143 research outputs found

    A hyperbolic reformulation of the Serre-Green-Naghdi model for general bottom topographies

    Full text link
    We present a novel hyperbolic reformulation of the Serre-Green-Naghdi (SGN) model for the description of dispersive water waves. Contrarily to the classical Boussinesq-type models, it contains only first order derivatives, thus allowing to overcome the numerical difficulties and the severe time step restrictions arising from higher order terms. The proposed model reduces to the original SGN model when an artificial sound speed tends to infinity. Moreover, it is endowed with an energy conservation law from which the energy conservation law associated with the original SGN model is retrieved when the artificial sound speed goes to infinity. The governing partial differential equations are then solved at the aid of high order ADER discontinuous Galerkin finite element schemes. The new model has been successfully validated against numerical and experimental results, for both flat and non-flat bottom. For bottom topographies with large variations, the new model proposed in this paper provides more accurate results with respect to the hyperbolic reformulation of the SGN model with the mild bottom approximation recently proposed in "C. Escalante, M. Dumbser and M.J. Castro. An efficient hyperbolic relaxation system for dispersive non-hydrostatic water waves and its solution with high order discontinuous Galerkin schemes, Journal of Computational Physics 2018"

    Mathematical and numerical modelling of dispersive water waves

    Get PDF
    Fecha de lectura de Tesis: 4 diciembre 2018.En esta tesis doctoral se expone en primer lugar una visión general del modelado de ondas dispersivas para la simulación de procesos tsunami-génicos. Se deduce un nuevo sistema bicapa con propiedades de dispersión mejoradas y un nuevo sistema hiperbólico. Además se estudian sus respectivas propiedades dispersivas, estructura espectral y ciertas soluciones analíticas. Así mismo, se ha diseñado un nuevo modelo de viscosidad sencillo para la simulación de los fenómenos físicos relacionados con la ruptura de olas en costa. Se establecen los resultados teóricos requeridos para el diseño de esquemas numéricos de tipo volúmenes finitos y Galerkin discontinuo de alto orden bien equilibrados para sistemas hiperbólicos no conservativos en una y dos dimensiones. Más adelante, los esquemas numéricos propuestos para los sistemas de presión no hidrostática introducidos se describen. Se pueden destacar diferentes enfoques y estrategias. Por un lado, se diseñan esquemas de volúmenes finitos implícitos de tipo proyección-corrección en mallas decaladas y no decaladas. Por otro lado, se propone un esquema numérico de tipo Galerkin discontinuo explícito para el nuevo sistema de EDPs hiperbólico propuesto. Para permitir simulaciones en tiempo real, una implementación eficiente en GPU de los métodos es llevado a cabo y algunas directrices sobre su implementación son dados. Los esquemas numéricos antes mencionados se han aplicado a test de referencia académicos y a situaciones físicas más desafiantes como la simulación de tsunamis reales, y la comparación con datos de campo. Finalmente, un último capítulo es dedicado a medir la influencia al considerar efectos dispersivos en la simulación de transporte y arrastre de sedimentos. Para ello, se deduce un nuevo sistema de dos capas de aguas someras, se diseña un esquema numérico y se muestran algunos test académicos y de validación, que ofrecen resultados prometedores

    A discontinuous Galerkin method for a new class of Green-Naghdi equations on simplicial unstructured meshes

    Get PDF
    In this paper, we introduce a discontinuous Finite Element formulation on simplicial unstructured meshes for the study of free surface flows based on the fully nonlinear and weakly dispersive Green-Naghdi equations. Working with a new class of asymptotically equivalent equations, which have a simplified analytical structure, we consider a decoupling strategy: we approximate the solutions of the classical shallow water equations supplemented with a source term globally accounting for the non-hydrostatic effects and we show that this source term can be computed through the resolution of scalar elliptic second-order sub-problems. The assets of the proposed discrete formulation are: (i) the handling of arbitrary unstructured simplicial meshes, (ii) an arbitrary order of approximation in space, (iii) the exact preservation of the motionless steady states, (iv) the preservation of the water height positivity, (v) a simple way to enhance any numerical code based on the nonlinear shallow water equations. The resulting numerical model is validated through several benchmarks involving nonlinear wave transformations and run-up over complex topographies

    Numerical simulations of a dispersive model approximating free-surface Euler equations

    Get PDF
    In some configurations, dispersion effects must be taken into account to improve the simulation of complex fluid flows. A family of free-surface dispersive models has been derived in Fernández-Nieto et al. (Commun Math Sci 16(05):1169–1202, 2018). The hierarchy of models is based on a Galerkin approach and parameterised by the number of discrete layers along the vertical axis. In this paper we propose some numerical schemes designed for these models in a 1D open channel. The cornerstone of this family of models is the Serre – GreenNaghdi model which has been extensively studied in the literature from both theoretical and numerical points of view. More precisely, the goal is to propose a numerical method for the LDNH2 model that is based on a projection method extended from the one-layer case to any number of layers. To do so, the one-layer case is addressed by means of a projectioncorrection method applied to a non-standard differential operator. A special attention is paid to boundary conditions. This case is extended to several layers thanks to an original relabelling of the unknowns. In the numerical tests we show the convergence of the method and its accuracy compared to the LDNH0 model

    A staggered semi-implicit hybrid finite volume / finite element scheme for the shallow water equations at all Froude numbers

    Full text link
    We present a novel staggered semi-implicit hybrid FV/FE method for the numerical solution of the shallow water equations at all Froude numbers on unstructured meshes. A semi-discretization in time of the conservative Saint-Venant equations with bottom friction terms leads to its decomposition into a first order hyperbolic subsystem containing the nonlinear convective term and a second order wave equation for the pressure. For the spatial discretization of the free surface elevation an unstructured mesh of triangular simplex elements is considered, whereas a dual grid of the edge-type is employed for the computation of the depth-averaged momentum vector. The first stage of the proposed algorithm consists in the solution of the nonlinear convective subsystem using an explicit Godunov-type FV method on the staggered grid. Next, a classical continuous FE scheme provides the free surface elevation at the vertex of the primal mesh. The semi-implicit strategy followed circumvents the contribution of the surface wave celerity to the CFL-type time step restriction making the proposed algorithm well-suited for low Froude number flows. The conservative formulation of the governing equations also allows the discretization of high Froude number flows with shock waves. As such, the new hybrid FV/FE scheme is able to deal simultaneously with both, subcritical as well as supercritical flows. Besides, the algorithm is well balanced by construction. The accuracy of the overall methodology is studied numerically and the C-property is proven theoretically and validated via numerical experiments. The solution of several Riemann problems attests the robustness of the new method to deal also with flows containing bores and discontinuities. Finally, a 3D dam break problem over a dry bottom is studied and our numerical results are successfully compared with numerical reference solutions and experimental data

    Combined Hybridizable Discontinuous Galerkin (HDG) and Runge-Kutta Discontinuous Galerkin (RK-DG) formulations for Green-Naghdi equations on unstructured meshes

    Get PDF
    In this paper, we introduce some new high-order discrete formulations on general unstructured meshes, especially designed for the study of irrotational free surface flows based on partial differential equations belonging to the family of fully nonlinear and weakly dispersive shallow water equations. Working with a recent family of optimized asymptotically equivalent equations, we benefit from the simplified analytical structure of the linear dispersive operators to conveniently reformulate the models as the classical nonlin-ear shallow water equations supplemented with several algebraic source terms, which globally account for the non-hydrostatic effects through the introduction of auxiliary coupling variables. High-order discrete approximations of the main flow variables are obtained with a RK-DG method, while the trace of the auxiliary variables are approximated on the mesh skeleton through the resolution of second-order linear elliptic sub-problems with high-order HDG formulations. The combined use of hybrid unknowns and local post-processing significantly helps to reduce the number of globally coupled unknowns in comparison with previous approaches. The proposed formulation is then extended to a more complex family of three parameters enhanced Green-Naghdi equations. The resulting numerical models are validated through several benchmarks involving nonlinear waves transformations and propagation over varying topographies, showing good convergence properties and very good agreements with several sets of experimental data

    Finite volume schemes for dispersive wave propagation and runup

    Get PDF
    Finite volume schemes are commonly used to construct approximate solutions to conservation laws. In this study we extend the framework of the finite volume methods to dispersive water wave models, in particular to Boussinesq type systems. We focus mainly on the application of the method to bidirectional nonlinear, dispersive wave propagation in one space dimension. Special emphasis is given to important nonlinear phenomena such as solitary waves interactions, dispersive shock wave formation and the runup of breaking and non-breaking long waves.Comment: 41 pafes, 20 figures. Other author's papers can be downloaded at http://www.lama.univ-savoie.fr/~dutykh

    An Arbitrary High Order Well-Balanced ADER-DG Numerical Scheme for the Multilayer Shallow-Water Model with Variable Density

    Get PDF
    In this work, we present a novel numerical discretization of a variable pressure multilayer shallow water model. The model can be written as a hyperbolic PDE system and allows the simulation of density driven gravity currents in a shallow water framework. The proposed discretization consists in an unlimited arbitrary high order accurate (ADER) Discontinuous Galerkin (DG) method, which is then limited with the MOOD paradigm using an a posteriori subcell finite volume limiter. The resulting numerical scheme is arbitrary high order accurate in space and time for smooth solutions and does not destroy the natural subcell resolution inherent in the DG methods in the presence of strong gradients or discontinuities. A numerical strategy to preserve non-trivial stationary solutions is also discussed. The final method is very accurate in smooth regions even using coarse or very coarse meshes, as shown in the numerical simulations presented here. Finally, a comparison with a laboratory test, where empirical data are available, is also performed.Open Access funding provided thanks to the CRUE-CSIC agreement with Springer Nature. Funding for open access charge: Universidad de Málaga / CBU
    corecore