1,250 research outputs found

    Conceptualization of Computational Modeling Approaches and Interpretation of the Role of Neuroimaging Indices in Pathomechanisms for Pre-Clinical Detection of Alzheimer Disease

    Get PDF
    With swift advancements in next-generation sequencing technologies alongside the voluminous growth of biological data, a diversity of various data resources such as databases and web services have been created to facilitate data management, accessibility, and analysis. However, the burden of interoperability between dynamically growing data resources is an increasingly rate-limiting step in biomedicine, specifically concerning neurodegeneration. Over the years, massive investments and technological advancements for dementia research have resulted in large proportions of unmined data. Accordingly, there is an essential need for intelligent as well as integrative approaches to mine available data and substantiate novel research outcomes. Semantic frameworks provide a unique possibility to integrate multiple heterogeneous, high-resolution data resources with semantic integrity using standardized ontologies and vocabularies for context- specific domains. In this current work, (i) the functionality of a semantically structured terminology for mining pathway relevant knowledge from the literature, called Pathway Terminology System, is demonstrated and (ii) a context-specific high granularity semantic framework for neurodegenerative diseases, known as NeuroRDF, is presented. Neurodegenerative disorders are especially complex as they are characterized by widespread manifestations and the potential for dramatic alterations in disease progression over time. Early detection and prediction strategies through clinical pointers can provide promising solutions for effective treatment of AD. In the current work, we have presented the importance of bridging the gap between clinical and molecular biomarkers to effectively contribute to dementia research. Moreover, we address the need for a formalized framework called NIFT to automatically mine relevant clinical knowledge from the literature for substantiating high-resolution cause-and-effect models

    Funding data from publication acknowledgements: coverage, uses and limitations

    Get PDF
    This article contributes to the development of methods for analysing research funding systems by exploring the robustness and comparability of emerging approaches to generate funding landscapes useful for policy making. We use a novel dataset of manually extracted and coded data on the funding acknowledgements of 7,510 publications representing UK cancer research in the year 2011 and compare these 'reference data' with funding data provided by Web of Science (WoS) and MEDLINE/PubMed. Findings show high recall (about 93%) of WoS funding data. By contrast, MEDLINE/PubMed data retrieved less than half of the UK cancer publications acknowledging at least one funder. Conversely, both databases have high precision (+90%): i.e. few cases of publications with no acknowledgement to funders are identified as having funding data. Nonetheless, funders acknowledged in UK cancer publications were not correctly listed by MEDLINE/PubMed and WoS in about 75% and 32% of the cases, respectively. 'Reference data' on the UK cancer research funding system are then used as a case-study to demonstrate the utility of funding data for strategic intelligence applications (e.g. mapping of funding landscape, comparison of funders’ research portfolios)

    Clinical Data Reuse or Secondary Use: Current Status and Potential Future Progress

    Get PDF
    Objective: To perform a review of recent research in clinical data reuse or secondary use, and envision future advances in this field. Methods: The review is based on a large literature search in MEDLINE (through PubMed), conference proceedings, and the ACM Digital Library, focusing only on research published between 2005 and early 2016. Each selected publication was reviewed by the authors, and a structured analysis and summarization of its content was developed. Results: The initial search produced 359 publications, reduced after a manual examination of abstracts and full publications. The following aspects of clinical data reuse are discussed: motivations and challenges, privacy and ethical concerns, data integration and interoperability, data models and terminologies, unstructured data reuse, structured data mining, clinical practice and research integration, and examples of clinical data reuse (quality measurement and learning healthcare systems). Conclusion: Reuse of clinical data is a fast-growing field recognized as essential to realize the potentials for high quality healthcare, improved healthcare management, reduced healthcare costs, population health management, and effective clinical research

    Semantic Approaches for Knowledge Discovery and Retrieval in Biomedicine

    Get PDF

    Identifying Relevant Evidence for Systematic Reviews and Review Updates

    Get PDF
    Systematic reviews identify, assess and synthesise the evidence available to answer complex research questions. They are essential in healthcare, where the volume of evidence in scientific research publications is vast and cannot feasibly be identified or analysed by individual clinicians or decision makers. However, the process of creating a systematic review is time consuming and expensive. The pace of scientific publication in medicine and related fields also means that evidence bases are continually changing and review conclusions can quickly become out of date. Therefore, developing methods to support the creating and updating of reviews is essential to reduce the workload required and thereby ensure that reviews remain up to date. This research aims to support systematic reviews, thus improving healthcare through natural language processing and information retrieval techniques. More specifically, this thesis aims to support the process of identifying relevant evidence for systematic reviews and review updates to reduce the workload required from researchers. This research proposes methods to improve studies ranking for systematic reviews. In addition, this thesis describes a dataset of systematic review updates in the field of medicine created using 25 Cochrane reviews. Moreover, this thesis develops an algorithm to automatically refine the Boolean query to improve the identification of relevant studies for review updates. The research demonstrates that automating the process of identifying relevant evidence can reduce the workload of conducting and updating systematic reviews

    Information retrieval and text mining technologies for chemistry

    Get PDF
    Efficient access to chemical information contained in scientific literature, patents, technical reports, or the web is a pressing need shared by researchers and patent attorneys from different chemical disciplines. Retrieval of important chemical information in most cases starts with finding relevant documents for a particular chemical compound or family. Targeted retrieval of chemical documents is closely connected to the automatic recognition of chemical entities in the text, which commonly involves the extraction of the entire list of chemicals mentioned in a document, including any associated information. In this Review, we provide a comprehensive and in-depth description of fundamental concepts, technical implementations, and current technologies for meeting these information demands. A strong focus is placed on community challenges addressing systems performance, more particularly CHEMDNER and CHEMDNER patents tasks of BioCreative IV and V, respectively. Considering the growing interest in the construction of automatically annotated chemical knowledge bases that integrate chemical information and biological data, cheminformatics approaches for mapping the extracted chemical names into chemical structures and their subsequent annotation together with text mining applications for linking chemistry with biological information are also presented. Finally, future trends and current challenges are highlighted as a roadmap proposal for research in this emerging field.A.V. and M.K. acknowledge funding from the European Community’s Horizon 2020 Program (project reference: 654021 - OpenMinted). M.K. additionally acknowledges the Encomienda MINETAD-CNIO as part of the Plan for the Advancement of Language Technology. O.R. and J.O. thank the Foundation for Applied Medical Research (FIMA), University of Navarra (Pamplona, Spain). This work was partially funded by Consellería de Cultura, Educación e Ordenación Universitaria (Xunta de Galicia), and FEDER (European Union), and the Portuguese Foundation for Science and Technology (FCT) under the scope of the strategic funding of UID/BIO/04469/2013 unit and COMPETE 2020 (POCI-01-0145-FEDER-006684). We thank Iñigo Garciá -Yoldi for useful feedback and discussions during the preparation of the manuscript.info:eu-repo/semantics/publishedVersio

    Towards a system of concepts for Family Medicine. Multilingual indexing in General Practice/ Family Medicine in the era of Semantic Web

    Get PDF
    UNIVERSITY OF LIÈGE, BELGIUM Executive Summary Faculty of Medicine Département Universitaire de Médecine Générale. Unité de recherche Soins Primaires et Santé Doctor in biomedical sciences Towards a system of concepts for Family Medicine. Multilingual indexing in General Practice/ Family Medicine in the era of SemanticWeb by Dr. Marc JAMOULLE Introduction This thesis is about giving visibility to the often overlooked work of family physicians and consequently, is about grey literature in General Practice and Family Medicine (GP/FM). It often seems that conference organizers do not think of GP/FM as a knowledge-producing discipline that deserves active dissemination. A conference is organized, but not much is done with the knowledge shared at these meetings. In turn, the knowledge cannot be reused or reapplied. This these is also about indexing. To find knowledge back, indexing is mandatory. We must prepare tools that will automatically index the thousands of abstracts that family doctors produce each year in various languages. And finally this work is about semantics1. It is an introduction to health terminologies, ontologies, semantic data, and linked open data. All are expressions of the next step: Semantic Web for health care data. Concepts, units of thought expressed by terms, will be our target and must have the ability to be expressed in multiple languages. In turn, three areas of knowledge are at stake in this study: (i) Family Medicine as a pillar of primary health care, (ii) computational linguistics, and (iii) health information systems. Aim • To identify knowledge produced by General practitioners (GPs) by improving annotation of grey literature in Primary Health Care • To propose an experimental indexing system, acting as draft for a standardized table of content of GP/GM • To improve the searchability of repositories for grey literature in GP/GM. 1For specific terms, see the Glossary page 257 x Methods The first step aimed to design the taxonomy by identifying relevant concepts in a compiled corpus of GP/FM texts. We have studied the concepts identified in nearly two thousand communications of GPs during conferences. The relevant concepts belong to the fields that are focusing on GP/FM activities (e.g. teaching, ethics, management or environmental hazard issues). The second step was the development of an on-line, multilingual, terminological resource for each category of the resulting taxonomy, named Q-Codes. We have designed this terminology in the form of a lightweight ontology, accessible on-line for readers and ready for use by computers of the semantic web. It is also fit for the Linked Open Data universe. Results We propose 182 Q-Codes in an on-line multilingual database (10 languages) (www.hetop.eu/Q) acting each as a filter for Medline. Q-Codes are also available under the form of Unique Resource Identifiers (URIs) and are exportable in Web Ontology Language (OWL). The International Classification of Primary Care (ICPC) is linked to Q-Codes in order to form the Core Content Classification in General Practice/Family Medicine (3CGP). So far, 3CGP is in use by humans in pedagogy, in bibliographic studies, in indexing congresses, master theses and other forms of grey literature in GP/FM. Use by computers is experimented in automatic classifiers, annotators and natural language processing. Discussion To the best of our knowledge, this is the first attempt to expand the ICPC coding system with an extension for family physician contextual issues, thus covering non-clinical content of practice. It remains to be proven that our proposed terminology will help in dealing with more complex systems, such as MeSH, to support information storage and retrieval activities. However, this exercise is proposed as a first step in the creation of an ontology of GP/FM and as an opening to the complex world of Semantic Web technologies. Conclusion We expect that the creation of this terminological resource for indexing abstracts and for facilitating Medline searches for general practitioners, researchers and students in medicine will reduce loss of knowledge in the domain of GP/FM. In addition, through better indexing of the grey literature (congress abstracts, master’s and doctoral theses), we hope to enhance the accessibility of research results and give visibility to the invisible work of family physicians

    Ontology-based representation and analysis of host-Brucella interactions

    Full text link
    Abstract Background Biomedical ontologies are representations of classes of entities in the biomedical domain and how these classes are related in computer- and human-interpretable formats. Ontologies support data standardization and exchange and provide a basis for computer-assisted automated reasoning. IDOBRU is an ontology in the domain of Brucella and brucellosis. Brucella is a Gram-negative intracellular bacterium that causes brucellosis, the most common zoonotic disease in the world. In this study, IDOBRU is used as a platform to model and analyze how the hosts, especially host macrophages, interact with virulent Brucella strains or live attenuated Brucella vaccine strains. Such a study allows us to better integrate and understand intricate Brucella pathogenesis and host immunity mechanisms. Results Different levels of host-Brucella interactions based on different host cell types and Brucella strains were first defined ontologically. Three important processes of virulent Brucella interacting with host macrophages were represented: Brucella entry into macrophage, intracellular trafficking, and intracellular replication. Two Brucella pathogenesis mechanisms were ontologically represented: Brucella Type IV secretion system that supports intracellular trafficking and replication, and Brucella erythritol metabolism that participates in Brucella intracellular survival and pathogenesis. The host cell death pathway is critical to the outcome of host-Brucella interactions. For better survival and replication, virulent Brucella prevents macrophage cell death. However, live attenuated B. abortus vaccine strain RB51 induces caspase-2-mediated proinflammatory cell death. Brucella-associated cell death processes are represented in IDOBRU. The gene and protein information of 432 manually annotated Brucella virulence factors were represented using the Ontology of Genes and Genomes (OGG) and Protein Ontology (PRO), respectively. Seven inference rules were defined to capture the knowledge of host-Brucella interactions and implemented in IDOBRU. Current IDOBRU includes 3611 ontology terms. SPARQL queries identified many results that are critical to the host-Brucella interactions. For example, out of 269 protein virulence factors related to macrophage-Brucella interactions, 81 are critical to Brucella intracellular replication inside macrophages. A SPARQL query also identified 11 biological processes important for Brucella virulence. Conclusions To systematically represent and analyze fundamental host-pathogen interaction mechanisms, we provided for the first time comprehensive ontological modeling of host-pathogen interactions using Brucella as the pathogen model. The methods and ontology representations used in our study are generic and can be broadened to study the interactions between hosts and other pathogens.http://deepblue.lib.umich.edu/bitstream/2027.42/113668/1/13326_2015_Article_36.pd
    corecore