3,032 research outputs found

    An Overview of the Use of Neural Networks for Data Mining Tasks

    Get PDF
    In the recent years the area of data mining has experienced a considerable demand for technologies that extract knowledge from large and complex data sources. There is a substantial commercial interest as well as research investigations in the area that aim to develop new and improved approaches for extracting information, relationships, and patterns from datasets. Artificial Neural Networks (NN) are popular biologically inspired intelligent methodologies, whose classification, prediction and pattern recognition capabilities have been utilised successfully in many areas, including science, engineering, medicine, business, banking, telecommunication, and many other fields. This paper highlights from a data mining perspective the implementation of NN, using supervised and unsupervised learning, for pattern recognition, classification, prediction and cluster analysis, and focuses the discussion on their usage in bioinformatics and financial data analysis tasks

    Fully automatic classification of breast cancer microarray images

    Get PDF
    AbstractA microarray image is used as an accurate method for diagnosis of cancerous diseases. The aim of this research is to provide an approach for detection of breast cancer type. First, raw data is extracted from microarray images. Determining the exact location of each gene is carried out using image processing techniques. Then, by the sum of the pixels associated with each gene, the amount of “genes expression” is extracted as raw data. To identify more effective genes, information gain method on the set of raw data is used. Finally, the type of cancer can be recognized via analyzing the obtained data using a decision tree. The proposed approach has an accuracy of 95.23% in diagnosing the breast cancer types

    GOexpress: an R/Bioconductor package for the identification and visualisation of robust gene ontology signatures through supervised learning of gene expression data

    Get PDF
    Background: Identification of gene expression profiles that differentiate experimental groups is critical for discovery and analysis of key molecular pathways and also for selection of robust diagnostic or prognostic biomarkers. While integration of differential expression statistics has been used to refine gene set enrichment analyses, such approaches are typically limited to single gene lists resulting from simple two-group comparisons or time-series analyses. In contrast, functional class scoring and machine learning approaches provide powerful alternative methods to leverage molecular measurements for pathway analyses, and to compare continuous and multi-level categorical factors. Results: We introduce GOexpress, a software package for scoring and summarising the capacity of gene ontology features to simultaneously classify samples from multiple experimental groups. GOexpress integrates normalised gene expression data (e.g., from microarray and RNA-seq experiments) and phenotypic information of individual samples with gene ontology annotations to derive a ranking of genes and gene ontology terms using a supervised learning approach. The default random forest algorithm allows interactions between all experimental factors, and competitive scoring of expressed genes to evaluate their relative importance in classifying predefined groups of samples. Conclusions: GOexpress enables rapid identification and visualisation of ontology-related gene panels that robustly classify groups of samples and supports both categorical (e.g., infection status, treatment) and continuous (e.g., time-series, drug concentrations) experimental factors. The use of standard Bioconductor extension packages and publicly available gene ontology annotations facilitates straightforward integration of GOexpress within existing computational biology pipelines.Department of Agriculture, Food and the MarineEuropean Commission - Seventh Framework Programme (FP7)Science Foundation IrelandUniversity College Dubli

    Classification of microarray gene expression cancer data by using artificial intelligence methods

    Get PDF
    Günümüzde bilgisayar teknolojilerinin gelişmesi ile birçok alanda yapılan çalışmaları etkilemiştir. Moleküler biyoloji ve bilgisayar teknolojilerinde meydana gelen gelişmeler biyoinformatik adlı bilimi ortaya çıkarmıştır. Biyoinformatik alanında meydana gelen hızlı gelişmeler, bu alanda çözülmeyi bekleyen birçok probleme çözüm olma yolunda büyük katkılar sağlamıştır. DNA mikroarray gen ekspresyonlarının sınıflandırılması da bu problemlerden birisidir. DNA mikroarray çalışmaları, biyoinformatik alanında kullanılan bir teknolojidir. DNA mikroarray veri analizi, kanser gibi genlerle alakalı hastalıkların teşhisinde çok etkin bir rol oynamaktadır. Hastalık türüne bağlı gen ifadeleri belirlenerek, herhangi bir bireyin hastalıklı gene sahip olup olmadığı büyük bir başarı oranı ile tespit edilebilir. Bireyin sağlıklı olup olmadığının tespiti için, mikroarray gen ekspresyonları üzerinde yüksek performanslı sınıflandırma tekniklerinin kullanılması büyük öneme sahiptir. DNA mikroarray’lerini sınıflandırmak için birçok yöntem bulunmaktadır. Destek Vektör Makinaları, Naive Bayes, k-En yakın Komşu, Karar Ağaçları gibi birçok istatistiksel yöntemler yaygın olarak kullanlmaktadır. Fakat bu yöntemler tek başına kullanıldığında, mikroarray verilerini sınıflandırmada her zaman yüksek başarı oranları vermemektedir. Bu yüzden mikroarray verilerini sınıflandırmada yüksek başarı oranları elde etmek için yapay zekâ tabanlı yöntemlerin de kullanılması yapılan çalışmalarda görülmektedir. Bu çalışmada, bu istatistiksel yöntemlere ek olarak yapay zekâ tabanlı ANFIS gibi bir yöntemi kullanarak daha yüksek başarı oranları elde etmek amaçlanmıştır. İstatistiksel sınıflandırma yöntemleri olarak K-En Yakın Komşuluk, Naive Bayes ve Destek Vektör Makineleri kullanılmıştır. Burada Göğüs ve Merkezi Sinir Sistemi kanseri olmak üzere iki farklı kanser veri seti üzerinde çalışmalar yapılmıştır. Sonuçlardan elde edilen bilgilere göre, genel olarak yapay zekâ tabanlı ANFIS tekniğinin, istatistiksel yöntemlere göre daha başarılı olduğu tespit edilmiştir

    Computational models and approaches for lung cancer diagnosis

    Full text link
    The success of treatment of patients with cancer depends on establishing an accurate diagnosis. To this end, the aim of this study is to developed novel lung cancer diagnostic models. New algorithms are proposed to analyse the biological data and extract knowledge that assists in achieving accurate diagnosis results

    Interval-valued analysis for discriminative gene selection and tissue sample classification using microarray data

    Get PDF
    AbstractAn important application of gene expression data is to classify samples in a variety of diagnostic fields. However, high dimensionality and a small number of noisy samples pose significant challenges to existing classification methods. Focused on the problems of overfitting and sensitivity to noise of the dataset in the classification of microarray data, we propose an interval-valued analysis method based on a rough set technique to select discriminative genes and to use these genes to classify tissue samples of microarray data. We first select a small subset of genes based on interval-valued rough set by considering the preference-ordered domains of the gene expression data, and then classify test samples into certain classes with a term of similar degree. Experiments show that the proposed method is able to reach high prediction accuracies with a small number of selected genes and its performance is robust to noise

    An efficient statistical feature selection approach for classification of gene expression data

    Get PDF
    AbstractClassification of gene expression data plays a significant role in prediction and diagnosis of diseases. Gene expression data has a special characteristic that there is a mismatch in gene dimension as opposed to sample dimension. All genes do not contribute for efficient classification of samples. A robust feature selection algorithm is required to identify the important genes which help in classifying the samples efficiently. In order to select informative genes (features) based on relevance and redundancy characteristics, many feature selection algorithms have been introduced in the past. Most of the earlier algorithms require computationally expensive search strategy to find an optimal feature subset. Existing feature selection methods are also sensitive to the evaluation measures. The paper introduces a novel and efficient feature selection approach based on statistically defined effective range of features for every class termed as ERGS (Effective Range based Gene Selection). The basic principle behind ERGS is that higher weight is given to the feature that discriminates the classes clearly. Experimental results on well-known gene expression datasets illustrate the effectiveness of the proposed approach. Two popular classifiers viz. Nave Bayes Classifier (NBC) and Support Vector Machine (SVM) have been used for classification. The proposed feature selection algorithm can be helpful in ranking the genes and also is capable of identifying the most relevant genes responsible for diseases like leukemia, colon tumor, lung cancer, diffuse large B-cell lymphoma (DLBCL), prostate cancer

    Cancer prediction using graph-based gene selection and explainable classifier

    Get PDF
    Several Artificial Intelligence-based models have been developed for cancer prediction. In spite of the promise of artificial intelligence, there are very few models which bridge the gap between traditional human-centered prediction and the potential future of machine-centered cancer prediction. In this study, an efficient and effective model is developed for gene selection and cancer prediction. Moreover, this study proposes an artificial intelligence decision system to provide physicians with a simple and human-interpretable set of rules for cancer prediction. In contrast to previous deep learning-based cancer prediction models, which are difficult to explain to physicians due to their black-box nature, the proposed prediction model is based on a transparent and explainable decision forest model. The performance of the developed approach is compared to three state-of-the-art cancer prediction including TAGA, HPSO and LL. The reported results on five cancer datasets indicate that the developed model can improve the accuracy of cancer prediction and reduce the execution time

    A genetic algorithm approach for predicting ribonucleic acid sequencing data classification using KNN and decision tree

    Get PDF
    Malaria larvae accept explosive variable lifecycle as they spread across numerous mosquito vector stratosphere. Transcriptomes arise in thousands of diverse parasites. Ribonucleic acid sequencing (RNA-seq) is a prevalent gene expression that has led to enhanced understanding of genetic queries. RNA-seq tests transcript of gene expression, and provides methodological enhancements to machine learning procedures. Researchers have proposed several methods in evaluating and learning biological data. Genetic algorithm (GA) as a feature selection process is used in this study to fetch relevant information from the RNA-Seq Mosquito Anopheles gambiae malaria vector dataset, and evaluates the results using kth nearest neighbor (KNN) and decision tree classification algorithms. The experimental results obtained a classification accuracy of 88.3 and 98.3 percents respectively
    corecore