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An important application of gene expression data is to classify samples in a variety of diagnostic fields. However,
high dimensionality and a small number of noisy samples pose significant challenges to existing classification
methods. Focused on the problems of overfitting and sensitivity to noise of the dataset in the classification of
microarray data, we propose an interval-valued analysis method based on a rough set technique to select
discriminative genes and to use these genes to classify tissue samples of microarray data. We first select a
small subset of genes based on interval-valued rough set by considering the preference-ordered domains of
the gene expression data, and then classify test samples into certain classes with a term of similar degree. Exper-
iments show that the proposedmethod is able to reach high prediction accuracies with a small number of select-
ed genes and its performance is robust to noise.

© 2012 Elsevier Inc. All rights reserved.
1. Introduction

Microarray technology allows simultaneous measurement of the
expression levels of thousands of genes within a biological tissue sam-
ple. An important application of gene expression is to classify samples
according to their gene expression profiles, such as the diagnosis or
the classification of different types or subtypes of cancer [1,2]. Different
classification methods from statistical and machine learning have been
applied to the classification of cancer. However, high dimensionality
and a small number of noisy samples pose great challenges to the
existing methods. The main approach to this problem has been based
on using the existing algorithms to analyze gene expression data. For
example, support vector machines (SVM) [3], neural networks (NN)
[4], logistic regression (LR) [5] and k-nearest neighbor (k-NN) [6]
have all been utilized. Most of these classifiers involve complex models
containing numerous genes. This has limited the interpretability of the
classifiers and this lack of interpretability hampers the acceptance of
diagnostic tools. Classification models based on numerous genes can
also be more difficult to transfer to other assay platforms, which may
bemore suitable for clinical application. Several authors have suggested
that simple models could perform well in areas such as microarray
based cancer prediction [7–9,2]. Investigations have indicated that
classifiers could be developed to contain a few genes that provide clas-
sification accuracy comparable to that achieved by models that are
more complex. Moreover, some more complex algorithms based on
numerous genes for classification often overfit the data [10–12].
: +86 511 84404905.

rights reserved.
Prior to classification, a variety of gene selection strategies have been
used. The aim of gene selection is to select a small subset of genes froma
larger pool. Gene selection methods are classified into three types:
(1) filter methods, (2) wrapper methods, and (3) embedded methods.
Filter methods evaluate a subset of genes by looking at the intrinsic
characteristics of data with respect to class labels, while wrapper
methods evaluate the goodness of a gene subset by the accuracy of its
learning or classification. Embedded methods are generally referred to
as algorithms, where gene selection is embedded in the construction
of the classifier. In the gene selection process, an optimal feature subset
is always relative to a certain criterion. Every criterionmeasures the dis-
criminating ability of a gene or a subset of genes to distinguish different
class labels. To measure the gene–class relevance, different statistical
and theoretical measures such as the t-test, entropy and mutual infor-
mation are typically used [13–15], and different metrics including the
Euclidean distance and correlation coefficient [16,17] are employed to
calculate the gene–gene redundancy. However, as the t-test, Euclidean
distance, and the correlation coefficient depend on the actual gene
expression values of the microarray data, they are very sensitive to
noise or outliers within the dataset [18,19].

Rough set theory is a new paradigm to address uncertainty, vague-
ness, and incompleteness [20]. It has been applied to a number of
methods, including the fuzzy rule extraction, reasoningwith uncertain-
ty, fuzzy modeling, feature selection and microarray data analysis
[21,22,6,23–25,14]. Rough set theory was initially developed for a finite
universe of discourse in which the knowledge base is a partition,
obtained by any equivalence relationship defined on the universe of
discourse. In rough set theory, the data are organized in a table,
known as a decision table. Rows of the decision table correspond to
objects, and columns correspond to attributes. In the dataset, a class

http://dx.doi.org/10.1016/j.ygeno.2012.09.004
mailto:qys@ujs.edu.cn
http://dx.doi.org/10.1016/j.ygeno.2012.09.004
http://www.sciencedirect.com/science/journal/08887543


39Y. Qi, X. Yang / Genomics 101 (2013) 38–48
label indicates the class to which each row belongs. The class label is
termed a decision attribute; the remaining attributes are termed condi-
tion attributes. Rough set theory distinguishes itself fromothermachine
learning and pattern recognition methods through three notions of
indiscernibility, approximation, and reduction of attributes (introduced
in Sections 2.2 and 3.4). The first defines a relationship stating that two
objects are only equivalent under a selection of attributes. The second
gives the ability to define an unknown set of boundaries through the
analysis of how that set relates to the objects in the universe. The third
allows for the reduction of irrelevant information, thus saving valuable
resources. These three important concepts give rough set theory an
advantage over other classical methods as it does not need any prelimi-
nary or additional information about the data: for example, probability in
statistics or grade of membership or the value of possibility in fuzzy set
theory, all require further information. The characteristics of themicroar-
ray data — small sample size and very large dimensionality, create new
challenges in obtaining preliminary information.

In practice, discretization is a common preprocess before rough set
based mining on gene expression data, which transforms continuous
gene expression levels to categorical item sets [26,27]. If a particular
gene's expression level is higher than the discretization threshold,
the gene is considered as expressed, otherwise it is considered
unexpressed. Obviously, a lot of information is lost in the above trans-
formation of the dataset with the noise, which is especially inherent
in the microarray data [28]. Previous research has shown that handling
uncertainty in such applications by the representation as interval data
leads to accurate learning algorithms [29,30].

In this study, we propose an interval-valued analysis method to
select discriminative genes, and to use these genes to classify tissue
samples of microarray data. We first select a small subset of genes
based on interval-valued rough set by considering the preference-
ordered domains of the gene expression data, and then classifying a
test sample into a certain class with a term of similar degree.

To summarize the process:

• The interval-valued decision table of the microarray is generated. In
the decision table, each row corresponds to a class of tissue samples,
and each column (condition attribute) corresponds to a gene's
expression value over all classes of samples. To generate the decision
table, the decision attribute is the average gene expression value of a
class, and the condition attribute is the value of the 1st quartile and
the 3rd quartile of the gene expression value within a class.

• In the gene selection step, our objective is to determine the reducts
that discern between objects belonging to different classes. The
reduct, from rough set theory, corresponds to aminimal subset of dis-
criminative genes. The ordered process of this algorithm is described
in Section 4.1.

• The tissue sample classification is based on the selected genes. The
proposed interval-valued classification method classifies a sample
into a class with the maximum similar degrees.

To facilitate our discussion, we first present the basic notions in
Section 2. Section 3 presents the discernibility approach to compute
reducts from the compared dominance relationships. In Section 4, we
describe our gene selection and tissue sample classification method. In
Section 5, we apply our approach to the analysis of real microarray
data. In this section, we also discuss RNA-sequencing data, the data
from next-generation sequencing technologies, and analysis using the
proposedmethod. Finally, Section 6, summarizes our approach and pre-
sents our conclusions.

2. Preliminaries

2.1. Microarray dataset

A microarray dataset is a gene expression matrix, in which each
column represents a gene and each row represents a sample (or
experiment) with a class label. Let G={g1,⋯,gn} be a set of genes
and U={s1,⋯, sm} be a set of samples. The corresponding gene expres-
sion matrix can be represented asX ¼ xi;j

� �
m�n, where xi, j is the expres-

sion level of gene gj in sample si, and usually n≫m. Here m is the
number of samples, and n is the number of genes. The matrix X is com-
posed of m row vectors si∈Rn, i=1,2,⋯,m. Each vector si in the gene
expression matrix may be regarded as a point in n-dimensional space,
and each of the n columns consists of an m-element expression vector
for a single gene.

A microarray dataset can be regarded as a decision table S ¼
bU;AT∪d;V ; f >, where U denotes the set of samples, AT denotes the
set of the condition attributes (genes), d denotes the decision attribute
(class label), V is the domain of AT∪d, and xi,j= f(si,gj).

2.2. Rough set

An information system is a 4-tuple, where S ¼ bU;A;V ; f >. U is a
non-empty and finite set of objects, called as universe; A is a
non-empty and finite set of attributes, such that ∀a∈A :U→Va, where
Va is the domain of attribute a; V is regarded as the domain of all attri-
butes such that V=VA=∪a∈AVa; f(x,a) is the value that x holds on
a(∀x∈U,a∈A).

A decision table is an information system S ¼ bU;AT∪d;V ; f >,
where d∉AT. d is a complete attribute called a decision, and AT is the
condition attribute set.

For an information system S, it is possible to describe relationships
between objects through their attribute values.With respect to a subset
of attributes such that A AT, an indiscernibility relationship IND(A) [31]
may be defined as:

IND Að Þ ¼ x; yð Þ∈U2
: ∀a∈A; f x; að Þ ¼ f y; að Þ

n o
:

IND(A) is an equivalence relationship because it is reflexive, sym-
metrical and transitive. With the relationship IND(A), two objects are
considered to be indiscernible if, and only if, they have the same value
on each a∈A.

Based on the indiscernibility relationship IND(A), it is possible to
derive the lower and upper approximations of an arbitrary subset X
of U, which are defined as [31]:

�A Xð Þ ¼ x∈U : x½ �A⊂X
� �

and A Xð Þ ¼ x∈U : x½ �A∩X≠ϕ
� �

respectively, where [x]A={y∈U :(x,y)∈ IND(A)} is the A-equivalence

class containing x. The pair �A Xð Þ;A Xð Þ
h i

is referred to as the Pawlak

rough set of X with respect to the subset of attributes A.

2.3. Inclusion degree

A partial order on a set X has a binary relationship ⪯ with the fol-
lowing properties: x⪯x (reflexive), x⪯y and y⪯x imply x=y (anti-
symmetric), x⪯y and y⪯z imply x⪯z (transitive).

Definition 1. [32,33] Let (X,⪯) be a partially ordered set. If for any
x,y∈X, there is a real number I y=xð Þ with the following properties:
(1) 0≤I y=xð Þ≤1; (2) x⪯y implies I y=xð Þ ¼ 1; (3) x⪯y⪯z implies
I x=zð Þ≤I x=yð Þ; then I is called an inclusion degree on X.

For an information system S, U is the universe, the collection of all
normal fuzzy subsets of U is denoted by F 0 Uð Þ. Let F1; F2∈F 0 Uð Þ, if
μF1 xð Þ≤μF2 xð Þ for all x∈U, then F1 F2. It is well known that
F 0 Uð Þ;pð Þ is a partially ordered set.

Definition 2. [34] Suppose that F 0 Uð Þ;pð Þ is a partially ordered set,
then I is an inclusion degree on F 0 Uð Þ, if the following conditions
hold: (1) 0≤I F2=F1ð Þ≤1; (2) F1pF2⇒I F2=F1ð Þ ¼ 1; (3) F1 F2 F3⇒
I F1=F3ð Þ≤I F1=F2ð Þ, where F1; F2; F3∈F 0 Uð Þ.



Table 1
Car evaluations.

U a1 a2 a3 a4 d

x1 [0.85,0.95] [0.84,0.90] [0.70,0.80] [0.70,0.85] 0.80
x2 [0.65,0.80] [0.70,0.85] [0.70,0.75] [0.65,0.80] 0.75
x3 [0.70,0.80] [0.70,0.80] [0.65,0.72] [0.30,0.50] 0.60
x4 [0.60,0.75] [0.75,0.85] [0.82,0.90] [0.70,0.80] 0.70
x5 [0.50,0.69] [0.50,0.65] [0.55,0.60] [0.40,0.60] 0.65
x6 [0.30,0.61] [0.60,0.71] [0.20,0.50] [0.30,0.50] 0.55
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Proposition 1. [34] If I1; I2 are defined as:

(1) I1 F2=F1ð Þ ¼ min
�
μF1 xð Þ∩μF2 xð Þ : x∈U; μF1 xð Þ ¼ 1

�
;

(2) I2 F2=F1ð Þ ¼ max
�
μF1 xð Þ∩μF2 xð Þ : x∈U

�
;

where F1,F2∈F0(U), then I1; I2 are inclusion degrees on (F0(U),p).

2.4. Fuzzy dominance-based rough set

The Dominance-based Rough Set Approach (DRSA) is a new im-
provement of Pawlak's rough set model aimed to deal with information
systems with preference-ordered domains of the attributes. Greco et al.
further generalized DRSA into a fuzzy environment and then proposed
the fuzzy dominance-based rough set [35]. In their generalized
approach, the target is a fuzzy set instead of the decision tables.

In the decision table S, if AT={a1,⋯,am} is the set of condition attri-
butes, and d is the decision attribute, thenwe consider a universe of dis-
course U and m+1 fuzzy sets [35], denoted by ã1,⋯,ãm and d̃, are
defined on U by means of the membership functions

μ ã i
: U→ 0;1½ �; i∈ 1; ⋯;mf g and μ d̃ : U→ 0;1½ �:

μ ãi
and μ d̃ represent the values of the object x with respect to the

condition attribute ai and decision attribute d, respectively. Suppose
that we want to approximate the knowledge contained in decision d
using attributes about {ã1,⋯,ãm}. Then, given the information on

ã1,⋯,ãm, the lower approximation of the fuzzy set d̃ is a fuzzy set

�App ã1; ⋯; ãm ˜;d
� �

, whose membership function for each x∈U, denot-

ed by μ�App ã1; ⋯; ãm ˜; d
� �

; x
h i

, is defined as follows [35]:

μ�App ã1; ⋯; ãm
˜; d

� �
; x

h i
¼ min

Z∈D↑
AT xð Þ

μd̃ zð Þ� � ð1Þ

for each x∈U, DAT
↑ (x) is a non-empty set defined by

D↑
AT xð Þ ¼ y∈U : μ ãi

yð Þ≥ μ ãi
xð Þ for each ai∈AT

n o
: ð2Þ

DAT
↑
(x) is the set of objects dominating x in terms of the set of con-

dition attributes.

The lower approximation μ�App ã1; ⋯; ãm ˜;d
� �

; x
h i

can be inter-

preted as follows: In the universe U, the following implication holds: If
μ ã1

yð Þ≥μ ã1
xð Þ and μ ã2

yð Þ≥μ ã2
xð Þ and ⋯ and μ ãm

yð Þ≥μ ãm
xð Þ, then

μ d̃ yð Þ≥μ�App ã1; ⋯; ãm ˜;d
� �

; x
h i

.

Similarly, given the information on {ã1,⋯,ãm}, the upper approxi-

mation of d̃ is a fuzzy setApp ã1; ⋯; ãm ˜;d
� �

, whose membership func-

tion for each x∈U is defined as follows [35]:

μ App ã1; ⋯; ãm
˜; d

� �
; x

h i
¼ max

Z∈D↓
AT xð Þ

μ
d̃
zð Þ

n o
ð3Þ

for each x∈U, DAT
↓
(x) is a non-empty set defined by

D↓
AT xð Þ ¼ y∈U : μ ãi

yð Þ≤ μ ãi
xð Þ for each ai∈AT

n o
: ð4Þ

DAT
↓
(x) is the set of objects dominated by x in terms of the set of

condition attributes.

The upper approximation μ App ã1; ⋯; ãm ˜;d
� �

; x
h i

can be inter-

preted as follows: In the universe U, the following implication
holds: If μ ã1

yð Þ≤ μ ã1
xð Þ and μ ã2

yð Þ≤ μ ã2
xð Þ and ⋯ and μ ãm

yð Þ≤
μ ãm

xð Þ, then μ d̃ yð Þ≤ μ App ã1; ⋯; ãm ˜; d
� �

; x
h i

.

�App ã1; ⋯; ãm ˜;d
� �

;App ã1; ⋯; ãm ˜; d
� �h i

is referred to as a rough set

of the fuzzy set d̃ by using attributes about the {ã1,⋯,ãm}. More details

about the properties of �App ã1; ⋯; ãm ˜;d
� �

;App ã1; ⋯; ãm ˜; d
� �h i

, can be

found in Ref. [35].

3. Fuzzy rough set in interval-valued decision table

3.1. Pairwise comparison in interval-valued decision table

Example 1. To demonstrate the interval-valued decision tables, we
considered the data in Table 1, which describes a small training set
with interval-valued samples.

Table 1 is a summary of the evaluations of cars. This table details six
cars, evaluated by means of five attributes: a1: Mileage; a2: Power; a3:
Compression-ratio; a4: Max-speed; d: Global evaluation. The universe
of discourse is U={x1,⋯,x6},AT={a1,a2,a3,a4} and is the set of condition
attributes and d is the decision attribute. The global evaluation indicates
that the higher the value of a car holds on decision d, the better the car.

Since the similarity measure [36,37] of two interval-valued sets is
one of the important topics in interval-valued theory, in the interval-
valued decision table S, let us denote a function μ:U×U→[0,1] such
that μ ãi

y; xð Þ∈ 0;1½ �, and it is used to express the degree that an object
y is similar to x on a condition attribute ai∈AT. Thus, there are three
possibilities that need to be considered:

• μ ãi
y; xð Þ ¼ 0, i.e., y is completely not similar to x on attribute ai;

• 0bμ ãi
y; xð Þb1, i.e., y is partially similar to x with respect to attribute

ai in degree of μ ã i
y; xð Þ;

• μ ãi
y; xð Þ ¼ 1, i.e., y is completely similar to x on attribute ai.

The similarity degree discussed here is not necessarily symmetrical,
that is, μ ãi

y; xð Þ ¼ μ ãi
x; yð Þ does not generally hold. It depends on the

choice of similaritymeasurements. By considering the similarity degree
of two objects, we consider a universe U and m+1 fuzzy set in the

interval-valued decision table S, that is, ã1,⋯,ãm and d̃, defined on U
by means of membership functions μ ãi

: U→ 0;1½ �; i∈ 1; ⋯;mf g and

μ
d̃
: U→ 0;1½ �.

Example 2. Using Table 1, we will use the method that was proposed
by Leung [38] to compute the similarity degree of two interval-valued

values. For each ai∈AT, suppose that μ ã i
xð Þ ¼ μ ãi

− xð Þ; μþ
ãi

xð Þ
h i

where

μãi
−(x) and μãi

+(x) represent the lower and upper limitations of the
interval-valued data μ ãi

xð Þ respectively, then for ∀x,y∈U, the degree

that y is similar to x is defined as:

μ ã i
y; xð Þ ¼

0 : μ ãi
yð Þ∩μ ã i

xð Þ ¼ ∅

min
min μ ã i

þ yð Þ−μ−
ã i

xð Þ; μþ
ã i

xð Þ−μ−
ã i

yð Þ
n o

1μ ã i

þ yð Þ−μ ã i

− yð Þ ;1

8<
:

9=
; : μ ã i

yð Þ∩μ ã i
xð Þ≠∅:

8>><
>>:
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The similarity degree for each pair of objects described in Table 1
is displayed in Table 2. For example, μ ãi

x1; x2ð Þ ¼ 0
a1
; 0:17a2

; 0:5a3 ;
0:67
a4

� �
means that x1 is similar to x2 on a1 in degree of 0, on a2 in degree of
0.17, on a3 in degree of 0.5 and on a4 in degree of 0.67.

Given that (y,x),(w,z)∈(U×U)2, the pair of objects (y,x) dominate
(w,z) with respect to the set of condition attributes AT if y is similar to
x, at least as strong as w is similar to z with respect to each ai∈AT.
Precisely, “at least as strong as” means the degree of y being similar
to x is equal to or higher than the degree of w similar to z. Conversely,
given (y,x),(w,z)∈U×U, the pair of objects (y,x) is to be dominated
by (w,z) with respect to the set of condition attributes AT if y is similar
to x at most as strong as w is not similar to z with respect to each
ai∈AT. Similarly, “at most as strong as” means the degree that y is
similar to x is equal or lower than the degree of w is similar to z.

From the discussion above, by comparing the similarity degrees of
different pairs of objects, the dominance relationship can be defined
as follows:

Definition 3. Given an interval-valued decision table S, the domi-
nance relationship in terms of the set of condition attributes AT can
be defined as:

RAT ¼ y; xð Þ; w; zð Þð Þ∈ U � Uð Þ2 : ∀ai∈AT; μ ãi
y; xð Þ≥ μ ã i

w; zð Þ
n o

:

Unlike the dominance relationship proposed by Greco [39], the
dominance relationship presented here is based on the comparison
of different pairs of objects. Thus, we call RAT a pairwise compared
dominance relationship.

Though the idea of pairwise comparisonhas beenused to formdom-
inance relationship by Greco in Ref. [39], our pairwise compared domi-
nance relationship is different from Greco's. Greco's dominance
relationship is based on the ordinal properties of preferred degrees of
pairs of objects while our approach is based on the ordinal properties
of similarity degrees of pairs of objects.

Proposition 2. Given an interval-valued decision table S, if A AT, then
we have RATpRA.

Proposition 2 is consistent to the property in the traditional rough
set, that is to say, the more attributes we have, the finer binary rela-
tionship we obtained.

3.2. Fuzzy rough approximations

Suppose that we want to approximate the knowledge contained
in d by using the comparison of pairs of objects, given the infor-

mation on {ã1,⋯,ãm}, the lower approximation of d̃ is a fuzzy set
Table 2
Similarity degrees of different cars in Table 1.

μ ã i
y; xð Þ a1 a2 a3

x1 1
a1

;
1
a2

;
1
a3

;
1
a4

� 	
0
a1

;
0:17
a2

;
0:5
a3

;
0:67
a4

� 	
0
a1

;
0
a2

;
0
a3

;
0
a4

� 	
x2 0

a1
;
0:07
a2

;
1
a3

;
0:67
a4

� 	
1
a1

;
1
a2

;
1
a3

;
1
a4

� 	
0:67
a1

;
0:67
a2

;
0:4
a3

;
0
a4

� 	
x3 0

a1
;
0
a2

;
0:29
a3

;
0
a4

� 	
1
a1

;
1
a2

;
0:29
a3

;
0
a4

� 	
1
a1

;
1
a2

;
1
a3

;
1
a4

� 	
x4 0

a1
;
0:1
a2

;
0
a3

;
1
a4

� 	
0:67
a1

;
1
a2

;
0
a3

;
1
a4

� 	
0:33
a1

;
0:5
a2

;
0
a3

;
0
a4

� 	
x5 0

a1
;
0
a2

;
0
a3

;
0
a4

� 	
0:21
a1

;
0
a2

;
0
a3

;
0
a4

� 	
0
a1

;
0
a2

;
0
a3

;
0:5
a4

� 	
x6 0

a1
;
0
a2

;
0
a3

;
0
a4

� 	
0
a1

;
0:09
a2

;
0
a3

;
0
a4

� 	
0
a1

;
0:09
a2

;
0
a3

;
1
a4

� 	
�Appσ ã1; ⋯; ãm ˜; d
� �

, whose membership function for each (y,x)

∈U×U, denoted by μ�Appσ ã1; ⋯; ãm ˜;d
� �

; y; xð Þ
h i

, is defined as fol-

lows:

μ�Appσ ã1; ⋯; ãm
˜;d

� �
; y; xð Þ

h i
¼ min

Z∈D↑
AT y;xð Þ

μ
d̃
zð Þ

n o
ð5Þ

where DAT
↑
(y,x) is a non-empty set defined by:

D↑
AT y; xð Þ ¼ w∈U : w; xð Þ; y; xð Þð Þ∈RATf g: ð6Þ

DAT
↑
(y,x) is set of objects dominating y in terms of the similarity

degrees of x. The formulation of �Appσ ã1; ⋯; ãm ˜;d
� �

is concordant

with the syntax of the decision rules induced by means of DRSA in a
pairwise comparison of objects. Thus, the lower approximation mem-

bership μ�Appσ ã1; ⋯; ãm ˜;d
� �

; y; xð Þ
h i

is concordant with the decision

rules of the type: If w is similar to x in degree at least μ ã1
y; xð Þ on attri-

bute a1 and ⋯ and w is similar to x in degree at least μ ãm
y; xð Þ on attri-

bute am, then μ d̃ wð Þ≥μ�Appσ ã1; ⋯; ãm ˜; d
� �

; y; xð Þ
h i

.

Given the information on {ã1,⋯,ãm}, the upper approximation of d̃

is a fuzzy set Appσ ã1; ⋯; ãm ˜;d
� �

, whose membership function for

each (y,x)∈U×U, denoted by μ Appσ ã1; ⋯; ãm ˜; d
� �

; y; xð Þ
h i

, is defined

as follows:

μ Appσ ã1; ⋯; ãm
˜;d

� �
; y; xð Þ

h i
¼ min

Z∈D↓
AT y;xð Þ

μ
d̃
zð Þ

n o
ð7Þ

where DAT
↓
(y,x) is a non-empty set defined by:

D↓
AT y; xð Þ ¼ w∈U : y; xð Þ; w; xð Þð Þ∈RATf g: ð8Þ

DAT
↓
(y,x) is a set of objects dominating y in terms of the similarity de-

grees of x. The upper approximationμ Appσ ã1; ⋯; ãm ˜; d
� �

; y; xð Þ
h i

is con-

cordantwith decision rules of the type: If w is similar to x in degree atmost
μ ã1

y; xð Þ on attribute a1 and ⋯ and w is similar to x in degree at most

μ ãm
y; xð Þ on attribute am, then μ

d̃
wð Þ≤ μ Appσ ã1; ⋯; ãm ˜; d

� �
; y; xð Þ

h i
.

�Appσ ã1; ⋯; ãm ˜;d
� �

;Appσ ã1; ⋯; ãm ˜;d
� �h i

is referred to as a pair of

rough set of fuzzy knowledge contained in decision d in terms of the
similarity degrees comparison of pairs of objects.
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3.3. Some properties

Proposition 3. Given an interval-valued decision table S, if ApAT, for
each (y,x)∈U×U, we have:

D↑
A y; xð Þ ¼ ∪ D↑

AT w; xð Þ : w∈D↑
A y; xð Þ

n o
ð9Þ

D↓
A y; xð Þ ¼ ∪ D↓

AT w; xð Þ : w∈D↓
A y; xð Þ

n o
: ð10Þ

Proposition 3 holds due to the transitive of the used pairwise com-
parison dominance relationship. Generally, if the used binary relation
is reflexive and transitive, then such properties hold no matter what
kind of rough approximation is selected.

Proposition 4. Given an interval-valued decision table S, for each
(y,x)∈U×U, we have:

μ�Appσ ã1; ⋯; ãm
˜;d

� �
; y; xð Þ

h i
¼ I1 D↑

AT y; xð Þ
� �

ð11Þ

μ Appσ ã1; ⋯; ãm
˜;d

� �
; y; xð Þ

h i
¼ I2 D↓

AT y; xð Þ
� �

: ð12Þ

Proposition 4 shows that the proposed rough approximations are
equivalent to the inclusion degree presented in Ref. [34]. It presents
a relationship between the rough set and included degree.

Proposition 5. Given an interval-valued decision table S, the following
properties are satisfied:

(1) Let us denote by d̃ � d̃ the Cartesian product on fuzzy set d̃, that

is, for each (y,x)∈U×U, U
d̃
� d̃ y; xð Þ ¼ min μ

d̃
yð Þ; μ

d̃
xð Þ

� �
, then

�Appσ ã1; ⋯; ãm
˜; d

� �
d̃ � d̃ Appσ ã1; ⋯; ãm

˜;d
� �

: ð13Þ

(2) For any negation N(⋅), being a strictly decreasing function
N : [0,1]→ [0,1] such that N(1)=0 and N(0)=1,

�Appσ ã1; ⋯; ãm; d̃
C

� �
¼ Appσ ãC

1; ⋯; ã
C
m

˜; d
� �� �C ð14Þ

Appσ ã1; ⋯; ãm; d̃
C

� �
¼ �Appσ ãC

1; ⋯; ã
C
m
˜;d

� �� �C ð15Þ

�Appσ ã1; ⋯; ãm
˜;d

� �� �C ¼ Appσ ãC
1; ⋯; ã

C
m; d̃

C
� �

ð16Þ

Appσ ã1; ⋯; ãm
˜; d

� �� �C ¼�Appσ ãC
1; ⋯; ã

C
m; d̃

C
� �

ð17Þ

where for a given fuzzy set W, the fuzzy set WC is the complement
of W, defined by μWC xð Þ ¼ N μW xð Þð Þ.

(3) For each set of condition attributes such that ã1; ⋯; ãl
˜;d

n o
p ã1; ⋯; ãm

˜;d
n o

,

�Appσ ã1; ⋯; ãl
˜;d

� �
p�Appσ ã1; ⋯; ãm

˜;d
� �

ð18Þ

Appσ ã1; ⋯; ãl
˜;d

� �
tAppσ ã1; ⋯; ãm

˜;d
� �

ð19Þ

(4) If μ ã i
y; xð Þ≥μ ãi

w; xð Þ for each ai∈AT, where (y,x),(w,x)∈U×U,

then

μ�Appσ ã1; ⋯; ãm
˜;d

� �
; y; xð Þ

h i
≥μ�Appσ ã1; ⋯; ãm

˜;d
� �

; w; xð Þ
h i

ð20Þ

μ Appσ ã1; ⋯; ãm
˜;d

� �
; y; xð Þ

h i
≥μ Appσ ã1; ⋯; ãm

˜;d
� �

; w; xð Þ
h i

:

ð21Þ
Results (1), (2), (3) and (4) of Proposition 5 can be regarded as fuzzy
counterparts of results, which is well known in the classical rough set
theory. More precisely, (1) shows that the fuzzy set d̃ � d̃ includes its
lower approximation and is included in its upper approximation;
(2) represents complementarily properties of the proposed fuzzy
rough approximations; (3) expresses monotonicity of the proposed
fuzzy rough set in terms of the monotonous varieties of condition attri-
butes; and (4) says that the lower and upper approximations aremono-
tonic with respect to the monotonicity of similarity degree of pairs of
objects.

3.4. Attribute reduction

3.4.1. Attribute reduction of pairwise compared dominance relationship

Definition 4. Given an interval-valued decision table S, ApAT, then A
is referred to as a reduct of AT in terms of a pairwise compared dom-
inance relationship if the following two conditions hold:

(1) RAT ¼ RA;
(2) RAT≠RB for each B⊂A.

A reduct of AT is actually a minimal subset of condition attributes
which preserves the pairwise compared dominance relation RAT .

∀(y,x),(w,z)∈(U×U)2, let us denote byRAT y; xð Þ; w; zð Þð Þ ¼ ai∈AT :f
y; xð Þ; w; zð Þð Þ∉Raig ¼ ai∈AT : μai y; xð Þbμai w; zð Þ

n o
, DAT y; xð Þ; w; zð Þð Þ is

referred to as the discernibility attribute sets of pairs (y,x) and (w,z),

DAT ¼ DAT y; xð Þ; w; zð Þð Þ : y; xð Þ; w; zð Þ∈ U � Uð Þ2
n o

is referred to as the

discernibility matrix of S.

Theorem 1. Given an interval-valued decision table S, ApAT, for each
DAT y; xð Þ; w; zð Þð Þ≠∅, we have RAT ¼ RA⇔A∩DAT y; xð Þ; w; zð Þð Þ≠∅.

3.4.2. Attribute reduction of fuzzy rough set
The approach of attribute reduction discussed above is with respect

to the pairwise compared dominance relationship. In other words, no
decision attribute is considered. In the following steps, we will present
the practical approach to attribute reductions about fuzzy rough sets.

Definition 5. Given an interval-valued decision table S, ApAT=
{a1,⋯,am},

(1) A is referred to as a reduct of lower approximation �Appσ
ã1; ⋯; ãm ˜; d
� �

if and only if for each (y,x)∈U×U,

(a) I1 d=D↑
AT y; xð Þ

� �
¼ I1 d=D↑

A y; xð Þ
� �

,

(b) I1 d=D↑
B y; xð Þ

� �
≠I1 d=D↑

AT y; xð Þ
� �

for ∀B⊂A;

(2) A is referred to as a reduct of upper approximation Appσ
ã1; ⋯; ãm ˜; d
� �

if and only if for each (y,x)∈U×U,

(a) I2 d=D↓
AT y; xð Þ

� �
¼ I2 d=D↓

A y; xð Þ
� �

,

(b) I2 d=D↓
B y; xð Þ

� �
≠I2 d=D↓

AT y; xð Þ
� �

for ∀B⊂A;

Since Proposition 4 shows that the lower and upper approxima-
tions are equal to two different inclusion degrees, we define the
reducts of lower and upper approximations based on the inclusion
degrees. Obviously, the reducts of lower and upper approximations
are minimal subsets of attributes, which preserve the lower and
upper approximation memberships for each pair (y,x)∈U×U.

Theorem 2. (Judgment Theorem.) Given an interval-valued decision
table S, ApAT, then for each (y,x)∈U×U,

(1) I1 d=D↑
AT y; xð Þ

� �
¼ I1 d=D↑

A y; xð Þ
� �

⇔if I1 d=D↑
AT y; xð Þ

� �
> I1 d=ð

D↑
AT w; xð ÞÞ then D↑

A w; xð ÞD↑
A y; xð Þ;
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(2) I2 d=D↓
AT y; xð Þ

� �
¼ I2 d=D↓

A y; xð Þ
� �

⇔if I2 d=ð D↓
AT w; xð ÞÞ > I2 d=ð

D↓
AT y; xð ÞÞ then D↓

A w; xð ÞD↓
A y; xð Þ;

The above theorem provides approaches to judge whether a subset
of condition attributes is persevering the lower (upper) approximate
membership value for each (y,x)∈U×U.We can further obtain practical
approaches to compute lower and upper approximate reducts in the
decision table. We first give the following notions.

Definition 6. Given an interval-valued decision table S, denoted by

D
L
AT ¼ w; xð Þ; y; xð Þf g : I1 d=D↑

AT y; xð Þ
� �

> I1 d=D↑
AT w; xð Þ

� �n o
;

D
U
AT ¼ w; xð Þ; y; xð Þf g : I2 d=D↓

AT w; xð Þ
� �

> I2 d=D↓
AT y; xð Þ

� �n o
;

where,

D
L
AT w; xð Þ; y; xð Þf g

¼ ai∈AT :

�
w; xð Þ; y; xð Þð Þ∉Rai

� 	
: w; xð Þ; y; xð Þf g∈D

L
AT

AT : w; xð Þ; y; xð Þf g∉D
L
AT

8<
:

D
U
AT w; xð Þ; y; xð Þf g

¼ ai∈AT :

�
y; xð Þ; w; xð Þð Þ∉Rai

� 	
: w; xð Þ; y; xð Þf g∈D

U
AT

AT : w; xð Þ; y; xð Þf g∉D
U
AT

:

8<
:

DLAT w; xð Þ; y; xð Þf g and DUAT w; xð Þ; y; xð Þf g are referred to as lower and
upper approximate discernibility attribute sets, respectively, DLAT and
DUAT are referred to as lower and upper approximate discernibility
matrices, respectively.

Standard approaches to finding reducts are based on the
discernibility matrix. Usually there are many reducts in an informa-
tion system. The intersection of all reducts is called the CORE. In a
discernibility matrix, every entry represents a set of attributes dis-
cerning two objects. If an entry consists of only one attribute, then
it has a higher significance and the unique attribute must be a mem-
ber of the CORE. Also, shorter entry is more significant than the longer
one. If the times of appearance of an attribute are more than that of
the others in the same entry, then this attribute may contribute
more classification power to the reduct.

According to the above declaration, we assigned a weight W(ai) to
each attribute ai. The value of weight W(ai) for each ai, which is set to
zero initially, is calculated sequentially throughout the whole matrix
using the following formula when a new entry Ct is met in the
discernibility matrix:

W aið Þ ¼ W aið Þ þ kCt
Aj j=jCt j; ai∈Ct ð22Þ

where |A| is the cardinality of attribute set A of the information system,
|Ct| is the cardinality of the new entry Ct, kCt

is the number of the
same entry Ct in the merged matrix.

The heuristic method is based on the fact that if the dataset is
consistent, then the intersection of a reduct and an entry in the
discernibility matrix cannot be empty; otherwise, the involved two
objects would be indiscernible with respect to the reduct according
to the definition of the reduct in which the reduct possesses discern-
ible capability for all objects.

Based on the above, we can search reducts with a discernibility
matrix.
4. Gene selection and tissue sample classification

Asmentioned in Section 2.1, amicroarray dataset can be regarded as
a decision table. Reducts, from the rough set theory, correspond to a
minimal subset of discriminative genes. Our objective is to determine
the reducts that can discern between objects belonging to different
classes. Tissue sample classification is based on the decision table from
the microarray dataset. To generate the decision table, the decision
attribute d takes its value from the average of the corresponding condi-
tion attribute (gene expression value) of a class, and the condition attri-
bute takes its value from the 1st quartile and the 3rd quartile of the gene
expression value within a class.

4.1. Gene selection

Based on the introduced concept, we present an interval-valued
reduct (IVR) method to select the genes. The ordered process of this
algorithm is:

Algorithm IVR.

1. Initialize the parameters of the algorithm: the designated output
reduct Red=∅, weight values W(ai)=0, i=1,⋯,n.

2. Compute the lower and upper approximate discernibility matrices
DAT
L or DAT

U ;
3. Form a new discernibilitymatrix (DAT

L orDAT
U ), merge all the same en-

tries in the discernibility matrix, record their frequencies and sort all
entries in the matrix according to their length (the number of attri-
butes involved in each entry) in descending order; if two entries
have the same length, the entry with more frequency is preferred.

4. Use formula (22) to compute the weight value of each attribute in
the entry.

5. Calculate the intersection InSet between the reduct Red and an
entry Ct : InSet=Red∩Ct, t=1,2,⋯, when InSet=∅ is obtained go
to the next step.

6. An attribute ai with the maximal weight value is chosen and added
to Red.

7. It will go back to the intersection calculation and repeat the pro-
cess if there is an entry left in the discernibility matrix, otherwise
the resulting output Red is the optimal reduct.

In this paper, if a reduct is calculated fromDLAT DUAT
� �

, it is referred to
as the lower(upper) approximate reduct RedL(RedU).

4.2. Tissue sample classification

Our interval-valued classification (IVC)method for themicroarray is
based on the union of RedL and RedU from IVR. Suppose that μd−(xi,cj)
and μd

+(xi,cj) represent the lower and upper approximation similar
degree between sample xi and class cj, [dcj

−,dcj
+] represents the interval

of decision attribute value, let μd(xi,cj)=[μd−(xi,cj),μd+(xi,cj)], dcj ¼
d−cj ;d

þ
cj

h i
, then classify sample xi to class ck:

k ¼ arg max
j¼1;2;⋯;5

μ μd xi; cj
� �

;dcj

� �n o
;

where,

μ μd xi; cj
� �

; dcj

� �

¼ min

0 : μd xi; cj
� �

∩dcj ¼ ∅
min μþ

d xi; cj
� �

−d−cj ;d
þ
cj
−μ−

d xi; cj
� �n o

μþ
d xi; cj
� �

−μ−
d xi; cj
� � ;1

8<
:

9=
; : μd xi; cj

� �
∩dcj≠∅

8>>><
>>>:



Table 3
Summary of the ALL/AML dataset.

Dataset Samples Genes Classes

ALL–AML-3 72 7129 3
ALL–AML-4 72 7129 4

Table 5
Genes selected in a reduct set of ALL–AML datasets.

Lower approximation reduct Upper approximation reduct

ALL–AML-3 ALL–AML-4 ALL–AML-3 ALL–AML-4

CD33 CD33 CD33 CD33
IL8 IL8 IL8 IL8
ZYX ZYX ZYX ZYX
ASAH1 ASAH1 PSME1 PRSS3
PRSS3 PSME1 PRAME PRAME

MAL MAL
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5. Experiments

In this section, we present experimental results provided by the IVR
and the IVC methods. We evaluate the discriminative performance of
our selected gene set on different classifiers. We also compare the per-
formance of our classifying method to a wide range of standard classi-
fiers: Naive Bayes (NB), k-NN, Decision Tree (DT) and SVM. We have
performed only a limited parameter optimization. For the k-NN classifi-
er, three types of k-NN classifiers (k=1, 3, 5) were compared to assess
the significant performance and we set the parameter k as 3. For the
SVM classifier, the linear SVM shows the best performance among the
linear, polynomial kernel with exponent 2 and RBF kernel. Since most
microarray datasets only have relatively few samples, we chose the
leave-one-out cross-validation method for evaluation.

To evaluate our gene selection method IVR, the compared gene sets
are selected by the program of Significance Analysis of Microarrays
(SAM) [40], a statistical technique for finding significant genes. For the
standard classifiers, deciding the number of discriminative genes to
select is the first question. A set of experiments are conducted on the
dataset by varying the number of genes selected to receive the highest
classification accuracy.

Our implementation of the various compared classifiers is based
on the Weka environment (http://www.cs.waikato.ac.nz/ml/weka/).
The classification accuracy is used as the performance measure. For
all the dataset, normalizations are performed so that every observed
gene expression has a mean equal to 0 and a variance equal to 1.

5.1. Results on ALL/AML leukemia dataset

To evaluate the performance of our proposed method in practice,
we have used a dataset containing gene expression profiles from
patients with acute lymphoblastic leukemia (ALL) and acute myelo-
blastic leukemia (AML) and compared the ALL/AML dataset with the
IVR and the IVC methods.

The ALL portion of the dataset is derived from two cell types, B-cells
and T-cells, while the AML part is split into two types, bone marrow
(BM) samples and peripheral blood (PB). The dataset was studied in
[1]. However, due to the bipartition of each component, it can be treated
both as a three-class dataset (B-cell, T-cell, and AML) and as a four-class
dataset (B-cell, T-cell, AML-BM, and AML-PB). Here the three-class
version is referred to as ALL–AML-3 and the four-class version as ALL–
AML-4. Table 3 provides a summary of the ALL/AML dataset.

The decision table for ALL–AML-4 dataset is shown in Table 4. The
lower and upper approximation reducts are shown in Table 5. Based
on these reducts, we can classify a test sample into a certain class.
Classification accuracy on ALL–AML datasets are shown in Tables 6
and 7. The experimental results show that our proposed methods
have a dominating performance. The reason may be that microarrays
contain various technical noises. In Subsection 5.3, we design a set of
simulations to examine the robustness of our approach to noise.
Table 4
Decision table of ALL–AML-4 dataset.

U G1 G2 ⋯

c1 [0.0332, 0.1220] [0.0622, 0.1998] ⋯
c2 [0.3246, 0.6484] [0.0464, 0.1436] ⋯
c3 [0.0783, 0.1712] [0.0715, 0.1524] ⋯
c4 [0.0734, 0.1548] [0.0524, 0.1243] ⋯
5.2. Results on NCI-60 dataset

To further test the performance of the proposedmethod, we applied
our algorithm to the National Cancer Institute's anti-cancer drug-screen
data (NCI-60) of Ross et al. [41] consisting of 61 samples from human
cancer cell lines. TheNCI-60 dataset spans nine classes and gene expres-
sion levels were measured for 10,000 genes. The prediction accuracy of
66.66% is reported in reference [41] using one-versus-the rest SVM
with 150 selected genes. To test our algorithm on an external dataset
(independent set), 43 samples are used for the training dataset while
18 samples as testing dataset. Based on 150 genes selected by SAM
and 12 genes selected by IVR, we report the classification accuracy of
all the compared algorithms with Fig. 1. Consistent with the results on
leukemia dataset, in this experiment, our proposed method also
achieved the highest classification accuracy.

5.3. Simulations for noise sensitivity analysis

High noise is always a challenge in existing gene expression data
analysis algorithms. We studied the noise sensitivity property of our
method and the standard classifiers on simulated datasets generated
by adding artificial noise to real gene expression datasets.

In the experiments, the simulated noise has Gaussian distribution,
N(0,wδj2), where δj2 is the jth gene expression level's variance, and
w is the weight of the simulated noise. After adding the generated
Gaussian noise, expression level xj is shifted to xj+N(0,wδj2).

Fig. 2 shows the comparison of IVC classifier and standard classi-
fiers against synthetic noise on the ALL–AML datasets. These results
show that our IVC method is the most robust method. The IVC meth-
od achieves reasonable classification accuracy, even when the data
contain a lot of noise. This is because, in our rough set based method,
gene expression data are treated as interval-valued data by consider-
ing the preference-ordered domains and compared with a term of
similar degree, which already takes the noise into consideration.
The accuracy of Naive Bayes, k-NN, Decision Tree and SVM decreases
dramatically with the increase in noise, meaning that all of the
methods are sensitive to noise.

5.4. Discussion

From the results shown in Tables 6 and 7, we observe the following:

(1) The accuracy of the classification is highly dependent on the
choice of the classification method. For instance, with the
gene set selected by the IVR method, the IVC classifier has an
G7129 d dinterval

[0.0314, 0.1183] 0.7223 [0.0655, 1.0000]
[0.0671, 0.1227] 0.6302 [0.0512, 0.9165]
[0.0908, 0.1789] 0.5278 [0.0301, 0.7533]
[0.1050, 0.1733] 0.4309 [0.0186, 0.5296]

http://www.cs.waikato.ac.nz/ml/weka/


Table 6
The classification accuracy with gene set selected by SAM method.

Classifier Number of selected genes Classification accuracy

ALL–AML-4 ALL–AML-3 ALL–AML-4 ALL–AML-3

Naive Bayes 80 85 78.33% 82.44%
k-NN 40 50 87.81% 89.73%
Decision Tree 60 55 65.35% 72.78%
SVM 85 100 89.04% 91.41%
IVC 30 30 88.25% 92.17%

IVC SVM k−NN Naive Bayes Decision Tree

Genes selected by SAM 
Genes selected by IVR 
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Fig. 1. The comparison of classifying accuracy on NCI-60 dataset with 150 genes select-
ed by SAM and 12 genes selected by IVR.
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accuracy of 97.47% on the ALL–AML-4 dataset, while the accu-
racy by Decision Tree is 70.92%. To better understand IVC's
performance, we rank the average classification accuracy of
all the algorithms throughout Tables 6 and 7 as follows:

IVC 94:05%ð Þ > SVM 92:72%ð Þ > k�NN 91:03%ð Þ > NB 86:14%ð Þ
> DT 72:09%ð Þ:

It is observed that our IVCmethod gets the best performance. The
experimental results on NCI-60 dataset (Fig. 1) are also consis-
tent with this.

(2) The accuracy of the classification is also highly dependent on the
selected gene set. When the genes are selected by the SAM
method, the SVM classifier has an accuracy of 91.41% on the
ALL–AML-3 dataset. On the same dataset with the gene set
selected by IVR method, the accuracy of SVM is 97.27%. This sig-
nificant differential accuracy between the gene selectionmethod
of SAM and IVR also occurs with the other classifiers.

(3) Although the number of selected genes with the IVR method is
much less than by SAM, the accuracies of all themethods are im-
proved on the two ALL/AML datasets. The classification accuracy
in Table 6 is generally smaller for all algorithms compared to the
results in Table 7. Yet the algorithms in Table 7 use much less
genes for the classification than in Table 6. The main idea of
rough set theory is to reduce the redundancy of data by attribute
reduction, while preserving the ability of classification. Com-
pared with other approaches to attribute reduction, rough set
theory can be used to discover data dependencies and reduce
the number of attributes contained in a data set by purely struc-
tural methods. The reduced set of attribute preserves the under-
lying semantics of the features. In theory, a reduct can represent
all the discriminative attributes contained in a data. In practice,
it is observed that, when the number of selected attributes
with purely structural methods is greater than a certain degree,
the variation of the classifying accuracy is small [42]. The higher
the degree of overlap between the reduct and the selected attri-
butes indicates that the higher the percentage of the selected
attributes contained the discriminative attributes in a data.

(4) When the sample sizes decrease (ALL–AML-3 dataset vs. ALL–
AML-4 dataset), the performance of the IVC classifier is even
more outstanding. For example, compared to the SVM classifier,
Table 7
The classification accuracy with gene set selected by IVR method.

Classifier Number of selected genes Classification accuracy

ALL–AML-4 ALL–AML-3 ALL–AML-4 ALL–AML-3

Naive Bayes 8 7 89.87% 93.93%
k-NN 8 7 91.22% 95.36%
Decision Tree 8 7 70.92% 79.29%
SVM 8 7 93.15% 97.27%
IVC 8 7 97.47% 98.32%

1. The selected gene set is the union of lower and upper approximation reduct.
2. Note that some genes appear in both lower and upper approximation reduct.
with the gene set selected by the IVR method, the accuracy of
IVC classifier is improved by 4.32% on the ALL–AML-4 dataset,
while it is only improved by 1.05% on the ALL–AML-3 dataset.
Note that, the number of samples in each class of the ALL–
AML-4 dataset is lower than those in the ALL–AML-3 dataset.

From the results shown in Tables 6 and 7, we can see that the IVC
is shown to be the best method for tissue classification based on gene
expression. It achieves better performance than any of the other clas-
sifiers. It is conceivable that feature selection raises the accuracy since
it can reduce the number of insignificant dimensions, thereby over-
coming the curse of dimensionality. This appears to be the case for
k-NN, Decision Tree and SVM classifier methods. The accuracy of
k-NN, Decision Tree and SVM is improved on the two datasets with
genes selected by the IVR method. The accuracy of the Naive Bayes
is also dramatically improved on the experimental datasets. Also, re-
markably, with the aid of feature selection, IVC achieves the 98.32%
accuracy on the ALL–AML-3 dataset and 97.47% accuracy on the
ALL–AML-4 dataset. For the SVM method, it is possible to achieve
very high accuracy on most of the microarray datasets [42]. However,
the best performance on the experimental datasets does not
outperform the IVC method. These two datasets have smaller sample
sizes than the other datasets, so one may conclude that multiclass
classification based on gene expression can be effectively solved
when the sample size is large. Although it has been widely used in
text categorization, Naive Bayes reported that it did not appear to
perform very well for tissue classification based on gene expression
using the standard feature selection method [42]. This is not very
surprising, since Naive Bayes is based on the assumption that the fea-
tures are conditionally independent given the class label, which may
not be the case for gene expression data because of co-regulation. For
the IVR method, genes were selected as a reduct without redundancy
and results in independence between selected feature genes.

The selected gene set for leukemia classification, including PSME1,
CD33, IL8, PRAME, ASAH1, PRSS3, MAL and ZYX, that achieve 97.47%
and 98.32% classifying accuracy is experimentally proved to be corre-
lated to leukemia of ALL or AML. Specifically, Gene PSME1 inhibits
programmed cell death and promotes survival of C-cell chronic lym-
phocytic leukemia (B-CLL) cells in culture [43]. By delaying apoptosis,
PSME1 may extend the life span of the malignant cells. The human
differentiation antigen CD33 is a marker of leukemia (ALL) and also
a member of the sialic acid-binding immunoglobulin-like lectin
(Siglec) family of inhibitory receptors. It is also a therapeutic target
for AML [44]. Gene IL8 was found to be up regulated in human
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Fig. 2. The comparison of classifying accuracy on the noisy ALL/AML dataset with SAM and IVR gene selection.
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T-cell acute lymphoblastic leukemia [45]. Overexpression of the pref-
erentially expressed antigen PRAME of melanoma was found in 62%
(n=31) of 50 patients with higher rates of overall and disease-free
survival from AML. PRAME expression at diagnosis was negatively
correlated to the white blood cell count (Pb0.05), which was signifi-
cantly higher in patients with t(8;21) and corresponded with those at
relapse (Pb0.001), suggesting that its expression is an indicator of fa-
vorable prognosis, and could be a useful tool for monitoring minimal
residual disease in childhood AML [46]. The gene ASAH1 is correlated
to the survival of cytotoxic lymphocytes [47]. The serine protease
family member PRSS3 is a putative tumor suppressor gene due to
its loss of expression in acute lymphoblastic leukemia [48] and
other tumors. It may be functionally important as a serine protease
in tumor development. The MAL gene is related to T-cell ALLs [49].
ZYX is a gene correlated to leukemia of ALL [50]. It is also localized
at focal contacts in adherent erythroleukemia cells [51].

From the experimental results above, we conclude that our pro-
posed approach is superior to other methods. This may be due to the
following advantages: interval-valued analysis, minimum redundancy
of the selected gene subset, and simple classifiers. First, we used
interval-valued gene expressions instead of point-valued gene expres-
sions. A major challenge in DNA microarray analysis is to eliminate
the effects of noise. Our method is non-parametric and has an advan-
tage over other methods since no assumption about the nature of the
noise is required. Second, the selected gene subset is the union of
lower and upper approximation reducts which is actually a minimum
redundancy–maximum relevance condition attribute subset. Such a
feature set covers the data domain better and improves the perfor-
mance of various classifiers [52]. Third, the proposed IVC method
classifies a sample to a class with the maximum similar degrees. The
IVC method does not need parameter tuning. The small sample size
and high dimensionality of themicroarray data constrain the possibility
of properly validating the chosen classification model. If a complex
model was required to tune many parameters, a large computational
effort would be required, compounded with a high risk of overfitting.
Although the proposed method was originally designed for mi-
croarray data analysis, it can be applied to the data from the next-
generation sequencing technologies. Recently, high-throughput RNA
sequencing (RNA-seq) has emerged as a powerful new technology
for transcriptome analysis [53]. By mapping millions of RNA-seq
reads to individual gene transcripts, it is possible to estimate the
overall mRNA abundance and detect DEGs [54]. Currently, most of
the methodologies proposed so far rely on parametric assumptions
and use Poisson or negative binomial distributions to model feature
counts [55,56], following the rationale of the sampling procedure in
RNA-seq analysis. However, the subsequent confirmation of distribu-
tion assumptions is important as they might not always hold true
[57]. Moreover, usually there are very few replicates making the esti-
mation of model parameters difficult. Additionally, parametric ap-
proaches tend to be problematic for assessing differential
expression in low count features [57]. Based on the rough set theory,
the IVR method takes into account the discrete nature of gene expres-
sion quantification in RNA-seq. In the context of RNA-seq analysis, we
can derive an estimate of gene expression interval-valued level with
the number of RNA-seq reads that uniquely mapped to its constitu-
tive exons, i.e. exons are always incorporated into the final transcripts
during splicing. Thus, we predict that the IVR method is more robust
than the model-based approaches in RNA-seq data analysis.

6. Summary and conclusions

In this paper, we propose a combination method of interval-valued
analysis based gene selection and tissue classification of microarray
data. We have demonstrated that this approach reduces the number
of genes selected and increases the classification accuracy rate. We
performed various studies to compare the performance between differ-
ent types of classifiers including Naive Bayes, k-NN, Decision Tree and
SVM. The performances of all the methods were improved by the IVR
gene selection method. The IVR gene selection method can further
improve the performance of the IVC classification method to achieve
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themaximumaccuracy of 98.32%. Overall, the best classification accura-
cy rate is achieved by our proposedmethodwith a relatively small gene
subset. As our experiments indicate, interval-valued analysis can reduce
the infection of the noise datawhile retaining the information hidden in
the data, and the rough set based technique can remove redundant
genes while keeping the required genes to as low a number as possible,
and thus improve the classifier performances. Though the experimental
datasets are related to gene expression data, the method can be applied
to other large datasets that require feature selection.
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Appendix A. Proofs of propositions

Proof of Proposition 2. By the Definition of pairwise compared
dominance relation, it is trivial to prove this property.

Proof of Proposition 3. For ∀w∈DA
↑
(y,x), there must be μ ãi

w; xð Þ ¼
μ ãi

w; xð Þ for each ai∈AT, thus w∈DAT
↑
(w,x), i.e., DA

↑(y,x) ∪{DAT
↑
(w,x):

w∈DA
↑
(y,x)}. It must be proved thatDA

↑(y,x)t∪{DAT
↑
(w,x):w∈DA

↑
(y,x)}.

Let us firstly prove thatw∈DA
↑
(y,x)⇒DA

↑
(w,x)pDA

↑
(y,x). For ∀z∈DA

↑

(w,x), we have μ ãi
z; xð Þ≥μ ã i

w; xð Þ for each ai∈A. By w∈DA
↑
(y,x) we

obtain that μ ã i
w; xð Þ≥μ ãi

y; xð Þ for each ai∈A. It follows that

μ ãi
z; xð Þ≥μ ãi

y; xð Þ for each ai∈A, i.e., z∈DA
↑
(y,x).

Therefore, for ∀DAT
↑
(w,x)∈∪{DAT

↑
(w,x) :w∈DA

↑
(y,x), since w∈DA

↑

(y,x), we have DAT
↑
(w,x)p{DA

↑
(w,x)pDA

↑
(,x)} because ApAT, from

which we obtain that ∪{DAT
↑
(w,x) :w∈DA

↑
(y,x)}pDA

↑
(y,x).

From the discussion above, we have DA
↑
(y,x)=∪{DAT

↑
(w,x) :

w∈DA
↑
(y,x)}.

Similarly, it is not difficult to prove that DA
↓
(y,x)=∪{DAT

↓
(w,x) :

w∈DA
↓
(y,x)}.

Proof of Proposition 4. By definitions of �Appσ ã1; ⋯; ãm ˜;d
� �

,

Appσ ã1; ⋯; ãm ˜; d
� �

, and Proposition 1, it is trivial to prove this

property.

Proof of Proposition 5.

1. Obviously, for each (y,x)∈U×U, we have y∈DAT
↑ (y,x). Since

μ�Appσ ã1; ⋯ð
h

; ãm ˜;dÞ; y; xð Þ� ¼ minz∈D↑
AT y;xð Þ μ

d̃
zð Þ

n o
, we can see that

μ�Appσ ã1; ⋯; ãm ˜;d
� �

; y; xð Þ
h i

≤μ
d̃
yð Þ.

On the other hand, since μ ãi
x; xð Þ ¼ 1 for each ai∈AT, we have

μ ãi
x; xð Þ≥μ ã i

y; xð Þ⇒x∈D↑
AT y; xð Þ. It follows that μ�Appσ ã1; ⋯; ãm ˜; d

� �
;

h
y; xð Þ


≤μ

d̃
xð Þ, from which we can conclude that μ�Appσ ã1; ⋯; ãm ˜; d

� �
;

h
y; xð Þ

i
≤min μ

d̃
yð Þ; μ

d̃
xð Þ

n o
, i.e.,�Appσ ã1; ⋯; ãm ˜; d

� �
pd̃ � d̃.

Similarly, it is not difficult to prove that d̃ � d̃pAppσ ã1; ⋯; ãm ˜; d
� �

.

2. For each (y,x)∈U×U, by formula (5), we have�Appσ ã1; ⋯; ãm; d̃
C� �

¼
minz∈D↑

AT y;xð Þ N μ
d̃
zð Þ

� �n o
¼ N maxz∈D↑

AT y;xð Þ μ
d̃
zð Þ

n o� �
.

Let us associate the negation of the membership functionsμ ã i
y; xð Þ,

i.e., N μ
d̃
y; xð Þ

� �
, we can obtain D↑

AT y; xð Þ ¼ w∈U :f w; xð Þ;ð

y; xð ÞÞ∈RATg ¼ w∈U : μ ã i
w; xð Þ≥μ ãi

y; xð Þ
n

for each ai∈ATg ¼
w∈U : N μ ã i

w; xð Þ≤μ ãi
y; xð Þ

� �n
for each ai∈AT}=DAT

↓C(y,x), where
“C” in DAT
↓C
(y,x) denotes that we are considering the negation of

the membership functions μ ã i
y; xð Þ.

From the discussion above, we have
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from which we can conclude that�Appσ ã1; ⋯; ãm; d̃
C

� �
¼ Appσ
�

ãC
1; ⋯; ãC

m
˜; d

� ��C
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Similarly, it is not difficult to prove formulas (15), (16) and (17).
3. Suppose that A={ã1,⋯,ãl}, AT={ã1,⋯,ãm}, A AT, then for each (y,

x)∈U×U, we have DA
↑(y,x)tDAT

↑ (y,x) and DA
↓(y,x)tDAT

↓ (y,x) by

Proposition 2. Thus, μ�Appσ ã1; ⋯; ãm ˜; d
� �

; y; xð Þ
h i

¼ minz∈D↑
AT y;xð Þ d̃ zð Þ

n o
≥minz∈D↑

A y;xð Þ d̃ zð Þ
n o

¼ μ�Appσ ã1; ⋯; ãl
˜; d

� �
; y; xð Þ

h i
, from which

we can conclude that�Appσ ã1; ⋯; ãl
˜;d

� �
p�Appσ ã1; ⋯; ãm ˜;d

� �
.

Similarly, it is not difficult to prove formula (19).
4. By condition we have DAT

↑ (y,x) DAT
↑ (w,x) and DAT

↓ (y,x) DAT
↓ (w,x).

Thus, μ�Appσ ã1; ⋯; ãm ˜;d
� �

; y; xð Þ
h i

¼ minz∈D↑
AT y;xð Þ d̃ zð Þ

n o
≥ minz∈D↑

AT w;xð Þ

d̃ zð Þ
n o

¼ μ Appσ ã1; ⋯; ãm ˜;d
� �

; w; xð Þ
h i

.

Similarly, it is not difficult to prove formula (21).

Appendix B. Proofs of theorems

Proof of Theorem 1. “⇒”: Since RAT ¼ RA, for each (y,x)∈U×U, if
DAT y; xð Þ; w; zð Þð Þ≠∅, then there must be y; xð Þ; w; zð Þð Þ∉RAT⇔
y; xð Þ; w; zð Þð Þ∉RA. It follows that ai∈DA y; xð Þ; w; zð Þð ÞpDAT y; xð Þ; w; zð Þð Þ

such that μai y; xð Þbμai w; zð Þ, i.e., A∩DAT((y,x),(w,z))≠∅.
“⇐”: Since ApAT, there must be y; xð Þ; w; zð Þð Þ∈RAT⇒ y; xð Þ; w; zð Þð Þ

∈RA. It must be proved that y; xð Þ; w; zð Þð Þ∈RA⇒ y; xð Þ; w; zð Þð Þ∈RAT . For
each DAT y; xð Þ; w; zð Þð Þ≠∅, we have y; xð Þ; w; zð Þð Þ ∉RAT , since A∩DAT
y; xð Þ; w; zð Þð Þ≠∅, then there must beai∈A such that μai y; xð Þbμai w; zð Þ,

i.e., y; xð Þ; w; zð Þð Þ∉RA.

Proof of Theorem 2. Suppose that A={a1,⋯,al} {a1,⋯,am}=AT.

(1) “⇒”: If DA
↑(w,x) DAT

↑ (y,x), by formula (20) we have

μ�Appσ ã1; ⋯; ãl
˜; d

� �
; y; xð Þ

h i
≤μ�Appσ ã1; ⋯; ãm

˜; d
� �

; w; xð Þ
h i

:

By Proposition 4, I1 d=D↑
A y; xð Þ

� �
≤I1 d=D↑

A w; xð Þ
� �

holds. By

assumption, we have I1 d=D↑
AT y; xð Þ

� �
¼ I1 d=D↑

A y; xð Þ
� �

, I1 d=ð
D↑
AT w; xð ÞÞ ¼ I1 d=D↑

A w; xð Þ
� �

, it follows that I1 d=D↑
AT y; xð Þ
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≤

I1 d=D↑
AT w; xð Þ

� �
.

“⇐”: Obviously, for each (y,x)∈U×U, we have ApAT⇒

D↑
AT y; xð Þ D↑

A y; xð Þ⇒ μ�Appσ ã1; ⋯; ãm
˜;d

� �
; y; xð Þ

h i
≥μ�Appσ
h

ã1; ⋯; ãl
˜; d

� �
; y; xð Þ� ¼ I1 d=D↑

AT y; xð Þ
� �

≥I1 d=D↑
A y; xð Þ

� �
.

Consequently, it must be proved that I1 d=D↑
AT y; xð Þ

� �
≤

I1 d=D↑
A y; xð Þ

� �
.

Since w∈DA
↑
(w,x), DA

↑
(w,x)pDA

↑
(y,x)⇒w∈DA

↑
(y,x) holds.

Conversely, by proof of Proposition 2 we have w∈DA
↑(y,x)⇒

DA
↑
(w,x) DA

↑
(y,x), which implies that w∈DA

↑
(y,x)⇔DA

↑
(w,x)

pDA
↑(y,x).
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By Proposition 2, we have

D↑
A y; xð Þ ¼ ∪ D↑

AT w; xð Þ : w∈D↑
A y; xð Þ

n o
¼ ∪ D↑

AT w; xð Þ : D↑
ApD↑

A y; xð Þ
n o

;

By assumption we have the following:

D↑
A w; xð Þ D↑

A y; xð Þ⇒I1 d=D↑
AT y; xð Þ

� �
≤ I1 d=D↑

AT w; xð Þ
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:

Thus, for ∀DAT
↑
(w,x)∈DA

↑
(y,x), we have I1 d=D↑

AT y; xð Þ
� �

≤ I1 d=ð
D↑
AT w; xð ÞÞ, it follows that I1 d=D↑

AT y; xð Þ
� �

≤ I1 d=D↑
A y; xð Þ

� �
.

(2) The proof of (2) is similar to the proof of (1).
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