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Abstract 

Several Artificial Intelligence-based models have been developed for cancer prediction. In spite of the 
promise of artificial intelligence, there are very few models which bridge the gap between traditional 
human-centered prediction and the potential future of machine-centered cancer prediction. In this 
study, an efficient and effective model is developed for gene selection and cancer prediction. Moreover, 
this study proposes an artificial intelligence decision system to provide physicians with a simple and 
human-interpretable set of rules for cancer prediction. In contrast to previous deep learning-based can-
cer prediction models, which are difficult to explain to physicians due to their black-box nature, the pro-
posed prediction model is based on a transparent and explainable decision forest model. The perfor-
mance of the developed approach is compared to three state-of-the-art cancer prediction including 
TAGA, HPSO and LL. The reported results on five cancer datasets indicate that the developed model can 
improve the accuracy of cancer prediction and reduce the execution time. 

Keywords: artificial intelligence, supervised machine learning, medical informatics applications, classifi-
cation, decision trees 

Introduction 

Worldwide, cancer remains the leading cause of 
death for both men and women. It is estimated 
that one out of every six deaths worldwide are 
caused by cancer, which makes it the leading 
cause of death globally [1], and around 19.3 mil-
lion of new cancer cases and 10 million cancer 

deaths are recorded worldwide in 2020 alone. 
Therefore, improving cancer prediction becomes 
crucial for increasing survival chances by providing 
opportunity for early diagnosed patients to receive 
appropriate treatment [2-4].  

Microarray technology has already been employed 
in several healthcare applications to advance in 
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cancer prediction. Especially, Deoxyribonucleic 
Acid (DNA) microarray data [5], biomarker analysis 
[6], Ribonucleic Acid (RNA) sequencing [7] and 
Polymerase Chain Reaction (PCR) [8,9] to classify 
input samples into predefined groups (e.g. benign 
or cancerous). These groups could be a specific 
diagnosis (e.g. melanoma) or a diagnostic category 
(e.g. malignant versus benign) [10]. On the other 
hand, the availability of large volume of DNA mi-
croarray data enabled the development of tailored 
Machine Learning (ML) algorithms [11,12].  

Nevertheless, there are at least two significant 
challenges that constraint the large-scale clinical 
deployment of ML techniques for cancer DNA mi-
croarray data classification/prediction tasks. The 
first one is associated with the high-dimensionality 
of microarray data where the number of genes is 
much greater than the number of patterns [13,14], 
and many genes may be irrelevant or redundant to 
cancer prediction or classification task. The second 
one is associated with the explainability issue 
where clinicians and health authorities are reticent 
to rely on hardly explainable / transparent results 
raised by the employed complex ML and black-box 
like systems [15-17]. Indeed, in many healthcare 
applications, it is necessary to know how the pre-
diction model made a specific prediction, allowing 
the healthcare stakeholders (e.g., physicians, spe-
cialists, patients, researchers and public) to trust 
the model. Explainability here refers to machine 
learning approaches that can provide human-
understandable explanation for their models' be-
havior. 

High-dimensional cancer microarray dataset with 
small number of patterns leads to the well-known 

problem of “curse of dimensionality”. Gene selec-
tion is a powerful and efficient technique in DNA 
microarray data analysis to deal with such a chal-
lenge and it is among popular techniques that 
enable eliminating irrelevant and/or redundant 
genes as well as enhancing computational com-
plexity, learning efficiency and generalization ca-
pabilities [18-20]. Whereas various techniques 
have been suggested to handle the lack of explain-
ability in ML in a way to earn clinician trusts and to 
achieve positive clinical impact, although with a 
limited success. This includes diagnostic methods 
that aim to provide model understanding of ML 
system such as linear approximation models, gene 
importance visualization, saliency map, sensitivity 
analysis, LIME, Anchors, instance-based explana-
tion methods (e.g., data instances as [23]), among 
others. See, [21,22] for an overview. The handling 
of these two aspects (high dimensionality and 
explainability) in DNA microarray data analysis for 
cancer prediction / classification tasks showed 
mixed results in health literature. See Table 1 for a 
discussion of some relevant works in this field, and 
no satisfactory solution has been universally ac-
cepted yet. This calls for further research in this 
issue. For instance, it emerged from our literature 
survey that models that achieved state-of-the-art 
results in terms of cancer prediction are rather 
based on deep learning approaches [24-28] with-
out any explainability issues. As a result, develop-
ing new models for cancer prediction and classifi-
cation using DNA microarray data that are both 
explainable and interpretable, as well as highly 
accurate, is considered of paramount importance 
in the eHealth community. 
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Table 1. Outlining the reviewed cancer prediction models and used techniques. 
Paper Technique  Task Dataset Accuracy Explainability 

Al-Betar et 
al. [29] 

Gene selection and 
SVM classifier 

Cancer classification DNA microarray dataset 
(Breast, Colon, Lymphoma 
and etc.) 

Medium Low 

Rostami et 
al. [30] 

PSO and feature selec-
tion 

Cancer classification DNA microarray dataset 
(Colon, Lung Cancer and 
etc.) 

High Low 

Gu et al. 
[17] 

Case-based ensemble 
learning 

Breast cancer pre-
diction 

Breast cancer recurrence 
cases 

Low High 

Nayak et al. 
[31] 

Artificial Neural Net-
work and PSO 

Cancer prediction WBC Breast Cancer, Lung 
Cancer and Cervical cancer 

Medium Low 

Ghiasi et al. 
[32] 

DT Breast cancer classi-
fication 

Breast Cancer Database Low High 

Lai and 
Huang [3] 

Multi-filter ensemble 
technique and simpli-
fied swarm optimiza-
tion 

Cancer classification Microarray gene expres-
sion datasets (Brain Tu-
mor, Lung Cancer, and 
etc.) 

Medium Low 

Maleki et 
al. [2] 

KNN and genetic algo-
rithm  

Lung cancer prog-
nosis 

lung cancer dataset Medium Medium 

Babu et al. 
[4] 

Cellular learning au-
tomata with SVM, 
Naive Bayes and KNN  

Microarray data 
classification 

DNA microarray datasets 
(Prostate tumor, SRBCT 
and etc.) 

Medium Medium 

Hamid et 
al. [33] 

Gene Selection, PSO 
and SVM 

Cancer Classification Breast Cancer and Lym-
phography datasets 

Medium Low 

Xiao et al. 
[28] 

Deep Learning Cancer diagnosis RNA-seq datasets (LUAD, 
STAD and BRCA) 

High Low 

Koh et al. 
[27] 

Deep Learning Breast cancers 
detection 

Chest CT scans High Low 

Zheng et al. 
[34] 

Dual latent representa-
tion learning 

Microarray data 
classification 

DNA microarray Datasets 
(Breast, Lung Cancer and 
etc.) 

Medium Low 

Doppala-
pudi et al. 
[26] 

Deep Learning Lung cancer survival 
period prediction 

Surveillance, Epidemiolo-
gy, and End Results Da-
taset 

High Low 

Alomari et 
al. [35] 

Gray Wolf Optimizer 
and SVM  

Cancer classification DNA microarray Datasets 
(Colon, CNS, Lung Cancer 
and etc.) 

Medium Low 

Chai et al. 
[25] 

Deep learning  Cancer prognosis 
prediction 

The Cancer Genome High Low 

Liu et al. 
[24] 

Deep learning  Breast cancer pre-
diction 

Breast cancer CT images  High Low 
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The major aim of this work is to introduce a novel 
graph-based gene selection method integrated 
with an explainable classifier that satisfies the 
explainability requirement. In the developed mod-
el a prediction technique based on Decision Tree 
(DT) is developed to improve the explainability of 
the learning algorithm. Transparency of DT makes 
it widely accepted in healthcare application that 
requires a comprehension of both the classifier 
structure and its prediction. This developed cancer 
prediction model has a number of innovations 
compared with previously surveyed methods: 

1. Unlike black-box deep learning-based cancer 
prediction models [24-28], the use of DT in our 
scheme enforces explainability due to its acknowl-
edged transparency. 

2. The proposed method uses a novel graph clus-
tering-based technique to identify similar genes. 
This, unlike other clustering algorithms such as k-
means [36] and fuzzy clustering [37], automatically 
identifies the number of clusters, which does not 
need to be specified in advance. 

3. The proposed method uses a graph-based ap-
proach for gene selection that is faster and more 
accurate than nature-inspired methods such as 
MOSSO [38], AutoGeneS [39], C-HMOSHSSA [40].  

4. The developed gene selection satisfies both 
objectives of genes selection Minimum redundan-
cy and Maximum relevance [41-43] in its search 
strategy.  

5. In comparison with previous wrapper-based 
gene selection approaches [44-46], the developed 
method does not employ any learning model in its 
gene selection process. 

Material and methods 

In this section, an innovative explainable predic-
tion model for cancer prediction is proposed by 
incorporating the concept of Gene Selection with 
Explainable Classifier (GSEC). In the developed 
GSEC, in order to handle the high occurrence of 
irrelevant and redundant genes in DNA cancer 
microarray data analysis, which decreases the 
prediction accuracy [47-49], a gene selection 
phase is added to the main prediction phase with 
the aim of removing irrelevant and redundant 
genes. 

Since their ability to encode similarity relationships 
among data, graph-based models such as graph 
embedding [20], graph clustering [50], and semi-
supervised learning [51] have played an important 
role in machine learning tasks. Through the use of 
graph-based models for cancer prediction, a uni-
versal and versatile framework can be created that 
reflects the complex relationships and structure of 
the gene space. for this purpose, a novel-graph-
based and explainable cancer prediction model is 
developed in this paper. In overall, the developed 
model consists of four main steps. In the first step, 
the primary genes are represented as a graph. In 
the second step, a graph clustering algorithm is 
utilized to find gene clusters. Next, high score 
genes are selected from each cluster to generate 
the final gene set. In the fourth step, a DT-based 
prediction technique is developed to improve the 
explainability of the learning algorithm. Figure 1 
provides a high-level graphical illustration of the 
developed cancer prediction model. 
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Figure 1. The overall schema of the developed method for cancer prediction. 
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Gene similarity calculation 

The aim of the first step is to represent the gene 
space of the DNA microarray dataset to an undi-
rected and weighted graph. In this representation, 
each gene is demonstrated using a node and the 
weight of each edge is the similarity between their 
corresponding genes. In this graph representation, 
the Pearson correlation coefficient measure [52] is 
employed to calculate the similarity values be-
tween different genes. Using this similarity meas-
ure, the similarity values are in the range of [0 1], 
where identical gene expressions take value 1 and 
two completely dissimilar genes take value 0. 

This similarity measure maps the gene space of a 
microarray dataset into a fully weighted and con-
nected graph. To make the graph sparser, the edg-
es with associated weights lower than some 
threshold value θ are removed. θ is an adjustable 
parameter that takes values in the unit interval  
[0 1]. When θ value is small (resp. large), more 
(resp. fewer) edges will be considered in the next 
steps. In our experiments θ is empirically set to 
0.6, which is found to work well. 

Gene clustering 

One of the important goals of the developed 
method is to select subset of genes that have least 
similarity to each other and the highest similarity 
to the target class. In order to achieve the first 
objective, genes are grouped into similar clusters. 
For this purpose, the fast graph clustering algo-
rithm [53] is applied to cluster the genes. This 
graph clustering algorithm can quickly detect gene 
communities in a high-dimensional cancer micro-
array dataset, due to the use of fast parallel model 
for community detection. Since the generated 
gene graph is sparse enough, this algorithm is 
faster than previous methods for gene clustering 
such as [54] and [55]. 

Final gene selection 

In order to achieve the second objective (similarity 
with the target class), a selection strategy based 
on Pearson similarity measures and gene scoring is 
developed. Specifically, at each iteration, the clus-
ter with the highest number of genes is identified 
and then among the existing genes in this maxi-
mum cluster, the most representative genes are 
selected using an approach that seeks to maximize 
Pearson similarity scores while ensuring gene rele-
vance. Finally, the remaining genes available in this 
cluster are removed from the set of genes and the 
process is repeated for the remaining genes in this 
graph. In short, using the concept of gene rele-
vance, the genes of each cluster are ranked and 
then using Pearson similarity measure, non-
redundant genes are considered to represent the 
initial genes of this cluster. In the proposed meth-
od, the search process is guided in such a way that 
at least one gene is selected per cluster. As a re-
sult, the selected genes satisfy both conditions: 
maximum relevancy and minimum redundancy.  

More specifically, in the proposed method, the 
incremental gene weighting mechanism [56], 
which yields a score in the unit interval, is utilized 
for gene scoring. The purpose of gene scoring is to 
select a representative gene that is most relevant 
to the target class. Therefore, a gene with the 
highest score in the cluster is added to the select-
ed gene set. After eliminating this gene from the 
cluster, the next gene with the highest score is 
considered as the candidate gene and the average 
similarity of this gene with the previously selected 
genes is calculated using Pearson similarity meas-
ure. If the average similarity value of the candidate 
gene and the previously selected genes is lower 
than some predefined threshold δ, this gene is 
added to the selected gene set and the next rele-
vant gene from this cluster is considered as a can-
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didate gene. Otherwise, if the average Pearson 
similarity between the candidate gene and the 
previously selected genes was higher than δ, all 
remaining genes in this cluster are removed from 
the gene graph. This process is repeated again for 
all remaining genes after deleting the genes pre-
sent in the extracted cluster. Then, as mentioned 
earlier, for each cluster, relevant gene is selected 
by performing the incremental gene scoring tech-
nique. 

Explainable cancer prediction 

In this step, a novel decision tree-based predica-
tion technique is developed to improve the ex-
plainability of cancer prediction. To address the 
limited prediction performance of DT model to 
capture complex interactions between input 
genes, which result in important biases, due to the 
nearsightedness characteristic of their induction 
model, Decision Forest (DF), or ensemble of DTs, 
were employed. This Ensemble model is a power-
ful technique to combine the results of several 
prediction models into a single decision. This typi-
cally yields more accurate prediction capabilities 
due to the diversity of the constituent individual 
classifiers and their performances. Moreover, in 
this paper, a new technique for converting DF into 
a single DT is developed. Based on the original DF, 
the final decision tree approximates its prediction 
accuracy, while providing explainable and faster 
classification. As compared to previous prediction 
models, the developed model can be applied to all 
sizes of forests and does not need complicated 
hyperparameter setting. In the developed predic-
tion model, first, a conjunction set that represents 
the original DF is created and then a DT that forms 
the conjunction set in a tree structure is built. 

More formally, suppose a dataset with n samples, 
m genes, and c classes 
(D={(x_i,y_i)}|D|n,x_i∈R^m,y_i∈1,…,c). In DF a m-

dimensional gene vector is mapped into a c-
dimensional probability vector by collecting differ-
ent progressively increasing functions as below: 

𝜑𝜑(𝑥𝑥𝑖𝑖) =
∑ 𝑡𝑡𝑙𝑙(𝑥𝑥𝑖𝑖)

|𝐿𝐿|
𝑙𝑙=1

|𝐿𝐿|
, 𝑡𝑡𝑙𝑙𝜖𝜖𝑅𝑅𝑐𝑐 

(1) 

where, L represents the set of DTs contained with-
in the DF. The main goal of the developed model is 
to build a new explainable tree that approximates 
the prediction function of a given DF. This new 
explainable tree t┴^ is calculated as follows: 

∀𝑥𝑥𝑖𝑖, 𝑡𝑡
^
(𝑥𝑥𝑖𝑖) ≈ 𝜑𝜑(𝑥𝑥𝑖𝑖) (2) 

This method relies on the idea that both DF and DT 
can be demonstrated as sets of disjoint rules. As 
an organization tree structure is constructed, con-
junctions can be organized to provide accurate 
and precise classifications. Generating an explain-
able DT that approximates the prediction function 
of a given DF is the main aim of this formula. It 
should be noted that the developed prediction 
model does not measure any interdependencies 
between different trees. For this reason, it is more 
appropriate to employ this technique for autono-
mous DFs. 

Afterwards, the DF is partitioned into a set of rule 
conjunctions that each is associated with an ap-
propriate ultimate outcome of DF. In the Hierar-
chical form of a DT, t_i that is part of the DF of T, is 
ignored and the tree is considered as a series of 
rule conjunctions CS_i. Conjunction in CS_i is a set 
of rules c_ij mapped to y┴^_(c_ij ), a K-
dimensional vector that K demonstrates the num-
ber of classes and each cell donates the probability 
of the respective label. It is possible to combine 
two conjunctions CS_1 and CS_2 using a Cartesian 
product where conjunction c_1 is combined with 
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conjunction c_2 to generate a new conjunction 
(c_1j∧c_2j,y┴^_(c_1j )+y┴^_(c_2j )). 

Figure 2 indicates the pseudo-code of the devel-
oped cancer prediction model. 

Algorithm: Cancer prediction model based on Gene Selection with Explainable Classifier (GSEC) 

Input 𝐷𝐷𝑇𝑇: Input Cancer microarray data  

 𝜃𝜃: Threshold for edge removing 

 𝛿𝛿: Threshold for final gene selection 

Output Prediction model and explanations 

1: Begin algorithm 

2: Data Normalization  

3: Gene similarity calculation using Pearson measure  

4: 𝑮𝑮𝑮𝑮𝑮𝑮𝑮𝑮𝑮𝑮 = Generate a primary graph of genes using calculated gene similarities  

5: 𝑺𝑺𝑺𝑺𝑺𝑺𝑺𝑺𝑺𝑺𝑺𝑺𝑺𝑺_𝑮𝑮𝑮𝑮𝑮𝑮𝑮𝑮𝑮𝑮 = Remove edges which their associated weights are less than threshold 𝜃𝜃 

6: 𝑪𝑪𝑪𝑪𝑪𝑪𝑪𝑪𝑪𝑪𝑪𝑪𝑪𝑪𝑪𝑪𝑪𝑪𝑪𝑪_𝑮𝑮𝑮𝑮𝑮𝑮𝑮𝑮𝑮𝑮= 𝑭𝑭𝑭𝑭𝑭𝑭𝑭𝑭_𝑮𝑮𝑮𝑮𝑮𝑮𝑮𝑮𝑮𝑮_𝑪𝑪𝑪𝑪𝑪𝑪𝑪𝑪𝑪𝑪𝑪𝑪𝑪𝑪𝑪𝑪𝑪𝑪𝑪𝑪(𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆_𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺ℎ) 

7: 𝑮𝑮𝑮𝑮𝑮𝑮𝑮𝑮_𝑾𝑾𝑾𝑾𝑾𝑾𝑾𝑾𝑾𝑾𝑾𝑾 = 𝑭𝑭𝑭𝑭𝑭𝑭𝑭𝑭𝑭𝑭𝑭𝑭𝑭𝑭_𝑾𝑾𝑾𝑾𝑾𝑾𝑾𝑾𝑾𝑾𝑾𝑾𝑾𝑾𝑾𝑾𝑾𝑾(𝐷𝐷𝑇𝑇) 

8: 𝑮𝑮′ = { }  

9: Do 

10  𝑪𝑪𝑪𝑪𝑪𝑪𝑪𝑪𝑪𝑪𝑪𝑪𝑪𝑪𝑪𝑪𝑪𝑪_𝑪𝑪𝑪𝑪𝑪𝑪𝑪𝑪𝑪𝑪𝑪𝑪𝑪𝑪 = 𝑴𝑴𝑴𝑴𝑴𝑴_𝑪𝑪𝑪𝑪𝑪𝑪𝑪𝑪𝑪𝑪𝑪𝑪𝑪𝑪(𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶_𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺ℎ) 

11:  𝑪𝑪𝑪𝑪𝑪𝑪𝑪𝑪𝑪𝑪𝑪𝑪𝑪𝑪𝑪𝑪𝑪𝑪_𝑮𝑮𝑮𝑮𝑮𝑮𝑮𝑮 = 𝑴𝑴𝑴𝑴𝑴𝑴_𝑮𝑮𝑮𝑮𝑮𝑮𝑮𝑮_𝒊𝒊𝒊𝒊_𝑪𝑪𝑪𝑪𝑪𝑪𝑪𝑪𝑪𝑪𝑪𝑪𝑪𝑪𝑪𝑪𝑪𝑪_𝑪𝑪𝑪𝑪𝑪𝑪𝑪𝑪𝑪𝑪𝑪𝑪𝑪𝑪(𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺_𝑊𝑊𝑊𝑊𝑊𝑊𝑊𝑊ℎ𝑡𝑡) 

12:  Do 

13:  𝑮𝑮′=𝑮𝑮′ +𝑪𝑪𝑪𝑪𝑪𝑪𝑪𝑪𝑪𝑪𝑪𝑪𝑪𝑪𝑪𝑪𝑪𝑪_𝑮𝑮𝑮𝑮𝑮𝑮𝑮𝑮 

14:  𝑪𝑪𝑪𝑪𝑪𝑪𝑪𝑪𝑪𝑪𝑪𝑪𝑪𝑪𝑪𝑪𝑪𝑪_𝑪𝑪𝑪𝑪𝑪𝑪𝑪𝑪𝑪𝑪𝑪𝑪𝑪𝑪 = 𝑪𝑪𝑪𝑪𝑪𝑪𝑪𝑪𝑪𝑪𝑪𝑪𝑪𝑪𝑪𝑪𝑪𝑪_𝑪𝑪𝑪𝑪𝑪𝑪𝑪𝑪𝑪𝑪𝑪𝑪𝑪𝑪 − 𝑪𝑪𝑪𝑪𝑪𝑪𝑪𝑪𝑪𝑪𝑪𝑪𝑪𝑪𝑪𝑪𝑪𝑪_𝑮𝑮𝑮𝑮𝑮𝑮𝑮𝑮 

15:  𝑪𝑪𝑪𝑪𝑪𝑪𝑪𝑪𝑪𝑪𝑪𝑪𝑪𝑪𝑪𝑪𝑪𝑪_𝑮𝑮𝑮𝑮𝑮𝑮𝑮𝑮 = 𝑴𝑴𝑴𝑴𝑴𝑴_𝑮𝑮𝑮𝑮𝑮𝑮𝑮𝑮_𝒊𝒊𝒊𝒊_𝑪𝑪𝑪𝑪𝑪𝑪𝑪𝑪𝑪𝑪𝑪𝑪𝑪𝑪𝑪𝑪𝑪𝑪_𝑪𝑪𝑪𝑪𝑪𝑪𝑪𝑪𝑪𝑪𝑪𝑪𝑪𝑪(𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺_𝑊𝑊𝑊𝑊𝑊𝑊𝑊𝑊ℎ𝑡𝑡) 

16:  While (𝑨𝑨𝑨𝑨𝑨𝑨𝑨𝑨𝑨𝑨𝑨𝑨𝑨𝑨_𝑷𝑷𝑷𝑷𝑷𝑷𝑷𝑷𝑷𝑷𝑷𝑷𝑷𝑷_𝑺𝑺𝑺𝑺𝑺𝑺𝑺𝑺𝑺𝑺𝑺𝑺𝑺𝑺𝑺𝑺𝑺𝑺𝑺𝑺(𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶_𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺,𝐺𝐺′) < 𝛿𝛿) Then 

17:  𝑪𝑪𝑪𝑪𝑪𝑪𝑪𝑪𝑪𝑪𝑪𝑪𝑪𝑪𝑪𝑪𝑪𝑪𝑪𝑪_𝑮𝑮𝑮𝑮𝑮𝑮𝑮𝑮𝑮𝑮 = 𝑪𝑪𝑪𝑪𝑪𝑪𝑪𝑪𝑪𝑪𝑪𝑪𝑪𝑪𝑪𝑪𝑪𝑪𝑪𝑪_𝑮𝑮𝑮𝑮𝑮𝑮𝑮𝑮𝑮𝑮 − 𝑪𝑪𝑪𝑪𝑪𝑪𝑪𝑪𝑪𝑪𝑪𝑪𝑪𝑪𝑪𝑪𝑪𝑪_𝑪𝑪𝑪𝑪𝑪𝑪𝑪𝑪𝑪𝑪𝑪𝑪𝑪𝑪  

18: While (𝑪𝑪𝑪𝑪𝑪𝑪𝑪𝑪𝑪𝑪𝑪𝑪𝑪𝑪𝑪𝑪𝑪𝑪𝑪𝑪_𝑮𝑮𝑮𝑮𝑮𝑮𝑮𝑮𝑮𝑮 ≠ ∅) 

19 Report 𝑮𝑮′ as a final gene set 

20: Generate new Microarray Dataset using the selected gene set (𝑮𝑮′) 

21: Evaluating different decision trees 

22: Transform different Trees to a single tree for final explanation 

23 Final Cancer prediction and explanations 

24: End algorithm 

Figure 2. Pseudo-code of the proposed explainable cancer prediction model. 
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Results 

To measure the efficiency of the developed cancer 
prediction model, various experiments are per-
formed. The performance of the developed model 
is compared with three very recent methods of 
filter-based cancer microarray data classification: 
Tabu Asexual Genetic Algorithm (TAGA) [57], Har-
monize Particle Swarm Optimization (HPSO) [33], 
Least Loss (LL) [58]. 

Moreover, the experiments in this study use a 
variety of datasets with different properties to 
demonstrate the effectiveness and robustness of 
the developed approach. These microarray data 
consist of Colon, Leukemia, SRBCT, Prostate Tu-
mor, and Lung Cancer. The primary characteristics 
of these datasets are detailed in Table 2. Both 
Colon and Leukemia datasets are publicly available 
from the Universidad Pablo de Olavide's Bioinfor-
matics Research Group [59], while the SRBCT da-
taset, Prostate Tumor dataset, and the Lung Can-
cer dataset are available at Vanderbilt University's 
Gene Expression Model Selector [60]. Leukemia, 
Colon, and Prostate Tumor datasets are binary 
classification problems and SRBCT and Lung Can-
cer datasets represent multi-class problems whose 
task it is to classify different tumor types. In Table 
2, #Genes refers to the number of initial genes 
used to build the prediction model, #Patterns re-
fers to the number samples (i.e. patients) and 
#Class indicates to the number groups (e.g. benign 
or cancerous and etc.). In order to achieve more 
precise and acceptable results, the results are ob-
tained over ten separate and autonomous runs. 
Microarray datasets are randomly divided into 
train data (66% of the initial data) and test data 
(34% of the initial data) for each run. Train part is 
utilized to model generation, while test data is 
used to measure the model. The comparative 
methods are evaluated on the same training and 

testing sets in order to ensure fairness. The effi-
ciency of the developed cancer prediction model is 
evaluated in terms of classification accuracy, num-
ber of selected genes and execution time. The 
classification accuracy of a prediction model can 
be summarized as the number of correct predic-
tions divided by the total predictions. Further-
more, the number of selected genes refers to the 
number of genes used by each model for predic-
tion task. 

Table 3 shows the average accuracy over ten inde-
pendent runs of the different cancer prediction 
models. The reported results show that in all cases 
the developed model performs better than the 
recently state-of-the-art approaches. For example, 
for the Lung Cancer dataset, the proposed method 
yields a 91.82% classification accuracy while TAGA 
[57], HPSO [33], and LL [58] reported 90.19%, 
90.83%, and 89.61%, correspondingly.  

Furthermore, Figure 3 records the number of se-
lected genes of the different gene selection ap-
proaches for each microarray dataset. It can be 
seen that, in general, all compared models have 
succeeded in significantly reducing the number of 
initial genes by choosing only a small number of 
the original genes. Especially, for Colon, SRBCT, 
Leukemia, Prostate Tumor, Lung Cancer, the de-
veloped model achieved the best result in terms of 
size of the selection, among the three other alter-
native approaches, resulting averagely in a selec-
tion size of 13.5, 17.4, 20.3, 22.8 and 28.3, respec-
tively.  

In the next experiment, different gene selection 
models are compared in term of execution times. 
In these experiments, corresponding execution 
times (in second) for each gene selection method 
are shown in Figure 4. The reported results re-
vealed that among the state-of-the-art gene selec-
tion models, the proposed model has the lowest 
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average execution time, which testifies of its com-
putational efficiency. 

Sensitivity analysis 

Like many other prediction models, in the devel-
oped model, two parameters should be deter-
mined: edge weight threshold θ and threshold for 

gene selection δ. For this purpose, a sensitivity 
analysis is performed. Figure 5 exhibits the varia-
tion of the accuracy evaluation with respect to 
various choices of θ and δ. The reported results in 
this figure demonstrate that in most cases when 
the parameter θ is adjusted to 0.6 and δ parame-
ter to 0.7, the developed cancer prediction model 
achieves the best accuracy. 

 
Table 2. Characteristics of the used microarray datasets. 

Dataset # Genes # Classes # Patterns 

Colon 2000 2 62 

SRBCT 2328 4 83 

Leukemia 7129 2 72 

Prostate Tumor 10509 2 102 

Lung Cancer 12600 5 203 

 
Table 3. Average prediction accuracy of different models. 

Dataset Proposed Model TAGA HPSO LL 

Colon 88.99 81.54 84.81 87.24 

SRBCT 83.39 80.82 78.31 77.81 

Leukemia 92.16 89.63 87.23 88.13 

Prostate Tumor 83.87 80.83 82.81 79.15 

Lung Cancer 91.82 90.19 90.83 89.61 

 

 
Figure 3. Average number of selected genes of the different methods in ten independent runs. 
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Figure 4. Average execution time (in second) of different gene selection approaches. 

 
(a) 

 
(b) 

Figure 5. Sensitivity analysis of (a) θ parameter and (b) δ parameter. 
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Discussion and conclusion 

In this section first the performance of the pro-
posed model is analysed and then the novelties 
and future plan are highlighted.  

In this paper an explainable cancer prediction 
model is developed by integrating gene selection 
and explainable decision forests. With the devel-
oped gene selection strategy, not only will the 
most redundant genes be selected, but also their 
relevance to DNA microarray cancer data will be 
maximized. Moreover, a DT-based prediction 
technique is developed to improve the explainabil-
ity of the learning algorithm. A DT's transparency 
makes it a powerful tool when understanding the 
model structure and its predictions is necessary. 
The performance of the developed cancer predic-
tion model is compared to state-of-the-art models 
in terms of accuracy, number of selected genes, 
and execution time. Compared to other prediction 
models, the developed method had higher accura-
cy, and the number of selected genes was lower 
than other models. Moreover, the reported results 
demonstrated that generally the developed model 
was not significantly faster than the other models. 
Because of the higher accuracy and explainability 
of the developed model, this result is particularly 
justifiable for medical problems, for which accura-
cy is more important than execution time. Fur-
thermore, our DT-based model suffers from insta-
bility and high standard deviation in different 
executions. This model is inherently unstable, in 
that a small change in train data can result in a 
large change in the structure of the final DT. As a 
result, our model has a high probability of being 
overfit. In order to reduce the probability of over-
fitting and instability of prediction models, it 
would be better to increase the sample size since. 
However, the amount of train data available in the 
healthcare and DNA microarray data might be 

limited, so we can only use machine learning 
methods for train data augmentation. 

Error analysis 

Scrutinizing the results of the developed approach 
indicates that the best accuracy that can be 
achieved by our model is around 92-93%. Alt-
hough, this is already outperforming several state-
of-the-art methods as detailed in the result section 
of this paper, it is still legitimate to question 
whether we can improve further this performance. 
An examination of this process reveals several 
factors that halt further enhancement. First, the 
quality and size of training data are subject to in-
herent limitations due to complex annotation and 
clinical protocols employed in generating the vari-
ous dataset. Second, from methodological per-
spective, the abrupt thresholding employed in 
graph construction and gene selection, although it 
yields significant reduction of algorithmic complex-
ity and improves efficiency in overall, it also bears 
information reduction that can discard useful pat-
terns that would have positively impacted the 
overall accuracy. Third, the use of decision forest 
model, although efficient and with good transpar-
ency/explainability capabilities, bears the inherent 
limitation of not predicting beyond the range of 
the training data and it can overfit in case of noisy 
data. 

Novelties and future works 

The developed model has four major novelties 
that have made it perform better than other can-
cer prediction models: 

1. Many of state-of-the art machine learning-
based models in cancer prediction [24-28] used 
black-box like deep learning techniques with no 
explanation for their prediction. In this paper, a 
simple and easily interpreted decision system for 
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cancer prediction is developed using decision for-
est model. Moreover, a graph representation 
model is utilized to ensure transparency of the 
gene selection model in cancer prediction that 
clinicians can use to explain the process of cancer 
prediction. 

2. The majority of existing cancer prediction meth-
ods use a single classifier. Due to the specific char-
acteristics of each prediction model, single classifi-
er-based models are less generalizable than 
ensembles classifier-based models. In contrast to 
previous single classier-based cancer prediction 
models [33,57,58], this study developed a model 
based on ensemble DF. This yields an increase in 
prediction accuracy and reduced the likelihood of 
overfitting.  

3. The efficiency of a prediction model and the 
result of prediction are strongly decreased by ir-
relevant and redundant genes. Many of previously 
univariate gene selection algorithms [61-66] do 
not consider possible gene-to-gene dependencies, 
therefore, they fail to remove redundant genes 
accurately. Moreover, several gene selection tech-
niques, including UFSACO [67], select only a subset 
of dissimilar genes and do not distinguish irrele-
vant genes. To consider these two objectives sim-
ultaneously, an efficient graph-based gene selec-
tion search strategy is developed that can 
efficiently and effectively discards irrelevant and 
redundant genes.  

4. The developed gene selection model utilizes 
social network analysis-based approach to develop 
an accurate mechanism to select the final gene 
set, without any classification method, which 
yields a low computational complexity, and its 
complexity is efficient for high-dimensional cancer 
datasets.  

In high-dimensional datasets, the proposed meth-
od has the disadvantage of being a multi-phase 
method, which may slightly increase computation-
al complexity. Therefore, future research can focus 
on developing a model that combines the different 
phases into one overall phase. Furthermore, we 
aim to integrate our proposed gene selection ap-
proach with other alternative powerful explainable 
deep learning techniques, e.g., LIME, in our future 
work for accurate and transparent cancer predic-
tion and comparison purpose. 
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