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Summary

This thesis discusses potential applications of semantics to the recent literature-
based informatics systems to facilitate knowledge discovery, hypothesis gene-
ration, and literature retrieval in the domain of biomedicine. The approaches
presented herein make use of semantic information extracted from biomedical
texts by natural language processing systems supported by biomedical ontolo-
gies. The thesis is divided into two main parts: first, a field of literature-based
discovery is introduced, with a review of recent approaches of the field; second,
literature retrieval in the domain of neuroimaging (neuroscience) is discussed
with the emphasis put on the coordinate-based searching of related publica-
tions. My own contribution to the first part is a novel literature-based ‘discov-
ery browsing’ methodology incorporating semantic predications, graph-based
methods and path analysis for guiding researchers through the relevant lite-
rature on a user-specified biomedical phenomenon. Moreover, the additional
analyses of the methodology show its potential application as a support for the
recent probabilistic retrieval methods. In the second part of the thesis, I present
the BredeQuery plugin which integrates a coordinate-based literature retrieval
system with the common in neuroimaging statistical analysis environment. It is
followed by the detailed description of a prototype of context-dependent neuro-
scientific literature retrieval methodology, which thanks to the employment of
ontologies, allows the user to define context of interest for a search. The peer
reviewed research articles, included in the appendices, discuss further the details
of the presented methods, case studies, and provide other related information.
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Resumé

Denne afhandling diskuterer mulige anvendelser af semantik i nyere litteratur-
baserede informatik systemer til at søge ny viden, generere hypoteser, og finde
litteratur i biomedicin. De metoder, der forelægges her gøre brug af seman-
tisk oplysninger udtaget fra biomedicinske tekster ved hjælp af naturlig sprog-
behandling systemer, der understøttes af biomedicinske ontologier. Afhan-
dlingen er opdelt i to hoveddele: for det første et afsnit om litteraturbaseret
opdagelse med en gennemgang af de seneste tiltag indenfor omr̊adet; for det
andet, indsamling af litteratur inden for neurobilleddannelse og neurovidenskab
analyseret med vægt p̊a koordinatbaseret søgning af relevante publikationer.
Mit eget bidrag til den første del er en ny litteraturbaseret ‘opdagelse brows-
ing’ metodologi baseret p̊a semantisk prædikationer og grafteori der kan fa-
cilitere forskerne til at finde relevante litteratur om et specificeret biomedicinsk
fænomen. Yderligere analyser af denne metode, indikerer ligeledes en potentiel
anvendelse i forbindelse med probabilistiske metoder indenfor litteratursøgning.
I den anden del af afhandlingen introduceres BredeQuery plugin, som integr-
erer et koordinatbaseret litteratursøgesystem i et neurobilleddannelse statistisk
analysemiljø. Det efterfølges af en detaljeret beskrivelse af en prototype for
kontekstafhængig neurovidenskabelig litteratursøgning, som ved hjælp af on-
tologier, giver brugeren mulighed for at definere rammerne af interesse for en
søgning. Afhandlingens forskningsartikler, inkluderet i appendiks, diskuterer de
nærmere detaljer om udformningen af de præsenterede metoder, casestudier, og
andre praktiske detaljer.
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Preface

This thesis was prepared at Informatics Mathematical Modelling, the Technical
University of Denmark in partial fulfillment of the requirements for acquiring
the Ph.D. degree in engineering.

The thesis deals with different aspects of semantic analysis of the textual data
with application to the biomedical domain. The main focus is on employing
biomedical ontologies, semantic predications and natural language processing
for retrieval of publications and literature-based knowledge discovery.

The thesis consists of a summary report and a collection of eight research papers
written during the period 2008–2011, and elsewhere published.

Lyngby, June 2011

Bart lomiej Wilkowski



vi



Papers included in the thesis

[A] Bart lomiej Wilkowski, Lars Kai Hansen. Context-dependent literature
search: a support for functional imaging coordinate-based databases. BMC
Neuroscience, 2011, (pp. 20). Submitted.

[B] Bart lomiej Wilkowski, Marcin Szewczyk, Peter Mondrup Rasmussen, Lars
Kai Hansen, Finn Aarup Nielsen. BredeQuery: Coordinate-Based Meta-
analytic Search of Neuroscientific Literature from the SPM Environment.
Part of: Biomedical Engineering Systems and Technologies, Communi-
cations in Computer and Information Science: International Joint Con-
ference, BIOSTEC 2009, Porto, Portugal, January 14-17, 2009, Revised
Selected Papers, 314–324, Springer-Verlag New York, 2010. Published.

[C] Bart lomiej Wilkowski, Marcelo Fiszman, Christopher M. Miller, Dimi-
tar Hristovski, Sivaram Arabandi, Graciela Rosemblat, Thomas C. Rind-
flesch. Graph-Based Methods for Discovery Browsing with Semantic Pre-
dications. American Medical Informatics Association Annual Symposium,
1514–1523, Washington D.C., 2011. Published.

[D] Antonio Jimeno-Yepes, James G. Mork, Bart lomiej Wilkowski, Dina Dem-
ner Fushman, Alan R. Aronson. MEDLINE MeSH indexing: lessons
learned from machine learning and future directions. ACM SIGHIT In-
ternational Health Informatics Symposium, 2012, (pp. 5). Accepted.

[E] Antonio Jimeno-Yepes, Bart lomiej Wilkowski, James G. Mork, Elizabeth
Van Lenten, Dina Demner Fushman, Alan R. Aronson. A bottom-up ap-
proach to MEDLINE indexing recommendations. American Medical In-
formatics Association Annual Symposium, 1583–1592, Washington D.C.,
2011. Published.



viii

[F] Bart lomiej Wilkowski. Neuroscientific literature search based on the lo-
cation coordinates in brain - BredeQuery plugin for SPM environment.
Presented at: 2nd INCF Congress of Neuroinformatics, Front. Neur.
Conference Abstract: Neuroinformatics 2009, Pilsen, 2009. Published.

[G] Bart lomiej Wilkowski. Knowledge Discovery in Neuroinformatics. Pre-
sented at: Medical Informatics in a United and Healthy Europe, 150:589,
Sarajevo 2009. Published.

[H] Bart lomiej Wilkowski, Marcin Szewczyk, Lars Kai Hansen. Bridging
the gap between coordinate- and keyword- based search of neuroscien-
tific databases by UMLS-assisted semantic keyword extraction. Presented
at: Human Brain Mapping, NeuroImage, 47(S165):(pp. 3), San Francisco
2009. Published.



Acknowledgements

First, I want to thank my supervisor Lars Kai Hansen. Your constant sup-
port and inspirational force allowed me to develop my skills and broaden my
knowledge significantly as your student during the last three years.

I want to thank the people from the Cognitive Systems section from DTU In-
formatics department, in particular to Carsten Stahlhut, Finn Årup Nielsen,
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Chapter 1

Introduction

Since the technological breakthrough in electronics, computers began to be an
inseparable and indispensable elements of our daily life. More and more powerful
computational machines allowed faster and more efficient research and develop-
ment in many life sciences including medicine. Biomedical experiments started
to consume much less time which allowed the implementation of various new
analysis techniques and methods. The natural outcome of such a technological
boom in biomedicine is the dramatically increasing production of scientific data.

Turning large amounts of scientific results and data into biomedical knowledge
using the traditional “manual” meta analyses of results reported in journals and
technical reports would be very time consuming, thus the resultant expansion
of the medical databases has created a significant potential for the design of
new data modeling and information retrieval tools and services that enable
faster data processing, analysis, integration and dissemination among a highly
interdisciplinary community of researchers (see Appendix G).

The field of information retrieval (IR) and various probabilistic and statistical
approaches in machine learning have contributed to the problem of literature
search and expanded significantly usage of literature databases. This resulted
in creation of general publication search services like Google Scholar and also
more specific, biomedical databases with search capabilities like the PubMed
database.



2 Introduction

Another possible way of dealing with textual data is by applying semantics, a
science of meaning in language. Instead of treating text as a set of subsequent
words and phrases incomprehensible to machines, in semantics, meaning of any
text is inferred by computer through the provided structured domain knowledge
sources called ontologies. ‘Understanding’ the meaning of documents by a com-
puter system allows to design flexible retrieval systems which detect intentions
of users and search in an appropriate context.

The pivotal aim of this thesis is to present semantic approaches for literature-
based knowledge integration and manipulation, and discuss some of their pos-
sible applications in the biomedical domain, which may bring enhancement or
support to the algorithms and methods recently employed for these purposes.

Semantic natural language processing

The approaches presented in this thesis make use of semantic information ex-
tracted from biomedical texts by natural language processing (NLP) systems
supported by biomedical ontologies. A semantic predication, also known as
a triple, is the smallest piece of information extracted by such NLP systems.
It consists of two concepts (subject and object) related with each other via a
carefully defined type of relationship, called predicate. The triple structure of
such information may be easily stored in the suitable machine understandable
data formats like RDF, OWL or even in well-constructed relational databases.
Further processing of such data is much more effective than dealing with raw
text.

Furthermore, semantic predications are also employed to provide visual sum-
marizations of the knowledge encapsulated in a piece of text. A predication
is visualized as two nodes connected with the arrow. The arrow represents a
relationship (predicate) and the nodes represent two concepts involved in a re-
lation. Figure 1.1 shows the example of how a sample biomedical text (title
and abstract of a publication) may be visually represented using semantic pre-
dications. Such a clear visual summary allows very quickly to understand and
identify paper’s main ideas and topics.

The initial sections of Chapter 2 provide an insight into the process of semantic
interpretation and predication extraction, as well as a review of two existing se-
mantic NLP systems, BioMedLee (Lussier et al., 2006) and SemRep (Rindflesch
and Fiszman, 2003).
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Figure 1.1: Visualization of semantic predications automatically extracted by
the SemRep (Rindflesch and Fiszman, 2003) system from the title and abstract
of the paper: “Therapeutic effect and mechanism of proanthocyanidins from
grape seeds in rats with TNBS-induced ulcerative colitis.” (Li et al., 2008).
Different background colors of the biomedical concepts represent their seman-
tic types: yellow (organic and inorganic chemicals), green (body substances),
blue (animals), pink (body parts), red (diseases or syndromes) and white (body
functions). Furthermore, the edges between the concepts represent type of the
relationships, e.g.: substance interactions (INTERACTS WITH, INHIBITS,
COEXISTS WITH), localization (PART OF, LOCATION OF), treatment of
diseases (TREATS, CAUSES), etc.

Knowledge discovery in biomedicine

Krallinger and Valencia (2005) reviewed various literature retrieval and text
mining tools for biomedical use and also described existing systems for so called
‘knowledge discovery’ in biomedical research. Pioneering methodology for find-
ing unknown and implicit relations between biomedical concepts in huge reposi-
tories of biomedical literature was introduced by Swanson (1986a) and initiated
a new field of research in information retrieval called literature-based discov-
ery (LBD). Many LBD systems, including Swanson’s approach, rely primarily
on term co-occurrences without providing any semantic information about the
type of the relation between concepts. Hristovski et al. (2006) expanded these
approaches by employing semantic predications extracted from biomedical pub-
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lications using ontology-based natural language processing systems.

The existing methods and approaches designed for LBD are discussed in Chap-
ter 2. Moreover, I propose and discuss a ‘discovery browsing’ methodology,
an extension for current LBD methodologies, employing graph theory and se-
mantics. The underlying technology exploits the SemRep’s (Rindflesch and
Fiszman, 2003) semantic predications represented as a graph of interconnected
nodes (predication arguments) and edges (predicates). The suggested paths in
this graph represent chains of relationships. Consequently, this methodology
guides the user through the research literature on a specified biomedical phe-
nomenon (Appendix C).

Data integration in neuroscience

New, state-of-the-art scanning techniques caused a breakthrough in the devel-
opment of neuroscience – a study of nervous system. Modern scanners allow to
detect hemodynamic response, thus dynamically regulated blood flow in brain,
relating directly to neuronal activity in brain, hence to define functional localiza-
tion of specific human behavior (Ogawa et al., 1992). Functional localization is a
dominant paradigm in current neuroimaging research and is usually reported as
a set of coordinates, in reference to a specific brain atlas, representing a volume
in brain.

There is an emerging need in neuroimaging for efficient integration of such
structured datasets with ordinary literature databases. Despite that the ex-
isting coordinate-based literature databases are arguably richer for neuroimag-
ing than conventional keyword-based retrieval services, the main challenge for
this type of databases is to improve the labor intensive data entry process
which has decreased the coverage and resulted in limited use. Consequently,
to overcome this problem, new tools and solutions are needed to bridge the gap
between coordinate- and keyword-based databases. The interconnection with
more comprehensive bibliographical databases can extend the results pool of
the coordinate-based services.

Figure 1.2 shows a sample activation data taken from a neuroimaging paper
found through the web service of the Brede database (Nielsen, 2003). This
database records published neuroimaging experiments that list stereotaxic co-
ordinates in so-called MNI or Talairach space. Presently, close to 4000 coordi-
nates from 186 papers with a total of 586 experiments are available. The Brede
database provides similar visualizations to this from Figure 1.2 for all stored
experiments.
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Figure 1.2: A sample set of activation coordinates for a neuroimaging experi-
ment on memory retrieval: “Memory retrieval of temporal, nontemporal, person
relevant and irrelevant memories by listening to statements and responding with
key press versus listening sets of words and pressing a button depending on num-
ber of syllables in last word” (Maguire and Mummery, 1999) retrieved from the
Brede database.

Chapter 3 deals with the current data integration needs in neuroimaging. Apart
from a brief review of the coordinate-based databases and literature retrieval
systems in neuroscience, I describe the BredeQuery plugin – an application
which offers a direct link from the common neuroimaging environment Statistical
Paremetric Mapping (SPM) to the Brede database (Appendix B). It provides a
mechanism which allows the SPM user to find references to articles which relate
to the similar brain activation areas. Finally, a methodology for a context-
dependent literature retrieval using biomedical ontologies and natural language
processing is discussed (Appendix A).

Contributions

Five full papers (Appendices A–E) and three short papers (Appendices F–H) in-
cluded in this thesis refer to the biomedical domain, and are classified into three
categories. Appendix C deals with a methodology for the field of literature-
based discovery. Appendices A, B, F, G, H are oriented towards semantic
approaches for integration and expansion of the coordinate-based services in
neuroscience. Appendices E and D refer to machine learning approaches for im-
proving MeSH indexing of MEDLINE publications and are not further discussed
herein since they go beyond the main subject of this thesis.
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Chapter 2

Literature-based discovery of
biomedical knowledge

The main thrust of this chapter centres around the field of literature-based
discovery (LBD). First, the notion of semantic predications is introduced in
Section 2.1, since that approach provides the strongest basis for LBD. The review
of current semantic predication extraction systems precedes Section 2.2, which
discusses approaches for knowledge summarization using predications. Then,
the background and principles of LBD is presented in Section 2.3, followed by
a review of various LBD methodologies, including the approaches based on the
semantic predications (Section 2.4). Finally, I present in Section 2.5 a novel
methodology, based on semantic predications and designed using graph-based
methods and path analysis, which extends the existing LBD approaches.

2.1 Semantic predications

The automatic extraction of ontological relations between various concepts from
biomedical texts is a complicated process recently established by just few sys-
tems. One such natural language processing system, BioMedLee (Chen and
Friedman, 2004; Lussier and Friedman, 2007), uses various biomedical ontolo-
gies like Unified Medical Language System (UMLS), Mouse Genome Informatics
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(MGI) or Mammalian Ontology to extract many different types of phenotypic
relationships. It is incorporated into the PhenoGO system which automati-
cally augments annotations in Gene Ontology annotations with additional con-
text (Lussier et al., 2006). BioMedLee is dedicated to the gene-related domains,
thus it may bring potential enhancement to LBD by integration with other LBD
systems. Hristovski et al. (2006) integrated BioMedLee with another semantic
relation extraction system – SemRep (further discussed in Section 2.1.1) and
BITOLA LBD system for evaluation of drug-disease discovery pattern (Sec-
tion 2.4).

2.1.1 Extraction with SemRep system

Another system, which provides the functionality of semantic information ex-
traction from the biomedical domain is SemRep system (Rindflesch and Fisz-
man, 2003). Figure 2.1 presents the pipeline of subsequent steps followed during
the process of extraction of semantic predications from biomedical texts.

Figure 2.1: The architecture of the natural language processing system for se-
mantic predication extraction (Rindflesch and Fiszman, 2003). The whole sys-
tem relies on the resources of Unified Medical Language System (UMLS). Given
a biomedical text, lexical and syntactic analysis is followed by the concept map-
ping step by Metamap program (Aronson and Lang, 2010). The last phase of
this pipeline is performed by the SemRep system, which assigns semantic rela-
tionships from UMLS’s Semantic Network to various pairs of UMLS’s Metathe-
saurus concepts detected by Metamap.

The SemRep system is developed by Thomas C. Rindflesch group at the Lis-
ter Hill National Center for Biomedical Communications at the U.S. National
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Library of Medicine. SemRep extracts semantic predications (triples), see Fig-
ure 2.2, from biomedical texts. The output is stored in the relational database
called SemMed to allow their further processing. The recent version of SemMed
database consists of almost 27 million semantic predications extracted from al-
most 8 million MEDLINE papers published after January 1, 1999.

Figure 2.2: A semantic predication model. It is a statement of a relationship
between two concepts represented in a from of a triple. In Semantic Web, it is
an underlying (triple) structure of any expression representing information and
stored in Resource Description Framework (RDF). Two concepts of a semantic
predication (subject and object) are in a relationship (predicate) represented by
a directed arc.

As it is shown on Figure 2.1, the biomedical text is analyzed by the Metamap
program. Metamap (Aronson and Lang, 2010) is a software based on natu-
ral language processing and computational linguistics. It maps simple noun
phrases to UMLS Metathesaurus concepts. The natural language processing is
performed using MedPost tagger, which achieves over 97% accuracy on MED-
LINE citations (Smith et al., 2004a). Metamap output includes metadata of
text phrases such as part of speech, mapped concepts identifiers and labels,
preferred concepts, semantic types and knowledge sources for mapped concepts.
SemRep gets the concepts together with assigned semantic types as the input.
Let’s consider the following sample sentence (title of a paper):

“Perospirone augmentation of paroxetine in treatment of refractory
obsessive-compulsive disorder with depression.” (Otsuka et al., 2007).

Metamap detects UMLS concepts and their semantic types. Some of them are:

• perospirone [Organic Chemical,Pharmacologic Substance]

• Augmentation (Augmentation procedure) [Therapeutic or Preventive Pro-
cedure]

• Paroxetine [Organic Chemical,Pharmacologic Substance]

• Refractory (Unresponsive to Treatment) [Functional Concept]

• Obsessive-Compulsive Disorder [Mental or Behavioral Dysfunction]
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Later, using Metamap’s output and performing additional lexical analyses and
rule matching, SemRep returns three semantic predications (subject – predi-
cate – object):

1. Augmentation procedure – USES – perospirone

2. perospirone – STIMULATES – Paroxetine

3. Augmentation procedure – TREATS – Obsessive-Compulsive Disorder

There are 48 different predicates (INHIBITS, TREATS, etc.) used by SemRep
accompanied by 43 negation predicates (NEG INHIBITS, NEG TREATS, etc.).
SemRep maps syntactic indicators (verbs, prepositions, nominalizations, etc.)
to predicates in UMLS Semantic Network. For example, preposition of maps
to predicate USES in predication 1, nouns augmentation and treatment map to
STIMULATES and TREATS in predications 2 and 3 respectively. Moreover,
each predicate has the “permissible argument configurations” which define sets
of semantic types for UMLS Metathesaurus concepts which are allowed as sub-
ject and object in a predication triple (Rindflesch and Fiszman, 2003). The
example of few permissible argument configurations for various predications are
presented in Table 2.1.

Subject Predicate Object
Therapeutic or Preventive Procedure USES Pharmacologic Substance

Pharmacologic Substance STIMULATES Pharmacologic Substance
Organic Chemical STIMULATES Gene or Genome

Pharmacologic Substance TREATS Disease or Syndrome

Table 2.1: Sample permissible argument configurations for predicates USES,
STIMULATES and TREATS in SemRep system. If there is a mapping between
a syntactic indicator and a predicate in a natural language fragment, and then
subject and object fulfill at least one permissible argument configuration for this
predicate, SemRep defines it as a valid semantic predication.

2.2 Knowledge summarization with predications

To complete the view on semantic predications before moving to the field of
literature-based discovery, it is worth to mention the Semantic MEDLINE1 (Kil-
icoglu et al., 2008), a web-service that summarizes and visualizes semantic pre-
dications extracted by SemRep system for user’s PubMed searches. It nicely

1http://skr3.nlm.nih.gov/SemMedDemo/

http://skr3.nlm.nih.gov/SemMedDemo/
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demonstrates how semantic relations may improve selection and retrieval of rel-
evant papers.

While Figure 1.1 in Chapter 1 visualized only one given biomedical paper with
semantic predications, Semantic MEDLINE is able to display similar visualiza-
tions for a PubMed output (set of papers), see Figure 2.3. These views are
summarized, thus they represent a flavor of the given topic, showing only its
most important aspects and disregarding uncommon, infrequently occurring in-
formation.

Figure 2.3: Summarization graph in Semantic MEDLINE – Substance Interac-
tions perspective on Huntington Disease for 500 most recent papers in MED-
LINE (topic retrieved with a query: Huntington’s disease[mh]). Colors of
arcs represent predicates: DISRUPTS (yellow), AFFECTS (green), INTER-
ACTS WITH (purple), ISA (cyan). Each arc represents a predication extracted
from title and abstract of one or more MEDLINE papers.

Semantic MEDLINE’s user selects a topic (defined by a PubMed query) and
a summarization perspective. A summarization perspective consists of a set of
allowed predications (ontological predicates together with the permitted classes
of concepts for subject and object). There are recently four different summa-
rization perspectives available:

• Treatment of Disease (Fiszman et al., 2004):

– {Disorders} ISA {Disorders}
– {Etiological process} CAUSES {Disorders}
– {Treatment} TREATS {Disorders}
– {Body location} LOCATION OF {Disorders}
– {Disorders} OCCURS IN {Disorders}
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– {Disorders} CO-OCCURS WITH {Disorders}

• Substance Interactions (Fiszman et al., 2006):

– {Drugs} AFFECTS {Disorders}
– {Drugs} AFFECTS {Physiology}
– {Drugs} CAUSES {Disorders}
– {Drugs} COMPLICATES {Disorders}
– {Drugs} COMPLICATES {Physiology}
– {Drugs} DISRUPTS {Anatomy}
– {Drugs} DISRUPTS {Physiology}
– {Drugs} INTERACTS WITH {Chemicals}
– {Drugs} ISA {Chemicals}
– {Drugs} PREVENTS {Disorders}
– {Drugs} TREATS {Disorders}

• Diagnosis (Sneiderman et al., 2006):

– {Etiological process} CAUSES {Disorders}
– {Diagnostic process} DIAGNOSES {Disorders}
– {Anatomy} LOCATION OF {Disorders}
– {Disorders} CO-EXISTS WITH {Disorders}
– {Disorders} PROCESS OF {Living Being Human}
– {Disorders} ISA {Disorders}

• Pharmacogenomics (Ahlers et al., 2006):

– {Substance} ASSOCIATED WITH {Pathology}
– {Substance} PREDISPOSES {Pathology}
– {Substance} CAUSES {Pathology}
– {Substance} INTERACTS WITH {Substance}
– {Substance} INHIBITS {Substance}
– {Substance} STIMULATES {Substance}
– {Substance} AFFECTS {Anatomy OR Process}
– {Substance} DISRUPTS {Anatomy OR Process}
– {Substance} AUGMENTS {Anatomy OR Process}
– {Substance} ADMINISTERED TO {Living Being}
– {Process} MANIFESTATION OF {Process}
– {Substance} TREATS {Living Being OR Pathology}
– {Anatomy OR Living Being} LOCATION OF {Substance}
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– {Anatomy} PART OF {Anatomy OR Living Being}
– {Process} PROCESS OF {Living Being}
– {Substance} CO-EXISTS WITH {Substance}
– {Process} CO-EXISTS WITH {Process}

The visualizations in Semantic MEDLINE, as presented in Figure 2.3, are di-
rected graphs (networks) representing biomedical concepts and their semantic
connections. In some cases of widely studied diseases, the size of the graph,
thus number of predications, constructed by Semantic MEDLINE is too large
and dense to be easily analyzed by users. Recent initiative by Zhang et al.
(2011) employs graph-based method for enhancing Semantic MEDLINE sum-
marization. The degree centrality measure is used as a threshold for selecting
concepts that are related to the topic and highly interconnected in the semantic
predications graph.

Following the two subsequent sections which introduce the field of literature-
based discovery (Section 2.3) and describe current applications to that field
(Section 2.4), we propose in Section 2.5 a novel LBD methodology incorporating
semantic predications and graph theory in order to guide researchers through
the relevant literature on a user-specified biomedical phenomenon.

2.3 Principles of literature-based discovery

The result of an efficient literature-based discovery approach is a new, or poorly
studied, knowledge which may lead to a discovery. In biomedicine, a discovery
of new relations between various body substances and their responses to drugs is
a crucial step towards better understanding of sophisticated body functions and
mechanisms, what potentially may lead to inventions of more effective cures for
various diseases. Various literature-based discovery approaches in biomedicine
analyze huge corpora of biomedical and life sciences publications in order to
reveal implicit relations.

Swanson (1986b) introduced the idea of two complementary sets of articles,
which when studied together can reveal useful scientific information impossible
to be asserted when studying them separately. Such two sets of articles are
assumed to be isolated from each other by not being cited together and by each
other. In other words, the two complementary sets refer to different domains.

Such inter-domain and synergistic paradigm was presented by Swanson (1986a)
on the example of dietary fish oils and Raynaud’s disease. The first set of papers
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analyzed by Swanson discussed that dietary fish oils lead to certain blood and
vascular changes. The second set of papers mentioned that the same blood and
vascular changes are beneficial for patients with Raynaud’s disease. It was then
inferred and hypothesized that dietary fish oils may help in treating Raynaud’s
disease, what was never before discussed in any research paper. After few years,
first clinical trials validated the above mentioned discovery.

Swanson formalized and defined two types of literature-based discovery: open
discovery and closed discovery. In open discovery paradigm, the basic underlying
principle is that relations A – B and B – C may be known, yet relation A –
C has gone unnoticed. For instance, knowing the biomedical problem A, e.g.
Raynaud’s disease in Swanson’s example, we try to find different related concepts
B, like body processes, interacting with A. Blood viscosity, platelet aggregation
and vascular reactivity are few of many examples of B concepts. Then, a set
of concepts C interacting with the selected group of Bs is to be identified. In
Swanson’s example it led to a dietary fish oils as C. Open discovery paradigm
is also called as a hypothesis generation process since an implicit relation of A
(Raynaud’s disease) interacting with C (dietary fish oils) was generated through
the described step-by-step process involving concepts B (e.g. blood viscosity).

A B C A B C

Open discovery Closed discovery

Figure 2.4: Hypothesis generation (open discovery) and hypothesis testing
(closed discovery) paradigms. Open discovery assumes that starting with a
selected biomedical issue A, its potential relationship with concepts C may be
found indirectly through the detailed analysis of middle concepts B. Closed dis-
covery assumes that the relation A – C is known and then such a hypothesis is
tried to be proven by finding appropriate intermediate links B.

In closed discovery paradigm, the basic underlying principle is that relation A
– C may be known, yet relations A – B and B – C have gone unnoticed. Closed
discovery paradigm is often described as hypothesis testing process since the
hypothesis (A – C) is known before the discovery process begins. To demonstrate
it again on Swanson’s example, a researcher assumes a relationship between
Raynaud’s disease (A) and dietary fish oils (C) as known (hypothesis). Then, a
set of concepts B is to be found to conclude the discovery process. Here it is done
by finding blood viscosity or vascular reactivity concepts (B) as links between
A and C. Figure 2.4 visualizes the open and closed discovery paradigms.
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Swanson continued the development of his pioneer LBD approaches (Swanson
and Smalheiser, 1996) what resulted in the release of Arrowsmith (Swanson
and Smalheiser, 1997) computer system and online service2 designed to assist
open discoveries in biomedicine. Moreover, Swanson’s foundations stimulated
other biomedical researchers to develop other LBD systems (Gordon and Lind-
say, 1996; Weeber et al., 2000; Hristovski et al., 2001; Weeber et al., 2001;
Srinivasan and Libbus, 2004; Fuller et al., 2004; Hristovski et al., 2005). The
functionality of all of these systems and approaches, including Swanson’s, em-
ployed, as a main mechanism, cooccurence of terms or concepts found in titles
and abstracts of biomedical literature. Hristovski et al. (2006) concluded that
“the use of co-occurrence has several drawbacks, since not all co occurrences
underlie ‘interesting’ relations: (a) Users must read large numbers of Medline
citations when reviewing candidate relations; (b) systems tend to produce large
numbers of spurious relations; and, finally, (c) there is no explicit explanation
of the discovered relation.”. There were further attempts discussed by Cole
and Bruza (2005), introducing “dimensional reduction”, thus a decrease in the
number of candidate relations for LBD approaches, using statistical and prob-
abilistic methods like latent semantic indexing or singular value decomposition.
Nevertheless, still none of these methods reflects semantic nature, or meaning,
of relations between concepts.

To enhance LBD systems and provide semantic information about type of re-
lations, the natural language processing systems for extraction of semantic pre-
dications from literature were developed. Section 2.1 introduced the idea of
extraction of semantic information from biomedical texts. The next section
reviews applications of semantic predications in literature-based discovery.

2.4 Application of semantic predications in lite-
rature based discovery

This section summarizes the applications of SemRep’s semantic predications to
literature-based discovery. A broader insight into the recent advances in LBD
using natural language processing and semantics is given by Hristovski et al.
(2008).

In parallel with addressing issues with co-occurrence as a primary mechanism
in literature-based discovery, Hristovski et al. (2006) proposed a refinement for
focusing on useful relations by employing semantic predications from SemRep.
Based on Swanson’s A – B – C approach, they introduced the notion of discovery

2http://arrowsmith.psych.uic.edu/arrowsmith uic/index.html

http://arrowsmith.psych.uic.edu/arrowsmith_uic/index.html
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pattern which can be understood as a defined set of conditions to be fulfilled
for a discovery. It is illustrated on the open discovery Maybe Treats pattern,
relying on the relation TREATS from SemRep system, which says (in part)
that a therapeutic agent C maybe treats disease A if the level of an important
measurement B is typically increased in patients with disease A and if C is
able to reduce the level of B. To evaluate this discovery pattern, the Swanson’s
Raynaud’s discovery was replicated using the BITOLA3 (Hristovski et al., 2001,
2005) LBD system.

The Maybe Treats pattern was later modified into inhibit the upregulated and
stimulate the downregulated patterns assuming genes placed as B concepts in
drug-disease A – B – C discoveries (Hristovski et al., 2010). Authors integrated
the semantic predications database with DNA microarray results. Results of
the analysis done on Parkinson’s disease propose various hypotheses including
substances potentially effective in its treatment.

Another discovery pattern, May Disrupt (see Figure 2.5), concentrates on phar-
macogenomics, thus relationship among drugs, genes and diseases (Ahlers et al.,
2007). It tries to discover a substance A which may potentially prevent or treat
the disease C by finding the cause of the disease C (substance B). Using this
pattern, the authors explicate, through the closed discovery, the mechanism of
the antipsychotic drugs therapy (A) on cancer (C). This analysis revealed five
bioactive substances (B) reported in literature as both prone to inhibition by
antipsychotic agents and involved in the etiology of cancer: brain-derived neu-
rotrophic factor, CYP2D6 gene, glucocordicoid receptor, PRL gene, and TNF
gene.

Figure 2.5: May Disrupt discovery pattern.

Finally, Cohen et al. (2010b) presented the EpiphaNet LBD system, which de-
rives all the knowledge from SemMed database of semantic predications. The
system is able to predict term co-occurrence and as a result may simulate open
and closed discoveries. EpiphaNet employs methods of distributional semantics

3http://www.mf.uni-lj.si/bitola/

http://www.mf.uni-lj.si/bitola/
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and finds relations between concepts which do not co-occur directly using Re-
flective Random Indexing (RRI) (Cohen et al., 2010a). Moreover, it makes use
of Predication-based Semantic Indexing (PSI) (Cohen et al., 2009), a distribu-
tional model of language for representing semantic predications in a compact
vector space. EpiphaNet, through RRI and PSI, may be thought as a novel
way for information retrieval and discovery providing complementary measure
of semantic similarity between terms or concepts.

2.5 Discovery browsing methodology

The methodology described here goes beyond making discoveries to a princi-
pled way of navigating through selected aspects of some biomedical domain.
The method is a type of “discovery browsing” that guides the user through
the research literature on a specified phenomenon. One of the aims is to go
beyond document retrieval in response to a query by revealing crucial relation-
ships in the domain, which may evolve as the user exploits the method. Poorly
understood relationships may be explored through novel points of view, and
potentially interesting relationships need not to be known ahead of time. In a
process of “cooperative reciprocity” the user iteratively focuses system output,
thus controlling the large number of relationships often generated in literature-
based discovery systems. The underlying technology exploits SemRep semantic
predications represented as a graph of interconnected nodes (predication argu-
ments) and edges (predicates). Later, the system suggests paths in this graph,
which represent chains of relationships.

The following section introduces graph-based methods used in the described
approach. Next, a brief description of the methodology followed by discussion of
results from a biomedical study is given. The general motivation, methodology
description and results from the depressive disorder study is to be found in
Appendix C. Further analyses concerning this study is covered in Section 2.5.3.

2.5.1 Graph-based methods for discovery browsing

A graph is a representation of connections (edges) between objects (nodes).
Graphs, also known as networks, are extensively studied in social network ana-
lysis and the Semantic Web. In our case where graphs are built of semantic
predications, any edge represents a predicate, and any node is a concept. Graph
theory is a set of functions and measures pertaining to graph properties. One
such measure used in our methodology is degree centrality, which measures the
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connectedness of nodes in a graph. A node with more connections (relationships)
to other nodes has higher degree centrality. Freeman (1979) describes degree
centrality as an indicator of the communication activity in a social network,
which in our case may be considered as an indicator of the principal biomedical
concepts in the domain for which the graph was constructed. The formula for
degree centrality of node v in a graph with n nodes is

Cd(v) =
deg(v)

n− 1
, (2.1)

where deg(v) represents a degree of node v thus a number of connections to
other nodes.

We introduce also the measure of weighted degree centrality of a node. In our
graphs, each edge has a number assigned representing a count of sentences from a
corpus of MEDLINE papers in which a given predication was found. This count
represents a weight of a predication. The formula for weighted degree centrality
of node v in a graph with n nodes and weight wi of ith edge connected to node
v is

Cwd(v) =
∑
i

wi. (2.2)

In graph theory, a path is a sequence of edges connecting any two nodes in the
graph. Paths may be of any length. The shortest is of length 1:

A−B. (2.3)

The longest is of length N − 1, where N is the number of nodes in the graph

X1 −X2 − ...−XN . (2.4)

In Semantic Web research on ranking paths of semantic associations, Anyanwu
et al. (2005) exploit the notion of “predictability.” In their results longer paths
more likely reveal rare and uncommon associations.

Dupont et al. (2006) discuss many walking approaches in a graph (edge pas-
sages), which may be also understood as extraction of paths from the graph.
The definitions of maximal length of the edge passage (k-walk) and nodes of in-
terest are based on this work. The nodes of interest are the start and end points
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of a walk in a graph. For them, length of the walk is the number of intermediate
nodes visited during a walk between nodes of interest. We measure path length
by the number of edges between the start and end nodes.

2.5.2 Methodology description

This section describes subsequent steps of the presented “discovery browsing”
methodology (Figure 2.6).

Seed definition – input

First, the user specifies a seed concept (or concepts), which describe the do-
main of interest to be analyzed. All the predications from the whole SemRep
predication database are extracted which involve the seed. In addition, a list of
predicates of interest (predicate pool) may be specified to limit the extracted
predications to a specific need.

Figure 2.6: Architecture of discovery browsing methodology.

Graph creation

The predications are loaded into initial graph. Concepts in the graph are ranked
by degree centrality, and those highest on the list, are used to extract additional
predications to be added to the growing graph. This process is iterative and
is continued until a graph of sufficient size to produce “interesting” results has
been generated.
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Path analysis

The process of extraction of various paths from the final graph is performed.
The user defines anchors and length of the paths to be extracted. Finally, the
paths are ranked, based also on degree centrality or weighted degree centrality
measure.

Subgraph – output

The user selects a set of paths for further analysis from which a small subgraph
is built. After the detailed analysis of relatively small set of papers assigned to
the predications in the subgraph, a new hypothesis or research direction in the
domain of interest is to be defined.

The assumption of this methodology is to allow the user to control the execution
of the subsequent steps and change earlier defined parameters of the analysis
(seed concepts, predicate pool, type of concept or path ranking) at any time if
desired.

2.5.3 Depressive disorder study

The discovery browsing methodology was employed in a practical case, where
unknown or poorly studied substance interactions in depressive disorder were
to be found. The outcome of this study was discussed and evaluated by three
biomedical experts. Moreover, the accuracy of SemRep system was evaluated
by the expert in linguistics. The results are presented in the Appendix C. Here
I summarize these results and present additional study-related demonstrations.

The domain of interest in this analysis was depressive disorder. Serotonin was
selected as seed, since it is known to be a prominent neurotransmitter in this dis-
order. After the execution of the methodology, a subgraph indicating interaction
of circadian rhythms, melatonin, proinflammatory cytokines and norepinephrine
was striking.

The detailed manual analysis (carried out by field experts) of the retrieved
papers revealed three major components of our results: 1) inflammation and
depression, 2) circadian phenomena and depression, 3) noradrenergic aspects of
depression. The additional PubMed queries showed that even varying amounts
of research have been devoted to each of these components, little has consid-
ered all three together. Our results do not constitute a discovery in the sense
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of something previously not noticed by anyone. However, in several respects
they contribute to various aspects of depression that are currently incompletely
understood and have not been extensively studied. Insight into the interrela-
tionships among all these components may materially contribute to unraveling
the underlying pathophysiology of depression, thus underpinning more effective
treatment (and prevention).

The outcome of this analysis is a small subgraph of relations between five
biomedical concepts: CLOCK gene, melatonin, interleukin-6, interleukin-1 beta,
and norepinephrine (Figure 2.7). There are three major relationship segments
in the subgraph:

• CLOCK gene – melatonin

• melatonin – proinflammatory cytokines

• proinflammatory cytokines – norepinephrine

Figure 2.7: Depression disorder study output.

Figure 2.7 associates also each subgraph’s segment with journal names in which
the major amount of segment’s papers were published. It creates a domain-wise
classification of the subgraph’s segments. While the majority of predications
consisting on the CLOCK gene – melatonin segment belong to the physiology
domain (American journal of physiology), the melatonin – proinflammatory cy-
tokines segment consists of majority of papers from the pineal research (Journal
of pineal research). Finally, the predications in the last segment, proinflamma-
tory cytokines – norepinephrine, were published in a diverse set of biomedical
domains starting from the brain research, via molecular and cellular biochem-
istry to oncology (International journal of oncology).

To conclude, the methodology provides the user (biomedical researcher) the
ability to navigate through topic-related studies published in various biomedical
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domains, some of which may go beyond the normal scope of interest of the user,
which consequently may lead to new hypotheses and discovery of new knowledge.

2.5.4 Potential enhancements to literature retrieval

Most current document retrieval systems rely on probabilistic and statistical
methods with a reasonable level of accuracy. Such systems take a query with
keywords of interest as input, and based on their distribution among a huge
number of papers, retrieve and rank those which best fit the given query. Un-
fortunately, sometimes, even a well constructed query, results in a large number
of retrieved papers, not all of which are relevant. This is caused by the fact that
the user has not been provided with a straightforward way of defining what
aspect of the retrieved papers should match the query. Similarly unsatisfactory
results are often produced by document neighboring systems, since the user is
not able to define particular characteristics of the query document that should
be included in the output documents.

The analysis below proposes an enhancement of current retrieval systems by
combining them with advanced filtering using semantic predications, which al-
lows the user to to specify in detail the topic, fact or relation of interest. This
may be thought of as narrowing the context of search. The analysis is based
on the papers retrieved by the discovery browsing methodology described in
Section 2.5.3.

In the final subgraph retrieved in the discovery browsing methodology for the
depressive disorder case, there are five different relations between five different
biomedical concepts. In this analysis we concentrate on only one of these: the
interaction between the two substances, CLOCK gene and melatonin. Based on
a very large corpus of MEDLINE citations (titles and abstracts), the subgraph
shows that this relation was extracted from 19 sentences found in 16 MEDLINE
citations.

The 16 citations having predications asserting an interaction between CLOCK
gene and melatonin constitute a coherent set of documents about this relation-
ship. Given any one of these it is easy to find the other papers about this
interaction by matching the relevant predications. In this experiment we com-
pared that processing to the use of the PubMed Related citations feature, a
type of statistically based document neighboring algorithm.

We first retrieved through PubMed Related the related citations for each of the
16 query papers (those having CLOCK gene-melatonin predications). We then
examined these to see how many of the related citations discussed the relevant
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Found in PubmedRelated output?

Input
paper
(seed)

1
6
4
8
8
5
4
0

1
2
1
1
1
5
4
7

1
6
8
3
8
8
9
9

1
6
8
4
0
5
4
6

2
0
4
0
4
1
6
8

1
9
0
8
7
1
7
3

1
1
4
9
0
0
9
6

1
6
4
4
1
5
5
5

1
2
1
1
1
5
3
5

1
0
9
7
1
6
2
8

1
8
6
6
2
2
1
8

1
2
5
2
1
9
2
5

1
4
9
7
2
6
8
6

1
2
3
7
4
8
5
7

1
1
9
5
9
6
8
0

1
5
9
1
3
5
7
1

C
o
v
e
ra

g
e

(%
)

16488540 • • • • • • 37.5
12111547 • • • • • • • 43.8
16838899 • • • 18.8
16840546 • • • • 25.0
20404168 • • • • 25.0
19087173 • • • • • • • • 50.0
11490096 • • 12.5
16441555 • • • • • • • • 50.0
12111535 • • • • • 31.3
10971628 • • • 18.8
18662218 • • • 18.8
12521925 • • • 18.8
14972686 • • • 18.8
12374857 • • • 18.8
11959680 • • 12.5
15913571 • • 12.5

Table 2.2: The results of the PubMed Related output analysis for all the 16
papers from the final subgraph of the depression disorder study in which a
relation between CLOCK gene and melatonin was found. Each of the 16 papers
(left column) was input to PubMed Related and the (output) list of related
publications was retrieved. Then, it was checked which of the 16 papers were
found in the PubMed Related output. The found papers are marked with a
bullet symbol (•).
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substance interaction asserted in the query document. Table 2.2 summarizes
how many of the 16 query papers are found in the list of related publications
returned by PubMed Related for a given seed paper. It shows that PubMed
Related citations algorithm was able to find on average only a quarter of the 16
papers (in the two best cases, half) determined by the subgraph as being relevant
to the CLOCK-Melatonin relationship. We have carried out a more detailed
analysis of the two best cases, related citations returned for seed citations PMID
19087173 (Table 2.3) and PMID 16441555 (Table 2.4).

In the analyses we studied the top 10 papers (excluding seed paper) returned
by PubMed Related. In case of PMID: 19087173 (Table 2.3), we have noticed
2 false negatives (FN), which means that the two papers (positions #3 and
#11) mention in their title and/or abstract a relation between CLOCK gene
and melatonin, but were not extracted by SemRep system. There are also 5
true negatives (TN), which means that even though these papers are generally
related to the seed paper, they do not mention any relation between CLOCK
gene and melatonin (correct performance of SemRep). The remaining 3 pa-
pers were published before 1999, and thus they were not processed by SemRep.
Nonetheless, we manually analyzed the abstracts of these papers and all of them
are TNs. In case of PMID: 16441555 (Table 2.4), there are 8 citations published
before 1999 thus not processed by SemRep. Processing these by hand reveals
that they are all TN, in that none discusses a relation between CLOCK gene
and melatonin. There is also one FN on position #7.

It has to be clarified here that TN (true negative) does not necessarily mean
that a paper is not relevant, but that it does not specifically discuss the CLOCK
gene and melatonin interaction. On the other hand, true positive (TP) means
that such interaction is discussed in a paper and that it was correctly found by
SemRep. Finally, FN (false negative) indicate a case when a paper discusses the
CLOCK gene and melatonin interaction, but it was not detected by SemRep
(incorrect performance).

In the above tables one can notice that the subgraph papers, which were found
by PubMed Related are ranked relatively low on the papers list. This analysis
shows the potential enhancement of current probabilistic retrieval and ranking
methods – PubMed Related uses one of such algorithms (Lin and Wilbur, 2007)
– with semantic approaches. Current PubMed Related algorithm is undoubtedly
very efficient and retrieves papers similar to the seed paper. The issue is that
it does not take into account the way in which one paper relates to the other.
PubMed Related, as well as other similar systems, rank and retrieve papers
based on the general co-ocurrence of terms.

As an example specifying a relationship, in Table 2.4 we have looked for papers
related to the paper (16441555): “Trans-pineal microdialysis in the Djungarian
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# PMID Year Status Comment

1 19087173 2008 Seed “In mammals, the rhythmic synthesis of melatonin by the
pineal gland is tightly controlled by the master Clock lo-
cated in the suprachiasmatic nuclei (SCN).”

2 12542658 2003 TN The abstract or title of this paper does not refer to
CLOCK gene.

3 16709646 2006 FN “One of these genes, Clock, has been considered es-
sential for the generation of cellular rhythmicity cen-
trally and in the periphery; however, melatonin-proficient
Clock(Delta19) + MEL mutant mice retain melatonin
rhythmicity, suggesting that their central rhythmicity is
intact.”

4 15703405 2005 TN Neither the abstract nor the title of this paper indicate
relationship between CLOCK gene and melatonin.

5 15193530 2004 TN Even the paper mentions relationships betwen mela-
tonin and suprachiasmatic nuclei, PER2 gene and Arg-
vasopressin, it does not indicate the relationship of inter-
est: CLOCK gene – melatonin.

6 20876815 2010 TN Neither the title nor the abstract of this paper refer to
melatonin.

7 7632982 1995 TN Neither the abstract nor the title of this paper indicate
relationship between CLOCK gene and melatonin.

8 9886827 1999 TN Neither the abstract nor the title of this paper indicate
relationship between CLOCK gene and melatonin.

9 8274765 1993 TN Even the paper indicates relationship between melatonin
and circadian rhythms, CLOCK gene is not mentioned.

10 16687310 2006 TN Neither the title nor the abstract of this paper mention
CLOCK gene.

11 15590161 2005 FN “The daily rhythm of melatonin synthesis in the rat pineal
gland is controlled by the central biological clock, located
in the suprachiasmatic nucleus (SCN) . . . ”

. . .
177 16840546 2006 TP “Maternal melatonin effects on clock gene expression in a

nonhuman primate fetus.”
194 16838899 2006 TP “The pineal hormone melatonin is a specific and sensitive

marker of the circadian clock activity, and its secretion is
tightly coupled to the output of the biological clock and
The circadian phase.”

203 12111547 2002 TP “This interaction, which grants a temporally precise reg-
ulation of gene expression, may reflect the central role of
melatonin, i.e. in synchronising peripheral clock cells that
require unique phasing of output signals with the master
clock in the brain.”

230 16488540 2006 TP “Pinealectomy has no effect on clock gene rhythms in
the suprachiasmatic nucleus (SCN), the master circadian
clock, as well as in the eyes and heart, indicating that
the effect of melatonin on clock gene rhythms is tissue
specific.”

293 20404168 2010 TP “These results demonstrate that melatonin suppresses the
Clock/+ mutant phenotype and interacts with Clock to
affect the mammalian circadian system.”

337 12111535 2002 TP “Finally, the bases for acute and clock regulation of the
key enzyme in melatonin synthesis, arylalkylamine N-
acetyltransferase (AA-NAT), are described.”

394 16441555 2006 TP “The rhythmic secretion of melatonin by the pineal gland
is under control of the circadian clock, conveying the pho-
toperiodic message to the organism.”

. . .
1142

Table 2.3: Analysis of the top 10 (excluding seed) related citations for a seed
paper (in yellow): PMID 19087173, retrieved by Pubmed Related. Papers high-
lighted in orange are those from the set of 16 papers analyzed in Table 2.2,
indicating the relationship: CLOCK gene – melatonin.

http://www.ncbi.nlm.nih.gov/pubmed/19087173
http://www.ncbi.nlm.nih.gov/pubmed/12542658
http://www.ncbi.nlm.nih.gov/pubmed/16709646
http://www.ncbi.nlm.nih.gov/pubmed/15703405
http://www.ncbi.nlm.nih.gov/pubmed/15193530
http://www.ncbi.nlm.nih.gov/pubmed/20876815
http://www.ncbi.nlm.nih.gov/pubmed/7632982
http://www.ncbi.nlm.nih.gov/pubmed/9886827
http://www.ncbi.nlm.nih.gov/pubmed/8274765
http://www.ncbi.nlm.nih.gov/pubmed/16687310
http://www.ncbi.nlm.nih.gov/pubmed/15590161
http://www.ncbi.nlm.nih.gov/pubmed/16840546
http://www.ncbi.nlm.nih.gov/pubmed/16838899
http://www.ncbi.nlm.nih.gov/pubmed/12111547
http://www.ncbi.nlm.nih.gov/pubmed/16488540
http://www.ncbi.nlm.nih.gov/pubmed/20404168
http://www.ncbi.nlm.nih.gov/pubmed/12111535
http://www.ncbi.nlm.nih.gov/pubmed/16441555
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# PMID Year Status Comment
1 16441555 2006 Seed “The rhythmic secretion of melatonin by the pineal gland

is under control of the circadian clock, conveying the pho-
toperiodic message to the organism.”

2 3612591 1987 TN Neither the title nor the abstract of this paper mention
CLOCK gene.

3 7629693 1995 TN Neither the title nor the abstract of this paper mention
CLOCK gene.

4 7949308 1994 TN Even this paper refers to the interaction of biological clock
and melatonin, it does not mention CLOCK gene.

5 7094883 1982 TN Neither the title nor the abstract of this paper mention
CLOCK gene.

6 16687300 2006 TN Neither the title nor the abstract of this paper refer to
melatonin.

7 18045670 2008 FN “. . . (2) melatonin is a reliable and stable neuroendocrine
output of the circadian clock (versus behavioral output
which is sensitive to stress or other factors);...”

8 8836959 1996 TN Neither the title nor the abstract of this paper mention
CLOCK gene.

9 8695891 1996 TN Even this paper refers to the interaction of biological clock
and melatonin, it does not mention CLOCK gene.

10 2979574 1985 TN Neither the title nor the abstract of this paper mention
CLOCK gene.

11 8119657 1994 TN Neither the abstract nor the title of this paper indicate
relationship between CLOCK gene and melatonin.

. . .
14 10971628 2000 TP “The circadian clock in the hypothalamic suprachiasmatic

nuclei (SCN) regulates the pattern of melatonin secretion
from the pineal gland such that the duration of release
reflects the length of the night.”

278 12521925 2003 TP “Melatonin and wheel-running rhythmicity and the effects
of acute and chronic light pulses on these rhythms were
studied in Clock(Delta19) mutant mice selectively bred to
synthesize melatonin.”

281 12111535 2002 TP “Finally, the bases for acute and clock regulation of the
key enzyme in melatonin synthesis, arylalkylamine N-
acetyltransferase (AA-NAT), are described.”

287 19087173 2008 TP “In mammals, the rhythmic synthesis of melatonin by the
pineal gland is tightly controlled by the master clock lo-
cated in the suprachiasmatic nuclei (SCN).”

294 18662218 2008 TP “The aim of this work was to investigate the effect of
the in vitro circadian-like exposure to melatonin [in the
presence or absence of insulin (Ins)] on the metabolism
and clock gene expression in adipocytes.”

344 11490096 2001 TP “In mammals, the nocturnal rise in pineal melatonin is
regulated by signals from the endogenous clock, the hy-
pothalamic suprachiasmatic nuclei.”

463 14972686 2004 TP “These data suggest that effects of melatonin on clock
gene expression are pivotal events in the neuroendocrine
response and that pars tuberalis cells can act as molecular
calendars, carrying a form of photoperiodic memory.”

. . .
596

Table 2.4: Analysis of the top 10 (excluding seed) related citations for a seed
paper (in yellow): PMID 16441555, retrieved by Pubmed Related. Papers high-
lighted in orange are those from the set of 16 papers analyzed in Table 2.2,
indicating the relationship: CLOCK gene – melatonin.

http://www.ncbi.nlm.nih.gov/pubmed/16441555
http://www.ncbi.nlm.nih.gov/pubmed/3612591
http://www.ncbi.nlm.nih.gov/pubmed/7629693
http://www.ncbi.nlm.nih.gov/pubmed/7949308
http://www.ncbi.nlm.nih.gov/pubmed/7094883
http://www.ncbi.nlm.nih.gov/pubmed/16687300
http://www.ncbi.nlm.nih.gov/pubmed/18045670
http://www.ncbi.nlm.nih.gov/pubmed/8836959
http://www.ncbi.nlm.nih.gov/pubmed/8695891
http://www.ncbi.nlm.nih.gov/pubmed/2979574
http://www.ncbi.nlm.nih.gov/pubmed/8119657
http://www.ncbi.nlm.nih.gov/pubmed/10971628
http://www.ncbi.nlm.nih.gov/pubmed/12521925
http://www.ncbi.nlm.nih.gov/pubmed/12111535
http://www.ncbi.nlm.nih.gov/pubmed/19087173
http://www.ncbi.nlm.nih.gov/pubmed/18662218
http://www.ncbi.nlm.nih.gov/pubmed/11490096
http://www.ncbi.nlm.nih.gov/pubmed/14972686
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hamster (Phodopus sungorus): a tool to study seasonal changes of circadian
clock activities.”Even from the title it may be concluded that there may be a
several similarity topics:

1. papers about hamsters (or even only Djungarian hamsters)

2. papers about CLOCK gene

3. papers about melatonin

4. papers about interactions between CLOCK gene and melatonin

5. papers mentioning all of the above topics together

Currently, PubMed Related retrieves papers using the scenario # 5. The man-
ual analysis of the papers presented in Table 2.4 showed that 8 of top 10 papers
refer to studies on circadian phenomenon where investigations were carried out
on hamsters (in majority Djungarian hamsters). This is a completely valid
outcome in terms of relatedness; however it does not let the user focus on a par-
ticular aspect of the paper (such as scenario #4). Only one of the 7 subgraph’s
papers found in this case is ranked relatively high (position #14), and this is
again because the keyword ‘hamster’ is in the title (“The circadian cycle of
mPER clock gene products in the suprachiasmatic nucleus of the siberian ham-
ster encodes both daily and seasonal time.”) All the other subgraph’s papers,
even though they are truly related to the seed paper, are ranked relatively low
because they refer to a different animal (mouse – 12521925; avian – 12111535,
rats – 19087173, 18662218; rabbits – 11490096; sheep – 14972686). Our metho-
dology did not take into account any of such factors as where the examination
took place or type of animal as experiment subject. The interest was only to
retrieve papers which very specifically mention any interaction between CLOCK
gene and melatonin. Therefore the number of papers in the subgraph (16) is
relatively very low comparing to the number of papers retrieved by PubMed
Related: 1142 (Table 2.3) and 596 (Table 2.4). We believe that our approach
enhances the recent probabilistic retrieval methods. Semantic predications pro-
vide the user with the possibility to define which aspect of the seed paper is
interesting for him/her and filter out papers which do not refer to this aspect.
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Chapter 3

Interoperability and
integration in neuroscience

Neuroscience, the field of science of brain and central nervous system, spans
over broad spectrum of disciplines. It ranges from biology, chemistry, physics
through genetics, physiology, psychology up to statistics and computer science.
As a result, neuroscientific research is supported by many different investigators
spread all over the world. Those involve not only neurobiologists, radiologists or
medical doctors, which produce huge amounts of data, but also journal publish-
ers and reviewers, who enables them to present their findings to the public, or
IT specialists and programmers as providers of infrastructure, analysis tools and
data storage facilities. Moreover, plenty of centers, consortia and neuro-societies
are being set-up in order to organize discussions, workshops and panels to de-
fine standards and suggest new movements in neuroscience. Table 3 summarizes
most active organizations in this domain.

The most important issues discussed in the domain of neuroscience which should
be handled to facilitate more efficient research are data sharing, social services,
integration of tools, standard compliance and improvements in paper review
system.

Ascoli (2006) emphasized that there are many separated research communi-
ties in neuroscience, which refuse to share and exchange experimental data.
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Name Abbreviation Description

Society for Neuroscience SfN
Nonprofit membership organization of
scientists and physicians who study the
brain and nervous system.

International Neuroinformat-
ics Coordinating Facility

INCF
The mission of the INCF is to coordi-
nate and foster international activities
in Neuroinformatics.

Neuroscience Peer Review
Consortium

NPRC

Alliance of neuroscience journals that
have agreed to accept manuscript re-
views from other members of the Con-
sortium

International Consortium for
Brain Mapping

ICBM
Its primary goal is the continuing de-
velopment of a probabilistic reference
system for the human brain.

Neuroimaging Data Access
Group

NIDAG

An international working group ded-
icated to enhancing access to neu-
roimaging data in order to advance
progress in neuroscience.

International Brain Mapping
& Intraoperative Surgical
Planning Society

IBMISPS

Non-profit association organized for
the purpose of encouraging basic and
clinical scientists who are interested or
active in areas of Brain Mapping (BM)
and Intra-operative Surgical planning
(ISP) to share their findings with other
physicians and scientists across the dis-
ciplines.

Laboratory of Neuro Imaging LONI

Development of advanced computa-
tional algorithms and scientific ap-
proaches for the comprehensive and
quantitative mapping of brain struc-
ture and function.

Alzheimer’s Disease Neu-
roimaging Initiative

ADNI

Its main goal is to determine whether
brain imaging can help predict
onset and monitor progression of
Alzheimer’s disease.

Brain Imaging Center BIC
Cutting-edge research center using a
state-of-the-art Positron Emission To-
mography (PET) scanner.

Biomedical Informatics Re-
search Network

BIRN

Geographically distributed virtual
community of shared resources. Its
goal is to advance the diagnosis and
treatment of disease.

Table 3.1: A list of major organizations, groups or initiatives devoted to neuro-
science with intention to advance progress of research in this domain.
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Researchers have expressed concerns that sharing of data can lead to unfair
use (Teeters et al., 2008). However, data sharing is important to create trusted
collaboration community and is a current topic in debate on future of neuro-
science (Liu and Ascoli, 2007) as it is believed that broad data sharing could lead
to breakthroughs in our understanding of brain function (Van Horn and Ball,
2008). Invoking online social networks and computer-based communication can
support closer relationships and trust (Lampe et al., 2006) hence reducing the
resistance to data sharing.

Cheung et al. (2009), and French and Pavlidis (2007) review recent IT ap-
proaches trying to resolve two issues in neuroscience: data sharing and inte-
gration. The following sections of this chapter will refer to both of them, with
special emphasis on text data and literature. In Section 3.1, the general overview
of existing biomedical knowledge repositories is presented. Next, Section 3.2 re-
fer to solutions and perspectives in the field of coordinate-based neuroimaging
databases (see also Appendices B, F, H). Finally, in Section 3.3 after a review of
various existing biomedical literature retrieval systems, I present a novel metho-
dology for context-based literature search in the domain of neuroscience combin-
ing biomedical ontologies, natural language processing and statistical ranking
approaches (see also Appendix A).

3.1 Biomedical knowledge resources

Neuroscience Information Framework (NIF)1 (Gardner et al., 2008) is an in-
tegrated framework collecting all the data, tools and resources related to the
domain of neuroscience, initiated by the U.S. National Institutes of Health in
2005. This very dynamic Web-based repository of neuroscientific information
enhances significantly the access to various data sets and analysis tools of the
domain.

One of the the major neuroscientific knowledge sources is NeuroLex2, a semantic
Wiki-based lexicon based on the NIF Standard Ontology used for curation of
the neuroscience-related terms. It allows to navigate through the terminology
of various nervous system levels (e.g. molecular level, cellular level, etc.) and
data type categories like drugs, diseases, genes, microarrays, etc.

Another Wiki-based system which records neuroinformatics data from pub-
lished neuroimaging peer-reviewed papers is Brede Wiki3 (Nielsen, 2004), a

1http://neuinfo.org
2http://neurolex.org
3http://neuro.imm.dtu.dk/wiki/

http://neuinfo.org
http://neurolex.org
http://neuro.imm.dtu.dk/wiki/


32 Interoperability and integration in neuroscience

direct successor of the coordinate-based neuroimaging database – the Brede
database (Nielsen, 2003). Nielsen (2004) discusses both advantages and disad-
vantages of Wiki services over the ordinary database services. Among others,
online versioning and incremental addition of data in Wiki-based services are
balanced by the threat of easier data vandalism and more difficult quality control
in such systems.

Integration of diverse types of neuroscientific data requires specific scalable ap-
proaches and recently Samwald et al. (2010) recalled this issue by describing
the SenseLab ontologies as an example of Semantic Web (Berners-Lee et al.,
2001) implementation in the domain of neuroscience. In this initiative many
databases were semi-automatically translated into machine-understandable on-
tology file format (OWL) and yet further semantically enriched.

“The SenseLab ontologies are extensively linked to other biomed-
ical Semantic Web resources, including the Subcellular Anatomy
Ontology, Brain Architecture Management System, the Gene On-
tology, BIRNLex and UniProt. The SenseLab ontologies have also
been mapped to the Basic Formal Ontology and Relation Ontology,
which helps ease interoperability with many other existing and fu-
ture biomedical ontologies for the Semantic Web. (...) The SenseLab
ontologies are designed for use on the Semantic Web that enables
their integration into a growing collection of biomedical information
resources.” (Samwald et al., 2010).

Unified Medical Language System (UMLS) developed at the U.S. National Li-
brary of Medicine (NLM) “is a repository of biomedical vocabularies developed
by the US National Library of Medicine. The UMLS integrates over 2 million
names for some 900 000 concepts from more than 60 families of biomedical vo-
cabularies, as well as 12 million relations among these concepts. Vocabularies
integrated in the UMLS Metathesaurus include the NCBI taxonomy, Gene On-
tology, the Medical Subject Headings (MeSH), OMIM and the Digital Anatomist
Symbolic Knowledge Base. UMLS concepts are not only inter-related, but may
also be linked to external resources such as GenBank. In addition to data, the
UMLS includes tools for customizing the Metathesaurus (MetamorphoSys), for
generating lexical variants of concept names (lvg) and for extracting UMLS con-
cepts from text (MetaMap)” (Bodenreider, 2004). The size and completeness
of the UMLS resources make it a very good candidate for support of knowledge
and information systems in biomedicine.

Finally, Burns et al. (2008) designed and developed a NeuroScholar4 system

4http://www.neuroscholar.org/

http://www.neuroscholar.org/
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which provides functionalities for efficient management of knowledge from neu-
roscience literature. Not only it give the access to the primary research litera-
ture, but also ”it provides a means to add both unstructured and structured
annotations to full-text articles as PDF files, an Electronic Laboratory Note-
book component and a system to provide support for visualization plugins based
on components such as neuroanatomical atlases.”

3.2 Coordinate-based neuroimaging databases

Neuroimaging is one of the disciplines in neuroscience referring to various imag-
ing techniques reflecting brain properties such as brain structure and brain func-
tions. Functional localization in brain is normally represented in form of stereo-
taxic coordinates referring to different brain atlases, e.g. Talairach (Talairach
and Tournoux, 1988) or MNI (Evans et al., 1994). Wager et al. (2007, 2009)
propose meta-analysis approaches for efficient neuroimaging data summarization
and integration, which should facilitate drawing new hypotheses on structure-
function correspondence and evaluate and validate consistency and specificity of
neuroimaging results from both, human and animal studies. The neuroimaging
data sets, thus brain locations represented by coordinates, and papers in which
they are recorded are linked together and collected in domain-specific databases,
called coordinate-based databases. These are the data sources used to perform
above mentioned meta-analysis of the neuroimaging results.

The coordinate-based retrieval systems are designed to search for relevant litera-
ture based not only on user’s search terms as the ordinary systems do, but also
based on brain coordinates as a query. The most popular existing coordinate-
based systems in neuroimaging are listed below:

• Brede database (Nielsen, 2003) – developed at the Technical University
of Denmark and available through the webpage5 records published neu-
roimaging experiments that list stereotaxic coordinates in so-called MNI
or Talairach space. Presently, close to 4000 coordinates from 186 papers
with a total of 586 experiments are available. The data is stored in XML
files, and Matlab functions generate static webpages with visualization of
the entries in the database. Web-based searching on coordinates is possi-
ble from the homepage, but up till now it has required that the researcher
manually typed in the query or extracted results from the image analysis
program. The Brede database web service provides also links to other
neuroscientific resources. While querying the database with a specified

5http://neuro.imm.dtu.dk/services/brededatabase/

http://neuro.imm.dtu.dk/services/brededatabase/
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coordinate in brain, the user is also able to visualize the location in INC
Talairach Atlas. Each publication relates by ID number to other databases
like PubMed or BrainMap. Brain regions from each of the experiments
are mapped to the services like MeSH, BrainInfo, CoCoMac database or
Wikipedia. As the Brede webpages are public, the ordinary Web search
engines enable text based search of the Brede database. Furthermore, the
researcher may navigate the database via several hyperlinked webpages
including brain region, brain function and author ontologies.

• SumsDB (Van Essen et al., 2004) – developed in Van Essen Lab at
the Washington University in St. Louis and available through the web-
site6, provides convenient access to various neuroimaging data like sur-
face and volume data, structural and functional data, human and nonhu-
man primate data, etc. Furthermore, both text-based and spatially based
(coordinate-based) searching and data mining is available. Based on the
structured user authentication and multiple levels of data access, searches
may apply only to public data or to more restricted laboratory data.

• BrainMap (Laird et al., 2005) – developed at the University of Texas,
online database7 of functional neuroimaging data storing coordinates in
Talairach space. A related software suite consists of three different ap-
plications: Sleuth – for database searches and coordinate plotting, Gin-
gerALE – for coordinate conversion from MNI space to Talairach and
meta-analyses via the activation likelihood estimation (ALE) method, and
Scribe – for database entry of published neuroimaging papers together
with coordinate data sets.

• AMAT8 – a meta-analysis toolbox for the SPM neuroimaging environ-
ment developed by Antonia Hamilton at the University of Nottingham
provides coordinate-based search for over 5000 coordinates from 213 pub-
lished papers of which some were derived from the Brede Database. The
coordinates are in MNI or Talairach space. The toolbox can locate neigh-
boring coordinates to a given coordinate, as well as publications for a given
author or year.

Another system, BrainKnowledge (Hsiao et al., 2010), fits to the field of neu-
roimaging, but instead of extracting coordinates from papers, detects and stores
brain anatomical structures from abstracts of papers. It is Java-based system
associating fMRI data-analysis and literature search functions. Three major fea-
tures of BrainKnowledge are: searching for brain activation models by function,
searching for function by brain structure, and comparing user’s fMRI experimen-
tal results with already published studies. Recently, the system uses a database

6http://sumsdb.wustl.edu/sums/
7http://brainmap.org/
8http://www.antoniahamilton.com/amat.html

http://sumsdb.wustl.edu/sums/
http://brainmap.org/
http://www.antoniahamilton.com/amat.html
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which consists of 15,413 abstracts from 1032 journals dating from 1992 to the
present.

A drawback of such systems like BrainKnowledge is the fact that it is a separate,
standalone program which is not integrated with any common neuroimaging
environment like Statistical Parametric Mapping (SPM) (Friston et al., 1994)
or FMRIB Software Library (FSL) (Smith et al., 2004b). Additional work is
required from researchers to import/export functional experimental results from
one environment to another in order to perform complementary analyses or
search for relevant neuroimaging literature.

AMAT toolbox for SPM, discussed above, is one of the responses for the issue
of tool integration with common neuroimaging environments. We propose a
BredeQuery plugin for SPM environment which links SPM to the coordinate-
based search engine in the Brede database . BredeQuery is able to ‘grab’ brain
location coordinates from the SPM windows and enter them as a query for the
Brede database. Moreover, results of the query can be displayed in a MATLAB
window and/or exported directly to some popular bibliographic file formats like
BibTeX or Reference Manager. The detailed description of the BredeQuery
plugin for SPM is given in Appendix B.

To extend further the results pool of the small Brede database in the plugin and
offer to the user an opportunity to retrieve more recent and relevant papers,
there is a need for a direct integration of the current tool with a larger and
more comprehensive biomedical literature database like the PubMed database
(see Appendix H). A methodology which extends the BredeQuery plugin in such
a way and besides is a proposal of a novel approach for context-dependent se-
mantic literature retrieval. It is included in the recent version of the BredeQuery
plugin, see Figure 3.1, and is further discussed in Section 3.3.

3.3 Biomedical literature retrieval

Existence of such knowledge resources as described in Section 3.1 enables devel-
opers to build various literature retrieval systems. Herein, the overview of such
systems in neuroscience and biomedicine is given.

NeuroText (Crasto et al., 2003) and NeuroExtract (Crasto et al., 2007) sys-
tems aim respectively in populating neuroscience databases, and performing
the integrated retrieval of Internet-based information relevant to neurosciences.
NeuroText was developed for text-mining of abstracts from neuroscience journal
articles in order to identify relevant domain keywords which allow further clas-
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Figure 3.1: Graphical user interface of the BredeQuery plugin for SPM envi-
ronment. Brain activation coordinates grabbed from the SPM results window
are used for further search of relevant literature. Beforehand, coordinates may
be transformed from MNI to Talairach atlas through Brett (Brett, 1999) and
Lancaster (Lancaster et al., 2007) transformations. Relevant papers are re-
trieved from the Brede database. Biomedical concepts extracted from the title
and abstract of highest ranked paper are classified into one of seven semantic
categories. User is able to select categories of interest, thus define a context
of search, which allow to retrieve other relevant publications from the PubMed
database (Appendix A).
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sifications. It facilitates creation of bibliography databases for a specific domain
of interest.

NeuroExtract system retrieves neuroscience related information from genomic
and proteomic repositories: SwissProt, Gene Expression Omnius and Protein
Data Bank, which are not primarily considered as neuroscience knowledge sources.
NeuroExtract allows simultanous querying of these various data sources, what
significantly enhances interoperability and facilitates the users. NeuroExtract
facilitates also easy adaptation of additional sources.

Textpresso for Neuroscience (Müller et al., 2008) is another text mining system
which performs literature search in the domain of the neuroscience. In this
search engine, users specify not only search keywords, but also one or a com-
bination of categories in which the search should be performed. It is presented
that thanks to the definition of categories, a keyword query is more refined and
meaningful. The functionality of Textpresso for Neuroscience bases not only on
abstracts but also on full texts of papers, which are collected in local database.

In terms of general biomedical literature retrieval, the PubMed online service
“comprises over 20 million citations for biomedical literature from MEDLINE,
life science journals, and online books.”9 Apart from simple text search, Pubmed
offers the opportunity to use Medical Subject Headings (MeSH) to define context
of search and retrieve fewer, but more relevant papers. Any biomedical paper
found in PubMed is indexed with a few MeSH headings, manually assigned by
human indexers employed at U.S. National Library of Medicine, which represent
the most important topics of a given paper. MeSH terms are organized in a
parent-child taxonomy, e.g. a MeSH heading ‘Leukemia’ is a type of neoplasm
therefore it is a child of the MeSH heading ‘Neoplasms’. On the other hand
there are 9 different types of leukemia, e.g. ‘Enzootic Bovine Leukosis’ which
are defined as children of ‘Leukemia’.

For demonstration purposes, let’s assume we are interested in finding papers
about leukemia. A simple PubMed query with a term leukemia returns 235542
publications. Next, if we specify that we are just interested in papers which
are indexed with a MeSH heading ‘leukemia’ (leukemia[mh]), Pubmed returns
178456 papers, which means that over 20% of papers found in the simple query
were eliminated because even they mention a word ‘leukemia’, this is not one of
their main topics. Each of the 178456 papers is indexed with ‘Leukemia’ MeSH
or any of its children. Finally, if we want to exclude children from a search, a
query leukemia[mh:noexp] is yet more selective and returns ‘only’ 45879 papers.
Construction of more complex PubMed queries employing MeSH headings and
AND/OR/NOT logical operators facilitate the users in finding fewer papers but

9http://www.ncbi.nlm.nih.gov/pubmed/

http://www.ncbi.nlm.nih.gov/pubmed/
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more relevant and related to their interests.

Even the MeSH taxonomy is a very simple example of biomedical ontology
where all concepts are related to each other only through a single, IS A, re-
lationship, it definitely shows the capability of ontologies in enhancement of
literature retrieval. Real biomedical ontologies consist of many more relation-
ships through which various biomedical concepts may connect to each other,
e.g. drugs cure diseases (relationship TREATS), body substances have influ-
ence on each other (relationships INHIBITS, STIMULATES), relative position
of body organs to each other (relationships PART OF, LOCATION OF). Fur-
thermore, any concept in an ontology has one or more semantic type defined
describing its meaning. Drug, disease, body substance, body part are examples
of semantic types assigned to biomedical concepts. Consequently, employment
of well-constructed domain ontologies should be considered as a potentially very
powerful step towards improvement of recent literature retrieval approaches.

3.4 Context-dependent literature retrieval

Based on the keyword classification and categorization ideas from NeuroText,
NeuroExtract and Textpresso of Neuroscience and the potential of biomedical
ontologies in the development of literature retrieval, we propose a prototype
of methodology for context-dependent literature retrieval in neuroscience (later
called here as CDLR). The objective of this system was to support neuroimaging
literature retrieval through the integration with BredeQuery plugin. Recently,
this plugin takes a brain activation volume (set of coordinates) as an input,
later mapped to a neuroimaging paper, reporting the most similar brain volume,
returned by the Brede database. The abstract and title of this paper is further
used as an input to our CDLR methodology.

The CDLR’s input, any text related to the domain of neuroscience such as pa-
per’s title and abstract, is first analyzed by the natural language processing and
ontology mapping software Metamap (Aronson, 2001), which maps biomedical
terms to the concepts from UMLS ontology. Later, these concepts are carefully
filtered and classified into seven semantic categories earlier defined to fit the
domain of neuroscience. Later, user defines context of search by selecting rele-
vant semantic categories of interest. All the keywords belonging to the selected
categories are joined together to a logical query executed on PubMed database,
which returns a list of related papers. The details of the CDLR methodology is
provided in Appendix A.

Section 3.4.1 presents the details of further development of the ranking system
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for the presented CDLR methodology, not included in Appendix A. Finally,
Section 3.4.2 discusses results of a pilot study on the implemented methodology.

3.4.1 Paper ranking with semantic predications

The type of papers returned by the CDLR system depends on which of the
seven semantic categories (see Table 1 in Appendix A) are chosen by the user,
specifying a context of search. The returned papers are later ranked by relevance
to the input and the context of search. For paper scoring and ranking purposes
we decided to employ semantic predications extracted by the SemRep system,
presented in Chapter 2 (Section 2.1).

First, semantic predications of the input paper and the output papers are re-
trieved from the SemRep’s database (Section 2.1.1). Every predication of any
output paper is scored by comparing it with every predication of the input pa-
per. Finally, a sum of all predication scores reflects a final paper’s score. For
example, the input paper A, consists of a set i predications: {P1, P2, . . . ,Pi}.
User has also chosen the semantic categories of interest (context of search),
C = {C1, . . . , C7}. The chosen categories get the value of 1 while the rest has
the value of 0 assigned. There is also a list of j retrieved output papers {A1,
A2, . . . , Aj}, each having a number of predications. A final score (finalscore)
for a random output paper Ak (1 < k < j) having m associated predications
{Pk0, Pk1, . . . , Pkm} is calculated as

finalscorek =

m∑
n=1

i∑
p=1

pscore(Pkn, Pp) · cscore(C,Pkn). (3.1)

According to Figure 2.2 in Chapter 2, two semantic predications, P1 and P2,
have a triple form and consist of respective subjects (S1, S2), predicates (Pr1,
Pr2) and objects (O1, O2). An auxiliary function pscore(P1, P2) compares this
pair of predications and returns a score,

pscore(P1, P2) =



5, if S1 = S2 ∧ Pr1 = Pr2 ∧O1 = O2;

3, if (S1 = O2 ∧ Pr1 = Pr2 ∧O1 = S2) ∨ (S1 = S2 ∧O1 = O2);

2, if (S1 = S2 ∨O1 = O2 ∨ S1 = O2 ∨O1 = S2) ∧ Pr1 = Pr2;

1, if S1 = S2 ∨O1 = O2 ∨ S1 = O2 ∨O1 = S2;

0, otherwise;

.

(3.2)

Finally, function cscore(C,P ) checks if the semantic categories assigned to sub-
ject and object of a predication P are chosen by the user in the search context
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C. If both, subject and object’s semantic categories are chosen in context C,
function cscore returns 1. If only one, subject or object’s semantic category is
chosen in context C, function cscore returns 0.5. Otherwise, cscore returns 0.
The objective of this function is to determine if a given predication is completely
out of scope of user’s search context and should be disregarded or if it converges
with the context and should be included in the final score calculation.

3.4.2 Preliminary results

This section presents results from a pilot study evaluating the CDLR methodo-
logy. The objective was to check if the papers returned by CDLR methodology
report similar brain activation volumes (sets of coordinates) comparing to the
volumes found in the CDLR’s input paper (seed). The context of search de-
fined for the CDLR methodology in this analysis includes just two semantic
categories. We were interested in finding papers similar to the seed paper by
location in brain (chosen category: Body (Brain) Part, Organ or Region), which
describe the neuroimaging experiments using the functional magnetic resonance
imaging technique (fMRI) (chosen category: Diagnostic procedure).

First, a full text of the seed was manually examined and all brain activation
volumes were extracted. Then, for each volume the Brede database was queried
and retrieved a set of top 20 papers, which report activation volumes in the most
similar brain locations. Each of the 20 papers returned by the Brede database
has a similarity value calculated. In Brede database a Gaussian/Euclidean form
for calculating the similarity between two volumes is used (Nielsen and Hansen,
2004):

sq,e =
1√
N

M∑
m=1

N∑
n=1

exp

(
− (xm,q − xn,e)

2 + (ym,q − yn,e)
2 + (zm,q − zn,e)

2

2σ2

)
, (3.3)

where σ is set to 10 millimeters, (xm,q, ym,q, zm,q) is the mth of M three-
dimensional query coordinates, while (xn,e, yn,e, zn,e) are the nth of N three-
dimensional coordinates in the Brede database.

In this analysis, we have recorded the similarity value of the last, the twentieth,
paper found on the list of top 20 similar papers. This value was further used by
us as a threshold.

Later, the detailed investigation on the papers returned by the CDLR methodo-
logy was performed. Starting from the top of the CDLR’s list of papers ranked
using semantic predications (Section 3.4.1), we have analyzed them manually,
one-by-one, in order to find these which report in the full text any brain activa-
tion volumes in form of coordinates. Since many of the papers did not contain
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Seed CDLR Pubmed Related (PR)
PMID # PMID Similar In PR # PMID Similar In CDLR

18775476
3 15699291 • - 3 19347877 • #24
4 19556348 • #20 5 15953488 • -
5 16339042 - - 6 18457504 • #88

15876491
7 20027574 - #81 4 18684074 - #41
8 20171291 - - 5 19061937 - #170
10 13679404 - - 6 18571795 - -

17881514
2 15528086 • - 5 16167193 • -
4 15528081 - #23 6 18524903 - -
5 11969314 • - 7 10725932 • -

17103153
2 15885507 • - 2 14622239 - #19
4 16421332 • - 3 16839610 - -
5 15958738 - - 4 11369672 • #1632

15050584
2 19965853 • - 2 15050567 • -
6 17275336 • - 5 14980562 • -
22 15580514 • - 7 16757183 • -

Table 3.2: The results for a pilot study evaluating the performance of the
context-dependent literature retrieval (CDLR) methodology. The analysis was
carried out for five different input papers (seeds). The results for both, CDLR
methodology and Pubmed Related are presented. Column [#] shows the posi-
tion of the paper on the ranked paper list. Column [PMID] shows the paper
identification number in Pubmed database. Column [Similar] displays a symbol
(•) if the similarity value, measured between at least one brain activation vol-
ume from a given paper and volumes reported in the seed paper, is above the
threshold. Finally, columns [In PR] and [In CDLR] show the position of a given
paper in the ranked list retrieved by Pubmed Related and CDRL, respectively.

any coordinates and the time frame available for this analysis was limited, we
continued until three papers with the reported brain activation volumes were
found.

Finally, using Equation 3.3, a similarity was calculated between the seed’s vol-
umes and each volume of the three selected papers. If at least one volume
from a selected paper had a similarity value higher than previously calculated
threshold, it was marked as a paper similar to the seed.

We have pursued the analysis for five different seeds. In parallel, the papers
returned by the Pubmed Related feature were investigated in the same manner.
The results are shown in Table 3.2. In four of five presented cases there was, for
both CDLR and Pubmed Related, one or more highly ranked papers similar,
by brain activation location, to the seed paper. Moreover, CDLR and Pubmed
Related seem to perform in this study in a complementary manner since the
highly ranked, similar to seed, papers returned by CDLR do not overlap with
papers, similar to seed, returned by Pubmed Related. Consequently, it may be
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assumed here that the execution of this two methods in parallel in a common
web service might bring an useful enhancement to the process of retrieval of
neuroimaging studies.



Chapter 4

Conclusion

In this thesis we have discussed a number of semantic approaches for literature
retrieval and knowledge discovery applied to the domain of biomedicine. We
showed that semantic predications extracted from the biomedical texts during
the process of semantic natural language processing can lead to powerful tools
enhancing the probabilistic and statistical methods implemented recently in the
literature retrieval systems.

This thesis aimed to provide a compact view on the background and principles
of the covered topics and summarize the developed methodologies, presented
and discussed in full in their respective appendices. In Section 2.1 of Chapter 2
we introduced the notion of semantic predications and discussed the current
semantic natural language processing systems which specialize in extraction of
such predications from biomedical texts. Further sections of Chapter 2 intro-
duce the field of literature-based discovery (LBD) and discuss its pioneer and
recent methodologies. Finally, in Section 2.5 we present the discovery browsing
methodology (Appendix C), the extension of current LBD approaches, which
employs semantic predications and fundamental measures of graph theory to
search through the huge biomedical literature repositories for previously un-
known or poorly studied knowledge. The main thrust of Chapter 3 is manip-
ulation and retrieval of data in the domain of neuroimaging, the subfield of
neuroscience. The detailed review of the current knowledge repositories and
databases in neuroimaging is followed by a discussion on the literature retrieval
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in neuroscience. We presented in Section 3.4 the novel methodology for retrieval
of neuroimaging studies in a context-dependent manner (Appendix A) and its
integration with the common neuroimaging environment, Statistical Paramet-
ric Mapping, through the BredeQuery plugin (Appendix B) which provides an
interface for coordinate-based literature searching.

Discussion and Future work

We discuss here the outcomes from the pilot evaluations of the developed method-
ologies and propose their further development directions.

Literature-based discovery

The discovery browsing methodology presented in Appendix C and the analy-
sis results given in the final section of Chapter 2 demonstrate the utility and
power of semantic predications in literature manipulation. The results from the
depressive disorder study, where the poorly studied interaction of circadian phe-
nomena, inflammation and the neurotransmitter norepinephrine in depression
was highlighted, were very positively discussed and evaluated in Appendix C by
three domain experts. The advantage of the discovery browsing methodology
and underlying path analysis is the fact that it provides an user interactive, prin-
cipled way of navigating through selected aspects of some biomedical domain
extracted from a MEDLINE database, a huge biomedical literature repository.
The analysis of the final results of the depressive disorder study, presented in
Section 2.5.3, demonstrates that our methodology allows the user to navigate
through literature from diverse biomedical domains, some of which may go be-
yond the normal scope of interest of the user, which consequently may lead
to new hypotheses and discovery of new knowledge. The presented methodo-
logy is recently employed in two ongoing studies (sleep apnea and restless legs
syndrome) carried out at the U.S. National Library of Medicine. The current
results obtained in the sleep apnea study using the discovery browsing metho-
dology allowed to build a hypothesis on a potential pharmacological therapy for
this disorder including a combination of acetylcholine agonist, glutamate agonist
and gamma-Aminobutyric acid antagonist.

We plan to pursue with further development of the discovery browsing methodo-
logy which includes the design of various path rankings, e.g. combining simple
and weighted degree centrality and checking strong/weak predications in the
paths. In the recently implemented rankings, we do not take into account how
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many papers contributed to a given A – B predication. The more papers re-
veal a given predication, the stronger it is. We are planning to include this
measure in the design of future ranking approaches. In addition, even semantic
predications represent directed relationships between two given concepts (A –
predicate→ B and A←predicate– B are two different predications), for simplicity
purposes our methodology does not rely recently on the predication direction.
Nonetheless, we are planning to take advantage of this knowledge in the fu-
ture. Finally, since the presented methodology uses semantic predications given
by the semantic natural language processing systems, like the SemRep system,
thus, consequently, further improvements of such systems and the definition of
new predicates for the domains recently not covered by SemRep, e.g. public
health, would be very beneficial.

The flexibility of semantic systems and methodologies presented in this thesis
results in a very broad spectrum of potential applications. Apart from the li-
terature retrieval and literature-based discovery, which proved to link various
knowledge domains, semantic approaches like ‘discovery browsing’ methodo-
logy (Appendix C) might be beneficial for educational purposes (summariza-
tion of knowledge) as well as for innovation- and novelty-oriented analysis of
biomedicine related documents and applications.

Literature retrieval in neuroimaging

The context-dependent literature retrieval (CDLR) methodology for neuroscience
presented in Appendix A retrieves similar papers given the input and context
of search. The results of a pilot study presented in Section 3.4.2 demonstrate
that our methodology performs well while searching for neuroimaging papers
referring to similar locations of brain activations. It confirms the potential of
the CDLR methodology to extend results pool of much smaller coordinate-
based neuroimaging databases. We have integrated the BredeQuery plugin
(Appendix B) with the CDLR methodology to facilitate extensive literature
searching directly from the neuroimaging environment. Furthermore, the pos-
itive results from the pilot study affirm also the novel way of paper ranking
with the use of semantic predications (Section 3.4.1) and outline the poten-
tial of semantic predications for improvements of the current literature retrieval
algorithms (also discussed in Section 2.5.4, Chapter 2).

We are planning to carry out in the near future a more extensive evaluation based
on this pilot study for a bigger set of input papers. Moreover, the performance of
the BredeQuery plugin with CDLR methodology is to be verified and evaluated
by the domain experts. To conclude, in the era of extremely high growth rate
of published biomedical studies, we have demonstrated that a combination of
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semantic approaches, which can efficiently filter out papers for very specific
biomedical topic, and the recently very popular probabilistic and statistical
retrieval systems may facilitate users in navigating through a huge amount of
papers and finding the relevant ones.
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Abstract

Background: The growth of published neuro-imaging articles and experimental results in neuroscience, brings a

demand for dedicated information retrieval tools for this specific biomedical domain. There is a need to expand

results pool of the functional imaging coordinate-based databases like SumsDB, BrainMap or Brede, because,

despite their limited size, they are arguably richer for neuroimaging than conventional keyword-based retrieval

services.

Results: In this work we propose a general methodology for linking coordinate-based and keyword-based retrieval

systems. The input to the presented pipeline of methods is any paper retrieved by a coordinate-based service.

First, an automatic extraction of significant keywords is performed by mapping noun phrases to Unified Medical

Language System’s ontological concepts using the Metamap software. Each of the extracted keywords is

automatically classified into one or more semantic groups relevant to neuroscience. The semantic groups and,

associated with them, extracted keywords, are later used for construction of logical queries executed on the

PubMed database. The context of the search is defined by selection of semantic groups of interest. A semantic

group representing brain parts is always stipulated in any search to ensure that the retrieved papers are similar

to the input article by brain part or location.

Conclusions: The discussed methodology may be considered as an extension, in the domain of neuroscience, of

the common publication search engines like PubMed or Google Scholar. We propose integration of the

methodology with the BredeQuery plugin for enabling searches directly from within the Statistical Parametric

1
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Mapping, a very popular environment in function neuroimaging. Finally, the flexibility of the approach presented

in this work allows adjustment of the methodology also to other biomedical domains.

Background

Breakthroughs in functional brain imaging technology and an increased interest in neuro-psychology have

stimulated an explosive growth of published neuro-imaging papers and experimental results. As in other

expansive areas of medicine there is a strong need for efficient literature and knowledge retrieval from the

many on-line databases and other data sources.

There are already several tools available to assist the neuroimaging scientist. Comprehensive literature

databases provide users with a common web interface where the papers can be retrieved based on

keywords. The most popular tool of that kind is the PubMed database. It keeps references to over 19

million biomedical publications including entries from MEDLINE database (medical and health journals),

and life science journals. Also keyword based generic science search engine Google Scholar is extremely

helpful for the neuroimaging researcher.

In neuroimaging most published results take the form of activation locations associated with given

behavior, and this has given rise to specialized location databases. The major location/coordinate-based

databases are: SumsDB [1], BrainMap [2] and Brede [3]. The main challenge for this kind of database is

the labor intensive data entry process which has limited the coverage and resulted in limited use.

In spite of the limited size of functional imaging coordinate-based databases, their functionality and

methods for paper retrieval are arguably richer for neuroimaging than ordinary, keyword-based search

services.

In addition, coordinate-based search is possible also from from the brain imaging analysis pipeline

Statistical Parametric Mapping (SPM). The latter functionality is implemented by the BredeQuery

plugin [4]. It is an example of an SPM extension where user is able to grab activation coordinates from

2
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SPM results window and perform querying of the Brede database for related literature.

To overcome the limitated coverage of pure coordinate databases, and draw from the large pools of

information present on-line new tools are needed. Therefore, we here present a general methodology aimed

at expanding results from the coordinate databases into the wider context of neuroscience.

Related work

NeuroText [5] and NeuroExtract [6] systems aim respectively in populating neuroscience databases, and

performing the integrated retrieval of Internet-based information relevant to neurosciences. NeuroText was

developed for text-mining of abstracts from neuroscience journal articles in order to identify relevant

domain keywords which allow further classifications. It facilitates creation of bibliography databases for a

specific domain of interest.

NeuroExtract system retrieves neuroscience related information from genomic and proteomic repositories:

SwissProt, Gene Expression Omnius and Protein Data Bank, which are not primarily considered as

neuroscience knowledge sources. NeuroExtract allows simultanous querying of these various data sources,

what significantly enhances interoperability and facilitates the users. It is flexible for further adaptation of

additional sources.

The notion of keyword identification and relevant information extraction is also considered in our

methodology. The extracted keywords are further classified into semantic groups, which enable the

definition of a context in which search is to be performed. The main aim of our approach is to provide an

interoperability between structured datasets containing volumes of brain location coordinates and the

bibliographic databases.

Textpresso for Neuroscience [7] is another text mining system which performs literature search in the

domain of the neuroscience. In this search engine, users specify not only search keywords, but also one or a

combination of categories in which the search should be performed. It is presented that thanks to the

definition of categories, a keyword query is more refined and meaningful. The functionality of Textpresso

for Neuroscience bases not only on abstracts but also on full texts of papers, which are collected in local

database.

One noticable difference in the design of Textpresso for Neuroscience and the presented methodology is the

3
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fact that in our approach we do not expect keywords as an input for searching, but any arbitrary English

text. It could be an abstract of any paper or author’s own manuscript. Keywords are extracted

automatically using the Metamap software and an additional set of procedures. Still, both in Textpresso

for Neuroscience and our methodology, categories (semantic groups) are to be defined for the search, what

allows to narrow down or broaden the context from which related papers are to be retrieved. Finally, in

contrary to Textpresso for Neuroscience, we do not create our own database of publications, but logical

queries are executed on one of the biggest and most popular medical database, the PubMed database,

which ensures that most relevant papers, including historical and very recent work, are included in the

search’s retrieved related papers list.

There are numerous research activities at the National Institutes of Health based on the Unified Medical

Language System (UMLS) related to the areas like ontological development, knowledge extraction, etc.

One example is SemRep [8] system, which is able to recover semantic predications from biomedical texts

with help of partial syntactic analysis derived by SPECIALIST Lexicon [9] and part-of-speech tagging

using the MedPost tagger [10].

In addition, Semantic MEDLINE is a recent summarization initiative – a web-service, which manages

Pubmed’s searches, provides visualizations of the semantic predications extracted from MEDLINE

citations, later linked to various structured resources [11]. Functionality of the Semantic MEDLINE relies

on both the SemRep and MetaMap [12] systems.

MGREP, developed at the University of Michigan [13], is a tool similar in functionality to the NIH’s

Metamap software. Both of them are tools which map a natural language text to ontological concepts. A

comparison of the two systems was carried out recently in [14] where among others the flexibility,

extensibility and speed were discussed. The advantages of MGREP over Metamap is the scalability across

the dictionaries used and execution speed. Metamap is tightly coupled with UMLS and it is difficult to

introduce external data sources. However, it does map natural language text to UMLS concepts efficiently.

Choosing MGREP or Metamap thus depends on the application.

Finally, our aims are in part shared with the Open Biomedical Annotator developed at the Stanford

University. It is a web-service which annotates public datasets, based on the textual metadata, with

biomedical ontologies [15]. It currently uses MGREP for concept mapping and the data sources used are:

4
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UMLS and NCBO BioPortal ontologies.

Methods
Main components of the methodology

The key components of the the presented methodology are the Metamap software [12], which enables

mapping of biomedical texts phrases to UMLS ontological concepts, and the Brede database [3], which

records neuroimaging publications together with brain activation coordinates.

Metamap software and UMLS

Metamap is developed by Dr. Alan Aronson at the National Library of Medicine (NLM) and uses the

UMLS terminology and resources.

UMLS [16,17] is a data source widely used in data repositories for biomedical applications and computer

systems and consists of:

1. medical vocabulary database (Metathesaurus) – contains over one million biomedical concepts taken

from over 100 source vocabularies.

2. Semantic Network – 133 broad categories and fifty-four relationships between categories for labeling

the biomedical domain. It is used in applications to help interpret meaning.

3. SPECIALIST Lexicon and Lexical Tools – lexical information and programs for language processing.

The purpose of the Unified Medical Language System (UMLS) is to facilitate the development of computer

systems that behave as if they “understand” the meaning of the language of biomedicine and health1.

Metamap is a natural language processing and computational linguistics based software, which maps

simple noun phrases to UMLS Metathesaurus concepts. The natural language processing is performed

using MedPost tagger, which achieves over 97% accuracy on MEDLINE citations [10]. We use a 2009

Metamap version, in which the processing speed and program functionalities were improved significantly

comparing to the previous releases. Metamap offers, apart from an ordinary raw output, XML output,

where metadata about the introduced text phrases is presented: part of speech, mapped concepts

identifiers and labels, preferred concepts, semantic types and knowledge sources for mapped concepts, etc.

Moreover, Metamap can be easily configured to the user’s needs by simple selection of relevant parameters.

1http://www.nlm.nih.gov/research/umls/new users/online learning/index.htm
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One of Metamap’s options currently used in our methodology is Word Sense Disambiguation (WSD),

accuracy of which was enhanced in Metamap 2009 version by increasing the number of algorithms and

introducing voting mechanism for final ambiguity resolution [18].

Brede database

The Brede database [3] is a web-service which records published neuroimaging experiments that list

stereotaxic coordinates in so-called MNI or Talairach space [19]. Presently, close to 4000 coordinates from

186 papers with a total of 586 experiments are available. Apart from basic data about the neuroimaging

studies, the Brede database stores also links to many other neuroscientific resources like PubMed,

BrainMap, CoCoMac, SumsDB or Wikipedia. Furthermore, it provides graphical visualizations of the

experiment’s data sets. In spite of the fact that the presented database is very small, it contains scientific

data on almost all brain regions and functions, and that is why it can be considered as a great mediating

knowledge source for other, bigger neuroinformatic initiatives, which require well-defined neuroscientific

reference data and information.

Methodology description

The discussed methodology is a pipeline of several steps, where the input is an arbitrary English

neuroscientific text (here retrieved by a coordinate-based retrieval system) and the output is a list of

related publications – see Figure 1.

Definition of semantic groups for neuroscience

Since UMLS consists of various medical vocabularies for all areas of medicine and biomedicine and, as

mentioned, our methodology is currently aimed at neuroscience, thus it was necessary to define which

semantic types, present in UMLS, are not relevant for neuroscience. For that purpose, we used all abstracts

and titles of articles (186) stored in the Brede database, which were further analyzed by Metamap. After

the classification of the mapped concepts by UMLS’s semantic types, we filtered out the irrelevant semantic

types, therefore these which do not carry any essential information about neuroscience field.

The outcome of the above described procedure is that, from 135 available semantic types available in

UMLS, a final set of semantic types for neuroscience consists of 30, later called “valid”, semantic types

(105 filtered out). This assures that in further processing of any neuroscience text only valuable,

6
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Figure 1: A pipeline of steps representing the methodology. A neuroscientific text (input) is the input. It
is later analyzed by the Metamap software, which outputs an XML file with the results (ontology concepts
and mappings, part-of-speech tags, scores for mapped concepts). The data from the XML file is retrieved
and keyword extraction is carried out. The extracted keywords are semantically grouped and then used in
a query construction. The query is sent to PubMed database, which returns a set of related publications
(output). The Results validation and Query tuning steps are two proposal phases (not yet tested) and could
be used if the modification of the previously constructed query is needed, e.g. if PubMed did not return any
papers or returned too many of them.

informative keywords of the field will be selected (concepts with “valid” semantic types).

Nevertheless, some of the 30 selected semantic types still reference to the same aspects or topics of

neuroscience, thus consequently, these were grouped together in seven bigger and more descriptive semantic

groups (categories), see Table 1. These semantic groups are used for classification of extracted keywords.

Ontological mapping by MetaMap

The first step of the methodology is to process an input text by MetaMap. As it was mentioned before,

MetaMap performs NLP (natural language processing) on the plain text and, afterwards, it searches for

the most relevant ontological concepts in UMLS Metathesaurus. This process is often called as ontological

mapping of raw text and it should be understood as finding the most relevant medicine related

standardized dictionary concept for each noun phrase from a given text input.

During the text analysis, MetaMap divides a whole text into utterances, which are later split into noun

phrases. Firstly, each noun phrase is part-of-speech tagged. Later, the software tries to find concepts in the

UMLS ontology (ontological candidates) for every noun phrase. Each candidate obtains a score. There can

be multiple candidates for a single noun phrase. Consequently, based on scores, the software makes a
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Semantic group Semantic types

Body (Brain) Part, Body Location or Region (blor),
Organ or Region Body Part, Organ, or Organ Component (bpoc),

Body Space or Junction (bsoj),
Cell Component (celc)

Disease or Syndrome Disease or Syndrome (dsyn),
Neoplastic Process (neop),
Mental or Behavioral Dysfunction (mobd)

Functions Organism Function (orgf),
Organ or Tissue Function (ortf),
Molecular Function (moft),
Pathologic Function(patf),
Physiologic Function (phsf)

Mental Process Mental Process (menp),
or Finding Finding (fndg),

Individual Behavior (inbe),
Natural Phenomenon or Process (npop),
Sign or Symptom (sosy)

Diagnostic procedure Diagnostic procedure (diap),
Laboratory or Test Result (lbtr)

Chemical Amino Acid, Peptide, or Protein (aapp),
or Substance Biologically Active Substance (bacs),

Lipid (lipd),
Neuroreactive Substance or Biogenic Amine (nsba),
Nucleic Acid, Nucleoside, or Nucleotide (nnon),
Organic Chemical (orch),
Pharmacologic Substance (phsu),
Receptor (rcpt),
Vitamin (vita),
Hormone (horm)

Gene or Genome Gene or Genome (gngm)

Table 1: 30 carefully selected semantic types encapsulated in seven categories (semantic groups) which
represent various contexts of search used by the presented methodology.

decision on which candidate is the best mapping for a given noun phrase.

Multiple mappings for the same noun phrase appear, because natural language is highly ambiguous. In

order to obtain a final, the best and only one mapping, the Word Sense Disambiguation (WSD) engine is

available in Metamap. Since in the release of Metamap from 2009 the accuracy of WSD has increased

significantly, therefore we have decided to employ it in the current approach.

From MetaMap we can also derive the properties of each mapping concept: semantic types and knowledge

sources. Each concept in UMLS Metathesaurus is assigned to one or more semantic types. There exist also

certain relationships between various semantic types which create the UMLS Semantic Network. Currently,
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there are 135 semantic types defined in UMLS.

From among a few output formats offered in MetaMap, a machine-understandable XML (Extensible

Markup Language) is to be used in our methodology.

Semantic keyword extraction

Figure 2: Semantic keyword extraction step. First, the Metamap XML output is parsed and analyzed
(ontology mappings are retrieved). Then all the mappings are classified and represented as a chains of
specific tags. Finally, the tag chains are processed and the not relevant ones (these which carry inappropriate
semantic type or part of speech) are filtered out. The remaining mappings are returned as keywords.

This section describes how keywords are extracted (see Figure 2) given the Metamap’s XML output

produced in the previous step.

The first step performed during the keyword extraction step is parsing and analyzing the Metamap’s XML

output file. All the possible mappings given by Metamap need to be analyzed and only relevant ones can

be selected for further analysis. Every mapping consist of one or more concepts, while every concept is

created from one or more words. The choice of the appropriate mappings depends mainly on the following

word and concept properties:

� part-of-speech tag (given for each word)

� semantic type (given for each concept)
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The decision was made that all the words (parts) of a concept, which are not nouns or adjectives are

disregarded and not considered in further analysis. Moreover, the selected mapping’s concepts must carry

one or more semantic types belonging only to the previously defined set of thirty “valid” semantic types

(Table 1). There is one conditionally accepted semantic type, namely Spatial Concept (spoc), which is valid

only if it is accompanied by other concepts of the valid semantic types. It was verified that in this specific

case, especially for the Body (Brain), Organ or Region concepts, the Spatial Concept semantic type

provides a complementary, locational information and cannot be ommited.

These above mentioned conditions are checked in the Mapping Analyzer and Keyword Selector steps.

Every concept has one of the following tags assigned:

� N – a concept with all valid semantic types, consisting of at least one noun word.

� J – a concept with all valid semantic types, consisting of only adjective words (no nouns)

� S – a concept with all valid semantic types, consisting of at least one noun word or one adjective

word and at least one word with Spatial Concept (spoc) semantic type.

� X – all other non-valid concepts (carrying invalid semantic type or part of speech)

Consequently, each mapping, will be a finite chain of the mentioned tags. In the Keyword Selector step

tag-chains are verified by a regular expression, which is a pattern for finding valid concepts in the mapping,

resulting in creation of final keywords.

Context-dependent query construction

In order to use efficiently any database like PubMed or Google Scholar, a well constructed query must be

prepared. In our approach, the keywords from one semantic group are joined together by logical OR

operator. At last, all the semantic groups keywords are glued together by AND operator, which gives a

final form of a query (Figure 3).

It preserves that at least one of the concepts from each semantic group must be in a retrieved document.

As it was mentioned before, a set of semantic groups needs to be defined before searching, what may be

understood as a definition of context of interest for a search.

For example, if we are interested in finding similar publications, which mention correspondent brain

10



58 Appendix A

Figure 3: Logical query construction. In the Keywords Extraction step, keywords are classified into one of
seven available semantic groups. In the Query Construction step, all the keywords within the same semantic
group are joined with the OR logical operator. Then, all the semantic groups are joined with AND logical
operator. Later, such query is executed on the PubMed database in order to retrieve relevant publications.

locations and type of procedures employed in the input document, the Brain part or region and Diagnostic

procedure semantic groups should be only enabled in a search.

On the other hand, if we want to find publications which refer to similar diseases mentioned in the input

document, the Diseases or Syndrome semantic group should be used in a search.

Finally, if there is an intention for finding publications similar in a general way to the input document, the
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context of search should be very broad, hence all the semantic groups should be selected in a search.

Query refinement and automatic results analysis

This is a proposal phase, which is considered for testing in the future. After the query is executed and the

retrieved publications arrive from PubMed, they may be further analyzed. In the Results validation step

(Figure 1), the number of retrieved documents is to be ckecked. If a query was too selective (few

documents returned) or too broad (thousands of documents returned), a set of procedures should be

designed, which re-arrange the original query (Query tuning step) to make it less selective or less broad.

This cycle (Results validation–Query tuning) should repeat until the moment when either the number of

retrieved papers is satisfiable or a pre-defined time threshold has passed.

Flexibility and extensibility of the method

It must be mentioned that even the methodology described here is thought to work in the domain of

neuroscience, it may be easily adjusted for work with terminology of any other biomedical domain defined

in UMLS. It may be done through appropriate re-definition of “valid” semantic types and semantic groups.

Results and Discussion

In this section we present two examples illustrating the presented methodology:

� Example I. A demonstration of a sample input processing by the methodology. The intermediate

results from each of its steps are discussed.

� Example II. A demonstration of the possible integration of the methodology with a coordinate-based

database.

The examples base on the randomly selected test paper: “Imitating expressions: emotion-specific neural

substrates in facial mimicry.” by [20].

The preliminary results discussed by these examples were obtained thanks to the prototype partial

implementation of the discussed methodology in Python programming language.

12
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Example I: Input processing

The input (natural language English text) is being processed in few subsequent steps of the methodology

shown in Figures 1 and 2.

Let’s consider the following sentence (utterance) taken from the abstract of our test paper:

“Moreover, the magnitude of facial movement during emotion-imitation predicted responses

within right insula and motor/premotor cortices.”

The analysis of this sentence is discussed below and summarized in Table 2.

Noun phrase Moreover, the magnitude of facial movement

Tag Moreover , the magnitude of facial movement

POS adv punct det noun prep adj noun

Concept Magnitude Facial Movement
Sem. type qnco spco orgf

Keyword facial movement

Noun phrase during emotion-imitation predicted responses

Tag during emotion - imitation predicted responses

POS prep noun punc noun adj noun

Concept (*) Predicted (*)Emotional Responses
Sem. type (*) idcn (*) menp

Keyword emotional responses

Noun phrase within right insula and

Tag within right insula and

POS prep adj noun conj

Concept Right insula
Sem. type bpoc

Keyword right insula

Noun phrase motor /premotor cortices.

Tag motor / premotor cortices .

POS noun punc noun noun punc

Concept Motor Premotor cortex
Sem. type ftcn bpoc

Keyword premotor cortex

Table 2: Processing of the sample sentence (methodology’s input). First, Metamap splits the sentence into 8
noun phrases (‘Noun phrase’). Each noun phrase is further split into tags (‘Tag’), which later are labeled
with appropriate part-of-speech (‘POS’). Having also the ontological mappings (concepts) and associated
semantic types given by Metamap (‘Concept’ and ‘Sem. type’), they are being verified with a regular
expression. The sucessfully verified concepts become valid keywords used later in construction of a PubMed
query.

In our example, there are four keywords extracted from the analyzed sentence:

13
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facial movement, emotional responses, right insula, premotor cortex

The two last keywords (‘right insula’ and ‘premotor cortex’) carry the following UMLS’s semantic type:

Body Part, Organ, or Organ Component (bpoc). In reference to Table 1 both keywords are classified into

the Body (Brain) Part, Organ or Region semantic group.

The ‘facial movement’ keyword consists of two words: the noun ‘movement’ carries the Organism Function

(orgf) semantic type and the preceding adjective ‘facial’ carries the Spatial Concept (spoc) semantic type.

As a result, this keyword classifies into the Functions semantic group.

Finally, the ‘emotional responses’ keyword spans two words (adjective and noun) which carry the Mental

Process (menp) semantic type. Therefore, it automatically classifies into the Mental Process or Finding

semantic group.

There are a few additional concepts mapped by MetaMap, e.g.: ‘Predicted’, ‘Motor’ or ‘Magnitude’, but

since none of them carries a “valid” semantic type, they are disregarded.

Next, a logical query is constructed with the four keywords:

((right insula) OR (premotor cortex)) //Body Part, Organ or Region category

AND

(facial movement) //Functions category

AND

(emotional response) //Mental Process or Finding category

According to the previously introduced two proposal steps of the methodology, if a number of publications

retrieved with the current query was too small or too big, the query would not be validated and might be

modified (tuned). One possible way of query tuning, which we propose, is to join together all single

keywords from various semantic groups. In this case the keywords: ‘facial movement’ (Functions) and

‘emotional response’ (Mental Process or Finding) are joined together:

((right insula) OR (premotor cortex))

AND

((facial movement) OR (emotional response)) //joined keywords

The retrieved set of input-similar documents is the last step of the methodology.

14
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Example II: Integration of the methodology with a coordinate-based database

In this example we test the context-dependent search, provided by the presented approach, on the data

retrieved from the coordinate-based database, the Brede database. This database, given a set of brain

coordinates (volume), is able to retrieve papers which contain similarly localized volumes [21].

Therefore, the aim here is to employ our methodology to obtain a set of publications, similar, by brain

location, to each of four highest ranked documents returned by the Brede database. For the discussion

purposes, we additionally perform the same test replacing our methodology with the PubMed retrieval

system.

First, from our test paper [20] we got a brain volume represented by a set of coordinates, which, according

to the test paper’s authors, represent the sites in brain where neural activation was associated with

observation of angry faces contrasted with observation of static neutral faces. The original set of

coordinates was given in the MNI space, thus we had to transform them to the Talairach space in order to

fulfill the Brede Database’s requirements. The BredeQuery plugin for SPM was used for this purpose. The

transformed coordinates are presented here:

(-42, -5, 29) (12, -5, 42) (-3, 56, -7) (-33, 20, -21)

Later, the Brede database was queried with the coordinates and the papers, reporting the most similar

volumes in brain, were retrieved. We present the four highest ranked papers:

1. Karama (2002); “Areas of brain activation in males and females during viewing of erotic film

excerpts.”

2. Chen (2002); “Spatial summation of pain processing in the human brain as assessed by cerebral event

related potentials.”

3. Zald (2002); “Brain activity in ventromedial prefrontal cortex correlates with individual differences in

negative affect.”

4. Pelletier (2003); “Separate neural circuits for primary emotions? Brain activity during self-induced

sadness and happiness in professional actors.”

Finally, we ran our methodology separately for each of the four papers. Moreover, we tested the

methodology with two different settings of semantic groups (see Table 3). In the first setting we selected
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four semantic groups (including the Body (Brain) Parts, Organ or Region group) to get a mixed context of

search. In the second setting, we selected only the Body (Brain) Parts, Organ or Region semantic group,

thus the context of search was limited only to brain locations.

In parallel, we also retrieved sets of related papers (PubMed’s Related Articles feature [22]) for each of the

same four papers.

Setting Setting
Category #1 #2

Body (Brain) Part, Organ or Region � �

Disease or Syndrome � �

Functions � �

Mental Process or Finding � �

Diagnostic Procedure � �

Chemical or Substance � �

Gene or Genome � �

Table 3: Two different search settings of our methodology used in Example II. The filled bullet symbol (�)
marks a semantic group which is enabled for searching.

For each set of related papers, either retrieved by our methodology or by PubMed, we checked if the test

paper [20] appears in this set. The results are presented in Table 4.

Brede paper Our methodology

# PubMed Related Setting #1 Setting #2

1. � � �

2. � � �

3. � � �

4. � � �

Table 4: The Example II test’s results. The filled bullet (�) means that a test paper was found in the
retrieved set of related papers.

Apparently, in case of the search context set to brain locations only (Setting #2), in three of four sets of

the retrieved documents the initial test paper was found. This is a promising result in the sense of

integration of the coordinate-based databases with our methodology.

In the Setting #1, when the keywords from additional semantic groups affected the search, the results were

slightly worse, but still the initial test paper was found in two of four sets of retrieved documents.

PubMed Related did not return the test paper in any of the four searches.

16
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Figure 4: Visualization of two brain coordinate sets (volumes): set of four brain coordinates [(-42, -5, 29)
(12, -5, 42) (-3, 56, -7) (-33, 20, -21)] from the test paper (on left) and set of three coordinates [(-24, 54, -14)
(-6, 60, 6) (2, 57, 4)] from the Brede paper #4 (on right). According to the Brede database, later confirmed
by our methodology, these two coordinate sets (volumes) are very similar. These visualizations confirm that
the location of these coordinate volumes is very alike to each other.

Finally, we decided to check how the set of coordinates from the Brede paper #4 differs with the set of

coordinates from the test paper. To do that, a visual verification was performed (see Figure 4) using an

additional feature of the Brede database service, namely visualization of coordinates in brain. Such

visualizations, provided for all the Brede database experiments, are created in Matlab and VRML [23]. It

is clearly visible that coordinates (grey stars) in both papers appear in very similar brain locations what is

a type of validation for both: the Brede database and our methodology.

Conclusions

We have presented here the general methodology for context-dependent search of related publications,

tested in the domain of neuroscience. The input to the system is any English biomedical language text.

The whole methodology, represented as a pipeline of subsequent steps, bases on the natural language
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processing, logical rules and biomedical ontologies.

Answering the recent need in neuroscience, and more specifically in neuroimaging, for expansion of the

results pool in the small coordinate-based databases, we propose the integration of the discussed

methodology with the existent tools like the BredeQuery plugin. This plugin, given set of coordinates,

employs the Brede database for retrieval of the similar literature directly from the SPM environment. The

results presented in Example II confirm the viability of our approach which might be integrated with the

above mentioned plugin for further retrieval of related MEDLINE papers.

It should be also mentioned that the recent prototype Python implementation of the methodology might

be tested on a coordinate-based database, bigger than the Brede database, e.g. the SumsDB database. In

addition, the constructed queries could be directed not only to the PubMed database, but also to other

huge comprehensive databases like Google Scholar.

Our future plans, concerning the presented methodology, include implementation of a ranking algorithm

which could enable more comprehensive and quantitative evaluation. Two possible solutions for ranking of

retrieved papers considered are the Okapi BM25 [24] ranking function and Probabilistic Latent Semantic

Indexing [25].
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Abstract. Large amounts of neuroimaging studies are collected and
have changed our view on human brain function. By integrating multi-
ple studies in meta-analysis a more complete picture is emerging. Brain
locations are usually reported as coordinates with reference to a specific
brain atlas, thus some of the databases offer so-called coordinate-based
searching to the users (e.g. Brede, BrainMap). For such search, the publi-
cations, which relate to the brain locations represented by the user coor-
dinates, are retrieved. We present BredeQuery – a plugin for the widely
used SPM data analytic pipeline. BredeQuery offers a direct link from
SPM to the Brede Database coordinate-based search engine. BredeQuery
is able to ‘grab’ brain location coordinates from the SPM windows and
enter them as a query for the Brede Database. Moreover, results of the
query can be displayed in a MATLAB window and/or exported directly
to some popular bibliographic file formats (BibTeX, Reference Manager,
etc).

1 Introduction

The growing number of functional neuroimaging studies of increasingly sophis-
ticated human brain activity brings the demand for new tools/services for inte-
gration of research findings, wider exchange of information between laboratories
from the same research area and efficient searching of related articles, reviews
and other literature [1].

The dominant paradigm in current neuroimaging is that of functional lo-
calization. Functional localization hypothesizes that a given human behavior is
established by a change in brain activity in a relatively limited number of spa-
tially segregated processing units. Thus the result of an experiment under this
paradigm consists of a Statistical Parametric Map (SPM) indicating the local
involvement. Often the SPM is summarized as a list of regions, see e.g., [2,
3], in which the SPM has been judged to be significantly different from zero
(regions were the null hypothesis is rejected). As the typical neuroimaging ex-
periment investigates a highly controlled behavior and often involves a relatively
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limited number of subjects, there is strong need for tools to integrate multiple
experiments in order to increase the robustness to the experiment specific im-
plementation of the given behavior and to statistical fluctuation due to limited
sample sizes.

Several methods have been proposed for neuroimaging meta-analysis and
for estimation of associations between the brain locations and textual represen-
tations of behavior, for a recent review, see e.g., [1]. A set of methods are based on
the so-called Brede Database [4]. Methods for integration include estimation of
conditional probability density functions representing the localized probability of
activation in response to a given behavior ‘word’ [5, 6] and multivariate methods
based on non-negative matrix factorization that aim to represent global depen-
dencies between brain activation and semantic text labels from neuroscience
publications [7].

Brain locations are reported as region coordinates relative to a specific brain
atlas (usually MNI or Talairach spaces), hence, there is an interest for effective
search for experiments, hence, scientific papers, which report similar coordinate
sets in brain. BrainMap [8] and Brede [4] are the databases which offer the
coordinate-based searching. For Brede it is available on both the webpage and
in a standalone application. A more extensive classification of the databases for
fMRI coordinates can be found in [9].

In order to enable a neuroimaging scientists to perform meta-analysis in
the context of a specific ongoing study we here propose a tool that integrates
retrieval of related research within the data analysis pipeline. The dominant
tool for human brain mapping is undisputable the SPM1 set of tools developed
and distributed by the Functional Imaging Laboratory (London, [2]). For an
analysis of the usage of imaging pipelines see e.g., [10]. Thus we have initiated
the development of a plugin for SPM, which offers high integration with the
Brede Database.

The BredeQuery plugin (see Figure 1) provides the opportunity to perform
coordinate-based query and retrieval of the related articles references directly
from the SPM (Matlab) environment.

2 Brede Database

The Brede Database available through the webpage2 records published neu-
roimaging experiments that list stereotaxic coordinates in so-called MNI or Ta-
lairach space [11]. Presently, close to 4000 coordinates from 186 papers with a
total of 586 experiments are available.

The data is stored in XML files, and Matlab functions generate static web-
pages with visualization of the entries in the database, see Figure 2. Web-based
searching on coordinates is possible from the homepage, but up till now it has
required that the researcher manually typed in the query or extracted results
from the image analysis program.

1 Statistical Parametric Mapping
2 http://neuro.imm.dtu.dk/services/brededatabase/
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Fig. 1. Graphical user interface of the BredeQuery plugin for SPM. Firstly, the user
can choose if the coordinates used for querying will be grabbed from an SPM’s results
window or will be typed manually. The grabbed (retrieved) coordinates are shown on
the list. The user can switch on an interactive mode – the coordinate selected in the
SPM window will be automatically selected in the plugin on the coordinates list. More-
over, the coordinates are grabbed using the chosen MNI to Talairach transformation
(Brett or Lancaster MTT affine transformations). Afterwards, the user is able to dis-
play the query results in the Matlab web browser or to import them into the specified
bibliographic format.
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The Brede Database web service provides also links to other neuroscientific
resources. While querying the database with a specified coordinate in brain, the
user is also able to visualize the location in INC Talairach Atlas. Each publica-
tion relates by ID number to other databases like PubMed or BrainMap. Brain
regions from each of the experiments are mapped to the services like MeSH,
BrainInfo, CoCoMac database or Wikipedia. As the Brede webpages are public,
the ordinary Web search engines enable text based search of the Brede Database.
Furthermore, the researcher may navigate the database via several hyperlinked
webpages including brain region, brain function and author ontologies, see Fig-
ure 3.

Fig. 2. Screenshot from one of the pages in the Brede Database showing coordinates
in Talairach space. This is one of presently 586 experiments recorded in the database
– an fMRI experiment resulting in 29 reported coordinates.

3 Related tools

There are a few available tools with similar functionality and aims as the Bre-
deQuery plugin.

The AMAT SPM toolbox was developed by Antonia Hamilton for the Matlab
environment. It provides coordinate-based search for over 5000 coordinates from
213 published papers of which some were derived from the Brede Database. The
coordinates are in MNI or Talairach space. The toolbox can locate neighboring
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Fig. 3. Relationships and taxonomy of the regions in brain associated with superior
temporal gyrus. The entire ontologies for brain regions and brain functions are available
together with the Brede Database.
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coordinates to a given coordinate, as well as publications for a given author or
year. The tool was last updated in 2005 and is available in the internet3.

Another related toolbox, xjView, offers the SPM user, apart from viewing
the images in glass view, section view or 3D render view, search of selected
brain regions in databases in order to elucidate their function. It performs the
searching among others in Google Scholar4 and PubMed5 database. This toolbox
was created by Xu Cui and Jian Li and is publicly available6.

The XCEDE SPM Toolbox [12] enables the users to capture activation data
for PET/fMRI analysis and save them to the XML file in a XCEDE XML
schema. Moreover, it is extending the exported XML file by automatically adding
the anatomical labeling of the region in the brain for the given activity coor-
dinates. It is achieved through two other toolboxes: Talairach Daemon7 and
Automated Anatomical Labeling8.

4 Software description

The recent version of the BredeQuery plugin, together with the User’s Guide,
can be downloaded from the webpage:

http://neuroinf.imm.dtu.dk/BredeQuery/

A graphical user interface of the BredeQuery plugin is divided into five areas
where different user-actions can be performed. Firstly, the activation coordinates
can be ‘grabbed’ from the SPM results figure into the plugin. Since the coordi-
nates can be presented in MNI or Talairach spaces, transformations are intro-
duced for interoperability. The coordinate-based search in the Brede Database
is based on Talairach space coordinates, thus the BredeQuery plugin offers two
MNI to Talairach transformations, which can be chosen by the user. The piece-
wise affine transformation proposed by Matthew Brett is one of the available
transformations [13]. Also included is the affine transformation MNI-to-Talairach
(MTT), suggested by Jack Lancaster et al. [14]. Three separate transformations
were suggested by his group: one for SPM, one for FSL and a combined ’pooled’
transformation. The MTTSPM transformation is set as default in the Brede-
Query plugin.

When the coordinates have been ‘grabbed’ and shown in the BredeQuery
plugin, the coordinate-based querying with Brede Database can be done. One
or more coordinates can be selected for querying and the results from the Brede
Database (publications related to the given activity coordinate) are displayed
by the plugin in a web browser (see Figure 4), exported to an XML file or saved

3 http://www.antoniahamilton.com/amat.html
4 http://scholar.google.com/
5 http://www.ncbi.nlm.nih.gov/pubmed/
6 http://people.hnl.bcm.tmc.edu/cuixu/xjView/
7 http://www.talairach.org/
8 http://www.cyceron.fr/freeware/
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in the bibliographic file format (BibTeX, Reference Manager, RefWorks or End-
Note). We mention that the coordinates need not necessarily be grabbed from
SPM in order to make a query. The coordinates can also be entered manually in
a manner similar to the functionality of the Brede Database web service.

The user is also able to perform an ‘experiment search’ (available in the
Brede Database service) via the BredeQuery. It has previously been suggested
how a similarity can be computed between one set of coordinates and a volume
or another set of coordinates [6]. This procedure required the conversion of the
set of coordinates to a volume by kernel density estimation. It is, however, not
necessary to convert the coordinates to a volume if only the similarity between
two coordinates sets are to be compared. It will then generally be faster to
compute the similarity based on all coordinate-coordinate pair-wise similarities
and perform a weighted summation. There are multiple ways to compute the
similarity. Presently, the web-service for the Brede Database uses the following
Gaussian/Euclidean form:

sq,e =
1√
N

M∑
m=1

N∑
n=1

exp

(
− (xm,q − xn,e)2 + (ym,q − yn,e)2 + (zm,q − zn,e)2

2σ2

)
,

where σ is set to 10 millimeters, (xm,q, ym,q, zm,q) is the mth of M three-
dimensional query coordinates, while (xn,e, yn,e, zn,e) are the nth of N three-

dimensional coordinates in the Brede Database. The factor 1/
√
N aims to reg-

ularize for the number of coordinates in each set so that sets with many coordi-
nates do not dominate the search result. A corresponding weight for the query
coordinates is not necessary, since this factor will be equal for all queried sets of
coordinates of the database.

Following the terminology of BrainMap, a set of coordinates is in the Brede
Database called an ‘experiment’ [15], thus the name ‘experiment search’.

The Perl function that presently provides the search functionality to the
Brede Database web service is part of the Brede Toolbox, and this toolbox is
available on the Internet9.

5 Example session

In this section we demonstrate the use of the BredeQuery plugin on data from
a block-designed auditory fMRI experiment. The experiment was conducted by
Geriant Rees, University College London, and the data set was obtained from
the SPM webpage10.

Stimuli were bi-syllabic words, that were presented binaurally. The exper-
imental condition comprised blocks of six scans alternating between rest and

9 http://neuro.imm.dtu.dk/software/brede/
10 http://www.fil.ion.ucl.ac.uk/spm/data/auditory/
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Fig. 4. Brede Database query – result displayed in a web browser. List of nearby
coordinates to a queried coordinate, displaying distance, the three-dimensional coordi-
nates, the paper identifier, the anatomical label for the retrieved coordinates and short
description of the experiment.
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auditory stimulation. Data were preprocessed using the standard SPM pipeline
including realignment, spatial normalisation and spatial smoothing. Following
preprocessing a conventional univariate statistical analysis was conducted. In
the general linear model (GLM) the design matrix comprised a box-car function
convolved with the hemodynamic response function (HRF). Figure 5 presents
the analysis result. The statistical parametric map was based on a t-contrast
(stimulation>rest), with p < 0.05 corrected for multiple comparisons using
family-wise-error (FWE) correction. A prominent activation was observed in the
auditory cortex in the bilateral temporal lobes. An example SPM-BredeQuery
user’s session leading to abovementioned results may proceed with the following
steps:

1. The BredeQuery plugin was loaded by choosing the BredeQuery entry in the
SPM’s toolbox pop-up menu. All coordinates for significant clusters from the
statistical table in the SPM Graphics windows were grabbed by the plugin
and shown in the coordinates list. They were transformed according to the
chosen MNI-to-Talairach transformation. In our example, the coordinates
were transformed using the Lancaster’s MTTSPM affine transformation. The
user was interested in the activation, represented by the coordinate in the
MNI space as (-66,-12,2) which was selected in the statistical table – see
Figure 5. In the BredeQuery window the user pressed the Mark red SPM
chosen value button and the previously selected coordinate (-66,-12,2) in
MNI space, transformed by the plugin to (-62,-13,4) in Talairach space, was
marked in the plugin’s coordinates list – see Figure 1.

2. The user has pressed the Query button in the Query Brede database [web
browser] panel (shown on Figure 1) and the webpage with the query re-
sults (related articles) has appeared. The user was now able to compare the
present results and conclusions with those from the retrieved articles. The
webpage results from our example are displayed on Figure 4. Among the first
matches from the Brede Database there are coordinates found in the superior
temporal sulcus/gyrus from experiments with auditory stimulation. A link
to the taxonomy of the regions in brain associated with superior temporal
gyrus (see Figure 3) was also available. Furthermore, the abstracts of articles
related to the experiment were available. Figure 6 represents the detailed,
online description of one of the matched experiments.

3. The user wanted to reference some of the articles from the retrieved results
in a manuscript. He selected an appropriate bibliographic format, (in this
example case ‘BibTeX’), pressed Query button in the Query Brede database
[export to file(s)] panel (shown on Figure 1) and the BibTeX file with the
references was obtained.

4. The user has discovered a missing feature in the BredeQuery plugin. He
thus has pressed the Feedback button (Figure 1) and sent a comment to the
develop team.
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Fig. 5. The demonstration of example results window in SPM. The user can see regions
with significant brain activation. The region of activation represented by the coordi-
nate (-66,-12,2) in MNI space is selected. The same coordinate, transformed to the
Talairach space using Lancaster’s MTTSPM transformation is marked on the Brede-
Query’s coordinates list as (-62,-13,4) (see Figure 1). Afterwards, the user is able to
submit coordinate-based queries to the Brede Database and get the articles related to
the same (or nearby) brain regions.



80 Appendix B

Fig. 6. The online description of an experiment found in the Brede Database. The de-
tailed information about experiment called Phonemes, the reference to the article where
it was presented, settings of the experiment (modality, type of scanner, tracer used,
number of subject, etc.) is displayed. Moreover, all the reported activation coordinates
are shown with the indication of the brain location. Finally, the visualization of the
coordinates in Talairach space is displayed to the right of the table with coordinates’
values.
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6 Future work

The first official BredeQuery plugin’s version was released to the SPM com-
munity on 12th March 2009. Since the plugin is still under development, all
incoming feedback comments from the plugin’s users are going to be taken into
account while releasing updates and further versions, thus more features should
be expected.

It was recently emphasized that there are many separated research commu-
nities in neuroscience, which do not want to share or exchange the experimental
data [16]. Researchers have expressed concerns that sharing of data can lead to
unfair use [17]. However, data sharing is important to create trusted collabora-
tion community and is a current topic in debate on future of neuroscience [18,
19] as it is believed that broad data sharing could lead to breaktroughs in
our understanding of brain function [20]. Invoking online social networks and
computer-based communication can support closer relationships and trust [21]
hence, reduce the resistance to data sharing.

Consequently, an interesting extension of the functionality of the plugin can
be a direct connection from the SPM environment to a neuroscientific research
community, web service or social network. The user would be able to upload the
coordinates, results of the analysis, to his own account and save in the assigned
server disk space in order to process them later. He can decide whether he wants
to keep it private, share only with his research group or alternately release it as
a public resource to all users of the service.

It is also possible to employ the BredeQuery plugin to expand the Brede
Database. The increment in number of the articles stored in the database could
cause bigger interest from the neuroscientists. They could then be encouraged
to register their published or unpublished publications in the database via the
BredeQuery plugin together with the reported coordinates and keywords.

Finally, we are planning to employ SKEEPMED (Semantic KEyword Extrac-
tion Pipeline for MEdical Documents) which is now under development [22]. This
pipeline can be used for automatic keyword extraction from abstracts and/or
whole papers retrieved by Brede Database. The obtained keywords can be used
to query bigger and up-to-date medical databases like PubMed, what conse-
quently could improve the BredeQuery plugin’s search results by returning to
the user more recent publications related to the respective area in brain and
experiments.

7 Conclusions

We have presented herein the BredeQuery plugin for SPM - an application which
offers a direct link from the SPM environment to the Brede Database. It provides
a mechanism which allows the SPM user to find references to articles which relate
to the similar brain activation areas through so-called coordinate-based search-
ing. Moreover, the BredeQuery plugin facilitates the creation of the bibliography
files in popular formats.



82 Appendix B

8 Acknowledgments

We would like to thank Torben Lund and Julian Macoveanu for very constructive
comments and feedback. This work is supported by Lundbeckfonden through the
Center for Integrated Molecular Brain Imaging (CIMBI) – www.cimbi.org.

References

1. Wager, T.D., Lindquist, M., Kaplan, L.: Meta-analysis of functional neuroimaging
data: current and future directions. Social Cognitive and Affective Neuroscience
2(2) (2007) 150–158

2. Friston, K., Ashburner, J., Kiebel, S., Nichols, T., Penny, W.: Statistical Paramet-
ric Mapping: The Analysis of Functional Brain Images. Academic Press (2007)

3. Pekar, J.: A brief introduction to functional MRI. IEEE Engineering in Medicine
and Biology Magazine 25(2) (March 2006) 24–26
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Abstract

We present an extension to literature-based discovery that goes beyond making discoveries to a principled way of
navigating through selected aspects of some biomedical domain. The method is a type of “discovery browsing” that
guides the user through the research literature on a specified phenomenon. Poorly understood relationships may be
explored through novel points of view, and potentially interesting relationships need not be known ahead of time. In
a process of “cooperative reciprocity” the user iteratively focuses system output, thus controlling the large number
of relationships often generated in literature-based discovery systems. The underlying technology exploits SemRep
semantic predications represented as a graph of interconnected nodes (predication arguments) and edges (predicates).
The system suggests paths in this graph, which represent chains of relationships. The methodology is illustrated with
depressive disorder and focuses on the interaction of inflammation, circadian phenomena, and the neurotransmitter
norepinephrine. Insight provided may contribute to enhanced understanding of the pathophysiology, treatment, and
prevention of this disorder.

Introduction

Sophisticated methods are needed to supplement traditional information retrieval tools for effectively exploiting the
large amount of online textual resources currently available. An active area of research in biomedicine in this regard
is literature-based discovery (LBD), the primary goal of which is to help researchers make new discoveries by gen-
erating novel hypotheses. As pioneered by Swanson,1 the basic underlying principle of the LBD paradigm is that
relations A − B and B − C may be known, yet relation A − C has gone unnoticed. Earlier LBD systems2, 3, 4 used
concept cooccurrence as their primary mechanism for representing relations. Since only some cooccurrences underlie
“interesting” relations, this has drawbacks, which have been addressed first by Hristovski et al.5 and later by Cohen et
al.6 with the use of semantic relations. The use of discovery patterns5 is a further refinement for focusing on useful
relations. One such pattern5 is Maybe treats, which says (in part) that a therapeutic agent C maybe treats disease A
if the level of an important measurement B is typically increased in patients with disease A and if C is able to reduce
the level of B. Additional discovery patterns have been investigated.7, 8

We present a novel LBD methodology incorporating semantic predications and graph-based methods in order to guide
researchers through the relevant literature on a user-specified biomedical phenomenon. The motivation is to extend
LDB methodology beyond making discoveries to a principled way of navigating through selected aspects of some
research area.9 An additional goal is to go beyond document retrieval in response to a query by revealing crucial
relationships in the domain, which may evolve as the user exploits the method. Related work in network analysis of
microarray data is becoming widely used in systems-based research for drug discovery.10

LBD provides the ability to uncover previously implicit or unnoticed relationships in the research literature, but has
been primarily used when component relationships of the final discovery are already known. In the method we propose,
it is not necessary to know ahead of time which relationships may be useful for guiding the research process. Only
the general content area need be specified. The method might be thought of as “discovery browsing,” using graph
theoretic paths to generalize Hristovski’s discovery patterns, not with the purpose of necessarily making a discovery,
but of explicating poorly understood relationships, by providing novel points of view on some research problem. The
method involves an interaction between user decisions and system results. Such “cooperative reciprocity” focuses
system output iteratively based on stipulations that bring relevant relations into clearer focus by narrowing choices,
thus controlling the explosion of potential relationships often generated in LBD.
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The underlying technology depends on semantic predications extracted from MEDLINE citations using SemRep11

and represented as a large graph of interconnected nodes (predication arguments) and edges (predicates). The graph-
theoretic constructs degree centrality and path analysis are used to suggest paths in this graph, which represent chains
of relationships that may guide the research process. The methodology is illustrated with selected aspects of depressive
disorder.

Background

Semantic predications

The predications for this study were provided by the SemRep system,11 which relies on biomedical domain knowledge
in the Unified Medical Language System (UMLS). Access to the UMLS Metathesaurus is provided by MetaMap,12

while a set of semantic relationships (predications) is extracted based on the UMLS Semantic Network. For example,
SemRep extracts the relationship: “Leptin STIMULATES Serotonin” from text “CNS serotonin activated by leptin
modulates sympathetic outflow to the skeleton.” Although coverage of text processed by SemRep is a limiting factor
in this work, the expressiveness of semantic predications positively contributes to the discovery process. Several
evaluations of SemRep (e.g. Ahlers et al.13) indicate that precision is near 75%. SemRep has been used to extract
nearly 25 million semantic predication instances from some 7 million MEDLINE citations (titles and abstracts dating
from 1999 through 2010). These are stored in a MySQL database, which was exploited for this work.

Literature-based discovery

Swanson’s1 paradigm is based on concepts A and C coming from two different, nonoverlapping, domains. The goal
is to find an intermediate concept B, which occurs with both A and C, and validates a new, earlier unknown, A − C
relationship. Such a discovery is called an open discovery. Another type of discovery, a closed discovery, assumes
that a relationship A − C is known. Then, a common concept B and relations A − B and B − C are to be found in
order to explicate the relationship A− C.

The aim of our work is to expand the B element of the A−B − C paradigm. Our methodology considers B not as a
single concept, but as a subchain of intermediate concepts, where A−B − C has the form in (1), where n ∈ [1,∞).

A− (B1 −B2 −B3 − ...−Bn)− C (1)

Investigation of possible chains of relationships may result in a discovery (either open or closed). Swanson1 intro-
duced the possibility of having a chain of Bs between A and C, but this has not been extensively exploited. We use
semantic predications to represent these relationships, and we decided to use graphs as a medium for representing the
predications. Referring to graph theory terminology, we implement discovery chains as paths in a graph.

Graph theory

A graph is a representation of connections (edges) between objects (nodes). Graphs, also known as networks, are
extensively studied in social network analysis and the Semantic Web. Graph theory is a set of functions and measures
pertaining to graph properties. One such measure used in this paper is degree centrality, which measures the connect-
edness of nodes in a graph. A node with more connections (relationships) to other nodes has higher degree centrality.
Freeman14 describes degree centrality as an indicator of the communication activity in a social network. The impor-
tance of high connectivity is also seen in gene interaction networks (p53, for example).15 In our case degree centrality
may be considered as an indicator of the principal substances in the domain for which the graph was constructed. The
formula for degree centrality of node v in a graph with n nodes is:14

Cd(v) =
deg(v)

n− 1
(2)

In graph theory, a path is a sequence of edges connecting any two nodes in the graph. Paths may be of any length. The
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shortest is of length 1:
A−B (3)

The longest is of length N − 1, where N is the number of nodes in the graph:

X1 −X2 − ...−XN (4)

In Semantic Web research on ranking paths of semantic associations Anyanwu et al.16 exploit the notion of “pre-
dictability.” In their results longer paths more likely reveal rare and uncommon associations.

Dupont et al.17 discuss many walking approaches in a graph (edge passages), which may be also understood as
extraction of paths from the graph. The definitions of maximal length of the edge passage (k-walk) and nodes of
interest are based on this work. The nodes of interest are the start and end points of a walk in a graph. For them, length
of the walk is the number of intermediate nodes visited during a walk between nodes of interest. We measure path
length by the number of edges between the start and end nodes.

Methods

Overview

The procedure for exploiting paths in a graph to facilitate discovery browsing involves several steps: creating a graph
of relevant predications, extracting and ranking paths, and finally, inspecting a small subgraph based on selected
paths. At several steps in the process, system output is filtered based on user stipulation, representing the cooperative
reciprocity involved in uncovering research insights in the domain. A crucial assumption of the system is that the user
brings to bear domain knowledge as part of the process of navigating and focusing in the selected area of interest.

Creating the initial graph is an iterative process in which the user specifies a seed concept to extract predications from
the SemRep predication database. (For this project, extracted predications were limited to those with one of the sub-
stance interaction predicates: STIMULATES, INHIBITS, INTERACTS WITH, and COEXISTS WITH.) Concepts in the
graph are ranked by degree centrality, and a new seed concept is selected from those highest on the list, which is used
to extract additional predications to be added to the growing graph. When a graph of sufficient size to produce “inter-
esting” results has been generated, paths between stipulated concepts are extracted and ranked, also based on degree
centrality. Finally, the user selects paths for further analysis. We will illustrate system processing with depressive
disorder as the domain of interest.

Create graph

Serotonin was selected as the seed concept for investigating depression, since it is known to be a prominent neu-
rotransmitter in this disorder. We extracted all predications from the database that had an argument containing the
string “seroton” (ignoring case). In addition to “Serotonin” this included 183 concepts, such as “serotonin receptor,”
“Serotonin Agonists,” “Serotonin Agents,” and “Serotonin 5-HT-3 Receptor.” (This was an implementation expedient.
In the future, ontology resources will be exploited.) Retrieved predications were loaded into a graph consisting of
1561 nodes (concepts) and 7061 edges (predications) using the NetworkX18 software package written in the Python
programming language. A path of length one in this graph represents all the predication instances in the database hav-
ing the two nodes as either subject or object. For example, the path “Estradiol-stimulates-Serotonin” represents two
instances of the corresponding predication extracted from MEDLINE citations (PMIDs: 16736471 and 19168037).
Links between an edge in the graph and sentences in citations from which corresponding predications were extracted
are maintained by the system.

As a first step in expanding this graph, we calculated degree centrality and ranked the results. Ignoring the concepts
containing “serotonin,” melatonin was high on this list, and was chosen to expand the serotonin graph. This was a
user choice which focused the subsequent graph on a particular aspect of depression. Other substances high on the
degree centrality list, which could have been selected, were “Estrogens,” “Dopamine,” and “Corticosterone.” We then
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retrieved all predications from the SemRep predication database that had an argument containing the string “melato”
(ignoring case). In addition to “Melatonin,” this included 126 concepts, such as “Melatonin Receptors” and “Receptor,
Melatonin, MT2.” The resultant graph (containing both serotonin- and melatonin-related concepts) consisted of 2207
nodes (concepts) and 11,752 edges (predications).

The growing graph of predications for depression was expanded a third (and final) time. Degree centrality was again
calculated and the results ranked. Before prominent concepts were selected from this list, a stop list (based on user
domain knowledge) was applied to remove uninformative concepts (e.g. “Pharmaceutical Preparations”), classes of
both drugs and body substances (e.g. “Antidepressive Agents,” “agonists”), and physiologically general terms (e.g.
“Water,” “Oils”). Serotonin- and melatonin-related concepts were also ignored since predications with them were
already in the graph. The top 140 concepts from this filtered degree centrality list were used in another query to the
predication database and the retrieved predications were added to the graph. The resulting graph of predications for
the depression study, consisting of 22,828 nodes (concepts) and 435,437 edges (predications), formed the basis for
further processing.

Extract paths

The next step was to extract paths from the graph, which, as in constructing the graph, involved an interaction of system
output and user stipulations. Serotonin and melatonin were selected as anchors, and all paths of length four between
them were extracted from the graph using the depth-first algorithm.19 This value was selected as a compromise. Longer
paths are likely to provide more revealing results for discovery;16 however, considerations of processing time with the
current implementation imposed this limitation. The total number of paths extracted was 4,206,647, and all had the
form:

[Melatonin(A)]−B1 −B2 −B3 − [Serotonin(C)] (5)

Before proceeding, we removed all paths in which one of the five concepts was on the stop list of general and un-
informative concepts noted above. (Such concepts “crept” into the graph by being arguments of predications with
non-stopped concepts.) 3,840,958 remained, and a composite degree centrality score was computed for each. This
was calculated as the arithmetic sum of the degree centrality values for all five nodes in the path:

score =
∑
n

dc(Bn) (6)

The list of paths was ranked based on the composite degree centrality score.

As a further step in limiting the number of paths for analysis, we selected only those containing the concept “CLOCK,”
based on domain knowledge that recent research implicates the clock genes in depression.20 The remaining paths
(16,141) had one of the following patterns:

[Melatonin(A)]− [CLOCK(B1)]−B2 −B3 − [Serotonin(C)] (7)

[Melatonin(A)]−B1 − [CLOCK(B2)]−B3 − [Serotonin(C)] (8)

[Melatonin(A)]−B1 −B2 − [CLOCK(B3)]− [Serotonin(C)] (9)

We further focused this list by eliminating concepts that we chose not to consider at this point. Paths with concepts
such as “Glucose,” “Antibodies,” “Lipopolysaccharides,” “Kinases” etc. were removed (again, based on user domain
knowledge), leaving 5,406 paths.
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Analyze paths

From this list we chose the top twenty paths (sorted by composite degree centrality) for further analysis.

1. [Melatonin]-[Interleukin-1 beta]-[Glutamate]-[CLOCK]-[Serotonin]
2. [Melatonin]-[CLOCK]-[Glutamate]-[Interleukin-1 beta]-[Serotonin]
3. [Melatonin]-[Insulin]-[Glutamate]-[CLOCK]-[Serotonin]
4. [Melatonin]-[CLOCK]-[Glutamate]-[Insulin]-[Serotonin]
5. [Melatonin]-[Interleukin-6]-[Glutamate]-[CLOCK]-[Serotonin]
6. [Melatonin]-[CLOCK]-[Glutamate]-[Interleukin-6]-[Serotonin]
7. [Melatonin]-[Interleukin-1 beta]-[Norepinephrine]-[CLOCK]-[Serotonin]
8. [Melatonin]-[CLOCK]-[Norepinephrine]-[Interleukin-1 beta]-[Serotonin]
9. [Melatonin]-[Cholesterol]-[Glutamate]-[CLOCK]-[Serotonin]

10. [Melatonin]-[CLOCK]-[Glutamate]-[Cholesterol]-[Serotonin]
11. [Melatonin]-[Insulin]-[Norepinephrine]-[CLOCK]-[Serotonin]
12. [Melatonin]-[CLOCK]-[Norepinephrine]-[Insulin]-[Serotonin]
13. [Melatonin]-[Interleukin-1 beta]-[Interferon Type II]-[CLOCK]-[Serotonin]
14. [Melatonin]-[Interleukin-6]-[Norepinephrine]-[CLOCK]-[Serotonin]
15. [Melatonin]-[CLOCK]-[Norepinephrine]-[Interleukin-6]-[Serotonin]
16. [Melatonin]-[Insulin]-[Interferon Type II]-[CLOCK]-[Serotonin]
17. [Melatonin]-[CLOCK]-[Dopamine]-[Interleukin-1 beta]-[Serotonin]
18. [Melatonin]-[Interleukin-1 beta]-[Dopamine]-[CLOCK]-[Serotonin]
19. [Melatonin]-[Interleukin-6]-[Interferon Type II]-[CLOCK]-[Serotonin]
20. [Melatonin]-[Insulin]-[Dopamine]-[CLOCK]-[Serotonin]

Eleven unique concepts are involved in these paths: “Interleukin-1 beta,” “Interleukin-6,” “Glutamate,” “Dopamine,”
“Norepinephrine,” “Insulin,” “Cholesterol,” and “Interferon type II” (in addition to the stipulated “Serotonin,” “Mela-
tonin,” and “CLOCK”). The graphical representation of these paths is shown in Figure 1. Numbers on the edges in
Figure 1 show the number of predication instances (limited to substance interaction predicates) represented by that
edge. Links to the corresponding citation sentences are maintained by the system and underpin the guidance provided
to the user. It should be noted that there is considerable overlap among the predications represented in the paths. Edges
with fewer than ten predications are dashed in this graph. We then filtered the subgraph further to include only those
connections that occurred ten times or more, thus eliminating “Dopamine.” This filtering also highlights the more
direct connection between CLOCK and melatonin, which was not the initial intent of this exploration, but nevertheless
is an indication that this visualization highlights important known relationships.

Figure 1: Graph representing the top twenty paths. Numbers on the edges show the number of predication instances.
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There are several “stories” implicit in Figure 1. We further decided to concentrate on just one, namely the interactions
among melatonin, the clock genes, interleukin-1 beta (IL-1 beta), interleukin-6 (IL-6), and norepinephrine, as shown
in Figure 2.

Figure 2: User selected subgraph.

Results

Each of the 95 predications found in Figure 2 was analyzed for SemRep accuracy, and it was determined that 88%
were correct. Each of the citations from which these predications had been extracted was then inspected. In general
we found that even incorrect predications often reveal relevant, perhaps unknown, relationships that can in turn lead
to further research. Below we give examples of predications drawn from citations that provide insight into the three
aspects of depression covered by Figure 2: melatonin and CLOCK, melatonin and the two proinflammatory cytokines,
the two cytokines and norepinephrine.

CLOCK stimulates Melatonin: Although this predication is wrong, the citation from which it was extracted provides
important information about the relationship. “This interaction, . . . may reflect the central role of melatonin, i.e. in
synchronising peripheral clock cells that require unique phasing of output signals with the master clock in the brain.”21

Melatonin interacts with CLOCK / CLOCK interacts with Melatonin: “. . . whereas an ‘internal coincidence
model’ best explains the way melatonin affects the phasing of clock gene expression . . . ”22 “In mammals, the noctur-
nal rise in pineal melatonin is regulated by signals from the endogenous clock . . . ”23

Melatonin inhibits Interleukin-1 beta / Melatonin inhibits Interleukin-6 / Melatonin stimulates Interleukin-1
beta / Melatonin stimulates Interleukin-6: “Further melatonin repressed the upregulated levels of expression of
proinflammatory cytokines like, TNF-alpha, IL-1beta and IL-6 in RE.” (in experimental reflux esophagitis)24 “Treat-
ment with melatonin significantly increased the levels of IL- 1beta, IL-6, . . . ” (in collagen-induced arthritis)25

Several predications are about the effect of norepinephrine on either interleukin-1 beta or interleukin-6. We did not
pursue this relationship in this project.

Interleukin-6 stimulates Norepinephrine: For the effect of IL-6 on norepinephrine, all of the predications were
incorrect. Some of them are nonetheless useful in reporting on a reciprocal relationship between IL-6 and nore-
pinephrine, even if a direct interaction is not noted. “In addition, plasma levels of IL-6 and IL-2 were increased in four
stress groups, serum norepinephrine and dopamine were decreased dramatically in stress group and stress low-dose
GTPs modulation group.”26

Interleukin-1 beta inhibits Norepinephrine: “These results suggest that IL-1 beta could decrease NE levels”27

“. . . IL-1beta-induced suppression of the LH surge is most probably mediated through an increase in GABA levels in
the MPA which causes a reduction in NE levels.”28

Interleukin-1 beta stimulates Norepinephrine: “While acute treatment with IL-1beta increased NE concentrations
in both the paraventricular nucleus and the median eminence (ME), chronic treatment increased NE concentrations
only in the ME.”29 “These results indicate that IL-1beta increases NE levels both in the PVN and in the ME and this
could be a possible mechanism by which it stimulates the HPA axis.”30 “We observed that IL-1beta increases the
release of NPY, norepinephrine (NE), and epinephrine (EP) from human chromaffin cells.”31
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Discussion

The methodology presented was illustrated with selected aspects of depressive disorder and focuses on the interaction
of inflammation (particularly the proinflammatory cytokines interleukin-1 beta and interleukin-6), circadian phenom-
ena (clock genes and melatonin), and the neurotransmitter norepinephrine. Below we give an overview of the extent
of current research on these aspects of depression (PubMed queries issued on 03/10/2011) and suggest how our results
may contribute to an understanding of the pathophysiology of this disorder.

There is considerable research investigating circadian phenomena and depression. The PubMed query “(circadian
rhythms[mh] OR clock OR melatonin) AND depression[mh]” returns 331 citations. For example, Kennaway20 reports
on the clock genes and behavioral disorders, including depression. Melatonin figures prominently in this review, but
a mechanism is not proposed. Rosenwasser32 reviews research on the clock genes and psychiatric disorders more
generally, but mechanisms and the connection with inflammation are not highlighted. Our results provide considerable
detail on the mechanisms involved.

Far less research has investigated the interaction of circadian phenomena and inflammation with respect to depression.
The PubMed query “cytokine[mh] AND (circadian rhythms[mh] OR clock OR melatonin) AND depression[mh]” only
returns 18 citations. When limited to reviews, only 8 are retrieved with this query; several are concerned with specific
disorders, such as rheumatologic disorders33 and cancer.34 Only one covers general considerations of the interaction
of circadian phenomena and inflammation.35 Our results suggest details concerning the interaction of melatonin and
the two proinflammatory cytokines interleukin-1 beta and interleukin-6.

The role of inflammation in depression has been extensively studied. The PubMed query “(inflammation OR cy-
tokines) AND depression[mh]” returns 1500 citations (41 reviews). Raison et al.36 and Anisman,37 for example,
provide particularly lucid overviews. Our results are not to be thought of as uncovering the insight that inflammation
is intimately connected with depression (for which there is considerable evidence), but rather they provide additional
information about the interaction of specific cytokines (IL-1 beta and IL-6) and norepinephrine.

Although the noradrenergic system is known to be involved in depression, the mechanistic details are still being in-
vestigated.38 Norepinephrine has not been targeted as intensely as serotonin in therapeutic approaches.39, 40 Only one
norepinephrine reuptake inhibitor (duloxetine) is currently prescribed (in Europe, not in the U.S.).39 Recently, com-
bined serotonin and norepinephrine reuptake inhibitors are being used.41, 42 Although it is known that the cytokines in-
teract with norepinephrine,43 the particular mechanism of IL-1 beta and IL-6 has not been intensively studied (PubMed
query “norepinephrine AND (interleukin-1 beta OR IL-1 beta OR interluekin-6 OR IL-6) AND depression” returns 35
citations). Our results point to considerable evidence of the interaction of IL-6 and IL-1 beta (in particular) in a variety
of contexts beyond cerebral structures, and thus may suggest new avenues for research in explicating the details.

Finally, there is very little research investigating the comprehensive interaction of inflammatory processes, circa-
dian phenomena, and noradrenergic aspects of depression. The specific PubMed query “(interleukin-1 beta OR IL-1
beta OR interluekin-6 OR IL-6) AND melatonin AND norepinephrine AND depression” returns no citations. The
more general “cytokines AND (circadian rhythms[mh] OR clock OR melatonin) AND norepinephrine AND depres-
sion[mh]” returns three citations. One of these39 is a clinically oriented review and does not discuss any of the
mechanisms addressed in this paper. The other two44, 45 cover research more generally, and report substance levels
consistent with our results, but do not suggest mechanisms.

We approached high connectedness by filtering to include only those connections with 10 or more occurrences. One
weakness of this strategy is that it focuses on the more often studied relations at the expense of others. An alternative
approach would be to look at this from the opposite angle, and calculate degree centrality using relations with fewer
occurrences each. This may highlight areas that are highly connected but have not been explored in a coordinated
manner. A second aspect that can be explored is by taking into account the directionality of the relations – incoming
and outgoing relations – and calculating directed paths.
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Conclusion

We introduced a novel LBD methodology incorporating semantic predications and graph analysis that guides re-
searchers through the research literature on a user-specified biomedical phenomenon. A type of “discovery browsing”
exploits graph theoretic paths in order to elucidate poorly understood relationships by providing novel points of view
on some research problem. The user is not required to specify which relationships may serve as a useful guide. A
core aspect of the method is that the user brings to bear domain knowledge as part of the process of navigating in
the selected area of interest. Such “cooperative reciprocity” focuses system output iteratively, thus controlling the
explosion of potential relationships often generated in LBD.

In the method, relationships in MEDLINE citations are represented as a (large) graph of interconnected semantic
predications. The system suggests paths in this graph, which represent interesting chains of relationships. The under-
lying technology depends on semantic predications provided by SemRep, and the graph theoretic constructs degree
centrality and path analysis are particularly exploited.

We illustrated our methodology with depressive disorder, and there are three major components of our results: 1)
inflammation and depression, 2) circadian phenomena and depression, 3) noradrenergic aspects of depression. Varying
amounts of research have been devoted to each of these components, but little (if any) has considered all three together.
Our results do not constitute a discovery in the sense of something previously not noticed by anyone. However,
in several respects they contribute to various aspects of depression that are currently incompletely understood and
have not been extensively studied. Insight into the interrelationships among all these components may materially
contribute to unraveling the underlying pathophysiology of depression, thus underpinning more effective treatment
(and prevention).
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Abstract—Due to the large yearly growth of MEDLINE,
MeSH indexing is becoming a more difficult task for a relatively
small group of highly qualified indexing staff at the US National
Library of Medicine (NLM). The Medical Text Indexer (MTI)
is a support tool for assisting indexers; this tool relies on
MetaMap and a k-NN approach called PubMed Related
Citations (PRC). Our motivation is to improve the quality of
MTI based on statistical learning. Typical statistical learning
approaches fit this indexing task into text categorization. In
this work, we have studied some Medical Subject Headings
(MeSH) recommended by MTI and analyzed the issues when
using standard machine learning algorithms. We show that
in some cases statistical learning can improve the annotations
already recommended by MTI, that statistical learning based
on low variance methods achieves better performance and that
each MeSH heading presents a different behavior. In addition,
there are several factors which make this task difficult (e.g.
limited access to the full-text of the citations) which provide
direction for future work.

Keywords-MeSH indexing, MEDLINE, text categorization,
machine learning

I. INTRODUCTION

MEDLINE R© citations are indexed using the Medical
Subject Headings (MeSH) R© controlled vocabulary. This
indexing is performed by a relatively small group of highly
qualified indexing staff at the US National Library of
Medicine (NLM). Their task is becoming more difficult
due to the ever increasing size of MEDLINE, currently
around 700k articles per year1. We hope that the situation
can be eased through improvements to the recommendations
made by NLM’s indexing tool, the Medical Text Indexer
(MTI) [1], [2].

MTI is a support tool for assisting indexers as they add
MeSH indexing to MEDLINE. MTI has two main compo-
nents: MetaMap [3] and the PubMed R© Related Citations
(PRC) algorithm. MetaMap performs an analysis of the

1http://www.nlm.nih.gov/bsd/bsd key.html

citations and annotates them with Unified Medical Language
System (UMLS) R© concepts. Then, the mapping from UMLS
to MeSH follows the Restrict-to-MeSH [4] approach which
is based primarily on the semantic relationships among
UMLS concepts. The PRC [5] algorithm is a modified k-
NN algorithm which relies on document similarity to assign
MeSH headings (MHs). This method attempts to increase
the recall of MetaMap by proposing indexing candidates
for MeSH headings which are not explicitly present in the
citation but which are used in similar context.

Our motivation is to improve MTI’s recommendations
using statistical learning because there is a large number
of MeSH headings, around 26k, and previously indexed
citations are available as training data. On the other hand,
indexers have access to the full-text. Automatic indexing has
no access to this due to license restrictions.

We encounter issues, some of which are common to text
categorization:

1) Imbalance between the number of positive and nega-
tive instances where the negative class usually over-
whelms the positive one. Some machine learning
algorithms have difficulty with this imbalance. We
tested several approaches to deal with this issue to
balance the datasets and to use a method based on
the optimization of a multivariate measure instead
of relying on accuracy. Joachims [6] proposed an
adaptation of SVM to optimize measures like F -
measure or the area under the ROC-curve instead of
accuracy, being an alternative to balancing the positive
and negative instances.

2) Even if a MeSH heading is correctly identified with
a citation, it might not be significant enough to be
included in the indexing.

3) Inconsistencies in the annotations might appear due
to:
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a) Inconsistency in MeSH indexing [7].
b) Changes in indexing policy over time can in-

troduce inconsistencies with previously-indexed
citations. This can even apply to routine changes
to the structure of MeSH. In the selection of our
set we carefully avoided this issue by selecting
MHs which were already in MeSH during the
current indexing period.

In this paper, we study the use of machine learning
algorithms in the task of MeSH indexing for some MeSH
headings and present several characteristics of the task. We
show that the citation text has limited prediction capability
and that other sources of information (e.g. fulltext) or
representations of the citations could still be explored. In
the discussion, we point to future work and, based on
statistics about MEDLINE indexing and MTI’s performance,
we suggest MHs to be considered as next study candidates.

II. RELATED WORK

Previous work has seen the indexing task as a text
categorization task. The large body of related work provides
valuable insights with respect to classification of MEDLINE
citations and feature selection methods.

We find that most of the methods fit either into pattern
matching methods which are based on a reference terminol-
ogy (like UMLS or MeSH) and machine learning approaches
which learn a model from examples of previously indexed
citations.

Among the pattern matching methods we find the first
component of MTI, as mentioned above, and an informa-
tion retrieval approach by Ruch [8]; in Ruch’s system the
categories are the documents and the query is the text to be
indexed. Pattern matching considers only the inner structure
of the terms but not the terms with which they co-occur. This
means that if an article is related to a MeSH heading but
does not appear in the reference source (usually restricted
to abstract text and title due to availability of full-text), it
will not be suggested. Machine learning based on previously
indexed citations might help to overcome this problem.

This problem has been approached in several ways from a
machine learning point of view. Machine learning methods
tend to be ineffective with a large number of categories.
Small scale studies with machine learning approaches al-
ready exist [9], [10]. But the presence of a large number
of categories has forced machine learning approaches to
be combined with information retrieval methods designed
to reduce the search space. For instance, PRC and a k-
NN approach by Trieschnigg et al. [11] look for similar
citations in MEDLINE and predict MeSH headings by a
voting mechanism on the top-scoring citations. Experience
with MTI shows that k-NN methods produce high recall but
low precision indexing. Other machine learning algorithms
have been evaluated which rely on a more complex represen-
tation of the citations which do not rely only on unigrams

or bigrams, e.g., learning based on ILP (Inductive Logic
Programming) [12].

III. MACHINE LEARNING ANALYSIS

Experiments have been performed on the MTI experiment
set for the 2009 MEDLINE indexing. This set-up allows
avoiding any interference provided by policy change in the
indexing. We have selected candidate MHs highly repre-
sented in MEDLINE but with poor recall performance by
MTI. The list of selected MHs is found in Table I along with
their MeSH identifiers and tree code2. MTI performance for
each MH is available in Table IV.

MeSH Heading Unique ID Tree Number
Acute Disease D000208 C23.550.291.125
Gene Expression D015870 G05.355.310
Health Services D006296 N02.421
Hormones D006728 D06.472/D27.505.696.399.472
Infection D007239 C01.539
RTPCR D020133 E05.393.620.500.725

Table I
SELECTED MESH HEADINGS BASED ON 2010 MESH

This selection has been previously used in [13]. In the cur-
rent work a two stage approach to the problem is presented,
in which the first step attempts to improve recall while the
latter to increase precision. We focus on a deeper analysis
of the second step, in which a previously selected subset of
documents is further analyzed according to the methods and
the representation of the documents.

In the first step, the idea is to reduce the whole dataset
to ease the work with statistical learning algorithms. This
reduction is performed by reducing the feature space using
Latent Dirichlet Allocation (LDA) [14] to extract the most
salient terms in the groups and selecting the terms with a
higher prediction performance based on the combination of
decision trees (DT) common branches on cross-validation
sets and decision trees. The DT derived rules (recall rules)
reduce the total set of citations to be considered by the
false positive filtering study, see Table IV. We can see that
in almost all the cases we can reduce the size of the set,
keeping recall high for each MeSH heading but still with
low precision.

In Table II, we show several terms which appeared in
the LDA analysis for Gene Expression. We find that terms
like expression have high coverage but low precision, since
there are terms which can be used in different situations.
On the other hand, we find the term gene expression which
has lower recall, but surprisingly the precision is still very
low. This means that there are cases in which the term gene
expression appears in the citation but does not qualify to be
included as a candidate MH. Machine learning will not only

2RTPCR stands for Reverse Transcriptase Polymerase Chain Reaction
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have to ensure that the term is used in the proper sense but
that it is significant enough to qualify, showing further the
complexity of the task.

Term Rec Prec F1
gene expression 0.2543 0.1668 0.2014
mrna 0.2965 0.1243 0.1752
expression 0.7704 0.0933 0.1664
gene 0.5492 0.0725 0.1281
expressed 0.3033 0.0771 0.1230

Table II
GENE EXPRESSION FEATURE PREDICTION STUDY

Some of the MeSH headings in our study are parents of
more specific headings in the MeSH taxonomy (e.g. Hor-
mones). These more specific headings (e.g. thyroid hor-
mones) might be used for indexing instead of the MHs we
are considering. To evaluate the impact of this phenomenon
we have identified the children of the MHs under study. In
Table III we show that some MHs like Hormones and In-
fection have a large number of children and seem to overlap
with the indexing performed for these MHs (FP+Children).
In the case of Hormones, half of the false positives (FP)
are indexed with a hormone type. Methods based on pattern
matching might avoid this issue selecting the MH matching
the largest span of text. Examples of these methods are
MetaMap and Ruch’s approach.

MeSH Heading Children FP+Children Total FP
Gene Expression 3 984 24978
Health Services 2 76 27475
Hormones 212 2290 4181
Infection 148 3408 49796

Table III
OVERLAP OF FPS AND ANNOTATION OF MORE SPECIFIC MESH

HEADINGS

To the reduced set produced by the recall rules, we have
applied the following machine learning algorithms. Each
algorithm relies on different learning bias which would allow
closer examination of the results for each one of the cases.

1) Traditional classifiers (SVM, Naı̈ve Bayes, decision
trees and k-NN).

2) Ensemble of classifiers, in some cases can reduce the
variance of decision trees or can consider comple-
mentary views of the problem by different learning
algorithms (boosting, bagging, voting; e.g. AdaBoost).

3) SVM with multivariate measures [6]
False positive filtering experiments (Filtering) have been

performed for each one of the learning algorithms listed
above. Unigrams and bigrams are used in the representation
of the documents. Results are presented in Table IV. We
show the MTI results, MTI with machine learning filtering
(MTI+Filtering), the outcome of the recall analysis and

the recall analysis with machine learning filtering (Re-
call+Filtering).

The machine learning sets used are the MTI set and
the reduced set from the recall analysis. The result, as
observed already in [13], is that machine learning improves
the precision of the MeSH heading recommendation but at
the cost of recall.

We also show results of the children analysis in Table IV
for Hormones and Infection. We can see that children
analysis improves the performance of the recommendations,
meaning that the MeSH structure should be further studied
in order to improve the recommendations.

From the machine learning algorithms used in the experi-
ments, AdaBoost, SVMs and multivariate SVM achieve the
best performance in many of the filtering results, meaning
that low variance methods achieve a more interesting perfor-
mance. On the other hand, decision trees achieve the lowest
performance which correlates with previous studies on text
categorization.

Acute Disease Prec Rec F1 F2
MTI 0.2664 0.1580 0.1984 0.1720
MTI+Filtering 0.4272 0.1395 0.2103 0.1612
Recall analysis 0.1176 0.8562 0.2068 0.3795
Recall+Filtering 0.1941 0.6611 0.3001 0.4463
Gene Expression Prec Rec F1 F2
MTI 0.1958 0.2712 0.2274 0.2518
MTI+Filtering 0.2642 0.1389 0.1896 0.1805
Recall analysis 0.0645 0.8165 0.1195 0.2450
Recall+Filtering 0.1130 0.5220 0.1858 0.3029
Health Services Prec Rec F1 F2
MTI 0.1810 0.3533 0.2394 0.2968
MTI+Filtering 0.2376 0.2173 0.2270 0.2211
Recall analysis 0.0169 0.6293 0.0329 0.0763
Recall+Filtering 0.0723 0.3547 0.1201 0.1992
Hormones Prec Rec F1 F2
MTI 0.0726 0.4000 0.1229 0.2103
MTI+Filtering 0.1310 0.2800 0.1785 0.2281
Recall analysis 0.0328 0.6311 0.0624 0.1359
Recall+Filtering 0.0839 0.3600 0.1361 0.2172
Recall no children 0.0698 0.6311 0.1258 0.2421
Recall nc filter 0.1845 0.3911 0.2507 0.3195
Infection Prec Rec F1 F2
MTI 0.0649 0.4013 0.1117 0.1970
MTI+Filtering 0.1568 0.2492 0.1925 0.2229
Recall analysis 0.0048 0.7767 0.0095 0.0234
Recall+Filtering 0.0216 0.4660 0.0412 0.0910
Recall no children 0.0051 0.7767 0.0102 0.0251
Recall nc filter 0.0276 0.4854 0.0523 0.1126
RTPCR Prec Rec F1 F2
MTI 0.2790 0.3738 0.3213 0.3535
MTI+Filtering 0.4267 0.2844 0.3413 0.3047
Recall analysis 0.0931 0.7191 0.1648 0.3066
Recall+Filtering 0.2048 0.4863 0.2883 0.3815

Table IV
PRECISION ANALYSIS RESULT
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IV. DISCUSSION

In our study, we have used a data set from 2009 MTI
experiments, and we have analyzed some of the characteris-
tics of the results obtained by applying machine learning on
them. We have presented the issues which machine learning
algorithms face when dealing with MeSH indexing.

As we have noted above, each MH seems to have a
different behavior according to the method used. Since there
are 26k MHs, to train and maintain up-to-date a system
which can manage the different MHs, it might be possible to
place the effort on highly represented MHs. Systems based
on k-NN [5], [11] or matching strategies like MetaMap and
Ruch’s approach [8] manage the size problem efficiently.
In this section, we present different statistics on the MeSH
indexing which could help deciding on focusing the effort
on a specific set of MHs.

Table V shows the micro/macro-average performance of
MTI. We can see that while recall is almost the same,
precision is much lower for micro-average. This might
mean that there are MHs which are highly represented in
MEDLINE indexing (e.g. Female) for which MTI achieves
a result with low precision.

Precision Recall F-measure
Macro-average 0.4164 0.5111 0.4589
Micro-average 0.3268 0.5118 0.3989

Table V
MTI MICRO AVERAGING BASED ON ln frequency

Table VI shows the distribution of MHs according to their
occurrence frequency in MEDLINE. In order to properly
distribute the MHs, we have placed them into bins according
to the logarithm of the frequency. MHs indicate the number
of individual MHs, the total is the actual total mention of
MHs, and precision, recall and F-measure is the average
performance in each one of these categories. MTI’s perfor-
mance seems to decrease slightly as the total number of
citations indexed by the MHs increases. The exception is
the last category with only the single MH Humans. We can
see that the last five categories have a low number of MHs
but the total number of occurrences in MEDLINE is quite
high. The most popular terms in our dataset are Humans
with 471,467 occurrences, Female with 233,499 and Male
with 227,052.

There are MHs with very low number of mentions in
MEDLINE. We can assume that these MHs are rare, but
even if you find the term it does not mean that it is significant
enough to be added to the indexing.

We find as well that there are 1,314 MHs which are
never considered for indexing3. Some MHs are used to
specify the Publication Characteristics (Tree V), which in

3From the MEDLINE Baseline http://mbr.nlm.nih.gov/index.shtml

some cases allow the identification of funding support for
the article4. Other MHs are used to organize the MeSH
taxonomy.

ln(freq) MHs Total Prec Rec F1
0 833 833 0.2878 0.4898 0.3626
1 1933 5704 0.4448 0.5108 0.4755
2 3375 27296 0.4910 0.5363 0.5126
3 4393 94692 0.4834 0.5430 0.5115
4 4795 273297 0.4671 0.5456 0.5033
5 4313 650906 0.4230 0.5399 0.4743
6 2698 1091380 0.3860 0.5454 0.4520
7 1319 1392237 0.3500 0.5602 0.4309
8 465 1303683 0.3321 0.5574 0.4162
9 115 898067 0.3263 0.5208 0.4012

10 22 429109 0.4074 0.4413 0.4237
11 7 369217 0.4735 0.3472 0.4007
12 5 874276 0.5817 0.2964 0.3927
13 1 471467 0.9155 0.6914 0.7878

Table VI
MTI MACRO AVERAGING BASED ON ln frequency

Table VII shows the macro average performance of MTI
according to each one of the MeSH trees. A detailed list
of the current tree codes is available from5. We can see
that there are trees which contain a low number of MeSH
headings but embody a large number of indexed citations
like CT (Check Tags), G (Analytical, Diagnostic and Ther-
apeutic Techniques and Equipment) and E (Phenomena and
Processes).

One possible next step would consist of focusing on these
sets of MeSH headings and try, in addition, to identify
commonalities among the MHs.

Tree MHs Total Prec Rec F1
A 1614 480326 0.3723 0.5404 0.4641
B 3546 248804 0.5459 0.6465 0.5989
C 4394 757400 0.4600 0.5682 0.5107
CT 34 1804516 0.4393 0.3007 0.3041
D 8805 1287185 0.4323 0.5327 0.4740
E 2396 1412951 0.3515 0.4146 0.3590
F 739 281784 0.3208 0.3944 0.3352
G 1360 822398 0.2970 0.4253 0.3491
H 292 91239 0.2796 0.3122 0.2656
I 410 133224 0.3068 0.3389 0.2977
J 193 46574 0.3123 0.4165 0.3557
K 145 13341 0.3135 0.2505 0.2404
L 246 86219 0.2171 0.2519 0.2066
M 154 48106 0.3371 0.3564 0.3106
N 737 233104 0.2528 0.2536 0.2194
V 146 0 0.0000 0.0000 0.0000
Z 377 134993 0.5006 0.5391 0.5125

Table VII
MTI MACRO AVERAGING BASED ON MESH TREE CODE

4http://www.nlm.nih.gov/bsd/funding support.html
5http://www.nlm.nih.gov/mesh/trees.html
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We have performed experiments on the text provided by
the abstract and title of the citations. The results point out
that the citations might not provide enough information to
index the citations, e.g. for around 15% of the citations only
the title is present. Further studies on full-text might be
required, but only 15% of the PMIDs in our dataset could
be matched to full-text identifiers in PubMed Central R©.
Specific feature selection and combination might be required
to process the articles efficiently.

Another possibility is to consider existing meta-data al-
ready available in the citations. One possibility is to cor-
relate the MeSH headings with the journals in which the
citations appears. Another possibility is to use the Journal
Descriptor indexing which has already been proposed in the
literature [15].

V. CONCLUSION

In this work, we have studied the use of different ma-
chine learning algorithms and seen that MeSH indexing
suffers from similar issues as other text categorization tasks.
Nevertheless, low variance methods seem to achieve better
performance. In addition, different methods exhibit behavior
depending on the MH, and the position of the MH in the
MeSH taxonomy might be partly responsible. The current
approach is derived from the citation text, but the possibility
of using full-text is restricted. We propose to further study
alternative representations of the citations.
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Abstract

MEDLINE indexing performed by the US National Library of Medicine staff describes the essence of a biomedical
publication in about 14 Medical Subject Headings (MeSH). Since 2002, this task is assisted by the Medical Text
Indexer (MTI) program. We present a bottom-up approach to MEDLINE indexing in which the abstract is searched for
indicators for a specific MeSH recommendation in a two-step process. In the first step, a rule-based triage significantly
reduces the number of candidate citations to which the MeSH heading is recommended. In the second step, the
candidate citation list is further reduced using supervised machine learning. Supervised machine learning combined
with triage rules improves sensitivity of recommendations while keeping the number of recommended terms relatively
small. Improvement in recommendations observed in this work warrants further exploration of this approach to MTI
recommendations on a larger set of MeSH headings.

Introduction

Maintaining the quality of MEDLINE R© indexing is made difficult by the demand of the ever increasing size of the
biomedical literature on a relatively small group of highly qualified indexing staff at the US National Library of
Medicine (NLM). We hope that the situation can be eased through improvements to the recommendations made by
NLM’s indexing tool, the Medical Text Indexer (MTI)1,2.

MTI is a support tool for assisting indexers as they add MeSH R© indexing to MEDLINE. MTI has two main compo-
nents: MetaMap and the PubMed R© Related Citations (PRC) algorithm. MetaMap performs an analysis of the citations
and annotates them with Unified Medical Language System (UMLS) R© concepts. Then, the mapping from UMLS to
MeSH follows the Restrict-to-MeSH 3 approach which is based primarily on the semantic relationships among UMLS
concepts. The PRC4 algorithm is a modified k-NN algorithm which relies on document similarity to assign MeSH
headings. This method intends to increase the recall of MetaMap by proposing indexing candidates for MeSH headings
which are not explicitly present in the citation but have a similar context.

The NLM indexing process involves analysis of journal articles for subject matter and subsequent assignment of
appropriate subject headings, drawn from MeSH, the NLM controlled vocabulary. There are 25,588 descriptors or
main headings (MHs) in 2010 MeSH from which MTI recommends about 25 terms, on average. Based on the results
for 142,262 citations processed by MTI between November 23, 2009 and February 8, 2010, the number of MHs we
need to review for possible improvements in MTI recommendations is significantly smaller than 25,588. Figure 1
illustrates the breakout of the different MHs that can be removed from consideration. There are 12,350 MHs in the
“B” (Organisms) and “D” (Chemicals and Drugs) MeSH trees (recommended automatically if the terms are found
in the title), 1,854 MHs for which MTI recommendations using the current top-down approach are fairly accurate
(precision over 60%), 251 MHs that are used for cataloging and other purposes but not for indexing, 3,609 MHs
occurring less than 500 times in MEDLINE, and 832 MHs that are too general in nature. The remaining 6,692
(26.15% of the 2010 MeSH) need improved recommendations.

Our previous attempts to improve the quality of recommendations5,6 indicate that the current, top-down method might
be approaching the upper bound on its performance, and other methods need to be explored to improve recommenda-
tions for the remaining 26% of the headings.

The motivation for this work comes from an approach suggested by indexers who use certain indicators in the articles
that lead to assignment of specific indexing terms which might complement MTI annotation. We describe a semi-
automatic procedure we followed to identify triage rules and a filtering step which are designed to emulate the approach
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Figure 1: MTI accuracy primarily needs to be improved for 26% of MeSH suggestions

used by the indexers. We start our exploration of this bottom-up approach using rules developed by a domain expert for
recommending the Carbohydrate Sequence heading. Then, we further evaluate the proposed approach on two MeSH
headings from the latest MTI test set. The results encourage the exploration of this method with other MeSH headings.

Related work

Publication of the OHSUMED collection7 containing all MEDLINE citations into 270 medical journals over a five-
year period (1987-1991) including MeSH indexing, provided for a large body of data that enabled us to view MH
assignment as a classification problem. The scope of the collection determines the subset of MeSH that can be ex-
plored. For example, Lewis et al.8 and Ruiz and Srinivasan9 used 49 categories related to heart diseases with at least
75 training documents, and Yetisgen-Yildiz and Pratt10 expanded the number of headings to 634 disease categories.
Poulter11 provides an overview of these and other studies of classification methods applied to MEDLINE and MeSH
subsets.

The two-step approach to document triage and filtering was implied in the definition of the Text REtrieval Conference
(TREC) Genomics track 2004 and 2005 categorization tasks, in which the main task was to consider each document
for routing for further expert review or not, and in the subtasks the documents were annotated with specific terms12,13.

A growing body of work approaches retrieval of MEDLINE citations as a classification task. For example, MScanner
classifies all MEDLINE citations as relevant to a set of positive examples submitted by a user or not11, and Kastrin et
al.14 determine the likelihood of MEDLINE citations topical relevance to genetics research. The large body of related
work provides valuable insights with respect to classification of MEDLINE citations and feature selection methods.
Applicability of these methods and suitability of the features for our specific task of improving indexing suggestions
needs to be explored further. We find that most of the methods fit either into pattern matching methods which are
based on a reference terminology (like UMLS or MeSH) and machine learning approaches which learn a model from
examples of previously indexed citations.

Among the pattern matching methods we find the first component of MTI, as shown above, and an information retrieval
approach by Ruch15; in his system the categories are the documents and the query is the text to be indexed. Pattern
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matching considers only the inner structure of the terms but not the terms with which they co-occur. This means that if
a document is related to a MeSH heading but does not appear in the reference source, it will not be suggested. Machine
learning based on previously indexed citations might help to overcome this problem.

This problem has been approached in several ways from a machine learning point of view. Machine learning methods
tend to be ineffective with a large number of categories; MeSH contains more than 25k. Small scale studies with
machine learning approaches already exist16,10. But the presence of a large number of categories has forced machine
learning approaches to be combined with information retrieval methods designed to reduce the search space. For
instance, PRC and a k-NN approach by Trieschnigg et al.17 look for similar citations in MEDLINE and predict MeSH
headings by a voting mechanism on the top-scoring citations. Experience with MTI shows that k-NN methods produce
high recall but low precision indexing.

Other machine learning algorithms have been evaluated which rely on a more complex representation of the citations
which do not only rely on unigrams or bigrams, e.g., learning based on ILP (Inductive Logic Programming)18.

Methods

In our work, we intend to improve MTI’s MEDLINE MeSH recommendations by targeting ones where MTI’s per-
formance is poor. In the first part of this section, we present the work performed by a domain expert building triage
rules to recommend the Carbohydrate Sequence heading. Then, we present the bottom-up approach proposed in this
paper which is composed of two methods. In the first method, triage rules related to the MeSH term under study
are identified in a semi-automatic fashion. In the second method, a false positive filter is applied based on statistical
learning algorithms.

Triage rules for recommending the Carbohydrate Sequence heading

The abstracts of the scientific publications are reviewed to identify strings potentially containing carbohydrate se-
quences. The following carbohydrate names are used to identify candidate strings: GlcpNAc, GalpNAc, GalNAc,
GlcNAc, Neu5Ac, NeuAc, GalpA, GlcpA, Galp, Glcp, Rhap, NANA, Man, Fuc, Gal, Glc. Based on empirical results,
the first five names are converted to lower case, and for the rest of the list case information is preserved. When one of
the carbohydrate names (starting with the longest) is found, the extent of the continuous string of text (with no blanks)
enclosing the name is identified. The string containing the name is searched for the remaining carbohydrates if it is
longer than 4 characters. The occurrences of carbohydrates in the string are marked as found and counted. If at least
three carbohydrates names (not necessarily unique) occur within the string and at least one of the names is longer than
3 characters (or the string contains digits or parentheses in addition to 3-character long names), the string is considered
a Carbohydrate Sequence and MTI recommends the heading. The 3 character carbohydrates are too commonly found
in text to be allowed on their own without the support of digits or parentheses. Figure 2 illustrates the rules applied
to an excerpt from an abstract (PMID 1368642). First, the longer carbohydrate GlcNAc was found. The extent of the
continuous string (marked by arrows) was identified next, and then carbohydrates Man, and Fuc were identified in the
string. Due to this combination of three carbohydrates, MTI recommended the Carbohydrate Sequence heading.

Figure 2: Excerpt detailing rules for identifying sequence
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Semi-automatic learning of triage rules

Triage rules are learned in two steps: feature selection and rule learning, as shown in Figure 3. In the feature selection
step, we the most salient terms from a set of training citations. In the rule learning step, we build models which target
the MeSH Heading giving preference to high recall, at the cost of precision in many cases. The rules produced in this
step will provide an upper bound on recall.

Figure 3: Triage rule learning

An example of triage rule derived from the Carbohydrate Sequence set is the following:

If any of the terms carbohydrate, polysaccharide, oligosaccharides combined
with structure are found in citations in journals known to have Carbohydrate

Then assign Carbohydrate Sequence

Feature selection step

Feature selection is done before running the rule learning algorithm. Specifically, we used Mallet’s implementation
of Latent Dirichlet Allocation (LDA)19 and Non-negative matrix factorization (NMF)20. From the derived model, we
selected the top-n terms having a higher probability of belonging to a given topic. Examples of distilled terms for
Carbohydrate Sequence are listed in Figure 5.

Rule induction step

Once the citations are represented by the most salient terms, we prepared a set of decision trees, which allow selecting
the terms which correlate with the set of positive citations. The positive citations are the false negatives and the
set of negative citations contain the false positive of the MTI predictions. Figure 4 shows a sample tree produced
for Carbohydrate Sequence feature set. In this sample, the tree has been turned into a set of rules with output POS
(recommend the MH) or NEG (do not recommend the MH). Once a rule is matched, the outcome is defined by the
element after the colon punctuation mark. The rules are composed of the occurrence of a term in the citation and a
combination of operators. The & sign is the Boolean operator AND and the ! sign is the negation operator. The second
rule recommends Carbohydrate Sequence if the citation does not contain the terms oligosaccharides polysaccharide
and carbohydrate but contains the term gal.

Filtering based on machine learning

The rule induction step improves recall but adds false positives in the process. In order to remove false positives and
thereby improve precision, we applied machine learning. This task is considered a text categorization task; it attempts
to filter out false positives by deciding if a given citation should be indexed with the give MeSH heading or not. We
encounter issues, some of which are common to text categorization:

1. Imbalance between the number of positive and negative instances where the negative class usually overwhelms
the positive one. Some machine learning algorithms have difficulty with this imbalance. We tested several
approaches to deal with this issue: to balance the datasets, and to use a method based on the optimization of a
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!oligosaccharides&!polysaccharide&!carbohydrate&!gal:NEG
!oligosaccharides&!polysaccharide&!carbohydrate&gal:POS
!oligosaccharides&polysaccharide&!structure&!intensity:POS
!oligosaccharides&polysaccharide&!structure&intensity:NEG
!oligosaccharides&polysaccharide&structure&!text:POS
!oligosaccharides&polysaccharide&structure&text:NEG
oligosaccharides&!structures&!galactopyranoside&!xylosyl:POS
oligosaccharides&!structures&!galactopyranoside&xylosyl:NEG
oligosaccharides&!structures&galactopyranoside&!enzyme:NEG
oligosaccharides&!structures&galactopyranoside&enzyme:POS
oligosaccharides&structures&!relies&!released:POS
oligosaccharides&structures&!relies&released:POS
oligosaccharides&structures&relies:NEG

Figure 4: MALLET decision tree learned for Carbohydrate Sequence

multivariate measure instead of relying on accuracy. Joachims21 proposed an adaptation of SVM to optimize
measures like F -measure or the area under the ROC-curve instead of accuracy, being an alternative to balancing
the positive and negative instances.

2. Even if a term is correctly identified with a citation, it might not be significant enough to be included in the
indexing.

3. Inconsistencies in the annotations might appear due to:

(a) Inconsistency in MeSH indexing22. In machine learning terms, this is class label noise. Several existing
techniques could be considered to overcome this problem. One of them23 consists of selecting only docu-
ments for which a low level of discrepancy exists among classifiers. Then, the model is learned only from
instances with a high level of confidence.

(b) Changes in indexing policy over time can introduce inconsistencies with previously-indexed citations.
This can even apply to routine changes to the structure of MeSH. In the selection of our set we carefully
avoided this issue by selecting terms which were already in MeSH during the indexing period. In addition,
the span of time considered is small enough to avoid most of the indexing policy changes which might
have occurred.

Filtering experimental setup

In this section, configurations for our experiments are specified. These configurations can be combined to build
different models. Unigram and bigram representation from the title and abstract of the MEDLINE citations are used
as features. The classifiers considered for the experiments are:

1. Traditional classifiers (SVM, Naı̈ve Bayes, decision trees and k-NN).

2. Ensemble of classifiers, which can reduce the variance of decision trees or can consider complementary views
of the problem by different learning algorithms (Boosting, bagging, voting, ...).

3. SVM with multivariate measures21.

Evaluation

The methodology presented above has been evaluated on two datasets. The first one is a screening of MEDLINE
with the MeSH heading Carbohydrate Sequence. The second one is a subset of MEDLINE used routinely for testing
changes to MTI’s algorithm.
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Carbohydrate Sequence set

The Carbohydrate Sequence dataset is a subset of the 2010 MEDLINE baseline which contains 18,502,916 MEDLINE
citations. The dataset consists of 2,307 citations found by Carbohydrate Sequence triage rules developed by a domain
expert. The 2,307 citations that have the Carbohydrate Sequence heading (1,212 positive examples) and those that
do not (1,095 negative examples) were further split into the training set containing 80% of the positive and negative
examples and the test set containing the remaining 20% of the citations.

We consider citations with the Carbohydrate Sequence MH to be in the positive class because we are primarily inter-
ested in finding all citations that should be recommended for assigning the heading. The 80-20 split was performed
using publication dates of the citations with the most recent citations in the test set. This split imitates the real-life
situation in which a method is developed with an existing set of data and then applied to and tested on a future set.

A second set is developed for exploration of additional triage rules for the Carbohydrate Sequence heading. In this set
we used 16,781 citations having the heading but not found by the current triage rules. We use a matching stratified
sample of citations without the MH that were published in the journals containing at least one citation with the Car-
bohydrate Sequence MH as negative examples. These sets were also split into training and test subsets following the
80-20 rule described above.

MTI test set

This set is a subset of the 2009 MEDLINE baseline as used by the MTI team for verifying changes to MTI. We selected
candidate terms highly represented in MEDLINE but with poor recall performance by MTI. The list of selected terms
is found in Table 1.

MeSH Heading Unique ID Tree Number
Acute Disease D000208 C23.550.291.125
Gene Expression D015870 G05.355.310

Table 1: Selected MeSH headings

This set is split into training and test sets based on the publication date field (DP field in PubMed). The citations from
the first 8 months of 2009 are used for training and the final 4 months for test. In the training set there are 409,279
citations with a total of 343,504 citations with abstract and in the test set, there are 255,493 citations with a total of
214,064 citations with abstracts.

Results

Carbohydrate Sequence set

In the preliminary exploration of the triage rules presented in the methods section, we noticed that many candidate
citations do not get the MH assigned, while the majority of the citations having the Carbohydrate Sequence heading
are not categorized as candidates. These observations led to expansion of the approach in two directions as introduced
in the methods section: (1) using supervised machine learning to improve precision of recommendations for candidate
citations found by the original triage rules, and (2) generation of new rules to expand the candidate set with a sub-
sequent application of supervised machine learning. The goal of the triage step is to reduce the number of irrelevant
citations to be processed in the second step. The goal of the machine learning step is to improve precision without
losing recall.

The original Carbohydrate Sequence triage rules reduce the size of the set to be considered for Carbohydrate Sequence
to 0.012% of the full document set with 6.7% recall and 52.5% precision. In the subsequent machine learning step
the Maximum Entropy classifier trained on 1, 2, 3, and 4 token sequences and cutoff confidence level set above 0.2
reduced the number of wrong recommendations (precision of 53.6%) with almost all correct recommendations (90%
of them).
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The topics built using the positive examples (citations having the MH but no sequence strings) contained many key
phrases pertaining to analysis methods (for example: NMR spectroscopy, mass spectrometry, methylation analysis),
model organism and chemical names, which we found to be too general to pertain only to studies of carbohydrate
sequences. However, topic analysis also provided pertinent terms, which we combined with the rules generated by the
MALLET Decision Tree classifier shown in Figure 4. The new triage rules select citations for further consideration
combining the common segments of the positive rules in Figure 4 and the topic terms found by LDA as follows:

1. Rule 1: If any of the terms carbohydrate, polysaccharide, oligosaccharides combined with structure are found
in citations in journals known to have Carbohydrate

2. Rule 2: If two or more of the 26 terms listed for Carbohydrate Sequence (in Figure 5) are found in citations in
journals known to have Carbohydrate

3. Rule 3: If rules 1 and 2 apply to the citation

carbohydrate(s), disaccharide(s), Fuc, Gal, GalNAc, galacturonic acid, GlcNAc, glucopyranosyl, glucuronic acid,
glycan(s), glycosidic linkages, glycosylation, hyaluronic acid, iduronic acid, lipopolysaccharide(s), LPS, Man,
NeuAc, oligosaccharide(s), polysaccharide(s), sialyl Lewis, sialic acid, Smith degradation, sugar chains,
triterpenoid saponins

Figure 5: Terms selected from topics built based on the positive training examples for Carbohydrate Sequence recom-
mendation
The new rules were evaluated using the second set of citations that have the Carbohydrate Sequence MH and further
reduce the set of candidate citations. Results are available in Table 2.

Rule True Positives False Positives Precision Recall F -measure F2-measure
Rule 1 3108 6528 0.4761 0.1733 0.2541 0.1986
Rule 2 8144 40768 0.1998 0.4541 0.2775 0.3620
Rule 1 & 2 2391 3043 0.7857 0.1333 0.2280 0.1599
CH & structure 1234 3883 0.3178 0.0688 0.1131 0.0816
Poly & structure 1292 1712 0.7547 0.0720 0.1315 0.0880
Olig & structure 1233 1566 0.7874 0.0688 0.1265 0.0841

Table 2: Rules and precision/recall values for the training and test set

Compared to the results using the initial triage rules, we obtain different precision recall levels which in most of the
cases are better than the original triage rules developed manually by a domain expert.

MTI test set

Triage rule learning

Table 3 shows the results of the recall analysis for the MTI set. As described in the methods section, decision trees
were built from the selected features, and common sections were manually analyzed. After careful analysis of the
feature sets and common trees, rules where manually selected for each MeSH heading in order to obtain high coverage
of the MeSH headings with reasonable precision. In Table 3 the rules and the performance measures are shown. The
recall values are significantly increased compared to baseline MTI performance, but this was negatively compensated
by a noticeable decrease in precision values.

Filter analysis

In Table 4, we find the results from the precision analysis for each of the MeSH headings. In this table, we show only
the result produced by the best performing learning algorithm. For each MeSH heading we show the MTI result, the
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Rule True Positives False Positives Precision Recall
Acute Disease ’acut’ 1387 10409 0.1176 0.8562

(’protein’ & ’express’)
Gene Expression | (’gene’ & ’express’) 1722 24978 0.0645 0.8165

| (’cell’ & ’express’)

Table 3: Rules and precision/recall values for the training and test set

MTI result with filtering, the recall analysis result, and the recall result with filtering. Overall, we find that filtering
improves the precision but at a high recall cost. F -measure and F2-measure results vary according to the method.

Acute Disease True Positives False Positives Precision Recall F -measure F2-measure
MTI 256 705 0.2664 0.1580 0.1984 0.1720
Filtering 226 303 0.4272 0.1395 0.2103 0.1612
Triage rules 1387 10409 0.1176 0.8562 0.2068 0.3795
Triage + filtering 1071 4447 0.1941 0.6611 0.3001 0.4463
Gene Expression True Positives False Positives Precision Recall F -measure F2-measure
MTI 572 2349 0.1958 0.2712 0.2274 0.2518
Filtering 293 816 0.2642 0.1389 0.1896 0.1805
Triage rules 1722 24978 0.0645 0.8165 0.1195 0.2450
Recall + filtering 1101 8639 0.1130 0.5220 0.1858 0.3029

Table 4: Results comparing the different analyses

Discussion

Focusing on the Carbohydrate Sequence set, the original triage rules based on identification of carbohydrate names are
too specific to capture all candidates for recommending the Carbohydrate Sequence MH. To our surprise, the rules also
capture a significant number of citations that should not be recommended for this MH. Our domain expert reviewed
five citations that our best scoring classifier erroneously assigned to the positive class with highest confidence and
concluded that those citations qualify for the MH. This indicates that the actual accuracy of the original rule might
be higher than in our evaluation. In both cases, the filtering and the semi-automatically derived triage rules achieve
results appropriate for the MEDLINE MeSH indexing.

For the MTI set, we show that semi-automatic generation of triage rules is potentially helpful to MEDLINE MeSH
indexing. From the MTI analysis, we find that only in the case of Acute Disease did the recall and filtering analysis
provide a result much higher compared to MTI. We can see that precision can be largely improved using machine
learning based filters. On the other hand, recall decreases significantly in most of the cases. The F -measure is
sometimes improved due to the increase in precision but the F2-measure is lower in almost all scenarios due to the
loss in recall. We plan to evaluate this approach with a larger set of MeSH headings occurring in the MTI set used in
the experiments, and not only on MeSH headings with MTI’s poor performance.

In addition, considering triage rules in the MTI set, precision is much lower compared to the original MTI prediction
even if recall is much higher. After filtering, we find that precision is largely improved compared to the results from
the recall analysis. The precision values are lower compared to the results obtained with MTI, so in many cases the
final F -measure is lower. But for the F2-measure Acute Disease and Gene Expression achieve better performance.
Only in the case of Acute Disease we find that the F -measure and F2-measure are improved in all the scenarios.

If we consider the machine learning algorithms in the filtering step, we find that low variance methods have better
performance in comparison to low bias and high variance methods. Examples of low variance methods are SVM and
AdaBoost. In many learning algorithms, balancing the dataset produced an improvement in the performance of the
machine learning algorithms. Multivariate optimization achieved the highest performance with Acute Disease while
AdaBoost achieved the highest improvement with Gene Expression.
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Conclusions and Future work

Our work confirms that the method presented in this paper produces improved recommendations of some MeSH
headings compared to existing methods and to manual assessment in the case of Carbohydrate Sequence. We plan to
explore the scalability of the proposed approach, applying it to other headings for which indexing recommendations
need to be improved.

The results presented in this work have been produced using unigrams and bigrams from the title and abstract. Other
features extracted from text, like the position of the MeSH heading in the document or normalization of the features
based on MetaMap, could be combined to improve the current results. This might then require moving to full-text
analysis.

It should be mentioned that our results are probably negatively affected by papers which a title but no abstract (around
17% of all papers in the dataset). The fact that NLM indexers use the full-text of an article to perform MEDLINE
indexing further argues for an extension of the current study to the use of full-text, not just titles and abstracts. Further
studies on full-text might be required, but only 15% of the PMIDs in our dataset could be matched to PMC identifiers.
Specific feature selection and combination might be required to process the articles efficiently.
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Neuroscientific literature search based on the location coordinates in brain -
BredeQuery plugin for SPM environment
Bartlomiej Wilkowski1*

1  Technical University of Denmark, DTU Informatics, Denmark

Current research in neuroscience, specifically neuroimaging, is based on the functional localization paradigm. New, state-of-the-art scanning
techniques allow to detect haemodynamic response (dynamically regulated blood flow in brain) relating directly to neuronal activity in brain, hence to
define functional localization of specific human behavior. There is a vast amount of new studies and publications about various human behaviours
which are being mapped to specific brain regions where the significant change in activity occurs. The BredeQuery software [1] proposed herein,
enables the user to search for related neuroscientific literature which reports various phenomena in similar brain regions. The search is done in a
coordinate-based (not ordinary keyword-based) way and can be performed directly from the SPM (Statistical Parametric Mapping) - software
platform run in Matlab and used inter alia in analysis of brain images.

The BredeQuery plugin is written in Matlab and Java and it runs directly from SPM. The coordinate-based search for publications is offered in the
plugin using the Brede Database [2] http://neuro.imm.dtu.dk/services/brededatabase/. The graphical user interface of the BredeQuery plugin can be
seen in the Figure 1.

The activation coordinates are grabbed from the SPM results window. Since the Brede Database is based on Talairach space coordinates, the
BredeQuery plugin offers two MNI-to-Talairach (MTT) transformations. The grabbed coordinates can be then transformed from MNI space to
Talairach using Mathew Brett's piece-wise affine transformation (brett) or Jack Lancaster et al.'s transformation (with three subtypes: SPM, FSL and
pooled). The Lancaster's MTT-SPM transformation is set as default in the BredeQuery plugin.

The grabbed and optionally transformed coordinates can then be used for querying the Brede Database. The query results (related publications) can be
shown in the internal Matlab web browser or can be automatically exported to one of the following bibliographic formats: BibTeX, Reference
Manager, RefWorks, EndNote. It should be mentioned that the user is also able to perform the Brede Database query manually, without using the
grabbed coordinates. The plugin was released on March 12, 2009. It can be found on the SPM community list of toolboxes:
http://www.fil.ion.ucl.ac.uk/spm/ext/#BredeQuery/ or can be directly downloaded from: http://neuroinf.imm.dtu.dk/BredeQuery/. Since the Brede
Database is a relatively small database, the future development of the plugin is directed towards automatic retrieval of the articles also from huge,
updated databases like PubMed. Integration with SKEEPMED (Semantic KEyword Extraction Pipeline for MEdical Documents) [3] is planned. This
pipeline can be used for extracting relevant keywords from abstracts, mapping to ontological terms and constructing logical queries to other databases.
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Knowledge Discovery in Neuroinformatics 
Bartlomiej WILKOWSKI a,b,1

a DTU Informatics, Technical University of Denmark, Lyngby, Denmark 
b Center for Integrated Molecular Brain Imaging, Copenhagen, Denmark 

Abstract. Traditionally, the process of turning data into biomedical knowledge has 
involved “manual” meta-analyses of results reported in journals. Since the amount 
of scientific data produced in neuroscience today increases dramatically, the 
resultant expansion of the medical databases has created a significant potential for 
the design of new data modeling and information retrieval tools and services that 
enable faster data processing, analysis and dissemination among a highly 
interdisciplinary community of researchers. 

Keywords. data sharing, neuroinformatics, medical ontology 

This PhD study aims at the discussion and design of necessary tools, methods and 
software, which can help in turning data into biomedical knowledge (meta-analysis of 
results reported in journals and information retrieval) [1], efficient medical data 
modeling and integration of various databases and repositories facilitating the data 
exchange between researchers from the whole neuroscience field. 

The Center for Integrated Molecular Brain Imaging (CIMBI) with which this PhD 
study is associated, has established a large database of behavioral, genetic and imaging 
data. The key challenge of the research to be carried out during the PhD study is to 
develop the methods for integration of the CIMBI and related distributed databases 
including literature, biobanks and DTU’s functional imaging database “Brede” in order 
to create an intelligent service for efficient information retrieval. Such a service is 
likely to become important not only for extracting information but also for an 
assistance in various aspects of research such as discovery of new facts, identification 
of previously undiscovered associations followed by proposal of new functions [2]. 

Medical ontologies (e.g., UMLS, NeuroLex) and formal and statistical methods 
(e.g., LSA, NMF) are considered to be a key for both database integration as well as 
the development of a process which is referred to as “knowledge discovery”. Such a 
process can be understood as a pipeline of methods and techniques which include: text-
mining of the scientific publications and further information retrieval (keyword 
extraction) [3], automatic interpretation of findings, discovery of new relationships and 
even design of new experiments.  

[1] Wilkowski, B., Szewczyk, M.M., Rasmussen, P.M. et al. (2009) Coordinate-based meta-analytic search 
for the SPM neuroimaging pipeline – The BredeQuery plugin for SPM5. In Proceedings of the 
International Conference on Health Informatics (HEALTHINF 2009), INSTICC Press, 11–17. 

[2] Krallinger, M., Valencia, A. (2005) Text-mining and information-retrieval services for molecular 
biology. Genome Biology 6(7):224. 

[3] Wilkowski, B., Szewczyk, M.M., Hansen, L.K. (2009) Bridging the gap between coordinate- and 
keyword-based search of neuroscientific databases by UMLS-assisted semantic keyword extraction. 
Presented at the 15th Annual Meeting of the Organization for Human Brain Mapping.
                                                          

1 Corresponding Author: Richard Petersens Plads, 2800 Kgs. Lyngby, Denmark; E-mail: bw@imm.dtu.dk. 

Medical Informatics in a United and Healthy Europe
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doi:10.3233/978-1-60750-044-5-589

589



119



120



Appendix H

Bridging the gap between
coordinate- and keyword-

based search of neuroscientific
databases by UMLS-assisted
semantic keyword extraction

Bart lomiej Wilkowski, Marcin Szewczyk, Lars Kai Hansen. Bridging the gap
between coordinate- and keyword- based search of neuroscientific databases by
UMLS-assisted semantic keyword extraction. Presented at: Human Brain Map-
ping, NeuroImage, 47(S165):(pp. 3), San Francisco 2009. Published.



122 Appendix H

Bridging the gap between coordinate- and keyword- based

search of neuroscientific databases by UMLS-assisted semantic

keyword extraction

Bart lomiej Wilkowski, Marcin Marek Szewczyk, Lars Kai Hansen

Center for Integrated Molecular Brain Imaging

Technical University of Denmark, DTU Informatics

bw@imm.dtu.dk, msz@imm.dtu.dk, lkh@imm.dtu.dk

Introduction

The rapid growth of the neuroimaging literature brings the demand for integration, organization and
dissemination among a highly interdisciplinary community of researchers, see e.g. (Wager, Lindquist
& Kaplan 2007). Since functional localization in brain is normally represented in form of stereotaxic
coordinates, it can be used directly in the process of retrieving related literature in a given func-
tional context by the measure of coordinate distance. Current neuroimaging databases which provide
coordinate-based search capabilities (Brede Database, BrainMap) contain relatively small number of
publications (Szewczyk 2008), therefore an interconnection with more comprehensive bibliographical
databases can extend the results pool. Recently, the BredeQuery plug-in for SPM pipeline was presented
as a tool which enables coordinate-based querying of the Brede Database directly from SPM (Wilkowski,
Szewczyk, Rasmussen, Hansen & Nielsen 2009). As an extension of the current plugin’s functionality,
we propose methods for integration of the Brede Database with the almost complete medical publication
database - PubMed (http://pubmed.org).

Methods

The first step towards the integration of PubMed with the BredeQuery plug-in is efficient keyword
extraction from abstracts returned by the Brede Database (Nielsen 2003) after coordinate-based searching.
The extracted keywords can be later used for modelling PubMed’s query. Keywords are concatenated
using OR, AND logical operators. We are developing Semantic KEyword Extraction Pipeline for Medical
Documents (SKEEPMED) web service for mapping terms from abstracts to the UMLS Metathesaurus
concepts using the MetaMap08 program (Aronson 2001). As we focus on the neuroscientific literature,
we extract two types of keywords: brain parts (brain part) and other significant domain terms (term).
The final query is constructed with the following structure: (brain part 1 OR brain part 2 OR ...)
AND (term 1 AND term 2 AND ...).

Results

We queried the Brede Database with a test coordinate in Talairach (Talairach & Tournoux 1988) space
(-8,1,9), which relates to the thalamus brain region. The highest ranked experiment returned by the
database belongs to article “Neuroanatomical Correlates of Happiness, Sadness, and Disgust” by Richard
D. Lane et al. (1997), in the following referred to as the “source”. “Source” contains description of
10 experiments with a total of 90 reported coordinates. The following keywords were extracted by
SKEEPMED: brain part keywords: cerebral cortex, thalamus, insula, frontal lobe ; term keywords:
disgust, sadness, happiness, emotion. The PubMed query based on these keywords returned the “source”
and 20 additional articles closely related to the topic of “source”. We inspected only articles published
later than ”source” (16), 8 of which do not contain any experiment coordinates. To investigate the
relevance of the remaining 8 articles, we compared spatial closeness of experiment coordinates from these
8 articles with the “source” experiments by querying Brede Database. Experiment coordinates from 6 of
them are located in a close neighbourhood of “source’s” experiments. Results are presented in Table 1.

1
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Conclusions

Current neuroimaging databases are limited and we have discussed a new way of enhancing their usability.
We use the highly refined information in the Brede database to form an informed query into the literature
at large. The case story showed the viability of the approach and gives us confidence that coordinate based
search can be combined with language processing for a productivity enhancing tool for all neuroimagers.
Current work concerns quantitative testing of the method.

2



124 Appendix H

References

Aronson, A. (2001), ‘Effective Mapping of Biomedical Text to the UMLS Metathesaurus: The MetaMap
Program’, JOURNAL OF BIOMEDICAL INFORMATICS 35, 17–21.
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