in SFC form. Therefore, in order to enhance the visibility and 

understandability of the automatic code generation approach in industry, generation of SFC-based 

code instead of using a Logic Engine can be potentially investigated. 

5.4.4 Development of SFC Based Runtime CCE Tool 

During the evaluation of the presented approach for logic generation, it was envisioned to develop a 

runtime version of the CCE tools, which allows the editing and runtime monitoring of the SFC com-

pliant STDs. This can potentially reduce the time required to modify the control logic and can 

eliminate the need for deployment of SFC based sequence of operations (described in section 5.4.4).  

5.4.5 Optimisation of the Control System Data Model 

Currently, the Control System Data Model is composed of the System Data Model, HMI Data Model 

and Fault Management Data Model. Each of these data models contains same basic information about 

the system configuration. This repeated information significantly increases the size of the Control 

System Data Model. As a consequence, the memory and the scan time of the control code also in-

creases.  To address this, the generation of a unified control system data model should be considered 

to reduce the memory size and scan time of the PLC control code.  

5.4.6 Visibility of Interlocks 

In the current software architecture, the interlock check is performed by the Logic Engine whereas the 

interlock data is stored in the Control System Data Model. As a result, the interlock information is dif-

ficult to access and modify at runtime. To address this issue, the interlock checking control code 

should be moved to the RCs and the interlock conditions should be automatically provided on the in-

terface of the RCs. This will not only make the status of interlock conditions visible, but will also 
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enable the temporary bypassing of interlocks during maintenance or in the event of hardware failure.  

5.4.7 RC-Based Manual Mode Screens Generation 

In the current approach implemented by the author the manual mode screens are generated from the 

HMI Data Model. As the Data Block of RCs contains all the required information to generate the 

manual pushbuttons configuration for manual mode control, the potential to generate the manual 

mode screen by utilising the RC data should be investigated. This will potentially reduce the complex-

ity of Control System Data Model and the memory size and scan time of control code. 

5.4.8 Automatic RC Mapping within VE tools 

Currently, the underlying data structure of the CCE Mapper is different from the data structure of the 

CCE tools. As RCs are stored in the CCE Mapper library therefore mapping of the RCs with CCE 

components is currently performed manually. To make the generation of code more efficient, the CCE 

Mapper should be integrated with the common data model of the CCE tools. This will enable the stor-

age and mapping of RCs within the component library of the CCE tools during the pre-engineering 

phase. This wills potentially reduce the manual work and consequently the chances of human errors in 

the RC mapping during system engineering phase.  

5.4.9 Formal Verification of Control Logic 

The 3D CAD based virtual commissioning involves visual inspection of a machines operation to vali-

date and debug its control logic. Such a method of validating the control logic is not been able to 

detect hidden errors such as deadlock and race conditions, which may only be triggered in the long 

run and can result in machine breakdown. To identify such errors in the control logic, a formal meth-

od (discussed in Section 2.6.4) of verification is desirable to perform rigorous mathematical analysis 

and prove that the control logic has the required properties and does not have any hidden errors. The 

application STDs i.e., of the components and Process Logic sequences could be used directly to au-

tomatically generate equivalent formal models (such as Petri Nets) for analysis.   

5.4.10 Deployment of Distributed Control Systems 

The proposed approach supports the runtime system engineering of centralised control systems. 

However, due to the inherent limitations of centralised control systems in terms of flexibility, 

reconfigurability and interaction with business systems, industry is striving to engineer distributed 

control system architectures that can effectively integrate with other systems. In a distributed control 

architecture, such as Service Oriented Architecture (SOA), the concept of horizontal and vertical 

communication between system components especially for monitoring and process control 

applications is advantageous. A number of research projects such as COMPAG [4, 132], SODA [133] 

SOCRADES [94], SIRENA [134] and AESOP [135] have implemented  and  demonstrated  the  use  

of distributed control and SOA  in  several application  domains  in  manufacturing  automation  
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systems. Based on the research outcomes of these projects, the proposed automatic code generation 

approach should be extended to investigate the direct deployment of SOA based intelligent control 

components from VE tools. 

5.4.11 Evaluation 

In this thesis, preliminary evaluation has been conducted to compare the proposed code genera-

tion approach with the equivalent traditional manual programing method. However, a more 

elaborate qualitative and quantitative evaluation, from the industrial acceptability perspective, 

should be carried out in the future in a realistic automation system supply chain environment. 

This could involve evaluating the structure of the code, time to make a given design change and 

the level of knowledge and programming experience required to be able to make a given change. 

The scope of the future analysis might cover the system development, reconfiguration, reusabil-

ity, fault diagnostics and debugging. In each case, the automatic code generation approach should 

be compared with current best practices. Such a qualitative and quantitative evaluation would 

provide a more thorough overview of the benefits and limitations of the proposed code generation 

approach than could be provided here.  

 

 



 

 127 

References 

!.	   James	   A.	   Jordon,	   J.	   and	   F.J.	   Michel,	   Next	   Generation	   Manufacturing:	   methods	   and	  
techniques.	  !""",	  New	  York:	  John	  Wiley	  and	  sons,	  inc.	  !"!.	  

!.	   Rogers,	  G.G.	  and	  L.	  Bottaci,	  Modular	  production	  systems:	  a	  new	  manufacturing	  paradigm.	  
Journal	  of	  Intelligent	  Manufacturing,	  2334.	  !(!):	  p.	  !"#-‐!"#.	  

!.	   National	   Research	   Council,	   VISIONARY	   MANUFACTURING	   CHALLENGES	   FOR	   3434,	  
Committee	   on	   Visionary	   Manufacturing	   Challenges.	   !""#,	   National	   Research	   Council:	  
Washington	  DC.	  

!.	   Lee,	  S.M.,	  A	  component-‐based	  distributed	  control	  paradigm	  for	  manufacturing	  automation	  
system,	   in	   Wolfson	   School	   of	   Mechanical	   and	   Manufacturing	   Engineering.	   !""#,	  
Loughborough	  University:	  Leicestershire.	  

!.	   Zoitll,	  A.,	  Real-‐time	  execution	  for	  IEC	  01233.	  !""#:	  ISA.	  
!.	   Richardsson,	   J.	   and	   M.	   Fabian.	   Automatic	   generation	   of	   PLC	   programs	   for	   control	   of	  

!lexible	   manufacturing	   cells.	   in	   Emerging	   Technologies	   and	   Factory	   Automation,	   7889.	  
Proceedings.	  ETFA	  '23.	  IEEE	  Conference.	  !""#.	  

!.	   Richardsson,	   J.	   and	  M.	   Fabian,	  Modeling	   the	   control	   of	   a	   0lexible	  manufacturing	   cell	   for	  
automatic	  veri,ication	  and	  control	  program	  generation.	  International	  Journal	  of	  Flexible	  
Manufacturing	  Systems,	  2334.	  !"(!):	  p.	  !"!-‐!"#.	  

!.	   Henerick,	   O.,	   G.	   Licht,	   and	   W.	   So5ka,	   Challenges	   and	   oppurtunities	   for	   the	   European	  
automotive	  industry,	  in	  Europe's	  automotive	  industry	  on	  the	  move:	  Competitiveness	  in	  the	  
changing	   world,	   O.	   Henerick,	   G.	   Licht,	   and	   W.	   So5ka,	   Editors.	   !""#,	   Physica-‐Verlog:	  
Germany.	  

!.	   Harrison,	  R.,	  A.A.	  West,	  and	  L.J.	  Lee.	  Lifecycle	  Engineering	  of	  Future	  Automation	  Systems	  
in	   the	   Automotive	   Powertrain	   Sector.	   in	   Industrial	   Informatics,	   1223	   IEEE	   International	  
Conference	  on.	  !""#.	  

!".	   Anon,	  Annual	  report	  ,-.,.	  !"#!,	  Toyota	  Motor	  Corporation.	  p.	  !"#.	  
!!.	   Anon,	  Challenges	  facing	  the	  global	  automotive	  industry.	  inshights-‐Booz.Allen	  &	  Hamilton,	  

!""".	  Vol	  %(!).	  
!".	   Lee,	  S.,	  R.	  Harrison,	  A.	  West,	  and	  M.	  Ong,	  A	  component-‐based	  approach	  to	  the	  design	  and	  

implementation	   of	   assembly	   automation	   system.	   Proceedings	   of	   the	   Institution	   of	  
Mechanical	  Engineers,	  Part	  B:	  Journal	  of	  Engineering	  Manufacture,	  7889.	  !!"(!):	  p.	  !"#-‐
!!".	  

!!.	   Kidd,	  P.T.,	  Revolutioninsing	  new	  product	  development:	  a	  blueprint	  for	  success	  in	  the	  global	  
automotive	  industry.	  !""#,	  Management	  reprot,	  FT	  Automotive	  Publishing.	  

!".	   Westkämper,	  E.,	  New	  trends	  in	  production,	  in	  Recon&igurable	  Manufacturing	  Systems	  and	  
Transformable	  Factories,	  A.I.	  Dashchenko,	  Editor.	  !""#,	  Springer-‐Verlag:	  Netherlands.	  p.	  
!"#.	  

!".	   Dowlatshahi,	   S.	   and	   Q.	   Cao,	   The	   relationships	   among	   virtual	   enterprise,	   information	  
technology,	   and	   business	   performance	   in	   agile	   manufacturing:	   An	   industry	   perspective.	  
European	  Journal	  of	  Operational	  Research,	  5667.	  !"#(!):	  p.	  !"#-‐!"#.	  

!".	   Harrison,	   R.,	   A.	   Colombo,	   A.	   West,	   and	   S.	   Lee,	   Recon&igurable	   modular	   automation	  
systems	   for	   automotive	   power-‐train	   manufacture.	   International	   Journal	   of	   Flexible	  
Manufacturing	  Systems,	  .//0.	  !"(!):	  p.	  !"#-‐!"#.	  

!".	   Guttel,	   K.,	   P.	  Weber,	   and	  A.	   Fay.	  Automatic	   generation	   of	   PLC	   code	   beyond	   the	   nominal	  
sequence.	   in	   Emerging	   Technologies	   and	   Factory	   Automation,	   7889.	   ETFA	   7889.	   IEEE	  
International	  Conference	  on.	  !""#.	  

!".	   Zhiqiang,	   G.	   and	   R.R.	   Rhinehart.	   Theory	   vs.	   practice:	   the	   challenges	   from	   industry.	   in	  
American	  Control	  Conference,	  0112.	  Proceedings	  of	  the	  0112.	  !""#.	  

!".	   Thapa,	   D.,	   C.	   Park,	   S.	   Park,	   and	   G.-‐N.	  Wang,	  Auto-‐generation	   of	   IEC	   standard	   PLC	   code	  
using	  t	  -‐MPSG.	  International	  Journal	  of	  Control,	  Automation	  and	  Systems,	  5667.	  !(!):	  p.	  
!"#-‐!"#.	  

!".	   Andersson,	  K.,	   J.	  Richardsson,	  B.	  Lennartson,	  and	  M.	  Fabian,	  Coordination	  of	  Operations	  



 

128 
 

by	  Relation	   Extraction	   for	  Manufacturing	   Cell	   Controllers.	  Control	   Systems	  Technology,	  
IEEE	  Transactions	  on,	  ./0/.	  !"(!):	  p.	  !"!-‐!"#.	  

!".	   Kong,	  X.,	  B.	  Ahmad,	  R.	  Harrison,	  A.	   Jain,	  Y.	  Park,	  and	  L.J.	  Lee.	  Realising	   the	  open	  virtual	  
commissioning	  of	  modular	  automation	   systems.	   in	  !th	  CIRP	   International	   Conference	   on	  
Digital	  Enterprise	  Technology.	  !"##.	  Athens,	  Greece.	  

!!.	   Makris,	  S.,	  G.	  Michalos,	  and	  G.	  Chryssolouris,	  Virtual	  Commissioning	  of	  an	  Assembly	  Cell	  
with	  Cooperating	  Robots.	  Advances	  in	  Decision	  Sciences,	  /01/.	  !"#!:	  p.	  !!.	  

!".	   Reinhart,	   G.	   and	   G.	   Wünsch,	   Economic	   application	   of	   virtual	   commissioning	   to	  
mechatronic	  production	  systems.	  Production	  engineering,	  .//0.	  !(!):	  p.	  !"#-‐!"#.	  

!".	   Ong,	   M.H.,	   Evaluating	   the	   impact	   of	   adopting	   the	   component-‐based	   system	   within	   the	  
automotive	   domain,	   in	  Wolfson	   School	   of	   Mechanical	   and	   Manufacturing	   Engineering.	  
!""#,	  Loughborough	  University:	  Leicestershire.	  

!".	   Harrison,	   R.,	   D.	   Vera,	   S.	  McLeod,	   and	  A.	   Jain,	  Virtual	   commissioning	  methods	   and	   tools.	  
!"#!,	  Loughborough	  University	  and	  Airbus.	  

!".	   Moore,	  P.R.,	  J.	  Pu,	  H.C.	  Ng,	  C.B.	  Wong,	  S.K.	  Chong,	  X.	  Chen,	  J.	  Adolfsson,	  P.	  Olofsgård,	  and	  
J.O.	   Lundgren,	   Virtual	   engineering:	   an	   integrated	   approach	   to	   agile	   manufacturing	  
machinery	  design	  and	  control.	  Mechatronics,	  .//0.	  !"(!"):	  p.	  !!"#-‐!!"!.	  

!".	   Anon,	  DELMIA	  V)	  automation	  platform:	  merging	  digital	  manufacturing	  with	  automation.	  
!""#,	  ARC	  Advisory	  Group.	  

!".	   Molina,	   A.,	   C.A.	   Rodriguez,	   H.	   Ahuett,	   J.A.	   CortÃ©s,	   M.	   RamÃrez,	   G.	   JimÃ©nez,	   and	   S.	  
Martinez,	  Next-‐generation	  manufacturing	  systems:	  key	  research	   issues	   in	  developing	  and	  
integrating	  recon+igurable	  and	  intelligent	  machines.	  !""#.	  !"(!):	  p.	  !"!	  -‐	  !"#.	  

!".	   Drath,	   R.,	   P.	   Weber,	   and	   N.	   Mauser.	   An	   evolutionary	   approach	   for	   the	   industrial	  
introduction	  of	  virtual	  commissioning.	  in	  Emerging	  Technologies	  and	  Factory	  Automation,	  
!""#.	  ETFA	  !""#.	  IEEE	  International	  Conference	  on.	  !""#.	  

!".	   David,	  K.,	  Virtual	  commissioning	  of	  factory	  1loor	  automation:	  the	  new	  paradigm	  in	  vehicle	  
manufacturing,	  in	  SAE	  %&'&	  world	  congress	  &	  exhibition.	  !"#":	  Detroit,	  USA.	  

!".	   Falkman,	  P.,	  E.	  Helander,	  and	  M.	  Andersson.	  Automatic	  generation:	  A	  way	  of	  ensuring	  PLC	  
and	  HMI	   standards.	   in	  Emerging	   Technologies	  &	   Factory	   Automation	   (ETFA),	   9:;;	   IEEE	  
!"th	  Conference	  on.	  !"##.	  

!".	   Bergert,	  M.,	  C.	  Diedrich,	   J.	  Kiefer,	  and	  T.	  Bar.	  Automated	  PLC	  software	  generation	  based	  
on	   standardized	   digital	   process	   information.	   in	   Emerging	   Technologies	   and	   Factory	  
Automation,	  +,,-.	  ETFA.	  IEEE	  Conference	  on.	  !""#.	  

!!.	   Kumar,	   R.,	  Research	   methodology:	   a	   step-‐by-‐step	   guide	   for	   beginners	   Second	   ed.	   !""#:	  
SAGE	  Publications.	  

!".	   Jackson,	  M.,	  An	  Analysis	  of	  Flexible	  and	  Recon&igurable	  Production	  Systems,	  in	  Mechanical	  
Engineering.	  !""",	  Linkopings	  Universitet:	  Linkoping.	  

!".	   Humphrey,	   J.,	   Y.	   Lecler,	   and	   M.	   Salerno,	   Introduction,	   in	   Global	   Strategies	   and	   Local	  
Realities:	  The	  Auto	  Industry	  in	  Emerging	  Markets,	  J.	  Humphrey,	  Y.	  Lecler,	  and	  M.	  Salerno,	  
Editors.	  !""",	  Macmillan	  Press	  Ltd.:	  London.	  

!".	   Goldman,	   S.,	   R.	   Nagel,	   and	   K.	   Preiss,	   Agile	   Competitors	   and	   Virtual	   Organizations	   -‐	  
Strategies	  for	  Enriching	  the	  Customers.	  !""#,	  New	  York:	  Van	  Nostrand	  Reinhold.	  

!".	   Anon,	  Global	  Manufacturing	  Competitiveness	  Index.	  !"#",	  Deloitte	  Development	  LLC.	  
!".	   Lee,	  W.,	   T.	   Baines,	   B.	   Tjahjono,	   and	  R.	   Greenough,	  Towards	   a	   conceptual	   framework	   of	  

manufacturing	  paradigms.	  SIMTech	  Technical	  Reports,	  4556.	  !(!):	  p.	  !"#-‐!"".	  
!".	   Ford	   Motor	   Company.	   The	   revolution	   of	   mass	   production.	   #$%&	   	   [cited	   #$%&	   ##	   April];	  

Available	   from:	   h"p://www.ford.co.uk/experience-‐ford/Heritage/Evolu0onOfMass	  
Production.	  

!".	   Womack,	   J.P.,	  D.T.	   Jones,	   and	  D.	  Roos,	  The	  machine	   that	   changed	   the	  world.	   !""#,	  New	  
York:	  Simon	  &	  Schuster.	  

!".	   Dauguay,	  C.R.,	  S.	  Landry,	  and	  F.	  Pasin,	  From	  mass	  production	  to	  /lexible/agile	  production.	  
International	  Journal	  of	  Operations	  &	  Production	  Management,	  9::;.	  !!(!"):	  p.	  !!"#-‐!!"#.	  

!".	   Lipietz,	   A.,	  Towards	   a	   new	   economic	   order:	   postfordism,	   ecology,	   and	   democracy.	   !""#:	  



 

129 
 

Oxford	  University	  Press.	  
!".	   Pine,	   B.J.,	   Paradigm	   shift:	   from	   mass	   production	   to	   mass	   customization,	   in	   Applied	  

Mathematics.	  #$%&,	  University	  of	  Wisconsin.	  
!!.	   Koren,	  Y.,	  The	  global	  manufacturing	  revolution:	  product-‐process-‐business	  Integration	  and	  

recon&igurable	   systems.	   Systems	  Engineering	   and	  Management.	  !"#",	   New	   Jersey:	   John	  
Wiley	  &	  Sons.	  !"".	  

!".	   Ohno,	   T.,	   Toyota	   Production	   System:	   Beyond	   Large-‐Scale	   Production.	   !"##,	   New	   York:	  
Productivity	  Press.	  

!".	   The	   Manufacturer,	   Fifth	   Lean	   Manufacturing	   Report.	   #$$%,	  
h"p://www.themanufacturer.com.	  

!".	   Wiendahl,	   H.P.,	   H.A.	   ElMaraghy,	   P.	   Nyhuis,	   M.F.	   Zäh,	   H.H.	  Wiendahl,	   N.	   Duf1ie,	   and	   M.	  
Brieke,	  Changeable	  Manufacturing	   -‐	  Classi&ication,	  Design	  and	  Operation.	  CIRP	  Annals	   -‐	  
Manufacturing	  Technology,	  3445.	  !"(!):	  p.	  !"#-‐!"#.	  

!".	   Haq,	   I.,	   Innovative	   Con+igurable	   and	   Collaborative	   Approach	   to	   Automation	   Ssytems	  
Engineering	   for	   Automotive	   Powertrain	   Assembly,	   in	   Mechanical	   and	   Manufacturing	  
Engineering.	  !""#,	  Loughborough	  University:	  Loughborough.	  

!".	   Yusuf,	  Y.Y.,	  M.	  Sarhadi,	  and	  A.	  Gunasekaran,	  Agile	  manufacturing::	  The	  drivers,	  concepts	  
and	  attributes.	  International	  Journal	  of	  Production	  Economics,	  3444.	  !"(!-‐!):	  p.	  !!-‐!".	  

!".	   Masood,	   T.,	   Enhanced	   Integrated	   Modelling	   Appraoch	   to	   Recon4iguring	   Manufacturing	  
Enterprises,	   in	   Wolfson	   School	   of	   Mechanical	   and	   Manufacturing	   Engineering.	   #$$%,	  
Loughborough	  University.	  p.	  !"#.	  

!".	   Gunasekaran,	   A.	   and	   Y.Y.	   Yusuf,	   Agile	   manufacturing:	   A	   taxonomy	   of	   strategic	   and	  
technological	   imperatives.	   International	   Journal	  of	  Production	  Research,	  5665.	  !"(!):	  p.	  
!"#$-‐!"#$.	  

!".	   Gunasekaran,	   A.,	   Agile	   manufacturing:	   enablers	   and	   an	   implementation	   framework.	  
International	  Journal	  of	  Production	  Research,	  5667.	  !"(!):	  p.	  !""#	  -‐	  !"#$.	  

!".	   Kidd,	  P.T.	  Agile	  Manufacturing:	  a	  strategy	  for	  the	  45st	  century.	  in	  Agile	  Manufacturing,	  IEE	  
Colloquium	  on.	  !""#.	  

!".	   Gupta,	  U.G.	  and	  R.O.	  Mittal.	  Quality,	  time,	  and	  innovation	  based	  performance	  measurement	  
system	  for	  agile	  anufacturing.	  in	  Annual	  Meeting	  of	  the	  Decision	  Sciences	  Institute.	  !""#.	  

!!.	   Backhouse,	   C.J.	   and	   N.D.	   Burns,	   Agile	   value	   chains	   for	   manufacturing-‐implications	   for	  
performance	  measures.	  International	  Journal	  of	  Agile	  Management	  Systems,	  5666.	  !(!):	  p.	  
!"-‐!".	  

!".	   Koren,	   Y.,	   U.	   Heisel,	   F.	   Jovane,	   T.	   Moriwaki,	   G.	   Pritschow,	   G.	   Ulsoy,	   and	   H.V.	   brussel,	  
Recon&igurable	  manufacturing	  systems,	  in	  manufacturing	  technologies	  for	  machines	  of	  the	  
future,	  A.	  dashchenko,	  Editor.	  !""#,	  Springer-‐Verlag:	  germany.	  p.	  !"#.	  

!".	   ElMaraghy,	   H.,	   Flexible	   and	   recon.igurable	   manufacturing	   systems	   paradigms.	  
International	  Journal	  of	  Flexible	  Manufacturing	  Systems,	  9::;.	  !"(!):	  p.	  !"#-‐!"#.	  

!".	   Koren,	  Y.,	  U.	  Heisel,	   F.	   Jovane,	  T.	  Moriwaki,	  G.	  Pritschow,	  G.	  Ulsoy,	   and	  H.	  Van	  Brussel,	  
Recon&igurable	  Manufacturing	  Systems.	  CIRP	  Annals	   -‐	  Manufacturing	  Technology,	   3444.	  
!"(!):	  p.	  !"#-‐!"#.	  

!".	   ElMaraghy,	   H.	   and	   H.P.	   Wiendahl,	   Changeability-‐An	   Introduction,	   in	   Changeable	   and	  
recon$igurable	  manufacturing	  systems,	  H.	  ElMaraghy,	  Editor.	  !""#,	  Springer-‐Verlag.	  

!".	   Bi,	   Z.M.,	   S.Y.T.	   Lang,	  W.	   Shen,	   and	   L.	  Wang,	  Recon&igurable	  manufacturing	   systems:	   the	  
state	  of	  the	  art.	  !""#,	  Taylor	  &	  Francis.	  p.	  !"#	  -‐	  !!".	  

!".	   Scholten,	   B.,	   A	   road	   to	   Integration:	   A	   guide	   to	   applying	   the	   ISA-‐!"	   standard	   in	  
manufacturing	  !""#,	  USA:	  ISA-‐Instrumentation,	  Systems,	  and	  Automation	  Society.	  

!".	   Colombo,	  A.W.,	  F.	   Jammes,	  H.	  Smit,	  R.	  Harrison,	  J.L.M.	  Lastra,	  and	  I.M.	  Delamer.	  Service-‐
oriented	  architectures	  for	  collaborative	  automation.	  in	  Industrial	  Electronics	  Society,	  3445.	  
IECON	  '(().	  +,st	  Annual	  Conference	  of	  IEEE.	  !""#.	  

!".	   McLeod,	   C.S.,	   Development	   of	   a	   toolkit	   for	   component-‐based	   automation	   systems,	   in	  
Wolfson	  School.	  #$%#,	  Loughborough	  University:	  Loughborough.	  

!".	   van	  der	  Wal,	   E.	   IEC	   %%&%	   or	   )%%&%	   :	   status	   of	   the	   Standard,.	   #$$%	   	   [cited	   #$$%;	  Available	  



 

130 
 

from:	  h"p://www.plcopen.org/pages/tc2_standards/iec_2262_or_72262/.	  
!".	   Hoske,	  M.T.,	  Choose	  the	  right	  programming	  language.	  Control	  Engineering,	  -../.	  !"(!):	  

p.	  !".	  
!!.	   John,	  K.-‐H.	  and	  M.	  Tiegelkamp,	  IEC	  %&&'&-‐!:	  Programming	  industrial	  automation	  systems.	  

!""#,	  Berlin	  Heidelberg:	  Springer-‐Verlag.	  
!".	   Estevez,	  E.,	  M.	  Marcos,	  E.	  Irisarri,	  F.	  Lopez,	  I.	  Sarachaga,	  and	  A.	  Burgos.	  A	  novel	  approach	  

to	   attain	   the	   true	   reusability	   of	   the	   code	   between	   different	   PLC	   programming	   tools.	   in	  
Factory	   Communication	   Systems,	   2334.	   WFCS	   2334.	   IEEE	   International	   Workshop	   on.	  
!""#.	  

!".	   Lee,	  S.,	  M.A.	  Ang,	   J.	  Lee,	  L.	  Lee,	  and	  D.M.	  Tilbury,	  Automatic	  generation	  of	   logic	   control.	  
!""#,	  Loughborough	  University,	  University	  of	  Michigan	  and	  Ford	  Motor	  Company.	  

!".	   Hajarnavis,	  V.	  and	  K.	  Young,	  An	  investigation	  into	  programmable	  logic	  controller	  software	  
design	  techniques	  in	  the	  automotive	  industry.	  Assembly	  Automation,	  0112.	  !"(!):	  p.	  !"-‐!".	  

!".	   Hajarnavis,	   V.	   and	   K.	   Young.	   A	   comparison	   of	   sequential	   function	   chart	   and	   object-‐
modelling	   PLC	   programming.	   in	  American	   Control	   Conference,	   0112.	   Proceedings	   of	   the	  
!""#.	  !""#.	  

!".	   Öhman,	  M.,	  S.	  Johansson,	  and	  K.-‐E.	  Årzén,	  Implementation	  aspects	  of	  the	  PLC	  standard	  IEC	  
!!"!-‐!.	  Control	  Engineering	  Practice,	  0112.	  !(!):	  p.	  !"#-‐!!!.	  

!".	   Ford	   Motor	   Company,	   Structured	   transfer-‐machine	   EDDI	   programming	   system	  
speci&ication.	  #$!".	  

!".	   Doughty,	  M.J.	  The	  need	  for	  standardisation	  of	  diagnostic	  techniques	  [for	  PLC	  programs].	  in	  
Advances	  in	  Software	  Engineering	  for	  PLC.	  !""#.	  

!".	   Lee,	   L.J.,	   A	   next	   generation	   manufacturing	   control	   system	   for	   a	   lean	   production	  
environment,	   in	   Wolfson	   school	   of	   mechanical	   and	   manufacturing	   engineering.	   !""#,	  
Loughborough	  University:	  Leicestershire.	  p.	  !"#.	  

!".	   Ford	  Motor	  Company,	  DVM$	  auto	  station	  engine	  assembly	  speci5ication.	  !""#.	  
!".	   Ford	  Motor	  Company,	  FAST	  PLC	  structure	  manual.	  !"#$.	  
!!.	   Roberts,	   R.,	   Zone	   Logic:	   A	   unique	   method	   of	   practical	   arti7icial	   intelligence.	   !"#",	  

Pennsylvania:	  Computer	  Books.	  
!".	   ThyssenKrupp	   System	   Engineering,	   Function	   oriented	   modularity:	   A	   programming	  

course.	  !""#:	  Bremen.	  
!".	   Lucas,	   M.R.,	   Understanding	   and	   assessing	   logic	   control	   design	   methodologies.	   !""#,	  

University	  of	  Michigan:	  Michigan.	  p.	  !!".	  
!".	   Jain,	  A.,	  D.	  Vera,	  and	  R.	  Harrison,	  Virtual	  commissioning	  of	  modular	  automation	  systems,	  

in	   !"th	   IFAC	   workshop	   on	   intelligent	   manufacturing	   systems.	   #$%$,	   Elsevier:	   Lisbon,	  
Portugal.	  

!".	   Estevez,	   E.	   and	   M.	   Marcos.	   An	   approach	   to	   use	   model	   driven	   design	   in	   industrial	  
automation.	   in	  Emerging	   Technologies	   and	   Factory	   Automation,	   7889.	   ETFA	   7889.	   IEEE	  
International	  Conference	  on.	  !""#.	  

!".	   Lucas,	  M.R.	  and	  D.M.	  Tilbury,	  A	  study	  of	  current	   logic	  design	  practices	   in	  the	  automotive	  
manufacturing	  industry.	  International	  Journal	  of	  Human-‐Computer	  Studies,	  /001.	  !"(!):	  
p.	  !"#-‐!"#.	  

!".	   Harrison,	   R.	   and	   A.W.	   Colombo.	   Collaborative	   automation	   from	   rigid	   coupling	   towards	  
dynamic	   recon,igurable	   production	   systems.	   in	   !"th	   IFAC	   World	   Congress.	   !""#.	   Czech	  
Republic:	  elsevier.	  

!".	   Spath,	   D.	   and	   R.	   Landwehr,	   Three-‐dimensional	   simulation	   and	   programming	   of	   PLC	  
controlled	  manufacturing	   systems.	   International	   Journal	   for	  Manufacturing	   Science	   and	  
Production,	  +,,-.	  Vol.%(!).	  

!".	   Spath,	  D.	   and	  U.	  Osmers.	  Virtual	   reality-‐an	  approach	   to	   improve	   the	  generation	  of	   fault	  
free	   software	   for	   programmable	   logic	   controllers	   (PLC).	   in	   Engineering	   of	   Complex	  
Computer	  Systems,	  .//0.	  Proceedings.,	  Second	  IEEE	  International	  Conference	  on.	  !""#.	  

!".	   Harrison,	   R.,	   S.M.	   Lee,	   and	   A.A.	   West.	   Lifecycle	   engineering	   of	   modular	   automated	  
machines.	   in	   Industrial	   Informatics,	   1223.	   INDIN	   '23.	   1223	   1nd	   IEEE	   International	  



 

131 
 

Conference	  on.	  !""#.	  
!".	   Magar,	   C.R.,	   N.	   Jazdi,	   and	   P.	   Gohner.	   Requirements	   on	   engineering	   tools	   for	   increasing	  

reuse	   in	   industrial	  automation.	   in	  Emerging	  Technologies	  &	  Factory	  Automation	  (ETFA),	  
!"##	  IEEE	  #'th	  Conference	  on.	  !"##.	  

!!.	   Brennan,	   R.W.,	   P.	   Vrba,	   P.	   Tichy,	   A.	   Zoitl,	   C.	   Sünder,	   T.	   Strasser,	   and	   V.	   Marik,	  
Developments	   in	   dynamic	   and	   intelligent	   recon3iguration	   of	   industrial	   automation.	  
Computers	  in	  Industry,	  1223.	  !"(!):	  p.	  !""-‐!"#.	  

!".	   Thapa,	   D.,	   C.M.	   Park,	   K.H.	   Han,	   S.C.	   Park,	   and	   G.-‐N.	   Wang,	   Architecture	   for	   modeling,	  
simulation,	  and	  execution	  of	  PLC	  based	  manufacturing	  system,	  in	  Proceedings	  of	  the	  /0th	  
Conference	  on	  Winter	  Simulation.	  !""#,	  Winter	  Simulation	  Conference:	  Miami,	  Florida.	  

!".	   Tu,	  Q.,	  M.A.	  Vonderembse,	  T.S.	  Ragu-‐Nathan,	  and	  B.	  Ragu-‐Nathan,	  Measuring	  Modularity-‐
Based	   Manufacturing	   Practices	   and	   Their	   Impact	   on	   Mass	   Customization	   Capability:	   A	  
Customer-‐Driven	  Perspective.	  Decision	  Sciences,	  +,,-.	  !"(!):	  p.	  !"#-‐!"#.	  

!".	   Baldwin,	  C.Y.	  and	  K.B.	  Clark,	  Design	  Rules:	  The	  power	  of	  modularity.	  !""",	  Boston:	  MIT	  
Press.	  

!".	   Schilling,	  M.A.,	  Toward	  	  a	  general	  modular	  systems	  theory	  and	  its	  appliation	  to	  inter2irm	  
product	   modularity,	   in	   Managing	   in	   the	   modular	   age:	   Architectures,	   Networks,	   and	  
organizations,	   R.	   Garud,	   A.	   Kumaraswamy,	   and	   R.N.	   Langlois,	   Editors.	   !""#,	   Blackwell	  
Publishing:	  Oxford.	  

!".	   Schafer,	  C.,	  On	  the	  modularity	  of	  manufacturing	  systems.	  Industrial	  Electronics	  Magazine,	  
IEEE,	  %&&'.	  !(!):	  p.	  !"-‐!".	  

!".	   Phaithoonbuathong,	   P.,	   Web	   service	   control	   of	   component-‐based	   agile	   manufacturing	  
systems,	  in	  Mechanical	  and	  Manufacturing	  Engineering.	  !""#,	  Loughborough	  University:	  
Loughborough.	  

!".	   McFarlane,	   D.	   Modular	   distributed	   manufacturing	   systems	   and	   the	   implications	   for	  
integrated	   control.	   in	  Choosing	   the	  Right	   Control	   Structure	   for	   Your	  Process	   (Digest	  No.	  
!""#/%#&),	  IEE	  Colloquium	  on.	  #$$!.	  

!".	   Vrba,	  P.,	  M.	  Radakovič,	  M.	  Obitko,	  and	  V.	  Mařík,	  Semantic	  technologies:	  latest	  advances	  in	  
agent-‐based	   manufacturing	   control	   systems.	   International	   Journal	   of	   Production	  
Research,	  *+,+.	  !"(!):	  p.	  !"#$-‐!"#$.	  

!".	   Leitão,	   P.,	   Agent-‐based	   distributed	   manufacturing	   control:	   A	   state-‐of-‐the-‐art	   survey.	  
Engineering	  Applications	  of	  Arti1icial	  Intelligence,	  4556.	  !!(!):	  p.	  !"!-‐!!".	  

!".	   Leitao,	  P.,	  V.	  Marik,	  and	  P.	  Vrba,	  Past,	  Present,	  and	  Future	  of	  Industrial	  Agent	  Applications.	  
Industrial	  Informatics,	  IEEE	  Transactions	  on,	  *+,*.	  PP(!!):	  p.	  !-‐!.	  

!!.	   Marik,	   V.,	   P.	   Vrba,	   K.H.	   Hall,	   and	   F.P.	   Maturana,	   Rockwell	   automation	   agents	   for	  
manufacturing,	  in	  Proceedings	  of	  the	  fourth	  international	  joint	  conference	  on	  Autonomous	  
agents	  and	  multiagent	  systems.	  #$$%,	  ACM:	  The	  Netherlands.	  p.	  !"#-‐!!".	  

!"".	   Hegny,	   I.,	   O.	   Hummer,	   A.	   Zoitl,	   G.	   Koppensteiner,	   and	  M.	  Merdan.	   Integrating	   software	  
agents	   and	   IEC	   ,-.//	   realtime	   control	   for	   recon7igurable	   distributed	   manufacturing	  
systems.	   in	   Industrial	   Embedded	   Systems,	   3445.	   SIES	   3445.	   International	   Symposium	   on.	  
!""#.	  

!"!.	   Colombo,	  A.W.,	  R.	  Schoop,	  P.	  Leitao,	  and	  F.	  Restivo.	  A	  collaborative	  automation	  approach	  
to	   distributed	   production	   systems.	   in	   Industrial	   Informatics,	   1223.	   INDIN	   '23.	   1223	   1nd	  
IEEE	  International	  Conference	  on.	  !""#.	  

!!".	   Szer-‐Ming,	  L.,	  R.	  Harrison,	  and	  A.A.	  West.	  A	  component-‐based	  distributed	  control	  system	  
for	   assembly	   automation.	   in	   Industrial	   Informatics,	   1223.	   INDIN	   '23.	   1223	   1nd	   IEEE	  
International	  Conference	  on.	  !""#.	  

!"#.	   Lee,	   S.,	   R.	   Harrison,	   and	   A.	   West,	   A	   component-‐based	   control	   system	   for	   agile	  
manufacturing.	  Proceedings	  of	  the	  Institution	  of	  Mechanical	  Engineers,	  Part	  B:	  Journal	  of	  
Engineering	  Manufacture,	  /001.	  !"#(!):	  p.	  !"#-‐!"#.	  

!"#.	   Jain,	  A.,	  D.A.	  Vera,	  and	  R.	  Harrison,	  Virtual	  comissioning	  of	  modular	  automation	  systems,	  
in	  !"th	  IFAC	  Workshop	  on	  Intelligent	  Manufacturing	  Systems.	  !"#":	  Portugal.	  

!"#.	   Bergert,	  M.	  and	  J.	  Kiefer,	  Mechatronic	  data	  models	  in	  production	  engineering,	  in	  !"th	  IFAC	  
Workshop	  on	  Intelligent	  Manufacturing	  System.	  #$%$,	  Elsevier:	  Lisbon,	  Portugal.	  p.	  !"-‐!".	  



 

132 
 

!"#.	   Schmidgall,	   G.,	   J.	   Kiefer,	   and	   B.	   Thomas.	   Objectives	   of	   integrated	   digital	   production	  
engineering	  in	  the	  automotive	  industry.	  in	  Proceedings	  of	  -.th	  IFAC	  World	  Congress.	  !""#.	  
Czech	  Republic:	  Elsevier.	  

!"#.	   Pinto,	   G.,	   Simulation	   in	   a	   virtual	   environment	   to	   operate	  with	   an	   automatic	   production	  
line	  used	  in	  the	  automotive	  industry,	  in	  SAE	  technical	  paper	  series.	  !"#".	  

!"#.	   Danielsson,	  K.,	   J.	  Richardssorn,	  B.	  Lennartson,	  and	  M.	  Fabian.	  Automatic	  scheduling	  and	  
veri%ication	   of	   the	   control	   function	   of	   +lexible	   assembly	   cells	   in	   an	   information	   reuse	  
environment.	   in	   Assembly	   and	   Task	   Planning:	   From	   Nano	   to	   Macro	   Assembly	   and	  
Manufacturing,	  -../.	  (ISATP	  -../).	  The	  :th	  IEEE	  International	  Symposium	  on.	  !""#.	  

!"#.	   Ljungkrantz,	   O.,	   K.	   Akesson,	   J.	   Richardsson,	   and	  K.	   Andersson.	   Implementing	   a	   Control	  
System	   Framework	   for	   Automatic	   Generation	   of	   Manufacturing	   Cell	   Controllers.	   in	  
Robotics	  and	  Automation,	  0112	  IEEE	  International	  Conference	  on.	  !""#.	  

!!".	   Steinegger,	   M.	   and	   A.	   Zolti,	   Automated	   Code	   Generation	   for	   Programmable	   Logic	  
Controllers	  based	  on	  Knowledge	  Acquisition	  from	  Engineering	  Artifacts:	  Concept	  and	  Case	  
Study,	   in	   !"th	   International	   Conference	   on	   Emerging	   Technologies	   and	   Factory	  
Automation	  (ETFA	  ./0.).	  !"#!	  Kraków,	  Poland.	  

!!!.	   Hundt,	   L.,	   A.	   Luder,	   A.	   Kohlein,	   and	  N.	   Gewald.	  Methodology	   for	   the	   evaluation	   of	   tools	  
with	   respect	   to	   its	   applicability	   within	   mechatronical	   engineering.	   in	   Emerging	  
Technologies	  &	  Factory	  Automation	  (ETFA),	  9:;;	  IEEE	  ;=th	  Conference	  on.	  !"##.	  

!!".	   Ang,	   M.,	   R.	   Harrison,	   J.	   Lee,	   L.	   Lee,	   S.	   Lee,	   and	   D.M.	   Tilbury,	   A	   comparison	   study	   of	  
automatic	   logic	  control	  generation	  tools	   for	   industrial	  manufacturing	  control	  systems,	   in	  
!nd	  international	  conference	  on	  changeable,	  agile,	  recon2igurable,	  and	  virtual	  production.	  
!""#:	  Toronto,	  Ontario,	  Canada.	  

!!".	   Ljungkrantz,	  O.	   and	  K.	  Akesson.	  A	  Study	  of	   Industrial	  Logic	  Control	  Programming	  using	  
Library	   Components.	   in	   Automation	   Science	   and	   Engineering,	   2334.	   CASE	   2334.	   IEEE	  
International	  Conference	  on.	  !""#.	  

!!".	   Frey,	   G.	   and	   L.	   Litz.	   Formal	   methods	   in	   PLC	   programming.	   in	   Systems,	   Man,	   and	  
Cybernetics,	  -...	  IEEE	  International	  Conference	  on.	  !""".	  

!!".	   Uzam,	   M.,	   H.	   Jones,	   and	   I.	   Yücel,	   Using	   a	   Petri-‐Net-‐Based	   Approach	   for	   the	   Real-‐Time	  
Supervisory	  Control	  of	  an	  Experimental	  Manufacturing	  System.	  The	  International	  Journal	  
of	  Advanced	  Manufacturing	  Technology,	  6777.	  !"(!):	  p.	  !"#-‐!"!.	  

!!".	   Feldmann,	   K.,	   A.W.	   Colombo,	   C.	   Schnur,	   and	   T.	   Stockel,	   Speci&ication,	   design,	   and	  
implementation	   of	   logic	   controllers	   based	   on	   colored	   Petri	   net	  models	   and	   the	   standard	  
IEC	  %%&%.	  II.	  Design	  and	  implementation.	  Control	  Systems	  Technology,	  IEEE	  Transactions	  
on,	  %&&&.	  !(!):	  p.	  !!!-‐!"#.	  

!!".	   Lee,	  J.S.	  and	  P.L.	  Hsu,	  An	  improved	  evaluation	  of	  ladder	  logic	  diagrams	  and	  Petri	  nets	  for	  
the	   sequence	   controller	   design	   in	   manufacturing	   systems.	   The	   International	   Journal	   of	  
Advanced	  Manufacturing	  Technology,	  6778.	  !"(!):	  p.	  !"#-‐!"#.	  

!!".	   Hajarnavis,	  V.	  and	  K.	  Young,	  An	  Assessment	  of	  PLC	  Software	  Structure	  Suitability	   for	  the	  
Support	  of	  Flexible	  Manufacturing	  Processes.	  Automation	  Science	  and	  Engineering,	  IEEE	  
Transactions	  on,	  ,--..	  !(!):	  p.	  !"#-‐!"#.	  

!!".	   Endsley,	  E.W.,	  E.E.	  Almeida,	  and	  D.M.	  Tilbury,	  Modular	  )inite	  state	  machines:	  Development	  
and	   application	   to	   recon-igurable	   manufacturing	   cell	   controller	   generation.	   Control	  
Engineering	  Practice,	  -../.	  !"(!"):	  p.	  !!"#-‐!!"#.	  

!"#.	   Thapa,	   D.,	   S.C.	   Park,	   C.M.	   Park,	   and	   G.-‐N.	   Wang,	   Modeling,	   veri-ication,	   and	  
implementation	   of	   PLC	   program	   using	   timed-‐MPSG,	   in	  Proceedings	   of	   the	   /001	   summer	  
computer	   simulation	   conference.	   !""#,	   Society	   for	   Computer	   Simulation	   International:	  
San	  Diego,	  California.	  p.	  !""-‐!"#.	  

!"!.	   Park,	   C.M.,	   S.	   Park,	   and	   G.-‐N.	   Wang,	   Control	   logic	   veri-ication	   for	   an	   automotive	   body	  
assembly	   line	   using	   simulation.	   International	   Journal	   of	   Production	   Research,	   )**+.	  
!"(!"):	  p.	  !"#$-‐!"#$.	  

!"".	   Ljungkrantz,	   O.,	   K.	   Akesson,	   M.	   Fabian,	   and	   Y.	   Chengyin,	   Formal	   Speci-ication	   and	  
Veri%ication	   of	   Industrial	   Control	   Logic	   Components.	   Automation	   Science	   and	  
Engineering,	  IEEE	  Transactions	  on,	  0121.	  !("):	  p.	  (")-‐!"#.	  



 

133 
 

!"#.	   Lucas,	   M.R.	   and	   D.M.	   Tilbury.	   Comparing	   industrial	   logic	   design	   methods	   used	   in	   the	  
automotive	   industry.	   in	   Systems,	   Man	   and	   Cybernetics,	   2334.	   IEEE	   International	  
Conference	  on.	  !""#.	  

!"#.	   Pellicciari,	  M.,	  A.	  Andrisano,	  F.	  Leali,	  and	  A.	  Vergnano,	  Engineering	  method	  for	  adaptive	  
manufacturing	   systems	   design.	   International	   Journal	   on	   Interactive	   Design	   and	  
Manufacturing	  (IJIDeM),	  3445.	  !(!):	  p.	  !"-‐!".	  

!"#.	   Flordal,	  H.,	  M.	  Fabian,	  K.	  Åkesson,	  and	  D.	  Spensieri,	  Automatic	  model	  generation	  and	  PLC-‐
code	  implementation	  for	  interlocking	  policies	  in	  industrial	  robot	  cells.	  Control	  Engineering	  
Practice,	  *++,.	  !"(!!):	  p.	  !"!#-‐!"#$.	  

!"#.	   Harrison,	   R.,	   A	   component-‐based	   control	   system	   for	   agile	   manufacturing.	   Engineering	  
Manufacture,	  !""#.	  

!"#.	   Vera,	   D.A.,	   A.	   West,	   and	   R.	   Harrison,	   Innovative	   virtual	   prototyping	   environment	   for	  
recon&igurable	   manufacturing	   system	   engineering.	   Proceedings	   of	   the	   Institution	   of	  
Mechanical	  Engineers,	  Part	  B:	  Journal	  of	  Engineering	  Manufacture,	  7889.	  !!"(!):	  p.	  !"#-‐
!"#.	  

!"#.	   Kong,	   X.,	  An	   approach	   to	   open	   virtual	   commissioning	   for	   component-‐based	   automation,	  
Doctoral	   Thesis,	   in	  Wolfson	   School	   of	  Mechanical	   and	  Manufacturing	   Engineering.	  !"#$,	  
Loughborough	  University:	  Loughborough,	  Leicestershire.	  

!"#.	   Lucas,	  M.	  and	  D.	  Tilbury.	  Quantitative	  and	  qualitative	  comparisons	  of	  PLC	  programs	  for	  a	  
small	   testbed	   with	   a	   focus	   on	   human	   issues.	   in	   American	   Control	   Conference,	   0110.	  
Proceedings	  of	  the	  /00/.	  !""!.	  IEEE.	  

!"#.	   Hajarnavis,	   V.	   and	   K.	   Young.	   A	   comparison	   of	   sequential	   function	   chart	   and	   object-‐
modelling	   PLC	   programming.	   in	  American	   Control	   Conference,	   0112.	   Proceedings	   of	   the	  
!""#.	  !""#.	  IEEE.	  

!"!.	   Siemens.	   Siemens	   industry	   online	   support.	   n.d.	   	   [cited	   *+,-	   ,.	   Nov	   ];	   Available	   from:	  
h"p://support.automa.on.siemens.com/WW/llisapi.dll?func=cslib.csinfo&lang=en&
objid='()*+,-&caller=view.	  

!"#.	   Lee,	  S.-‐M.,	  R.	  Harrison,	  and	  A.A.	  West.	  A	  component-‐based	  distributed	  control	  system	   for	  
assembly	   automation.	   in	   Industrial	   Informatics,	   1223.	   INDIN	   '23.	   1223	   1nd	   IEEE	  
International	  Conference	  on.	  !""#.	  

!"".	   Delsing,	   J.,	   J.	   Eliasson,	   R.	   Kyusakov,	   A.W.	   Colombo,	   F.	   Jammes,	   J.	   Nessaether,	   S.	  
Karnouskos,	  and	  C.	  Diedrich.	  A	  migration	  approach	  towards	  a	  SOA-‐based	  next	  generation	  
process	  control	  and	  monitoring.	  in	  IECON	  '())	  -‐	  !"th	  Annual	  Conference	  on	  IEEE	  Industrial	  
Electronics	  Society.	  !"##.	  

!"#.	   Bohn,	   H.,	   A.	   Bobek,	   and	   F.	   Golatowski.	   SIRENA	   -‐	   Service	   Infrastructure	   for	   Real-‐time	  
Embedded	   Networked	   Devices:	   A	   service	   oriented	   framework	   for	   different	   domains.	   in	  
Networking,	  International	  Conference	  on	  Systems	  and	  International	  Conference	  on	  Mobile	  
Communications	   and	   Learning	   Technologies,	   5667.	   ICN/ICONS/MCL	   5667.	   International	  
Conference	  on.	  #$$!.	  

!"#.	   AESOP.	   Architecture	   for	   service-‐oriented	   process.	   n.d.	   	   [cited	   *+,-	   *.	   November];	  
Available	  from:	  h"p://www.imc-‐aesop.eu.	  



 

134 
 

Publications 

! Ahmad, B., Kong, X., Harrison, R., Watermann, J., Colombo, A. W., (2013) “Automatic 

generation of Human Machine Interface screens from component-based reconfigurable virtual 

manufacturing cell” In Proceedings of Annual Conference of the IEEE Industrial Electronics 

Society, IECON 2013-39th, Vienna, Austria 

! Kaur, N., McLeod, C. S., Jain, A. , Harrison, R. , Ahmad, B. , Colombo, A. W. & Delsing 

(2013) “Design and simulation of a SOA-based system of Systems for automation in the resi-

dential sector” In Proceedings of IEEE International Conference on Industrial Technology 

(ICIT), South Africa 

! X. Kong, B. Ahmad, R. Harrison, Y. Park, Leslie J Lee (2012), “Direct deployment of com-

ponent-based automation systems” In Proceedings of IEEE International Conference on 

Emerging Technologies and Factory Automation (ETFA), Krakow, Poland 

! Kong, X., Ahmad, B., Harrison, R., Jain, A., Park, Y., Lee, L., (2011), “Realising the open 

virtual commissioning of modular automation systems”, Proceedings of the 7th CIRP Interna-

tional Conference on Digital Enterprise Technology (DET), Athens, Greece 

! Haq, I., Masood, I., Ahmad, B., Raza, B., Monfared, R., Harrison, R., (2011), “Product to 

process lifecycle management in assembly automation systems”, Proceedings of the 7th CIRP 

International Conference on Digital Enterprise Technology (DET), Athens, Greece 

 


