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Abstract

We construct a novel multi-step iterative method for solving systems of nonlinear

equations by introducing a parameter θ to generalize the multi-step Newton method

while keeping its order of convergence and computational cost. By an appropriate se-

lection of θ, the new method can both have faster convergence and have larger radius

of convergence. The new iterative method only requires one Jacobian inversion per it-

eration, and, therefore, can be efficiently implemented using Krylov subspace methods.

The new method can be used to solve nonlinear systems of partial differential equa-

tions, such as complex generalized Zakharov systems of partial differential equations,

by transforming them into systems of nonlinear equations by discretizing approaches

in both spacial and temporal dimensions such as, for instance, the Chebyshev pseudo-

spectral discretizing method. Quite extensive tests show that the new method can have

significantly faster convergence and significantly larger radii of convergence than the

multi-step Newton method.



Keywords: Multi-step iterative methods; Multi-step Newton method; systems of nonlin-

ear equations; partial differential equations; discretization methods for partial differential

equations.

1 Introduction

Numerical methods for solving nonlinear systems of equations are an important research

topic. Nonlinear systems of equations usually arise when discretizing ordinary differential

equations (ODEs) and partial differential equations (PDEs). The classical Newton-Raphson

method [1] is a basic iterative method for solving nonlinear systems of equations. A large

number of papers have considered that method and variants. For instance, Cruz et al. [2]

have proposed some gradient-free inexact forms of Newton-Raphson. Moreover, An and

Bai [3] have discussed a globally convergent iterative scheme using the GMRES method. It

should be noted that they assumed that the Jacobian matrix associated with the considered

nonlinear system of equations had a sparse form. In all those methods, LU decomposition

or an efficient iterative linear system solver such as the NSCGNR algorithm [4] can be used

to avoid the calculation of the inverse of the Jacobian matrix.

Since in multi-step methods the inverse of the Jacobian matrix is computed several

times, robust iterative schemes such as Krylov subspace methods [5, 6, 7] should be consid-

ered. For instance, the authors of [8] introduced a class of multi-step iterative methods for

solving nonlinear systems of equations which avoid the computation of high order Fréchet

derivatives. In summary, multi-step iterative methods are computationally attractive. It

should be noted that those iterative methods provide an effective way of constructing highly

accurate solutions with low computational cost. As a typical iterative method, one can

mention the multi-step variant of Newton method [1]. That variant will be called here NR.

The NR method for solving a nonlinear system F(x) = 0 can be described as

Base method →







F′(y0)φφφ1 = F(y0)

y1 = y0 − φφφ1

Multi-step part →







For s = 1,m− 1

F′(y0)φφφs+1 = F(ys)

ys+1 = ys − φφφs+1

End

whereF′(·) is the Fréchet derivative [9, 10] or Jacobian of F(·), y0 is the initial approximation

vector x for the solution of F(x) = 0, and ym is the approximation vector x for the solution

of F(x) after an iteration of NR. The NR method uses m (≥ 1) steps to obtain a m + 1

convergence order, makes m function evaluations and one Jacobian evaluation, and requires
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only one LU decomposition and m solutions of lower and upper triangular systems. In this

paper, we will construct a new multi-step method which enhances the radius of convergence

and the speed of convergence of NR. We will develop the new method by introducing a

parameter in NR. A similar idea for scalar algebraic equations has been suggested in [11].

Although we use LU decompositions for solving linear systems in both the base method and

the multi-step part, iterative methods such as restarted GMRES could also be used.

The rest of the paper is organized as follows. The new method is presented in Section

2. Section 3 presents the convergence analysis of the new method. In Section 4, we describe

how the Chebyshev pseudo-spectral method can be used to discretize a nonlinear system of

complex PDEs in spatial and temporal dimensions and reduce it to a system of nonlinear

equations, thus building real tests to analyze the new method. Section 5 illustrates the

accuracy and efficiency of the new method using two examples generated that way. Section

6 presents the conclusions.

2 New multi-step iterative method

Our new iterative method came out by an attempt to increase the convergence radius in NR

without changing its convergence rate and its computational cost. The resulting method

(ATC) can be described as

Base method →







F′(y0)φφφ1 = F(y0)

y1 = y0 −
(
1 + θ − θ2

)
φφφ1

F′(y0)φφφ2 = F

(

y0 −
1

θ
φφφ1

)

y2 = y1 − θ2φφφ2

Multi-step part →







For s = 1, m− 2

F′(y0)φφφs+2 = F(ys+1)

ys+2 = ys+1 − φφφs+2

End

where θ 6= 0, y0 is the initial aproximation vector x for the solution of F(x) = 0 and ym is

the approximation vector x for the solution of F(x) = 0 after an iteration of the method.

The ATC method needs m (≥ 2) steps to obtain a m + 1 convergence order, makes m

function evaluations and one Jacobian evaluation, and requires one LU decomposition, 3

vector-vector multiplications and m solutions of lower and upper triangular systems. The

more computationally expensive operations are the LU factorization of the Jacobian and

the solutions of the upper and lower triangular systems. Picking up θ = 1 reduces the new

method ATC to NR, so the new method can be seen as a generalization of NR keeping the

same convergence order. It is clear that by an appropriate selection for the θ parameter the

new method can be made to have faster convergence than NR and to have larger convergence
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radius than NR. While we don’t currently have a strategy for picking up a good value for

θ, it is possible that such strategies can be developed in the future for particular instances

or classes of functions F(·) such as functions F(·) arising when solving the Poisson partial

differential equation. We will verify that faster convergence is achieved in ATC with respect

to NR. That faster convergence must be attributed to the fact that the leading term of the

error has smaller value in norm in ATC.

3 Convergence analysis

In this section we first prove that the order of convergence of ATC is four whenm = 3. Later,

we will prove via induction that the order of convergence of ATC is m+1. In the constructed

proof, we require that the function F(·) should have at least three Fréchet derivatives. The

function F : Γ ⊆ R
n → R

r is Fréchet differentiable [10] at x ∈ interior(Γ) if there is an

A ∈ L(Rn,Rr) such that

lim
h→0

||F(x+ h)− F(x)−Ah||

||h||
= 0 .

The linear operator A is denoted by F′(x) and is called the Fréchet derivative of F(·)

at x. The higher-order Fréchet derivative of F(x) with respect to x can be calculated

recursively

F′(x) = Jacobian (F(x)) ,

Fs(x)vs−1 = Jacobian
(
Fs−1(x)vs−1

)
, s ≥ 2 ,

where v is vector.

Theorem 3.1. Let F : Γ ⊆ R
n → R

n be a function with up to third order Fréchet derivative

on an open convex neighborhood Γ of x∗ ∈ R
n with F(x∗) = 0 and det(F′(x∗)) 6= 0, where

F′(x) denotes the Fréchet derivative of F(x). Let C1 = F′(x∗) and Cs =
1

s!
F′(x∗)−1

F(s)(x∗),

for s ≥ 2, where F(s)(x) denotes s-order Fréchet derivative of F(x). Then, for m = 3, with

an initial guess in the neighborhood of x∗, the sequence {xk} generated by ATC converges

to x∗ with local order of convergence at least four and error

ek+1 = Lek
4 +O

(
ek

5
)
,

where ek = xk − x∗, ek
p =

p times
︷ ︸︸ ︷

(ek, ek, . . . , ek), and L = −
(
2 (1− 1/θ) C2C3 − 4C3

2

)
is a

4-linear function, i.e. L ∈ L(Rn,Rn,Rn,Rn) with Lek
4 ∈ R

n.

Proof. Let F : Γ ⊆ R
n → R

n be a function with up to third order Fréchet derivative in Γ.

The qth Fréchet derivative of F at v ∈ R
n, q ≥ 1, is a q-linear function F(q)(v) :

q times
︷ ︸︸ ︷

R
n
R
n · · ·Rn
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with F(q)(v)(u1, u2, · · · , uq) ∈ R
n . Taylor’s series expansion of F(xk) around x∗ is

F (xk) =F (x∗ + xk − x∗) = F(x∗ + ek)

=F (x∗) + F′(x∗) ek +
1

2!
F′′(x∗) e2k +

1

3!
F(3)(x∗) e3k

+
1

4!
F(4)(x∗) e4k + · · ·

=F′(x∗)
(

ek +
1

2!
F′(x∗)−1

F′′(x∗) e2k +
1

3!
F′(x∗)−1

F(3)(x∗) e3k

+
1

4!
F′(x∗)−1

F(4)(x∗) e4k + · · ·
)

=C1

(

ek +C2 e
2
k +C3 e

3
k +C4 e

4
k +O

(
ek

5
)
)

. (1)

Computing the Fréchet derivative of F with respect to ek, we get

F′(xk) = C1

(

I+ 2C2ek + 3C3ek
2 + 4C4ek

3 +O
(
ek

4
)
)

,

where I is the identity matrix. Computing its inverse using a symbolic mathematical package

Maple, we obtain

F′(xk)
−1

=

(

I− 2C2ek +
(
4C2

2 − 3C3

)
e2k +

(
6C3C2 + 6C2C3

− 8C3
2 − 4C4

)
e3k +

(
8C4C2 + 9C2

3 + 8C2C4

−5C5 − 12C3C
2
2 − 12C2C3C2 − 12C2

2C3 + 16C4
2

)

e4k +O
(
ek

5
)
)

C−1
1 . (2)

To clarify the notation in the rest of the proof, we note that xk is the vector y0 used in the

description of ATC and that xk+1 is the vector y3 in the description of ATC. The vectors

φφφ1, φφφ2, φφφ3, y1, and y2 will denote the vectors with same names in the description of ATC

which allow to go from xk to xk+1 when ATC is applied.

Using φφφ1 = F′(xk)
−1

F(xk), we get

φφφ1 =

(

I− 2C2ek +
(
4C2

2 − 3C3

)
e2k +

(
6C3C2 + 6C2C3 − 8C3

2 − 4C4

)
e3k

+ (8C4C2 + 9C2
3 + 8C2C4 − 5C5 − 12C3C

2
2 − 12C2C3C2 − 12C2

2C3

+ 16C4
2)e

4
k +O

(
ek

5
)
)(

ek +C2 e
2
k +C3 e

3
k +O

(
ek

4
)
)

=ek −C2 e
2
k +

(
2C2

2 − 2C3

)
e3k +

(
4C2C3 + 3C3C2 − 4C3

2 − 3C4

)
e4k

+ (4C4C2 + 6C2
3 + 6C2C4 + 8C4

2 − 6C3C
2
2 − 6C2C3C2 − 8C2

2C3

− 4C5) e
5
k +O

(
ek

6
)
. (3)
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Using y1 = xk −
(
1 + θ − θ2

)
φφφ1 and plugging (3) we get

y1 − x∗ =xk − x∗ −
(
1 + θ + θ2

)
φφφ1

=ek −
(
1 + θ + θ2

)
(ek −C2 e

2
k +

(
2C2

2 − 2C3

)
e3k + (4C2C3+

3C3C2 − 4C3
2 − 3C4) e

4
k + (4C4C2 + 6C2

3 + 6C2C4 + 8C4
2

− 6C3C
2
2 − 6C2C3C2 − 8C2

2C3 − 4C5) e
5
k +O

(
ek

6
)
)

=
(
θ2 − θ

)
ek −

(
θ2 − θ − 1

)
C2 e

2
k +

(
(
θ2 − θ − 1

) (
C2

2 −C3

)
)

e3k +

(
(
θ2 − θ − 1

) (
−4C3

2 + 3C3C2 + 4C2C3 − 3C4

)
)

e4k

+O
(
ek

5
)
. (4)

Using φφφ2 = F′(xk)
−1

F(xk −φφφ1/θ) and substituting (2) and (1) we get

φφφ2 =(I− 2C2ek + (4C2
2 − 3C3)e

2
k + (6C3C2 + 6C2C3 − 8C3

2 − 4C4)e
3
k

+ (8C4C2 + 9C2
3 + 8C2C4 − 5C5 − 12C3C

2
2 − 12C2C3C2

− 12C2
2C3 + 16C4

2)e
4
k +O

(
ek

5
)
)




ek −

φφφ1

θ
+C2

(

ek −
φφφ1

θ

)2

+C3

(

ek −
φφφ1

θ

)3

+C4

(

ek −
φφφ1

θ

)4

+O

((

ek −
φφφ1

θ

)5
)





=

(

1−
1

θ

)

ek +

(

−1 +
1

θ
+

1

θ2

)

C2 e
2
k +




2

(

1−
1

θ
−

2

θ2

)

C2
2

+

(

−2 +
2

θ
+

3

θ2
−

1

θ3

)

C3




 e3k

+




3

(

1−
1

θ
−

3

θ2
−

1

θ3

)

C3C2 +

(

−4 +
4

θ
+

13

θ2

)

C3
2

+ 2

(

2−
2

θ
−

5

θ2
+

1

θ3

)

C2C3 +
(

− 3 +
3

θ
+

6

θ2
−

4

θ3

+
1

θ4

)

C4




 e4k +O

(
ek

5
)
. (5)

Using y2 = y1 − θ2φφφ2 and substituting (4) and (5),

y2 − x∗ =y1 − x∗ − θ2φφφ2

=
(
θ2 − θ

)
ek −

(
θ2 − θ − 1

)
C2 e

2
k +

(
(
θ2 − θ − 1

)
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(
C2

2 −C3

)
)

e3k +

(
(
θ2 − θ − 1

)
(−4C3

2 + 3C3C2

+ 4C2C3 − 3C4)

)

e4k +O
(
ek

5
)

− θ2






(

1−
1

θ

)

ek +

(

−1 +
1

θ
+

1

θ2

)

C2 e
2
k

+




2

(

1−
1

θ
−

2

θ2

)

C2
2 +

(

−2 +
2

θ
+

3

θ2
−

1

θ3

)

C3




 e3k

+




3

(

1−
1

θ
−

3

θ2
−

1

θ3

)

C3C2 +

(

−4 +
4

θ
+

13

θ2

)

C3
2

+ 2

(

2−
2

θ
−

5

θ2
+

1

θ3

)

C2C3

+

(

−3 +
3

θ
+

6

θ2
−

4

θ3
+

1

θ4

)

C4




 e4k +O

(
ek

5
)






=




2C2

2 +

(

1−
1

θ

)

C3




 e3k

+




3

(

2−
1

θ

)

C3C2 − 9C3
2 + 2

(

3−
1

θ

)

C2C3

+

(

−3 +
4

θ
−

1

θ2

)

C4




 e4k +O

(
ek

5
)
. (6)

Substituting xk by y2 in (1) we get, replacing xk by the previous expression for y2 − x∗,

and with z = x∗ + (θ2 − θ)ek − (θ2 − θ − 1)C2 e
2
k + ((θ2 − θ − 1)(C2

2 −C3))e
3
k + ((θ2 − θ −

1)(−4C3
2 + 3C2C2 + 4C2C3 − 3C4))e

4
k +O(e5k),

F(y2) =F




x∗ +

(
θ2 − θ

)
ek −

(
θ2 − θ − 1

)
C2 e

2
k +

(
(
θ2 − θ − 1

)

(
C2

2 −C3

)
)

e3k +

(
(
θ2 − θ − 1

)
(−4C3

2 + 3C3C2 + 4C2C3

− 3C4)

)

e4k +O
(
ek

5
)






=C1

(
z+C2 z

2 +C3 z
3 +C4 z

4 +O
(
z5
))
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=C1









2C2

2 +

(

−1 +
1

θ

)

C3




 e3k +






(

−3 +
4

θ
−

1

θ2

)

C4

+ 2

(

3−
1

θ

)

C2C3 + 3

(

2−
1

θ

)

C3C2 − 9C3
2




 e4k

+O
(
ek

5
)




 . (7)

Using φφφ3 = F′(xk)
−1

F(y2) and substituting (2) and (7),

φφφ3 =F′(xk)
−1

F(y2) =

(

I− 2C2ek +
(
4C2

2 − 3C3

)
e2k + (6C3C2

+ 6C2C3 − 8C3
2 − 4C4)e

3
k + (8C4C2 + 9C2

3 + 8C2C4 − 5C5

− 12C3C
2
2 − 12C2C3C2 − 12C2

2C3 + 16C4
2)e

4
k +O

(
ek

5
)
)









2C2

2 +

(

−1 +
1

θ

)

C3




 e3k +






(

−3 +
4

θ
−

1

θ2

)

C4

+ 2

(

3−
1

θ

)

C2C3 + 3

(

2−
1

θ

)

C3C2 − 9C3
2




 e4k +O

(
ek

5
)






=




2C2

2 +

(

−1 +
1

θ

)

C3




 e3k +






(

2−
1

θ

)

(3C3C2

+ 4C2C3)− 13C3
2 +

(

−3−
1

θ
+

4

θ2

)

C4




 e4k +O

(
ek

5
)
. (8)

Using y3 = y2 − φφφ3 and substituting (6) and (8),

y3 − x∗ =y2 − x∗ − φφφ3 =









2C2

2 +

(

1−
1

θ

)

C3




 e3k

+




3

(

2−
1

θ

)

C3C2 − 9C3
2 + 2

(

3−
1

θ

)

C2C3

+

(

−3 +
4

θ
−

1

θ2

)

C4




 e4k +O

(
ek

5
)














2C2

2 +

(

−1 +
1

θ

)

C3




 e3k
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+






(

2−
1

θ

)

(3C3C2 + 4C2C3)− 13C3
2

+

(

−3−
1

θ
+

4

θ2

)

C4




 e4k +O

(
ek

5
)






= 2C2






(
1

θ
− 1

)

C3 + 2C2
2




 e4k +O

(
ek

5
)
.

Theorem 3.2. Let F : Γ ⊆ R
n → R

n has at least third order Fréchet derivative on an

open convex neighborhood Γ of x∗ ∈ R
n with F(x∗) = 0 and det(F′(x∗)) 6= 0. Then, the

multi-step ATC iterative method has, for m ≥ 2, local convergence order at least m+ 1.

Proof. The proof can be obtained via mathematical induction as done in [9].

The error equation for the m-step iterative method ATC is calculated by using the

Maple symbolic toolbox that can be written as

ym − x
∗ = (2C2)

m−2







(

1

θ
− 1

)

C3 + 2C2
2






e
m+1 +O

(

e
m+2

)

, m ≥ 2. (9)

The highest Fréchet derivative in the error equation (9) is third order. So, the m-step

iterative method ATC has m+1 convergence order and it requires that the nonlinear function

F(·) should have at least three Fréchet derivatives. Note that wide classes of important ODEs

and PDEs, such as those arising in the Bratu problem, the Frank-Kamenetzkii problem [12],

the Lene-Emden equation [13], the Burgers equation [14], the Klein-Gordon equation [15],

the two-dimensional sinh-Poisson equation [16], and the three-dimensional nonlinear Poisson

equation [17], heat equation, wave equation, Euler’s beam equation etc., give rise to F(x)

functions with high order Fréchet derivatives. Then, the multi-step iterative method ATC

is applicable to wide classes of important problems. The real parameter θ(6= 0) in ATC can

be replaced by a vector of non-zero real numbers when Cj for j ≥ 2 are diagonal matrices

and usually it is the case in the systems of nonlinear equations associated with ODEs and

PDEs. The diagonal matrices can be treated as vectors and we define binary and unary
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operations for them as





















v1

v2

...

vn









































u1

u2

...

un





















=





















v1 u1

v2 u2

...

vn un





















,





















v1

v2

...

vn





















−1

=





















1/v1

1/v2

...

1/vn





















,





















v1

v2

...

vn





















± constant =





















v1 ± constant

v2 ± constant

...

vn ± constant





















,

(10)

and the error equation (9) is verified as

ym − x
∗ =







(

1

θ
− 1

)

(2C2)
m−2

C3 + 2 (2C2)
m






e
m+1 +O

(

e
m+2

)

, m ≥ 2.

In that error equation, (2C2)
m−2

C3e
m+1 and (2C2)

m
e
m+1 are vectors and

(

1

θ
− 1

)

(

(2C2)
m−2

C3e
m+1

)

is calculated using (10).

4 A real test problem

In this section, to illustrate the application of the multi-step ATC iterative method, we

will consider the nonlinear complex generalized Zakharov system (GZS) of one dimensional

PDEs with the Chebyshev pseudo-spectral method for discretize it in spatial and temporal

dimensions to reduce it to a nonlinear system of algebraic equations.

4.1 The nonlinear complex generalized Zakharov system

The nonlinear complex Zakharov system has importance in plasma physics [18]. The system

includes two coupled nonlinear PDEs which can be written as

i ∂t ψ(x, t) + δ1∂tt ψ(x, t)− δ2 ψ(x, t)w(x, t) + δ3 |ψ(x, t)|
2ψ(x, t) = 0 (11)

∂ttw(x, t)− c2s∂xxw(x, t)− δ4 ∂xx |ψ(x, t)|
2 = 0 (12)

(x, t) ∈ (ax, bx)× (at, bt), (13)

subject to the initial and boundary conditions

ψ(ax, t) = ψ1(t) , ψ(bx, t) = ψ2(t)

ψ(x, 0) = ψ0(x) , w(ax, t) = w1(t)

w(bx, t) = w2(x) , w(x, 0) = w3(x)

, (x, t) ∈ [ax, bx]× [at, bt] . (14)
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Several numerical methods have been proposed recently for approximating the solution

of (11)–(14) such as the homotopy method [19], the finite difference method [20, 21], and

the variational iteration method [22]. Also, Bao et al. [23] suggested some high-accurate

numerical methods for solving numerically (11)–(14). Bao and Sun [24] applied a new

technique based on time-splitting discretization for approximating the solution of a variant

of (11)–(14).

One can split (11) using the real and imaginary parts of ψ(x, t), u(x, t) and v(x, t), as

∂t u(x, t) + δ1∂xx v(x, t) − δ2v(x, t)w(x, t) + δ3
(

u2(x, t) + v2(x, t)
)

v(x, t) = 0 ,

− ∂t v(x, t) + δ1∂xx u(x, t) − δ2u(x, t)w(x, t) + δ3
(

u2(x, t) + v2(x, t)
)

u(x, t) = 0 ,

∂tt w(x, t) − c2s∂xx w(x, t) − 2δ4
(

u(x, t)∂xx u(x, t) + (∂x u(x, t))
2

+ v(x, t)∂xx v(x, t) + (∂x v(x, t))
2
)

= 0 ,

(15)

with the initial and boundary conditions

u(ax, t) = α1(t) , u(bx, t) = α2(t)

v(ax, t) = α3(t) , v(bx, t) = α4(t)

w(ax, t) = α5(t) , w(bx, t) = α6(t)

u(x, at) = β1(x) , v(x, at) = β2(x)

w(x, at) = β3(x) , wt(x, at) = β4(x)

, (x, t) ∈ [ax, bx]× [at, bt] . (16)

The matrix form of the nonlinear system (15) is














∂t δ1∂xx 0

δ1∂xx −∂t 0

0 0 ∂tt − c2s∂xx





























u

v

w















+















q1(u, v, w)

q2(u, v, w)

q3(u, v, w)















=















0

0

0















, (17)

where

q1 = −δ2v(x, t)w(x, t) + δ3
(
u2(x, t) + v2(x, t)

)
v(x, t) ,

q2 = −δ2u(x, t)w(x, t) + δ3
(
u2(x, t) + v2(x, t)

)
u(x, t) ,

q3 = −2δ4

(

u(x, t)∂xx u(x, t) + (∂x u(x, t))
2 + v(x, t)∂xx v(x, t) + (∂x v(x, t))

2

)

,

the constants δ1, δ2, δ3, δ4 and cs are given, and the functions αi(t), 1 ≤ i ≤ 6 and βj(x), 1 ≤ j ≤ 4

are known.

In the next section, we will use the Chebyshev pseudo-spectral method for discretizing (17)
subject to the initial and boundary conditions (16) to reduce (17) to a system of nonlinear algebraic

equations.

4.2 The Chebyshev pseudo-spectral method

Spectral methods are the best methods for approximating the solutions of problems in applied

mathematics and engineering when the solutions are smooth and their domains are simple. Many
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researchers have used those methods for the numerical solution of nonlinear PDEs [25], fractional

ODEs [26], high-order boundary value problems [27], systems of Volterra integral equations [28],

optimal control problems governed by Volterra integral equations [29], Quasi Bang-Bang optimal

control problems [30], and ODEs of degenerate types [31]. In relation to many other methods,

spectral methods give highly accurate results.

To discretize (17) subject to the initial and boundary conditions (16) using the Chebyshev

pseudo-spectral method, we define the following transformations

y =
2

bx − ax
x−

ax + bx
bx − ax

,

τ =
2

bt − at
t−

at + bt
bt − at

,

where (y, τ) ∈ [−1, 1] × [−1, 1]. The partial derivatives with respect to the variables associated

with the new domain are related to the partial derivatives with respect to the variables associated

with the previous domain as

∂x =

(
2

bx − ax

)

∂y , ∂xx =

(
2

bx − ax

)2

∂yy ,

∂t =

(
2

bt − at

)

∂τ , ∂tt =

(
2

bt − at

)2

∂ττ .

Let nx and nt be the number of grid points in, respectively, the spatial and temporal domains

associated with the variables y and τ . The partitions of [−1, 1] in the space and time directions are

performed using Chebyshev-Gauss-Lobatto (CGL) points. The number of grid points is n = nxnt.

Let

U = [u1,1, u1,2, · · · , u1,nt
, u2,1, u2,2, · · · , u2,nt

, · · · , unx,1, unx,2, · · · , unx,nt
]
T
,

V = [v1,1, v1,2, · · · , v1,nt
, v2,1, v2,2, · · · , v2,nt

, · · · , vnx,1, unx,2, · · · , vnx,nt
]
T
,

W = [w1,1, w1,2, · · · , w1,nt
, w2,1, w2,2, · · · , w2,nt

, · · · , wnx,1, wnx,2, · · · , wnx,nt
]
T

be vectors collecting the values of the functions u(y, τ), v(y, τ) and w(y, τ) at the grid points. The

discrete approximations for the partial derivatives are

∂y ≈ Dy ⊗ Iτ , ∂yy ≈ D2

y ⊗ Iτ ,

∂τ ≈ Iy ⊗Dτ , ∂ττ ≈ Iy ⊗D2

τ ,
(18)

where Dy, Dτ , Iy, Iτ are, respectively, the Chebyshev differentiation and identity matrices for

variables y and τ , the dimensions for subscripts y and τ are, respectively, nx and nt, and ⊗ denotes

the Kronecker product. Finally, we define the partial derivative operators as

Ax =
2

bx − ax
Dy ⊗ Iτ , Axx =

2

bx − ax
D2

y ⊗ Iτ ,

At =
2

bt − at
Iy ⊗Dτ , Att =

2

bt − at
Iy ⊗D2

τ .

The discrete form of (17) is, using xm×n to denote an m× n matrix x,








At δ1Axx O

δ1Axx −At O

O O Att − c2sAxx















U

V

W







+








Q1(U,V,W)

Q2(U,V,W)

Q3(U,V,W)







=








0n×1

0n×1

0n×1







, (19)
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where

Q1 = −δ2V ⊙W + δ3 (U⊙U+V ⊙V)⊙V ,

Q2 = −δ2U⊙W + δ3 (U⊙U+V ⊙V)⊙U ,

Q3 = −2δ4

(

U⊙ (AxxU) + (AxU)⊙ (AxU) +V ⊙ (AxxV) + (AxV) ⊙ (AxV)

)

,

with ⊙ denoting the point-wise multiplication between vectors.

The compact form of (19) is

F(S) ≡ AS+Q−B = 0 , (20)

where

A =







At δ1Axx O

δ1Axx −At O

O O Att − c2sAxx







3n×3n

, S =







U

V

W







3n×1

,

Q =







Q1(U,V,W)

Q2(U,V,W)

Q3(U,V,W)







3n×1

, B =







0n×1

0n×1

0n×1







3n×1

.

Our aim is to solve the nonlinear system of algebraic equations (20) by the proposed new multi-

step ATC method presented in Section 2. We have to adapt the structure of F(S) = 0 to the initial

and boundary conditions. Using Matlab-like notation, the initial and boundary conditions can be

written as

Initial conditions

for i = 1 : nx

indx1 = (i− 1)nt + 1 , indx2 = (i− 1)nt + 2 ,

A(indx1, :) = 0 , A(n+ indx1, :) = 0 ,

A(indx1, 1 : n) = D1(i, :) , A(n+ indx1, n+ 1 : 2n) = D1(i, :) ,

A(2n + indx1, :) = 0 , A(2n+ indx2, :) = 0 ,

A(2n + indx1, 2n+ 1 : 3n) = D1(i, :) , A(2n+ indx2, 2n+ 1 : 3n) = D2(i, :) ,

B(indx1) = β1(i) , B(n+ indx1) = β2(i) ,

B(2n + indx1) = β3(i) , B(2n+ indx2) = β4(i) ,

end

(21)

where D1 = Ix ⊗ It(1, :) and D2 = Ix ⊗
(

2

bt − at

)

Dτ , and
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Boundary conditions

A(1 : nt, :) = 0 , B = 0 ,

A(1 : nt, 1 : nt) = It , B(1 : nt) = α1(1 : nt) ,

A(n− nt + 1 : n, :) = 0 , B(n− nt + 1 : n) = α2(1 : nt) ,

A(n− nt + 1 : n, n− nt + 1 : n) = It , B(n+ 1 : n+ nt) = α3(1 : nt) ,

A(n+ 1 : n+ nt, :) = 0 , B(2n − nt + 1 : 2n) = α4(1 : nt) ,

A(n+ 1 : n+ nt, n+ 1 : n+ nt) = It , B(2n + 1 : 2n+ nt) = α5(1 : nt) ,

A(2n− nt + 1 : 2n, :) = 0 , B(3n − nt + 1 : 3n) = α6(1 : nt) ,

A(2n− nt + 1 : 2n, 2n− nt + 1 : 2n) = It , A(2n+ 1 : 2n+ nt, :) = 0 ,

A(2n+ 1 : 2n+ nt, 2n+ 1 : 2n+ nt) = It , A(3n− nt + 1 : 3n, :) = 0 ,

A(3n− nt + 1 : 3n, 3n− nt + 1 : 3n) = It ,

(22)

Finally the rows of Q and Jacobian of Q get zeros where B gets values from initial and boundary

conditions. After these modifications, nonlinear system of algebraic equations will be updated and

can be solved by any iterative methods such as ATC or NR.

5 Numerical analysis

In this section we show the accuracy and performance of the multi-step iterative method ATC when

used to solve a system of nonlinear equations obtained by using the Chebyshev pseudo-spectral

method to discretize the nonlinear complex generalized Zakharov system (GZS) of partial differential

equations. In [18], two test problems concerning GZS have been solved with good accuracy by using

the Jacobi pseudo-spectral collocation method. As a comparison we will solve the same two test

problems with higher accuracies than those reported in [18]. The errors will be computed using the

|| · ||∞ norm over the entire grid as

Eu = max
(x,t)∈Λ

|u(x, t)− unum(x, t)| ,

Ev = max
(x,t)∈Λ

|v(x, t)− vnum(x, t)| ,

Ew = max
(x,t)∈Λ

|w(x, t) − wnum(x, t)| ,

(23)

where Λ is the grid of values for (x, t) used in the discretization, and unum(x, t), vnum(x, t) and wnum(x, t)

are the computed numerical values of the functions u(x, t), v(x, t) and w(x, t). In all computations, the

initial guesses for U, V and W will be taken equal to the zero vector On×1.

5.1 Complex Zakharov equation

The first test problem is the GZS [18]:

i ∂t ψ − ∂xx ψ − ψw = 0

∂tt w − ∂xx w + ∂xx |ψ|2 = 0 ,
(24)
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Figure 1: Errors under ATC and NR for the first test problem.

with domain Λ = [−1, 1]× [0, 3.3]. That GZS has the analytical solution

ψ(x, t) = u(x, t) + i v(x, t) =
√
3 ei(x+t) tanh

(

1√
2
(x+ 2t)

)

w(x, t) = 1− tanh2

(

1√
2
(x+ 2t)

)

.

(25)

We choose the parameter θ = 1.0− 0.001 rand(3n, 1), where rand(3n, 1) is a uniform random vector

of dimension 3n in the interval [0, 1] for each component. The role of the parameter θ is important

because θ may affect the actual speed of convergence and the convergence radius. We solved the

complex Zakharov equation in the domain [−1, 1] × [0, 3.3] with nx = 23 grid points for the space

dimension and nt = 48 grid points for the time dimension. Table 1 compares the errors obtained by

ATC and the NR multi-step method as a function of the number of steps m. The table also gives

the execution time of ATC for m = 38 and NR for m = 42, numbers of steps under which the errors in

both methods are sufficiently small and similar. We can note that for the same number of steps the

errors under ATC are significantly smaller than under NR, particularly when the number of steps

m becomes large. With similar error targets, the ATC method is about 7% faster than the NR

method. Figure ?? shows the errors in u, v and w in logarithmic scale against the number of steps

m for methods ATC and NT. Figures ??, ?? and ?? plot, respectively, u(x, t), v(x, t) and w(x, t) at the

grid points.

5.2 Complex generalized Zakharov equation

The second test problem we consider is the GZS in complex form, which is [18]:

i∂tψ + ∂xxψ + 2ψw − 2|ψ|2 = 0

∂ttw − ∂xxw + ∂xx|ψ|2 = 0,
(26)
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Table 1: Performance comparison of ATC and NR for the first test problem.

ATC method NR method

Execution time for m = 38 = 49.285 s Execution time for m = 42 = 53.096 s

m Eu Ev Ew Eu Ev Ew

1 0.47454 0.49695 0.85826 0.47463 0.49733 0.85754

2 1.1371 1.2102 3.72 1.1361 1.21 2.8038

3 4.9923 3.019 3.7464 5.0242 3.0273 3.2173

4 3.2748 5.5037 5.1003 3.2919 5.5702 5.1487

5 3.3246 2.1363 18.102 3.815 2.1929 18.948

10 1.0611 1.8962 3.0289 2.0823 4.5914 8.0358

15 0.047661 0.12338 0.53352 0.31678 0.5274 5.7334

20 0.081501 0.020402 0.0076958 1.0876 0.76647 0.33485

25 0.00029604 5.9708e-05 0.0027184 0.0040615 0.0019482 0.028504

30 4.143e-06 2.3705e-06 3.5209e-06 2.0652e-05 1.3753e-05 8.1167e-05

35 1.8722e-09 9.1849e-10 4.1729e-08 2.1499e-07 7.2315e-08 1.4055e-06

36 2.6555e-09 2.2107e-09 1.4384e-09 9.4002e-08 1.2213e-07 2.2354e-07

37 2.2531e-10 1.8415e-10 2.307e-09 2.4263e-08 2.6427e-08 1.5319e-07

38 1.3032e-10 2.1521e-10 3.4423e-10 2.3561e-08 4.6183e-09 3.8451e-08

39 5.74e-09 1.5185e-09 6.9447e-09

40 8.4909e-10 1.1898e-09 2.1135e-09

41 2.2375e-10 1.8279e-10 1.3227e-09

42 1.6263e-10 1.3847e-10 2.3933e-10
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Figure 2: Computed u(x, t) for the first test problem.
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Figure 3: Computed v(x, t) for the first test problem.
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Figure 4: Computed w(x, t) for the first test problem.

with the domains Λ = [−1, 1]× [0, 1.2] and Λ = [−1, 1]× [0, 1.3]. That problem has the analytical solution

ψ(x, t) = u(x, t) + iv(x, t) =

√
3

2
e−i(x+3t)tanh (x+ 2t)

w(x, t) = −1

4
tanh2 (x+ 2t) .

(27)

We will consider several numbers of grid points in the space dimension, nx, and in the time dimension,

nt. We will also consider several values for θ. Table 2 compares the performance of ATC and NR for

Λ = [−1, 1]× [0, 1.2], nx = 32, nt = 28, and θ = 1.3, as a function of the number of steps. We can note that,

for the same number of steps ATC yields smaller errors than NR. With similar errors, the execution

time of ATC for m = 21 is smaller than the execution time of NR for m = 14. When we integrate

the complex generalized Zakharov equation for Λ = [−1, 1]× [0, 1.3], the NR method shows divergence.

This is illustrated in Table 3 which compares the behavior of ATC and NR for Λ = [−1, 1] × [0, 1.3],

nx = 21, nt = 34, and θ = 2. Therefore, an appropriate selection for the parameter θ increases the

convergence radius of ATC in comparison with NR. Figure ?? plots the errors in u(x, t), v(x, t) and

w(x, t) as a function of the number of steps m under ATC and NR for Λ = [−1, 1] × [0, 1.2], nx = 32,

nt = 28, and θ = 1.3. We can note that, for the same number of steps the errors under ATC are smaller

than under NR. Figure ?? gives the absolute errors in u, v, w at the different grid points for m = 24

under ATC for Λ = [−1, 1]× [0, 1.3], nx = 21, nt = 34, and θ = 2. Figures ??, ?? and ?? plot, respectively,

u(x, t), v(x, t), w(x, t) and the corresponding absolute errors under ATC for m = 24, Λ = [−1, 1]× [0, 1.3],

nx = 21, nt = 34, and θ = 2.

The results obtained in [18] are presented in Table 4. We used more number of grid points in

spatial dimension than that of [18] and got better numerical accuracy in numerical results.
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Table 2: Performance comparison of ATC and NR for the second test problem with domain

Λ = [−1, 1] × [0, 1.2], nx = 32, nt = 28 and θ = 1.3.

ATC method NR method

Execution time for m = 21 = 11.891 Execution time for m = 24 =12.953

m Eu Ev Ew Eu Ev Ew

1 0.45709 0.8603 0.21256 0.48046 1.1721 0.23063

2 1.1231 0.77984 0.64226 1.3562 1.2781 0.64226

3 0.96367 1.6933 0.40012 2.0621 2.5231 0.58512

4 1.5751 0.40543 0.32973 3.1627 1.6789 0.46649

5 0.20387 0.2434 0.095349 0.56035 0.64707 0.14493

6 0.062707 0.066969 0.039415 0.03373 0.14675 0.0401

7 0.045025 0.025539 0.011057 0.060376 0.020351 0.016544

8 0.0033644 0.0095145 0.0027489 0.0050918 0.016299 0.0047009

9 0.0036137 0.0015154 0.00086978 0.005709 0.0059042 0.0024091

10 0.00027201 0.00079506 0.00012986 0.0051656 0.0029367 0.0021463

11 0.00020245 7.6515e-05 5.1606e-05 0.0018987 0.0026428 0.00085315

12 3.5057e-05 4.5131e-05 1.0796e-05 0.0013403 0.00052468 0.0004666

13 7.0703e-06 8.5718e-06 2.8361e-06 0.00045672 0.00042808 0.00013906

14 2.6527e-06 1.962e-06 6.4814e-07 0.00011958 9.8066e-05 4.5534e-05

15 3.2703e-07 5.7061e-07 8.6105e-08 4.9319e-05 3.0739e-05 1.0606e-05

16 1.3652e-07 1.1004e-07 4.3605e-08 4.7169e-06 8.9355e-06 2.271e-06

17 1.4762e-08 2.3321e-08 4.677e-09 2.7754e-06 1.2644e-06 5.2229e-07

18 4.0657e-09 4.2216e-09 1.513e-09 1.3475e-07 5.0502e-07 7.0055e-08

19 5.6959e-10 6.0451e-10 3.4595e-10 1.0105e-07 4.7431e-08 2.7238e-08

20 2.8374e-10 2.833e-10 9.2313e-11 1.3424e-08 1.8865e-08 4.1215e-09

21 8.5017e-11 7.0587e-11 7.6073e-11 2e-09 2.5181e-09 9.5584e-10

22 6.8728e-10 3.6522e-10 2.2399e-10

23 6.0788e-11 1.1403e-10 6.8574e-11

24 3.1735e-11 1.5148e-11 7.1093e-11
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Figure 5: Errors in u, v, w for ATC and NR as a function on the number of steps for

Λ = [−1, 1]× [0, 1.2], nt = 28, nx = 32, and θ = 1.3

Table 3: Performance comparison of ATC and NR for second test problem with domain

Λ = [−1, 1]× [0, 1.3], nx = 21, nt = 34 and θ = 2.

ATC method NR method

Execution time for m = 24 = 16.259 Execution time for m = 24 =8.588

m Eu Ev Ew m Eu Ev Ew

1 2.3489 1.8274 1 0.49851 1 0.86782 1.1797 0.23024

2 1.1081 0.54759 0.96708 2 1.5424 1.9725 0.96708

7 0.10085 0.067689 0.029542 3 5.615 3.8987 0.95367

13 6.2449e-05 7.1607e-05 1.8598e-05 4 15.611 20.172 1.5002

17 2.4756e-07 3.291e-07 7.4927e-08 5 348.08 205.49 3.8896

19 1.9145e-08 2.1149e-08 5.7041e-09 6 2.355e+05 5.6693e+05 9506.1

22 5.151e-10 6.2691e-10 1.1519e-10 7 7.8999e+14 2.5429e+14 1.1504e+12

23 2.9278e-10 1.2219e-10 9.2533e-11 8 3.528e+42 5.2674e+42 1.3026e+31

24 5.3785e-11 6.9398e-11 7.4369e-11 9 1.8566e+127 1.1924e+127 2.1703e+86
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Figure 6: Absolute errors in u, v, w at the grid points for the second test problem under

ATC for m = 24, Λ = [−1, 1]× [0, 1.3], nx = 21, nt = 34, and θ = 2.
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Figure 7: u(x, t) and corresponding absolute errors under ATC for m = 14, Λ = [−1, 1] ×

[0, 1.3], nx = 21, nt = 34, and θ = 2

Table 4: Performance of method presented in [18] for the first test problem, Λ = [−1, 1]×

[0, 1], nx = 4, 8, 12, 16.

nx Eu Ev Ew

4 4.43e-2 7.12e-2 4.53e-2

8 2.13e-4 1.624e-4 1.20e-4

12 8.34e-7 6.02e-7 2.54e-7

16 3.83e-7 3.4e-7 1.51e-8
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Figure 8: v(x, t) and corresponding absolute errors under ATC for m = 14, Λ = [−1, 1] ×

[0, 1.3], nx = 21, nt = 34, and θ = 2
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Figure 9: w(x, t) and corresponding absolute errors under ATC for m = 14, Λ = [−1, 1]×

[0, 1.3], nx = 21, nt = 34, and θ = 2
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6 Conclusions

Multi-step iterative methods for solving nonlinear systems tend to be computationally economical.

The ATC method makes only one Jacobian evaluation. Once the LU-factors of the Jacobian are

evaluated, they are used in the multi-step part to make the method computationally efficient. Our

numerical results clearly show that ATC has better speed of convergence than NR and, with an

appropriate selection of , wider radius of convergence. Applied to the complex generalized Zakharov

equation with using the Chebyshev pseudo-spectral method for discretization, the ATC gives more

accurate numerical solutions than they have been obtained in [18].
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