4,263 research outputs found

    A Parameterized multi-step Newton method for solving systems of nonlinear equations

    Get PDF
    We construct a novel multi-step iterative method for solving systems of nonlinear equations by introducing a parameter. to generalize the multi-step Newton method while keeping its order of convergence and computational cost. By an appropriate selection of theta, the new method can both have faster convergence and have larger radius of convergence. The new iterative method only requires one Jacobian inversion per iteration, and therefore, can be efficiently implemented using Krylov subspace methods. The new method can be used to solve nonlinear systems of partial differential equations, such as complex generalized Zakharov systems of partial differential equations, by transforming them into systems of nonlinear equations by discretizing approaches in both spatial and temporal independent variables such as, for instance, the Chebyshev pseudo-spectral discretizing method. Quite extensive tests show that the new method can have significantly faster convergence and significantly larger radius of convergence than the multi-step Newton method.Peer ReviewedPostprint (author's final draft

    Numerical iterative methods for nonlinear problems.

    Get PDF
    The primary focus of research in this thesis is to address the construction of iterative methods for nonlinear problems coming from different disciplines. The present manuscript sheds light on the development of iterative schemes for scalar nonlinear equations, for computing the generalized inverse of a matrix, for general classes of systems of nonlinear equations and specific systems of nonlinear equations associated with ordinary and partial differential equations. Our treatment of the considered iterative schemes consists of two parts: in the first called the ’construction part’ we define the solution method; in the second part we establish the proof of local convergence and we derive convergence-order, by using symbolic algebra tools. The quantitative measure in terms of floating-point operations and the quality of the computed solution, when real nonlinear problems are considered, provide the efficiency comparison among the proposed and the existing iterative schemes. In the case of systems of nonlinear equations, the multi-step extensions are formed in such a way that very economical iterative methods are provided, from a computational viewpoint. Especially in the multi-step versions of an iterative method for systems of nonlinear equations, the Jacobians inverses are avoided which make the iterative process computationally very fast. When considering special systems of nonlinear equations associated with ordinary and partial differential equations, we can use higher-order Frechet derivatives thanks to the special type of nonlinearity: from a computational viewpoint such an approach has to be avoided in the case of general systems of nonlinear equations due to the high computational cost. Aside from nonlinear equations, an efficient matrix iteration method is developed and implemented for the calculation of weighted Moore-Penrose inverse. Finally, a variety of nonlinear problems have been numerically tested in order to show the correctness and the computational efficiency of our developed iterative algorithms

    Multi-step derivative-free preconditioned Newton method for solving systems of nonlinear equations

    Get PDF
    Preconditioning of systems of nonlinear equations modifies the associated Jacobian and provides rapid convergence. The preconditioners are introduced in a way that they do not affect the convergence order of parent iterative method. The multi-step derivative-free iterative method consists of a base method and multi-step part. In the base method, the Jacobian of the system of nonlinear equation is approximated by finite difference operator and preconditioners add an extra term to modify it. The inversion of modified finite difference operator is avoided by computing LU factors. Once we have LU factors, we repeatedly use them to solve lower and upper triangular systems in the multi-step part to enhance the convergence order. The convergence order of m-step Newton iterative method is m + 1. The claimed convergence orders are verified by computing the computational order of convergence and numerical simulations clearly show that the good selection of preconditioning provides numerical stability, accuracy and rapid convergence.Peer ReviewedPostprint (author's final draft

    Status of the differential transformation method

    Full text link
    Further to a recent controversy on whether the differential transformation method (DTM) for solving a differential equation is purely and solely the traditional Taylor series method, it is emphasized that the DTM is currently used, often only, as a technique for (analytically) calculating the power series of the solution (in terms of the initial value parameters). Sometimes, a piecewise analytic continuation process is implemented either in a numerical routine (e.g., within a shooting method) or in a semi-analytical procedure (e.g., to solve a boundary value problem). Emphasized also is the fact that, at the time of its invention, the currently-used basic ingredients of the DTM (that transform a differential equation into a difference equation of same order that is iteratively solvable) were already known for a long time by the "traditional"-Taylor-method users (notably in the elaboration of software packages --numerical routines-- for automatically solving ordinary differential equations). At now, the defenders of the DTM still ignore the, though much better developed, studies of the "traditional"-Taylor-method users who, in turn, seem to ignore similarly the existence of the DTM. The DTM has been given an apparent strong formalization (set on the same footing as the Fourier, Laplace or Mellin transformations). Though often used trivially, it is easily attainable and easily adaptable to different kinds of differentiation procedures. That has made it very attractive. Hence applications to various problems of the Taylor method, and more generally of the power series method (including noninteger powers) has been sketched. It seems that its potential has not been exploited as it could be. After a discussion on the reasons of the "misunderstandings" which have caused the controversy, the preceding topics are concretely illustrated.Comment: To appear in Applied Mathematics and Computation, 29 pages, references and further considerations adde
    • …
    corecore