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Abstract Preconditioning of systems of nonlinear equations modifies the associated Jaco-
bian and provides rapid convergence. The preconditioners are introduced in a way that they
do not affect the convergence order of parent iterative method. The multi-step derivative-
free iterative method consists of a base method and multi-step part. In the base method, the
Jacobian of the system of nonlinear equation is approximated by finite difference operator
and preconditioners add an extra term to modify it. The inversion of modified finite differ-
ence operator is avoided by computing LU factors. Once we have LU factors, we repeatedly
use them to solve lower and upper triangular systems in the multi-step part to enhance the
convergence order. The convergence order of m-step Newton iterative method is m + 1. The
claimed convergence orders are verified by computing the computational order of conver-
gence and numerical simulations clearly show that the good selection of preconditioning
provides numerical stability, accuracy and rapid convergence.

Keywords Systems of nonlinear equations ·Nonlinear preconditioners ·Multi-step iterative
methods · Derivative-free

Mathematics Subject Classification 65H10 · 65L10 · 65L05 · 65.3 · 65.65 · 80M25 ·
80.65

1 Introduction

Let F : D ⊆ R
n −→ R

n be a nonlinear function and the system of nonlinear equations can
be written as



F(x) = [ f1(x), f2(x), . . . , fn(x)]T = 0, (1)

where x = [x1, x2, . . . , xn]T . If x∗ is a simple root of (1) thenF(x∗) = 0 and det(F′(x∗)) �= 0
i.e. Jacobian should not be singular at the root. Newton method [1–4] is the classical iterative
method for computing the simple root of systemof nonlinear equation. Themulti-stepNewton
method [5] can be written as

Base method −→

⎧
⎪⎨

⎪⎩

x0 = initial guess

F′(x0)φφφ1 = F(x0)

x1 = x0 − φφφ1

Multi-step part →

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

for j = 2,m

F′(x0)φφφ j = F(x j−1)

x j = x j−1 − φφφ j

end

x0 = xm

(2)

and its order of convergence is m + 1. Many researchers [6–9] have proposed higher order
multi-step iterative method for solving system of nonlinear equations. In most of real world
problems, the closed form expression for the system of nonlinear equations is not always
possible. When we get the information about the system of nonlinear equations from a black
box then the computation of Jacobian analytically is no way possible. So it means, we need
to compute it numerically. Recently people have proposed derivative-free iterative method
[10–14] for the solution of the system of nonlinear equations. Grau-Sànchez et al. [12] have
constructed the following multi-step derivative-free iterative method for solving the system
of nonlinear equations

Basemethod −→

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

x0 = initial guess

u = x0 + β F(x0)

[u, x0;F]φφφ1 = F(x0)

x1 = x0 − φφφ1

Multi-step part →

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

for j = 2,m

[u, x0;F]φφφ j = F(x j−1)

x j = x j−1 − φφφ j

end

x0 = xm

, (3)

where β is a scalar parameter and the [., .;F] : D × D ⊂ R
n × R

n −→ L(Rn) is divided
difference operator of F. The divided difference operator is defined as

[x + h, x;F] =
1∫

0

F′(x + t h) dt, ∀x,h ∈ R
n

= F′(x) + 1

2
F′′(x)h + 1

6
F′′′(x)h2 + O(h3), (4)

where hi =
i times

︷ ︸︸ ︷
(h, h, . . . , h). The ideas of preconditioning of system of nonlinear equations are

reported by many authors [15–18]. Let G(x) = [g1(x), g2(x), . . . , gn(x)]T be a non-zero



sufficiently differentiable function. We define a new function

Q(x) = G(x) 
 F(x) = �G(x)�F(x) = �F(x)�G(x), (5)

where 
 is the component-wise multiplication and �·� represent the diagonal matrix. The
first order Fréchet derivative of (5) can be computed as

Q′(x) = �F(x)�G′(x) + �G(x)�F′(x)
= �G(x)� (F′(x) + �F(x)� �G(x)�−1 G′(x)). (6)

The application of Newton method to (5) gives

xk+1 = xk − Q′(xk)−1 Q(xk)

= xk − (F′(xk) + �F(xk)� �G(xk)�−1G′(xk))
−1

F(xk). (7)

The convergence order of (7) is quadratic because, it is the Newton method for solving
preconditioned system of nonlinear equations Q(x) = 0. If we replace G(x) by exp(G(x))
then (7) can be written as

xk+1 = xk − (F′(xk) + �F(xk)�G′(xk))−1 F(xk) . (8)

2 Proposed iterative methods

We are interested to propose derivative-free version of (8) with some generalization of pre-
conditioner. Our proposal of multi-step derivative-free preconditioned iterative method is the
following

Base method −→

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

x0 = initialguess

u = x0 + β F(x0)

A = [u, x0;F] + �q1(x0) 
 q2(F(x0))�

Aφφφ1 = F (x0)

x1 = x0 − φφφ1

Multi-step part →

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

for j = 2,m

Aφφφ j = F(x j−1)

x j = x j−1 − φφφ j

end

x0 = xm

, (9)

where q1,q2 : R
n −→ R

n are sufficiently differentiable, q2(0) = 0 and qi (x) =
[qi (x1), qi (x2) . . . , qi (xn)]T for i = 1, 2. We claim that the convergence order of proposed
preconditioned m-step derivative-free iterative method is m + 1.

3 Convergence analysis

We demonstrate the proof of convergence order of (9) only for m = 2 and the case m ≥ 3,
we use mathematical induction.



Theorem 3.1 LetF : � ⊆ R
n → R

n be sufficiently Frechet differentiable on an open convex
neighborhood� of x∗ ∈ R

n with F(x∗) = 0 and det (F′(x∗)) �= 0. By taking x0 in the vicinity
of x∗, the sequence {xk} generated by (9) converges to x∗ with local order of convergence at
least three for m = 2 and the following error equation

e2 = B1e0(−C2e20 + B1e20 + C−1
1 �q1(x) 
 (γγγ 1C1 e0)�e0)

+ C−1
1 �q1(x) 
 (γγγ 1C1 e0)�(−C2e20 + B1e20 + C−1

1 �q1(x) 
 (γγγ 1C1 e0)�e0)

+ O((e0)i1 (e0)i2 (e0)i3 (e0)i4) (10)

where ek = xxxk − x∗, ek p =
p times

︷ ︸︸ ︷
(e2, ek, . . . , ek), ek = [(ek)1, (ek)2, . . . , (ek)n]T , γγγ 1 = q2(0),

B1 = β C2 C1 + 2C2 and B2 = β2 C3 C2
1 + β C2 C1 C2 + 3β C3 C1 + 3C3.

Proof The r th Frechet derivative of F at v ∈ R
n , r ≥ 1, is the r -linear function F(r)(v) :

r times
︷ ︸︸ ︷
R
n
R
n . . .Rn such that F(r)(v)(u1, u2, . . . , ur ) ∈ R

n . The Taylor’s series expansion of F(x0)
around x∗ can be written as

F(x0) = F(x∗ + x0 − x∗) = F(x∗ + e0),

= F(x∗) + F′(x∗)e0 + 1

2!F
′′(x∗)e02 + 1

3!F
(3)(x∗)e03 + · · · ,

= F′(x∗)
(

e0 + 1

2!F
′(x∗)−1F′′(x∗)e02 + 1

3!F
′(x∗)−1F(3)(x∗)e03 + · · ·

)

,

= C1(e0 + C2 e02 + C3 e03 + O(e04)), (11)

where C1 = F′(x∗) and Cs = 1
s! F

′(x∗)−1F(s)(x∗) for s ≥ 2. From (11), we can calculate
the Fréchet derivatives of F(·) as

F′(x0) = C1(I + 2C2 e0 + 3C3 e02 + 4C3 e03 + O(e04))

F′′(x0) = C1(2C2 + 6C3 e0 + O(e02))

F′′′(x0) = C1(6C3 + O(e0)), (12)

where I is the identity matrix. By using (4), we get the following expansion

[u, x0;F] = C1 (I + B1e0 + B2 e20 + O(e30)), (13)

where B1 = β C2 C1 + 2C2 and B2 = β2 C3 C2
1 + β C2 C1 C2 + 3β C3 C1 + 3C3. Next,

we expand q2(F(x)) as

q2(F(x)) = q′
2(0)F(x) + q′′

2(0)F(x) 
 F(x) + · · ·
q1(x) 
 q2(F(x)) = q1(x) 
 q′

2(0)F(x) + q1(x) 
 q′′
2(0)F(x) 
 F(x) + · · ·

= q1(x) 
 (γγγ 1C1 e0) + q1(x) 
 (γγγ 1C1 C2e20) + q1(x) 
 (γγγ 2 �C1 e0�C1 e0)

+ O((e0)i1(e0)i2(e0)i3), (14)



where γγγ 1 = q′
2(0), γγγ 2 = q′′

2(0) and O((e0)i1(e0)i2(e0)i3) represent the third order term. The
expansion of A by using (13) and (14) is

A = C1 (I + B1e0 + B2 e20) + �q1(x) 
 (γγγ 1C1 e0)� + �q1(x) 
 (γγγ 1C1 C2e20)�

+ �q1(x) 
 (γγγ 2 �C1 e0�C1 e0)� + O((e0)i1(e0)i3(e0)i3)

A = C1 (I + B1e0 + B2 e20 + C−1
1 �q1(x) 
 (γγγ 1C1 e0)� + C−1

1 �q1(x) 
 (γγγ 1C1 C2e20)�

+ C−1
1 �q1(x) 
 (γγγ 2 �C1 e0�C1 e0)� + O((e0)i1(e0)i2(e0)i3))

A−1 = (I − B1e0 − C−1
1 �q1(x) 
 (γγγ 1C1 e0)� − B2 e20 − C−1

1 �q1(x) 
 (γγγ 1C1 C2e20)�

− C−1
1 �q1(x) 
 (γγγ 2 �C1 e0�C1 e0)� + O((e0)i1(e0)i2(e0)i3))C

−1
1

A−1 = (I − B1e0 − C−1
1 �q1(x) 
 (γγγ 1C1 e0)� + O((e0)i1(e0)i2))C

−1
1 . (15)

By using (15), we get

A−1F(x0) = (I − B1e0 − C−1
1 �q1(x) 
 (γγγ 1C1 e0)� + O((e0)i1 (e0)i2 ))C

−1
1 C1(e0 + C2e20 + O(e30))

= e0 + C2e20 − B1e20 − C−1
1 �q1(x) 
 (γγγ 1C1 e0)�e0 + O((e0)i1 (e0)i2 (e0)i3 )

e1 = e0 − e0 − C2e20 + B1e20 + C−1
1 �q1(x) 
 (γγγ 1C1 e0)�e0 + O((e0)i1 (e0)i2 (e0)i3 )

e1 = −C2e20 + B1e20 + C−1
1 �q1(x) 
 (γγγ 1C1 e0)�e0 + O((e0)i1 (e0)i2 (e0)i3 ). (16)

The error equation e1 tells that the order of convergence of base method of (9) is quadratic.
The order of convergence of (9) for m = 2 is three which is established as

F(x1) = C1(e1 + O(e21))

e2 = e1 − A−1C1(e1 + O(e21))

= e1 − (I−B1e0 − C−1
1 �q1(x) 
 (γγγ 1C1 e0)�+O((e0)i1(e0)i2))C

−1
1 C1(e1+O(e21))

= B1e0e1+C−1
1 �q1(x) 
 (γγγ 1C1 e0)�e1+O((e0)i1 (e0)i2 (e0)i3 (e0)i4)

= B1e0(−C2e20 + B1e20 + C−1
1 �q1(x) 
 (γγγ 1C1 e0)�e0)

+ C−1
1 �q1(x) 
 (γγγ 1C1 e0)�(−C2e20 + B1e20 + C−1

1 �q1(x) 
 (γγγ 1C1 e0)�e0)

+ O((e0)i1 (e0)i2 (e0)i3 (e0)i4). (17)

It can be seen from (17) that it involves third order terms in e0. �


The proof of convergencewhenm > 3 can be carried viamathematical induction. Suppose
the proposed iterativemethod (9) has convergence order s whenm = s−1. The error equation
for s-step iterative method (9) can be written as

es = es−1 − A−1 F(xs−1). (18)

The Taylor series expansion of F(·) around x∗is

F(xs−1) = F(xs−1 − x∗ + x∗) = F(es−1 + x∗) = C1(es−1 + O(e2s−1)).



By substituting the expressions of A−1 and F(xs−1) in (18) we get

es = es−1 − (I−B1e0−C−1
1 �q1(x) 
 (γγγ 1C1 e0)�+O((e0)i1(e0)i2))C

−1
1 C1(es−1+O(e2s−1))

= es−1 − (I − B1e0 − C−1
1 �q1(x) 
 (γγγ 1C1 e0)� + O((e0)i1(e0)i2))(es−1 + O(e2s−1))

= (B1e0 + C−1
1 �q1(x) 
 (γγγ 1C1 e0)� + O((e0)i1(e0)i2))es−1

− (I − B1e0 − C−1
1 �q1(x) 
 (γγγ 1C1 e0)� + O((e0)i1(e0)i2))O(e2s−1)

= (B1e0 + C−1
1 �q1(x) 
 (γγγ 1C1 e0)�)es−1 + O(es+1)

= (B1e0 + C−1
1 �q1(x) 
 (γγγ 1C1 e0)�)O((e0)i1(e0)i2 · · · (e0)is ) + O(es+1)

= O(e0)O((e0)i1(e0)i2 · · · (e0)is ) + O(es+1)

es = O((e0)i1(e0)i2 · · · (e0)is (e0)is+1) + O(es+1) (19)

According to our assumption the order of convergence of (s − 1)-step method is s.
It means es−1 = O((e0)i1(e0)i2 · · · (e0)is ). It is clearly evident from (19) that es =
O((e0)i1(e0)i2 · · · (e0)is+1). So m-step iterative method (9) has convergence order m + 1.

4 Numerical simulations

It is important to verify the claimed order of convergence of the proposed iterative method.
We adopt the following definition of computational order of convergence

COC = log(||F(xk+1)||∞/||F(xk)||∞)

log(||F(xk)||∞/||F(xk−1)||∞)
. (20)

To check the performance of our proposed iterative method, we solve three problems.

Problem 1 =
{
Fi (x) = x2i xi+1 − 1 = 0, i = 1, 2 . . . , n − 1

Fn(x) = xn x1 − 1 = 0

Problem 2 =

⎧
⎪⎨

⎪⎩

F1(x) = (3 − 0.5 x1) x1 − 2 x2 + 1

Fn(x) = (3 − 0.5 xn) xn − 2 xn−1 + 1

Fi (x) = (3 − 0.5 xi ) xi − xi−1 + 2 xi+1 + 1, i = 2, 3, . . . , n − 1

Problem 3 =

⎧
⎪⎨

⎪⎩

Fi (x) = 2

(

n + i (1 − cos(xi )) − sin(xi ) −
n∑

j=1
cos(x j )

)

×(2 sin(xi ) − cos(xi )), i = 1, 2, . . . , n

The performance comparison is demonstrated between iterative methods (3) and (9). The
first order divided difference operator (4) can be computed as

[x, y;F]i j
= Fi (y1, y2, . . . , y j−1, y j , y j+1, . . . , xn) − Fi (y1, y2, . . . , y j−1, x j , x j+1, . . . , xn)

y j − x j
,

(21)

x = [x1, x2, . . . , xn]T and y = [y1, y2, . . . , yn]T and i, j = 1, 2, . . . , n. If F(x) and F(y)
are provided separately then number of scalar function evaluation in (21) are n(n − 1). The
divideddifference approximation (21) of (4) is first order accurate.Adetailed discussion about
different divided difference approximation of Jacobian can be found in [14]. Mathematica



Table 1 Problem 1: Initial guess: xi = 15/10, n = 10, Iter= 5, β = 1/100

Method (9) Method (3)
q1(x) q2(F(x)) m ||F(x)||∞ COC ||F(x)||∞ COC

1 −F(x) 1 1.41e−46 2.0 9.12e−14 2.0

1 −F(x) + F(x)3/100 1 4.77e−52 2.0 9.12e−14 2.0

1 −F(x) 2 9.23e−220 3.0 4.24e−81 3.0

1 −F(x) + F(x)3/100 2 5.61e−245 3.0 4.24e−81 3.0

1 −F(x) 3 4.99e−754 4.0 3.63e−310 4.0

1 −F(x) + F(x)3/100 3 3.63e−827 4.0 3.63e−310 4.0

1 −F(x) 4 7.95e−2062 5.0 1.19e−900 5.0

1 −F(x) + F(x)3/100 4 6.44e−2225 5.0 1.19e−900 5.0

1 −F(x) 5 2.21e−4799 6.0 6.53e−2175 6.0

1 −F(x) + F(x)3/100 5 6.48e−5105 6.0 6.53e−2175 6.0

sin(x) −F(x) 5 2.21e−4536 6.0 6.53e−2175 6.0

cos(x) −F(x) 5 3.66e−2464 6.0 6.53e−2175 6.0

exp(−x/10) −F(x) 5 6.90e−5217 6.0 6.53e−2175 6.0

1 −sin(F(x)) 6 4.56e−6550 7.0 4.79e−4608 7.0

1 −tan(F(x)) 6 7.98e−5136 7.0 4.79e−4608 7.0

1 −F(x)/(1 + F(x)) 6 4.34e−6513 7.0 4.79e−4608 7.0

1 −F(x)/(1 + |F(x)/100|) 6 2.20e−10069 7.0 4.79e−4608 7.0

code is given in the Appendix that can be used to compute the first order divided difference
operator (21).

Tables 1, 2 and 3 clearly shows that the computational convergence orders confirm our
claim that m-step iterative methods (9) and (3) have convergence order m + 1. In all test
problems, the selection of preconditioners show that the performance of proposed iterative
method (9) is better than competitor iterative method (3). The computational cost of pre-
conditioners is reasonable because we use diagonal preconditioners. We observed that the
leading coefficients in all preconditioners are of order one or less than one in magnitude. By
choosing properly preconditioners we obtain high accuracy in numerical results. The value of
parameter β is set to 1/100 to approximate divided difference operator in all three problems.
One may use a smaller value of β but at some point there is a degradation in the accuracy
of numerical results and we found that 1/100 is a reasonable choice for set of selected prob-
lems. It is hard to devise some rule to select nonlinear preconditioners for system of nonlinear
equations but we observed that a small contribution of higher poswers (grater than one) of
F(x) provides better accuracy in the numerical results.

5 Conclusions

The derivative-free iterative methods become important when the system of nonlinear equa-
tions is a black box and we compute Jacobian numerically. The multi-step iterative methods
are efficient and provide a high order of convergence. The high efficiency of multi-step iter-
ative methods is hidden in the fact that we repeatedly use LU factors of frozen Jacobian
from the base method in the multi-step part. The computational cost that we pay is the per
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step single evaluation of the system of nonlinear equation and solution of lower and upper
triangular systems. The proposed preconditioners offer high numerical accuracy in the com-
puted solutions with very low computational cost. It can be seen that the embedding of our
proposed preconditioners modifies the Jacobian without altering the convergence order with
very low computational cost.

Acknowledgements We are grateful to reviewer for his valuable comments to enhance the quality of the
research article.

6 Appendix

1
2 (∗
3 Problem 1
4
5 i t e r a t i o n s = 5
6 m = 5
7 n = 10
8 be t a = 1 /100
9 i n i t i a l gu e s s x _ i = 15 /10

10 q1 ( x ) = −F( x )
11 q2 ( x ) = s i n ( x )
12 ∗ )
13
14 C l e a rA l l [ " Globa l ‘ ∗ " ]
15 p e r c i s i o n = 2∗3600 ;
16 $MinP r e c i s i o n = p e r c i s i o n ;
17
18 F [ xz_ , n_ ] := (
19 yyz = Tab l e [ 0 , { i , 1 , n } ] ;
20 Do [ yyz [ [ i ] ] = xz [ [ i ] ] ^ 2∗ xz [ [ i + 1 ] ] − 1 , { i , 1 , n − 1 } ] ;
21 yyz [ [ n ] ] = xz [ [ n ] ] ^ 2∗ xz [ [ 1 ] ] − 1 ;
22 Re tu rn [ yyz ] ;
23 ) ;
24
25 F i [ xs_ , i_ , n_ ] := (
26 I f [ i == n , z s = xs [ [ n ] ] ^ 2∗ xs [ [ 1 ] ] − 1 ,
27 z s = xs [ [ i ] ] ^ 2∗ xs [ [ i + 1 ] ] − 1 ] ;
28 Re tu rn [ z s ] ;
29 ) ;
30
31 dF [ xq_ , yq_ , F1q_ , F2q_ , n_ ] := (
32 Mq = Tab l e [ 0 , { i , 1 , n } , { j , 1 , n } ] ;
33 Do [
34 z1q = yq ;
35 z1q [ [ 1 ] ] = xq [ [ 1 ] ] ;
36 dumq = F i [ z1q , i , n ] ;
37 Mq[ [ i , 1 ] ] = ( dumq − F2q [ [ i ] ] ) / ( xq [ [ 1 ] ] − yq [ [ 1 ] ] ) ;
38 Do [ z1q [ [ j ] ] = xq [ [ j ] ] ;
39 dum1q = F i [ z1q , i , n ] ;
40 Mq[ [ i , j ] ] = ( dum1q − dumq ) / ( xq [ [ j ] ] − yq [ [ j ] ] ) ;
41 dumq = dum1q ;
42 , { j , 2 , n − 1 } ] ;



43 Mq[ [ i , n ] ] = ( F1q [ [ i ] ] − dumq ) / ( xq [ [ n ] ] − yq [ [ n ] ] ) ;
44 , { i , 1 , n } ] ;
45 Re tu rn [Mq ] ;
46 ) ;
47 n = 10 ;
48 i t e r = 5 ;
49 m = 5 ;
50 gue s s = Tab l e [ 1 5 / 1 0 , { i , 1 , n } ] ;
51 gue s s = S e t P r e c i s i o n [ guess , p e r c i s i o n ] ;
52 e r r = Tab l e [ 0 , { i , 1 , i t e r } ] ;
53 b = 1 / 1 0 0 ;
54 x0 = gue s s ;
55
56 Do [
57 fx0 = F [ x0 , n ] ;
58 q1 = Sin [ x0 ] ;
59 q2 = −fx0 ;
60 u = x0 + b∗ fx0 ;
61 fu = F [ u , n ] ;
62 A = dF [ u , x0 , fu , fx0 , n ] + D i agona lMa t r i x [ q1∗q2 ] ;
63 l u s o l v e = L i n e a r S o l v e [A ] ;
64 ph i1 = l u s o l v e [ fx0 ] ;
65 x1 = x0 − ph i1 ;
66 Do [
67 fx1 = F [ x1 , n ] ;
68 x1 = x1 − l u s o l v e [ fx1 ] ;
69 , { i , 2 , m} ] ;
70 x0 = x1 ;
71 e r r [ [ j ] ] = Norm [ F [ x0 , n ] , I n f i n i t y ] ;
72 , { j , 1 , i t e r } ] ;
73
74 (∗ Compute t h e c ompu t a t i o n a l o rd e r o f c onv e rg enc e ∗ )
75
76 Do [
77 r h o f = Log [ e r r [ [ i + 2 ] ] / e r r [ [ i + 1 ] ] ] / Log [ e r r [ [ i + 1 ] ] / e r r [ [ i ] ] ] ;
78 , { i , 1 , i t e r − 2 } ] ;
79
80 (∗ Di s p l a y t h e r e s u l t s ∗ )
81 p e r c i s i o n = 10 ;
82 $MinP r e c i s i o n = p e r c i s i o n ;
83 N[ e r r , p e r c i s i o n ] / / Matr ixForm
84 P r i n t [ Compu t a t i o n a l o r d e r o f conve r g enc e ] ;
85 N[ rho f , p e r c i s i o n ] / / Matr ixForm
86 (∗ ∗∗∗∗∗ Program f i n i s h he r e ∗∗∗∗∗ ∗ )
87 (∗ Outpu t o f t h e program ∗ )
88
89 E r r o r ( 1 ) = 0 .001151877320
90 E r r o r ( 2 ) = 3 .639375119 e−21
91 E r r o r ( 3 ) = 3 .597261495 e−126
92 E r r o r ( 4 ) = 3 .354618470 e−756
93 E r r o r ( 5 ) = 2 .206327013 e−4536
94
95 (∗ ∗∗∗ Compu ta t i ona l o rde r o f Convergence ∗∗∗ ∗ )
96
97 COC = 6
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