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Identifying Relevant Evidence for Updating Systematic Reviews

By Amal H. Alharbi

Systematic reviews identify, assess and synthesise the evidence available to answer

complex research questions. They are essential in healthcare, where the volume of ev-

idence in scientific research publications is vast and cannot feasibly be identified or

analysed by individual clinicians or decision makers. However, the process of creating a

systematic review is time consuming and expensive. The pace of scientific publication in

medicine and related fields also means that evidence bases are continually changing and

review conclusions can quickly become out of date. Therefore, developing methods to

support the creating and updating of reviews is essential to reduce the workload required

and thereby ensure that reviews remain up to date.

This research aims to support systematic reviews, thus improving healthcare through

natural language processing and information retrieval techniques. More specifically, this

thesis aims to support the process of identifying relevant evidence for systematic reviews

and review updates to reduce the workload required from researchers.

This research proposes methods to improve studies ranking for systematic reviews.

In addition, this thesis describes a dataset of systematic review updates in the field of

medicine created using 25 Cochrane reviews. Moreover, this thesis develops an algorithm

to automatically refine the Boolean query to improve the identification of relevant studies

for review updates.

The research demonstrates that automating the process of identifying relevant evi-

dence can reduce the workload of conducting and updating systematic reviews.
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Chapter 1

Introduction

The volume of publications that appear in the field of medicine on a daily basis is rapidly

increasing. Consequently, healthcare researchers, clinicians and policy-makers are del-

uged with this uncontrollable amount of information, including evidence from health

research (Chalmers, 2000; Masic et al., 2008). A common scenario in clinical practice is

when a physician finds in one study that drug A is recommended to treat a particular

disease X, while in another research, they find that drug B is also advised as a treatment

for the same disease (Avery et al., 2013; Rahmner et al., 2012; Slawson and Reed, 2009).

In such a scenario, they become confused about which treatment is more effective to

prescribe. They need strong evidence to make a decision. It is impractical to rely on the

results of one or two studies to make decisions. Furthermore, with the growing number

of published articles, it is not possible for a physician to read all up-to-date published

evidence, assess it and take decisions. It requires time and skill to deal with this amount of

information when searching the literature to find and interpret evidence and apply it to

clinical practice (McGowan and Sampson, 2005; Sutherland, 2004).

In the past decades, many studies have been published that do not lead to single, clear

and practicable results to be followed. In 1979, Archie Cochrane, a British physician in

whose honour the well-known Cochrane Collaboration was named, wrote:



2 Introduction

“It is surely a great criticism of our profession that we have not organised

a critical summary, by specialty or subspecialty, adapted periodically, of all

relevant randomised controlled trials.” (Cochrane, 1979)

Cochrane realised that healthcare specialists and clinicians who need to make healthcare

decisions needed reliable reviews of the available evidence. Systematic reviews attempt to

identify, synthesise and summarise all available evidence to answer a specific research

question. A good systematic review is a significant addition to the medical literature. They

help healthcare researchers and clinicians benefit from the large amount of information

available to make healthcare decisions. In addition, they help correct common miscon-

ceptions. As an example, vitamin C supplementation had been proposed for preventing

and treating common cold since the 1930s. However, in 1998, a systematic review was

conducted and found that vitamin C supplementation has no benefit in avoiding the cold

but can lightly reduce the duration of the cold symptoms (Hemila and Chalker, 2013).

In recent years, the increase of the volume of medical publications has made the

process of summarising the available evidence difficult for individuals (i.e. healthcare

researchers, clinicians and policy-makers). Therefore, the need for systematic reviews to

summarise the evidence has become more urgent (Bastian et al., 2010). A recent example

is the novel COVID-19 virus, which first emerged in Wuhan, China, in late December

2019. By 20th May 2020, the total confirmed cases were 4,789,205, and the total worldwide

deaths were 318,789 (Johns Hopkins University, 2020). COVID-19 is a new virus which

has no vaccine yet. Accordingly, recognising vaccine and treatment choices as quickly as

possible is essential for the reaction to the COVID-19 outbreak. However, vaccines and

medications used to prevent and treat diseases from the same family (e.g. Severe Acute

Respiratory Syndrome (SARS) and Middle East Respiratory Syndrome (MERS)) may be

useful to develop a therapy for COVID-19. Having a systematic review of all available

evidence about past medications for these viruses could be useful to develop a treatment

for the new COVID-19, which would save the lives of many people. A PubMed search for

“SARS” and “MERS” returns about 9,000 and more than 14,000 articles, respectively. This

makes the process of conducting such a review laborious and time consuming, and with
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the wide spread of COVID-19, it is worthwhile to obtain tools to facilitate the interpretation

of this information as quickly as possible.

While the very existence of systematic reviews is important, it is yet more important for

them to stay up to date as evidence changes. This is, however, challenging in a field such as

medicine where thousands of publications appear on a daily basis (Pain, 2016). Developing

methods to support the updating of reviews is important to reduce the workload required

and thereby ensure that reviews remain valuable and useful.

This thesis seeks to improve the process of conducting and updating systematic re-

views, thus improving healthcare. It aims to apply Natural Language Processing (NLP) and

Information Retrieval (IR) techniques to facilitate the process of finding relevant evidence.

This chapter provides background information about systematic reviews including the

process of conducting reviews and review updates. It also outlines the main challenges in

conducting reviews. The rest of this chapter details the aims and objectives of the research

described in this thesis and summarises the main contributions.

1.1 Background

1.1.1 Systematic Review

The Cochrane Handbook for Systematic Reviews of Interventions defines systematic

review as:

“A systematic review attempts to collate all empirical evidence that fits pre-

specified eligibility criteria in order to answer a specific research question. It

uses explicit, systematic methods that are selected with a view to minimizing

bias, thus providing more reliable findings from which conclusions can be

drawn and decisions made (Antman et al., 1992; Oxman, 1993).” (Green et al.,

2011).
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The Cochrane Collaboration is one the key producers of medical systematic reviews. Its

library contains over 8,300 reviews1 which fall into five main categories (About Cochrane

Reviews, 2019):

1. Intervention reviews: These reviews mainly assess the benefits and harms of inter-

ventions used in healthcare and health policy. An example is a review that assesses

the effects of physical exercise training in patients with chronic kidney disease and

determines how the exercise programme should be designed to have an effect on

the fitness of the patients (Heiwe et al., 2011).

2. Diagnostic Test Accuracy reviews (DTA): These reviews assess the accuracy of a

diagnostic test when used to detect a particular disease. An example of a DTA review

is a review that assesses the accuracy of serum-based markers for Down’s syndrome

screening in the first trimester (Alldred et al., 2015).

3. Methodology reviews: These reviews explore issues associated with the process

of conducting systematic reviews and clinical trials. For example, they compare

searching manually to identify randomised trials with using electronic searching

(Hopewell et al., 2007).

4. Qualitative reviews: These address questions related to healthcare interventions

other than effectiveness by synthesising qualitative evidence. For example, a re-

view that identifies and synthesises qualitative studies exploring women’s views

and experiences of attending antenatal care and Healthcare providers’ views and

experiences of providing antenatal care (Downe et al., 2019).

5. Prognosis reviews: These reviews address the probable course or future outcome(s)

of individuals with a specific health problem (i.e. diseases or conditions). An ex-

ample is a review that finds whether protease activity is an independent prognostic

factor for the healing of venous leg ulcers (Westby et al., 2018).
1At the date of writing this Thesis, May 2020
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1.1.2 Systematic Review Stages

Systematic reviews often progress in a number of stages, as shown in Figure 1.1 (Boland

et al., 2014; Gough et al., 2012a; Khan et al., 2003; Tsafnat et al., 2014). Below, the steps are

described in further detail.

(i) Boolean Search

(i i) Tit le & Abstract  
Screening

Stage 1:  
Framing the 

Research Quest ion

Stage 2: 
Ident ifying 

Relevant  Studies

Stage 3: 
Assessing the 

Studies Qual ity

Stage 4: 
Summarising 
the Evidence

(i i i) Content  Screening

Stage 5: 
Interpret ing the 

Finding  

Figure 1.1: The process of conducting a systematic review.

Stage 1: Framing the Research Question

In the beginning, experts identify the objective of the review and define a clearly for-

mulated research question, for example “for deep vein thrombosis is D-dimer testing or

ultrasound more accurate for diagnosis?” (Nisio et al., 2007). In this stage, researchers

prepare the review protocol. In addition, they declare the inclusion/exclusion criteria

(eligibility criteria) to decide about the studies of interest to be included in the review.

The eligibility criteria should not be too narrow or too broad because this will lead to an

inefficient screening process (Jahan et al., 2016).

Stage 2: Identifying Relevant Studies

Reviewers perform an exhaustive search to find potentially eligible studies that match the

predefined criteria. This stage usually consists of multiple steps (Kanoulas et al., 2017):
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(i) Boolean Search: Experts construct a Boolean query designed to identify all evidence

relevant to the review question. The Boolean query is used to search medical

databases such as MEDLINE, EMBASE and CENTRAL.

(ii) Title and Abstract Screening: Only the title and abstract of the studies retrieved by

the Boolean search are examined by experts to identify those that are potentially

relevant for inclusion in the review. It is common for the majority of studies to be

removed from consideration during this step (O’Mara-Eves et al., 2015; Sampson

et al., 2011).

(iii) Content Screening: The full document is then retrieved for any study that has been

identified as being relevant at the previous step. These are then examined in a

second round of expert screening to form the final decision about their relevance to

the review.

The screening processes (i.e. steps ii and iii) are usually performed by two reviewers

independently of each other to assess studies for inclusion. This is done to avoid system-

atic errors, missing studies and the risk of bias in study selection (Gough et al., 2012a;

Waffenschmidt et al., 2019).

Stage 3: Assessing Study Quality

The systematic review should minimise bias. The Cochrane Handbook for Systematic

Reviews of Interventions defines bias as “a systematic error, or deviation from the truth,

in results or inferences” (Green et al., 2011). Bias leads to errors in the review results,

therefore, reviewers assess the risk of bias and the quality of all the included studies. This

includes the assessment of the data and results extracted from included studies. They

should be correct, valid and free of bias.

Stage 4: Summarising the Evidence

In this stage, researchers analyse, summarise and present the findings of the included

studies. This includes presenting the main findings statistically in a simple tabular format



1.1 Background 7

(Lewis and Clarke, 2001) and meta-analysis of the results (for quantitative systematic

reviews) (Deeks et al., 2019), or non-statistically (for qualitative systematic reviews) (Noyes

et al., 2019).

Stage 5: Interpreting the Finding and Drawing Conclusions

In the final stage, reviewers interpret the findings and publish the conclusion of the

systematic review. This includes describing the strengths and weaknesses of the included

studies and indicating future directions to strengthen the review.

1.1.3 Systematic Review Updates

As new evidence is completed and published, a systematic review may become out-of-

date. Systematic reviews need to be updated to include the most recent evidence to

continue to be useful. The process that is applied to update a systematic review is similar

to the one used to create a new review (Elkins, 2018). A search query is run to identify

studies published since the previous version of the review and the resulting studies are

screened in a two-stage process: title and abstract screening and content screening. If any

new relevant studies are found, then the data is extracted and integrated into the review.

The review’s findings are also updated if the evidence is found to have changed from the

previous version.

Deciding when a review should be updated is a challenging problem since there is

no commonly agreed approach on when this should happen (Elliott et al., 2017; Garner

et al., 2016). A review can be updated at any point after it has been created (or already

updated) and while the process should ideally be carried out whenever new evidence

becomes available, the effort required makes this impractical. A common practice is to

update reviews after a certain period has passed, for example, the Cochrane Collaboration

recommends that reviews should be updated every two years (Moher and Tsertsvadze,

2006). Cochrane’s Living Evidence Network has recently started developing living system-

atic reviews with the aim to produce evidence that is both reliable and up to date. The

approach of this network is based on reviewing evidence frequently (normally monthly)
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and if any new evidence is identified then it is included in the review immediately. How-

ever, it is unclear whether this effort is sustainable (Elliott et al., 2017). The Agency for

Healthcare Research and Quality suggests that reviews be updated depending on need,

priority and the availability of new evidence (Lucenteforte et al., 2018).

1.1.4 Challenges in Developing Systematic Reviews

A range of challenges face developers of systematic reviews. The process of creating a

systematic review is time consuming. A single review often requires from six months to

more than two years of effort by expert reviewers (Chandler et al., 2019; Cohen et al., 2010;

Karimi et al., 2010). The reviewers need to perform an extensive search and evaluation of

the literature to find all the studies relevant for inclusion. Typically, this requires a group

of reviewers manually investigating thousands of studies that have resulted from database

searches (Rathbone et al., 2015).

The screening stages are one of the most time-consuming parts of this process since

an experienced reviewer takes at least 30 seconds to review an abstract, and this time can

be substantially longer for complex topics (Wallace et al., 2010). The problem is made

more acute by the fact that the search queries used for systematic reviews are designed

to maximise recall, with precision a secondary concern, while the volume of medical

publications increases rapidly.

Figure 1.2 represents an example of a screening process for a Cochrane systematic

review entitled: “Optic nerve head and fibre layer imaging for diagnosing glaucoma”

(Michelessi et al., 2015). The total number of studies retrieved from the database is 9,322.

In addition, ten studies were identified through other resources. The number of studies

reduced to 7,306 after removing duplicated studies. After the first screening step, more

than 94% of the studies were excluded because they were clearly not relevant to the review.

The studies that passed the first screening were then screened as a full text to decide if

they were relevant or not. In the end, only 1.45% of the studies retrieved were included in

the systematic review.
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9,322 studies identif ied 
through database searching 

10 additional studies identif ied 
through other resources 

7,306  studies after duplicates 
removed 

7,306  studies assessed on tit le 
and abstract

6,883  studies excluded based 
on tit le and abstract screening

423  studies screened as of full 
text articles

317  studies excluded based on 
full-text articles screening

106  studies included

(1) Tit le and abstract  
Screening

(2) Content  Screening

Figure 1.2: Flow diagram describing the study selection process.

Moreover, systematic reviews are costly; they require the cognitive efforts of the review-

ers, who are usually experts and physicians and as such, their time is expensive. The cost

of conducting a single systematic review could reach a quarter of a million U.S. dollars

(McGowan and Sampson, 2005).

The pace of scientific publication in medicine and related fields also means that

evidence bases are continually changing and review conclusions can quickly become

out of date (Bastian et al., 2010). In fact, it has been estimated that 7% of systematic

reviews in the medical field are already out of date by the time of publication; and almost

a quarter (23%) two years after they have appeared (Shojania et al., 2007). Reliance on

review conclusions based on out-of-date evidence increases the risk of recommendations

for practice that are sub-optimal and potentially harmful to patients. With over eight

thousand reviews being produced per year (Page et al., 2016), keeping them up to date

presents a formidable challenge.

Therefore, there is a need to develop methods to support the process of creating and

updating systematic reviews to reduce the workload required from researchers and ensure

the reviews are consistent with current evidence.
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1.2 Research Aim and Objectives

The main objective of this thesis is to support the process of developing systematic reviews.

This research gives particular attention to systematic review updates that are of significant

importance but not sufficiently addressed (see Section 2.4.4).

More specifically, this thesis aims to support the process of identifying relevant evi-

dence for systematic reviews and review updates (i.e. Stage 2 in Section 1.1.2) to reduce

the workload required from researchers and ensure the reviews are valuable and up to

date.

Based on this objective, this thesis addresses the following question:

“How can NLP/IR techniques be used to reduce the workload required by researchers when

identifying relevant studies for systematic reviews and review updates?”.

This question leads to the following sub-questions:

RQ1. How can studies be ranked so that the potentially relevant ones appear as early in

the ranking as possible?

RQ2. Can the feedback from reviewer(s) be used to improve studies rankings?

RQ3. Can the rankings for systematic review updates be improved by making use of

information about the original review, such as search strategy and feedback from

reviewers?

RQ4. Is it possible to generate Boolean search queries for review updates that are more

effective than the one used for the original review?

1.3 Thesis Contributions

The main contributions of this thesis are:

1. The exploration of the application of lexical statistics and relevance feedback tech-

niques to improve the ranking of studies for inclusion in systematic reviews.
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2. The construction of an update dataset, which is the first publicly available dataset

for the purpose of evaluating approaches to improve the identification of relevant

studies for systematic review updates.

3. The development and evaluation of re-ranking techniques based on relevance

feedback which use information available from the original reviews (i.e. Boolean

query and relevance judgements) to improve ranking studies for systematic review

updates.

4. The development and evaluation of an algorithm that automatically refines the

original Boolean query to improve the identification of relevant studies for the

update process.

1.4 Published Work

Work described in this thesis has been published in the following peer-reviewed confer-

ences and journals:

1. Amal Alharbi and Mark Stevenson. Ranking abstracts to identify relevant evidence

for systematic reviews: The University of Sheffield’s approach to CLEF eHealth 2017

Task 2 , In Working Notes of CLEF 2017 - Conference and Labs of the Evaluation

Forum, CEUR Workshop Proceedings, Dublin, Ireland, September 11-14 2017.

2. Amal Alharbi, William Briggs, and Mark Stevenson. Retrieving and Ranking Studies

for Systematic Reviews: University of Sheffield’s Approach to CLEF eHealth 2018

Task 2. In Working Notes of CLEF 2018 - Conference and Labs of the Evaluation

Forum, CEUR Workshop Proceedings, Avignon, France, September 10-14 2018.

3. Amal Alharbi and Mark Stevenson. A Dataset of Systematic Review Updates. In

Proceedings of the 42nd International ACM SIGIR Conference on Research and

Development in Information Retrieval (SIGIR’19), Paris, France, July 21-25 2019.
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4. Amal Alharbi and Mark Stevenson. Improving Ranking for Systematic Reviews Using

Query Adaptation, In Experimental IR Meets Multilinguality, Multimodality, and

Interaction. CLEF 2019. Lecture Notes in Computer Science, vol 11696. Springer.

5. Amal Alharbi and Mark Stevenson. Ranking Studies for Systematic Reviews Using

Query Adaptation: University of Sheffield’s Approach to CLEF eHealth 2019 Task

2, In Working Notes of CLEF 2019 - Conference and Labs of the Evaluation Forum,

CEUR Workshop Proceedings, Lugano, Switzerland, September 9-12 2019.

6. Amal Alharbi and Mark Stevenson. Refining Boolean Queries to Identify Relevant

Studies for Systematic Review Updates. Journal of the American Medical Informatics

Association, Volume 27, Issue 11, November 2020, Pages 1658–1666.

7. Amal Alharbi and Mark Stevenson. Using Natural Language Processing and Infor-

mation Retrieval to improve screening for systematic reviews and their updates: a

systematic review of the literature. (To be submitted)

1.5 Thesis Outline

The remainder of this thesis is organised as follows:

Chapter 2 describes a systematic literature review conducted to explore the use of

NLP/IR techniques to facilitate the screening process for systematic reviews. The review

also pays attention to the studies that tackle the problem of updating systematic reviews.

It addresses four main questions: (Q1) Which NLP/IR techniques have been proposed to

support the screening process?, (Q2) Which datasets are used? Are they publicly available?,

(Q3) How are those techniques evaluated? and finally (Q4) Which techniques are applied

in the screening stage of the review update process? The chapter starts by describing

the steps followed in conducting the review then presents the answers to the questions

formulated for the review.
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Chapter 3 explores the use of different query adaptation approaches to improve the

ranking of studies for the creation of a systematic review. Three main approaches are

described. The first investigates which information from the Boolean query and studies is

helpful for improving ranking. The second approach examines the use of lexical statistics

in the domain of systematic reviews and how they can be used to identify terms that

distinguish relevant studies from others. The final approach applies a relevance feedback

method using the Rocchio algorithm. To evaluate approaches, two datasets consist of DTA

reviews are used. Results further prove the ability of NLP to improve studies ranking.

Chapter 4 describes the process of creating a dataset containing 25 intervention

reviews from the Cochrane collaboration. This dataset can be used to support the devel-

opment of approaches to automate the updating process. This chapter also investigates

the use of query expansion to reduce workload during the screening stage of a review

update by making use of information from the original review. Two main approaches from

Chapter 3 are applied to exploit this information: lexical statistics and relevance feedback.

Results show that the relevance judgements from the original review can help to improve

study selection for systematic review updates.

Chapter 5 presents and evaluates a novel algorithm proposed to automatically refine

the Boolean query used in a review to improve the identification of relevant studies for

review updates. An iterative algorithm is proposed to generate query variants by applying

a set of transformations including operator substitution, query expansion and query

reduction. These are assessed using information about which studies were included in

the original review and the most effective transformation is chosen to update the query.

The best query produced by the algorithm is then used to retrieve studies for the review

update. The dataset described in Chapter 4 is used for evaluation. The proposed algorithm

proves to be useful to help in the identification of relevant information among the growing

volume of medical literature.
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Chapter 6 concludes by summarising the work presented in this thesis and identifies

some issues for future work.



Chapter 2

Systematic Review of the Literature

2.1 Introduction

The screening stages are one of the most time consuming parts of the process of con-

ducting systematic reviews since an experienced reviewer takes at least 30 seconds to

review an average abstract and substantially longer if the topic is complex (Wallace et al.,

2010) (see Section 1.1.4). A significant number of previous studies have demonstrated the

usefulness of text mining techniques to reduce the workload involved in the systematic

review screening stages (see Section 2.4). Text mining can help to accelerate the process

of conducting systematic reviews by automatically classifying studies as relevant or non-

relevant. In addition, text mining can be used to rank the studies retrieved by the search

so that those most likely to be relevant are listed at the top.

Whilst systematic reviews are particularly associated with the medical domain, they

can be used to answer a question for any area of research (Gough et al., 2012b). For

example, a previous systematic review of using text mining for study identification in

systematic reviews conducted by O’Mara-Eves et al. (2015). This review aimed to identify

the state of the art concerning the use of text mining for study identification in systematic

reviews focusing on non-technical issues. They evaluated 44 studies and concluded that

using text mining techniques reduced workload required to carry out reviews. However,
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the review by O’Mara-Eves et al. needs to be updated since it was conducted five years

ago.

This chapter describes a systematic literature review conducted by using standard

systematic review process (see Section 1.1.2). The aim of this review is to collect and

summarise the studies on using NLP/IR techniques to facilitate the screening process

for systematic reviews. The goal of this is to identify and understand the state of the art

NLP/IR techniques in this field and to identify the research gaps. The review also pays

attention to the studies that tackle the problem of updating systematic reviews. The review

extends the one performed by O’Mara-Eves et al. by including studies published until

2020 and by focusing on systematic review updates.

This chapter provides the reader with an example of a systematic review which is the

main focus of this thesis. It starts by describing the steps followed when conducting the

review. Then, presents the answers to the questions formulated for the review. In addition,

it lists the summary points obtained from the review’s results.

2.2 Framing the Research Question

2.2.1 Questions

The aim of this review is to explore the use of NLP/IR techniques to facilitate the screening

process for systematic reviews. The main research question of this review is:

Are NLP/IR techniques helpful in improving the screening stage of a systematic review?

Specifically, we seek to answer the following questions:

Q1. Which NLP/IR techniques have been proposed to support the screening process?

Q2. Which datasets are used? Are they publicly available?

Q3. How are those techniques evaluated?

Q4. Which techniques are applied in the screening stage of the review update process?
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2.2.2 Inclusion and Exclusion Criteria

Figure 2.1 presents the inclusion and exclusion criteria for the studies to be included in

the systematic review.

(a) Inclusion Criteria

(1) Study published between 2005 and 2020 (see Section 2.3.1)

(2) Study about creation of new/update systematic review

(3) Study focuses on (semi-)automation of the screening stage by using NLP/IR

techniques

(4) Study from a peer-reviewed source

(b) Exclusion Criteria

(1) Study does not focus on the screening stage of systematic reviews/review up-

dates

(2) Study does not include sufficient information about dataset used and/or evalua-

tion applied

(3) Survey study

(4) Study not from acceptable peer-reviewed sources such as books, abstracts and

panels

(5) Study not written in English

Figure 2.1: Inclusion and exclusion criteria.

2.3 Identifying Relevant Studies

2.3.1 Boolean Search

An electronic search was conducted in October 2020 using the Boolean query presented in

Figure 2.2 to retrieve studies relevant to the review. The query was derived from O’Mara-

Eves et al. (2015) and expanded by adding more terms and search filters to express what
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constitutes relevant information to our review (see Section Search Terms). Below, the

search is described in detail.

(“text mining” OR “literature mining” OR “machine learning” OR
“machine-learning” OR “automation” OR “semi-automation” OR “semi-automated”
OR “automated” OR “automating” OR “text classification” OR “text classifier”
OR “text categorization” OR “text categorizer” OR “classify* text” OR
“category* text” OR “support vector machine” OR SVM OR “Natural Language
Processing” OR “active learning” OR “text clusters” OR “text clustering”
OR “clustering tool” OR “text analysis” OR “textual analysis” OR “data
mining” OR “term recognition” OR “word frequency analysis” OR “automated” OR
“Clinical Research Evidence” OR “Text Categorization” OR “Biomedical Document
Classification”) AND (“systematic review*” OR “article retrieval” “document
retrieval” OR “citation retrieval” OR “retrieval task” OR “identify*
articles” OR “identify* citations” OR “identify* documents” OR “citation
screening” OR “document screening” OR “article screening” OR “citation
management” OR “review management” OR “evidence synthesis” OR “research
synthesis” OR “evidence review” OR “research review” OR “comprehensive
review” OR “reference scanning” OR “Clinical Research Evidence” OR "update*"
OR “systematic review* update*”) AND ( "BMC Public Health"[Journal] OR
“Journal of the American Medical Informatics Association : JAMIA”[Journal]
OR “Journal of Biomedical Informatics"[Journal] OR “J Am Med Inform
Assoc”[Journal] OR "BMC Bioinformatics"[Journal] OR "BMC Med Inform Decis
Mak"[Journal] OR “AMIA Annu Symp Proc”[Journal] OR “Int J Comput Biol Drug
Des”[Journal] OR “Healthc Inform Res”[Journal] OR “J Biomed Inform”[Journal]
OR “Genet Med”[Journal] OR “Syst Rev”[ Journal]) AND ("2005"[Publication
Date] : "2019"[Publication Date])

Figure 2.2: Search query to retrieve studies from PMC.

Search limits

The following search limits were applied to the search:

Time limit

The search time frame was set between 2005 and 2020. This time frame was chosen based

on Jonnalagadda and Petitti (2013) who stated that the first use of text mining techniques

to support the screening process in systematic review occurred in 2005.
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Database limit

To make the search results manageable, the search was limited to PubMed Central1 (PMC).

PMC is a free full-text archive of biomedical and life sciences journal literature at the U.S.

National Institutes of Health’s National Library of Medicine (NIH/NLM). PMC searches in

many journals and indexes 6.1 Million articles(PMC Overview, 2020).

Journal limit

The search was limited to the following specific journals that are relevant to systematic

reviews and NLP/IR techniques:

• Bio Medical Central (BMC):

– BMC Systematic Reviews

– BMC Public Health

– BMC Bioinformatics

– BMC Medical Informatics and Decision Making

• Journal of the American Medical Informatics Association (JAMIA)

• AMIA Annual Symposium Proceedings

• Journal of Biomedical Informatics

• International Journal of Computational Biology and Drug Design (IJCBDD)

• Journal of Healthcare Informatics Research - Springer

• Genetics in Medicine

Search Terms

The keywords in the Boolean query (see Figure 2.2) are derived from O’Mara-Eves et al.

(2015). More terms were added to the query such as “Biomedical Document Classification”

1https://www.ncbi.nlm.nih.gov/pmc/
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and “Text Categorization”. Furthermore, the term “update” was added to include studies

which tackle the use of NLP/IR techniques for the update process. In addition, the search

was limited to specific journals listed above by using the [journal] filter. Finally, the

[Publication Date] filter was used to limit the search to the period from 2005 to 2020.

Running this Boolean query on PMC retrieved 653 studies from seven journals (without

duplicates). In addition, 80 studies were identified from different resources (papers known

to author from manual searches or recommend by colleagues (12), papers from O’Mara-

Eves et al. (2015) (44) and CLEF working notes (24)). The full list of all search results can

be found in Appendix A.

2.3.2 Studies Screening

Studies retrieved from the electronic search were already de-duplicated by PMC. The

information about the studies (title, authors, year, journal, abstract and publication

date) were stored in Mendeley Desktop2 in addition to studies identified from external

resources. Then, any duplication found in the combined studies set was removed by

Mendeley. At the beginning of the screening process, the title and abstract of the retrieved

studies were manually screened to find those that were most likely to be relevant. After

the first screening, 623 studies that were clearly not relevant were excluded (88% of

the studies). The remaining 85 studies were further screened and assessed against the

inclusion/exclusion criteria (see Figure 2.1). This resulted in 63 studies being judged as

relevant and included in the final systematic review, representing 9% of the total studies

screened. Figure 2.3 shows the flow diagram for the screening process. All the studies were

screened by a single Researcher (the author).

2Mendeley Ltd, version 1.19.9, 2019
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Figure 2.3: Flow diagram for studies selection process.

2.4 Results

This section presents the answers to the questions formulated for the systematic review

(see Section 2.2.1). Figure 2.4 shows the number of relevant studies by publication year.

The 63 studies used in the systematic review were published between 2005 and 2020. It

can be seen that the majority of the studies were published in 2017, followed by 2018

when a new CLEF task was defined on 2017 (see Section 2.4.1). Earlier, in 2010 and 2012,

there was an increase of attention shown to this domain with five articles published each

year. Figure 2.5 presents the distribution of included studies by journal. However, not

considering the studies from CLEF working notes, most of the included studies were from

the JAMIA journal (10 studies) and Elsevier journal (8 studies) .
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2.4.1 Q1. Which NLP/IR techniques have been proposed to support the

screening process?

The literature describes a range of approaches to support the screening process. Figure 2.6

presents the distribution of the included studies based on the NLP/IR approach applied.

As can be seen from the figure, the approaches can be divided into three main categories:

classification, ranking and active learning. Text classification aims to classify a set of

documents using a predefined set of classes. It has many applications in the real world,
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such as spam filtering, news categorisation and search engines (Agarwal and Mittal, 2014).

Ranking or work prioritisation aims to prioritise the studies retrieved from a search so

the ones most likely to be relevant are listed at the top of the rank list (Karimi et al.,

2010). Active learning can be used in both classification and ranking. Active learning is an

iterative process whereby performance is improved by incrementally obtaining labelled

data (Settles, 2012). It starts with an initial sample of labelled data to learn from. Then,

it carefully selects a number of instances and asks the expert to assign labels for them.

After that, it learns from the results and adapts its new knowledge and chooses other

instances for the experts to label. This process continues until it reaches a stopping

criterion (O’Mara-Eves et al., 2015; Settles, 2010).
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Figure 2.6: Distribution of included studies by approach.

The majority of the included studies (27%) applied classification without other ap-

proaches. However, some studies applied more than one approach: 15% applied both

classification and ranking, 16% used both ranking and active learning, and 8% applied

classification and active learning. Few studies considered all three categories of NLP/IR

approaches: classification, ranking and active learning (3%).

Text Classification

Many of the included studies have attempted to use text classification to automate studies

screening. One of the first attempts to use NLP/IR for internal medicine was made by
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Aphinyanaphongs et al. (2005). They investigated its use to improve information retrieval

in evidence-based medicine. They proposed an algorithm that automatically classifies

internal medicine articles as either high or low quality. They applied several feature spaces

and tested different text classification techniques (Support Vector Machine (SVM), Naïve

Bayes and Boosting). They found that the best result was obtained by using SVM with the

title, Medical Subject Heading (MeSH) terms and publication type features.

In subsequent years, many NLP/IR approaches have been proposed, Cohen et al.

(2006) applied machine learning algorithms to drug-related topics. They aimed to reduce

the experts’ effort needed at the screening stage by removing as many non-relevant studies

as possible. They used a voting perceptron based classifier and applied a bag-of-words

method to the title, abstract, MeSH terms and publication type. Their proposed system

demonstrates good results for reducing the workload during screening to 11 systematic

reviews out of 15 reviews. The number of studies required to be screened manually

was decreased by 50% or more for three of the 15 systematic reviews. Later the same

year, Cohen (2006) applied re-sampling with SVM classifier by using SVM on TREC 2005

Genomics track data.

Yu et al. (2008) used SVM to classify human genetic association literature in PubMed,

achieving 97.5% recall and 31.9% precision.

Kilicoglu et al. (2009) proposed a model to recognise medical publications to assist

in evidence-based medicine. They applied different classifiers (SVM, Naïve Bayes, and

Boosting). Experiments demonstrated that using a high-quality gold standard with ad-

vanced classification can improve selecting medical publications. The model achieved

61.5% recall and 73.7% precision.

Matwin et al. (2010) reported that using a Factorised version of the Complement

Naïve Bayes classifier and the Weight Engineering techniques is better than using a voting

perceptron-based system proposed by Cohen et al. (2006), achieving an enhancement of

15% over the average of WSS (see Section 2.4.3). They experimented on the drug dataset

prepared by Cohen (2006) and applied different features, including the title, abstract,
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MeSH terms and publication type. They used word frequencies to represent the abstract

and used binary representations to represent the MeSH and publication type.

Cohen et al. (2010) proposed a system to classify a list of studies from 18 systematic

reviews topics based on SVMlight. It classifies samples based on the signed-margin distance.

The studies with a large positive margin distance are classified as strongly relevant. On

the other hand, studies with a very negative margin are classified as strongly non-relevant.

The proposed system achieved a high AUC (see Section 2.4.3), with a mean of 0.89 across

all topics.

Frunza et al. (2010) proposed a model based on a pre-question text classification. They

used Complement Naïve Bayes classifier to exploit the question in the systematic review

protocol.

Kim and Choi (2012) and Kim and Choi (2014) used SVM classifier to enhance the

process of choosing relevant studies in evidence-based medicine. They applied this

method to systematic review datasets on procedures and drugs. The SVM classifier was

trained on the combination of studies included and commonly excluded. In Kim and Choi

(2012), performance was enhanced by 15% for procedure topics and 11% for drug topics.

In Kim and Choi (2014) the mean AUC was 0.95 for procedure topics and 0.84 for drug

topics. They concluded that using a combination of included and commonly excluded

studies is more effective than a combination of included and excluded studies.

Bian et al. (2017) applied a high impact Naïve Bayes classifier to classifying high impact

studies for clinical decision support. They tested several features, including bibliometrics,

MEDLINE metadata, such as MeSH terms and publication type, and social media exposure.

The main limitation of this work is that they used a single dataset to train the classifier.

The SVM classifier has been consistently shown to work well on classification of

biomedical texts (Aphinyanaphongs et al., 2005; Cohen, 2008; Cohen et al., 2010; Kilicoglu

et al., 2009; Kim and Choi, 2012, 2014; Martinez et al., 2008; Miwa et al., 2014; Wallace et al.,

2010, 2012a). In addition, other algorithms used in automating screening stage include

Naïve Bayes, neural network, K-nearest neighbour and decision tree (Aphinyanaphongs
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et al., 2005; Bian et al., 2017; Hashimoto et al., 2016; Kilicoglu et al., 2009; Matwin et al.,

2010).

Ranking

A number of studies used ranking to improve the identification of relevant evidence.

Cohen et al. (2009) proposed a method to improve the performance of ranking for 24

systematic drug class reviews. They explored the use of combination training data: training

from topic-specific data and training on data from other topics. They found that using

hybrid data is better than training the SVM on topic-specific annotated data only with the

AUC improving by 20%. However, Karimi et al. (2010) found that using ranking by itself is

not helpful in terms of high recall. Therefore, they proposed a hybrid system consisting of

ranking and Boolean querying.

Lee and Sun (2018) proposed a method to improve ranking by using a seed-driven doc-

ument. They assumed that at least one relevant document is known before the screening

start, i.e., the seed document. This document is used to form a query and ranking the

candidate documents. Experiments showed the effectiveness of the proposed method to

reduce workload by experts achieving an enhancement of 15% over WSS.

Scells et al. (2020) proposed an extension to coordination level matching, by exploit-

ing the query-document relationship with rank fusion. They applied their method on

CLEF2017 and CLEF2018 collections. The model performed statically significantly better

than the state-of-the-art PubMed ranker in term of MAP for CLEF2018 dataset.

Zuccon et al. (2020) proposed a query variation sampling methods for training learning

to rank models to rank queries. The results show that query sampling methods do directly

impact the ability of a learning to rank models to effectively identify good query variations.

Thus, selecting appropriate query sampling methods is a key problem for the automatic

reformulation of effective Boolean queries for systematic review literature search.

Much research has been devoted to using ranking with classification for the purpose

of workload reduction when conducting a systematic review. Below, this research is

described.
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Martinez et al. (2008) proposed a two-stage ranking search system based on ranked

queries and re-ranking using text classification to restrict the results to high-quality studies.

They applied their system to the 15 systematic reviews from the drug class previously

used by Cohen et al. (2006) and examined two feature sets: one consisting of abstract and

references and another - of abstract, references and MeSH terms. Their proposed system

is beneficial for most systematic reviews, with an average WSS of 34.3 when using MeSH

terms.

Cohen (2008) constructed a classification system based on work prioritisation and

evaluated three feature combinations to classify studies based on SVMlight. He applied

these to the 15 systematic reviews from the drug class mentioned earlier. Using a binary

representation for all features, the study found that the best scoring result of the three

feature combinations was that of a combination of unigram and n-gram, with a length of

two, extracted from the title, abstract and MeSH terms. The worst scoring combination

was that of unigram, MeSH terms and UMLS CUI (Unified Medical Language System

Concept Unique Identifier). Cohen demonstrated that work prioritisation with the use of

the MeSH feature can enhance the efficiency of conducting a systematic review.

Bui et al. (2015) developed an unsupervised system to retrieve studies based on query

expansion and ranking. Query expansion aims to extend the original query by adding

related terms to create a query that is more likely to retrieve relevant studies (Baeza-

Yates and Ribeiro-Neto, 2011). Using query expansion improved recall to 80.2% while the

precision decreased by 0.2% compared with a default PubMed search. For the ranking,

they proposed the clinical research scoring approach using three dimensions: MeSH

majority, study design, and journal ranking. They compared their ranking system with

two systems: using machine learning (specifically, classification) and PubMed default sort

(by relevance). The best average precision and recall was achieved by using the clinical

research scoring approach.

Cohen et al. (2015) developed a method to rank and predict the relevance of studies

which they applied in a randomized controlled trial to a large set of MEDLINE articles.

They applied the SVM classifier with features that included the abstract and MeSH terms



28 Systematic Review of the Literature

for the article. They reported a high AUC (0.973) but the method missed a number of

relevant studies (5%).

Scells and Zuccon (2018) and Scells et al. (2019) introduced an approach to improving

Boolean queries used for study identification in systematic reviews. The query used in

the review was iteratively altered by applying a set of transformations such as replacing

logical operators and field restrictions. They found that the modified queries generated

by this approach improved upon those used in the original review. The best modified

queries were identified using classifiers and learning to rank methods. Their approaches

produced queries with higher precision and F1 scores than the original query but not

improved recall. Their method was used to demonstrate that it was possible to improve

the Boolean query used for the original review.

Active Learning

Many studies have used active learning to reduce the workload involved in systematic

reviews. Wallace et al. (2010) developed a semi-automated approach to reducing the

number of studies need to be manually screened by reviewers. Their approach was based

on an SVM with different feature spaces. The classifier was trained using an active learning

strategy. It chooses the study to be screened next, rather than sampling at random. The

researchers applied their method to three systematic review datasets. As a result, the

number of studies that needed to be screened manually was reduced by 40% to 50%. Two

years later, Wallace et al. (2012a) designed an online tool “Abstrackr” for facilitating the

screening stage of systematic reviews. The system was based on active learning, whereby

the classification model interacts with reviewers. The tool is open source and free to use;

it has been used to assist in 50 systematic reviews (as of the date of publication, 2012).

Tomassetti et al. (2011) developed a semi-automated method for screening studies

using linked data and text mining. Their model was able to reduce the workload by 20%

compared with the manual screening.

Jonnalagadda and Petitti (2013) proposed a system that uses simple relevance feedback

from reviewers to modify the query. The system presents the initial document to the
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reviewer and asks them to classify it as relevant or not relevant. Then the query is modified

and the next document is presented to the reviewer based on the modified query. Their

system was able to reduce the number of studies need to be screened manually by 6%-30%

with recall of 95%.

Zhang et al. (2016) proposed a method to accurately and efficiently find the number

of relevant studies in a collection for a certain topic (the volume estimation problem).

Their proposed system is based on active learning and sampling. First, active learning

is used to find the knee point in the effort versus recall gain curve where all the easy to

find relevant studies are identified, then a sampling technique is applied to locate the

number of relevant studies in the rest of the collection. They explored three sampling

strategies: Negative binomial sampling, Horowitz-Thompson estimator, and stratified

sampling (Tillé, 2006). They found the Negative binomial sampling to be more accurate

than the other sampling methods. They demonstrated that using active learning with

sampling strategies can help in the volume estimation problem.

Kontonatsios et al. (2017) developed a semi-automated system that uses active learning

to enhance classification of studies. They used two vector space representations: (a) bag-

of-words and (b) a data-dependent, spectral embedding. They applied their system to

the COPD and Proton Beam datasets (see Section 2.4.2) in addition to four public health3

systematic reviews. They found that results in clinical and biomedical domains show

consistent improvements.

Miwa et al. (2014) applied active learning for both clinical medicine and public health

data. They addressed the problem of imbalanced data where the number of examples in

one class is very small relative to the number in another class (e.g. the number of relevant

documents vs the number of non-relevant documents). They applied a weighting method

whereby they assigned a greater weight to relevant studies than to non-relevant studies.

They demonstrated that using the weighting certainty method is the most promising

approach for active learning with imbalanced data.

3http://eppi.ioe.ac.uk/cms/.
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Based on Miwa et al. (2014), Hashimoto et al. (2016) proposed a model to enhance

active learning text classification used in the screening stage. They used neural network

based vector space model (paragraph vectors) to find similarity between studies. They

applied k-means clustering algorithm. Their proposed system outperformed the work

done by Miwa et al. (2014) with a 1%-15% improvement for WSS@95.

Conference and Labs of the Evaluation Forum (CLEF) 2017-2019

During the last three years (2017-2019), the CLEF eHealth forum ran a task on systematic

reviews that aimed to support the screening phase by (semi)automatically ranking the

studies by relevance to the review (Kanoulas et al., 2017, 2018, 2019). The task focused on

the effectiveness of ranking during the first phase of screening: title and abstract screening.

Participants were provided with two datasets: a training dataset and a test dataset (see

Section 2.4.2). For each dataset, a list of studies retrieved from a Boolean query was

provided. The participants were asked to rank the studies in an efficient way.

The task attracted a wide range of participants from the text mining community. Figure

2.5 shows that a large number of included studies are from CLEF working notes. In 2017,

15 groups participated in the task. The following year, 2018, seven groups participated.

In 2019, only three groups participated in the task. In general, participants applied both

supervised and unsupervised approaches. A variety of ranking algorithms were used,

including BM25 (Alharbi and Stevenson, 2019b; Hollmann and Eickhoff, 2017a; Kalphov

and Azzopardi, 2017; Nunzio, 2019; Wu et al., 2018), relevance feedback (Alharbi et al., 2018;

Anagnostou and Vlahavas, 2017; Hollmann and Eickhoff, 2017a; Minas et al., 2018; Norman

et al., 2017; Nunzio et al., 2017, 2018; Wu et al., 2018; Yu and Menzies, 2017), continuous

active learning (Li and Kanoulas, 2019; Nunzio, 2019; Yu and Menzies, 2017) and learning

to rank (Anagnostou and Vlahavas, 2017; Chen et al., 2017; Minas et al., 2018). In addition,

some participants used a classification algorithm to classify the search results as relevant

or non-relevant and then rank them. The algorithms used included random forest (Altena

and Olabarriaga, 2017; Chen et al., 2017; Scells et al., 2017a), SVM (Anagnostou and

Vlahavas, 2017; Minas et al., 2018; Yu and Menzies, 2017), logistic regression (Norman
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et al., 2017, 2018) and neural network (Lee, 2017; Norman et al., 2018). Furthermore, a

stopping criteria was applied by some participants to provide a threshold to stop the

ranking (i.e. to suggest a stopping point beyond which the reviewer does not need to

screen the studies) (Cormack and Grossman, 2018, 2017b; Li and Kanoulas, 2019; Nunzio,

2019).

Results from these exercises demonstrated that automating the screening stage of

systematic review can be efficient in identifying most, if not all, relevant studies with less

effort and time than manual screening.

2.4.2 Q2. What are the datasets used? Are they publicly available?

Well-defined datasets are needed to evaluate NLP/IR techniques. Researchers usually

prefer to use a public dataset so they can compare the performance of their models with

the results achieved by other researchers. This section explores the datasets used in the

literature to evaluate NLP/IR techniques for study screening in systematic reviews. In

addition, it presents the characteristics of those datasets. Figure 2.7 shows the distribution

of the included studies by the dataset used.
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Figure 2.7: Distribution of included studies by dataset used.

Drugs Dataset

An early dataset was interpreted by the U.S. Agency for Healthcare Research and Quality,

(AHRQ)4 consisting of 15 systematic reviews on drug-related topics with associated data,

4https://www.ahrq.gov/
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including Boolean queries and search results. This dataset was first assembled by Cohen

et al. (2006) and has been extensively used in the literature (19% of included studies

used this dataset). Table 2.1 provides an overview of the drugs dataset. The dataset is

publicly available from the systematic drug class review Gold Standard website5. The

file includes the drug name, a list of PubMed identification numbers (PMIDs) and the

relevance judgement.

Table 2.1: Characteristics of the Drugs dataset.

Drug Systematic Review No. of Studies No. of Relevant Abstract
ACEInhibitors 2,544 183 (7.19%)
ADHD 851 84 (9.87%)
Antihistamines 310 92 (29.68%)
AtypicalAntipsychotics 1,120 363 (32.41%)
BetaBlockers 2,072 302 (14.58%)
CalciumChannelBlockers 1,218 279 (22.91%)
Estrogens 368 80 (21.74%)
NSAIDs 393 88 (22.39%)
Opioids 1,915 48 (2.51%)
OralHypoglycemics 503 139 (27.63%)
ProtonPumpInhibitors 1,333 238 (17.85%)
SkeletalMuscleRelaxants 1,643 34 (2.07%)
Statins 3,465 173 (4.99%)
Triptans 671 218 (32.49%)
UrinaryIncontinence 327 78 (23.85%)
Total 18,733 2,399 (12.81%)

Proton and COPD Datasets

The Proton and Chronic Obstructive Pulmonary Disease (COPD) datasets have been used

in 7% of the studies. These datasets were reported by Wallace et al. (2010). The Proton

Beam dataset is derived from a systematic review of particle beam radiation therapies for

cancer by Tufts Medical Centre Evidence-based Practice Centre (Terasawa et al., 2009).

The COPD systematic review was created in 2010. Its main purpose was to examine the

outcomes of interval versus continuous training on peak oxygen uptake, peak power,

six-minute walk test distance and health-related quality of life in individuals with COPD

5https://dmice.ohsu.edu/cohenaa/systematic-drug-class-review-data.html
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(Castaldi et al., 2009). These datasets are publicly available as XML files containing the

title, abstract and MeSH terms for each study6. Table 2.2 provides a summary of the

information about these datasets.

Table 2.2: Characteristics of COPD and Proton datasets.

Dataset No. of Studies No. of Relevant Abstract
COPD 1,524 196 (12.86%)
Proton 4,751 243 (5.11%)

CLEF datasets

CLEF datasets were provided by the CLEF organiser (Kanoulas et al., 2017, 2018, 2019).

They were used in 44% of the included studies. Tables 2.3-2.7 present the characteristics

of CLEF datasets. Each dataset is divided into a training dataset and a test dataset. Each of

these contains a number of reviews. In 2017 and 2018, all reviews focused on Diagnostic

Test Accuracy (DTA). The 2019 dataset includes four types of reviews: DTA, Intervention,

Prognosis and Qualitative reviews. However, the training split of the CLEF2018 dataset is a

subset of CLEF2017 dataset and the DTA training set of CLEF2019 represents CLEF2018

dataset.

Table 2.3: Characteristics of CLEF datasets.

Number of reviews
Year Review Type Training Test Total

CLEF2017 DTA 20 30 50
CLEF2018 DTA 42 30 72

CLEF2019

DTA 72 8 80
Intervention 20 20 40

Prognosis 0 1 1
Qualitative 0 2 2

Total number of distinct reviews 123

6https://static-content.springer.com/esm/art%3A10.1186%2F1471-2105-11-
55/MediaObjects/12859_2009_3512_MOESM1_ESM.ZIP
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Table 2.4: CLEF2017 training dataset characteristics.

Review No. of Studies No. of Relevant Abstract
CD010438 3,250 39 (1.39%)
CD011984 8,192 454 (16.19%)
CD008643 15,083 11 (0.39%)
CD009944 1,181 117 (4.17%)
CD007427 1,521 123 (4.39%)
CD009593 14,922 78 (2.78%)
CD011549 12,705 2 (0.07%)
CD011134 1,953 215 (7.67%)
CD008686 3,966 7 (0.25%)
CD011975 8,201 619 (22.08%)
CD009323 3,881 122 (4.35%)
CD009020 1,584 162 (5.78%)
CD011548 12,708 113 (4.03%)
CD010409 43,363 76 (2.71%)
CD008054 3,217 274 (9.77%)
CD010771 322 48 (1.71%)
CD009591 7,991 144 (5.14%)
CD008691 1,316 73 (2.60%)
CD010632 1,504 32 (1.14%)
CD007394 2,545 95 (3.39%)

Total 149,405 2,804 (1.88%)
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Table 2.5: CLEF2017 test dataset characteristics.

Review No. of Studies No. of Relevant Abstract
CD010775 241 11 (0.59%)
CD009786 2,065 10 (0.54%)
CD009579 6,455 138 (7.43%)
CD009925 6,531 460 (24.77%)
CD007431 2,074 24 (1.29%)
CD008803 5,220 99 (5.33%)
CD008782 10,507 45 (2.42%)
CD009647 2,785 56 (3.02%)
CD009135 791 77 (4.15%)
CD008760 64 12 (0.65%)
CD009519 5,971 104 (5.60%)
CD009372 2,248 25 (1.35%)
CD010276 5,495 54 (2.91%)
CD009551 1,911 46 (2.48%)
CD012019 10,317 3 (0.16%)
CD008081 970 26 (1.40%)
CD009185 1,615 92 (4.95%)
CD010339 12,807 114 (6.14%)
CD010653 8,002 45 (2.42%)
CD010542 348 20 (1.08%)
CD010896 169 6 (0.32%)
CD010023 981 52 (2.80%)
CD010772 316 47 (2.53%)
CD011145 10,872 202 (10.88%)
CD010705 114 23 (1.24%)
CD010633 1,573 4 (0.22%)
CD010173 5,495 23 (1.24%)
CD010386 626 2 (0.11%)
CD010783 10,905 30 (1.62%)
CD010860 94 7 (0.38%)

Total 117,562 1,857 (1.58%)
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Table 2.6: CLEF2018 training dataset characteristics.

Review No. of Studies No. of Relevant Abstracts
CD007394 2,542 92 (3.62%)
CD007427 1,457 59 (4.05%)
CD008054 3,149 206 (6.54%)
CD008081 970 26 (2.68%)
CD008643 15,078 6 (0.04%)
CD008686 3,964 5 (0.13%)
CD008691 1,310 67 (5.11%)
CD008760 64 12 (18.75%)
CD008782 10,507 45 (0.43%)
CD008803 5,220 99 (1.90%)
CD009020 1,576 154 (9.77%)
CD009135 791 77 (9.73%)
CD009185 1,615 92 (5.70%)
CD009323 3,857 98 (2.54%)
CD009372 2,248 25 (1.11%)
CD009519 5,971 104 (1.74%)
CD009551 1,911 46 (2.41%)
CD009579 6,455 138 (2.14%)
CD009591 7,990 143 (1.79%)
CD009593 14,907 63 (0.42%)
CD009647 2,785 56 (2.01%)
CD009786 2,065 10 (0.48%)
CD009925 6,531 460 (7.04%)
CD009944 1,162 98 (8.43%)
CD010023 981 52 (5.30%)
CD010173 5,495 23 (0.42%)
CD010276 5,495 54 (0.98%)
CD010339 12,807 114 (0.89%)
CD010386 626 2 (0.32%)
CD010409 43,335 48 (0.11%)
CD010438 3,241 30 (0.93%)
CD010542 348 20 (5.75%)
CD010632 1,499 27 (1.80%)
CD010633 1,573 4 (0.25%)
CD010653 8,002 45 (0.56%)
CD010705 114 23 (20.18%)
CD011134 1,938 200 (10.32%)
CD011548 12,704 109 (0.86%)
CD011549 12,704 1 (0.01%)
CD011975 8,186 604 (7.38%)
CD011984 8,180 442 (5.40%)
CD012019 10,317 3 (0.03%)

Total 241,670 3,982 (1.65%)
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Table 2.7: CLEF2018 test dataset characteristics.

Review No. of Studies No. of Relevant Abstract
CD008122 1,911 272 (14.23%)
CD008587 9,158 79 (0.86%)
CD008759 932 60 (6.44%)
CD008892 1,499 69 (4.60%)
CD009175 5,644 65 (1.15%)
CD009263 79,786 124 (0.16%)
CD009694 161 16 (9.94%)
CD010213 15,198 599 (3.94%)
CD010296 4,602 53 (1.15%)
CD010502 2,985 229 (7.67%)
CD010657 1,859 139 (7.48%)
CD010680 8,405 26 (0.31%)
CD010864 2,505 44 (1.76%)
CD011053 2,235 12 (0.54%)
CD011126 6,000 13 (0.22%)
CD011420 251 42 (16.73%)
CD011431 1,182 297 (25.13%)
CD011515 7,244 127 (1.75%)
CD011602 6,157 8 (0.13%)
CD011686 9,443 55 (0.58%)
CD011912 1,406 36 (2.56%)
CD011926 4,050 40 (0.99%)
CD012009 536 37 (6.90%)
CD012010 6,830 290 (4.25%)
CD012083 322 11 (3.42%)
CD012165 10,222 308 (3.01%)
CD012179 9,832 304 (3.09%)
CD012216 217 11 (5.07%)
CD012281 9,876 23 (0.23%)
CD012599 8,048 575 (7.14%)

Total 218,496 3,964 (1.81%)

For each review in the dataset, the following information is available (see Figure 2.8):

• Review (topic) ID

• Title of the review (written by Cochrane experts)

• A Boolean query using either OVID or PubMed syntax (manually constructed by

Cochrane experts)
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• Set of PMIDs returned by running the query in the MEDLINE database

• Relevance judgement at both abstract and content levels

Review ID: CD010705

Title: The diagnostic accuracy of the GenoType® MTBDRsl assay for the detection

of resistance to second-line anti-tuberculosis drugs.

Boolean Query:

1. MTBDR*.ti,ab.

2. Genotype MTBDR*.ti,ab

3. OR/1-2

4. exp Tuberculosis, Pulmonary/

5. exp Tuberculosis, Multidrug-Resistant/

6. MDR-TB.ti,ab

7. XDR-TB.ti,ab

8. Mycobacterium tuberculosis/

9. TB.ti,ab

10. tuberculosis.ti,ab

11. OR/4-10

12. 3 AND 11

PMIDs:

24429319, 24197880, 24172155, 24098523, 24056651, 24046537, 24039735, 24029194,

23895665, 23883707, 23808160, 23782980, 23689727, 23658272, 23633684, 23467605,

23392466, 23383320, ........

Figure 2.8: Example Cochrane reviews used in CLEF2018 training dataset (Theron et al.,
2016).
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The total number of distinct reviews from CLEF is 123. All reviews are from the

Cochrane library and they are publicly available from the CLEF organiser7. More details

about the CLEF dataset are presented in Appendix B.

In addition to these datasets, there are others, including: a publicly available dataset

of 94 Cochrane reviews8 published by Scells et al. (2017b) (used by one study), TREC 2005

Genomics track dataset9 (used by one study), TREC 2015 Total Recall Track dataset10 (used

by one study), reviews from AHRQ (used by two studies), update dataset (used by two

studies) and different reviews form MEDLINE (used by 11 studies).

In general, as can be seen, all datasets which are publicly available were created for

the purpose of conducting new systematic reviews.

2.4.3 Q3. How are those techniques evaluated?

Figure 2.9 shows the measures applied to evaluate the performance of the techniques

applied in the included studies. The most commonly used measures are WSS (55.5%),

AP (44.4%), recall (27%), precision (20.6%), AUC (14%) and F-score (9.5%). Below, each

measure is described in detail.

0

5

10

15

20

25

30

35

Recall Precision F measure WSS AUC AP Other

Number of Publications 

Figure 2.9: Distribution of included studies by evaluation measure.

7https://github.com/CLEF-TAR/tar
8available on https://github.com/ielab/SIGIR2017-PICO-Collection
9available on https://trec.nist.gov/data/t14_genomics.html

10https://trec.nist.gov/pubs/trec24/papers/Overview-TR.pdf
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Table 2.8 presents the confusion matrix that will be used to define each measure. True

Positives (T P ) are those labels that were correctly predicted to be relevant. False Positives

(F P ) are those labels that were predicted to be relevant but were, in fact, non-relevant.

True Negatives (T N ) are those labels that were correctly predicted to be non-relevant.

False Negatives (F N ) are those labels that were predicted to be non-relevant but were, in

fact, relevant.

Table 2.8: Confusion Matrix.

annotated labels
Relevant Non-Relevant

predicted labels
Relevant T P F P

Non-Relevant F N T N

Recall and Precision

Recall and Precision are standard metrics widely used in IR (Baeza-Yates and Ribeiro-Neto,

2011). Recall (see Equation 2.1) is calculated as the number of correctly identified relevant

studies divided by the total number of relevant studies in the collection.

r ecal l = T P

T P +F N
(2.1)

Precision (see Equation 2.2) is calculated as the number of correctly identified relevant

studies divided by the total number of retrieved studies.

pr eci si on = T P

T P +F P
(2.2)

In professional search tasks, such as patent retrieval and legal search, the reviewers’

goal is to identify almost all of the publications reasonably related to the search topic, i.e.,

there is typically an emphasis on recall. It is required to achieve high recall at acceptable

precision (high-recall task) (Kim et al., 2011; Shalaby and Zadrozny, 2019; Song et al., 2019).

The nature of the search problem in systematic reviews is like the professional search,

it requires high recall since the goal is to identify as many eligible studies as possible
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(Carol et al., 2020). However, retrieving a large number of non-relevant studies increases

the screening effort required by the reviewers and it is, hence, beneficial to ensure that

the precision is as high as possible. Therefore, an evaluation of the trade-off between

potentially missing studies and reducing burden is required. They allow reviewers to

change the relative importance of these two metrics depending on priorities in a given

review. These metrics include notably the F-score and Work Saved over Sampling, which

are summarised below.

F-score

F-score is a single measure that trades off precision versus recall. It is calculated as follows:

Fβ =
(β2 +1)×pr eci si on × r ecal l

β2 ×pr eci si on + r ecal l
where β2 ∈ [0,∞] (2.3)

It is possible to adjust the F-score to give more importance to precision over recall, or

vice-versa. When β> 1, F becomes more recall-oriented and if β< 1, it becomes more

precision oriented. When β = 1, F1 (see Equation 2.4 ) comes to be equivalent to the

harmonic mean of both recall and precision (Manning et al., 2008a).

F 1 = 2× pr eci si on × r ecal l

pr eci si on + r ecal l
(2.4)

Work Saved over Sampling (WSS)

WSS was introduced by Cohen et al. (2006) as a measure in the field of systematic reviews.

Cohen et al. defined WSS as “the percentage of papers that meet the original search

criteria that the reviewers do not have to read (because they have been screened out by

the classifier)” (Cohen et al., 2006). WSS is calculated using Equation 2.5.

W SS = T N +F N

N
− (1.0− r ecal l ) (2.5)
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where N is the total number of studies. For example, the workload over sampling at 95%

recall is defined as:

W SS@95% = T N +F N

N
− (0.05) (2.6)

Area Under the ROC Curve (AUC)

AUC is used to evaluate the performance of machine learning algorithms. It measures the

area underneath the ROC curve (ROC = Receiver Operating Characteristic curve). ROC

plots two parameters (see Figure 2.10): The True Positive Rate and the False Positive Rate.

The True Positive Rate (T PR) is a synonym for recall and is therefore defined as follows

(Bradley, 1997):

T PR = r ecal l = T P

T P +F N
(2.7)

False Positive Rate (F PR) is defined as follows:

F PR = F P

F P +T N
(2.8)

ROC is used to compare different classification threshold values for classification

models. AUC is the area underneath this curve, the higher its numerical value, the better

it is. It is used to compare the performance of different classification models or to find

the probability that a given classification system works better than the baseline (random

ordering).

However, in the case of imbalanced data where the number of negative (non-relevant)

examples is much greater than the number of the positive (relevant) examples, it is better

to use a recall-precision curve because precision does not include the T N in its calculation

and is not affected by the class imbalance.

Mean Average Precision (MAP)

MAP is widely used in practice for evaluating the performance of a ranking system (Shobha

and Rangaswamy, 2018). MAP for a set of reviews represents the mean of the average
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FPR

TPR

ROC

AUC

Figure 2.10: Example of Area Under the ROC Curve.

precision (AP) scores over all reviews. The AP of a single review is the average of the

precision scores for each relevant study retrieved in the search result list (Ibrahim and

Landa-Silva, 2017; Thom and Scholer, 2007). These are rank positions at which relevant

studies are retrieved. MAP is computed as:

M AP =
∑T

i=1 AP

T
(2.9)

where T is the total number of reviews.

To exemplify, Figure 2.11 shows the ranking effectiveness for two reviews. The AP for

the first review (a) is the average of precision scores at positions 1, 2, 4, 7 and 9 where

relevant documents were retrieved: (1 + 1 + 0.75 + 0.57 + 0.56)/5 = 0.78. On the other hand,

the AP for the second review (b) is the average of precision at positions 2, 4, 5 and 9: (0.5 +

0.5 + 0.6 + 0.44)/4 = 0.51. Therefore, the MAP for this example is (0.78 + 0.51)/2 = 0.65.
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(a) Ranking for Review 1

R R NR R NR NR R NR

Rank Posit ion

Recall

Precision

1             2     3          4         5       6      7                8                9 10

1.00           1.00    0.67         0.75        0.60      0.50            0.57          0.50        0.56 0.50

0.20      0.40    0.40  0.60        0.60      0.60            0.80    0.80  1.00 1.00

R NRDocuments

(b) Ranking for Review 2

NR R NR R R NR R

Rank Posit ion

Recall

Precision

1             2     3          4         5       6      7                8                9               10

0.00      0.50    0.33          0.50        0.60       0.50     0.43          0.38           0.44           0.40

0.00      0.25    0.25   0.50        0.75       0.75     0.75    0.75           1.00           1.00

NR NR NRDocuments

R = Relevant , NR = Non-Relevant

Figure 2.11: Ranking effectiveness example.

In addition to the measures discussed above, other measures were used by studies

such as utility (5%), yield (5%) and burden (3.5%) (Miwa et al., 2014). These metrics are

not explained in detail as they will not be used in this thesis.

2.4.4 Q4. Which techniques are applied in the screening stage of the

review update process?

Most of the studies applied techniques to support the identification of studies for the

creation of new reviews (85%). Figure 2.12 shows the distribution of studies by the type of

the review (i.e. new review, update or both). Few researchers have addressed the problem

of identifying the relevant studies for updating reviews - 10 (16%) of the total included

studies. The update process was the main focus of 70% of these studies (Alharbi and

Stevenson (2019c, 2020); Cohen et al. (2012); Dalal et al. (2012); Lerner et al. (2019); Surian

et al. (2018); Wallace et al. (2012a)) while it constituted only a part of the study for the

remaining 30% (Cohen (2008); Cohen et al. (2009); Khabsa et al. (2016)).
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Update
3

7

53
New Review

Figure 2.12: Distribution of included studies by type.

Most of these studies (71%) applied classification (SVM and random forest), one study

applied ranking, and one study applied both.

Wallace et al. (2012b) used SVM to reduce the workload involved in the screening

process for the systematic review update. They used the relevance judgement of the

original review to train a classifier. Wallace et al. used four systematic reviews to validate

their proposed approach and found that the classifier reduced the workload by 70%-90%.

Cohen et al. (2012) designed a classification algorithms that gives an alert when new

evidence is available to schedule a review update. They used nine drug therapy systematic

reviews from MEDLINE to evaluate their approach. However, their system did not achieve

a reliably high recall or precision.

Dalal et al. (2012) used labelled datasets for two systematic reviews from MEDLINE to

train a classifier. Then, they used the classifier to predict which studies should be included

in a simulated update. The system was able to reduce workload by 50%. However, recall

decreased.

Surian et al. (2018) used a matrix factorisation approach to identify relevant studies

for a systematic review update. The main limitation of this work was the authors’ focus

on drug interventions in type 2 diabetes. This means the results cannot be generalised to

other domains.

Alharbi and Stevenson (2019c) used an update dataset consists of 25 intervention

reviews (see Chapter 4). They aimed to improve study selection for systematic review
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updates by using information produced during the screening stage of the original review.

They applied relevance feedback and the screening effort required to identify all relevant

studies (100% recall) was reduced by 63.5%.

Lerner et al. (2019) developed an algorithm for automatically screening abstracts

when updating living network meta-analysis. They applied word embeddings and logistic

regression. The algorithm achieved 95-100% recall and decreased the workload by 53%.

Alharbi and Stevenson (2020) proposed a method to automatically refine Boolean

queries for the study selection stage of systematic review updates (see Chapter 5). The

proposed approach generates a set of transformed queries using three methods: operator

substitution, query expansion and query reduction. The best query is then selected using

an objective function that considers both recall and precision. The method improves the

original query both in terms of recall and precision. It produces queries that are able to

identify relevant studies that would not be retrieved using the query from the original

review.

Most of these studies evaluated their approaches using simulations of the update

process by using “time-slicing". For example, by assuming that the included studies

appeared in the three years before the review publication date, like in the case of studies

included in the updated version of the review by Khabsa et al. (2016). An exception is a

work that used update information for nine drug therapy systematic reviews by Cohen

et al. (2012), but this dataset is not publicly available.

2.5 Limitations

The main limitation of this review is that the search was restricted to only one database.

The reason was to make the search results manageable. However, PMC was chosen

to conduct the search which allowed to specify the search limits. Seven journals were

chosen which are highly related to the domain of this review (i.e NLP/IR techniques and

systematic review screening). PMC also produced a de-duplicated list of results.
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A further limitation is that this review was performed by only two researchers while

systematic reviews are usually conducted by a team.

In addition, this review was focusing on techniques which have been applied with sys-

tematic reviews to support screening process. However, there are many recent techniques

in NLP that have not been considered in the review because they were not used in the

field of systematic reviews, e.g. language models such as BERT and BioBERT (Lee et al.,

2020). This offers plenty of scope for future work, e.g. it would be interesting to apply and

evaluate these recent techniques in the domain of systematic reviews.

2.6 Summary

This chapter described a systematic review conducted to explore the use of NLP/IR tech-

niques in facilitating the screening process for systematic reviews. It also paid attention

to the studies that tackle the problem of updating systematic reviews. PMC was used to

search for relevant studies across seven journals. After screening, from 554 studies,62 were

found fulfilled the inclusion/exclusion criteria. The information was extracted and the

results obtained were summarised.

Although it is difficult to have a single conclusion across all included studies due to the

differences in methodologies implemented, datasets used and evaluation metrics applied,

the overall picture shows that NLP/IR techniques are useful to improve the screening

process. In particular, classification can reduce the workload by excluding non-relevant

studies. On the other hand, ranking can help in identifying relevant studies earlier which

will help researchers to gain more knowledge about the inclusion criteria and therefore

accelerate the process of conducting systematic reviews. Few studies pay attention to an

important problem which is the update process.

The results obtained from this systematic review can be summarised in the following

points:

• Using NLP/IR techniques can improve the process of identifying relevant evidence

and reduce the workload required from experts.
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• The most commonly applied classifier is SVM.

• Classification can reduce workload by reducing the number of articles which need to

be screened (increase precision) but in most studies this results in missing relevant

articles (decrease recall).

• The majority of studies applied techniques for the creation of new reviews, a limited

number of studies tackled the problem of identifying relevant evidence for the

update process.

• The most commonly used datasets to evaluate techniques are drugs and CLEF.

• There is no publicly available dataset to evaluate techniques for the update process

(except the one constructed by the Author - See Chapter 4).

• Current proposed systems are able to reduce workload by reducing the number of

studies which need to be manually screened by 30%-70%. However, this reduction

is usually achieved at the expense of reduction of recall by 5%.

Table 2.9 presents a summary of information extracted from the 63 included studies.
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Chapter 3

Query Adaptation to Improve Ranking

3.1 Introduction

As we have seen in Chapter 2, a considerable amount of literature has demonstrated the

effectiveness of ranking in the systematic review screening process. O’Mara-Eves et al.

(2015) and Cohen (2008) highlighted many benefits of ranking studies for a systematic

review in terms of workflow efficiency and reducing the burden of abstract screening.

One is that reviewers acquire a better understanding of the inclusion criteria earlier in

the process because they find more examples of relevant studies faster than it would

otherwise be the case. It also allows analysis of document content to start earlier than

it can happen when studies are screened at random. This can be a significant benefit

because accessing the content of studies induces the content screening process, since

the majority of relevant studies should be identified early. On the other hand, in reviews

with searches resulting in a very large number of studies, it would be particularly useful to

review the studies in order of their likely importance. In this case, the remaining studies

can be screened in the following months by less experienced reviewers.

Ranking also helps in reducing the workload required by the researches by increasing

the rate (or speed) of screening. Instead of screening a large unordered set of documents to

assist their eligibility, under ranking, the most relevant documents should tend to appear

early in the list. This means that study screening and selection can be better focused
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and take less time to complete compared with conventional manual screening and thus

reduce the workload (Karimi et al., 2010; Olofsson et al., 2017).

Query adaptation techniques have been widely applied in IR and considered as a

promising approach to improve retrieval performance (Carpineto and Romano, 2012).

Query adaptation is the process of reformulating a given query with the aim of improv-

ing retrieval performance (Shobha and Rangaswamy, 2018). One approach to query

adaptation is query expansion where the original query is extended by adding related

terms. Related terms can be identified using unstructured data (e.g. text documents) or

structured data (e.g. ontology) (Bai and Nie, 2008; Shen et al., 2006).

Several studies have applied query adaptation for medical domain search. For example,

Díaz-Galiano et al. (2009) used a medical ontology (MeSH) to expand the query to improve

the retrieval system. They applied their system on the ImageCLEFmed dataset and showed

that results improved. Abdoaziz et al. (2016) applied linear combinations of different query

expansion techniques by finding synonyms and re-weighting original query terms. Their

proposed model improved performance (MAP) by 21.06% compared with the baseline.

Furthermore, previous work on the refinement and generation of Boolean queries for

other types of professional searches, such as prior art search, has been proposed. Kim

et al. (2011) designed a Boolean query suggestion technique in which a decision tree was

learned from pseudo-relevant documents and then used to generate queries. Graf et al.

(2010) developed a method for automatically generating queries for prior art search by

analysing the distribution of terms among topic-relevant documents. Harris et al. (2014)

presented an interactive Boolean search system which helps the user to create a Boolean

search query. The interactive system suggests semantically similar search terms to the

user.

This chapter explores the use of different query adaptation approaches to improve

studies ranking for the creation of systematic reviews. It aims to apply three main ap-

proaches. In the first approach (Section 3.2), it investigates which information from the

Boolean query and studies is helpful for improving ranking. In the second approach

(Section 3.3), it explores the applications of lexical statistics techniques in the domain of
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systematic review and how they can be used to improve ranking studies. In the final ap-

proach (Section 3.4), it applies a relevance feedback method using the Rocchio’s algorithm.

For each approach, it presents the method, datasets, evaluation measures and results.

3.2 Approach 1: Query Terms and Medical Subject Head-

ings

This section investigates which information from the review and studies can help to

improve ranking for systematic reviews. Information available from the review includes

the title of the review, the Boolean query and the list of studies retrieved from the search.

On the other hand, the information available from each study are the title, abstract, as

well as a list of MeSH terms.

This section first gives a brief overview of Boolean queries and MeSH. Then, explains

the different methods proposed to improve ranking: the use of Boolean query terms, the

use of query MeSH terms, the use of query Explode MeSH and the use of article Major

MeSH terms. It compares the results obtained from theses methods with a baseline system

which represents the common scenario with many systematic review projects where the

studies are evaluated in the order they are retrieved without any prioritisation.

3.2.1 Boolean Query

Candidate studies for inclusion in systematic reviews are identified using Boolean queries

constructed by domain experts. These queries are designed to optimise recall as re-

views aim to identify and assess all relevant evidence. Boolean queries in the reviews

used throughout this Thesis are created for either the OVID or PubMed interfaces to the

MEDLINE database of medical literature. Figure 3.1 shows examples of two different

formulations for the Boolean queries of two Cochrane reviews.

Queries are often complex, consisting of multiple lines and including operators such

as AND, OR and NOT, in addition to advanced operators such as wildcard, explosion and
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(a) OVID format Query for review CD009591

1. exp magnetic resonance imaging/ OR ultrasonography/ OR exp Imaging,
Three-Dimensional/ OR exp radiography/
2. ultraso$.tw. OR magnetic resonance imaging.tw. OR MRI.tw. OR imag$.tw.
3. diagnos$.tw.
4. 1 OR 2 OR 3
...
...
9. (animals not (humans and animals)).sh.
10. 8 not 9

(b) PubMed format Query for review CD008643

"Medical History Taking"[mesh] OR history[tw] OR "red flag"[tw] OR "red
flags" OR Physical examination[mesh] OR "physical examination"[tw]
OR "function test"[tw] OR "physical test"[tw] OR ((clinical[tw]
OR clinically[tw]) AND (diagnosis[tw] OR sign[tw] OR signs[tw] OR
significance[tw] OR symptom*[tw] OR parameter*[tw] OR assessment[tw] OR
finding*[tw] OR evaluat*[tw] OR indication*[tw] OR examination*[tw]))
...

Figure 3.1: Example queries from Cochrane reviews (Nisenblat et al., 2016; Williams et al.,
2013).

truncation (Karimi et al., 2010). Furthermore, restriction fields are used to specify the

search (e.g. using .ab. to search for terms appear in abstract only and .sh. to search for

MeSH terms only). Table 3.1 provides a list of the operators and restriction fields that can

be used to create OVID and PubMed format queries.

OVID queries usually consist of multiple lines (clauses), which are numbered so they

can be referenced. For example, in Figure 3.1(a), line 4 combines the results of lines 1, 2

and 3 in a disjunction (OR).
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Table 3.1: Set of OVID and PubMed Boolean query operators and restriction fields with
their meanings.

Query Format Operator/Restriction Field Meaning
OVID
and

PubMed

AND conjunction, include all search terms
OR disjunction , include at least one of the search terms

NOT exclude search terms

OVID

.tw. term appears in title or abstract
.ti. term appears in title
.ab. term appears in abstract

.ti,ab. term appears in title or abstract
/ or .mp. MeSH terms

.sh. MeSH Subheadings
.af. term appears in any field

PubMed

[Text Word] or [tw] term appears in title, abstract or MeSH
[Title] or [ti] term appears in title

[Title/Abstract] or [tiab] term appears in title or abstract
[mesh] or [mh] MeSH terms

[sh] MeSH Subheadings
[All filelds] or [All] term appears in any field

3.2.2 The Medical Subject Headings (MeSH) Hierarchy

The MeSH thesaurus was created by the National Library of Medicine1 and is used to de-

scribe the subject of each article in MEDLINE. It is used to support indexing and searching

for biomedical articles. There are over 27,000 main MeSH terms representing concepts

found in the biomedical literature (Dhammi and Kumar, 2014). They are arranged by

subject in a hierarchy known as the MeSH Tree Structures, which can be used to expand or

narrow down the search. Each main MeSH term has a number of subheadings to describe

a specific aspect of a concept.

Term Explosion

In a systematic review, it is common to add MeSH terms and subheadings to the Boolean

query to assist in subject searches. However, this can be done in different ways: the

use of the Explode function ‘exp’ with the MeSH term (e.g. exp Dementia/) or by

only including the MeSH term without Explode function (e.g. Dementia/). The Explode

function ‘exp’ searches for the main MeSH terms and automatically includes all its

1https://www.nlm.nih.gov/
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narrower terms (subheadings) (PubMed Tutorial, 2017). For example, the Boolean query

of review CD009786 includes the line: exp Dementia/ (Van de Vrie et al., 2019). When

this query is run on MEDLINE, it will retrieve all articles indexed with the Dementia MeSH

and/or with the narrower subject headings in the Dementia tree hierarchy (underlined

text in Figure 3.2).

All MeSH Categories↰

Diseases Category↰

Nervous System Diseases↰

Central Nervous System Diseases↰

Brain Diseases↰

Dementia↰

AIDS Dementia Complex

Alzheimer Disease
Aphasia, Primary Progressive

Creutzfeldt-Jakob Syndrome

Dementia, Vascular
Dementia, Multi-Infarct

Figure 3.2: Example of an exploded MeSH including the narrower subject headings in the
Dementia tree hierarchy.

Major MeSH Terms

Each article in MEDLINE has a list of MeSH terms that describe the article subject (New-

man et al., 2009). Moreover, asterisks ‘*’ on MeSH terms and subheadings indicate that

they are the major topics of this particular article, usually obtained from the title and

the statement of purpose of the article. Figure 3.3 shows an example of an article from

PubMed. As can be seen, this article has a list of MeSH terms, two of which are major:

Deoxycholic Acid/analogs & derivatives*

Cholelithiasis/drug therapy*

Major MeSH terms help to identify the subject of an article when it has no abstract

(Medical Subject Headings (MeSH®) in MEDLINE®/PubMed®: A Tutorial, 2012).
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Figure 3.3: Example of MeSH terms for an article from PubMed (Nakagawa et al., 1977).
Major MeSH terms are denoted by asterisks ‘*’.

3.2.3 Dataset

The CLEF2017 and CLEF2018 datasets described in Section 2.4.2 were used. The CLEF2017

dataset contained 266,967 abstracts divided into training and test sets containing 20 and

30 reviews, respectively. The CLEF2018 dataset contains 460,165 abstracts and is divided

into a training dataset consisting of 42 reviews and a test dataset of 30 reviews. All reviews

are DTA reviews. For each review, the dataset contains review id, review title, Boolean
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query and a list of PMIDs retrieved by the query (see Figure 2.8). Some of the Boolean

queries are in the OVID format and others are in the PubMed format. Throughout this

chapter, these datasets will be used.

3.2.4 Experiments

A number of experiments were conducted to explore the use of a variety of information

from the review and studies to improve ranking. Our methods make use of three pieces of

information from each review in the dataset: (1) review title, (2) terms extracted from the

Boolean query and (3) MeSH terms extracted from the Boolean query (including the ex-

ploded MeSH terms). This information is extracted from the Boolean query automatically

using a simple parser designed to interpret both OVID and PubMed style queries2.

The terms were extracted from the Boolean query based on the restriction fields. For

example, .t i , ab. is extracted as a term, whereas .sh. is considered a MeSH term. Table 3.2

shows common query restriction fields and whether we consider each one a term or a

MeSH. Terms and MeSH terms modified by certain operators (e.g. NOT) were not extracted.

Table 3.2: OVID and PubMed common query restriction fields and whether we consider
each one a term or a MeSH.

Query Format Restriction Field Name Term or MeSH ?

OVID

/ or .mp. MeSH term MeSH
.sh. MeSH Subheading MeSH
.af. All Fields Term
.tw. Text Word Term
.ti. Title Term

.ti,ab. Title/Abstract Term

PubMed

[mesh] or [mh] MeSH term MeSH
[sh] MeSH Subheading MeSH

[All Fields] or [All] All Fields Term
[Text Word] or [tw] Text Word Term

[Title] or [ti] Title Term
[Title/Abstract] or [tiab] Title/Abstract Term

2The approach was implemented using Python v3.6
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Some MeSH terms (e.g. Spine) are also standard English words that could appear as a

term in an abstract. To avoid false matches, all MeSH terms extracted from a query were

prefixed with the string MeSH. In addition, MeSH terms were pre-processed to remove

white spaces and punctuation (e.g. Lumbar vertibraebecomes MeSHLumbarvertibrate).

Exploded MeSH terms, indicated with the prefix ‘exp’ in the Boolean query, were

identified using a simple parser. Subheadings of the exploded terms were identified by

querying the MeSH vocabulary tree3. These MeSH terms and subheadings were prefixed

with the string MeSH. Figure 3.4 shows an example of a Boolean query and the list of terms,

pre-processed MeSH terms and ‘exp’ MeSH extracted by the parser.

The studies returned by the Boolean query for each review in the dataset are defined

by their PMIDs. All PMIDs provided with the review were downloaded from PubMed4. The

text of the title, abstract and MeSH terms for each article were extracted and the MeSH

terms pre-processed using the same approach that had been applied to the Boolean query.

Pre-processing was applied to both the studies and information extracted from the re-

view. The text was tokenised5, converted to lower-case, stop words6/punctuation removed

and the remaining tokens stemmed7.

A Vector Space Model (VSM) was used for retrieval. We chose tf.idf which has been

used in the field of biomedical text retrieval in a significant number of previous and recent

studies, for example, Bashir et al. (2020); Jabri et al. (2018); Lerner et al. (2019); Scells et al.

(2017b, 2020); Surian et al. (2018). The information extracted from the review and each

of the studies was converted into tf.idf weighted vectors in a high dimensional vector

space. The similarity between the review (R) and each article (a) was then generated by

computing the angle between the review vector (R⃗) and the article vector (a⃗) using the

cosine similarity function (Baeza-Yates and Ribeiro-Neto, 2011):

3ftp://nlmpubs.nlm.nih.gov/online/mesh/.
4The Entrez package from biopython.org was used.
5NLTK’s tokenize package was used for tokenisation.
6The list of stop words provided by Scikit-learn (http:scikit-learn.org/stable/) was used.
7NLTK’s LancasterStemmer package was used for stemming.

ftp://nlmpubs.nlm.nih.gov/online/mesh/
http:scikit-learn.org/stable/
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(a) Boolean Query

1. exp Dementia/
2. Cognition Disorders/
3. (alzheimer$ or dement$).ti,ab.
4. ((cognit$ or memory or cerebr$ or mental$) adj3 (declin$
or impair$ or los$ or deteriorat$ or degenerat$ or complain$
or disturb$ or disorder$)).ti,ab.
5. (forgetful$ or confused or confusion).ti,ab.
6. MCI.ti,ab.
7. ACMI.ti,ab.
8. ARCD.ti,ab.
9. SMC.ti,ab.
10. CIND.ti,ab.
11. BSF.ti,ab.
12. Positron-Emission Tomography/
13. disease progression/
...
...

(b) Terms extracted from the query

alzheimer , dement , cognit , memory , cerebr , mental , declin ,
impair , los , deteriorat , degenerat , complain , disturb , MCI ,
disorder , forgetful , confused , confusion , ACMI , ARCD , SMC , CIND ,
BSF , ...

(c) Pre-processed MeSH headings

MeSHDementia , MeSHCognitionDisorders , MeSHdiseaseprogression
MeSHPositronEmissionTomography , ...

(d) Pre-processed ‘exp’ MeSH headings for “exp Dementia/”

MeSHAIDSDementiaComplex , MeSHAlzheimerDisease , MeSHAphasia
, MeSHPrimaryProgressive , MeSHCreutzfeldtJakobSyndrome ,
MeSHDementiaVascula , MeSHMultiInfarct

Figure 3.4: Example portion of a Boolean query (Van de Vrie et al., 2019) (a), sample of
terms extracted from the Boolean query (b), sample of pre-processed MeSH headings
extracted from the Boolean query (c) and the pre-processed MeSH headings for “exp
Dementia/” (d).
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si mi l ar i t y(R, a) = cos(θ) = R⃗ · a⃗

|R⃗|× |a⃗| =
∑n

i=1 Ri ×ai√∑n
i=1 R2

i ×
√∑n

i=1 a2
i

(3.1)

where R⃗ · a⃗ represents the dot product of the two vectors, |R⃗| and |a⃗| represent the

length of the review and article vectors, respectively. Another approach that can be applied

with the VSM is the dense embeddings. For example, the newly introduced BioBERT, which

is a domain-specific language representation model pre-trained on large-scale biomedical

corpora (Lee et al., 2020). Because of the time limit, we left this for future work.

Studies were ranked based on the scores generated by the cosine similarity function8.

Studies at the top of the ranking list are those closer (more similar) to the review vector

which are more likely to be relevant to the review.

Four approaches were explored in addition to a baseline system. For each of the four

approaches, studies were ordered based on the cosine similarity scores (Equation 3.1).

Below, each approach is explained.

Baseline

For the baseline system, the list of studies was randomly ordered with the intention of

representing the scenario in which the results of the Boolean query are simply evaluated

in the order in which they are retrieved without any attempt to identify those most likely

to be relevant. This situation simulates common practice within many systematic review

projects in which reviewers examine each of the retrieved studies in turn. The score of

each study is calculated using the following equation:

scor e = t − r +1

t
(3.2)

where t is the total number of studies returned by the Boolean query and r the study’s

rank in the random ordering.

8Scikit-learn’s TfidfVectorizer and linear_kernel packages were used for these steps
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Since this approach was the starting point on the retrieval problem for systematic

reviews that this thesis is addressing, we selected this simple baseline. It provides a useful

first step and allows us to better understand the problem in order to apprise us of the best

way to approach it. It gives an idea of how effective the NLP techniques compared to what

is happening in the common practice within many systematic review projects in the real

world.

Query Terms

In this experiment, only the review title and the terms extracted from the Boolean query

were used when calculating the similarity between the review and each study. For this

experiment, R⃗ represents terms from review’s title and Boolean query, while a⃗ represents

terms from the study’s title and abstract.

Query MeSH

This experiment used only terms from review’s title and MeSH terms extracted from the

Boolean query (terms extracted from the query were not used). For this experiment,

R⃗ represents terms from review’s title and MeSH terms from Boolean query, while a⃗

represents terms from the study’s title, terms from abstract and MeSH terms.

Query Exploded MeSH

This experiment explored the use of the ‘exp’ function (see Section 3.2.2) in the Boolean

query. It evaluated the performance of ranking when each explode MeSH in the query is

replaced by all the subheadings of this MeSH. For this experiment, R⃗ represents terms

from review’s title, terms from Boolean query, MeSH terms from Boolean query as well

as the subheading for each of these MeSH retrieved from the MeSH tree. Meanwhile, a⃗

represents terms from the study’s title, terms from abstract and MeSH terms.
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Article Major MeSH

The aim of this experiment was to investigate the use of major MeSH terms (see Section

3.2.2) associated with each article in search results. We examined whether the use of major

MeSH terms only is more beneficial than the use of the whole MeSH list retrieved with the

article.

A simple parser was used to identify Major MeSH terms for each study. After that, the

cosine similarity calculated where R⃗ represents terms from review’s title and terms and

MeSH terms from Boolean query. Meanwhile, a⃗ represents terms from the study’s title,

terms from abstract and Major MeSH terms only.

3.2.5 Evaluation Metrics

For the evaluation, AP, MAP, WSS@100 and WSS@95 which have been described in Section

2.4.3 were used. Theses are the most commonly used metrics when evaluating approaches

to study identification for systematic reviews, e.g. Cohen et al. (2006); Kanoulas et al.

(2017); Suominen et al. (2018).

3.2.6 Results and Discussion

Table 3.3 shows the results of applying the different proposed methods: using Query

Terms, using Query MeSH, using Query Exploded MeSH and using Article Major MeSH.

As expected, all of the implemented methods outperform the simple baseline approach

where the studies are randomly ranked for both CLEF2017 and CLEF2018 datasets.
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Table 3.3: Results of making use of different information from the Boolean query and
studies for CLEF2017 and CLEF2018 test datasets. The best performance among all
methods is in boldface.

CLEF2017 CLEF2018
Approach MAP WSS@100 WSS@95 MAP WSS@100 WSS@95
Baseline 0.045 3.90% 3.10% 0.051 2.30% 2.90%

Query Terms 0.218 38.50% 49.30% 0.224 37.70% 50.60%
Query MeSH 0.158 30.30% 42.30% 0.184 33.80% 45.80%

Query Exp MeSH 0.199 36.60% 47.00% 0.207 32.60% 49.00%
Article Major MeSH 0.187 38.60% 49.50% 0.213 37.40% 52.70%

The best performance in terms of MAP score was achieved by including only terms

from the Boolean query. The MAP score improved by 17.3% compared to the baseline for

both CLEF2017 and CLEF2018 datasets. This method is also close to the best result for

the WSS@100 and WSS@95 scores. The screening effort required to identify all relevant

studies (100% recall) is reduced by a third and for identifying 95% of the relevant studies,

it is reduced by almost a half for both CLEF2017 and CLEF2018 datasets.

Results suggest that including terms extracted from the Boolean query is beneficial.

However, the usefulness of MeSH terms extracted is less clear. The MAP score decreases

when these are used instead of query terms (e.g. compare Query Terms and Query MeSH).

On the other hand, using Query Exploded MeSH is more beneficial than using Query

MeSH or Article Major MeSH in terms of MAP while Article Major MeSH is more beneficial

in terms of reducing workload.

Figures 3.5 and 3.6 show the results of AP for each review in the test dataset using

the four proposed methods against the baseline on CLEF2017 and CLEF2018 datasets,

respectively. From the figures, it can be seen that the AP for all the reviews was significantly

improved. In addition, it is apparent that there is a variation of the AP scores between

reviews. A possible explanation for this might be the different percentage of relevant

studies among the retrieved results. For example, for Review CD010772, the relevant

studies represent 14.87% of retrieved documents. In contrast, in review CD009786, the

relevant studies represent only 0.48% of the retrieved documents.
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The results of these experiments demonstrated that even straightforward ranking tech-

niques provide potential benefit to systematic reviews by ensuring that studies more likely

to be relevant are placed higher in the rankings. The review title and terms extracted from

the Boolean query were found to be the most useful pieces of information in improving

studies ranking.
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3.3 Approach 2: Lexical Statistics

This approach hypothesises that there are terms which distinguish the studies that are

likely to be included in a specific type of review (e.g. DTA review) from other literature.

Expanding the Boolean query with those terms may help find the most relevant studies.

This section explores the use of lexical statistics to derive a list of key terms that indicate

evidence relevant to a specific type of Cochrane reviews.

Keyword analysis has increasingly been used in applied linguistics in recent years

(Pojanapunya and Todd, 2018). A keyword refers to a lexical item which occurs with

unusual frequency, either with a significantly higher or lower frequency in a target text

or corpus, when compared to a reference corpus. The majority of previous studies using

keyword analysis have used the Log-Likelihood or Chi-Square statistics (Bestgen, 2018;

Pojanapunya and Todd, 2018; Rayson, 2019). These statistics are used to identify the key

terms that are characteristic of a sub-corpus (Dunning, 1993; Rayson, 2008).

Chi-Squared was first applied in a corpus analysis context by Hofland and Stig (1982)

to compare word frequencies in corpora of one million words of American English (the

Brown Corpus) with one million words of British English (the LOB Corpus). On the other

hand, Log-Likelihood was first brought to the attention of the corpus community by

Dunning (1993) for collocation analysis. In 2018, Pojanapunya and Todd (2018) argued

that the Log-Likelihood and Odds-Ratio statistics produce different keywords applicable

to research focusing on different purposes.

This approach set out to investigate the usefulness of these most widely applied

lexical statistics (i.e. Log-Likelihood, Chi-Squared and Odds-Ratio) to identify terms

characteristic of studies likely to be relevant for DTA reviews. We analysis the keywords

list generated by each statistic and find which statistic is the most appropriate to improve

the retrieval performance for systematic reviews.

The relevant studies are treated as a target sub-corpus with the aim to identify the

terms that characterise it compared with the comparative sub-corpus of non-relevant

studies, so that they can be used to adapt the query.
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In general, the steps involved in conducting keywords analysis can be summarised as

follows (Pojanapunya and Todd, 2018; Rayson, 2012). First, the corpus partitioned into two

sub-corpora: the target sub-corpus and the comparative sub-corpus. In this approach, the

target sub-corpus contains the relevant studies, and the comparative sub-corpus contains

the non-relevant studies. Second, a terms list is generated for both sub-corpora including

the terms and their frequency. In this step, a minimum threshold value may be assigned.

In previous research, the threshold was usually set to 2, 4, 5 or 10 (Pojanapunya and Todd,

2018; Scott and Tribble, 2006). This step involves the use of a contingency table that is

created for each term (see Table 3.4). It encodes information about the frequency with

which the term appears in each sub-corpus. For example, Or el represents the number of

times the term occurs within the entire set of relevant studies and Nr el , the sum of the

occurrences of all terms in the relevant set.

Table 3.4: Contingency table for computing lexical statistics.

Relevant Non-relevant
Frequency of term Or el OnonRel

Total tokens Nr el NnonRel

In the third step, for each term in the list, the statistical scores are calculated (e.g.

Log-Likelihood, Chi-Squared or Odds-Ratio). Finally, the terms on the list are re-sorted

based on the statistical scores generated. The terms on the top of the list are the most

likely ones to differentiate the two sub-corpora.

Below, we explain how each lexical statistic is computed.

3.3.1 Log-Likelihood

Log-Likelihood depends on the comparison of the relative frequencies of a particular

term in a sub-corpus. Based on Table 3.4, Log-Likelihood for a single term is calculated as

follows (Pojanapunya and Todd, 2018; Rayson, 2008):

Log -Li kel i hood = 2×
(
Or el × ln

Or el

Er el
+OnonRel × ln

OnonRel

EnonRel

)
(3.3)
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where Or el and OnonRel are the observed frequency of the term in different subsets

of the collection (e.g. relevant and non-relevant studies). Er el and EnonRel are the term’s

expected frequencies calculated as:

Er el = Nr el ×
Or el +OnonRel

Nr el +NnonRel
, EnonRel = NnonRel ×

Or el +OnonRel

Nr el +NnonRel
(3.4)

where Nr el and NnonRel represent sub-corpus size.

Terms are assigned high Log-Likelihood scores for a particular corpus when their

observed frequency is (much) higher than the expected frequency. In other words, a

high Log-Likelihood score implies that a term has a more significant relative frequency

differentiation between the two sub-corpora.

3.3.2 Chi-Squared

Chi-Squared is used to compare frequencies of a term across two sub-corpora. In relation

to Table 3.4, Chi-Squared for each term is calculated as:

C hi -Squar ed = (Or el −Er el )2

Er el
+ (OnonRel −EnonRel )2

EnonRel
(3.5)

where Or el and OnonRel are the observed values and Er el and EnonRel are the expected

values calculated using Equation 3.4.

3.3.3 Odds-Ratio

Odds-Ratio is the lexical statistic most commonly applied for keyword analysis and terms

identification (Ghani et al., 2005; Pojanapunya and Todd, 2018). Unlike Log-Likelihood

and Chi-Squared, Odds-Ratio depends on the absolute frequencies of a term in a sub-

corpus. The Odds-Ratio for each term is calculated as:

Odd s-Rati o = Or el × (NnonRel −OnonRel )

OnonRel × (Nr el −Or el )
(3.6)
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where Or el and OnonRel are the frequency counts of the term in the relevant and non-

relevant sub-corpus and Nr el and NnonRel are the total number of terms in each of these

sub-corpora.

Odds-Ratio scores are heavily influenced by the terms that have very low frequencies.

In other words, the terms which occur only once may appear at the top of the ranked

scores. For this reason, it is important to exclude terms with frequency of occurrence

below a minimum threshold.

3.3.4 Experiments

A number of experiments were conducted using the three lexical statistics and results

compared against a baseline system.

Baseline

To evaluate the proposed hypothesis, the best method applied in Section 3.2 was chosen

as a baseline system for comparison (i.e. using query terms). In the baseline system, the

studies were ranked by comparing each study against review title and terms extracted

from the Boolean query. tf.idf weighted vectors were used to represent information

obtained from the review and studies, then ranked the studies based on their cosine

similarity scores (Equation 3.1).

Lexical Statistics

The Log-Likelihood, Chi-Squared and Odds-Ratio statistics were used to derive lists of

terms that indicate evidence relevant to DTA reviews as described in Sections: 3.3.1, 3.3.2

and 3.3.3. The training sets from CLEF 2017 and CLEF 2018 datasets were partitioned into

relevant and non-relevant studies depending upon whether the study was included in

the systematic review. Terms that occurred fewer than ten times were excluded since it is

difficult to generate reliable statistics for these rare terms and, also, they are unlikely to be

useful for identifying relevant studies. Setting the minimum frequency threshold at ten is
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popular, for example, Culpeper (2009); Pojanapunya and Todd (2018); Scott and Tribble

(2006).

After computing the lexical statistics for each term in every review, the average for

each statistic for each term across all the reviews in the training dataset was computed as:

Av g _st ati st i c(ti ) =
∑T

j=1 st ati st i c j ti

T
(3.7)

where st ati st i c j represents the statistic (Log-Likelihood, Chi-Squared or Odds-Ratio) for

the term ti in review j and T is the total number of reviews in the training portion of the

dataset (20 for the CLEF2017 dataset and 42 for the CLEF2018 dataset).

For each lexical statistic, the terms with the highest scores were identified and added

to the query for each review in the test portion of the dataset. Different numbers of top

terms with the highest scores were examined. These included five, ten and twenty top

scores. The studies in the test dataset were ranked by matching terms from the review title

and terms from the expanded queries against those in the study’s title and abstract using

cosine similarity measure (Equation 3.1).

Figure 3.7 shows an example of baseline query in addition to expanded queries by

adding the top five terms generated from lexical statistics.
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(a) Baseline Query

lung , pulmonary , neoplasm , cancer , carcinoma, adenocarcinoma
, angiosarcoma , chrondosarcoma , sarcoma , teratoma , lymphoma ,
blastoma , microcytic , tumour , tumor , nsclc , fdg , fludeoxyglucose
, fluorodeoxyglucose , depreotide , positron , photon , scintillation ,
emission , tomograph , cgc , pet , spect , neotect , neospect , neotec

(b) Lexical statistic: Log-Likelihood

lung , pulmonary , neoplasm , cancer , carcinoma, adenocarcinoma
, angiosarcoma , chrondosarcoma , sarcoma , teratoma , lymphoma ,
blastoma , microcytic , tumour , tumor , nsclc , fdg , fludeoxyglucose
, fluorodeoxyglucose , depreotide , positron , photon , scintillation ,
emission , tomograph , cgc , pet , spect , neotect , neospect , neotec ,
sensitivity , predictive , gonadotropin , hcp , false

(c) Lexical statistic: Chi-Squared

lung , pulmonary , neoplasm , cancer , carcinoma, adenocarcinoma
, angiosarcoma , chrondosarcoma , sarcoma , teratoma , lymphoma ,
blastoma , microcytic , tumour , tumor , nsclc , fdg , fludeoxyglucose
, fluorodeoxyglucose , depreotide , positron , photon , scintillation ,
emission , tomograph , cgc , pet , spect , neotect , neospect , neotec ,
mtbrif , vulva , inguinfemoral , Xpert , groin

(d) Lexical statistic: Odds-Ratio

lung , pulmonary , neoplasm , cancer , carcinoma, adenocarcinoma
, angiosarcoma , chrondosarcoma , sarcoma , teratoma , lymphoma ,
blastoma , microcytic , tumour , tumor , nsclc , fdg , fludeoxyglucose
, fluorodeoxyglucose , depreotide , positron , photon , scintillation ,
emission , tomograph , cgc , pet , spect , neotect , neospect , neotec ,
vulva , mtbrif , Xpert , inguinfemoral , geneXpert

Figure 3.7: Example of Baseline query (a) and expanded queries (b-d) generated by adding
top five terms generated form each lexical statistic.

3.3.5 Results and Discussion

Table 3.5 shows the results of the experiments. The lower part of the table shows the results

that were obtained when different numbers of terms with the highest scores were added

to each query using different statistics (i.e. Log-Likelihood, Chi-Squared and Odds-Ratio).
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Retrieval performance improved when the additional terms were added to the queries,

and this improvement was consistent across evaluation metrics for both CLEF2017 and

CLEF2018 datasets.

It is apparent from this table that the best performance was achieved by using Log-

Likelihood. The MAP improved by almost 1.5% for the CLEF2017 dataset and by 3.5% for

the CLEF2018 datasets compared with the baseline system. In addition, the WSS@100

slightly improved by 0.4% for CLEF2017 and by 3.7% for CLEF2018 and WSS@95 improved

by 1.4% and by 3.9% for CLEF2017 and CLEF2018, respectively. The performance on

CLEF2018 is better than CLEF2017 dataset, this may be down to the number of reviews

in the training part of the dataset where the list of terms was derived. The number of

reviews in the CLEF2018 training dataset is more than double the number of reviews in

the CLEF2017 training dataset (see Section 3.2.3).

Furthermore, it can be seen from the results that enriching the query with more key

terms generally improved retrieval performance. For example, adding the top 20 terms

using Log-Likelihood improved the MAP by 3.5% while adding only 5 terms improved the

MAP by 2% for CLEF2018 dataset. An exception noticed for CLEF2017 dataset when using

Log-Likelihood, the MAP decreased by adding the top 10 terms comparing by adding

5 terms only; and then improved by adding the top 20 terms. By analysing the list of

terms with the highest scores derived from CLEF2017 training dataset (see Table 3.6), we

noticed that the list includes a term which is very specific to certain review (i.e. the 8th

term "vulva"). Obviously, this term has caused a decrease in retrieval performance.

Figures 3.8 and 3.9 show the AP results obtained from adding top twenty terms gener-

ated form each lexical statistic for the CLEF2017 and CLEF2018 test datasets, respectively.

For the CLEF2017 dataset, when using Log-likelihood, the performance of 28 (93.33%)

of the reviews improved based on AP compared against the baseline. In addition, when

using Chi-Squared and Odds-Ratio, the AP improved for 27 (90%) and 25 (83.33%) of the

reviews, respectively. On the other hand, for the CLEF2018 dataset, the AP of almost 80%

of the reviews improved when using either Log-likelihood, Chi-Squared or Odds-Ratio as

compared against the baseline.
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Table 3.5: Lexical statistic results for CLEF2017 and CLEF2018 test datasets. Values in
boldface denote the best result achieved by each lexical statistic and the underlined values
represent the best results among all three lexical statistics.

(a) CLEF2017 Dataset (b) CLEF2018 Dataset
Lexical Statistic Terms MAP WSS@100 WSS@95 MAP WSS@100 WSS@95

Baseline - 0.218 38.50% 49.30% 0.224 37.70% 50.60%

Log-Likelihood
5 0.232 38.90% 50.70% 0.244 38.90% 52.50%

10 0.227 38.00% 49.70% 0.251 40.70% 53.50%
20 0.233 38.40% 50.70% 0.259 41.40% 54.50%

Chi-Squared
5 0.214 38.90% 49.00% 0.232 38.00% 51.50%

10 0.230 38.90% 50.70% 0.242 39.60% 53.00%
20 0.230 38.90% 50.80% 0.253 40.90% 54.70%

Odds-Ratio
5 0.214 38.90% 49.00% 0.221 37.70% 50.50%

10 0.214 38.80% 48.90% 0.231 38.00% 51.50%
20 0.233 38.90% 50.60% 0.252 39.80% 54.10%
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Tables 3.6 and 3.7 show the twenty terms with the highest scores derived from the

CLEF2017 and CLEF2018 training datasets, respectively. We noticed that the top terms

identified by the lexical statistics include ones that are highly indicative of the subjects

discussed in DTA reviews, for example “sensitivity”, “predictive” and “positive” are terms

which relate to accuracy of a medical test.

Table 3.6: Top 20 terms based on different lexical statistics scores derived from CLEF2017
training dataset.

Log-Likelihood Chi-Squared Odds-Ratio
Term Score Term Score Term Score

1 sensitivity 58.25 mtb rif 468.11 vulva 306.15
2 predictive 41.68 vulva 461.16 mtb rif 242.33
3 gonadotropin 38.56 inguinofemoral 333.33 Xpert 142.73
4 hcg 32.74 Xpert 197.38 inguinofemoral 34.05
5 false 31.09 groin 126.17 geneXpert 33.73
6 mtb rif 31.05 sensitivity 112.44 cepheid 29.44
7 positive 30.31 cepheid 101.52 siln 28.86
8 vulva 29.35 geneXpert 85.34 sentinel 18.78
9 protein 28.69 predictive 79.85 dcbe 17.06

10 fetoprotein 28.05 inguine 66.45 blunt 12.47
11 value 27.88 gonadotropin 62.65 groin 7.82
12 alpha-fetoprotein 27.60 false 56.79 sensitivity 7.69
13 negative 26.81 hcg 55.33 midline 5.74
14 detect 25.75 midline 55.19 neoplasm 5.73
15 alpha 25.05 negative 48.28 jelly 5.60
16 prospect 24.85 dye 45.29 predictive 5.56
17 subunit 24.80 fetoprotein 44.18 vulvectomy 5.22
18 MoM 24.10 prospect 43.63 trauma 5.04
19 Xpert 23.95 alpha-fetoprotein 43.50 prehospital 4.71
20 alpha-fetoproteins-analyse 23.37 positive 43.11 specificity 4.51

It is also interesting to note that several of the terms that appear in this list are also

used in standard filters for DTA reviews that have been developed to support information

professionals searching for relevant literature (White et al., 2001). For example: “sensi-

tiv.mp.” , “predictive value.mp.” , “accurac.tw.” are filters which are used to increase the

sensitivity and specificity in retrieving DTA studies (Haynes and Wilczynski, 2004).

However, we also note that the list also includes terms that appear to be specific to par-

ticular DTA reviews (e.g. “gonadotropin”). The CLEF 2017 training dataset contains only

20 reviews and CLEF2018 contains 42 reviews (including a subset of CLEF2017 dataset),
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and if a particular term proves to be very important for a small set of reviews, then its

overall score can be high enough for it to be included in this list. Comparing the lists of

terms generated by the different lexical statistics, it can be clearly noted that there is a

high similarity between the Log-Likelihood and Chi-Squared lists. The similarity between

the two lists is 65% for the CLEF2017 dataset and 60% for the CLEF2018 dataset. This

similarity was expected since both Log-Likelihood and Chi-Squared are probability statis-

tics while Odds-Ratio is an effect size statistic (Manning and Schütze, 1999; Pojanapunya

and Todd, 2018). Furthermore, comparison analyses by Chujo and Utiyama (2006) and

Culpeper (2009) show that Log-Likelihood and Chi-Squared produce very similar rankings

of keywords.

Table 3.7: Top 20 terms based on different lexical statistics scores derived from CLEF2018
training dataset.

Log-Likelihood Chi-Squared Odds-Ratio
Term Score Term Score Term Score

1 sensitivity 92.48 mtb rif 386.04 Xpert 217.30
2 predictive 59.88 vulva 306.95 mtb rif 195.29
3 gonadotropin 57.81 inguinofemoral 185.00 silng 46.08
4 protein 49.34 sensitivity 175.71 cepheid 24.13
5 hcg 48.63 Xpert 162.36 sentinel 23.69
6 false 47.76 predictive 113.87 inguinofem 23.52
7 positive 47.30 gonadotropin 94.75 geneXpert 23.35
8 value 43.73 cepheid 94.31 sensitivity 17.64
9 fetoprotein 43.10 false 86.35 dcbe 17.18

10 alpha-fetoprotein 42.29 hcg 83.15 diagnose 14.10
11 prospect 40.71 groin 82.91 blunt 13.86
12 detect 40.26 geneXpert 73.26 paty 13.45
13 negative 39.34 prospect 71.30 impair 12.25
14 alpha 38.97 protein 71.24 predictive 10.84
15 screening 38.12 negative 70.80 mild 10.41
16 blood 36.95 positive 68.59 specificity 8.72
17 MoM 36.29 fetoprotein 68.12 turbo 8.71
18 alpha-fetoproteins-analyse 36.10 alpha-fetoprotein 66.84 blind 8.40
19 beta 35.67 strip 64.65 female 8.08
20 subunit 35.33 MoM 64.60 value 8.03

Taken together, theses results indicate that lexical statistics can be used to identify

terms characteristic of studies likely to be relevant for DTA reviews. Results demonstrate
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that enriching the query with additional Key terms, generated from an independent set of

reviews, provide information about the types of studies that are likely to be relevant for

DTA reviews, independently of their specific review. The experiments demonstrate that

including general information about the type of publication that is likely to be of relevance

for a systematic review can improve retrieval performance. The best performance is

achieved using the Log-Likelihood statistic.

3.4 Approach 3: Relevance Feedback

This approach explores the use of relevance feedback to improve studies ranking for

systematic review. Relevance feedback is widely applied to improve information retrieval

performance and has proven to be a successful approach (Azad and Deepak, 2019; Ruthven

and Lalmas, 2003). The process of adapting the query using relevance feedback operates

as follows (Baeza-Yates and Ribeiro-Neto, 2011; Manning et al., 2008a). First, the user

generates an initial query and submits it to the IR system. A set of documents is retrieved

by the system based on the user query. Then, the user labels each document returned

as relevant or non-relevant. After that, the query is adapted based on the relevance

judgements provided by the user. Finally, the adapted query is used by the system to

retrieve relevant documents. This process may be applied once or more times until the

user is satisfied with the search results.

The query can be adapted by re-weighting query terms or by adding or removing

terms to/from the query based on the relevance judgements. The well-known Rocchio’s

algorithm (Baeza-Yates and Ribeiro-Neto, 2011) is used to modify the Boolean query

representation for the experiments described in this section.

The following subsections describe the application of the Rocchio’s algorithm, explain

the experiment conducted, and discuss the results obtained.
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3.4.1 Rocchio’s Algorithm

Rocchio’s algorithm is used to reformulate a query by enriching it with additional terms

weighted using information about the relevance of the documents it returned (Baeza-

Yates and Ribeiro-Neto, 2011; Shobha and Rangaswamy, 2018). First, using relevance

judgements (that may be provided by a user), the documents are partitioned into two sets:

positive (relevant) set Dr el and negative (non-relevant) set DnonRel . Then, the query and

the documents are represented in a vector space model. After that, the centroid vector of

each set is computed as:

µ⃗(D) = 1

|D|
∑

∀di∈D
d⃗i (3.8)

where |D| is the number of documents in the set D and d⃗i is a weighted term vector

associated with document i . Based on Equation 3.8, the updated query is calculated as

follows:

q⃗m =αq⃗ +βµ⃗(Dr el )−γµ⃗(DnonRel ) (3.9)

q⃗m =αq⃗ + β

|Dr el |
∑

∀d⃗i∈Dr el

d⃗i − γ

|DnonRel |
∑

∀d⃗i∈DnonRel

d⃗i (3.10)

where q⃗m is the modified query vector and q⃗ is the original query vector. Dr el is the

set of relevant documents among the documents retrieved and |Dr el | is the number of

documents in Dr el . DnonRel is the set of non-relevant documents among the documents

retrieved and |DnonRel | is the number of documents in DnonRel . α, β and γ are weighting

parameters. α specifies the importance of the initial query q⃗ . On the other hand, the

higher the value of β, the more q⃗ moves toward the centroid of the relevant documents.

The higher the value of γ, the more q⃗ moves away from the centroid of the non-relevant

documents.
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3.4.2 Experiments

Baseline

As for the lexical statistics approach, the best method from Section 3.2 was used as the

baseline system. Studies were ranked by comparing each study against the review title and

terms extracted from the Boolean query using the cosine similarity measure (Equation

3.1).

Relevance Feedback

In this approach, studies were ranked using a simple tf.idf weighted cosine similarity

measure comparing each study with terms extracted from the Boolean query. After that,

relevance judgements from the 10% top-ranked studies (up to a maximum of 1,000) were

divided into relevant and non-relevant sets. The centroid of each set was then calculated

using Equation 3.8. The query was reformulated using Rocchio’s algorithm (Equation

3.10). The remaining studies (90%) were re-ranked using the updated query vector q⃗m (i.e.

each study was compared with the terms extracted from the modified query).

In most IR system that use Rocchio’s algorithm they set β > γ, where the positive

feedback is more valuable than the negative feedback (Manning et al., 2008b). According

to Baeza-Yates and Ribeiro-Neto (2011); Manning et al. (2008b), reasonable values might

be α = 1, β = 0.75, and γ = 0.25. However, in systematic reviews, there are very few

positive (relevant) documents compared to the negative (non-relevant) documents. Thus,

a range of values for the weighting parameters β and γ were explored by conducting

experiments on the training dataset9. Table 3.8 shows the performance of the Rocchio

using 64 combinations of the weighting parameters β and γ on the training dataset. As

can be seen from the table, the performance of the approach is better when the value

of γ is slightly greater than β (i.e. giving greater weight for the negative (non-relevant)

documents). From the experiments, it was found that the best results were achieved by

setting β = 1 and γ = 1.510.

9The values selected from the set: 0.25, 0.5, 075, 1, 1.25, 1.5, 1.75, 2.
10The value of α was set to 1 as proposed by Rocchio(Baeza-Yates and Ribeiro-Neto, 2011)
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Table 3.8: MAP scores over a range of values for the weighting parameters β and γ using
the training dataset of CLEF2018.

β

γ
0.25 0.5 0.75 1 1.25 1.5 1.75 2

0.25 0.214 0.215 0.212 0.211 0.210 0.210 0.209 0.209
0.5 0.212 0.214 0.216 0.216 0.213 0.212 0.211 0.210

0.75 0.211 0.213 0.216 0.216 0.216 0.214 0.213 0.212
1 0.210 0.212 0.214 0.214 0.217 0.218 0.216 0.214

1.25 0.210 0.211 0.212 0.215 0.215 0.216 0.216 0.215
1.5 0.209 0.211 0.212 0.213 0.215 0.215 0.216 0.216

1.75 0.209 0.210 0.211 0.212 0.214 0.215 0.215 0.216
2 0.209 0.210 0.211 0.212 0.213 0.214 0.215 0.214

3.4.3 Results and Discussion

Results are shown in Table 3.9. Retrieval performance improved for all metrics when using

relevance feedback compared with the baseline. The MAP improved by 2.5% and 1.4% for

CLEF2017 and CLEF2018, respectively. The WSS@100 and WSS@95 improved by 4.7% and

4.3% for CLEF2017 and by 6.4% and 10.2% for CLEF2018. The results also demonstrate

that this approach outperforms the lexical statistics approach (see Table 3.5). On the other

hand, a higher MAP score for the CLEF2018 dataset is obtained using lexical statistics.

Table 3.9: Relevance Feedback results for the CLEF2017 and CLEF2018 test datasets.

(a) CLEF2017 Dataset (b) CLEF2018 Dataset
Approach MAP WSS@100 WSS@95 MAP WSS@100 WSS@95
Baseline 0.218 38.50% 49.30% 0.224 37.70% 50.60%

Relevance Feedback 0.243 43.20% 55.70% 0.238 42.00% 60.80%

Figures 3.10 and 3.11 show the AP results for each review using relevance feedback ap-

proach for both CLEF2017 and CLEF2018 datasets. Applying relevance feedback approach

improved AP for 80% of CLEF2017 and 90% of CLEF2018 reviews.



86 Query Adaptation to Improve Ranking

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

CD
00

74
31

CD
00

80
81

CD
00

87
60

CD
00

87
82

CD
00

88
03

CD
00

91
35

CD
00

91
85

CD
00

93
72

CD
00

95
19

CD
00

95
51

CD
00

95
79

CD
00

96
47

CD
00

97
86

CD
00

99
25

CD
01

00
23

CD
01

01
73

CD
01

02
76

CD
01

03
39

CD
01

03
86

CD
01

05
42

CD
01

06
33

CD
01

06
53

CD
01

07
05

CD
01

07
72

CD
01

07
75

CD
01

07
83

CD
01

08
60

CD
01

08
96

CD
01

11
45

CD
01

20
19

AP

baseline Relevance Feedback

Figure 3.10: AP scores for each review in the CLEF2017 test dataset using baseline and
Relevance Feedback.
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Figure 3.11: AP scores for each review in the CLEF2018 test dataset using baseline and
Relevance Feedback.
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3.5 Summary

This chapter explored the use of different query adaptation approaches to improve studies

ranking for the screening stage of systematic review creation. First, it investigated the use

of information available from Boolean query and studies retrieved. Experiments showed

that using the terms extracted from the Boolean query is more beneficial than using MeSH

terms either from query or studies. The query term approach was the best approach for

the CLEF2017 task with no relevance feedback and it was later used by Lee and Sun (2018)

as their baseline system.

Second, this chapter investigated the application of lexical statistics techniques in the

domain of systematic reviews. It explored the use of lexical statistics to identify terms that

characterise DTA reviews. Experiments showed that this approach improves the retrieval

performance and reduces workload. The best performance was achieved by adding 20

terms when using Log-Likelihood. Some of the terms generated are used to describe DTA

reviews.

Finally, this chapter applied the Rocchio’s algorithm in the domain of systematic review

and results showed that this approach is useful for improving retrieval performance.

In summary, the results in this chapter provide a further demonstration of the benefits

of ranking to reduce the workload required from experts when conducting systematic

reviews. We investigated the use of terms and MeSH terms extracted from the Boolean

query. As future work, we will consider exploring possible performance improvements by

incorporating additional information such as publication types, citation counts or h-index

of authors.





Chapter 4

A Dataset of Systematic Review Updates

4.1 Introduction

As discussed in Chapter 2, a significant number of previous studies have demonstrated

the usefulness of NLP/IR techniques to reduce the workload involved in the systematic

review screening process for new reviews. Updating systematic reviews is a significant

problem but one which has largely been overlooked. Developing methods to support the

updating of reviews is therefore required to reduce the workload required and thereby

ensure that reviews remain up to date. However, only a few previous studies have explored

the use of NLP/IR techniques to support the problem of updating reviews (see Sections

2.4.1 and 2.4.4). A possible explanation is the lack of available datasets that can be used to

evaluate such techniques. In the majority of cases, this work has been evaluated against

simulations of the update process (see Section 2.4.4).

As shown in Chapter 2, no accessible dataset focuses on the problem of identifying

studies for inclusion in a review update. The problem is subtly different from the identifi-

cation of studies for inclusion in a new review because relevance judgements are available

(from the original review) which have the potential to improve performance. A suitable

dataset for this problem would include the list of studies considered for inclusion in both

the original and updated reviews, together with a list of the studies that were actually

involved in each review. In response, this chapter provides a valuable dataset with the aim
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of evaluating automated methods applied to the problem of identifying relevant evidence

for updating systematic reviews. This is the first resource made available for this purpose.

This chapter describes the process of constructing the update dataset, the criteria

of selecting the reviews and the characteristics of the dataset. In addition, this chapter

explores the use of two approaches from the previous chapter (i.e. lexical statistics and

relevance feedback) to improve studies ranking for systematic review updates.

4.2 Dataset Configuration

The dataset is constructed using systematic reviews from the Cochrane Database of

Systematic Reviews1, a standard source of evidence to inform healthcare decision-making.

Intervention reviews - that are, reviews which assess the effectiveness of a particular

healthcare intervention for a disease (see Section 1.1.1) - are the most common type of

reviews carried out by Cochrane. All the reviews selected for the dataset are published

intervention systematic reviews as these are the most popular reviews in Cochrane library.

Several criteria were taken into consideration when selecting the reviews to be included

in the dataset. One significant aspect is that Cochrane reviews may be withdrawn from the

library for different reasons. However, only a version of the review may be withdrawn, not

the overall review. Review withdrawal may occur due to a severe error in the review, which

may result in harm to patients or populations. Review versions may also be withdrawn

when included studies are removed from publication (i.e. the article is no longer available),

which may lead to an error in the review analysis and conclusion (Harriet MacLehose,

2018). Reviews included in the dataset must have been available in an original and updated

version (i.e. an updated version of the review has been published) and not withdrawn

from the Cochrane library.

In addition, to allow meaningful experiments to be conducted, reviews included in the

dataset were restricted to ones for which at least one relevant article identified during the

abstract screening stage for the update.

1https://www.cochranelibrary.com/cdsr/about-cdsr.

https://www.cochranelibrary.com/cdsr/about-cdsr


4.2 Dataset Configuration 91

Moreover, the reviews included in the dataset should contain a forest plot. The forest

plot diagram represents the results of the systematic review graphically and shows the

findings of individual studies that address the same issue (Lewis and Clarke, 2001). Figure

4.1 shows a forest plot diagram from review CD002733 entitled: “Influenza vaccine for

patients with chronic obstructive pulmonary disease”. The diagram illustrates a summary

of the findings of two studies (listed on the leftmost column). These studies evaluated

the impact of using influenza vaccinations in people with chronic obstructive pulmonary

disease and the ability to reduce illness and death. The left side of the vertical line shows

the studies that favoured the vaccine, and the right side shows the studies that favoured

the placebo. In this example, both studies favoured the vaccine (treatment).

Figure 4.1: Forest plot diagram from review CD002733 (Kopsaftis et al., 2018)

Reviews with forest plots were selected in order to benefit from the summary statistical

information of the included studies presented in the forest plot. This information can help

determine whether a new included article will change the conclusion of the systematic

review update. However, this requirement added an additional restriction on reviews

considered for inclusion in the dataset.

These restrictions limited the number of suitable reviews that could be identified for

inclusion in the dataset. In the end, a set of 25 published intervention systematic reviews

which satisfied the criteria were selected for inclusion in the dataset.

A Python script was developed which applied the process of constructing the dataset

automatically and extracted the following information from each review: (1) review title,

(2) Boolean query, (3) set of included and excluded studies (for both the original and
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updated versions), (4) update history (including publication date and URL of original and

updated versions) and (5) MeSH keywords.

The process is now described in more detail.

4.2.1 Boolean Query

Boolean queries in the reviews included in the dataset are created for either the OVID or

PubMed interfaces to the MEDLINE database of medical literature. For ease of processing,

each OVID query was automatically converted to a single-line PubMed query using a

Python script created specifically for this purpose (see Figure 4.2). The script first reads

the query line by line. For each line (clause), the script translates all the restriction fields

form the OVID format to the PubMed format, as shown in Table 4.1. However, the OVID

restriction field .ab. and the adjacency AD J are not supported by PubMed; therefore,

the closest equivalents were used, which are [t i ab] and AN D, respectively. After all the

restriction fields in all clauses have been transformed, the script converts the query to

single-line query.

(a) Multi-line query in OVID format

1. endometriosis/
2. (adenomyosis OR endometrio$).tw.
3. OR/1-2

(b) One-line PubMed translation

endometriosis[Mesh:NoExp] OR adenomyosis[Text Word] OR
endometrio*[Text Word]

Figure 4.2: Example portion of a Boolean query (Hughes et al., 2007) in (a) the OVID
format and (b) its translation into the single-line PubMed format. This portion of the
query contains three clauses, and the last clause represents the combining results of clause
1 and 2 in a disjunction (OR).
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Table 4.1: OVID restriction fields and their equivalent in PubMed format.

Name OVID PubMed
MeSH Term exp Mesh term / "Mesh term"[Mesh]
MeSH Term exp Mesh term .mp. "Mesh term"[Mesh]

MeSH Subheading exp Mesh term .sh. "Mesh term"[sh]
Unexploded MeSH Term Mesh term / "Mesh term"[Mesh:NoExp]

Major MeSH Term exp *Mesh term / "Mesh term"[Majr]
All Fields term.af. term[All Fields] or term[All]
Text Word term.tw. term[Text Word] or term[tw]

Title term.ti. term[ti] or term[Title]
Title/Abstract term.ti,ab. term[tiab] or term[Title/Abstract]

Publication Date date.dp. date[dp] or date[Date - Publication]

During the construction process, some of the OVID queries were found to contain

numbering errors. For example, the Boolean query for review CD004679 (see Figure

4.3) includes only the combination of lines 5 to 8 and ignores the first four lines. That

leads to dropping part of the query when running it in the search engine. Therefore, for

accuracy, only systematic reviews that have correctly numbered queries were considered

for inclusion in the final dataset. A Python script was created specifically for this purpose.

1. exp Peritoneal Dialysis/
2. peritoneal dialysis.tw.
3. (PD OR CAPD OR CCPD OR APD).tw.
4. OR/1-3
5. Peritonitis/
6. peritonitis.tw.
7. Catheter-Related Infections/
8. infection*.tw.
9. OR/5-8

Figure 4.3: Example of a Boolean query (Campbell and Strippoli, 2017) which has a
mistake in the lines numbers: the last line (no. 9) combines the results of lines 5 to 8 and
ignores the first four lines of the query.
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4.2.2 Included and Excluded Studies

For each version of the reviews (original and updated), the dataset includes a list of all the

studies that were included after each stage of the screening process (abstract and content).

The set of studies included after the content level screening is a subset of those included

after abstract screening and represents the studies included in the updated review.

Included and excluded studies are listed in the dataset as PMIDs that make it straight-

forward to access details about the publication. If the PMID for an article was listed in

the systematic review in the Cochrane library (which accounted for a majority of cases),

then it was extracted and used for the dataset. Figure 4.4 shows an example of included

studies from review CD000523 (Handoll and Pearce, 2012); as can be seen, the information

contains the PMIDs for these particular studies.

Atkin DM, Bohay DR, Slabaugh P, Smith BW. Treatment of ulnar shaft fractures:
A prospective, randomised study. Orthopedics 1995;18(6):543-7. [MEDLINE:
1995406131]

Gebuhr P, Holmich P, Orsnes T, Soelberg M, Krasheninnikoff M, Kjersgaard
AG. Isolated ulnar shaft fractures: Comparison of treatment by a functional
brace and long-arm cast. Journal of Bone and Joint Surgery - British Volume
1992;74(5):757-9. [MEDLINE: 1992406976]

Figure 4.4: Example of studies with available PMID (highlighted).

On the other hand, some of the studies in the Cochrane library do not include PMIDs.

In this case, there are two possibilities: the article is not indexed by MEDLINE, or the

article is indexed by MEDLINE, but the PMID is not provided in the Cochrane library.

When the PMID was missing, then the title of the article and year of publication were

extracted for use in forming a query that was used to search PubMed2 (see Figure 4.5).

However, the search usually retrieves either just one record or no records at all. If the entire

text of the title, publication year and volume of the retrieved record match the details

listed in the Cochrane library, then the PMID of that article is used. Figure 4.6 shows the

2https://www.ncbi.nlm.nih.gov/pubmed/.

https://www.ncbi.nlm.nih.gov/pubmed/
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single record retrieved from running the query from Figure 4.5 in PubMed. As shown, the

information of this record matches the information listed in the Cochrane library (see

Figure 4.6). Therefore, this PMID was added to the dataset.

Article as it appears in the Cochrane Library:

Claesson B, Bergquist C. Clinical experience treating endometriosis with nafarelin.

The Journal of Reproductive Medicine 1989;34 Suppl(12):1025-8.

Article Title: Clinical experience treating endometriosis with nafarelin.

Publication Year: 1989

Search Query:

clinical[Title] AND experience[Title] AND treating[Title]
AND endometriosis[Title] AND nafarelin[Title] AND 1989[Date -
Publication]

Figure 4.5: Example of search query generated from title and publication year for an
article without a PMID.

Figure 4.6: The result of searching PubMed using the query in Figure 4.5.
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The search was restricted for an exact match of the title, publication year and vol-

ume to avoid including wrong studies in the dataset. However, if the search retrieved no

records, this indicate that either the article was not indexed by MEDLINE or that there was

a misspelled term in the title which led the exact matching to fail. In this case, a maximum

edit distance of three was used and the retrieved records were manually examined. Given

the two strings S1 and S2, the edit distance d(S1,S2) is the minimum number of edit

operations needed to transfer S1 into S2 (Navarro, 2001). For example, given the article’s

title on PubMed S1: “The effectivenss of danazol on subsequent fertility in minimal en-

dometriosis” and the article’s title in the Cochrane library S2: “The effectiveness of danazol

on subsequent fertility in minimal endometriosis”, then the edit distance d(S1,S2) = 1 (i.e.

one operation is needed to transform S1 into S2 by inserting e into the term effectiveness).

This mapping process was performed using a Python script, and the record was re-

trieved using the Entrez package from Biopython (biopython.org).

To evaluate the mapping process, five systematic reviews were randomly selected, and

the PMIDs of the included studies were manually examined. In total, 120 studies were

available in the Cochrane library for these reviews. However, 43.33% of these studies did

not have PMIDs. On the other hand, 29% of studies without PMIDs were not indexed by

MEDLINE (as a result, they were not added to the dataset). The remaining studies, which

represent 71% of the total studies, were indexed by MEDLINE. After the mapping process

was completed, 92% of these studies were retrieved correctly without the need for using

edit distance or manual examination. Only three studies needed manual examination.

4.2.3 Update History

Details of the date of publication of each version (original and update) were also extracted

and included in the dataset. As an example, Figure 4.7 shows the version history for

review CD000155 entitled: “Ovulation suppression for endometriosis”. This review was first

published in July 2003, then it was updated four years later (July 2007). This information

can help to know which period was covered when conducting the search for the original

review as well as the updated version of the review.
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Figure 4.7: An example of version history information available with Cochrane review
(Hughes et al., 2007).

4.3 Dataset Characteristics

Descriptive statistics for the 25 systematic reviews that form the dataset are shown in

Table 4.2. It is worth drawing attention to the small number of studies included after the

initial abstract screening stage. From a range of 1 to 46 studies, the average number of

included studies for the update based on abstract screening is 7. On the other hand, the

average number of included studies based on content screening is 3 from a range of 0 to 13

studies. Note that for the updated review, the number of included studies in the table lists

only the new studies that were added during the update process.

The total number of studies retrieved from the search for the original reviews ranged

from 36 to 41,675. On the other hand, for updated reviews, the number of studies retrieved

ranged from 9 to 6,720. Furthermore, 88% of the reviews used the PubMed format Boolean
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query and the remaining 12% were in OVID format. The length of the Boolean query

varied between 5 and 52 lines.

To make the dataset reusable by other researchers, it was published in two formats: text

files and a pickle file. In the text file format, the files include the following information for

each review: (1) review title, (2) Boolean query, (3) list of PMIDs for studies included in the

original review, (4) list of PMIDs for studies included in the updated review, (5) publication

date of the original and updated review and (6) list of MeSH keywords associated with the

review.
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Table 4.2: List of the 25 systematic reviews with the Boolean query type, the total number
of studies returned by the query (Total) and the number included following the Abstract
and Content screening stages. The average (unweighted mean) number of studies is shown
in the bottom row. Note that for the updated review, the number of included studies in
the table indicates only the new studies that were added during the update.

Original Review Updated Review
Review Query Type Total Abstract Content Total Abstract Content

CD000155 OVID 397 42 14 101 6 4
CD000160 OVID 433 7 6 1,980 1 1
CD000523 OVID 34 6 3 18 1 1
CD001298 OVID 1,384 22 15 1,020 17 13
CD001552 OVID 2,082 2 2 844 2 2
CD002064 OVID 38 2 2 9 1 0
CD002733 PubMed 13,778 30 10 6,109 6 6
CD004069 OVID 951 5 2 771 9 7
CD004214 OVID 57 5 2 21 4 1
CD004241 OVID 838 25 9 193 5 3
CD004479 OVID 112 6 1 153 4 3
CD005025 OVID 1,524 43 8 1,309 46 4
CD005055 OVID 648 8 4 353 3 0
CD005083 OVID 462 46 16 107 9 2
CD005128 OVID 25,873 5 4 5,820 9 3
CD005426 OVID 6,289 13 8 1,413 3 0
CD005607 PubMed 851 11 7 103 2 1
CD006839 OVID 239 8 6 93 3 3
CD006902 OVID 290 18 6 106 10 5
CD007020 OVID 348 47 4 47 4 3
CD007428 OVID 157 7 3 190 9 3
CD008127 PubMed 5,460 7 0 6,720 2 1
CD008392 OVID 5,548 15 5 1,095 2 0
CD010089 OVID 41,675 22 10 4,514 4 0
CD010847 OVID 571 15 1 111 6 0

Average 4,402 17 6 1,335 7 3

For the second format, the dataset was provided as a pickle file which is ready to use

for programming. Figure 4.8 shows the structure of the dataset. In addition to the review

title, query, MeSH keywords and list of included studies, the dataset contains beneficial

information such as the abstract and the metadata (i.e. PMID, title and list of MeSH terms)

for each record retrieved from the search. The list of terms and MeSH terms extracted

from the Boolean query for each review were also included.
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The dataset is available from https://github.com/Amal-Alharbi/Systematic_Reviews_

Update.
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Figure 4.8: The structure of the update dataset.

https://github.com/Amal-Alharbi/Systematic_Reviews_Update
https://github.com/Amal-Alharbi/Systematic_Reviews_Update
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4.4 Experiments

Experiments were conducted to establish baseline performance figures for the dataset.

The aim is to reduce workload in the screening stage of the review update by ranking the

list of studies retrieved by the Boolean query. Experiments were carried out to explore

performance at both the abstract and content screening levels. The collection was created

by using the Boolean query to search MEDLINE using the Entrez package from Biopython

(biopython.org). The list of studies included after the abstract screening was used as the

relevance judgements for abstract level evaluation and the list of studies included after

the content screening was used for content level evaluation.

4.4.1 Approaches

Baseline

The best method from Section 3.2 in the previous chapter (i.e. using query terms) was

applied for the baseline system. BM25 (Baeza-Yates and Ribeiro-Neto, 2011) was used

to rank the set of studies returned from the Boolean query for the review update. BM25

has been widely used as a baseline model for text retrieval tasks in a significant number

of previous and recent studies, for example, Hollmann and Eickhoff (2017b); Scells et al.

(2020); Trotman and Lilly (2020); Zeng and Sakai (2019). Also, BM25 has been used as a

baseline by CLEF organiser for CLEF2019/2020 eHealth task on systematic reviews which

motivated us to apply it in our approach (Kanoulas et al., 2019; Suominen et al., 2020)

Pre-processing was applied to both the review title and terms extracted from the

Boolean query. The text was tokenised3 and converted to lower case, stop-words4/punctuation

were removed and the remaining tokens were stemmed5.

3The Natural Language Toolkit (NLTK) tokenise package was used for tokenisation.
4The PubMed stop-words list was used https://www.ncbi.nlm.nih.gov/books/NBK3827/table/

pubmedhelp.T.stopwords/.
5The NLTK LancasterStemmer package was used for stemming.

biopython.org
https://www.ncbi.nlm.nih.gov/books/NBK3827/table/pubmedhelp.T.stopwords/
https://www.ncbi.nlm.nih.gov/books/NBK3827/table/pubmedhelp.T.stopwords/
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Lexical Statistics

Section 3.3 showed that lexical statistics could help to identify terms that characterise a

specific type of review which results in improved studies ranking. In the context of the

systematic review update, we hypothesise that certain terms distinguish the studies that

are likely to be included in reviews from other literature. Expanding the Boolean query

with those terms may help to find the most relevant studies.

Lexical statistics were used to derive lists of terms that indicate evidence relevant to

each review. For each review, the original version dataset was partitioned into relevant

and non-relevant studies depending on whether the article was included in the systematic

review. Three lexical statistics were used, which were introduced in Section 3.3: Log-

Likelihood, Chi-Squared and Odds-Ratio.

For each lexical statistic, the top hundred terms with the highest scores were identified

and added to the query for each review in the update portion of the dataset. The studies

in the update dataset were ranked by matching terms from the expanded queries against

those in the studies using a BM25.

Relevance Feedback

Relevance feedback was applied to exploit the information about which studies are suit-

able for inclusion from the original review. Rocchio’s algorithm (see Section 3.4) was used

to reformulate the baseline query by making use of relevance judgements derived from

the original review.

Content screening judgements (included and excluded studies) were used for the

majority of reviews. Abstract screening judgements were used if these were not available;

i.e. no studies remained after content screening.

4.4.2 Results and Discussion

Results of the experiments are shown in Table 4.3. As expected, performance improved

when lexical statistics or relevance feedback was used. Using lexical statistic outperformed
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the baseline for all metrics. Among the three lexical statistics, Chi-Squared achieved the

best performance. Enriching the query by terms generated form Chi-Squared improved

the MAP by 19% and reduced the workload by 67.50% to identify all relevant studies (100%

recall) based on the abstract level and by 76.5% at the content level. On the other hand,

using relevance feedback improved the MAP by 20%, and the screening effort required to

identify all relevant studies (100% recall) was reduced by 63.5% at the abstract level and

74.9% at the content level. This demonstrates that making use of information from the

original review can improve article selection for review updating. The best performance

was achieved using Chi-Squared and relevance feedback.

Table 4.3: Performance ranking abstracts for updated reviews at (a) abstract and (b) con-
tent levels. Results are computed across all reviews at the abstract level (25 reviews)
and only across reviews in which a new article was added in the updated version for the
content level (19 reviews). Values in boldface denote the best result achieved among ap-
proaches. Superscript * and †in MAP indicate that the corresponding method significantly
outperformed the Baseline with p < 0.001 and p < 0.05, respectively .

(a) abstract level (25 reviews)
Approach MAP WSS@100 WSS@95
Baseline 0.213 56.60% 51.70%

Log-Likelihood 0.375* 66.00% 70.60%
Chi-Squared 0.404* 67.50% 72.50%
Odds-Ratio 0.329 † 65.20% 69.80%

Relevance Feedback 0.413* 63.50% 58.80%
(b) content level (19 reviews)

Approach MAP WSS@100 WSS@95
Baseline 0.260 70.50% 65.50%

Log-Likelihood 0.260 65.50% 70.50%
Chi-Squared 0.426 † 76.50% 81.50%
Odds-Ratio 0.364 † 72.80% 77.80%

Relevance Feedback 0.382 † 74.90% 69.90%

Table 4.4 shows the results obtained when different numbers of terms with the highest

scores were added to each query using various statistics. The performance improved

when more terms were added (e.g. compare adding a hundred terms against five terms).

The MAP increased by 16.2% for Log-Likelihood, 19% for Chi-Squared and 11.6% for Odds-
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Ratio. On the other hand, the screening effort required to identify all relevant studies

reduced when more terms were added.

Table 4.4: Performance ranking abstracts for updated reviews by adding different numbers
of top terms for each lexical statistic. Values in boldface denote the best result achieved by
each lexical statistic, and the underlined values represent the best results among all three
lexical statistics.

Lexical Statistics No. of Terms MAP WSS@100 WSS@95

Log-Likelihood

5 0.296 62.00% 57.20%
10 0.318 64.10% 59.30%
20 0.356 67.50% 63.10%
30 0.327 68.60% 64.20%
50 0.336 71.90% 67.30%

100 0.375 70.60% 66.00%

Chi-Squared

5 0.273 59.40% 54.60%
10 0.280 59.60% 54.60%
20 0.328 63.10% 58.20%
30 0.335 64.80% 59.80%
50 0.328 69.00% 64.10%

100 0.404 72.50% 67.50%

Odds-Ratio

5 0.266 58.70% 53.90%
10 0.278 58.90% 54.00%
20 0.284 59.70% 54.80%
30 0.300 61.40% 56.60%
50 0.322 66.40% 61.60%

100 0.329 69.80% 65.20%

Figure 4.9 shows the results of AP scores for all 25 reviews. Relevance feedback im-

proved AP for 23 (92%) of the reviews. There were also four reviews where the AP score for

relevance feedback was 1, indicating that the approach reduced work required by up to

99.9%. On the other hand, using Chi-Squared improved AP scores for 22 reviews (88%)

with three reviews having an AP score of 1.
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Figure 4.9: AP scores for each review using Baseline Query, Relevance Feedback and
Chi-Squared.

Figure 4.10 shows the background, Boolean query and the top 100 scored terms ex-

tracted by applying Chi-Squared on the original dataset of review CD004214 entitled

“Transfer of preterm infants from incubator to open cot at lower versus higher body weight”.

The main objective of this review is to assess the effect of infants’ body weight and tem-

perature control of a system when moving infants from an incubator to an open cot. We

noticed that the top terms generated by Chi-Squared include those about weight, for

example “weight”, “birth-weight”, “body-weight”, “fat” and “gm (gram)”. In addition, the

list includes several terms which describe temperature, such as “thermoregulatory”, “un-

heated”, “therm” and “stable”. From the review’s background (see Figure 4.10(a)), we can

see that temperature is considered an essential criterion for this specific review. However,

the “temperature” term is mentioned without any synonym in the original Boolean query

(see Figure 4.9(b), line 6). Adding the top 100 terms to the query increased the AP for this

particular review to 100%, which indicates that all the relevant studies were retrieved (see

Figure 4.9).
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Taken together, these results provide important insights into the value of information

available from the original review and how this information can improve the retrieval

performance for updating the review. The relevance judgements of the original review can

help to find terms which characterise the studies related to a specific review. Extracting

these terms using lexical statistics or using relevance feedback has a significant impact on

improving the retrieval performance.

(a) Review Background

A key criterion for discharging preterm infants home from nurseries is their ability
to maintain temperature once transferred from incubators to open cots. The timing
of transfer is important given the preterm infant’s immature thermoregulatory
mechanisms.

(b) Boolean Query

1. infant, newborn
2. intensive care units, neonatal
3. 1 AND 2
4. cot OR crib OR isolette OR incubator
5. 3 AND 4
6. temperature OR body temperature OR skin temperature
7. 5 AND 6
8. 7 AND weaning

(c) Top 100 terms with highest lexical statistics Chi-Squared scores

additional, wean, crib, grow, four, project, unheated, subcutaneous, awhonn, some,
accumbens, rear, gross, skin-fold, dramatically, fast, deposit, efficacy, pair, intention
, strata, stratum, lost, likewise, substantial, outline, compos, headquarter, base,
protocol, canada, detail, step-wise, apart, body-weight, confirm, adopt, practice,
healthy, energy, similar, gain, prematurity, rat, discharge, implication, aware, therm,
total, open, research, recruit, fat, cool, return, utilization, pilot, fourteen, abdominal,
intake, evidence, entry, success, manus-crib, member, expert, occasion, discuss,
subsequence, thermoregulatory, regard, principle, consecutive, sex, future, reach,
safe, therm, ear, fact, state, provide, birth-weight, form, group, weight, eight, stable,
six, base, number, equal, two, cohort, process, gm, point, drop, thirty, 24hour

Figure 4.10: Review Background (a), Boolean Query (b) and the top 100 terms with highest
lexical statistics Chi-Squared scores (c) for review CD004214 (New et al., 2011).
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4.5 Summary

This chapter described a dataset containing 25 intervention reviews from the Cochrane

collaboration. This dataset was constructed to support in the development of approaches

to automate the updating process. The title, Boolean query and relevance judgements for

both the original and the updated versions are included for each systematic review. The

dataset is publicly available and ready for use.

In addition, this chapter described experiments conducted to improve the ranking of

studies for systematic review updates by using lexical statistics and relevance feedback

techniques explained in Chapter 3. Results demonstrated that information from the

original review could be used to improve article selection for systematic review updates.

Comparing the results with the previous chapter, we found that the performance using Chi-

Squared was the best in case of the update dataset, while in Chapter 3, the performance of

Log-Likelihood was the best when using CLEF dataset. One important difference between

the two experiments is that in the CLEF dataset, the top terms were derived from the

training part which contains a variety of reviews. That means the generated list contains

terms based on different reviews. While in the case of update dataset, top terms for a

review were derived using the original version of the same review. Therefore, for the CLEF

dataset, we explored to add up to 20 terms only, while for the update dataset, we examined

to add up to 100 terms.





Chapter 5

Boolean Query Refinement to Improve

the Identification of Relevant Studies

5.1 Introduction

The previous chapter described a dataset for systematic review updates. In addition,

experiments showed the usefulness of using original review relevance judgements to

improve ranking studies for review updates. To further improve the retrieval performance,

this chapter explores the use of query refinements and their ability to generate improved

Boolean queries to retrieve studies for review updates with the aim of reducing the work-

load of researchers when conducting review updates. As we have seen in Section 2.4.1,

previous work on the refinement of Boolean queries for systematic reviews (Scells and

Zuccon, 2018) demonstrated that it is possible to improve the Boolean query used for

an original review. However, they did not explore the refinement of queries for review

updates. In addition, previous work on the refinement and generation of Boolean queries

for other types of professional searches, such as prior art search has been discussed in

Section 3.1.

This chapter proposes an algorithm that aims to improve the identification of relevant

studies for a systematic review update by automatically adapting the Boolean query using

information produced during the screening stage of the original review. An iterative
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algorithm is proposed to generate query variants by applying a set of transformations

including operator substitution, query expansion and query reduction. These are assessed

using information about which studies were included in the original review and the most

effective transformation is chosen to update the query. The best query produced by the

algorithm will be used to retrieve studies for the review update.

5.2 Method

The proposed approach is outlined in Algorithm 1. It starts with the Boolean query

used for the original review. As described in Section 3.2.1, the Boolean queries used

in systematic review are often complex, consist of multiple lines and include advanced

operators. A set of transformed queries is generated by applying a range of transformations

(e.g. operator substitution, query expansion and query reduction) to the original query.

Each transformed query is then evaluated using the relevance judgements produced for

the original review and the best transformation is selected. The process is then repeated by

applying the transformations to the newly selected query and evaluating the transformed

queries produced. The process continues until the best transformed query is no better

than the query from the previous iteration (i.e. the query cannot be improved using this

process).

This approach can be considered as an example of Transformation-Based Learning

(TBL). TBL is an automatic machine learning technique which has been applied for many

linguistics tasks such as part-of-speech tagging (Brill, 1992; Corston-Oliver and Gamon,

2003). The fundamental idea behind TBL is to begin with some simple solution to the prob-

lem (in our approach: start with the original Boolean query), and apply transformations

(in our approach: three types of transformations including operator substitution, query

expansion and query reduction) - at each step, the transformation which results in the

largest benefit is selected and applied to the problem (in our approach: the transformed

query that produces the highest score is chosen for the next iteration). The algorithm

stops when the selected transformation does not modify the data in enough places, or



5.2 Method 111

there are no more transformations to be selected (in our approach: stop when the query

cannot be further improved) (Brill, 1992, 1995; Ngai and Florian, 2001).

Below, the individual steps of our proposed approach are described in further detail.

5.2.1 Step One: Boolean Query Transformation

In the first step, the algorithm applies a set of query transformations to generate new

queries from the current one. Three types of transformation are proposed.

(a) Operator Substitution.

This transformation replaces one query operator with another. For example, dis-

junction with conjunction:

(blind$ OR mask$).ti. → (blind$ AND mask$).ti.

or alters a restriction field:

(blind$ OR mask$).ti. → (blind$ OR mask$).ti,ab.

In the second example, .ti,ab. indicates that the terms are searched in both the

title and the abstract, rather than just in the title.

A set of useful operator substitution transformations was identified during prelimi-

nary experiments: .tw.→.ti., .tw.→.ti,ab., .ti,ab.→.ti., .ti,ab.→.tw.,

.ti.→.tw., .ti.→.ti,ab., .ab.→.ti,ab., .ab.→.ti., .sh.→*, AND→OR and

OR→AND (See Table 3.1 for the meanings of these OVID query operators and field

restrictions). Some of these transformations were used in previous work (Scells and

Zuccon, 2018): logical operator replacement (AND→OR and OR→AND) and four field

restrictions (.ti,ab.→.ti., .ti.→.ti,ab., .ab.→.ti,ab. and .ab.→.ti.).

The remaining transformations were developed for this research. Additional trans-

formation types were also explored but not found to improve performance, in-

cluding three field restriction transformations: .af.→.ti,ab., .af.→ .ti. and

.af.→ .tw..

(b) Query Expansion.

This transformation adds new elements to the query. Lexical statistics are used to
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Algorithm 1: Automatic improvement of Boolean query

Input :Boolean query from original review (q), set of query transformations (T )
and original review’s relevance judgements (Ror i g )

Output :Updated Boolean query (q∗)
q∗ ← q
while Tr ue do

// Step one: Boolean Query Transformation

// Generate set of updated queries by applying all possible

// transformations

Q̂ ← {}
for t in T do

for clause c in q∗ do
if t can be applied to c then

Q̂ ← Q̂ ∪ t (q∗
c ) // where t (q∗

c ) denotes transformation t
// applied to clause c of q∗

end
end

end

// Step two: Boolean Query Selection

// Evaluate each transformed query and select the highest

// scoring for the next iteration
for q̂ in Q̂ do

Compute f (q̂ |Ror i g ) // Where f is some scoring function based
// on Ror i g

end

q ′ = ar g maxq̂∈Q̂ f (q̂|Ror i g )

// if performance of the best new query is the same as the
base

// query then the query cannot be improved
if f (q ′|Ror i g ) ≤ f (q∗|Ror i g ) then

break
end

q∗ ← q ′
end
return q∗
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identify terms that discriminate relevant studies and these are added to the query.

Log-likelihood statistic, which achieved the best result among the lexical statistics

defined in Section 3.3.1, is applied to the set of studies retrieved for the original

review (partitioned into relevant and non-relevant sub-corpora) and the score for

each term is computed using Equation 3.3.

Log-likelihood scores are used to identify the five terms that are most closely as-

sociated with the relevant studies. Only the top five terms were selected to make

the number of transformations produced more manageable. These terms are then

used to form a set of transformations in which the terms are added to a query clause

using the logical OR operator and .tw. as the restriction field. Terms are either

added individually or the top n, producing nine transformations of this type: add 1st

term, add 2nd term, add 3rd term, add 4th term, add 5th term, add 1st and 2nd terms,

add 1st to 3rd terms, add 1st to 4th terms and add all 5 terms.

For example, the terms packaging, blister, pack, calendar and medication

are identified as the top five terms that identify relevant studies for the review

CD005025 entitled “Reminder packaging for improving adherence to self-administered

long-term medications” (Mahtani and Perera, 2011). Figure 5.1 shows the possible

transformations that can be applied to the first clause of the Boolean query for this

review.
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(a) First clause from the Boolean query

Reminder Systems/

(b) Top five terms

packaging, blister, pack, calendar, medication

(c) Possible transformations

T1: Reminder Systems/ OR packaging.tw.
T2: Reminder Systems/ OR blister.tw.
T3: Reminder Systems/ OR pack.tw.
T4: Reminder Systems/ OR calendar.tw.
T5: Reminder Systems/ OR calendar.tw.
T6: Reminder Systems/ OR packaging.tw. OR blister.tw.
T7: Reminder Systems/ OR packaging.tw. OR blister.tw. OR pack.tw.
T8: Reminder Systems/ OR packaging.tw. OR blister.tw. OR pack.tw.
OR calendar.tw.
T9: Reminder Systems/ OR packaging.tw. OR blister.tw. OR pack.tw.
OR calendar.tw. OR medication.tw.

Figure 5.1: Example of query expansion applied to the first clause of the Boolean query of
review CD005025 (a) by adding up to five terms generated by Log-Likelihood (b) and the
full list of transformations that can be added to the clause (c).

(c) Query Reduction.

The final transformation method reduces the query by deleting a clause from it.

Figure 5.2 shows an example of query reduction by removing the second clause from

the Boolean query of the review CD005025(Mahtani and Perera, 2011).
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(a) Original query

1. Reminder Systems/
2. exp Patient Compliance/
3. Treatment Refusal/

(b) Transformed query

1. Reminder Systems/
2. Treatment Refusal/

Figure 5.2: Example of query reduction for review CD005025 (Mahtani and Perera, 2011).

The transformed queries produced during each iteration differ from the query selected

during the previous iteration by a single clause. A total of 21 transformation types are used,

leading to up to 21 ×c transformed queries being produced during each iteration (where c

is the number of clauses in the query selected during the previous iteration). However,

this is an upper bound value because not all transformation types are applicable to all

clauses. For example, the operator substitution .tw.→.ti,ab. cannot be applied to a

clause that does not contain the .tw. restriction field.

5.2.2 Step Two: Boolean Query Selection

The set of transformed queries generated during step one is evaluated by assessing the

queries against the relevance judgements produced for the original review. Each trans-

formed query is run against MEDLINE and the list of studies it retrieves is returned. The

query is then assessed using the following function which favours improvements in recall

over improvements in precision:

f (q̂) = r ecal l (q̂ |Ror i g )×100+pr eci si on(q̂|Ror i g ) (5.1)

where q̂ is the transformed query and Ror i g the relevance judgements from the original

review. Recall and precision are calculated as follows:
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r ecal l (q̂ |Ror i g ) = Number of relevant studies in Ror i g retrieved by q̂

Total number of relevant studies in Ror i g
(5.2)

pr eci si on(q̂ |Ror i g ) = Number of relevant studies in Ror i g retrieved by q̂

Total number of studies retrieved by q̂
(5.3)

As can be seen from Equation 5.1, the objective function always assigns a higher

score to a query that produces an improvement in recall compared to one that improves

precision. This is due to the nature of the search problem in systematic reviews where high

recall is important since the goal is to identify all potentially relevant studies. However,

retrieving a large number of non-relevant studies increases the screening effort required

by the reviewers and it is therefore beneficial to ensure that the precision of queries is as

high as possible.

The transformed query that produces the highest score is then chosen for the next

iteration. If there are multiple queries with the same highest score then one is chosen at

random. If there is no difference between performance of the highest scoring query and

the query from the previous iteration then the algorithm stops.

5.3 Dataset

Experiments in this chapter were carried out using the intervention reviews from the

update dataset (see Section 4.2). The reviews with an OVID-format query were selected

(22 reviews). For each review, the majority of the included PMIDs were identified using the

Boolean query but additional studies were often identified using alternative techniques

such as hand searching key journals and examination of the lists of references of the

included studies. The gold standard dataset includes all the relevant studies which are

available on PubMed regardless of whether they were identified using the Boolean query

or by other methods. Therefore, the query used for the review may not achieve full recall

since it is possible it does not retrieve all studies included in the review or an update.
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PMIDs included after abstract level screening were used for the experiments since

the goal of this research is to develop queries that are applied to databases of scientific

abstracts, such as PubMed, and for some reviews, only very few studies are included after

content level screening.

5.4 Experiments

Experiments were carried out to explore performance of the method proposed in this

chapter. Below, the three main approaches which were applied are described.

5.4.1 Approach 1: Baseline

A baseline approach was implemented which used the Boolean query from the original

review to retrieve studies for the updated review without any transformation. The original

Boolean query was run against MEDLINE and the set of studies that match the query

retrieved. The aim of this approach was to assess performance when the query developed

for the original review is re-used for the update, which is common practice within the

systematic review community (Chandler and Cumpston, 2019).

5.4.2 Approach 2: Query Refinement

This approach employs the method proposed in Section 5.2. To assess the effectiveness of

each transformation type defined in Section 5.2.1, four experiments were conducted: (1)

using operator substitution, (2) using query expansion, (3) using query reduction and (4)

using all the three transformation types defined in Section 5.2.1.

In this approach, for all the four experiments, the relevance judgements from the

original review (i.e. information about the included/excluded studies) were used to select

the best transformed query at each iteration, information which was readily available for

complete systematic reviews since the results of the Boolean query are manually screened

and reported in the review.
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In each experiment, transformed queries were run against MEDLINE using the Entrez

package from biopython.org to retrieve studies for the updated version of the review.

Publication dates were used to identify studies published since the previous version of

the review. To run the queries against MEDLINE, the OVID-format Boolean queries were

converted to a single-line PubMed-format query as described in Section 4.2.1.

5.4.3 Approach 3: Oracle

An oracle approach was also implemented that is similar to the proposed method (see

Section 5.2) with the exception that performance of the transformed query was assessed

using the relevance judgements for the updated review (Rupd ate ) rather than for the

original, i.e. using the following objective function:

f (q̂) = r ecal l (q̂|Rupd ate )×100+pr eci si on(q̂ |Rupd ate ) (5.4)

The oracle approach represents an unrealistic scenario since it has access to the

relevance judgements for the updated review. However, it provides context for the results

of the proposed method by placing an upper bound on the results that are possible by

transforming queries for review updates.

5.5 Evaluation Metrics

For the evaluation, recall and precision which have been described in Section 2.4.3 were

used. These are the most commonly used metrics in evaluating approaches for IR systems.

However, since the aim is to develop improved queries which can be used to support

review updating, approaches were evaluated using the set of studies included in the

update as a gold standard list of relevant studies. This information was not available to the

proposed approach, which only made use of the information about the studies considered

for inclusion in the original review.
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5.6 Results and Discussion

Results are shown in Table 5.1. Recall and precision scores are shown for each approach,

both for each review individually and averaged across all reviews. Averages are weighted

by the number of studies in each topic to place more weight on reviews where there are

larger numbers of studies to be screened. The iteration of the algorithm that produced

the final query is also shown for each method in the query refinement approach and the

oracle approach. This information is not included for the baseline which is simply the

unmodified query from the original review.

Considering average performance, all the four query refinement methods produce

queries that improve upon those used for the original review (baseline) both in terms of

recall and precision (except for query expansion method where the precision is lower than

the baseline). The best performance was achieved by applying all transformation types.

The increase in recall (10.3%) represents a marked increase in the number of relevant

studies that are identified for review updates. Interestingly, the recall score achieved by

this method (0.669) is close to the score achieved by the oracle approach (0.691) which

represents the upper bound of the possible score. Although the precision of the queries

produced by this approach is still low (0.7%), it is more than double the precision obtained

using the original queries, thereby halving the set of studies that need to be considered

during the expensive manual screening process. More generally, using queries produced

by this approach led to increased recall for seven of the 22 reviews and the same recall for

another 14. Recall reduced for a single review (CD007428), from 0.667 to 0.556. There were

9 relevant studies for this review and this change represented a single document having

been missed. In addition, precision increased for 13 reviews without reducing recall.

Results of other query refinement methods indicate that using only one type of trans-

formation generally produces queries that are more effective than the original query but

the improvement is much smaller than using all types of transformations, indicating the

importance of using different types of query transformations. Query expansion transfor-

mations are able to achieve recall almost as high as when all three transformation types

are combined (an increase of 10% against the baseline), but at the expense of precision.
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The reduction in precision caused by using query expansion leads to more search results

being retrieved. This method improved the recall for six of the 22 reviews while the re-

call of the remaining reviews did not change. It is also notable from Table 5.1 that the

algorithm performed one to four iterations only, that is substantially fewer compared

with other approaches. Perhaps surprisingly, applying only the simple query reduction

transformations is more effective than applying operator substitution transformations,

leading to improvements in both precision and recall. However, recall drops for more

reviews when only a single transformation type is used compared with all types: two for

query reduction and three for operator substitution.

Performance of the oracle method demonstrates the challenge of developing high pre-

cision queries while also maintaining recall. The best possible recall achieved represented

an improvement of 12.5% compared with the baseline. In addition, the precision can be

improved, reaching four times that achieved using the original query.
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Figures 5.3 and 5.4 show the average weighted recall and precision scores for each

iteration among the various approaches. The figures show the maximum number of

iterations applied by each method (e.g. 12 for the oracle approach), although it is worth

noting that the number of iterations applied to an individual review may be lower (e.g.

see Table 5.1). Overall, improvements in recall (compared with the baseline) appear to be

generated during the first iteration, while subsequent iterations help to improve precision.

The effect is particularly pronounced for the oracle approach but can still be observed for

other approaches. The best approach (i.e. using all transformation types) performed 20

iterations. The highest recall produced by this approach was at iteration six, then it slightly

dropped, while the best precision was obtained at iteration 11 and remained constant

until the algorithm stopped.

Table 5.2 shows an analysis of the transformation types used by the various approaches.

The table indicates the number of times each transformation was selected to generate

the modified query. As can be seen from the table, the transformation type applied

most frequently by the best approach (i.e. using all transformation types) and oracle

was remove line. The frequent use of this transformation may be explained by the fact

removing lines from queries makes them less restrictive, and the objective function used

to score queries prefers ones that maximise recall (i.e. less restrictive). On the other hand,

the transformation types preferred most frequently by the operator substitution method

were OR→AND, .tw.→.ti. and .ti,ab.→.ti. . All of these transformations lead to

more restrictive queries thereby increasing the possibility of missing relevant studies. This

is reflected in the low recall achieved using this method (see Table 5.1).

The original Boolean query is returned by the algorithm when the approach is unable

to identify a transformation that improves performance. This happened for one review

when the best approach (i.e. using all transformation types) and the oracle approach

were used, for three reviews when using the operator substitution and query reduction

methods, and for five reviews when using the query expansion method.
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Figure 5.3: Weighted Average Recall scores for the various approaches. The baseline
approach is included to allow comparison.
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Figure 5.4: Weighted Average Precision scores for the various approaches. The baseline
approach is included to allow comparison.
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Table 5.2: Analysis of transformation types used in each method in the query refinement
approach and oracle. The numbers represent how many times each transformation has
been used through all iterations.

Query Refinement
Transformation

Category
Transformation

Type
(1) Operator
Substitution

(2) Query
Expansion

(3) Query
Reduction

(4) All
Transformations

Oracle

Operator Substitution

.tw.→.ti. 42 - - 6 8
.tw.→.tiab. 1 - - 2 2

.ab.→.ti. 0 - - 0 0
.ab.→.ti,ab. 0 - - 0 0
.ti,ab.→.ti. 36 - - 16 19
.ti,ab.→.tw. 0 - - 0 1

.ti.→.tw. 3 - - 0 0
.ti.→.ti,ab. 1 - - 0 0
AND→OR 11 - - 2 1
OR→AND 46 - - 1 2

.sh.→* 0 - - 0 1

Query Expansion

1st top term - 14 - 5 1
2nd top term - 7 - 3 1
3rd top term - 6 - 5 5
4th top term - 10 - 3 0
5th top term - 1 - 2 3

1st & 2nd top terms - 0 - 1 0
1st to 3rd top terms - 2 - 0 0
1st to 4th top terms - 0 - 0 0
1st to 5th top terms - 0 - 0 0

Query Reduction remove line - - 146 146 102
Total 140 40 146 192 146

Figure 5.5 shows an example of a baseline Boolean query used for an original review

and the transformed query produced by the best proposed method (i.e. using all trans-

formation types). For this review, the algorithm ran for nine iterations with two types of

transformations selected: operator substitution (use .ti. restriction for clauses 4,8 and 16)

and query reduction (removal of clauses 1, 2, 3, 5 and 7). The transformed query improved

precision by 92% without any reduction in recall.

Taken together, the results of the experiments indicate that Boolean query transfor-

mations can improve the retrieval performance for the review update in terms of recall

and precision. The proposed algorithm can produce queries that retrieve more relevant

studies and reduce the workload required by researchers by half.



5.6 Results and Discussion 125

(a) Original Query

1 randomized controlled trial.pt.
2 controlled clinical trial.pt.
3 randomized.ab.
4 placebo.ab.
5 drug therapy.fs.
6 randomly.ab.
7 trial.ab.
8 groups.ab.
9 or/1-8
10 exp animals/ not humans.sh.
11 9 not 10
12 exp Motor Neuron Disease/
13 (moto$1 neuron$1 disease$1 or moto?neuron$1 disease$1).mp.
14((Lou Gehrig$1 adj5 syndrome$1) or Lou Gehrig$1) adj5 disease).mp.
15 Charcot disease.tw.
16 amyotrophic lateral sclerosis.tw.
17 or/12-16
18 Insulin-Like Growth Factor I/
19 (rhIGF-1 or rhigf or rhigf-1 or insulin-like).mp.
20 11 and 17 and 19

(b) Transformed Query

1 randomized controlled trial.pt.
2 controlled clinical trial.pt.
3 randomized.ab.
4 placebo.ti.
5 drug therapy.fs.
6 randomly.ab.
7 trial.ab.
8 groups.ti.
9 or/1-8
10 exp animals/ not humans.sh.
11 9 not 10
12 exp Motor Neuron Disease/
13 (moto$1 neuron$1 disease$1 or moto?neuron$1
disease$1).mp.
14((Lou Gehrig$1 adj5 syndrome$1) or Lou Gehrig$1)
adj5 disease).mp.
15 Charcot disease.tw.
16 amyotrophic lateral sclerosis.ti.
17 or/12-16
18 Insulin-Like Growth Factor I/
19 (rhIGF-1 or rhigf or rhigf-1 or insulin-like).mp
20 11 and 17 and 19

Figure 5.5: Example of the original Boolean query for review CD002064 (Beauverd et al.,
2012) (a) and the transformed Boolean query after nine iterations (b) with highlighted
lines representing the clauses transformed by the algorithm.
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5.7 Summary

This chapter proposed a novel algorithm to automatically refine Boolean queries for the

study selection stage of systematic review updates. The algorithm extended previous work

in two important ways. Firstly, it is applied to the problem of generating queries for review

updates and makes use of information about which studies were included/excluded from

the original review to guide the query modification. Secondly, it extends the set of query

transformations introduced in literature and demonstrates that the new transformation

leads to generation of more effective queries.

The proposed algorithm generates a set of transformed queries using three methods:

operator substitution, query expansion and query reduction. The best query is then

selected using an objective function that considers both recall and precision. The method

improves the original query both in terms of recall and precision. It produces queries that

are able to identify relevant studies that would not be retrieved using the query from the

original review.

Results demonstrated that information available from the original review, particularly

the relevance judgements, can be used to produce queries that are more effective than

the ones used for the original review. The algorithm proposed in this chapter has the

potential to assist researchers conducting updates of systematic reviews by supporting

them to produce queries that both identify more relevant studies and reduce the number

of what needs to be screened, thereby reducing the workload required to ensure that

reviews remain up to date.



Chapter 6

Conclusion and Future Directions

Systematic reviews are essential in healthcare where the volume of evidence in scientific

research publications is vast and cannot feasibly be identified or analysed by individual

clinicians or decision makers. However, the process of creating a systematic review is time

consuming and expensive. The problem of identifying relevant evidence is a significant

part of the effort required by researchers to produce and update systematic reviews.

This thesis aimed to support systematic reviews through NLP/IR techniques. The

particular focus of this study was to improve the process of identifying relevant evidence

to reduce the workload required from researchers and ensure that the reviews are consis-

tent with current evidence. This research gave particular attention to systematic review

updates, which are of significant importance but the process of creating them has not

been sufficiently addressed in previous work.

This chapter summarises the work presented throughout this thesis and indicates

possible points for future directions.

6.1 Summary of the Thesis

Chapter 2 presented a systematic literature review of NLP/IR techniques used to facilitate

the screening process for systematic reviews and review updates. The review focused on

four main questions: (Q1) Which NLP/IR techniques have been proposed to support the
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screening process?, (Q2) Which datasets are used? Are they publicly available?, (Q3) How

are those techniques evaluated? and finally (Q4) Which techniques are applied in the

screening stage of the review update process? The review showed that NLP/IR techniques

are beneficial to improve the screening process and reduce the workload required from

researchers. In addition, the review demonstrated that the majority of work applied

techniques for the creation of new reviews, while only a limited number of studies tackled

the problem of identifying relevant evidence for review updates.

Chapter 3 explored the use of various query adaptation methods to improve studies

ranking for systematic reviews. The chapter addressed RQ1: How can studies be ranked

so that the potentially relevant ones appear as early in the ranking as possible? and

RQ2: Can the feedback from reviewer(s) be used to improve these rankings? Three

main approaches were explored. The first examined which information from the Boolean

query is most helpful for ranking the studies. Results demonstrated that the review title

and terms extracted from the Boolean query were found to be the most useful pieces

of information. The second approach explored the use of lexical statistics to identify

terms that distinguish relevant studies from others. The experiments demonstrated that

including general information about the type of publication that is likely to be of relevance

for a systematic review can improve retrieval performance. The best performance was

achieved using the Log-Likelihood statistic. The final approach applied the Rocchio

algorithm, and demonstrated that information contained in judgements about document

relevance could improve the ranking of studies.

Chapter 4 introduced a dataset containing 25 intervention reviews from the Cochrane

Collaboration and applied approaches from the previous chapter to it. The dataset is

publicly available and ready for use to support the development of approaches to auto-

mate the updating process. The chapter addressed RQ3: Can the rankings for systematic

review updates be improved by making use of information about the original review,

such as search strategy and feedback from reviewers? by conducting experiments on

the update dataset using lexical statistics and relevance feedback. Results demonstrated

that the significant amount of knowledge about which studies are suitable from the orig-
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inal review (relevance judgements) can help to improve study selection for systematic

review updates.

Chapter 5 developed and evaluated a novel algorithm to automatically refine Boolean

queries to improve the identification of relevant studies for review updates. The chapter

addressed RQ4: Is it possible to generate Boolean search queries for review updates

that are more effective than the one used for the original review?. Experiments were

carried out using the update dataset from the previous chapter. The proposed algorithm

generates a set of transformed queries using three methods: operator substitution, query

expansion and query reduction. The best query is then selected using an objective function

that considers both recall and precision. The method improves the original query both in

terms of recall and precision. It produces queries that are able to identify relevant studies

that would not be retrieved using the query from the original review. Results demonstrated

that information available from the original review, particularly the relevance judgements,

can be used to produce queries that are more effective than the ones used for the original

review. The algorithm has the potential to assist researchers conducting updates of

systematic reviews by supporting them to produce queries that both identify more relevant

studies and reduce the number of studies that need to be screened, thereby reducing the

workload required to ensure that reviews remain up to date.

6.2 Future Directions

The work in this thesis can be further extended in different ways:

• The work presented in Chapter 5 can be extended as follows:

– The objective function (Equation 5.1) was defined to favour recall due to the

nature of the search problem in systematic reviews where high recall is im-

portant since the goal is to identify all potentially relevant studies. Although

the function proved its effectiveness in improving the performance of retriev-

ing studies in terms of recall and precision, it would be interesting to further
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expand the work by investigating the effect of using a different balance of

recall and precision by using a different objective function. One important

point that should be taken into consideration when selecting the objective

function is that systematic review is considered a High-Recall task (Carol et al.,

2020). As discussed in Section 2.4.3, High-Recall Retrieval problem is one of

the fundamental tasks for many applications such as patent retrieval, legal

search and medical search; the reviewers’ goal is to identify almost all of the

publications reasonably related to the search topic, i.e., there is typically an

emphasis on recall. Missing one relevant study might cause an enormous risk

and it is highly undesirable. In systematic reviews, missing relevant studies

could threaten the validity of the review, and, at worst, means the review could

mislead (Garner et al., 2016; Waffenschmidt et al., 2019).

– The experiments presented in Section 5.4 demonstrated that the proposed al-

gorithm can improve the retrieval performance for the review update. However,

the experiments were carried out on one type of systematic review (i.e. inter-

vention reviews) since suitable datasets are not available for other review types

(i.e. datasets that include information about both the original and updated

versions of the review). In future work, it would be interesting to develop a

dataset containing other review types, e.g. Diagnostic Test Accuracy reviews, to

determine how the performance of the algorithm is affected by using different

review types.

• This thesis demonstrated the usefulness of NLP/IR techniques in improving the

identification of relevant evidence for systematic review updates. From here, an-

other research direction of potential interest could focus on determining whether

the new evidence is going to change the conclusion of the review. This would be

very useful to prioritise the publication of updated reviews (i.e. the updates that

change the original conclusion would be published first). The advantage is to help

healthcare specialists and clinicians who need to make more conscious decisions

about healthcare to reach reliable reviews of the recently available evidence. As
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discussed in Chapter 4, forest plots provide statistical information about studies

included in the systematic review. It would be beneficial to use this information to

predict whether the new evidence is going to change the review conclusion or not.
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640: Rybiński M, Möller S, Sunnåker M, Lormeau C, Stelling J. TopoFilter: a MATLAB package

for mechanistic model identification in systems biology. BMC Bioinformatics. 2020 Jan 29;21(1):34.

doi: 10.1186/s12859-020-3343-y. PMID: 31996136; PMCID: PMC6990465.

641: Cernea A, Fernández-Martínez JL, deAndrés-Galiana EJ, Fernández-Ovies FJ, Alvarez-

Machancoses O, Fernández-Muñiz Z, Saligan LN, Sonis ST. Robust pathway sampling in phenotype

prediction. Application to triple negative breast cancer. BMC Bioinformatics. 2020 Mar 11;21(Suppl

2):89. doi: 10.1186/s12859-020-3356-6. PMID: 32164540; PMCID: PMC7068866.

642: Huang LC, Yeung W, Wang Y, Cheng H, Venkat A, Li S, Ma P, Rasheed K, Kannan N.

Quantitative Structure-Mutation-Activity Relationship Tests (QSMART) model for protein kinase

inhibitor response prediction. BMC Bioinformatics. 2020 Nov 12;21(1):520. doi: 10.1186/s12859-

020-03842-6. PMID: 33183223; PMCID: PMC7664030.



213

643: Wang P, Huang X, Qiu W, Xiao X. Identifying GPCR-drug interaction based on wordbook

learning from sequences. BMC Bioinformatics. 2020 Apr 20;21(1):150. doi: 10.1186/s12859-020-

3488-8. PMID: 32312232; PMCID: PMC7171867.

644: Karabayir I, Goldman SM, Pappu S, Akbilgic O. Gradient boosting for Parkinson’s dis-

ease diagnosis from voice recordings. BMC Med Inform Decis Mak. 2020 Sep 15;20(1):228. doi:

10.1186/s12911-020-01250-7. PMID: 32933493; PMCID: PMC7493334.

645: Yang F, Fan K, Song D, Lin H. Graph-based prediction of Protein-protein interactions with

attributed signed graph embedding. BMC Bioinformatics. 2020 Jul 21;21(1):323. doi: 10.1186/s12859-

020-03646-8. PMID: 32693790; PMCID: PMC7372763.

646: Paul George AA, Lacerda M, Syllwasschy BF, Hopp MT, Wißbrock A, Imhof D. HeMoQuest:

a webserver for qualitative prediction of transient heme binding to protein motifs. BMC Bioin-

formatics. 2020 Mar 27;21(1):124. doi: 10.1186/s12859-020-3420-2. PMID: 32216745; PMCID:

PMC7099796.

647: Du L, Meng Q, Chen Y, Wu P. Subcellular location prediction of apoptosis proteins using

two novel feature extraction methods based on evolutionary information and LDA. BMC Bioin-

formatics. 2020 May 24;21(1):212. doi: 10.1186/s12859-020-3539-1. PMID: 32448129; PMCID:

PMC7245797.

648: Zheng X, Fu X, Wang K, Wang M. Deep neural networks for human microRNA precursor

detection. BMC Bioinformatics. 2020 Jan 13;21(1):17. doi: 10.1186/s12859-020-3339-7. PMID:

31931701; PMCID: PMC6958766.

649: Coff L, Chan J, Ramsland PA, Guy AJ. Identifying glycan motifs using a novel subtree

mining approach. BMC Bioinformatics. 2020 Feb 4;21(1):42. doi: 10.1186/s12859-020-3374-4.

PMID: 32019496; PMCID: PMC7001330.

650: Zhang Y, Long Y, Kwoh CK. Deep learning based DNA:RNA triplex forming potential

prediction. BMC Bioinformatics. 2020 Nov 12;21(1):522. doi: 10.1186/s12859-020-03864-0. PMID:

33183242; PMCID: PMC7663897.

651: Vargo AHS, Gilbert AC. A rank-based marker selection method for high throughput scRNA-

seq data. BMC Bioinformatics. 2020 Oct 23;21(1):477. doi: 10.1186/s12859-020-03641-z. PMID:

33097004; PMCID: PMC7585212.



214 Search Results

652: Durai P, Ko YJ, Pan CH, Park K. Evolutionary chemical binding similarity approach in-

tegrated with 3D-QSAR method for effective virtual screening. BMC Bioinformatics. 2020 Jul

14;21(1):309. doi: 10.1186/s12859-020-03643-x. PMID: 32664863; PMCID: PMC7362480.

653: Du W, Sun Y, Li G, Cao H, Pang R, Li Y. CapsNet-SSP: multilane capsule network for

predicting human saliva-secretory proteins. BMC Bioinformatics. 2020 Jun 9;21(1):237. doi:

10.1186/s12859-020-03579-2. PMID: 32517646; PMCID: PMC7285745.



Appendix B

CLEF Datasets Characteristics

Table B.1: CLEF2019 DTA test dataset characteristics.

Review No. of Studies No. of Relevant Abstracts

CD008874 2,382 130 (5.5%)

CD009044 3,169 47 (1.5%)

CD011686 9,729 74 (0.8%)

CD012080 6,643 85 (1.3%)

CD012233 472 54 (11.4 %)

CD012567 6,735 12 (0.2%)

CD012669 1,260 82 (6.50%)

CD012768 131 100 (76.3%)

Total 30,521 584 (1.91%)
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Table B.2: CLEF2019 Interventions training dataset characteristics.

Review No. of Studies No. of Relevant Abstracts
CD005139 5,392 112 (2.08%)
CD005253 2,014 4 (0.20%)
CD006715 149 13 (8.72%)
CD007868 300 5 (1.67%)
CD008018 739 17 (2.30%)
CD008170 12,320 88 (0.71%)
CD008201 3,574 11 (0.31%)
CD010019 728 1 (0.14%)
CD010355 43 9 (20.93%)
CD010526 652 21 (3.22%)
CD010778 339 26 (7.67%)
CD011380 66 8 (12.12%)
CD011436 290 25 (8.62%)
CD011571 146 15 (10.27%)
CD012120 169 7 (4.14%)
CD012164 55 6 (10.91%)
CD012223 2,456 12 (0.49%)
CD012347 1,098 16 (1.46%)
CD012521 375 2 (0.53%)
CD012930 740 50 (6.76%)

Total 26,253 336 (1.28%)
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Table B.3: CLEF2019 Interventions test dataset characteristics.

Review No. of Studies No. of Relevant Abstracts
CD000996 281 10 (3.60%)
CD001261 571 85 (14.90%)
CD004414 336 32 (9.50%)
CD006468 3,874 91 (2.30%)
CD007867 943 31 (3.30%)
CD009069 1,757 94 (5.40%)
CD009642 1,922 90 (4.70%)
CD010038 8,867 36 (0.40%)
CD010239 224 23 (10.30%)
CD010558 2,815 75 (2.70%)
CD010753 2,539 35 (1.40%)
CD011140 289 4 (1.40%)
CD011571 146 21 (14.40%)
CD011768 9,160 81 (0.90%)
CD011977 195 65 (33.30%)
CD012069 3,479 425 (12.20%)
CD012164 61 10 (16.40%)
CD012342 2,353 9 (0.40%)
CD012455 1,593 12 (0.80%)
CD012551 591 86 (14.60%)

Total 41,715 1,305 (3.13%)

Table B.4: CLEF2019 Prognosis test dataset characteristics.

Review No. of Studies No. of Relevant Abstracts
CD012661 3,367 527 (15.65%)

Table B.5: CLEF2019 Qualitative test dataset characteristics.

Review No. of Studies No. of Relevant Abstracts
CD011558 2,168 51 (2.35%)
CD011787 4,369 125 (2.86%)

Total 6,537 176 (2.69%)
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