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Introduction

Computational Fluid Mechanics is today one of the most essential tools for the simulation
of a multitude of phenomena that take place in our environment. The flow that occurs
after a dam break, the circulation of bodies in the water, the behaviour of atmospheric
currents, the evolution of a pollutant discharge, erosion and the transport of sediments,
tsunamis, among others, are phenomena whose study has a considerable interest since
they affect the human being in a decisive way. To reduce the hazards associated with
these phenomena such as hurricanes or tsunamis, the prediction is an essential part, and
the evaluation of their possible consequences are important goals to be marked since they
can help save many lives and reduce material and economic damage. Unfortunately, it
is difficult and expensive to perform laboratory studies using scale size models to study
such phenomena, due to the global scale of those.

An alternative is to compute numerical simulations of the fluids involved. Tackling
such problems requires, in the first place, to trace the theoretical aspects of the physics
underlying. Second, it involves developing numerical models that provide reliable
predictions of the problems raised and sufficiently in advance to allow the process of
decision-making.

According to the theme that concern this thesis, in order to simulate the impact that
a tsunami may produce on a coastal zone, it will be necessary to develop models that
provide satisfactory results in the propagation of tsunami waves in the ocean, its evolution
through the continental shelf towards the nearshore and its impact on the coast. In this
context of geophysical flows, these processes have the characteristic of having vertical
information that can be negligible compared to the horizontal ones. This circumstance
makes it possible to simplify significantly the mathematical formulation of the models to
be used for their simulation.

To do that, the three-dimensional Navier-Stokes equations are considered, which are
the most general equations of fluid mechanics. These equations may be written in the
dimensionless form and simplified under some assumptions:

• the vertical dimension of the domain H is small compared with respect to the
wavelength L, that is

µ1 =
H

L
� 1;
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Figure A.1: Fluid across a one-dimensional channel.

• the pressure of the fluid is assumed to be hydrostatic;

• horizontal viscosity terms are neglected.

Under this hypothesis, and after a process of depth-averaging in the vertical direction,
one can arrive to a system of non-linear PDE that is called the Nonlinear Shallow-Water
Equations, SWE from now on, that reads for one-dimensional domains as

∂th+ ∂x(hu) = 0, x ∈ I ⊂ R, t > 0,

∂t (hu) + ∂x

(
hu2 +

1

2
gh2

)
= gh∂xH − τb,

(0.0.1)

where h(x, t) is the positive water height at each point x ∈ I, I a given interval, and time
t. u(x, t) is the depth averaged velocity in the x direction. g represents the gravitational
constant and H(x) is the still water depth. It is also interesting to define the function
η(x, t) = h(x, t) − H(x) that describes the free-surface of the fluid measured from the
still-water level (see Figure A.1). τb(x, t) parametrizes the bottom friction effects. In the
literature one could find different parametrizations of the friction effects and in this thesis
a Manning friction law is used given by

τb = gh
n2u|u|
h4/3

(0.0.2)

where n is the Gauckler-Manning coefficient [185]. The system is completed with
the corresponding initial conditions and, in the case of bounded domains, with the
corresponding boundary conditions.

In fluid dynamics, dispersion of water waves generally refers to frequency dispersion,
which means that waves of different wavelengths travel at different phase speeds. Water
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Figure A.2: Comparison of experiments data (red) and simulated ones with SWE at
different times during the inundation part.

waves, in this context, are waves propagating on the water surface, with gravity and
surface tension as the restoring forces. As a result, water with a free surface is generally
considered to be a dispersive medium. However, it is well-known that SWE do not take
into account effects associated with dispersive waves.

Figure A.2 illustrate this fact showing snapshots of the evolution of a wave over a
plane beach. There one can see how the SWE (in blue) tends to predict faster velocity
for the front of the wave when compared with laboratory data (in red). The Stokes linear
theory (or Airy wave theory) explain this situation since it states that the speed of wave
propagation, or more precisely the phase velocity CAiry, as a quantity that is given in
terms of the typical depth H and the local wavenumber k as

C2
Airy = gH

tanh(kH)

kH
,

whereas the phase velocity of the system (0.0.5) is given by

C2
SWE = gH.

The previous relation, which is also called a linear dispersion relation, reveals the
dispersive character of the linear water wave theory and that SWE cannot take into
account effects associated with dispersive waves. This also explains why the computed
numerical simulation in Figure A.2 is shifted, since the speed propagation of the
system (0.0.5), CSWE, is faster than the given by the linear theory, CAiry.
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Concerning mathematical models able to simulate dispersive water waves, a great
effort has been made in recent years in the derivation of relatively simple mathematical
models for shallow water flows that include long non-linear water waves, such as Tsunami
water waves. The history of non-linear dispersive modelling goes back to the end of the
XIXth century.

In 1834, while conducting experiments to determine the most efficient design for
canal boats, J. Scott Russell discovered a phenomenon that he described as the wave of
translation. This type of waves move at constant celerity maintaining the same shape. The
observations can be found in a technical report for the fourteenth meeting of the British
Association for the Advancement of Science (1845) [221]. Nowadays, in fluid dynamics,
this type of waves are called Russell’s solitary waves or solitary waves. J. Scott Russell
spent some time making practical and theoretical investigations of these waves. The
problem was that the new observations seemed at contrast with Isaac Newton’s and Daniel
Bernoulli’s theories of hydrodynamics. George Biddell Airy and George Gabriel Stokes
had difficulty to accept Scott Russell’s experimental observations because the existing
water-wave theories could not explain Scott Russell’s observations.

It was only later when the first successful theoretical treatment was carried out by
Joseph Valentin Boussinesq in 1872 [19], that Russell’s observations on solitary waves
were accepted as true by some prominent scientists within his lifetime. Afterwards, J.
Boussinesq in 1877 [19] proposed the Korteweg de Vries equation, re-derived later by D.
Korteweg & G. de Vries (1895). Then, a new generation of ’pioneers’ (F. Serre (1953) [227],
C.C. Mei & Le Méhauté (1966) [189] and D. Peregrine (1967) [210]) derived modern non-
linear dispersive wave models.

One of the most commonly used models that became popular was the system derived
by Peregrine [210] in 1967. Equations of motion are derived for long waves in water of
varying depth. The equations are for small amplitude waves but do include non-linear
terms. They correspond to the Boussinesq equations for water of constant depth. There
are two important parameters associated with long waves. One is the ratio of depth to
wavelength µ1, and the other is the ratio of amplitude to depth µ2. The Peregrine equations
were derived under the assumptions of weakly non-linear weakly dispersive waves, that is

µ1 � 1, µ2 ≈ µ2
1.

The system reads as:
∂th+ ∂x(hu) = 0, x ∈ I ⊂ R, t > 0,

∂t (hu) + ∂x

(
hu2 +

1

2
gh2

)
= gh∂xH +

1

2
H2∂xxt (uH)− 1

6
H3∂xxtu− τb.

(0.0.3)

An asymptotic analysis in the limit kH → 0 shows that the dispersion relation is exact at
order O(kH)4 for the Peregrine system when compared with Airy theory, and therefore
it makes a great model for the simulation of long-waves.
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As computational power increases, Boussinesq Type Models ([1], [19], [144], [184],
[202], [210], [148], [255], [256]) become more accessible. This means that one can use
more sophisticated models in order to accurately describe reality, despite the higher
computational cost. Two main challenges can be highlighted as overcomed:

• The development of fully non-linear weakly dispersive system derived under the only
assumption of µ2 ≈ µ2

1 (see for example [144], [168]).

• The improvement of the linear dispersion relation of the derived systems and thus
extending the range of validity where models can represent well dispersive water
waves. This is, extending the range from moderate to intermediate-deep waters and
shallow waters.

The second item above has attracted the attention of the scientific community and
can be simply illustrated by a large number of journal papers published on the subject.
Attending to the behaviour of the waves, a classification on shallow, intermediate and
deep waters is established. Primarily, the second item focus on intermediate waters,
that occurs when the typical wavelength L is bounded by 2H and 20H, being H the
typical depth. Within this range, it can be demanded much more information on the
vertical structure that must be retained when deriving mathematical models. High order
Boussinesq equations can offer better dispersive properties. The counterpart is that
extremely complex systems with high order derivatives arise (fifth order derivatives in
[135]), requiring an equally complex numerical scheme when solving numerically. The
complexity increases even more for two space dimensions problems.

However, Madsen and Sorensen (see [184]) fully understanding this problem, found
a smart approach for improving dispersive properties without increasing the order of
the derivatives appearing in the momentum equation. They propose a system that has
received significant attention from the scientific community.

Alternatively, the development of non-hydrostatic pressure models for coastal water
waves has been the topic of many studies over the past 30 years. Non-hydrostatic models
are capable of solving many relevant features of coastal water waves, such as dispersion,
non-linearity, shoaling, refraction, diffraction, and run-up. The central hypothesis in the
derivation consists in splitting the pressure into a hydrostatic and a non-hydrostatic part
(see Casulli [52]). In this thesis, the non-hydrostatic pressure system derived by Sainte-
Marie et al. in [21] was numerically approximated. This system can be derived after
a standard depth-averaging process from the Euler equations and assuming a constant
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vertical profile for the horizontal velocity. The system reads as

∂th+ ∂x(hu) = 0, x ∈ I ⊂ R, t > 0,

∂t (hu) + ∂x
(
hu2 + 1

2
gh2 + hp

)
= (gh+ pb) ∂xH − τb,

∂t (hw) + ∂x (uhw) = pb, pb = 2p

∂xu+
w − wb
h/2

= 0, wb = −u∂xH.

(0.0.4)

Since the derivation process of the system is similar to the one followed for the SWE, the
definition of the variables involved coincides with the ones described in system (0.0.5).
The variables w and p are the depth averaged vertical velocity and the depth averaged
non-hydrostatic pressure respectively. wb and pb account for the vertical velocity and
the non-hydrostatic pressure at the bottom, being pb = 2p. The last equation in (0.0.8)
accounts for the depth integrated incompressibility condition. The best advantage that
presents this non-hydrostatic pressure system is the absence of higher order derivatives and
even it has a linear dispersion relation that is similar to the one given by the system (0.0.7).

In this spirit of PDE system with dispersive abilities derived from the assumption
of a non-hydrostatic pressure, several works have been developed. To improve the
dispersive properties of the systems, the primary trend consists in the use of a multi layer
depth averaging approximation. The idea is, given the increasing computational power
available, to make systems closer and closer to three-dimensional solvers, i.e. capable
of also adequately describing the vertical structure of the flow, leading to distinctive
improvements in the non-linear dispersive properties of the model.

In [124], E.D. Fernández-Nieto et al. derived a class of multi layer non-hydrostatic
pressure system that reduces to the system described in (0.0.8) when the number of layers
is set to one. When the number of layer is higher than one, the mathematical model
remains extremely simple, in the sense that there are no high derivatives. Moreover, it
is shown that when the number of layers tends to infinity, the celerity of the multi layer
system tends to the corresponding celerity given by the Airy theory. Due to this reason
the non-hydrostatic pressure systems have been considered in this thesis. In particular,
one of multi layer systems derived in [124], has been considered in this thesis as the central
framework to design numerical schemes to simulate dispersive water waves. Moreover, in
this thesis, a novel two-layer non-hydrostatic pressure system with enhanced dispersive
properties was proposed in [118] and numerically approximated.

Concerning the nature of the dispersive PDE systems presented above, it is well known
that the system (0.0.5) consists on a hyperbolic PDE system. However, the nature of
the system (0.0.7), among others Boussinesq and non-hydrostatic systems, differs from a
hyperbolic system, and responds instead to a mixed hyperbolic and elliptic problem. Some
discussion and theoretical results about existence and uniqueness can be found in [167].
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Due to the mixed hyperbolic-elliptic nature of Boussinesq and non-hydrostatic systems,
the complexity of the corresponding numerical schemes increases. For example, the
incompressibility equation in (0.0.8) adds an extra restriction that makes the system
a hyperbolic-elliptic problem. This restriction makes that explicit schemes cannot be
applied to the system, since they may have a strong stability condition, or even worse it
may result in an unconditionally unstable scheme. Therefore, implicit schemes must be
applied and several works can be found in literature (see for example [4], [112], [163], [180],
[217], [259] among references therein). Numerical methods applied to non-hydrostatic
pressure systems, and even Boussinesq-type systems, typically use a splitting operator
(see e.g. [168]) or a projection-correction type schemes (see [4], [63], [112], [118]). Usually,
it combines finite volume methods for solving the underlying hyperbolic part in a first step,
and finite differences or finite elements for solving the elliptic or non-hydrostatic/dispersive
terms in a second step, usually by using staggered grids.

However, there is a nearly recent and alternative strategy to simulate dispersive water
waves with hyperbolic PDE systems. In [188], Ricciuto et al. proposed a first-order
system approach for general one dimensional advection-diffusion-dispersion equations.
Similarly, in [147] Brocchini et al. obtained a set of dispersive and hyperbolic depth-
averaged equations using a hyperbolic approximation of a chosen set of fully nonlinear
and weakly dispersive Boussinesq-type equations.

In the same vein, in this thesis a novel first-order hyperbolic depth-averaged system,
that can be seen as a modification of the model (0.0.8) for two space dimensions presented
in [21], is proposed by Escalante et al. in [111]. The novel hyperbolic system is obtained
using a hyperbolic reformulation of the original governing PDE (0.0.8) by coupling the
divergence constraint of the velocity with the remaining conservation laws at the aid of an
evolution equation for the depth-integrated non-hydrostatic pressure, similar to the so-
called hyperbolic divergence cleaning introduced in the generalized Lagrangian multiplier
approach (GLM) of Munz et al. [196], [83] for the Maxwell and the magnetohydrodynamics
(MHD) equations. In this work, a formulation is suggested in which the divergence errors
of the velocity field are transported at a finite speed that is related to the maximum
eigenvalues of the governing PDE system. The augmented hyperbolic system maintains
the momentum equations for the horizontal and vertical velocities and still satisfies an
energy balance equation, as the original system [21]. Therefore, the final governing PDE
system proposed in this dissertation is a system of hyperbolic balance laws and is thus
amenable for an explicit discretization via high order numerical schemes.

Higher order methods are desirable due to their improved dissipation and dispersion
properties compared to simple second order TVD finite volume schemes. This is
particularly important for the accurate propagation of solitary waves over long distances,
as it will be also shown later in the numerical results section. In this thesis, two
alternatives to discretize the considered PDE systems with high order schemes are chosen:

• High order finite volume methods based on polynomial reconstruction operators.
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• High order Discontinuous Galerkin schemes (DG).

Concerning finite volume methods applied to hyperbolic problems, shock-capturing
abilities can be exploited. The main difficulty of this technique from a mathematical point
of view as well as from the numerical analysis resides in the presence of nonconservative
products, which makes difficult the definition of weak solutions. Many interesting
problems related to geophysical flow and in particular some of the equations discretized
in this dissertation fall into this framework. Then, the nonconservative products are
interpreted as Borel measure in the sense introduced by Dal Maso, LeFloch and Murat
in [72]. For systems, a family of paths should be chosen. A general framework to
numerically solve such systems was introduced by C. Parés in [205], called the path-
conservative methods. The choice of this family of paths should be based on the physics
of the problem: for instance, it should be based on the viscous profiles corresponding to
a regularized system in which some of the neglected terms (e.g. the viscous terms) are
taken into account. Unfortunately, the explicit calculations of viscous profiles is in general
a difficult task. Some hints of how paths can be chosen is discussed in [38].

The family of generalized Roe schemes introduced in [248] constitutes a particular
case of path-conservative numerical method for nonconservative hyperbolic PDE systems.
Although the schemes of this family are robust (see, for instance, [14], [30], [208],
[205]), they also present, as their conservative counterpart, some drawbacks as their
implementation requires the explicit knowledge of the eigenstructure of the intermediate
matrices. Sometimes their analytic expression is not available, making Roe schemes
computationally expensive. Also, they do not satisfy in general an entropy inequality, as
a consequence, an entropy-fix technique has to be added to capture the entropy solution
in the presence of smooth transitions (see [154]). It is also well known that the use of
incomplete Riemann solvers as Rusanov, Lax-Friedrichs, HLL, etc. allows one to reduce
the CPU time required by a Roe solver which resolves all the characteristic fields (see,
for instance, [106]). Although when combined with piecewise constant approximation
Roe solvers give in general a better resolution of the discontinuities than incomplete
Riemann solvers when combined with high order reconstructions the resolution may be
indistinguishable. Therefore high order methods based on incomplete Riemann solvers
may be more efficient than high order Roe methods.

In this thesis, we use a class of computationally fast first order finite volume solvers:
Polynomial Viscosity Matrix (PVM) methods introduced by Castro et al. in [40]. This
class of incomplete simple Riemann solvers can be applied for general nonconservative
hyperbolic systems, defined in terms of viscosity matrices computed by a suitable
polynomial evaluation of a Roe linearisation, that overcome these difficulties. PVM
schemes can be seen as the natural extension of the one proposed in [84] for balance
laws, and, more generally, for nonconservative systems. Moreover, PVM schemes can be
extended to high order by following the ideas developed in [25] and to two-dimensional
systems following [41], based on a polynomial reconstruction of states.

Another class of high order numerical methods considered in this thesis are the
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Discontinuous Galerkin finite element methods which go back to the work by Reed
and Hill [214], but it has become particularly famous for the solution of hyperbolic
conservation laws thanks to a well-known series of papers by Cockburn and Shu and
coworkers, see [68], [67], [66], [69]. In particular, in this dissertation ADER-DG schemes
has been adopted, which has been introduced in [97], [93], [91] and which goes back to the
family of ADER finite volume schemes by Toro and Titarev [237], [244], [238], [241]. The
ADER methodology is based on the approximate solution of the generalized Riemann
problem at element interfaces and naturally leads to fully-discrete one-step schemes of
arbitrary order of accuracy in both space and time. Due to the well-known Godunov
theorem, any better than first order accurate linear scheme is oscillatory and therefore
not suitable for the discretization of problems with discontinuities or strong gradients
in the solution. Following the ideas introduced in [98], [261], the high order ADER-DG
method is supplemented with a suitable a posteriori subcell finite volume limiter. The
main idea here is to use first an unlimited high order ADER-DG scheme, which produces
a so-called candidate solution at the end of each time step. This candidate solution is
then checked a posteriori against some physical and numerical detection criteria, such as
positivity of the solution, the absence of floating point errors and satisfaction of a relaxed
discrete maximum principle (DMP). If a cell does not satisfy all these conditions (a so-
called troubled cell), the discrete solution is discarded and locally recomputed, starting
again from a valid solution at the old-time level, but using now a more robust scheme on
a finer subgrid within the troubled cells. This approach corresponds to an element-local
check-pointing and restarting of the solver, but using a more robust and more dissipative
scheme after the restart. This new concept of a posteriori limiting has been introduced
for the first time in the context of finite volume schemes via the MOOD approach, see
[64], [88], [89], [173]. For the recomputation of the troubled cells, in principle, any robust
finite volume scheme can be used. Here, the family of path-conservative finite volume
schemes are employed, which has already been successfully used for the solution of shallow-
water type systems in a series of papers, see e.g. [112], [44], [206], [40], [26], [205], [46].
In particular, a robust well-balanced and positive preserving for the water height PVM
path-conservative HLL-type Riemann solver [152], [90] is used.

Furthermore, the use of a numerical method that solves correctly stationary solutions
is mandatory when the system studied involves perturbations of a steady state, whose
amplitude is of the order or bigger than the truncation error of the method. This is the case
of a tsunami wave propagating at the ocean: its initial amplitude is small (although the
length wave is huge) and it is not always possible to refine the mesh so that the truncation
error of the method is lower than this amplitude. In this context a difficulty arises
related to the numerical computation of stationary solutions: standard methods that
solve correctly systems of conservation laws can fail in solving nonconservative systems
when approaching equilibria or near to equilibria solutions. In the context of shallow
water equations Bermúdez and Vázquez-Cendón introduced in [14] the condition called
C-property: a a scheme is said to satisfy this condition if it solves correctly the steady-state
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solutions corresponding to water at rest. This the idea of constructing numerical schemes
that preserve some equilibria, which are called in general well-balanced schemes has been
studied by many authors. The design of numerical methods with good properties for
conservative or nonconservative problems (systems of balance laws) is a very active front
of research: see, for instance, [6], [16], [15], [18], [37], [55], [56], [82], [139], [140], [141],
[145], [146], [172], [174], [199], [209], [211], [212], [215], [222], [234], [248], [258], [162], [85],
[86], [247], among others.

The simulation of geophysical flows leads to the resolution of problems in significant
computational domains, e.g. an oceanic basin when a tsunami simulation, or for significant
integration times such the simulation of currents induced by a tidal. In both cases,
the simulations present a significant computational effort and as a consequence, efficient
implementations are needed to solve these problems in reasonable times.

Frequently, these numerical simulations demand a large computational effort due
mainly to big computational domains, the complexity of numerical solution schemes or
real-time calculation requirements. Therefore parallel versions of accurate and efficient
numerical solvers for high-performance platforms are needed to be able to deal with these
simulation scenarios in reasonable times.

Modern Graphics Processing Units (GPUs) are highly programmable and massively
parallel devices which can be used to accelerate considerably numerical PDE computations
in a cost-effective way [22], [159], [251]. They offer hundreds or thousands of processing
units optimized for massively performing floating-point operations in parallel and have
proven to be useful in the acceleration of numerical schemes which exhibit a lot of
exploitable fine-grain parallelism. GPU computing consists of using GPUs together with
CPUs to accelerate the solution of compute-intensive science, engineering and enterprise
problems. Since the numerical simulation based on PDEs presents a lot of exploitable
parallelism, there has been an increasing interest in the acceleration of these simulations
using GPU-based computer systems.

There is a widespread use of CUDA-based platforms to accelerate numerical solvers
for PDEs [76], [75], [28], [80]. In the PhD thesis [74] and references therein, de la Asunción
et al. show the adaptation to GPU of the finite volume numerical scheme introduced in
[27] to solve the 2D shallow water system. In these references, authors intend to make
easier the exploitation of CUDA-enabled platforms to accelerate PDE-based numerical
simulations, by providing the suitable CUDA C programming foundations. For this
purpose, the authors explain the adaptation to GPU of the finite volume numerical scheme
to solve the 2D shallow water system. The CUDA implementation of a first order two-layer
shallow water system solver is addressed in [75]. There also exists proposals to implement,
using CUDA-enabled GPUs, high order schemes to simulate one-layer systems [47], [131]
and to implement first-order schemes for one and two-layer systems on triangular meshes
[28]. In [80], several finite volume numerical schemes to solve one-layer shallow water
system on structured meshes are tuned to exploit the GPU execution model and efficiently
implemented using CUDA C. The distributed implementation of numerical solvers for
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cluster of CUDA-based GPUs has been also tackled [78], [77], [79].
The aforementioned numerical solvers implemented on GPU exhibits a computational

pattern which is very frequent in the numerical algorithms to solve PDEs and that has
been widely used throughout this dissertation. However, a difficulty arises: some of
the numerical methods proposed in this dissertation are no longer explicit methods, and
relatively big linear systems have to be solved. To do that, we propose some iterative and
massively parallel linear solvers to have efficient GPU implementations.

Outline of the thesis:

The outline of this dissertation is the following:

• In Chapter 1 a general overview of the state of the art of the modelling of dispersive
systems for the simulation of dispersive water waves is introduced. Two prominent
families of dispersive systems can be found nowadays: Boussinesq-type and non-
hydrostatic pressure systems. Although in this thesis we will focus on the second
class of dispersive systems, two of the most representative and used Boussinesq-
type systems are shown in this chapter, and some relations and rewritings as first-
order non-hydrostatic pressure PDE systems are established. The multi layer non-
hydrostatic pressure system derived by Fernández-Nieto et al. in [124] is chosen
as the main dispersive model framework for this dissertation. This choice is based
on its simplicity and on its good dispersive relation properties which have been
introduced and also computed for all the considered systems.

In this chapter, two novel non-hydrostatic pressure systems, are described: a new
two-layer non-hydrostatic pressure system with enhanced dispersive properties; and
a new hyperbolic relaxed PDE system that converges to the well-known one-layer
system (0.0.8). For both systems, the dispersive properties and its eigenstructure
are thoroughly studied.

At this point, we stress that detailed small-scale wave breaking flow physics is not
described by the introduced models, but only the net effect of wave breaking on
energy dissipation. This means that we include the breaking mechanism in the
depth-integrated equations via a simple sub-scale viscosity model, with a given
breaking criteria. To do that efficiently, some breaking mechanism is also proposed.

Finally, some ideas on the computation of solitary wave for the given systems as
well as some comparison are shown.

• In Chapter 2, the theoretical background required for the design of numerical
schemes for both one and two dimensional non-conservative hyperbolic systems are
stated. Regarding finite volume schemes, the concept of path-conservative scheme
and well-balanced scheme, as well as the extension of the numerical schemes to
high order, based on the reconstruction of states are given. In particular, the
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PVM methods introduced in [48] are described. As an alternative to the high
order finite volume based on the reconstruction of states, the finite element ADER
Discontinuous Galerkin methods are described supplemented with a suitable a
posteriori subcell finite volume limiter (see [98], [261], [64]).

• In Chapter 3 the numerical schemes proposed for the given non-hydrostatic pressure
systems are fully described. There, different approaches and strategies can be
highlighted. On the one hand, we have designed second order finite volume
numerical schemes based on a two-step projection-correction technique. At the
first step, an explicit finite volume numerical scheme is used for the underlying
hyperbolic and hydrostatic part of the system, under a usual CFL condition. Then,
in a second step non-hydrostatic terms are taken into account and approximated
employing central finite differences. This will involve the inversion of a Poisson-
like operator and hence the implicit nature of the numerical scheme. At this step,
we have considered both staggered and non-staggered grids for the non-hydrostatic
pressure and vertical velocities. On the other hand, a fully explicit and arbitrary
high order Discontinuous Garlerkin numerical scheme is proposed for the novel
proposed hyperbolic relaxation PDE system, supplemented with a posteriori subcell
finite-volume limiter. To allow simulations in real time or faster, an efficient GPU
implementation of the numerical method has been carried out in the two-dimensional
case and some hints and guidelines on their implementation are given in Appendix E.

• In Chapter 4 the aforementioned numerical schemes for each one of the systems has
been applied to idealized academic benchmarks such as the propagation of solitary
waves, as well as to more challenging physical situations that involve wave runup
on a shore including wave breaking in both one and two space dimensions. In
all cases the achieved agreement with analytical solutions or experimental data
is excellent, thus showing the validity of both, the proposed mathematical model
and the numerical solution algorithm. Experimental data include a wide variety of
scenarios: propagation, shoaling, run-up and induced dispersive waves by rigid solid
landslides. Finally, some computational times for the two dimensional test cases are
shown to evince the sought after efficiency.

• As revealed during the simulation of waves induced by rigid landslide numerical
tests, they might be dispersive. In Chapter 5 we measure the influence when con-
sidering a non-hydrostatic pressure applied to the simulation of bedload transport.
To do that, a new and ongoing work is recalled where a two-layer shallow water
type system is proposed to describe bedload sediment transport for strong and
weak interactions between the fluid and the sediment. A numerical scheme and
some validation and academical tests are shown, providing promising results and
good behaviour in low transport rate regimes as well as in many other situations.

• The thesis is rounded-off by some concluding remarks given in Chapter 6.
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Introduction (in Spanish)

La mecánica de fluidos geof́ısicos estudia el comportamiento a gran escala de los flujos de
la Tierra, tanto en fase ĺıquida (océanos) como gaseosa (atmósfera). El hecho de que la
vida no hubiera podido desarrollarse sin atmósfera ni océanos, explica el tremendo interés
que suscita en los cient́ıficos el conocimiento de los mecanismos que intervienen en los
procesos geof́ısicos.

Por otro lado, la predicción de desastres naturales como huracanes, tifones, avalanchas,
tsunamis... y la evaluación de sus posibles consecuencias son propósitos a tener en cuenta,
de cara a disminuir los posibles daños humanos y materiales.

El flujo que se produce tras la rotura de una presa, las corrientes de agua en el mar,
la distribución y propagación de un vertido en el mar, la erosión, deposición y transporte
de sedimentos, etc... son fenómenos de un enorme interés. Para estos fenómenos, es
fundamental la predicción y evaluación de sus posibles consecuencias. Una opción, es
la de realizar estudios de laboratorio mediante modelos a escala para estudiar dichos
fenómenos. Sin embargo, esta opción puede resultar costosa y poco flexible, en el sentido
de que cualquier modificación en los modelos sujetos a estudio, incrementaŕıa aún más el
coste de dicho estudio. Otra posibilidad es la considerar simulaciones por ordenador de
los fluidos y procesos involucrados.

Para ello, es necesario conocer los principios f́ısicos que están detrás de los fenómenos
que se pretenden estudiar. Una vez planteados los problemas, éstos pueden ser complejos
e inabordables si se pretenden resolver de forma exacta. Para ello, se trata de desarrollar
modelos numéricos que proporcionen aproximaciones fiables de los problemas planteados
con la suficiente antelación para permitir una posible toma de decisiones.

Acorde al contexto que concierne a esta tesis, para poder simular el impacto que
un tsunami pueda producir en una zona costera, será necesario desarrollar modelos que
provean resultados satisfactorios para la propagación de ondas de tipo tsunami en el
océano y su evolución desde el talud continental hasta el impacto en costa. En este
contexto de fluidos geof́ısicos, estos procesos tienen la caracteŕıstica de tener información
vertical que puede despreciarse, en comparación con la información horizontal. Esta
circunstancia hace posible que se pueda simplificar la formulación matemática de los
modelos usados para su simulación.

Para ello, las ecuaciones tridimensionales Navier-Stokes, las cuales son las ecuaciones
más generales de la mecánica de fluidos, con consideradas. Estas ecuaciones pueden ser
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escritas en su forma adimensional y simplificadas bajo ciertas hipótesis:

• la dimensión vertical del dominio H es pequeña en comparación con respecto a la
longitud de onda caracteŕıstica L que se presente representar. Esto es:

µ1 =
H

L
� 1;

• se asume la hipótesis de que la presión del fluido es hidrostática;

• los términos de viscosidad horizontal son despreciados.

Bajo estas hipótesis, y tras promediar las ecuaciones en su dimensión vertical, se llega
a un sistema no lineal de Ecuaciones en Derivadas Parciales (EDP) comúnmente conocido
como las ecuaciones de aguas someras, o según la literatura anglosajona, Shallow-Water
Equations (SWE), que en dominios espaciales unidimensionales se escriben como sigue:

∂th+ ∂x(hu) = 0, x ∈ I ⊂ R, t > 0,

∂t (hu) + ∂x

(
hu2 +

1

2
gh2

)
= gh∂xH − τb,

(0.0.5)

donde h(x, t) representa el espesor de la columna de agua en cada punto x ∈ I, siendo
I un intervalo, y t el tiempo. u(x, t) es el promedio de la vertical de la velocidad
horizontal. g representa la constante del campo gravitacional y H(x) la topograf́ıa. Es
también interesante definir la función η(x, t) = h(x, t) − H(x) que describe la superficie
libre del fluido en cada punto x y cada instante de tiempo t (ver Figura A.1). τb(x, t)
parametriza los efectos de fricción con el fondo. En la literatura pueden encontrarse
distintas parametrizaciones para los efectos de fricción. En esta tesis se usará una ley de
fricción de tipo Manning dada por la expresión

τb = gh
n2u|u|
h4/3

, (0.0.6)

donde n es el coeficiente de Gauckler-Mannin [185]. El sistema es completado con
las correspondientes condiciones iniciales, y en caso de dominios acotados, con las
correspondientes condiciones de contorno.

En dinámica de fluidos, es bien sabido que la propagación de las ondas en el agua es un
fenómeno dispersivo. Esto quiere decir que ondas de distinta longitud viajan con distinta
celeridad. Sin embargo, es bien sabido que las ecuaciones de aguas someras (SWE) no
tienen en cuenta estos efectos dispersivos.

La Figura A.2 ilustra este hecho, mostrando capturas de la evolución de una onda
aproximándose a una playa. Aqúı puede observarse cómo las ecuaciones de aguas someras
(en azul) tienden a sobrestimar el tiempo de llegada de la onda a costa cuando se compara
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con datos de laboratorio (en rojo). La teoŕıa lineal de Stokes (o la teoŕıa de Airy) explica
esta situación ya que establece que la velocidad de propagación, o celeridad CAiry, como
una cantidad que viene dada en términos de la profundidad t́ıpica H y del número de
onda k,

C2
Airy = gH

tanh(kH)

kH
,

mientras que la celeridad del sistema (0.0.5) viene dado por

C2
SWE = gH.

La relación anterior, la cual se denomina relación de dispersión lineal para la celeridad,
sugiere el carácter dispersivo de la teoŕıa lineal y pone de manifiesto que las ecuaciones de
aguas someras no pueden tenerse en cuenta para simular los efectos asociados a las ondas
dispersivas en el agua. Este hecho también explica porqué la solución numérica calculada
en la Figura A.2 se ve desplazada, ya que la velocidad de propagación del sistema (0.0.5),
CSWE, es más rápida que la dada por la teoŕıa lineal CAiry.

En lo que respecta a los modelos matemáticos para simular ondas dispersivas en el
agua, un gran esfuerzo se ha realizado en los útimos años en la derivación de modelos
matemáticos relativamente sencillos para fluidos someros, válidos para la simulación de
ondas con longitudes grandes, como las ondas de tipo tsunami. La historia de los modelos
no lineales para la simulación de ondas dispersivas se remonta a principios del siglo XIX.

En 1834, mientras se diseñaban experimentos para determinar el modo más eficiente
de diseñar canales en ŕıos, J. Scott Russel descubrió un fenómeno que el denominó como
ondas de traslación (“wave of translation”). Este tipo de ondas se mueven a velocidad
constante, preservando además su forma. Las observaciones pueden encontrarse en un
“technical report”, escrito con motivo del 14 meeting de la asociación “British Association
for the Advancement of Science” en 1845 [221]. A d́ıa de hoy en dinámica de fluidos, a
este tipo de ondas se les denomina “solitones”. J. Scott Russell pasó un tiempo realizando
investigacioens teóricas y prácticas de este tipo de ondas. El problema era que sus nuevas
observaciones parećıan contradecir a las más asentadas teoŕıas de Isaac Newton y Daniel
Bernoulli en hidrodinámica.

No fue hasta más tarde, cuando el primer resultado teórico exitoso fue llevado a
cabo por Joseph Valentin Boussinesq en 1872 [19], que las observaciones de Russel sobre
los solitones fueron aceptadas por la comunidad cient́ıfica. Tras esto, J. Boussinesq en
1877 [19] propuso las ecuaciones de Korteweg de Vries, re-derivadas más tarde por D.
Korteweg y G. de Vries (1895). Más tarde, una nueva generación de “pioneros” (F. Serre
(1953) [227], C.C. Mei & Le Méhauté (1966) [189] y D. Peregrine (1967) [210]) derivaron
nuevos modelos no lineales para ondas dispersivas.

Uno de los modelos más usados y populares fue el sistema de EDPs derivado por
Peregrine [210] en 1967. Las ecuaciones de momento son derivadas para ondas de longitud
grande y con batimetŕıa no plana. Aunque las ecuaciones son para ondas de amplitud
relativamente pequeñas, incluyen términos no lineales. Además, se corresponden con las
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ecuaciones derivadas previamente por Boussinesq, cuando se considera una batimetŕıa
constante. Hay dos parámetros relevantes asociados a ondas de longitud grande. Uno es
el ratio entre la profundidad y la longitud de onda µ1, y el otro es el ratio entre la amplitud
y la profundidad µ2. Las ecuaciones de Peregrine fueron derivadas bajo las hipótesis

µ1 � 1, µ2 ≈ µ2
1.

El sistema se escribe como sigue:
∂th+ ∂x(hu) = 0, x ∈ I ⊂ R, t > 0,

∂t (hu) + ∂x

(
hu2 +

1

2
gh2

)
= gh∂xH +

1

2
H2∂xxt (uH)− 1

6
H3∂xxtu− τb.

(0.0.7)

Un análisis asintótico en el ĺımite kH → 0 muestra que la relación de dispersión lineal
para la celeridad es exacta hasta orden O(kH)4 para el sistema de Peregrine comparado
con la teoŕıa lineal de Stokes. Esto, hace que el modelo sea apropiado para simulación de
ondas con longitud de onda grande.

Mientras la capacidad de cálculo de las modernas computadoras crećıa, los modelos
de tipo Boussinesq ([1], [19], [144], [184], [202], [210], [148], [255], [256]) se volv́ıan más
accesibles desde el punto de vista computacional. Por tanto, se pod́ıa empezar a usar
modelos más sofisticados que describ́ıan mejor la f́ısica del problema. Los dos principales
retos que surgieron fueron:

• El desarrollo de modelos “fully non-linear weakly dispersive”, los cuales se derivan
bajo la hipótesis µ2 ≈ µ2

1 (véase por ejemplo [144], [168]).

• La mejora de la relación de dispersión lineal de los modelos considerados. De este
modo, se pod́ıa extender el rango de validez, es decir, el rango donde los modelos
pueden describir de forma precisa la f́ısica del problema.

El segundo punto anterior, ha atráıdo la atención de la comunidad cient́ıfica durante
los últimos años. Atendiendo al comportamiento de las ondas, se encuentra la siguiente
clasificación: aguas someras, aguas intermedias y aguas profundas. Especialmente el
segundo punto mencionado, se centra en la mejora de la relación de dispersión lineal
para aguas intermedias, que tiene lugar cuando la longitud de onda t́ıpica de las ondas a
representar, L, se encuentra aproximadamente entre 2H y 20H, siendo H la profundidad
media. En este rango, puede ser muy importante la información vertical que se desprecia
cuando se derivan por ejemplo, las ecuaciones de aguas someras. Por tanto, en la
derivación de modelos para estos rangos de validez, debe prestarse atención a la estructura
vertical de las ecuaciones.

Los modelos de alto orden de tipo Boussinesq pueden ofrecer excelentes propiedades
dispersivas. El punto negativo, es que los sistemas son extremadamente complejos,
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presentando a su vez derivadas de alto orden (por ejemplo, derivadas de hasta quinto
orden aparecen en [135]). A su vez, dichos sistemas requieren de un esquema numérico
igualmente complejo cuando se aproximan. La complejidad se incrementa aún más cuando
se consideran dominios bidimensionales.

No obstante, Madsen y Sorensen (véase [184]) encontraron una inteligente solución al
probema. Los autores propusieron una aproximación que mejoraba de forma sustancial las
propiedades dispersivas del modelo de Peregrine, sin incrementar el orden de las derivadas.
Ellos propusieron un sistema que a d́ıa de hoy se ha convertido en uno de los más conocidos
y empleados.

De manera alternativa, el desarrollo de los modelos de presión no hidrostática ha
sido también objeto de numerosos estudios cient́ıficos durante los últimos 30 años. Los
modelos no hidrostáticos son capaces de modelar muchos de los aspectos de interés en el
ámbito de ingenieŕıa costera. Estos modelos pueden tener en cuenta los efectos dispersivos,
efectos no lineales, shoaling, refracción, difracción, inundación... entre otros. La principal
hipótesis empleada durante su derivación consiste en dividir la presión total del fluido y
considerarla como la suma de dos contribuciones: hidrostática y no hidrostática (véase
Casulli [52]). En esta tesis, el sistema de presión no hidrostática derivado por Sainte-
Marie et al. en [21] se considera para su aproximación numérica. Este sistema puede ser
derivado tras un proceso estándar de integración en vertical de las ecuaciones de Euler,
y asumiendo un perfil constante para la velocidad horizontal. El sistema puede escribirse
como sigue: 

∂th+ ∂x(hu) = 0, x ∈ I ⊂ R, t > 0,

∂t (hu) + ∂x
(
hu2 + 1

2
gh2 + hp

)
= (gh+ pb) ∂xH − τb,

∂t (hw) + ∂x (uhw) = pb, pb = 2p

∂xu+
w − wb
h/2

= 0, wb = −u∂xH.

(0.0.8)

Como el proceso de derivación del sistema es similar al seguido para las ecuaciones
de aguas someras SWE, la definición de las variables coincide con las descritas para el
sistema (0.0.5). Las variables w y p son la velocidad vertical promedio y la presión
no hidrostática promedio respectivamente. De igual modo, wb y pb denotan la velocidad
vertical en el fondo, y la presión no hidrostática en el fondo. La última ecuación en (0.0.8)
tiene en cuenta la condición integrada de incompresibilidad. La principal virtud de este
sistema no hidrostático radica en su simplicidad, dada la ausencia de derivadas de orden
superior. Además, el sistema anterior posee una relación de dispersión lineal que es similar
a la del sistema (0.0.7).

Dentro del esṕıritu de los sistemas de EDPs no hidrostáticos con propiedades
dispersivas, pueden encontrarse muchos trabajos. Con el objetivo de mejorar las
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propiedades dispersivas del sistema, la principal tendencia que puede encontrarse consiste
en el uso de modelos promediados multicapas. La idea es, en vista del reciente incremento
de capacidades de los sistemas de computación, derivar sistemas que se encuentren cada
vez más y más cerca de los resolvedores tridimensionales. Esto es, modelos que sean
capaces de retener más información vertical para poder describir de un modo más preciso
la estructura vertical del fluido. De este modo, se llega a una mejor descripción del
comportamiento no lineal y de las propiedades dispersivas del experimento de estudio.

En el trabajo [124], E.D. Fernández-Nieto et al. derivaron una familia de modelos
multicapas con presión no hidrostática. Esta familia de modelos contiene al sistema
descrito en (0.0.8) cuando el número de capas es igual a uno. Cuando el número de capas
es mayor que uno, el modelo matemático permanece igual de sencillo, en el sentido de que
no posee términos con derivadas de orden superior a uno. Otra de sus principales virtudes,
radica en el siguiente teorema que fue formalmente demostrado en [124], que establece que
cuando el número de capas tiende a infinito, la celeridad del sistema linealizado tiende a
la correspondiente celeridad que establece la teoŕıa lineal de Stokes. Debido a esta razón,
este sistema de presión no hidrostática ha sido considerado en esta tesis como el marco
central de modelos para el diseño de esquemas numéricos para simular ondas dispersivas.
Mas aún, en esta tesis un nuevo modelo de presión no hidrostática bicapa con mejoradas
propiedades dispersivas es propuesto y aproximado numéricamente en [118].

En cuanto a la naturaleza de los sistemas de EDPs dispersivos presentados aqúı, es bien
sabido que el sistema (0.0.5) es hiperbólico. Sin embargo, la naturaleza del sistema (0.0.7),
entre otros sistemas de tipo Boussinesq y de presión no-hidrostática, responde más bien a
sistemas mixtos hiperbólicos-eĺıpticos. Algunos resultados de tipo teóricos sobre existencia
y unicidad de soluciones pueden encontrarse en [167].

Debido a la naturaleza hiperbólica-eĺıptica de los sistemas de tipo Boussinesq y de
presión no hidrostática, la complejidad de los correspondientes esquemas numéricos para
su discretización aumenta. Por ejemplo, la condición de incompresibilidad en (0.0.8)
añade una restricción extra que hace del sistema un problema hiperbólico-eĺıptico. Esta
restricción hace que los esquemas numéricos expĺıcitos no puedan ser aplicados, ya que
pueden requerir de una condición de estabilidad fuerte, o incluso peor, puede hacer que
los esquemas numéricos resultantes sean incondicionalmente inestables. Por tanto, deben
tenerse en cuenta para su discretización esquemas de tipo impĺıcitos (véase por ejemplo [4],
[112], [163], [180], [217], [259]). Los métodos numéricos aplicados a los sistemas de presión
no-hidrostática, e incluso a los sistemas de tipo Boussinesq, usualmente usan una técnica
de tipo “splitting” (véase e.g. [168]) o una técnica de tipo proyección-corrección (véase [4],
[63], [112], [118]). Estos esquemas numéricos generalmente combinan resolvedores de
volúmenes finitos para resolver el sistema hiperbólico subyacente en un primer paso, y
diferencias finitas o elementos finitos para resolver el problema eĺıptico en un segundo
paso, haciendo uso de mallas decaladas (“staggered grids”).

Sin embargo, hay una reciente y alternativa estrategia para la simulación de ondas
de tipo dispersivas, mediante el uso de sistemas hiperbólicos. En [188], Ricciuto et al.
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propusieron un sistema de primer orden para problemas generales de tipo advección-
difusión-dispersión. En [147] Brocchini et al. obtuvieron un conjunto de ecuaciones
integradas hiperbólicas usando una técnica de aproximación de tipo relajación.

Siguiendo una ĺınea parecida, en esta tesis se propone un nuevo sistema integrado de
primer orden hiperbólico, que puede verse como una modificación del sistema (0.0.8)
para dominios bidimensionales presentado en [21]. Este nuevo sistema es propuesto
por Escalante et al. en [111]. El nuevo sistema hiperbólico es obtenido haciendo uso
de una reformulación hiperbólica de las ecuaciones originales (0.0.8). La condición
de divergencia se acopla con el resto de leyes de conservación del sistema, siguiendo
ideas similares a las aplicadas en [196], [83] para las ecuaciones de Maxwell y las
ecuaciones de la magnetohidrodinámica (MHD). En este nuevo trabajo propuesto, una
nueva formulación es introducida, donde los errores de la divergencia del campo de
velocidades son transportados hacia el exterior del dominio a velocidad finita, relacionada
con el máximo de los autovalores del sistema de EDPs. El sistema hiperbólico aumentado
continúa satisfaciendo una ley de balance de enerǵıas. De la hiperbolicidad del nuevo
sistema, se obtiene que esquemas numéricos expĺıcitos y de alto orden pueden desarrollarse
de manera eficiente y sencilla.

Los esquemas de alto orden son convenientes debido a sus buenas propiedades
mejoradas de disipación y dispersión, en comparación con los esquemas usuales de
segundo orden TVD de tipo volúmenes finitos. Esto es particularmente importante
cuando se pretende simular la propagación de solitones a grandes distancias en tiempos
de integración altos, como se mostrará en esta tesis en la sección de resultados numéricos.
En esta tesis, se consideran dos alternativaspara la discretización de alto orden de los
sistemas de EDPs estudiados:

• Métodos de volúmenes finitos de alto orden basados en la reconstrucción polinómica
de estados.

• Esquemas de alto orden de tipo Discontinuos Galerkin (DG).

En cuanto a los esquemas de tipo volúmenes finitos para problemas hiperbólicos, la
principal dificultad que aparece desde un punto de vista matemático aśı como numérico,
reside en la presencia de productos no conservativos, los cuales dificultan la definición de
solución débil. Muchos problemas relacionados con los fluidos geof́ısicos y en particular,
algunas de las ecuaciones discretizadas en esta tesis, caen en este marco. Los productos no
conservativos son interpretados como medidas de Borel en el sentido introducido por Dal
Maso, LeFloch y Murat en [72]. Para sistemas de EDPs, una familia de caminos debe ser
elegida. Un marco general para resolver numéricamente estos sistemas fue introducido por
C. Parés en [205], con la introducción de los esquemas numéricos camino-conservativos.
La elección de una familia de caminos debeŕıa estar fundamentada con la f́ısica del
problema. Algunas notas sobre cómo la familia de caminos debe ser elegida pueden
verse en [38]. La familia de los esquemas de Roe generalizados introducidos en [248]
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constituye un caso particular de esquema numérico camino-conservativo para sistemas no
conservativos de EDPs. Aunque los esquemas de esta familia son robustos (véase por
ejemplo [14], [30], [208], [205]), éstos también presentan, aśı como su correspondiente
parte conservativa, algunos problemas ya que en su implementación es necesaria la
descomposición espectral de una matriz de Roe. En algunos casos, no puede obtenerse
una expresión anaĺıtica, haciendo del esquema de Roe una opción computacionalmente
ineficiente. De igual modo, estos esquemas no satisfacen en general una desigualdad de
entroṕıa, y como consecuencia deben tenerse en cuenta técnicas de tipo “entropy-fix”
para capturar las soluciones entrópicas en presencia de transiciones suaves (see [154]). Es
también sabido que el uso de resolvedores de Riemann incompletos, tales como Rusanov,
Lax-Friedrichs, HLL, etc. permite reducir el coste computacional requerido por un
resolvedor de tipo Roe. Aunque cuando se consideran en volúmenes finitos aproximaciones
constantes a trozos, los esquemas de Roe proporcionan, en general, una mejor resolución
de las discontinuidades en comparación con los resolvedores de Riemann incompletos,
cuando estos últimos se combinan con una reconstrucción de alto orden, las diferencias
pueden resultar indistinguibles. Es por eso que los resolvedores de Riemann incompletos,
combinados con técnicas de reconstrucción de alto orden, pueden resultar más eficientes
que métodos de Roe de alto orden.

En esta tesis, usamos una clase de volúmenes finitos de primer orden eficientes: los
métodos PVM (“Polynomial Viscosity Matrix”) introducidos por Castro et al. en [40].

Esta clase de resolvedores de Riemann incompletos, puede aplicarse para sistemas no
conservativos hiperbólicos, y están definidos en términos de matrices de viscosidad, las
cuales se calculan mediante la evaluación polinómica de una matriz de Roe. Los esquemas
de tipo PVM pueden verse como la extensión natural de aquellos métodos presentados
en [84] para sistemas de leyes de conservación a sistemas no conservativos. Más aún, los
esquemas de tipo PVM pueden extenderse a esquemas numéricos de alto orden, siguiendo
las ideas presentadas en [25] y a sistemas bidimensionales siguiendo [41], basadas en
reconstrucciones polinómicas de estados.

Otra clase de esquemas numéricos de alto orden considerados en esta tesis, son
los esquemas de elementos finitos de tipo “Discontinuous Galerkin” (DG), introducidos
originalmente por Reed y Hill [214]. Esta clase de esquemas se han dado a conocer para la
resolución numérica de sistemas hiperbólicos de leyes de conservación, gracias a una serie
de trabajos publicados por Cockburn, Shu y colaboradores, véase [68], [67], [66], [69].

En particular, en esta tesis los esquemas de tipo ADER-DG introducidos por
Dumbser en [97], [93], [91] han sido adoptados. A su vez, éstos trabajos parten de
los correspondientes a la familia de esquemas numéricos de volúmenes finitos ADER,
introducidos por Toro y Titarev [237], [244], [238], [241]. La metodoloǵıa ADER está
basada en la aproximación de la solución de problemas de Riemann generalizados en las
interfaces de los volúmenes de discretización, lo cual lleva a esquemas numéricos de un
sólo paso y orden arbitráreo tanto en espacio como en tiempo.

Debido al conocido teorema de Godunov, cualquier esquema lineal de orden mayor que
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uno es oscilatorio y, por lo tanto, no es adecuado para la discretización de problemas con
discontinuidades o gradientes fuertes en la solución. Siguiendo las ideas introducidas en
[98], [261], los esquemas de alto orden ADER-DG se acompañan de una técnica limitadora
a posteriori de tipo volúmenes finitos en subceldas.

La idea principal consiste en usar primero un esquema de tipo ADER-DG de alto orden
sin limitar, el cual produce una denominada solución candidata al final de cada paso de
tiempo. Esta solución candidata se verifica a posteriori contra algunos valores f́ısicos y
criterios de detección numéricos, como la positividad de la solución, la ausencia de errores
de punto flotante, etc y se comprueba si satisface cierto principio discreto del supremo
relajado (DMP). Si una celda no cumple todas estas condiciones, la solución discreta es
descartada y localmente recalculada, comenzando de nuevo desde una solución válida en
el antiguo nivel de tiempo, pero utilizando ahora un esquema más robusto en una sub
malla más fina dentro de las celdas con problemas. Este nuevo concepto de limitación a
posteriori se introdujo por primera vez en el contexto de los esquemas de volúmenes finitos
a través del enfoque MOOD, véase [64], [88], [89], [173]. Para el re-cálculo de las celdas
con problemas, en principio, se puede usar cualquier esquema de volumen finito robusto.
Aqúı, se emplea la familia de esquemas de volúmenes finitos camino-conservativos, que
ya se han utilizado anteriormente con éxito para la solución de sistemas de tipo de aguas
someras en una serie de trabajos, véase por ejemplo [112], [44], [206], [40], [26], [205], [46].
En particular, se usará un esquema camino-conservativo robusto, bien equilibrado y que
asegura la positividad de la columna de agua de tipo PVM [90].

Además, el uso de un método numérico que resuelva correctamente las soluciones
estacionarias es de vital importancia en algunos casos, como por ejemplo el sistema de
aguas someras. En el caso de una onda de tsunami que se propaga en el océano, su
amplitud inicial es pequeña (aunque la longitud de onda es enorme) y no siempre es
posible refinar la malla para que el error de truncamiento del método sea menor que esta
amplitud. En este contexto, surge una dificultad relacionada con el cálculo numérico de las
soluciones estacionarias: los métodos estándar que resuelven correctamente los sistemas de
leyes de conservación pueden fallar al resolver sistemas no conservativos cuando se acercan
a equilibrios o cercanos a las soluciones de equilibrio. En el contexto de aguas someras,
Bermúdez y Vázquez-Cendón introdujeron en [14] la condición llamada propiedad-C: Se
dice que el esquema satisface esta condición si se resuelven correctamente las soluciones de
estado estacionario correspondientes al agua en reposo. Esta idea de construir esquemas
numéricos que conservan algunos equilibrios, que en general se llaman esquemas numéricos
bien equilibrados, ha sido estudiado por muchos autores. El diseño de métodos numéricos
con buenas propiedades para problemas conservativos o no conservativos es un frente de
investigación muy activo: véase, por ejemplo, [6], [16], [15], [18], [37], [55], [56], [82], [139],
[140], [141], [145], [146], [172], [174], [199], [209], [211], [212], [215], [222], [234], [248],
[258], [162], [85], [86], [247], entre otros.

La simulación de flujos geof́ısicos conduce a la resolución de problemas en grandes
dominios computacionales, por ejemplo, en una cuenca oceánica cuando se realiza
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una simulación de tsunami o grandes tiempos de integración, como la simulación de
corrientes inducidas por una marea. En ambos casos, las simulaciones presentan
un gran esfuerzo computacional y, como consecuencia, se necesitan implementaciones
eficientes para resolver estos problemas en tiempos razonables. Por lo tanto, se necesitan
versiones paralelas de resolvedores numéricos precisos y eficientes para plataformas de
alto rendimiento para poder tratar estos escenarios de simulación en tiempos razonables.

Las modernas unidades de procesamiento gráfico (GPU) son dispositivos altamente
programables y masivamente paralelos que se pueden usar para acelerar cálculos numéricos
(véase [22], [159], [251]). Estos dispositivos ofrecen cientos o miles de unidades de
procesamiento optimizadas para realizar de forma masiva operaciones en coma flotante
en paralelo, y han demostrado ser eficaces en la aceleración de esquemas numéricos que
exhiben una gran cantidad de paralelismo.

Existe un uso generalizado de las plataformas basadas en CUDA para acelerar
resolvedores numéricos para EDPs (véase [76], [75], [28], [80]). En la tesis doctoral [74],
se muestra la adaptación a GPU del esquema numérico de volúmenes finitos introducido
en [27] para resolver el sistema de aguas someras en dominios bidimensionales. En estas
referencias, los autores pretenden facilitar la explotación de las plataformas habilitadas
por CUDA para acelerar las simulaciones numéricas basadas en EDPs, proporcionando
las bases de programación CUDA adecuadas. Para este propósito, los autores explican
la adaptación a arquitecturas GPU de los esquemas numéricos de volúmenes finitos para
resolver el sistema de aguas someras 2D. Aśı mismo, se aborda la implementación CUDA
de un resolvedor para el sistema bicapa de aguas someras en [75]. También existen
propuestas para implementar, usando GPUs, esquemas de alto orden para simular el
sistema de aguas someras en [47], [131] y para implementar esquemas de primer orden
para los sistemas de una y dos capas en mallas triangulares [28].

Los resolvedores numéricos antes mencionados implementados en GPU exhiben un
patrón computacional que es muy frecuente en los algoritmos numéricos para resolver
EDPs y que ha sido ampliamente utilizado a lo largo de esta tesis. Sin embargo,
surge una dificultad: algunos de los métodos numéricos propuestos en esta tesis no son
métodos expĺıcitos, y los sistemas lineales que surgen tienen que ser resueltos de un modo
eficiente y paralelo. Para hacer eso, proponemos algunos resolvedores lineales iterativos
y masivamente paralelizables para tener implementaciones GPU eficientes.

Resumen abreviado de la tesis:

El resumen abreviado de esta tesis es el siguiente:

• En el Caṕıtulo 1 se presenta una visión general del estado del arte del modelado,
y se introducen los principales sistemas dispersivos estudiados en esta tesis. En la
actualidad se pueden encontrar dos grandes familias de sistemas dispersivos: los
sistemas de tipo Boussinesq y los sistemas de presión no hidrostática. Aunque
en esta tesis nos centraremos en la segunda clase de sistemas dispersivos, en este
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caṕıtulo se muestran dos de los sistemas de tipo Boussinesq más representativos y
usados, y se establecen algunas relaciones y reescrituras como sistemas de EDPs
de presión no hidrostática de primer orden. El sistema de presión no hidrostática
multicapa derivado por Fernández-Nieto et al. en [124] se elige como el principal
marco de sistemas dispersivos para esta tesis. Esta elección se basa en su simplicidad
y en sus buenas propiedades de relación de dispersión que previamente se han
introducido y calculado para todos los sistemas considerados.

En este caṕıtulo, también se describen dos nuevos sistemas de presión no hidrostática:
un nuevo sistema de presión no hidrostática de dos capas con propiedades de
dispersión mejoradas; y un nuevo sistema de EDPs hiperbólico que converge al
sistema de una capa (0.0.8). Para ambos sistemas, las propiedades dispersivas y su
estructura espectral se estudian con detalle.

Llegados a este punto, hacemos hincapié en que los modelos introducidos no
describen la f́ısica subyaciente en uno de los procesos que suceden cuando una onda
se acerca a costa: la ruptura de la onda o “breaking of the wave”. Esto implicará
que debamos incluir un mecanismo de tipo breaking en las ecuaciones consideradas.
Esto se hará a través de un modelo de viscosidad sencillo, con un criterio de breaking
dado, que detectará cuándo y qué ondas son de tipo breaking. Aśı mismo, algunos
mecanismos de breaking novedosos se proponen que más tarde se validarán a través
de comparaciones con datos experimentales.

Finalmente, se muestran algunas ideas para el cálculo de solitones para los sistemas
dados, aśı como algunas comparaciones.

• En el Caṕıtulo 2, se establecen los resultados teóricos requeridos para el diseño
de esquemas numéricos para sistemas hiperbólicos no conservativos en una y dos
dimensiones. En cuanto a los esquemas de volúmenes finitos, se da el concepto de
esquemas camino-conservativos y esquemas bien equilibrados, aśı como la extensión
de estos esquemas numéricos a orden superior, basados en la reconstrucción de
estados. En particular, se describen los métodos de tipo PVM introducidos en [48].
Como alternativa a los métodos de volúmenes finitos de orden superior basado en
la reconstrucción de estados, se describen los métodos ADER-DG complementados
a su vez con un limitador de tipo volúmenes finitos a posteriori adecuado (ver [98],
[64]).

• En el Caṕıtulo 3 los esquemas numéricos propuestos para los sistemas de presión no
hidrostática dados se describen completamente. Alĺı, se pueden destacar diferentes
enfoques y estrategias. Por un lado, hemos diseñado esquemas numéricos de
volúmenes finitos de segundo orden basados en una técnica de proyección-corrección
de dos pasos. En un primer paso, se utiliza un esquema de volúmenes finitos
expĺıcito que discretiza la parte hiperbólica e hidrostática subyacente del sistema,
bajo una condición de CFL habitual. Luego, en un segundo paso, los términos no



hidrostáticos se toman en cuenta y se aproximan por medio de diferencias finitas
centradas. Esto implicará la inversión de un operador de tipo Poisson y de ah́ı la
naturaleza impĺıcita del esquema numérico. En este paso, hemos considerado mallas
decaladas y no decaladas para la presión no hidrostática y las velocidades verticales.
Por otro lado, se propone un esquema numérico de tipo DG completamente expĺıcito
y de alto orden arbitrario para el nuevo sistema de EDPs hiperbólico propuesto,
complementado con un limitador de volúmenes finitos a posteriori. Para permitir
simulaciones en tiempo real, una implementación eficiente en GPU de los métodos
numéricos es llevado a cabo para todos los sistemas bidimensionales, y algunas
directrices sobre su implementación son dadas en el Apéndice E.

• En el Caṕıtulo 4 los esquemas numéricos antes mencionados para cada uno de los
sistemas se han aplicado a test de referencia académicos tales como la propagación
de solitones, aśı como a situaciones f́ısicas más desafiantes que implican ondas en
una zona de costa incluyendo el rompimiento de olas en una y dos dimensiones
espaciales. En todos los casos, las comparaciones realizadas con soluciones anaĺıticas
o con datos experimentales son excelentes, lo que demuestra la validez del modelo
matemático propuesto y del algoritmo para su resolución numérica. Los datos
experimentales incluyen una amplia variedad de escenarios: propagación, shoaling,
ondas dispersivas inducidas por deslizamientos submarinos de sólidos ŕıgidos, entre
otros. Finalmente, algunos tiempos computacionales para los test bidimensionales
muestran la eficiencia buscada.

• Tal como se reveló mediante las comparaciones con los datos de laboratorio del test
que simulaba ondas inducidas por deslizamientos submarinos ŕıgidos, éstas pueden
ser dispersivas. En el Caṕıtulo 5 medimos la influencia al considerar una presión
no hidrostática aplicada a la simulación del transporte y arrastre de sedimentos.
Para ello, se introduce un trabajo nuevo y que actualmente sigue curso en el que
se propone un sistema de dos capas de aguas someras para describir el transporte
de sedimentos. Aśı mismo, se muestra un esquema numérico y algunas pruebas
académicas y de validación, que ofrecen resultados prometedores.

• Por último, en el Caṕıtulo 6 se presentan las conclusiones de la tesis y algunas ĺıneas
de trabajo futuro.
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Dispersive water waves modelling
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When modelling and simulating geophysical flows, the Non-linear Shallow-Water
equations, from now on SWE, is often a good choice as an approximation of the Navier-
Stokes equations. Nevertheless, SWE do not take into account the effects associated
with dispersive waves. In recent years, a great effort has been made in the derivation
of relatively simple mathematical models for shallow water flows that include long non-
linear water waves. As computational power increases, Boussinesq type models and non-
hydrostatic pressure models ([1], [19], [21], [52], [144], [148], [184], [202], [210], [255], [256],
[231], [259]) become more accessible. This means that one can use more sophisticated
models to accurately describe reality, despite the higher computational cost. They are
capable of solving many relevant features of coastal water waves, such as dispersion, non-
linearity, shoaling, refraction, diffraction, and run-up.

This chapter is organized as follows. In Section 1.1, a general overview is presented
on the state of the art of the main dispersive systems used during the last years. The
genuine system derived by Peregrine and the improvement proposes by Madsen-Sørensen
are two of the most representative Boussinesq type systems. A general formulation based
on a novel quasi two layer non-hydrostatic pressure system, that collects some of the
main Boussinesq type systems, it is also discussed. After that, a class of multi layer non-
hydrostatic pressure system derived by E.D. Fernández-Nieto et al. in [124] is presented.
Later, the particular case when the number of layers is set to one, that corresponds to the
system derived originally by Jacques Sainte-Marie et al. in [21] is described. Likewise, a
simplification of the one layer system, previously introduced by Yamazaki et al. in [259]
is described. Finally, some basic definitions about the main linear dispersive relations of
general interest are given.

In Section 1.2 a new two layer non-hydrostatic pressure system derived by C. Escalante
et al. in [118] it is described. The system depends on three different free-parameters
that are optimized to improve the dispersive relation of the system and can be seen
as a modification of one of the models presented in [124] with a correction in the non-
hydrostatic pressure profile.

The main drawback when approximating numerically the described dispersive/non-
hydrostatic pressure systems is that one has to invert an elliptic operator. This will leads
to a restrictive CFL condition for explicit schemes, or even worse, to an unconditionally
stable scheme (see [164]). Therefore, implicit schemes must be considered with the
consequent loss of efficiency. In Section 1.3 a new and recent technique by C. Escalante et
al. in [111] is introduced and it is applied to the incompressible non-hydrostatic system
derived by Sainte-Marie et al. in [21]. The incompressibility equation of the original
system proposed in [21] is replaced by an artificial compressibility equation, where errors
are transported to the domain boundaries with the maximal admissible speed c following
the so-called Hyperbolic Divergence Cleaning ideas applied in magneto-hydrodynamic
(see [83]). The resulting first-order system formally tends to the proposed in [21] when
c→∞, and it is shown that the system is hyperbolic.

In Section 1.4 some of the main linear dispersion properties of the presented dispersive
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and/or non-hydrostatic systems are derived and compared.
In Section 1.5 a discussion on simple wave breaking mechanisms is carried out. At

this point, it should be noted that detailed small-scale wave breaking flow physics is not
described by the considered model, but only the net effect of wave breaking on energy
dissipation. This means that a breaking mechanism is included in the depth-integrated
equations via a simple sub-scale viscosity model, with a breaking criterion similar to the
one proposed in [219] that allow the dissipation in regions where needed.

Finally in Section 1.6 some aspects concerning solitary waves will be introduced. In
this section we provide some basic definitions, as well as analytical solitary wave solutions
for the system introduced by Sainte-Marieet al. For some other PDE systems where it is
not an easy task to find analytical solitary wave solutions, we give a numerical procedure
to compute them.

1.1 A general overview on dispersive water waves

modelling

The fundamentals of Boussinesq type models are exhibited here, which aims at highlight-
ing the fundamental principles of the modelling, as well as the characteristics of the chosen
equations.

The systems that will be considered in this thesis can be formulated for the case of
one space dimension as ∂tU + ∂xF (U) +B(U)∂xU = G(U)∂xH + S(U) + T ,

I(U, ∂xU,H, ∂xH) = 0,
(GF)

or for the case of two space dimensions as ∂tU +∇ · F (U) +B(U) · ∇U = G(U) · ∇H + S(U) + T ,

I(U,∇U,H,∇H) = 0,
(GF-2D)

where in the case of two space dimensions the unknown U(x, t) contains the conserved
variables and is defined in Ω× [0, T ], Ω being a domain of R2. U takes values in an open
convex set O of RN ; F = (F1, F2) is a regular function from O to RN ×RN that contains
the physical fluxes; B = (B1, B2) , a regular matrix function from O to MN ×MN(R)
that contains the nonconservative terms; G = (G1, G2) , a regular function from O to
RN×RN that contains the geometric source terms that accounts the effects of the bottom
topography H which is a known function from O to R; S is a regular function from O to
RN containing the source terms that may include friction terms. This formulation allows
to represent in a compact form the systems described in this thesis: Boussinesq-type
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systems and non-hydrostatic pressure systems, where T is an operator that contains the
dispersive/non-hydrostatic pressure terms depending on

T ≡ T (U,∇U,H,∇H) for Boussinesq-type systems,

T ≡ T (U,∇U, P,∇P,H,∇H) for non-hydrostatic pressure-type systems.

For the case of non-hydrostatic pressure systems, P (x, t) accounts for the non-hydrostatic
pressure unknowns and is defined in Ω×[0, T ]. This family of systems can not be expressed
as a system of balance laws. For example, although P (x, t) is one of the variables of the
system, it can not be found an equation in the form ∂tP (x, t) + . . . = 0. Instead, an extra
set of equations that relates P with U are needed. This conditions are expressed by the
vector operator I. This set of extra equations contain the incompressibility condition. It
relates spatial derivatives of the horizontal velocities, with the vertical velocities that at
the same time, are linked with the non-hydrostatic pressures via some vertical momentum
equations.

In the subsequent subsection, two of the most popular Boussinesq-type PDE systems
will be presented, as well as some of the non-hydrostatic pressure PDE systems that
will be discretized in this thesis. Also, some mathematical properties of interest will be
analysed.

1.1.1 The non-linear shallow water equations

The non-linear shallow water equations constitute a system of non-linear hyperbolic PDEs.
They are derived from the Euler equations assuming a constant vertical profile on the
horizontal velocity within the fluid layer, that is also assumed to be incompressible,
inviscid and homogeneous.

They are valid for problems in which vertical dynamics can be neglected compared
to horizontal effects. As it will be shown, they can not represent dispersive water waves,
since the dispersion relation is quite far away from the linear theory for intermediate
waters.

The governing equations for one space dimension can be written as a system of
conservation laws with geometric source terms that reads as:

∂th+ ∂x (hu) = 0,

∂t (hu) + ∂x

(
hu2 +

1

2
gh2

)
= gh∂xH − τb,

where the unknowns (h, hu) takes values in an open convex set of R2

O = {(h, hu) ∈ R2, h > 0},
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h = h(x, t) being the water depth, H = H(x) the known still water depth. The surface
elevation measured from the still-water level is denoted by η = h − H. Furthermore, t
denotes time, g is the gravitational acceleration and u is the depth averaged velocity in the
x direction. The bottom friction is included in the equations via an usual Manning-type
friction formula for the bottom shear stress that reads

τb = ghu
n2
m|u|
h4/3

, (1.1.1)

where nm is an empirical bottom friction coefficient (see [185]).
This system can be written as in the general compact form (GF), defining

U =

h
q

 , F (U) =

 q

q2

h
+

1

2
gh2

 , G(U) =

 0

gh

 ,

S(U) = −

0

τb

 , B(U) = 0,

T = 0, I = 0,

(SWE)

q = hu being the discharge.

Energy balance of the system

An extra conservation law related to the conservation of the energy is verified. The smooth
solutions (h, u) of (SWE) satisfies the additional balance law

∂tE + ∂x

(
u
(
E +

g

2
h2
))

= −uτb, (1.1.2)

where

E =
h(u2)

2
+
gh(η −H)

2
. (1.1.3)

is defined as the mechanical energy.
Note that the contribution to the right hand side

−uτb = −u2gh
n2
m|u|
h4/3

< 0,

since gh
n2
m|u|
h4/3

> 0, and this stablish that the friction term with the bottom is the only

term in the equations that dissipates energy in a smooth solution. When nm = 0, then
the equality (1.1.2) provides a new conservation law verified by the smooth solutions.
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Eigenstructure of the system

Let us define

JF = ∂F/∂U

the Jacobian of the flux F with respect to the conserved variables U :

JF =

 0 1

C2 − u2 2u

 , C = gh.

The eigenvalues of the matrix JF are

λ1,2 = u±
√
gh.

A set of linearly independent eigenvectors is given by

vi =
(
1, λi

)
, i = 1, 2.

The system is strictly hyperbolic if and only if C > 0 and |u| 6= c.

Governing equations in two space dimensions

The non-linear shallow water equations for bidimensional domains can be written in the
general compact form (GF-2D), defining

U =


h

qx

qy

 , F1(U) =


qx

q2
x

h
+

1

2
gh2

qxqy
h

 , F2(U) =


qy

qxqy
h

q2
y

h
+

1

2
gh2

 ,

G1(U) =


0

gh

0

 , G2(U) =


0

0

gh

 , S(U) = −


0

τb,x

τb,y

 , B(U) = 0,

T = 0, I = 0,

(SWE-2D)

where qu = hu, qv = hv are the horizontal discharges, u(x, y) and v(x, y) being the
depth averaged velocities in the x and y direction respectively. τb,x and τb,y contains the
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Manning-type friction formula for the bottom shear stress that readsτb,x
τb,x

 = gh
n2
m ||(u, v)| |
h4/3

u
v

 . (1.1.4)

Similarly to the 1D case, for the shallow water equations no extra incompressibility
condition is needed, and thus I = 0.

1.1.2 Boussinesq-type systems

In order to retain non-linear dispersive effects from the Navier-Stokes equations, informa-
tion on the vertical structure of the flow should be included when a new model is derived.
The Boussinesq-type wave equations take into account this idea and have prevailed due
to their computational efficiency.

The main idea is to include non-hydrostatic effects due to the vertical acceleration of
the fluid in the depth-averaging process of the equations. For instance, one can assume
that both non-linearity and frequency dispersion are weak and of the same order of
magnitude.

Since the early works of Peregrine [210], several improved and enhanced Boussinesq
models have been proposed over the years. One may use different approaches to improve
non-linear dispersive properties of the model: considering a Taylor expansion of the
velocity potential in powers of the vertical coordinate and in terms of the depth-averaged
velocity [184] or the particle velocity components (u,w) at a chosen level [202]; including
two scalars representing the vertical profile of the non-hydrostatic pressure [160]; using
a better flow resolution in the vertical direction with a multi layer approach [176], [178],
[257].

In the next subsection two of the most representative Boussinesq type systems
proposed by Madsen-Sørensen [184] and Peregrine [210] will be described. The systems
can be written for two space dimensions as in (GF-2D).

The underlying system resulting when T , that contains the dispersive terms, are
suppressed coincides with the hyperbolic system (SWE-2D) with bottom friction. As
in (SWE-2D), h = h(x, y, t) accounts for the water depth; H = H(x, y) for the known
still water depth; η for the surface elevation and u and v for the depth averaged velocities
in the x and y direction respectively.

In what follows, the Peregrine and the Madsen-Sørensen systems will be described.
This systems will be described by (GF-2D) with U, F, B, S, I defined as in (SWE-2D).
They only differ in the definition of the operator T ≡ T (U,∇U,H,∇H).

Peregrine system (1967)

Let us start by introducing the pioneering system derived by Peregrine in [210] which is
the dispersive system that has become the most popular. Equations of motion are derived
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for long waves in water of varying depth. The equations are for small amplitude waves but
do include non-linear terms. When a constant bathymetry is considered, they coincide
with the Boussinesq equations [19].

The core of the general procedure to derive the Peregrine system and also in general,
to derive a Boussinesq-type system can be summarized as follows (dimensionless variables
used):

• Derivation from Euler equations, under the assumption of an irrotational flow:

(u, v, w) = ∇φ, ∇2φ = 0,

where (u, v, w) are the velocity components.

• Makes an asymptotic Taylor expansion and truncation of the potential flow:

φ = φ|b −
1

2
(z − z|b)2

[
∂2
zφ
]
|b +

1

24
(z − z|b)4

[
∂4
zφ
]
|b + · · · , (1.1.5)

where the odd terms in the Taylor expansion are cancelled by using the assumption
of irrotational flow.

• Assume the kinematic boundary conditions at the bottom and surface.

• Apply the established power series for the velocity potential in combination with
the depth-integrated continuity and momentum equations (Peregrine) or kinematic
and dynamic surface boundary conditions.

In the derivation, there are two important parameters associated with long waves. One is
the ratio of amplitude to depth µ1, and the other is the ratio of depth to wavelength µ2.
The Peregrine equations were derived under the assumptions of weakly non-linear weakly
dispersive waves, that is

µ1 � 1, µ2 ≈ µ2
1,

that corresponds to truncation up to second order in the asymptotic Taylor expansion
introduced in (1.1.5). The system for two space dimensions can be written in the compact
form (GF-2D) by setting in (SWE-2D) T as

T =

 0

TPER(U,∇U,H,∇H)

 =

 0

1

2
H2∂t∇ (∇ · (Hu))− 1

6
H3∂t∇ (∇ · u)

 , (PER)

where u = (u, v) . For Boussinesq-type systems I = 0, although it will shown that some
of the studied Boussinesq-type systems can be rewritten as a non-hydrostatic pressure
system via an incompressibility condition.
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Madsen-Sørensen (1992)

Madsen and Sørensen derived a series of interesting papers on dispersive water waves
modelling and procedures that later were assumed to be as standard in dispersive water
waves modelling.

From the derivation of the Peregrine system, it is clear that a better description
of dispersive waves can be achieved by considering a higher order truncation in (1.1.5).
However, this leads to a complex system with sums and products of high order derivatives.
Madsen and Sørensen, fully understanding this problem, found a smart approach for
improving dispersive properties without increasing the order of the derivatives appearing
in the momentum equation. In brief, they applied a linear operator

L = 1 + ε2BH2∇(H)

to the Peregrine system, and they used as well as the linear long-wave approximation

∂t (hu) + gH∇(η) ≈ 0, u = (u, v)

which transforms time derivatives of hu, u being the depth-averaged velocities, into spatial
derivatives in the free surface η. Some higher derivatives and product of derivatives of
the bottom are neglected (see details in [184]). Therefore, extra dispersive terms are
obtained, proportional to the free-parameter B, which was chosen to match the [2, 2]
Padé approximation of the dispersion relation. These extra terms, however, only contained
third-order derivatives such as the original weakly dispersive Peregrine system.

The system for two space dimensions can be written in the compact form (GF-2D) by
setting in (SWE-2D) T as

T =

 0

TMS(U,∇U,H,∇H)

 =


0

ϕ1

ϕ2

 , I = 0, (MS)

where

ϕ1 =
H

3
∂t

[
(3B + 1)H (∂xx(hu) + ∂xy(hv))− ∂xH

(
∂x(hu) +

1

2
∂y(hv)

)
− ∂yH

1

2
∂x(hu)

]
+BgH2 [H (∂xxxη + ∂xyyη) + ∂xH (2∂xxη + ∂yyη)− ∂yH∂xyη] ,

ϕ2 =
H

3
∂t

[
(3B + 1)H (∂yy(hv) + ∂xy(hu))− ∂yH

(
∂y(hv) +

1

2
∂x(hu)

)
− ∂xH

1

2
∂y(hv)

]
+BgH2 [H (∂yyyη + ∂xxyη) + ∂yH (2∂yyη + ∂xxη)− ∂xH∂xyη] .
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1.1.3 A first order formulation for Boussinesq-type systems

One of the main objectives of this dissertation was to deal with relatively simple PDE
systems that can simulate dispersive water waves efficiently. As it can be seen the
Boussinesq-type systems are, in the best-case scenario, systems that contain third order
derivatives (∂xxt). This will lead to complex numerical schemes, specially when high
order derivatives appear in the governing equations. To avoid that, one of the efforts
made during this thesis was to write some of the Boussinesq-system as an augmented first
order PDE system.

In this subsection, a novel contribution is presented, up to our knowledge, on this
dissertation: a procedure to express the equations derived by Peregrine as a first order
system of PDEs. The same procedure can also be applied to other Boussinesq systems
such as as [1], [184], among others. To illustrate this, let us consider the system (GF-2D)
along with (PER) written as a new reformulated augmented first order PDE system

∂th+ ∂x (hu) + ∂y (hv) = 0,

∂t (hu) + ∂x

(
hu2 +

1

2
gh2 +Hp1 +Hp2

)
+ ∂y (huv) =

(gh+ 2p1 + 3p2) ∂xH − τb,x,

∂t (hv) + ∂y

(
hv2 +

1

2
gh2 +Hp1 +Hp2

)
+ ∂x (huv) =

(gh+ 2p1 + 3p2) ∂yH − τb,x,

∂t (Hw1) = 2p1,

∂t (Hw2) = 2p1 + 3p2,

H∇ · u+ w1 − wb = 0,

H∇ · u+ 2(w2 − wb) = 0

(1.1.6)

pi, wi, i = 1, 2 being some arbitrary variables described later depending on

u = (u, v), wb = −u · ∇H,

and τb,x, τb,y accounts for the friction terms defined in (1.1.4).
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Remark 1.1.1. The considered PDE system (1.1.6) only contains first order derivatives
as requested.

Remark 1.1.2. Attending to a dimensional analysis of the new auxiliary variables
defined, it holds:

[pi] =
m2

s2
, [wi] =

m

s
, i = 1, 2,

where [f ] represents the physical dimension of a given variable f. Thus, pi can be
interpreted as a non-hydrostatic pressure and wi as a velocity for i = 1, 2.

In Remark 1.1.4 a complete reinterpretation, as well as a comparison with other
non-hydrostatic pressure systems, is carried out. This constitutes a link between one of
the pioneering Boussinesq-type systems with modern non-hydrostatic pressure systems.

1.1.4 Non-hydrostatic pressure systems. A multi layer approach

In this section one of the multi layer non-hydrostatic pressure models of the family
introduced and described by Fernández-Nieto et al. in [124] is presented. The final
model has some improvements concerning the Boussinesq systems. It is worth to mention
that the multi layer approach leads to a first order PDE system. The governing equations
satisfy an extra energy conservation law. This is a property that usual Boussinesq-type
systems do not satisfy. Another feature to emphasize is that when the number of layer
increases, the linear dispersion relation of the linear model converges to the same of Airy’s
theory. These properties and, in particular, the last one, make multi layer non-hydrostatic
pressure systems an ideal framework to simulate dispersive water waves.

The governing equations of the multi layer pressure system derived in [124] are
obtained after a process of depth averaging, similar to the derivation process of the shallow
water equations. To improve the accuracy, non-material interfaces that separate the fluid
into layers with different velocities and pressures are assumed. To do that, some hypothesis
on the velocity and pressure profiles are supposed. This will leads to a hierarchy of multi
layer systems, depending on the assumption of a linear or quadratic vertical profiles. The
main procedure to derive the equations can be summarized as follows:

• The fluid domain is split in the vertical into L layers.

• The Euler equations are depth averaged within each layer.

• The total pressure is decomposed into a sum of hydrostatic and non-hydrostatic
pressure.

• The horizontal velocity is assumed to have a piecewise constant vertical profile
within each layer.
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Figure 1.1: Schematic diagram describing the multi layer system

• Due to the above hypothesis on the horizontal velocity, the vertical velocity as well
as the non-hydrostatic pressure has a piecewise linear vertical profile within each
layer.

• Assume kinematic boundary conditions at the bottom and surface.

The derivation process can be found in [124]. Nevertheless, the derivation for the special
case of two layers will be described in this thesis in Subsection 1.2. The governing
equations for one-dimensional domains are described in the following.

Given a positive water height h(x, t), it is considered a number of layers L ≥ 1 and a
convex combination (lα)1≤α≤L such that

lα ∈ [0, 1],
L∑
α=1

lα = 1.

Then it is defined

hα(x, t) = lαh(x, t) =⇒ h =
L∑
α=1

hα.

As depicted on Figure 1.1, the flow is split along the vertical axis into L ≥ 1 layers
denoted by

Lα(x, t) =
{
z : zα−1/2(x, t) ≤ z ≤ zα+1/2(x, t)

}
, α ∈ {1, . . . , L}
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where

zα+1/2 = −H +
α∑
β=1

hβ,

H(x, t) being the bathymetry that can vary in space and time, so that

−H = z1/2 < z3/2 < . . . < zL+1/2 = η = h−H, hα(x, t) = zα+1/2(x, t)− zα−1/2(x, t),

where η is the unknown water surface elevation. For the sake of clarity, middle points of
layer Lα are denoted by

zα =
zα+1/2 + zα−1/2

2
.

It is shown in [124] that the values of the variables u,w and p, at the virtual interface
zα+1/2 are given by

uα+1/2 =
uα + uα+1

2
, wα+1/2 =

wα + wα+1

2
, pα+1/2 =

pα + pα+1

2
.

For a given function (x, z, t) → f(x, z, t), in the case that it is discontinuous at the
interface zα+1/2, let us denote

f+
α+1/2(x, t) = lim

z→zα+1/2(x,t)

z>zα+1/2(x,t)

f(x, z, t), f−α+1/2(x, t) = lim
z→zα+1/2(x,t)

z<zα+1/2(x,t)

f(x, z, t),

as well as fb ≡ f(x,−H(x, t), t), fη(x, t) ≡ f(x, η(x, t), t).
The governing equations for α ∈ {1, . . . , L} reads

∂th+ ∂x (hū) = 0, ū =
L∑
α=1

lαuα,

∂t (hαuα) + ∂x(hαu
2
α +

1

2
gh2

α + hαpα) + uα+1/2Γα+1/2 − uα−1/2Γα−1/2

+ ∂xzα−1/2pα−1/2 − ∂xzα+1/2pα+1/2 = ghα∂xH

∂t (hαwα) + ∂x (hαuαwα) + wα+1/2Γα+1/2 − wα−1/2Γα−1/2 = pα−1/2 − pα+1/2,

∂xuα+

w−α+1/2 − wα
hα/2

= 0,

w+
α+1/2 + ∂tH − uα+1∂xzα+1/2 +

α∑
β=1

∂x (hβuβ) = 0,

(NH-L)
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where uα, wα and pα are the horizontal and vertical depth averaged velocities as well as
the depth-averaged non-hydrostatic pressure respectively at the layer Lα(x, t).

Note that
w+
α+1/2 − w

−
α+1/2 = ∂xzα+1/2 (uα+1 − uα) ,

is a jump condition that a weak solution which is discontinuous at z = zα+1/2(x, t) must
verify. The hypothesis on the total pressure of vanishing at the free surface as well as the
kinematic boundary condition at the free surface leads to

pL+1/2 = 0, w−L+1/2 = ∂tη + uL∂xη.

Terms Γα±1/2 accounts for mass transfer and appears as a contribution of the surface
integral during the depth averaging process:

Γα+1/2 =
L∑

β=α+1

∂x (hβ(uβ − ū)) .

The last two equations describe some extra conditions that transcribe the free
divergence constraint.

The governing PDE satisfies an extra energy conservation law. Let us denote the
mechanical energy to the semi-discrete level

Eα = hα
u2
α + w2

α

2
+ ghαzα.

If (h, uα, wα, pα) are smooth solutions to (NH-L), then it holds

∂t

L∑
α=1

Eα + ∂x

(
L∑
α=1

uα (Eα + ghα (η − zα) + hαpα)

)
=
(
gh+ p1/2

)
∂tH.

1.1.5 One layer non-hydrostatic pressure systems

The multi layer pressure system introduced above has some attractive mathematical
properties concerning with the linear dispersion relations. As it was mentioned, it
can be shown that when the number of layers tends to infinity, the celerity or phase
speed dispersion relation converges to the one given by the linear theory. However, in
practice and when the system is applied to simulate complex events that include large
computational domains, the computational time grow too quickly when considering 3 or
more layers.

Following the spirit of this dissertation of considering relatively simple systems to
simulate dispersive water waves, some special cases will be examined. The first one
is related to the case of considering one layer, that corresponds to the system deduced
in [21] by Sainte-Marie et al. firstly. After, a simplification of this one layer system derived
in [259] by Yamazaki et al. is considered. This system, which is relatively simple will
be one of the non-hydrostatic pressure systems that have been discretized and validated
along this dissertation in the subsequent chapters.
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The one layer case (Sainte-Marie et al.)

A special case of the previously described multi layer non-hydrostatic pressure is when
the number of layers is set to one. This is the case of the non-hydrostatic pressure system
that was derived previously by Sainte-Marie et al. in [21]. The governing equations for
one space dimension read



∂th+ ∂x (hu) = 0,

∂t (hu) + ∂x

(
hu2 +

1

2
gh2 + hp

)
= (gh+ pb) ∂xH − τb,

∂t (hw) + ∂x (uhw) = pb, pb = 2p,

∂xu+
w − wb
h/2

= 0, wb = −∂tH − u∂xH,

where h = h(x, t) is the water depth and H = H(x) is the known still water depth. The
surface elevation measured from the still-water level is denoted by η = h−H. Furthermore,
t denotes time, g is the gravitational acceleration; u is the depth averaged velocity in the
x direction; w is the depth averaged vertical velocity; wb denotes the vertical velocity at
the bottom that it was obtained from a no-penetration boundary condition and takes into
account the dependence on time of the bathymetry H. τb denotes the friction with the
bottom given by (1.1.1). Finally p denotes the depth averaged non-hydrostatic pressure
and pb denotes the non-hydrostatic pressure at the bottom. Note that in the vertical
direction, the following relation holds

pb = 2p.
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This system can be written in the general compact form (GF), defining

U =


h

qu

qw

 , F (U) =


q

q2

h
+

1

2
gh2

quqw
h

 , G(U) =


0

gh

0

 ,

S(U) = −


0

τb

0

 , B(U) = 0,

T (U, ∂xU, p, ∂xp,H, ∂xH) = −


0

h∂xp+ p∂x (2η − h)

− 2p

 ,

I(U, ∂xU,H, ∂xH) = h∂xqu − qu∂x (2η − h) + 2qw + 2h∂tH,

(NH-1L)

qu = hu, qw = hw being the horizontal and vertical discharges respectively. The
incompressibility condition I has been multiplied by h2 in order to express the system in
terms of the conserved quantities h, qu and qw.

A simplified one layer non-hydrostatic pressure system (Yamazaki et al.)

Under a similar hypothesis to the one assumed by Sainte-Marie et al. in [21], Yamazaki
et al. derived in [259] a relatively simple non-hydrostatic pressure system. The equations
are derived after a process of depth averaging from the Euler equations. Thus, a linear
vertical profile is assumed for the non-hydrostatic pressure and vertical velocity, as well
as a constant vertical profile for the horizontal velocity. The difference resides in a
simplification carried out with the convective terms on the vertical velocity equation which
are neglected. Thus a simpler system arises. This simplified system has been numerically
solved in [112] (see Subsections 3.1 and 3.2 ), and validated through laboratory and field
experiments in [157],[182] (See Chapter 4 ).
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The governing equations for one space dimensions of the system derived in [259] read



∂th+ ∂x (hu) = 0,

∂t (hu) + ∂x

(
hu2 +

1

2
gh2 + hp

)
= (gh+ pb) ∂xH − τb,

∂tw =
pb
h
, pb = 2p,

∂xu+
w − wb
h/2

= 0, wb = −∂tH − u∂xH,

whereas in the description of the variables of the system (NH-1L), h = h(x, t) is the
water depth and H = H(x) is the known still water depth. η = h − H denotes the
surface elevation measured from the still-water level. Furthermore, t denotes time, g
is the gravitational acceleration; u is the depth averaged velocity in the x direction; w
is the depth averaged vertical velocity; wb denotes the vertical velocity at the bottom
that it was obtained from a no-penetration boundary condition and takes into account
the dependence on time of the bathymetry H. τb denotes the friction with the bottom
given by (1.1.1). Finally p denotes the depth averaged non-hydrostatic pressure and pb
denotes the non-hydrostatic pressure at the bottom. Note that in the vertical direction,
the following relation holds

pb = 2p.

This system is of interest due to its simplicity on the vertical velocity equations. In
this thesis, this PDE system is considered and discretized on a staggered mesh for the
vertical velocity as well as for the non-hydrostatic pressure in Subsections 3.1 and 3.2.
Due to that, although this system can be written as in the general formulation (GF) and
in a similar manner as in (NH-1L), it is convenient to introduce the following rewriting
of the system:



∂tU + ∂xF (U) = G(U)∂xH + S(U)+

+ T (U, ∂xU, p, ∂xp,H, ∂xH),

∂tw = 2
p

h
,

I(U, ∂xU,H, ∂xH,w) = 0,

(YAM)
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where

U =

h
q

 , F (U) =

 hu

q2

h
+

1

2
gh2

 , G(U) =

 0

gh

 ,

S(U) = −

0

τb

 , T (U, ∂xU, p, ∂xp,H, ∂xH) = −

 0

h∂xp+ p∂x (2η − h)

 ,

I(U, ∂xU,H, ∂xH,w) = h∂xq − q∂x (2η − h) + 2hw + 2h∂tH,

and q = hu denotes the discharge.

Remark 1.1.3. Let us notice that the vertical momentum equation of the system (YAM)

∂tw =
pb
h
,

can be written by using the mass equation ∂th+ ∂x (hu) = 0, as follows

∂t (hw) + ∂x (uhw) =
pb
h

+ hu∂xw,

and thus, the system (YAM) can be written as

∂th+ ∂x (hu) = 0,

∂t (hu) + ∂x

(
hu2 +

1

2
gh2 + hp

)
= (gh+ pb) ∂xH − τb,

∂t (hw) + ∂x (uhw) =
pb
h

+ hu∂xw, pb = 2p,

∂xu+
w − wb
h/2

= 0, wb = −∂tH − u∂xH,

(1.1.7)

Energy balance of the systems

Similar to the multi layer non-hydrostatic pressure system described in Subsection 1.1.4,
an extra balance law related to the conservation of the energy is verified. The smooth
solutions (h, u, w, p) of (NH-1L) satisfy the additional balance law

∂tE + ∂x
(
u
(
E + gh2 + hp

))
= (gh+ pb) ∂tH − uτb, (1.1.8)
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where

E = h
u2 + w2

2
+ gh

η −H
2

(1.1.9)

is the mechanical energy. In absence of friction with the bottom as well as for ∂tH = 0,
the above balance law becomes a new conservation law for the smooth solutions of the
system.

On the contrary, due to the simplification made with the convective terms during the
derivation of the system (YAM), then it holds

∂tE + ∂x
(
u
(
E + gh2 + hp

))
= (gh+ pb) ∂tH − uτb + huw∂xw, (1.1.10)

where E is defined as in (1.1.9). Thus, it can not be found a similar extra energy
conservation law for the system (YAM) in absence of friction and for ∂tH = 0.

Eigenstructure of the underlying hydrostatic system

Let us define for the systems (NH-1L) and (YAM) the underlying hydrostatic system that
results from removing the non-hydrostatic contribution T along with the incompressibility
condition I. It is easy to check that both hydrostatic systems coincide with the
system (SWE) previously defined. Thus, the underlying hydrostatic system for both
non-hydrostatic pressure systems coincides and is strictly hyperbolic (see Section 1.1.1).

Governing equations in two space dimensions of the system (YAM)

The extension of the system (YAM) for bidimensional domains can be written as



∂tU +∇ · F (U) = G(U) · ∇(H) + S(U)+

+ T (U,∇U, p,∇p,H,∇H),

∂tw = 2
p

h
,

I(U,∇U,H,∇H,w) = 0,

(YAM-2D)
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where

U =


h

qx

qy

 , F1(U) =


qx

q2
x

h
+

1

2
gh2

qxqy
h

 , F2(U) =


qy

qxqy
h

q2
y

h
+

1

2
gh2

 ,

G1(U) =


0

gh

0

 , G2(U) =


0

0

gh

 , S(U) = −


0

τb,x

τb,y



T (U,∇(U), H,∇(H)) = −


0

h∂xp+ p∂x (2η − h)

h∂yp+ p∂y (2η − h)



I(U,∇U,H,∇H,w) = h∇ · q − q · ∇ (2η − h) + 2hw + 2h∂tH, q = (qx, qy).

qx = hu, qy = hv being the discharges and τb,x, τb,y account for the friction terms defined
in (1.1.4).

Remark 1.1.4. Let us assume in the rewriting of the Peregrine system as a first order
PDE system (1.1.6) a flat bottom. Then one has

w1 = 2w2, p1 = −3p2,

and let us define

w := w2, p := −2p2.



48 Dispersive water waves modelling

Then the system reduces to

∂th+ ∂x (hu) + ∂y (hv) = 0,

∂t (hu) + ∂x

(
hu2 +

1

2
gh2 +Hp

)
+ ∂y (huv) = −τb,x,

∂t (hv) + ∂y

(
hv2 +

1

2
gh2 +Hp

)
+ ∂x (huv) = −τb,y,

H∂t (w) =
3

2
p,

H∇ · u+ 2w = 0.

Replacing H by h in the third and fourth equations of the above system, it yields

∂th+ ∂x (hu) + ∂y (hv) = 0,

∂t (hu) + ∂x

(
hu2 +

1

2
gh2 +Hp

)
+ ∂y (huv) = −τb,x,

∂t (hv) + ∂y

(
hv2 +

1

2
gh2 +Hp

)
+ ∂x (huv) = −τb,y,

∂t (w) =
3

2

p

h
,

h∇ · u+ 2w = 0.

(1.1.11)

Let us reinterpret w and p in (1.1.11) as the depth integrated vertical velocity and the
depth-integrated non-hydrostatic pressure by similitude with system (YAM-2D). Also, let
us reinterpret 3

2
p as the non-hydrostatic pressure at the bottom. Thus, the system (1.1.11)

only differs from the system (YAM-2D) on the relation between the non-hydrostatic
pressure at the bottom and its depth-averaged value which is:

pb =
3

2
p.

Moreover, by substituting the vertical velocity equation in (1.1.11)

∂tw =
3

2

p

h
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by

∂t (hw) + ∂x(uhw) + ∂y(vhw) =
3

2
p

then the system coincides with the Green-Naghdi system for flat bottom, that was
firstly written as a non-hydrostatic pressure system in [21]. It can be proved that the
Serre-Green-Naghdi system satisfies an energy conservation law given by:

∂tE + ∂x
(
u
(
E + gh2 + hp

))
+ ∂y

(
v
(
E + gh2 + hp

))
= 0,

where

E = h
u2 + v2 + 2

3
w2

2
+ gh

η −H
2

is the mechanical energy.
Thus, this procedure of converting the Boussinesq-type system of Peregine into a non-

hydrostatic pressure system can be seen as a way to improve the mathematical properties
of the Peregrine system, since an energy conservation law can be fulfilled when ∇H = 0,
and to reduce the order of derivatives, since it is written as a first order PDE system.
Furthermore, a link between one of the most popular Boussinesq-type systems and the
non-hydrostatic pressure modelling framework has been established.

1.1.6 Linear dispersion relation

In this subsection, the main concepts concerning the dispersive relations of PDE systems
are presented. In particular, the linear dispersion relation of the phase velocity, the group
velocity, and the linear shoaling. This constitutes a standard study of PDE systems for
dispersive water waves modelling. The two first properties are related to the propagation
of dispersive wave trains, and the latter with shoaling processes. This can occur when
waves arrive at the continental shelf, from intermediate to shallow waters.

To obtain the linear dispersion properties of the systems studied during this
dissertation, the equations are linearised around the lake at rest steady state solution.
An asymptotic expansion

f = f (0) + εf (1) +O(ε2), (1.1.12)

is considered, where f denotes a generic variable of the system. The resulting linearised
model for the perturbations, which is obtained after neglecting O(ε2) terms, is considered.
After that, A Stokes-type Fourier analysis is carried out looking for first-order solutions
of the form

f(x, t) = f0e
i(ωt−kx), (1.1.13)

where ω is the angular frequency and k is the local wave-number. Since the resulting
system is linear, it is possible to find an exact non-trivial solution. This constitutes an
standard procedure to study systems that model dispersive water wavers (see [176], [184],
[226]).
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Phase velocity

The phase velocity of a wave is the rate at which the phase of the wave propagates in
space. This is the velocity at which the phase of any one frequency component of the
wave travels. For such a component, any given phase of the wave (for example, the crest)
will appear to travel at the phase velocity. The phase velocity is defined as C = ω/k.
Following the process detailed above, the phase velocity can be obtained for any given
PDE system studied in this dissertation. It can be compared to the exact phase velocity
given by the linear theory (Airy wave theory):

C2
Airy = gH

tanh(kH)

kH
, (1.1.14)

where k denotes the local wave-number.

Group velocity

The group velocity of a wave is the velocity with which the overall shape of the wave’s
amplitudes (known as the modulation or envelope of the wave) propagates through space.
The group velocity is obtained essentially taking the derivative concerning the wave-
number k from the linear dispersion relation

GAiry = CAiry + k∂kCAiry,

and a reference formula can also be obtained

GAiry =
1

2

(
1 +

2kH

sinh(2kH)

)
CAiry. (1.1.15)

Linear shoaling

Madsen & Sørensen introduced the linear shoaling gradient γ as another quantity to
measure the applicability of Boussinesq equations (see [184]):

∂xη

η
= −γ ∂xH

H
.

Here the shoaling gradient γ is a function of the wave number k and H and it relates the
effect of compactness or shoaling that waves suffers when approaching to the coast. The
shoaling gradient γ can be determined using the concept of the constancy of the energy
flux, which is a valid assumption before of the breaking of the wave:

∂x
(
η2Cg

)
= 0,

and thus,
∂xη

η
= −1

2

∂xCg
Cg

.
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Given the group velocity, it can be seen that

∂xCg
Cg

= S1
∂x(kH)

kH

where S1 is a function to be determined such that the equality holds. Taking the derivative
of the dispersive relation with respect to x gives

∂xk

k
= S2

∂xH

H
,

where, again, S2 is another function to be determined. Finally, the linear shoaling gradient
of a given system under consideration is given by:

γ =
1

2
S1 (1 + S2) .

Again, a reference formula can be obtained from the linear theory, which is given by:

γAiry = kH tanh(kH)
(1− kH tanh(kH))

(
1− tanh2(kH)

)(
tanh(kH) + kH

(
1− tanh2(kH)

))2 . (1.1.16)

1.2 A novel two layer non-hydrostatic pressure sys-

tem with enhanced dispersive properties

In [118] a new two layer-averaged system derived from Euler equations was considered
by C. Escalante et al. In this work a two layer depth-integrated non-hydrostatic system
is proposed with improved dispersion relations. This improvement is obtained employing
three free parameters: two of them related to the representation of the pressure at the
interface and a third one that controls the relative position of the interface concerning the
total height. These parameters are then optimized to improve the dispersive properties of
the resulting system. The optimized model shows good linear wave characteristics up to
kH ≈ 10, that can be improved for long waves. The central hypothesis for the derivation
is the assumption of a constant vertical profile of the horizontal velocity within each layer.
This corresponds to the assumption of a shallow water regime as it is usual when deriving
non-hydrostatic multi layer systems.

The proposed two layer system can be seen as a modification of one of the models
presented in [124] with a correction in the non-hydrostatic pressure profile. This will
lead to a system that improves the main dispersive properties of the other two layer non-
hydrostatic pressure systems proposed in the literature (see for instance [71]). Moreover,
it improves the dispersive properties of some multi layer systems with 5 layers (see for
instance [10]). It is worth mentioning that the resulting system is a model which is less
expensive from the computational point of view while keeping good dispersive relations.



52 Dispersive water waves modelling

Thus, the final model can be applied to intermediate waters for a wide range of waves for
a kH up to 10.

In the subsequent subsection, part of the work carried out in [118] is described: the
derivation of the subsequent system as well as the mathematical study concerning to the
dispersive properties; the study on the hyperbolicity of an underlying part of the final
system.

1.2.1 Derivation of the system

This model is obtained by setting a non-material interface that separates two layers with
different velocity and pressure. In the deduction of the equations, it is assumed that the
horizontal velocity has a piecewise constant vertical profile, by while the vertical velocity
and the non-hydrostatic counterpart pressure are piecewise linear, the three unknowns
being discontinuous at the interface. For the sake of clarity, the equations are deduced for
one-dimensional horizontal domains, although a similar process can be followed for two
space dimensions.

The Euler system restricted to the (x, z) plane reads

∂xu+ ∂zw = 0,

∂tu+ ∂x
(
u2 + pT

)
+ ∂z (uw) = 0,

∂tw + ∂x (uw) + ∂z
(
w2 + pT

)
= −g,

(1.2.1a)

(1.2.1b)

(1.2.1c)

where x and z denote the horizontal Ox and the vertical Oz axis respectively. This system
is considered for

t > t0, x ∈ R, −H(x, t) ≤ z ≤ η(x, t),

where η is the unknown water elevation, H is the bathymetry that can vary in space and
time, u and w are the horizontal and vertical velocities. The water height is h = η + H.
The model is completed with boundary conditions at the free surface

∂tη(x, t) + u(x, η(x, t), t)∂xη(x, t)− w(x, η(x, t), t) = 0,

pT ((x, η(x, t), t)) = patm,

(1.2.2a)

(1.2.2b)

where patm is the atmospheric pressure. At the bottom, no-penetration boundary
condition is imposed

u(x,−H(x, t), t)∂xH + w(x,−H(x, t), t) + ∂tH = 0. (1.2.3)

The total pressure pT is supposed to be decomposed into a sum of a hydrostatic and
non-hydrostatic part:

pT = patm + g(η − z) + p (1.2.4)
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where p(x, z, t) is the non-hydrostatic pressure. Hereinafter, the atmospheric pressure will
be supposed to be zero and the non-hydrostatic pressure is assumed to vanish at the free
surface

p(x, η(x, t), t) = 0. (1.2.5)

Given a positive water height h(x, t), l1, l2 ∈ [0, 1] are considered such that l1 + l2 = 1,
and the fluid is decomposed along the vertical axis into two virtual layers of height

hα = lαh, α = 1, 2.

In what follows, α = 1 stands for the lower layer and α = 2 for the upper one (see
Figure 1.2). Let us denote

L1(x, t) = {z : −H(x, t) ≤ z ≤ zI(x, t)} , L2(x, t) = {z : zI(x, t) ≤ z ≤ η(x, t)} ,

where zI(x, t) = h1 −H. zα will denote the level of the middle point of the layers:

z1(x, t) =
zI −H

2
, z2(x, t) =

zI + η

2
.

For a given function (x, z, t)→ f(x, z, t), let us denote

fI+(x, t) = lim
z→zI(x,t)

z>zI(x,t)

f(x, z, t), fI−(x, t) = lim
z→zI(x,t)

z<zI(x,t)

f(x, z, t),

as well as fb ≡ f(x,−H(x, t), t), fη(x, t) ≡ f(x, η(x, t), t).
As it was mentioned before, to derive the model a given vertical profile on the

unknowns of the problem is assumed. First, a piecewise constant profile of the horizontal
velocity is considered. Denoting u1(x, t) and u2(x, t) the horizontal velocities at layers
L1(x, t) and L2(x, t), respectively. This is the main hypothesis for the derivation of the
model, which corresponds to a shallow water regime. In fact, taking p = 0 in (1.2.4) and
l1 = 1, the SWE can be deduced in the same way.

From previous assumption and the incompressibility condition (1.2.1a), the vertical
velocity has a piecewise linear profile. Let us recall that, using the notation introduced
before, its limits at the interface level z = zI(x, t) are denoted by wI± . The vertical
velocity at the bottom and the free surface are denoted by wb and wη, respectively.

Finally, a piecewise linear profile of the non-hydrostatic pressure is also considered.
Thus, it can be determined from atmospheric pressure value, which is supposed to be
zero, and its limits at the interface or bottom. Thus pη = 0, and denote its limits at
the interface level z = zI(x, t) by pI± , and the pressure at the bottom, pb(x, t). It is also
denoted by p1(x, t) and p2(x, t) the non-hydrostatic pressure part evaluated at the middle
level of the corresponding layer, that is,

p1(x, t) = p(x, z1(x, t), t), p2(x, t) = p(x, z2(x, t), t).
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Figure 1.2: Bilayer setting

From the incompressibility condition (1.2.1a), a weak solution which is discontinuous
at z = zI(x, t) must verify the following jump condition (see [121], [124])

wI+ − wI− = (u2 − u1) ∂xzI . (1.2.6)

Let us denote by w1 and w2 the vertical velocity at the middle level of the corresponding
layer, that is,

w1(x, t) = w(x, z1(x, t), t), w2(x, t) = w(x, z2(x, t), t).

Then, the incompressibility condition (1.2.1a) inside each layer reads,
∂xu1 + 2

w1 − wb
h1

= 0,

∂xu2 + 2
w2 − wI+

h2

= 0.

(1.2.7a)

(1.2.7b)

The integration over each layer of the incompressibility equation (1.2.1a), combined
with conditions (1.2.2a), (1.2.3), gives the mass equations at each layer,

∂th1 + ∂x (h1u1) = − (wI− − (∂tzI + u1∂xzI)) ,

∂th2 + ∂x (h2u2) = (wI+ − (∂tzI + u2∂xzI)) .

(1.2.8a)

(1.2.8b)

Let us define  ΓI− = wI− − ∂tzI − u1∂xzI ,

ΓI+ = wI+ − ∂tzI − u2∂xzI .
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Using the jump condition (1.2.6), ΓI+ = ΓI− and it is defined

ΓI =
wI+ + wI−

2
− ∂tzI −

u1 + u2

2
∂xzI .

Then equation (1.2.8) becomes
∂th1 + ∂x (h1u1) = −ΓI ,

∂th2 + ∂x (h2u2) = ΓI .

(1.2.9a)

(1.2.9b)

Thus, ΓI can be interpreted as an approximation of the mass transfer across the
interface zI . Moreover, by combining equations (1.2.9a) and (1.2.9b) is obtained:

ΓI = l1∂x (h2u2)− l2∂x (h1u1) . (1.2.10)

Following the procedure described in [124], and taking into account the piecewise linear
discontinuous profile of non-hydrostatic pressure, the following horizontal momentum
equations are obtained

∂x (h1u1) + ∂x
(
h1u

2
1 + h1p1

)
+
u1 + u2

2
ΓI − pb∂xH − pI−∂xzI = −gh1∂xη. (1.2.11)

∂x (h2u2) + ∂x
(
h2u

2
2 + h2p2

)
− u1 + u2

2
ΓI + pI+∂xzI = −gh2∂xη. (1.2.12)

Note that the gradients of p1 and p2 appear because the assumption of the linear
profile for the pressure inside each layer. The following vertical momentum equations are
also deduced,

∂x (h1w1) + ∂x (h1u1w1) +
w1 + w2

2
ΓI + pI− − pb = 0. (1.2.13)

∂x (h2w2) + ∂x (h2u2w2)− w1 + w2

2
ΓI − pI+ = 0. (1.2.14)

In this work the unknowns are
pb and pI := pI− ,

for the non-hydrostatic pressure. To close the system, it is suppossed that

pI+ = γ1pb + γ2pI , γ1 + γ2 6= 0, (1.2.15)

and therefore, due to the assumption on the non-hydrostatic vertical profile:

p1 =
pb + pI

2
, p2 =

γ1pb + γ2pI
2

.

The underlying reason to assume this discontinuity for the non-hydrostatic pressure is to
introduce an artificial set of free parameters, which will help to improve the dispersive
properties of the system (see Section 1.2.3).
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Remark 1.2.1. Notice that for γ1 = 0, γ2 = 1 the original system derived in [124], is

recovered and for γ1 = 1, γ2 =
δ

δ − 2
the approach

pI+ − pI− = δ(p2 − p1).

The case γ1 + γ2 = 0 is avoided (see Subsection 1.3.4 and Appendix D).

To sum up, collecting all the equations described before, the system reads as:

∂th+ ∂x (l1hu1 + l2hu2) = 0,

∂t (l1hu1) + ∂x (l1hu
2
1 + l1hp1) + u1+u2

2
ΓI − pb∂xH − pI∂xzI = −gl1h∂xη,

∂t (l1hu2) + ∂x (l2hu
2
2 + l2hp2)− u1+u2

2
ΓI + (γ1pb + γ2pI)∂xzI = −gl2h∂xη,

∂t (l1hw1) + ∂x (l1hu1w1) + w1+w2

2
ΓI = pb − pI ,

∂t (l2hw2) + ∂x (l2hu2w2)− w1+w2

2
ΓI = γ1pb + γ2pI ,

∂xu1 + 2
w1 − wb
l1h

= 0,

∂xu2 + 2
w2 − wI+

l2h
= 0,

(1.2.16)

where 
wI+ = u2∂xzI − ∂x (l1hu1)− ∂tH,

wb = −u1∂xH − ∂tH.
(1.2.17)

The system depends on the parameters (l1, γ1, γ2), which need to be chosen. This
will be done following a criterion that improve the dispersive relations of the system.
Note that the proposed system has the same number of variables as when considering a
continuous pressure, that is pI+ − pI− = 0, that are

h, uα, wα, pI , pb

and therefore the computational cost of the improved model will be the same than the
original one proposed in [124].
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System (1.2.16) can be written in the general and compact form (GF) for one
dimensional domains with bottom friction terms as

∂tU + ∂xF (U) +B(U)∂xU = G(U)∂xH + S(U)+

+ T (U, ∂xU, P, ∂xP,H, ∂xH),

I(U, ∂xU,H, ∂xH) = 0,

(NH-2L)

defining

U =



h

qu,1

qu,2

qw,1

qw,2



, F (U) =



l1qu,1 + l2qu,2

q2
u,1

h
+

1

2
gh2

q2
u,2

h
+

1

2
gh2

qu,1qw,1
h

qu,2qw,2
h



, G(U) =



0

gh

gh

0

0



, S(U) = −



0

τ1,b

0

0

0


where

qu,α = huα, qw,α = hwα, α = 1, 2

are the horizontal and vertical discharges. The Manning friction term only appears at the
equation concerning to the lower layer and is given by

τ1,b = gqu,1
n2
m|u1|
h4/3

.

B(U) is a matrix function such that B(U)∂xU involves the nonconservative products
related to the mass transfer across interfaces that appear in the momentum equations

B(U) =



0 0 0 0 0

0 −l2
u1 + u2

2
l2
u1 + u2

2
0 0

0 l1
u1 + u2

2
−l1

u1 + u2

2
0 0

0 −l2
w1 + w2

2
l2
w1 + w2

2
0 0

0 l1
w1 + w2

2
−l1

w1 + w2

2
0 0


.
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Note that the corresponding equations for the horizontal and vertical momentum at the
layer Lα, have been divided by lα. The limit case l1 = 1, l2 = 0 corresponds to the one
layer model presented in [21]. For the sake of simplicity, lα ∈ (0, 1) is assumed.

Finally, the non-hydrostatic terms are given by

P =

pb
pI

 , T (U, ∂xU, P, ∂xP,H, ∂xH) = −



0

∂x (hp1)− pb∂xH/l1 − pI∂xzI/l1

∂x (hp2) + (γ1pb + γ2pI)∂xzI/l2

(pI − pb)/l1

− (γ1pb + γ2pI)/l2


,

where

p1 =
pb + pI

2
, p2 =

γ1pb + γ2pI
2

,

and

I(U, ∂xU,H, ∂xH) =

 l1h∂xqu,1 − 2qu,1∂xz1 + 2qw,1 + 2h∂tH

2l1h∂xqu,1 + l2h∂xqu,2 − 2qu,2∂xz2 + 2qw,2 + 2h∂tH

 . (1.2.18)

Operator (1.2.18) contains the incompressibility condition for each layer, and it is
obtained multiplying equations (1.2.7a) and (1.2.7b) by l1h

2 and l2h
2 respectively.

Equations (1.2.17) have been used as well. This allows to write the full two layer system
in terms of discharges.

The nature of the continuous problem corresponds to a mix-problem. It consists of
a hyperbolic system with a restriction, given by an incompressibility condition (1.2.18).
Moreover, using the incompressibility condition, the system can be expressed as a set
of three equations (mass equation, u1–momentum equation, u2–momentum equation) in
terms on the variables h, H, u1, u2 in which high order derivative terms, ∂xxt, appear. The
expression of the system in terms of velocities is avoided in this thesis since the expressions
are too tedious to write. Moreover, one of the objectives of the proposed dissertation is
to avoid the presence of high order derivatives. However, in the next subsection, the
hyperbolicity of the underlying hydrostatic part is studied.
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1.2.2 Hyperbolicity of the underlying hydrostatic system

Let us define the underlying hydrostatic system of (NH-2L) given by

∂tU + ∂xF (U) +B(U)∂xU = G(U)∂xH, (SWE-2L)

where U, F, B and G are defined in (NH-2L) In this subsection, it is shown that
the system (SWE-2L) is hyperbolic for every l1 ∈ (0, 1), and an approximation of the
eigenvalues is given.

Hyperbolicity

To prove the hyperbolicity, let us consider the system (SWE-2L) in quasi-linear form

∂tU +A∂xU = G(U)∂xH, (1.2.19)

where A = JF + B, JF being the Jacobian matrix of the flux F. The characteristic
polynomial of the matrix A is given by

P(λ, l1) =
1

2
(u1 − λ) (u2 − λ)Q(λ, l1),

Q(λ, l1) being a third order polynomial on λ given by

Q(λ, l1) = f(λ)−R(l1),

f(λ) = (3u1 − u2 − 2λ)
(
(u2 − λ)2 − gh

)
, R(l1) = l1K, K = (u1 − u2)

(
(u1 − u2)2 − 4gh

)
.

For the sake of simplicity on the notation, the dependence on U is not written explicitly.
Let us study the hyperbolicity of the hydrostatic system. It is easy to check that

λ1 = u1, λ2 = u2

are eigenvalues of the system for every l1 ∈ (0, 1). It remains to check if the cubic
polynomial Q(λ, l1) has three distinct roots.

In the following it is shown that the cubic polynomial has always three different roots
for every l1 ∈ [0, 1], and in particular for every l1 ∈ (0, 1) as requested. A sketch of the
proof:

1. Let us remark that Q is a cubic polynomial on λ satisfying

Q(−∞, l1) = +∞, Q(∞, l1) = −∞.

2. Note that f(λ) is a cubic polynomial that does not depend on l1. Moreover, it has
two local extrema given by the roots of f ′(λ):

λ± =
u1 + u2

2
±

√
gh

3
+

(
u1 − u2

2

)2

.
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3. A sufficient and necessary condition for the existence of three real and distinct roots
of the cubic polynomial Q(λ, l1) is that:

f(λ−) < R(l1) and f(λ+) > R(l1).

4. Note that when l1 = 0, the polynomial Q(λ, 0) has three roots:

λ3 =
3u1 − u2

2
, λ4,5 = u2 ±

√
gh,

and thus f(λ−) < R(0) and f(λ+) > R(0).

Similarly, when l1 = 1, the polynomial Q(λ, 1) has three roots:

λ3 =
−u1 + 3u2

2
, λ4,5 = u1 ±

√
gh,

and therefore f(λ−) < R(1) and f(λ+) > R(1).

Thus, assuming that K ≥ 0, then R(1) ≥ R(l1) ≥ R(0) and therefore

f(λ+) > R(1) ≥ R(l1),

f(λ−) < R(0) ≤ R(l1).

Assuming that K ≤ 0, then R(1) ≤ R(l1) ≤ R(0) and therefore

f(λ+) > R(0) ≥ R(l1),

f(λ−) < R(1) ≤ R(l1).

This concludes the proof.

A first order approximation for the eigenvalues

In the case of l1 = 1
2
, the eigenvalues can be computed explicitly and are given by:

λ1 = u1, λ2 = u2, λ3 =
u1 + u2

2
, λ4,5 =

u1 + u2

2
±
√
gh+

3

4
(u1 − u2)2.

Taking advantage on this fact, two approximations for the eigenvalues of the sys-
tem (SWE-2L) for any l1 ∈ (0, 1) are given:

• For a first approach, let us denote the eigenvalues that depends on l1 as

λ1(l1) = u1, λ2(l1) = u2,



1.2 A novel two layer non-hydrostatic pressure system 61

as the known eigenvalues for any l1 ∈ (0, 1), and

λ3(l1), λ4(l1), λ5(l1)

as the eigenvalues that are roots of the cubic polynomial Q(λ, l1). The following
approximation of the eigenvalues, that gives the exact roots of the cubic polynomial
Q(λ, l1) for l1 ∈ {0, 1/2, 1} is proposed:

λ3(l1) ≈ λ̃3(l1) =

(
3

2
− 2l1

)
u1 +

(
2l1 −

1

2

)
u2,

λ4,5(l1) ≈ λ̃4,5(l1) = l1u1 + l2u2 ±
√
gh+ 3l1l2 (u1 − u2)2.

• Another approach for the eigenvalues is proposed in the following. Since λ(l1) is a
root of Q(λ, l1), then

Q(λ(l1), l1) = 0,

and deriving with respect to l1 it yields

λ′(l1) =

(
(u1 − u2)2 − 4gh

)
(u1 − u2)

2 (gh− 3u1u2 + 3 (u1 + u2 − λ(l1))λ(l1))
.

Thus, an approximation is given for the eigenvalues that are roots of Q(λ, l1) with
the first order approximation

λi(l1) ≈ λ̃i = λi(1/2) + λ′i(1/2)(l1 − 1/2), i ∈ {3, 4, 5},

that can be explicitly computed, since λi(1/2) are known:

λ3(l1) ≈ λ̃3 =
u1 + u2

2
+ (u1 − u2) (1− 2l1)

gh− 1
4

(u1 − u2)2

gh+ 3
4

(u1 − u2)2 +O(l21),

λ4,5(l1) ≈ λ̃4,5 =
u1 + u2

2
±
√
gh+

3

4
(u1 − u2)2+

+ (u1 − u2)

(
l1 −

1

2

)
gh− 1

4
(u1 − u2)2

gh+ 3
4

(u1 − u2)2 +O(l21)

This procedure is more rigorous than the previous one and lead to a more
sophisticated expressions of the approximated eigenvalues.
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An upper and lower bounds for maximum and minimum eigenvalues

Since the three roots of the cubic polynomial Q(λ, l1) in λ are determined by the abscissas
of the intersection points between the cubic polynomial f(λ) and the line R(l1), then the
maximum and minimum roots of the polynomial Q(λ, l1) are in the set defined by the
roots of Q(λ, l1) for l1 = 0 and l1 = 1.

The roots λi(l1) of Q(λ, l1) for l1 = 0 and l1 = 1 are:

λ3,4(0) = u2 ±
√
gh, λ5(0) =

1

2
(3u1 − u2),

λ3,4(1) = u1 ±
√
gh, λ5(1) =

1

2
(3u2 − u1),

Note that the analysis carried out in this subsection is only valid if l1 ∈ (0, 1), since for
the particular cases of l1 = 0 and l1 = 1 the number of equations of the system is reduced,
as well as the degree of the characteristic polynomial P . However, it can be checked that
when l1 = 0, the roots of the resulting underlying hydrostatic system are λ3,4(0) and for
l1 = 1, the roots are λ3,4(1). Therefore, for l1 ∈ (0, 1) the following inequalities for the
maximum and minimum of the eigenvalues holds

min(|u1| −
√
gh, |u2| −

√
gh) ≤ min(λi) ≤ max(λi) ≤ max(|u1|+

√
gh, |u2|+

√
gh).

This means that the maximum and minimal speed of propagation of the underlying
hydrostatic system are bounded by the maximum and minimal celerities of each layer.

1.2.3 Linear dispersion relation

In this subsection, the dispersion relations of the integrated two layer system (1.2.16) are
deduced as usual (see Subsection 1.1.6 and references [61], [168],[176], [184], [226]).

Remark that the studied dispersive relations are dependent on the parameters
(l1, γ1, γ2). Later the aforementioned (l1, γ1, γ2) parameters will be chosen through
examination of the derived dispersive relations following the standard procedure on such
topics (see [176], [184], [226]).

Phase velocity

The equations are linearised around the lake at rest steady state solution, and the
asymptotic expansion (1.1.12) and flat bathymetry are considered. The linearised version
of system (NH-2L) reads
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

∂tη
(1) +H∂x

(
l1u

(1)
1 + l2u

(1)
2

)
= 0,

∂tU
(1) + g∂xη

(1)I2 +
1

2
A1∂xP

(1) = 0,

H∂tW
(1) + A2P

(1) = 0,

HA3∂xU
(1) + 2W (1) = 0,

(1.2.20)

being

U (1) =

u(1)
1

u
(1)
2

 , W (1) =

w(1)
1

w
(1)
2

 , P (1) =

p(1)
b

p
(1)
I

 ,

I2 =

1 0

0 1

 , A1 =

 1 1

γ1 γ2

 , A2 =

 −1/l1 1/l1

− γ1/l2 −γ2/l2

 , A3 =

 l1 0

2l1 l2

 .

Assuming γ1 + γ2 6= 0, then after some algebraic manipulations, the system (1.2.20)
can be expressed in terms of η(1), U (1) and its derivatives,

∂tη
(1) +H∂x

(
l1u

(1)
1 + l2u

(1)
2

)
= 0,

∂tU
(1) + g∂xη

(1)I2 +
1

4
H2A1A

−1
2 A3∂xxtU

(1) = 0.

(1.2.21)

A Stokes-type Fourier analysis is carried out looking for first-order solutions of the form

η(1)(x, t) = η0e
i(ωt−kx), U (1)(x, t) =

u1

u2

 ei(ωt−kx), (1.2.22)

where η0 is the wave amplitude, ω is the cyclic frequency and k the wave number. By
substituting (1.2.22) into (1.2.21), yield the linear system

Λ
g

g

l1H l2H −C



u1

u2

η0

 =


0

0

0

 , (1.2.23)
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where C is the wave celerity defined by C = ω/k and

Λ = −C
(
I2 +

1

4
(kH)2A1A

−1
2 A3

)
.

Looking for non-trivial solutions, the matrix of the linear system (1.2.23) must be singular,
and yields the linear dispersion relation

C2

gH
=

1 +N1 (kH)2

1 +D1 (kH)2 +D2 (kH)4 . (1.2.24)

Since l2 = 1 − l1, the coefficients N0, N1, D0, D1, D2 are solely functions of l1, γ1, γ2

given by
N1 =

l1l2(−γ1 − γ2 + 2(γ2 − 1)l1 + 2)

4(γ1 + γ2)
,

D1 =
γ1 + γ2 + 2(γ2 − 2)l21 − 2l1(γ1 + γ2 − 2)

4(γ1 + γ2)
, D2 =

l21l
2
2(γ1 − γ2)

16(γ1 + γ2)
.

Remark 1.2.2. If the relation γ1 +γ2 = 0 holds, then regarding the linear vertical velocity
equation in ( 1.2.20), one has that P can not be uniquely expressed in terms of ∂tW , due
to the fact that A2 is a singular matrix. According to this, it is assumed that γ1 + γ2 6= 0,
and thus the matrix A2 has an inverse A−1

2 .

Remark 1.2.3. It is of interest the writing of the linearised system in the form given
in (1.2.21). Therefore, the system can be written in terms of h = η + H,H, u1, u2. This
procedure can be generalized and applied to the original system (NH-2L), leading to a
compact formulation free of vertical velocities and non-hydrostatic variables, as well as its
corresponding equations. The counterpart is that higher order derivatives will appear.

Group velocity and linear shoaling

The group velocity G and the linear shoaling gradient γ can be obtained from the
linear dispersion relation of the phase velocity (1.2.24) following the guidelines given
in Subsection 1.1.6. The determination of these dispersion relations are performed on
a computer using symbolic calculation. The resulting expression are tedious and will
not be given here. Nevertheless, some figures are shown in Subsection 1.4 for the group
velocity and linear shoaling gradient comparing with the linear theory as well as with the
dispersion relation of other PDE systems.
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Dispersive optimization

For the studied dispersion relations, i.e. wave celerity, group velocity and linear shoaling,
a reference formula can be derived from the Airy theory (see Subsection 1.1.6). Now, the
most accurate set of parameters l1, γ1 and γ2 , in a sense that will be described later,
will be chosen in this section attending to the previous formulae. For this analysis, a
representation of the overall error, including errors in wave celerity, group velocity and
shoaling, is sought. It is worth to mention that C, CAiry, G, GAiry, γ and γAiry are
in fact solely functions of kH, l1, γ1, γ2. Then for a given s > 0, one can consider the
integral on kH

∆s(l1, γ1, γ2) :=

∫ s

0

1

kH

(
|C − CAiry|
|CAiry|

+
|G−GAiry|
|CAiry|

+
|γ − γAiry|
|γAiry|

)
dkH, (1.2.25)

that accounts for the linear dispersion error given by the described two layer system when
compared with the Airy theory. Therefore this error is minimized defining

(l
(s)
1 , γ

(s)
1 , γ

(s)
2 ) := arg min

(l∗1 ,γ
∗
1 ,γ
∗
2 )

l∗1∈(0,1)
γ1+γ2 6=0

[∆s(l
∗
1, γ

∗
1 , γ

∗
2)] .

When simulating dispersive water waves, errors at low wave numbers k are more relevant
than errors at high wave numbers, since the equations are largely used to simulate shallow
water flows. Due to that, as in [178], the sum of the relative errors is divided by kH inside

the integral (1.2.25). Then, the proposed election of (l
(s)
1 , γ

(s)
1 , γ

(s)
2 ) minimizes properly

the sum of the relative errors of wave celerity, group velocity and linear shoaling, with
respect to the reference formulae in a range of kH ∈ [0, s]. The integral is approximated
numerically via Gaussian quadrature points, avoiding the singularity at kH = 0. The
arg min function is approximated by using an iterative method for non-linear optimization.

Attending to the range of applicability, two set of parameters are obtained. The first
one is

(l
(5)
1 , γ

(5)
1 , γ

(5)
2 ) = (0.4929,−0.1530, 1.1192), (l

(5)
1 , γ

(5)
1 , γ

(5)
2 )

and a second choice for an extended range is

(l
(15)
1 , γ

(15)
1 , γ

(15)
2 ) = (0.7194, 0.1386, 0.7305). (l

(15)
1 , γ

(15)
1 , γ

(15)
2 )

Similarly, it is also denoted

(l
(2L)
1 , γ

(2L)
1 , γ

(2L)
2 ) = (1/2, 0, 1), (l

(2L)
1 , γ

(2L)
1 , γ

(2L)
2 )

the coefficients corresponding to the original two layer system proposed in [124].
An alternative procedure to the optimal choice of the free-parameters is the following:

as the equations are largely used to simulate shallow water flows, the linear analysis is
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supplemented with an asymptotic analysis in the limit kH → 0. To do that, the resulting
Taylor expansion of the phase velocity (1.2.24) is compared with the one coming from the
Airy theory at order O(kH)4:

C2
Airy

gH
= 1− 1

3
(kH)2 +O(kH)4,

C2

gH
= 1− γ1 + γ2 − l1(γ1 + γ2 + l1(γ1 + γ2 − 2(γ2 − 1)l1)− 2)

4(γ1 + γ2)
(kH)2 +O(kH)4,

which coincides for

γ1 =
3l1(1− l1)(2− γ2 − 2(γ2 − 1)l1)− γ2

3l1(l1 + 1) + 1
. (1.2.26)

Note that the original two layer non-hydrostatic system derived in [124], which corresponds

to the election of l1 =
1

2
and γ1 = 0, γ2 = 1, verify at order O(kH)4 :

C2
2L

gH
= 1− 5

16
(kH)2 +O(kH)4.

Thus, our proposed system can satisfy up to order O(kH)4 the Airy theory by setting γ1

as in (1.2.26). The parameters l1 and γ2 are still free parameters, and a similar tuning as
the one explained in this subsection can be made in order improve the linear dispersive
relation for higher values of kH.

The numerical results shown in this dissertation are computed with the two set
of parameters given by (l

(5)
1 , γ

(5)
1 , γ

(5)
2 ) and (l

(15)
1 , γ

(15)
1 , γ

(15)
2 ). In Subsection 1.4 some

comparisons are shown.

1.2.4 Governing equations in two space dimensions

Following a similar procedure than the one presented in Section 1.2.1, the resulting x, y, z
momentum equations as well as the two incompressibility equations inside each layer
derived for two space dimensions can be written in the general and compact form (GF-2D)
for two dimensional domains with bottom friction terms as ∂tU +∇ · F (U) +B(U) · ∇U = G(U) · ∇H + S(U) + T ,

I(U,∇U,H,∇H) = 0,
(NH-2L2D)

defining

U =
(
h, qx,1, qy,1, qx,2, qy,2, qw,1, qw,2

)
,
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F1(U) =

(
l1qx,1 + l2qx,2,

q2
x,1

h
+

1

2
gh2,

qx,1qy,1
h

,
q2
x,2

h
+

1

2
gh2,

qx,2qy,2
h

,
qx,1qw,1
h

,
qx,2qw,2
h

)T
,

F2(U) =

(
l1qy,1 + l2qy,2,

qx,1qy,1
h

,
q2
y,1

h
+

1

2
gh2,

qx,2qy,2
h

,
q2
y,2

h
+

1

2
gh2,

qy,1qw,1
h

,
qy,2qw,2
h

)T
,

G1(U) =
(
0, gh, gh, 0, 0, 0, 0

)T
,

G2(U) =
(
0, 0, 0, gh, gh, 0, 0

)T
,

S(U) = −
(
0, τ1,bx, τ1,by, 0, 0, 0, 0

)T
being

qα = (qx,α, qy,α) = (huα, hvα), qw,α = hwα, α = 1, 2

the horizontal and vertical discharges. The Manning friction term only appears at the
equation concerning to the lower layer and is given by

τ1,bx = gqx,1
n2
m|(u1, v1)|
h4/3

, τ1,by = gqy,1
n2
m|(u1, v1)|
h4/3

.

B(U) is a matrix function such that B(U) · ∇(U) involves the nonconservative products
related to the mass transfer across interfaces that appear in the momentum equations

B(U) =



0 0 0 0 0 0 0

0 −l2
u1 + u2

2
l2
u1 + u2

2
0 0 0 0

0 l1
u1 + u2

2
−l1

u1 + u2

2
0 0 0 0

0 0 0 −l2
v1 + v2

2
l2
v1 + v2

2
0 0

0 0 0 l1
v1 + v2

2
−l1

v1 + v2

2
0 0

0 −l2
w1 + w2

2
l2
w1 + w2

2
−l2

w1 + w2

2
l2
w1 + w2

2
0 0

0 l1
w1 + w2

2
−l1

w1 + w2

2
l1
w1 + w2

2
−l1

w1 + w2

2
0 0



.

Note that the corresponding equations for the horizontal and vertical momentum at the
layer Lα, have been divided by lα. The limit case l1 = 1, l2 = 0 corresponds to the
extension to bidimensional domains one layer model described in [4]. For the sake of
simplicity, it is assumed that lα ∈ (0, 1).
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Finally, the non-hydrostatic terms are given by

P =

pb
pI

 , T (U,∇U, P,∇P,H,∇H) = −



0

∂x (hp1)− pb∂xH/l1 − pI∂xzI/l1

∂y (hp1)− pb∂yH/l1 − pI∂yzI/l1

∂x (hp2) + (γ1pb + γ2pI)∂xzI/l2

∂y (hp2) + (γ1pb + γ2pI)∂yzI/l2

(pI − pb)/l1

− (γ1pb + γ2pI)/l2



,

and
I(U,∇U,H,∇H) =

 l1h∇ · q1 − 2q1 · ∇(z1) + 2qw,1 + 2h∂tH

2l1h∇ · q1 + l2h∇ · q2 − 2q2 · ∇(z2) + 2qw,2 + 2h∂tH

 .

(1.2.27)

Operator (1.2.27) contains the incompressibility condition for each layer, and similarly
to what is done for the case of one dimensional domains, is obtained multiplying the
incompressibility conditions at each layer Lα by lαh

2. This allows to write the full two
layer system in terms of discharges.

1.3 A hyperbolic relaxation non-hydrostatic pressure

system

In [111], up to our knowledge, a novel set of first-order hyperbolic equations was proposed
that can model dispersive non-hydrostatic free surface flows. The governing PDE system
is obtained by making a hyperbolic approximation of the non-hydrostatic free-surface
flow model (NH-1L) recently derived by Sainte-Marie et al. in [21], which describes the
propagation of dispersive waves in shallow waters, and which satisfies an extra energy
conservation law.

The hyperbolic system is obtained using a hyperbolic reformulation of the original
governing PDE (NH-1L). The divergence constraint of the velocity is coupled with the
remaining conservation laws at the aid of an evolution equation for the depth-integrated
non-hydrostatic pressure. This technique is similar to the so-called hyperbolic divergence



1.3 A hyperbolic relaxation non-hydrostatic pressure system 69

cleaning introduced in the generalized Lagrangian multiplier approach (GLM) of Munz
et al. [196], [83] for the Maxwell and the magnetohydrodynamics (MHD) equations. A
formulation is suggested in which the divergence errors of the velocity field are transported
at a finite speed that is related to the maximum eigenvalues of the governing PDE
system. The augmented hyperbolic system maintains the momentum equations for the
horizontal and vertical velocities and still satisfies an energy balance equation, as the
original system (NH-1L). The idea is also similar to the method of artificial compressibility
that can be used for the numerical solution of the incompressible Navier-Stokes equations.

The final governing PDE system proposed is a system of hyperbolic balance laws,
and it is thus amenable for discretization via high order numerical schemes. Higher
order methods are desirable due to their improved dissipation and dispersion properties
compared to simple second order TVD finite volume schemes. This is particularly
important for the accurate propagation of solitary waves over long distances, as it will be
also shown later in the numerical results section.

The derivation of the subsequent system as well as the mathematical study concerning
to the dispersive properties; the study on the hyperbolicity; the proposed numerical
scheme that it will be presented in Chapter 3; a breaking mechanism to model breaking
waves; and the numerical tests, were proposed in [111].

1.3.1 Governing equations

The non-hydrostatic system (NH-1L) derived by Sainte-Marie et al. in [21] is modified as

∂th+ ∂x (hu) = 0,

∂t (hu) + ∂x

(
hu2 +

1

2
gh2 + hp

)
= (gh+ 2p) ∂xH − τb,

∂t (hw) + ∂x (uhw) = 2p,

∂t(hp) + ∂x(uhp) + hc2

(
∂xu+

w − wb
h/2

)
= 0, wb = −u∂xH − ∂tH

(1.3.1a)

(1.3.1b)

(1.3.1c)

(1.3.1d)

where c = α
√
gH0 is a given constant celerity, H0 being a typical average still water

depth and α > 1. The approximation is based on a modified system in which the
divergence constraint on the velocity field is coupled with the other conservation laws
following the ideas of the so-called hyperbolic divergence cleaning applied in the context
of the generalized Lagrangian multiplier (GLM) method for the magnetohydrodynamics
equations put forward in [83], [196]. A formulation is suggested in which the divergence
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errors are transported with a finite speed c. In the subsequent section The hyperbolicity
of the augmented system is studied and proved also that, the augmented system satisfies
an additional energy conservation law. For hyperbolic systems with convex extensions,
the reader is referred also to the pioneering work of Godunov and Romenski, [136],
[137], [220, 138], who derived a theoretical framework on symmetric hyperbolic and
thermodynamically compatible (SHTC) systems that are all endowed with such an extra
conservation law.

This modified system (NHyp) can be written in compact matrix-vector form as in (GF)
defining

U =



h

qu

qw

qp


, F (U) =



qu

q2
u

h
+

1

2
gh2 + qp

quqw
h

quqp
h

+ c2qu


, G(U) =



0

gh+ 2p

0

− 2c2u


,

S(U) = −



0

τb

− 2p

2c2(w + ∂tH)


, B(U) =



0 0 0 0

0 0 0 0

0 0 0 0

− c2 qu
h

0 0 0


,

T = 0, I = 0,

(NHyp)

where qu = hu, qw = hw, qp = hp.

Remark 1.3.1. Following the spirit of Remark 1.1.3, a hyperbolic relaxation system can
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be considered for the system (YAM) in the following form

∂th+ ∂x (hu) = 0,

∂t (hu) + ∂x

(
hu2 +

1

2
gh2 + hp

)
= (gh+ 2p) ∂xH − τb,

∂t (hw) + ∂x (uhw) = 2p+ hu∂xw,

∂t(hp) + ∂x(uhp) + hc2

(
∂xu+

w − wb
h/2

)
= 0, wb = −u∂xH − ∂tH

(1.3.2)

1.3.2 Energy balance of the system (NHyp)

The proposed system (NHyp) satisfies the additional balance law

∂tE + ∂x

(
u
(
E +

g

2
h2 + hp

))
= (gh+ 2p)∂tH − uτb, (1.3.3)

where

E =
h(u2 + w2)

2
+
gh(η −H)

2
+
hp2

2c2
. (1.3.4)

Proof. As it is usually done, by adding (u · (1.3.1b) + w · (1.3.1c)), and using the mass
conservation equation (1.3.1a), one has

∂tẼ + ∂x

(
u
(
Ẽ +

g

2
h2 + hp

))
= hp

(
∂xu+

w + u∂xH

h/2

)
+ (gh+ 2p)∂tH − uτb,

where

Ẽ =
h(u2 + w2)

2
+
gh(η −H)

2
.

For the original system (NH-1L), one has

(
∂xu+

w + u∂xH

h/2

)
= 0, and thus the energy

equality (1.3.3). For the proposed model, it can be easily checked by using the mass
conservation equation (1.3.1a), that the following equality holds:

∂t
(
hp2
)

+ ∂x
(
hup2

)
+ 2c2hp

(
∂xu+

w + u∂xH

h/2

)
= 0. (1.3.5)

Thus,

hp

(
∂xu+

w + u∂xH

h/2

)
= − 1

2c2

(
∂t
(
hp2
)

+ ∂x
(
hup2

))
and the relation (1.3.3) completes the proof.
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Remark 1.3.2. Note that when c→∞, the original system ( NH-1L) is recovered along
with the energy balance ( 1.1.8).

Remark 1.3.3. Note that when c = 0, and for an initial condition w0 = p0 = 0, the
classical shallow-water system (SWE) is recovered.

1.3.3 Eigenstructure of the system (NHyp)

The system (NHyp) written in quasi-linear form read as

∂tU + A(U)∂xU = G(U)∂xH + S(U), (1.3.6)

with
A(U) = JF (U) +B(U),

where JF = ∂F/∂U is the Jacobian of the flux F with respect to the conserved variables
U . The eigenvalues of the matrix A(U) are

λ1,2 = u, λ3,4 = u± Ce
where Ce =

√
gh+ p+ c2. A set of linearly independent eigenvectors is given by

v1 =
(
1, u, 0, −gh

)
, v2 =

(
0, 0, 1, 0

)
,

v3,4 =
(
1, w (p+ c2)λ3,4, p+ c2, 0

)
. (1.3.7)

1.3.4 Linear dispersion relation

In this subsection, the dispersion relations of the proposed system (NHyp) are deduced
as usual (see Subsection 1.1.6 and references [61], [168], [176], [184], [226]).

Phase velocity

Assuming that both η and u are very small perturbation of a lake at rest steady state,
and flat bathymetry, the linearised version of system (1.2.16) reads

∂tη
(1) +H∂xu

(1) = 0,

∂tu
(1) + g∂xη

(1) + ∂xp
(1) = 0,

H∂tw
(1) − 2p(1) = 0,

H∂tp
(1) +Hc2∂xu

(1) + 2c2w(1) = 0.

(1.3.8)
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A Stokes-type Fourier analysis is carried out looking for first-order solutions of the form

η(1)(x, t) = η0e
i(ωt−kx), u(1)(x, t) = u0e

i(ωt−kx),

w(1)(x, t) = w0e
i(ωt−kx), p(1)(x, t) = p0e

i(ωt−kx),
(1.3.9)

where ω is the angular frequency and k is the wave number. By substituting (1.3.9)
into (1.3.8), yield the linear system

−ω Hk 0 0

gk −ω 0 k

0 0 Hω −2i

0 −c2Hk 2ic2 Hω


·



η0

u0

w0

p0


= 0. (1.3.10)

Assuming c2 = α2gH and looking for non-trivial solutions, then the matrix of the linear
system (1.2.23) must be singular, yielding the linear dispersion relation

(kH)2
C2
p

gH

(
C2
p

gH
− 1

)
+ 4α2

(
1−

C2
p

gH

(
1 +

1

4
(kH)2

))
= 0, (1.3.11)

where Cp =
ω

k
is the phase velocity. Note that for α2 →∞, the linear dispersion relation

of the original system (NH-1L) is recovered:

C2
J

gH
=

1

J(kH)
, J(kH) = 1 +

1

4
(kH)2.

From (1.3.11),

(C2
p)±

gH
=

J(kH) + γ

2
∓

√(
J(kH) + γ

2

)2

− γ

−1

, γ =

(
kH

2α

)2

. (1.3.12)

The phase velocities C+
p and C−p are called the rapid and slow phase velocity, respectively.

The velocity C+
p is always larger than the one of system (NHyp). It does not have any

physical meaning and describes the evolution of artificial high-frequency waves related to
the modification of the system.

Figure 1.3 shows the error of the phase velocities C−p for several values of α, and for
the original system (NH-1L), with respect to the phase velocity given by the Airy theory
in a range of kH ∈ [0, 3]. This interval is chosen according to the range in which the
original weakly non-linear weakly dispersive system [21] shows a good match with respect
to the linear theory of Stokes. It can be stated that for a value of c = 5

√
gH, the linear
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dispersion relation of the proposed hyperbolic system is very close to the original one.
Moreover, Figure 1.4 shows that the absolute value of the relative error in phase celerity
with respect to the original system (NH-1L) is less than 2.6 percent for α = 3.

Figure 1.3: Relative error of the phase velocities with respect to the Airy theory for the
original system (NH-1L) (black) and for the new hyperbolic approach (NHyp) using α = 3
(blue), α = 5 (red) and α = 10 (magenta).

Figure 1.4: Relative error of the phase velocity C−p of the new hyperbolic system (NHyp)
with respect to the original dispersive system (NH-1L) for α = 3 (blue), α = 5 (red) and
α = 10 (magenta).
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Group velocity and linear shoaling

The group velocity G and the linear shoaling gradient γ can be obtained from the
linear dispersion relation of the phase velocity (1.3.11) following the guidelines given
in Subsection 1.1.6. The determination of these dispersion relations are performed on a
computer using symbolic calculation. The resulting expressions are tedious and will not
be given here. Nevertheless, some graphics are shown in Subsection 1.4 for the group
velocity and linear shoaling gradient comparing with the linear theory as well as with the
dispersion relation of other PDE systems.

1.3.5 Governing equations in two space dimensions

The corresponding governing equations of the original system (NH-1L) for two-dimensional
domains can be found in [4]. The extension for two-dimensional domains of the
system (NHyp) can be written as in the general compact form (GF-2D), defining

U =



h

qx

qy

qw

qp


, F1(U) =



qx

q2
x

h
+

1

2
gh2 + qp

qxqy
h

qxqw
h

qxqp
h

+ c2qx


, F2(U) =



qy

qxqy
h

q2
y

h
+

1

2
gh2 + qp

qyqw
h

qyqp
h

+ c2qy


,

G1(U) =



0

gh

0

0

− 2c2qx


, G2(U) =



0

0

gh

0

− 2c2qy


, (NHyp-2D)
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S(U) = −



0

τb,x

τb,y

− 2p

2c2(
qw
h

+ ∂tH)


, B(U) =



0 0 0 0 0

0 0 0 0 0

0 0 0 0 0

0 0 0 0 0

− c2 qx + qy
h

0 0 0 0


,

T = 0, I = 0,

being qx = hu, qy = hv, qw = hw the discharges, qp = hp and τb,x, τb,y accounts for the
friction terms defined in (1.1.4).

1.4 A comparison of the linear dispersion properties

of the described systems

In this section, the main linear dispersive properties of the described systems to model
dispersive water waves are compared.

To do that, the linear dispersion relations for the described systems are tagged with
the corresponding labels given by: Non-linear shallow water system (SWE); Peregrine
system (PER); Madsen-Sørensen system (MS); Multi layer non-hydrostatic pressure
systems (NH–kL) for a multi layer system with a number of k ≥ 1 layers; One layer non-
hydrostatic pressure (and Yamazaki et al.) system (NH-1L); two layer non-hydrostatic
pressure system (NH-2L) from C. Escalante et al.; The hyperbolic relaxation system from
C. Escalante et al. (NHyp).

Note that the same linear dispersion relations are obtained for the systems (NH-1L)
and (YAM), since the same linearised systems are obtained, and the tag (NH-1L) will be
used.

The linear study for the first four systems enumerated above were carried out in
their respective references (see, e.g. [124], [184], [210]). The fifth case corresponds to the
particular case of 1 layer of the multi layer system. The sixth and seventh systems were
detailed in the Subsection 1.2.3 and 1.3.4 respectively.

The expressions of the phase velocities for the aforementioned systems are given in
Tables 1.1 and 1.2. The last two columns contains ErC(s) that means the maximum
relative error of the phase velocities with respect to the Airy in a range kH ∈ [0, s] in
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percent:

ErC(s) = 100 · max
kH∈[0,s]

(
|C(kH)− C(kH)Airy|

|C(kH)Airy|

)
.

Figures 1.5, 1.6, 1.7 and Table 1.1 summarized the results for the one layer systems.
The (MS) equations achieve the better results concerning to systems with 1 layer. The
system shows relative error in a range of kH ∈ [0, 3] for the phase velocity that is less than
2 % and for the group velocity less than 5 %. It also presents good shoaling properties
within this range. Nevertheless, the one layer system (NH-1L) is less complex and also
achieves good errors in the linear dispersive relations studied for smaller values of kH. The
systems (SWE) and (PER) only provides good errors in the linear dispersion relations for
smaller values of kH << 1. The hyperbolic approximation made in the system (NHyp)
also show excellent results compared with respect the original system (NH-1L), both for
the phase and group velocities as well as the shoaling gradient.

Figures 1.8, 1.9, 1.10 and Table 1.2 summarized the results for the multi layer systems.
The results verified that better results are obtained for multi layer systems with higher
number of layers. It is remarkable the good shoaling gradient that the (NH-5L) can
achieved for large values of kH.

Attending to the results of the new two layer system, the first set of parameters
(l

(5)
1 , γ

(5)
1 , γ

(5)
2 ) leads to an excellent agreement with the Airy theory for kH up to 5. The

percentage errors in phase celerity is less than 0.09% and for the group velocity is less than
2% for smaller kH. Linear shoaling is reproduced very well in this range also. Another
choice for an extended range of kH is (l

(15)
1 , γ

(15)
1 , γ

(15)
2 ) that ensures a percentage error for

the celerity less than 1.24% for kH up to 15. For the group velocity this choice provides
an error less than 6% for kH up to 10. The comparison with the standard two layer
approximation corresponding to the choice (l

(2L)
1 , γ

(2L)
1 , γ

(2L)
2 ) shows that although the

second optimization (l
(15)
1 , γ

(15)
1 , γ

(15)
2 ) does not seem to improve the errors with respect to

(l
(2L)
1 , γ

(2L)
1 , γ

(2L)
2 ), it ensures reasonable errors for an extended range of kH.

Let us remark that the two layer model proposed in this thesis presents a good
agreement for linear shoaling gradient with just two layers. To have similar results, at
least five layers are needed for multi layer models like the one presented in [10]. Moreover,

the results for the phase velocity with parameters (l
(15)
1 , γ

(15)
1 , γ

(15)
2 ) show that the two layer

obtains a smaller relative error for kH up to 15, when compared with the two layer system
proposed in [71]. This means that the model proposed here can achieve better dispersive
properties than models that have similar o even more computational complexity.
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One layer Systems – Phase velocity – Errors for kH up to 3,5

Model Phase velocity ErC(3) ErC(5)

(SWE) gH 73.63 % 123.61 %

(PER) gH
1

1 + 1
3
(kH)2

13.18 % 26.80 %

(MS) gH
1 +B(kH)2

1 + (B + 1
3
)(kH)2

1.43 % 2.02 %

(B = 1/21)

(NH-1L) gH
1

1 + 1
4
(kH)2

3.02 % 16.95 %

(NHyp)

J(kH) + γ

2
+

√(
J(kH) + γ

2

)2

− γ

−1

4.60 % 18.16 %

(α = 5) (α = 10)

Table 1.1: Phase velocity expressions for the given Boussinesq and one layer systems and
maximum of the relative error ErC(s) compared with the Airy theory for different ranges
of kH ∈ [0, s]

Figure 1.5: Relative error of the phase velocities with respect to the Airy theory for the
described one layer systems
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Multi layer Systems – Phase velocity – Errors for kH up to 5,15

Model Phase velocity ErC(5) ErC(15)

(NH-2L) gH
1 + (kH)2

16

1 + 3(kH)2

8
+ (kH)4

256

0.71 % 10.67 %

(l
(2L)
1 , γ

(2L)
1 , γ

(2L)
2 )

(NH-2L) gH
1 +N1 (kH)2

1 +D1 (kH)2 +D2 (kH)4 0.09 % 13.01 %

(l
(5)
1 , γ

(5)
1 , γ

(5)
2 )

(NH-2L) gH
1 +N1 (kH)2

1 +D1 (kH)2 +D2 (kH)4 1.24 % 1.24 %

(l
(15)
1 , γ

(15)
1 , γ

(15)
2 )

(NH-3L) gH
1 + 5(kH)2

54
+ (kH)4

1296

1 + 5(kH)2

12
+ 5(kH)4

432
+ 1(kH)6

46656

0.31 % 0.62 %

(NH-5L) gH
1+

3(kH)2

25
+

63(kH)4

25103
+

3(kH)6

25104
+

(kH)8

10107

1+
9(kH)2

20
+

21(kH)4

10102
+

21(kH)6

10104
+

9(kH)8

20106
+

(kH)10

10109

0.11 % 0.11 %

Table 1.2: Phase velocity expressions for the given multi layer systems and maximum of
the relative error ErC(s) compared with the Airy theory for different ranges of kH ∈ [0, s]

Figure 1.6: Relative error of the group velocities with respect to the Airy theory for the
described one layer systems
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Figure 1.7: Comparison with the reference shoaling gradient with respect to the Airy
theory for the described one layer systems
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Figure 1.8: Relative error of the phase velocities with respect to the Airy theory for the
described multi layer systems
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Figure 1.9: Relative error of the group velocities with respect to the Airy theory for the
described multi layer systems
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Figure 1.10: Comparison with the reference shoaling gradient with respect to the Airy
theory for the described multi layer systems

1.5 Breaking waves modelling

As pointed in [219], in shallow water, complex events can be observed related to turbulent
processes. One of these processes corresponds to the breaking of waves near the coast.
As it will be seen in the numerical tests proposed in this work, the models presented
here cannot describe this process without an additional term which allows the model to
dissipate the required amount of energy on such situations. When breaking processes
occur, mostly close to shallow areas, two different approaches are usually employed when
dispersive Boussinesq-type models are considered.

Close to the coast where breaking starts, the SWE propagates breaking bores at
the correct speed, since kH is small, and dissipation of the breaking wave is also well
reproduced. Due to that, the simplest way to deal with breaking waves, when considering
dispersive systems, consists in neglecting the dispersive part of the equation. This means
to force the non-hydrostatic pressure to be zero where breaking occurs. Due to that, this
technique has the advantage that only a breaking criterion is needed to stop and start
it. However, the main disadvantage is that the grid-convergence is not ensured when
the mesh is refined, and global and costly breaking criteria should be taken into account
(see [163]).

The other strategy, that will be adopted in this dissertation, consists in the dissipation
of breaking bores with a diffusive term. Again, breaking criteria to switch on/off the
dissipation is needed. Usually, an eddy viscosity approach (see [219]) solves the matter,
where an empirical parameter is defined, based on a quasi-heuristic strategy to determine
when the breaking occurs. The main difficulty that presents this mechanism is that
usually the diffusive term must be discretized implicitly due to the high order derivatives
from the diffusion. Otherwise, it will lead to a severe restriction on the CFL number. As
a consequence, an extra linear system has to be solved, losing efficiency. In any case, this
challenge is overcome by C. Escalante et al. in [112] for the one layer non-hydrostatic
system derived in [259], and a natural extension of this procedure for the two layer case
was given by C. Escalante et al. in [118]. In this section the two breaking criteria will be
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described for the one layer non-hydrostatic pressure systems (YAM-2D), (NHyp-2D). An
extension of this technique is proposed for the case of two layer system (NH-2L).

A breaking mechanism for the one layer non-hydrostatic pressure
systems

One space dimension

For the sake of clarity, the breaking mechanism is described for the system (NH-1L) in
one space dimension. Later, the extension of the procedure for two dimensional domains
for the system (YAM-2D) and (NHyp-2D) will be given. Let us consider a simple and
well-known eddy viscosity approach similar to the one introduced in [219], by adding a
diffusive term in the horizontal momentum equation of system (NH-1L):

∂th+ ∂x (hu) = 0,

∂t (hu) + ∂x

(
hu2 +

1

2
gh2 + hp

)
= (gh+ 2p) ∂xH − τb,x + ∂x (νh∂xu) ,

∂t (hw) + ∂x (uhw) = 2p,

∂xu+
w − wb
h/2

= 0, wb = −∂tH − u∂xH,

ν being the eddy viscosity

ν = Bh|∂x(hu)|, B = 1− ∂x(hu)

U1

, (1.5.1)

where
U1 = B1

√
gh, U2 = B2

√
gh,

denote the flow speeds at the onset and termination of the wave-breaking process and
B1, B2 are calibration coefficients that should be fixed through laboratory experiments
(see [219]). Wave energy dissipation associated with breaking begins when |∂x(hu)| ≥ U1

and continues as long as |∂x(hu)| ≥ U2. The proposed definition of the viscosity ν requires
a positive value of B. To satisfies that, for negative values of B, the viscosity ν is set to
zero.

It is a known fact that using an explicit scheme for a parabolic equation requires a
time step restriction of type ∆t = O(∆x2). The breaking mechanism has this nature and
this would mean a too restrictive time step. This is the reason for choosing an implicit
discretization of this term. This can be solved by considering an implicit discretization
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of the eddy viscosity term, evaluating the term ∂x (νh∂xu) at the right-hand side of the
momentum discrete equation in (NH-1L). The implicit discretization involves solving an
extra tridiagonal linear system, leading to a loss of efficiency.

In [112] a new efficient treatment of the eddy viscosity term was present by C. Escalante
et al. for depth averaged non-hydrostatic models. To do that, the horizontal momentum
equation is rewritten as

∂t (hu) + ∂x

(
hu2 +

1

2
gh2 + hp− νh∂xu

)
= (gh+ 2p) ∂xH − τb,x (1.5.2)

and define

p = p̃+ ν∂xu. (1.5.3)

Thus, replacing p by p̃+ νux, the system can be rewritten as

∂th+ ∂x (hu) = 0,

∂t (hu) + ∂x

(
hu2 +

1

2
gh2 + hp̃

)
= (gh+ 2p̃) ∂xH − τb,x + 2ν∂xu∂xH,

∂t (hw) + ∂x (uhw) = 2p̃+ 2ν∂xu,

∂xu+
w − wb
h/2

= 0, wb = −∂tH − u∂xH.

(1.5.4)

Note that the terms 2ν∂xux∂xH, in the horizontal momentum equation, and 2ν∂xu, in the
vertical velocity equation, are essentially first order derivatives of u, and can be discretized
explicitly without the aforementioned severe restriction on the CFL condition. That gives
us an efficient discretization of the eddy viscosity terms.

Moreover, since the incompressibility equation in (1.5.4) holds, then one has that

2ν∂xu = 4ν
wb − w
h

.

Since it is of interest in this dissertation to obtain relatively simple systems, a
simplification on the breaking mechanism described in (1.5.4) is proposed by assuming a
mild slope bottom for the breaking terms, that is

∂xH ≈ 0, ∂tH ≈ 0, and thus, wb ≈ 0.

Therefore in order to take into account the simplified breaking mechanism on the
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system (NH-1L), only the source term S(U) has to be modified as follows

S(U) = −


0

τb

Rbr

 (1.5.5)

Rbr being

Rbr = −4B|∂x(hu)|w, B = 1− ∂x(hu)

U1

. (1.5.6)

In Chapter 4 numerical experiments and comparisons with laboratory data will show
that breaking waves can be accurately described with this simple and efficient breaking
mechanism.

Due to the form of the breaking terms, they can be discretized as the friction with
the bottom terms appearing at the horizontal momentum equation, τb. In this thesis this
terms will be discretized in a semi-implicit manner.

Note that following the same procedure, a similar breaking mechanism can be
introduced for the system (NHyp) modifying the source term

S(U) = −



0

τb

− 2p+Rbr

2c2(w + ∂tH)


, (1.5.7)

and similarly for the system (YAM) replacing the vertical velocity equation by

∂tw = 2
p

h
+Rbr,

being Rbr the term defined in (1.5.6)

Remark 1.5.1. Reinterpretation of the eddy viscosity approach:

• Let us consider the vertical component of the stress-tensor

τzz = 2ν̃(x, z, t)∂zW (x, z, t),

where ν̃(x, z, t) is a positive function and W is the vertical velocity. Now, following
the same process carried out in [259] to depth-average the vertical momentum
equation from Euler equations. To do so, let us integrate the vertical component
of the stress-tensor along z ∈ [−H, η]:∫ η

−H
∂zτzz dz = 2

∫ η

−H
∂zν̃∂zW + ν̃∂zzW dz.
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Due to the assumption of a linear vertical profile for the vertical velocity W, then
∂zzW = 0 and ∂zW does not depend on z and thus∫ η

−H
∂zτzz dz = 2ς∂zW,

where ς =
∫ η
−H ∂zν̃ is the eddy viscosity. Using again the linearity of the vertical

profile for W, and the no-penetration boundary condition:

∂zW =
w − wb
h/2

, w =
1

h

∫ η

−H
W dz.

Using the incompressible condition:
w − wb
h/2

= −∂xu. Thus,

∫ η

−H
∂zτzz dz = −4ςux.

Finally, it remains to choose a closure for ς in the system with the described depth-
averaged vertical component of the stress-tensor.

• Note that seting

ς = −1

2
ν,

where ν is the eddy viscosity described in (1.5.4), then coincides with the same term
2ν∂xu introduced in the vertical momentum equation in (1.5.4).

Two space dimension

A new, simple and efficient breaking mechanism can be considered for two dimensional
domains following the procedure presented in Remark 1.5.1. The same process as in [21]
is used, to depth-average the vertical component of the stress-tensor. Due to the linearity
on the vertical profile of the vertical velocity within the fluid layer, it is defined:

Rbr =

∫ η

−H
∂zτzz dz = 2

∫ η

−H
∂zν̃∂zW + ν̃∂zzW dz = 2ς∂zW,

where ς = −
∫ η
−H ∂zν̃ is the eddy viscosity. Using the incompressibility condition from

(YAM-2D):

Rbr = 4ς
w − wb
h

, wb = −u∂xH − v∂xH − ∂tH.

In this dissertation, as in [112], [219] and inspired in the definition of ς in Remark 1.5.1,
ς is choosen to be

ς = −1

2
B|∂x(hu) + ∂y(hv)|,
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where B is a coefficient related to the breaking criteria. Following a natural and simpler
extension of the criteria proposed by [219],

B = 1− ∂x(hu) + ∂y(hv)

U1

,

wave energy dissipation associated with breaking begins when |∂x(hu)+∂y(hv)| ≥ U1 and
continues as long as |∂x(∂x(hu) + ∂y(hv)| ≥ U2, where

U1 = B1

√
gh, U2 = B2

√
gh,

denote the flow speeds at the onset and termination of the wave-breaking process
and B1, B2 are calibration coefficients that should be calibrated through laboratory
experiments. In this work, as in [112], [219], B1 = 0.5 and B2 = 0.15 for all the test
cases studied.

Similarly to the case of one dimensional domains, a simplification is made by assuming
a mild slope bottom for the breaking terms, that is

∇H ≈ 0, ∂tH ≈ 0, and thus, wb ≈ 0.

Therefore the breaking mechanism considered consists in adding at the right hand side of
the vertical equation of the systems (YAM-2D) or (NHyp-2D), the term:

Rbr = −4B|∂x(hu) + ∂y(hv)|w, B = 1− ∂x(hu) + ∂y(hv)

U1

. (1.5.8)

A breaking mechanism for the two layer non-hydrostatic pressure
system (NH-2L)

Although the generalization of the breaking mechanism presented above to the case of the
two layer system straightforward, in [118] C. Escalante et al. designed an ad-hoc breaking
mechanism for the case of the two layer non-hydrostatic pressure system (NH-2L). To do
so, following the same ideas as for the case of the one layer system, let us consider the
vertical component of the stress-tensor

τzz = 2ν̃∂zw,

where ν̃(x, z, t) is a positive function. The same process as in Subsection 1.2.1 is used
to depth-average the vertical component of the stress-tensor. By taking into account the
incompressibility condition and that the vertical velocity has a linear profile within each
layer: ∫

Lα
∂zτzz dz = −ςαhα∂xuα, (1.5.9)
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where ςα =
∫
Lα ∂zν̃.

Now the system is closed defining ςα(x, t). In the subsequent, ςα are computed
assuming the equations in one space domains, to better clarify the procedure. To do
so, it is observed that the linear combination of the non-hydrostatic pressures, pb and pI
appearing at the right hand side of the vertical equations, can be expressed in terms of uα
and its derivatives ∂xxuα, ∂xtuα, ∂xuα and ∂tuα. The proposed election of ςα in this work
is based on the idea of cancelling those aforementioned ∂xuα terms with −ςαhα∂xuα. The
procedure is detailed in Appendix A. The following definition is proposed:

ς1 = w1 − 3u1∂xH + 2∂tH,

ς2 = w2 + 3u2∂xzI + 2∂tH.

(1.5.10)

Note that the deduced breaking terms are essentially first order derivatives of u1, u2,
and can be discretized explicitly, as in the spirit of the case for the one-layer systems.

Finally, a breaking criteria to switch on/off the dissipation is needed. Following a
natural and simpler extension of the criteria proposed by [219] and used in the case
of the one layer system, wave energy dissipation associated with breaking begins when
|∂x(l1hu1 + l2hu2)| ≥ U1 and continues as long as |∂x(l1hu1 + l2hu2)| ≥ U2, where

U1 = B1

√
gh, U2 = B2

√
gh,

denote the flow speeds at the onset and termination of the wave-breaking process
and B1, B2 are calibration coefficients that should be calibrated through laboratory
experiments. In this work, as in [219] B1 = 0.5 and B2 = 0.15 for al the test cases
studied.

Note that the breaking criteria to switch on/off the dissipation is a simplified version of
the one proposed in [219], that includes some improvements such as: taking into account
a residence time for the activation/deactivation of the criteria to accounting a continuous
dissipation; or computing in the breaking criteria |∂x(hu)| as 1

2
(|∂x(hu)|+ ∂x(hu)) which

would automatically become zero on the back of the crest of the wave.
The breaking mechanism proposed in this work can be considered with this improved

breaking criteria given in [219], as well as the one proposed in [163], which are more
sophisticated and expensive.

Nevertheless, although a fast and straightforward breaking criterion has been chosen,
the numerical tests in Chapter 4 will show that this technique performs adequately.
Moreover, the simple breaking mechanism considered in this work: corrects the classical
overshoot that dispersive models present for the run-up of waves (see Fig. 4.10); ensures
the grid convergence even if breaking mechanism is switching on/off during the experiment
(see Fig. 4.13). Although the simple breaking criterion does not detect hydraulic jumps,
is observed that the proposed system without the breaking dissipation can handle well
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with hydraulic jumps. In any case, a more sophisticated breaking detector that reveals
hydraulic jumps can be considered as well.

1.6 Solitary waves

In this section, some details about solitary waves are given. These are waves that
propagate without any temporal evolution in shape or size over a flat bottom. The wave
has one global peak and decays far away from it. Solitary waves arise in many contexts,
including the elevation of the surface of the water which is the case of our interest in this
thesis. Solitary waves are believed to model some essential aspects of the coastal effects
of tsunamis well (see [233]).

John Scott Russell made the initial observation of a solitary wave in shallow water.
According to Russell’s empirical formula, the speed equals

√
g(A+H0), where A is the

amplitude of the peak of the solitary wave above the surface of the undisturbed water. As
Bullough has shown in [23], Russell’s approximated speed and the true speed of solitary
waves observed in nature only differ by a term of O(A2/H2).

In general, it is not an easy task to derive an analytical expression for solitary waves.
As it will be shown, the derivation of analytical solitary wave solutions involves solving an
ordinary differential equation (ODE), which a priori may be difficult. There are several
methods to find analytic expressions for solitary wave solutions of nonlinear PDEs. There
are two straightforward methods, namely the direct integration method and the tanh-
method (see [149],[11]).

In this subsection, we show an analytical expression for solitary waves for the
non-hydrostatic pressure system (NH-1L), that can be found in [21]. This solitary
wave solutions coincides with the approximated expressions given in the literature for
system (YAM) as it can be seen in [259],[112] and references therein.

In this dissertation, we give a general procedure to compute numerically solitary wave
solutions for some of the studied PDE systems by using a high order ODE solver. In
particular, we will show some solitary solutions for the system (NHyp).

Later, an important class of solitary waves corresponding to ones that are solutions
for the Euler equations are introduced. Since it is well known, no explicit expressions for
solitary waves for Euler equations are known, and an interesting procedure to compute
them numerically presented in [65],[104] will be employed.

Finally, some comparisons between the presented solitary waves for the non-hydrostatic
pressure systems and the Euler equations will be shown. This comparison will show a
significant mismatch between both solutions, specially for bigger amplitudes.

1.6.1 Analytical solitary wave solution for the system (NH-1L)

A family of solitary wave solutions for the system (NH-1L) is described in [21]. Given a
flat bottom H = H0, and an amplitude A, there exists a family of solitary wave solutions
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for the system (NH-1L) given by

h = H0 + A · sech2

(
x− Cet

l

)
,

u = Ce

(
1− d

h

)
,

w = −ACed
lh

sech

(
x− Cet

l

)
sech′

(
x− Cet

l

)
,

p =
AC2

ed
2

2l2h2

(
(2H0 − h)

(
sech′

(
x− Cet

l

))2

+

+h sech

(
x− Cet

l

)
sech′′

(
x− Cet

l

))
(1.6.1)

where f ′ denotes the derivative of the function f. When finding such solitary wave
solutions, some integration constant arise when the tanh-method (see [11]) is used. In
order to satisfies the asymptotic conditions

U ′′, U ′ → 0, U →
(
H0, 0, 0, 0

)t
, when ξ → ±∞, and U being (h, u, w, p)t,

the following relations arise:

Ce =
l

d

√
gH3

0

l2 −H2
0

, l = H0

√
A+H0

A
.

Here, Ce denote the wave speed. l is related with the wavelength: due to the
asymptotic behaviour, the wavelength can not be defined in a proper way. However,
it is commonly accepted ([233]) that a measure of the wavelength of a solitary wave is
the distance between the point xf on the front and the tail xt where the height is 1 %
of the maximum, i.e., η(xf , t = 0) = η(xt, t = 0) = A/100. Then, one can consider
xt = −3l, xf = 3l and thus the wavelength is 6l. Finally, d (m) is a parameter that
controls the celerity.

During this dissertation, we will consider the family of solitary waves (1.6.1) depending
on the amplitude A and the depth H0. We will always choose d to be d = H0, and thus
one always has

Ce =
√
g(A+H0), (1.6.2)

that corresponds with the celerity given by Russel and Bullough ([23],[221]).

1.6.2 Solitary wave solutions for the system (NHyp)

In this section we give a procedure to find solitary wave solutions of the hyperbolic
system (NHyp). As pointed out in (1.3.6), the governing PDE system for a flat bottom
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can be written in quasi-linear form

∂tU + A(U)∂xU = S(U),

where we also like to stress the dependency of A on the relaxation parameter c =
α
√
gH0, H0 = 1. During this subsection, we will use α = 1 and α = 3, to show the

differences, and to provide numerical solitary waves for the value of the parameter α = 3
that will be used in Chapter 4.

Let us consider a solitary wave moving along the x−axis at a constant velocity Ce.

We look for solutions in the form U(ξ), with ξ =
x− cet

l
. Hence, the time derivative is

given by ∂tU = −Ce
l
U ′ and the space derivative is ∂xU =

1

l
U ′, where the prime symbol

denotes differentiation with respect to ξ. For these type of solitary wave solutions, the
original PDE system reduces to the nonlinear ODE system

(A(U)− CeI)U ′ = l · S(U),

I being the identity matrix. The matrix A(U)−CeI is invertible provided that Ce is not
an eigenvalue of A(U). Therefore we finally get the ODE system U ′(ξ) = l · (A(U(ξ))− CeI)−1 S(U(ξ)), ξ ∈ [0, D]

U(0) = U0.
(1.6.3)

D a large enough real number. A numerical method will be employed in this dissertation
to solve this ODE system. To do that, the nonlinear ODE system is solved very accurately
in a numerical way using tenth order version of the time DG method presented in this
thesis (see Chapter 2) and using a very small time step of ∆ξ = 10−3. In what follows, we
will consider this highly accurate numerical solution of the ODE system (1.6.3) as exact
solution of the problem. This technique of using a tenth order version of the time DG
method has been widely used by other authors (see e.g. [155]).

Let us construct a particular solitary wave solution by solving the ODE system (1.6.3)
over a flat bottom H = H0, with

Ce =
√
g(A+H0), l = H0

√
A+H0

A
.

as in (1.6.2). Let us consider the initial data

U(0) =
(
H0 + 10−9, 10−9, 10−9, 10−9

)t
.

One can checked numerically that the described procedure leads to a solitary wave in the
form of Figure 1.11 that fulfils the asymptotic conditions

U ′′, U ′ → 0, when ξ → ±∞
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and

U →
(
H0, 0, 0, 0

)t
when ξ → −∞, U →

(
A+H0, 0, 0, 0

)t
when ξ →∞.

Since we look for a numerical solution satisfying the typical asymptotic conditions

U ′′, U ′ → 0, U →
(
H0, 0, 0, 0

)t
, when ξ → ±∞,

we proceed as follows:

• First, we find the first point ξM ∈ [0, D] where the numerical solution reach the
maximum for the variable η = h−H0.

• Then, we consider the ascending part of the solitary wave as the computed numerical
solution for ξ ∈ [0, ξM ].

• The descending part of the solitary wave is construct by symmetry from ξ = ξM to
ξ = 2ξM .

Figure 1.11: In (a) the numerical solution obtained after solve (1.6.3). In (b) the
considered solitary wave after connect the ascending part with a symmetrical descending
part.
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Figure 1.12: In black line the exact solution (1.6.1)-1.6.2 for the system (NH-1L). In blue
the computed solution for the system (NHyp) with α = 1 In red the computed solution
for the system (NHyp) with α = 3

Figures 1.12–1.13 show the computed solitary waves for A = 0.2 and A = 0.6 and for a
relaxation parameter c = α

√
gH0, α = 1 and 3. Figures 1.12–1.13 also show a comparison

with the exact solitary wave given in (1.6.1) for the system (NH-1L). The comparison
shows that even for the smaller value of the relaxation parameter α, the numerically
computed solution for the system (NHyp) and the exact for the system (NH-1L) are in a
perfect match.

Therefore, the solitary wave solution given in (1.6.1) can also be considered as an
approximated solitary wave solution for the system (NHyp), and in practice, we will use
it along this dissertation.

Remark 1.6.1. An approximated expression of a solitary wave solution for the sys-
tem (YAM) is given by (1.6.1)-(1.6.2). Note that although this is not an exact solution,
it coincides with the approximated expressions given in the literature for this system
(see [259, 112] and references therein).
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Figure 1.13: In black line the exact solution (1.6.1) for the system (NH-1L). In blue the
computed solution for the system (NHyp) with α = 1 In red the computed solution for
the system (NHyp) with α = 3

1.6.3 Solitary wave solutions for the Euler system

In order to compute solitary waves for the Euler equations (1.2.1), we use the numerical
method presented in [65],[104]. The tool given in [65] provides the free-surface ηE =
hE − H, and profiles at a given level z ∈ [−H, ηE], for horizontal and vertical velocities
uE(x, z), wE(x, z), as well as for the total pressure pT,E(x, z).

Since we want to compare this solutions with the ones previously described for the
non-hydrostatic pressure systems, let us split the vertical domain into L layers as in
Subsection 1.1.4 and let us denote,

uE,α =
1

hE

∫
Lα
uE dz, wE,α =

1

hE

∫
Lα
wE dz,

pE,α =
1

hE

∫
Lα
pT,E − g (η − z) dz, α ∈ {1, . . . , L}

(1.6.4)

the depth-averaged horizontal and vertical velocities as well as the non-hydrostatic
pressure within the layer Lα. To compute the above integrals, we use a third order
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Figure 1.14: Comparison between Eulerian solitary wave (1.6.4) with L = 1 (in black)
and solitary wave defined by (1.6.1) and (1.6.2) (in red) of amplitude A = 0.2.

Gaussian quadrature formula.

Figures 1.14–1.15 show two Eulerian solitary waves of amplitudes A = 0.2 and
A = 0.6 computed using (1.6.4) with L = 1. A comparison with the solitary waves
defined by (1.6.1)-(1.6.2) for the system (NH-1L) is shown, revealing important differences
specially for bigger amplitudes. Moreover, Figure 1.16 show the vertical profile of the
function z → pE,α(x = 0, z) being x = 0, the point such that hE(x = 0) = A = 0.6, and
α ∈ {1, . . . , L}, L = 20. The computed vertical profile does not appears to be linear, in
contrast with the assumption of a linear vertical profile for the non-hydrostatic pressure
of the described one-layer systems. Thus, it can be stated from these observations that
the one-layer systems can not capture well the physics of a non-linear Eulerian solitary
wave of bigger amplitudes.

Moreover, in Section 4.1, the computed Eulerian solitary waves (1.6.4) with L = 1
are used as initial condition for the system (NH-1L). This proves numerically the poor
behaviour of the one layer systems when dealing with Eulerian solitary waves of big
amplitudes.

Notwithstanding, in Section 4.1 we will show that the two-layer system can simulate
correctly this kind of solitary waves of big amplitudes.
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Figure 1.15: Comparison between Eulerian solitary wave (1.6.4) with L = 1 (in black)
and solitary wave defined by (1.6.1) and (1.6.2) (in red) of amplitude A = 0.6.

Figure 1.16: Non-hydrostatic pressure profile of the Eulerian solitary wave (1.6.4) with
L = 20. Left figure shows the non-hydrostatic pressure for layers α = 1, 3, 5, . . . , 19. Right
figure shows an interpolation of the vertical profile of pE at the point x = 0.
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Chapter 2

Finite volume and Discontinuous
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2.1 Introduction

In this chapter we describe a general methodology for developing high order well-balanced
schemes for hyperbolic systems with nonconservative products and/or source terms that,
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for the case of one dimensional domains, read as:

∂tU + ∂xF (U) +B(U)∂xU = G(U)∂xσ (2.1.1)

where the unknown U(x, t) is defined in Ω × [0, T ], Ω being a domain of R, and takes
values on an open convex subset O of RN ; F and G are regular functions from O to
RN ; B is a regular matrix function from O to MN×N(R); and σ(x) is a known function
from R to R. In the case of two dimensional domains the general hyperbolic system with
nonconservative products and/or source terms reads as:

∂tU +∇ · F (U) +B(U) · ∇U = G(U) · ∇σ (2.1.2)

where in this case the unknown U(x, t) is defined in Ω× [0, T ], Ω being a domain of R2,
and takes values in an open convex set O of RN ; F = (F1, F2) is a regular function from
O to RN ×RN ; B = (B1, B2) is a regular matrix function from O toMN×N ×MN×N(R);
G = (G1, G2) is a regular function from O to R2N ; and σ(x) is a known function from R2

to R.
PDE systems of this form appear in many fluid models in different contexts:

shallow water models, mutliphase flow models, gas dynamic, or in this dissertation,
accounts for the hydrostatic/non-dispersive part of the general formulation in one space
dimension (GF) and in two space dimension (GF-2D).

Note that, the general formulations (GF) and (GF-2D) may contains source terms
S(U), that are not taken into account by (2.1.1) and (2.1.2) respectively. This source
terms can be stiff such as frictions terms, and for the case of the systems described in
this thesis, can also include breaking or in the case of the system (NHyp), some non-
hydrostatic terms. Although the numerical methods described within this Chapter, can
be extended to consider such source terms, we will treat them in a semi-implicit manner,
as it will be described in Chapter 3. Only in the case of Discontinuous Galerkin schemes
(DG), presented in Section 2.4, they will be treated in a different way.

The main difficulty of systems of the form (2.1.1) both from the theoretical and the
numerical points of view comes from the presence of nonconservative products (when
B 6= 0 or G 6= 0 and σ is discontinuous) that does not make sense in the distributional
framework when the solution U develops discontinuities.

There are several mathematical theories allowing to formalize the notion of weak
solution for a nonconservative system: Volpert [253], Colombeau [54], Dal Maso-LeFloch-
Murat [72]. We briefly recall Dal Maso-LeFloch-Murat theory [72] to define weak solutions
of nonconservative systems and how it has been used to establish the notion of path-
conservative schemes. We show that, under this framework, it is possible to extend to
the nonconservative case many well-known numerical schemes that are commonly used
for system of conservation laws. Moreover, their extension to high order can be done as
well. We briefly point out the difficulties related to the right definition of weak solution.

The use of a well-balanced numerical method is mandatory when the system studied
involves perturbations of a steady state, whose amplitude is of the order or bigger than
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the truncation error of the method. This is the case of a tsunami wave propagating at
the ocean: its initial amplitude is small (although the lengthwave is huge) and it is not
always possible to refine the mesh so that the truncation error of the method is lower
than this amplitude. Another difficulty related to that is the numerical computation of
stationary solutions: standard methods that solve correctly systems of conservation laws
can fail in solving (2.1.1) when approaching equilibria or near to equilibria solutions.
In the context of shallow water equations, Bermúdez and Vázquez-Cendón introduced
in [14] the condition called C-property: a scheme is said to satisfy this condition if it
solves correctly the steady-state solutions corresponding to water at rest. This idea of
constructing numerical schemes that preserve some equilibria, which are called in general
well-balanced schemes, has been studied by many authors. The design of numerical
methods with good properties for problems of the form (2.1.1) or the particular cases
corresponding to B = 0 (systems of balance laws) is a very active front of research: see,
for instance, [6], [16], [15], [18], [37], [55], [56], [82], [139], [140], [141], [145], [146], [172],
[174], [199], [209], [211], [212], [215], [222], [234], [248], [258], [162], [85], [86], [247] among
others.

As it will be seen, the strategy to obtain well-balanced methods has a close relation
with the difficulty related to the definition of the nonconservative products appearing in
the system.

In this chapter, we briefly recall the main theoretical results concerning path-
conservative schemes and show its usefulness to state a general framework to design finite
volume numerical methods for systems of the form (2.1.1)- (2.1.2).

As it will be seen in Section 2.2, the framework of path-conservative schemes makes
it possible to extend to the nonconservative case many well-known numerical methods
for systems of conservation laws in a natural way. A class of efficient first order path-
conservative schemes, namely Polinomial Viscosity Methods, is briefly described. The
extension to high order of the discussed schemes is also introduced, by using reconstruction
operators. Finally, we analyze the well-balanced property of the numerical methods.
Then, in Section 2.3 we briefly recall the ideas given in the Section 2.2 for the case of
PDEs over two space dimension. Finally, in Section 2.4 a different branch of numerical
schemes in described: Discontinuous Galerkin schemes. There, we described the ADER
Discontinuous Galerkin schemes that can be applied to any system of the form (2.1.1)-
(2.1.2), along with an a posterior subcell finite volume limiter strategy.

2.2 Finite volume path-conservative schemes in one

space dimension

Let us consider first order quasi-linear PDE systems:

∂tW +A(W )∂xW = 0, x ∈ Ω ⊂ R, t > 0, (2.2.1)
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with initial condition
W (x, 0) = W0(x) x ∈ Ω ⊂ R, (2.2.2)

in which the unknown W (x, t) is defined in Ω× [0, T ], Ω being a domain of R, and takes
values on an open convex subset O of RM , and

W ∈ Ω 7→ A(W ) ∈MM×M(R)

is a smooth locally bounded map. The system is supposed to be strictly hyperbolic, i.e.
for all W ∈ Ω× [0, T ] the matrix A(W ) has M real and distinct eigenvalues

λ1(W ) < · · · < λM(W ),

and A(W ) is thus diagonalizable. Any system (2.1.1) may be rewritten in the form (2.2.1)
by considering σ as an unknown and by adding the equation ∂tσ = 0. Then:

W = (U, σ)T ,

and A(W ) is the matrix whose block structure is as follows:

A(W ) =

(
A(U) −G(U)

0 0

)
,

where A(U) = JF (U) +B(U), JF (U) being the Jacobian matrix of the flux function F, U
in an open convex set on RN , N = M − 1.

In order to design finite volume methods for systems of the form (2.2.1), we may
proceed, as it is done for systems of conservation laws, by integrating the equation in an
arbitrary space-time rectangle [a, b]× [t0, t1]:∫ b

a

W (x, t1) dx =

∫ b

a

W (x, t0) dx−
∫ t1

t0

∫ b

a

A(W (x, t))∂xW (x, t) dx dt. (2.2.3)

The difficulty comes from the fact that the last integrand may be discontinuous and
it is expected to be a measure involving Dirac’s deltas at the discontinuities. Under some
hypotheses of regularity for A, the theory introduced by Dal Maso, LeFloch, and Murat
[72] allows to define the product A(W )∂xW for functions W with bounded variation,
provided a family of Lipschitz continuous paths Φ : [0, 1] × Ω × Ω → Ω is prescribed,
which must satisfy certain regularity and compatibility conditions. In particular

Φ(0;WL,WR) = WL, Φ(1;WL,WR) = WR, (2.2.4)

and
Φ(s;W,W ) = W. (2.2.5)

According to this theory, given a function W (x) with bounded variation, the product
A(W )∂xW is defined as a locally bounded measure. This measure coincides with the
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distributional derivative in the special case of a conservative product, for which A(W ) is
the Jacobian matrix for some function F (W ). The interested reader is addressed to [72]
for a rigorous and complete presentation of this theory.

In practice, the family of paths can be interpreted as a tool to give a sense to the last
integral appearing in (2.2.3) for piecewise smooth functions W . More precisely, given a
bounded variation function W : [a, b]→ RM , we define:

−
∫ b

a

A(W (x))∂xW (x) dx =

∫ b

a

A(W (x))∂xW (x) dx

+
∑
l

∫ 1

0

A(Φ(s;W−
l ,W

+
l ))∂sΦ(s;W−

l ,W
+
l ) ds. (2.2.6)

In this definition, W−
l and W+

l represent, respectively, the limits of W to the left and right
of its lth discontinuity (remember that the set of discontinuities of a bounded variation
function is countable). Observe that, in (2.2.6), the family of paths has been used to
determine the weight of the Dirac measures placed at the discontinuities of W .

According to this definition of integral, a weak solution can be defined as a function
satisfying∫ b

a

W (x, t1) dx =

∫ b

a

W (x, t0) dx−
∫ t1

t0

−
∫ b

a

A(W (x, t))∂xW (x, t) dx dt, (2.2.7)

for every space-time rectangle [a, b]× [t0, t1].
Once the notion of integral of the nonconservative product has been stated and

proceeding as in the conservative case, it is easy to check that, across a discontinuity,
weak solutions have to satisfy the generalized Rankine-Hugoniot condition:

ξ(W+ −W−) =

∫ 1

0

A(Φ(s;W−,W+))∂sΦ(s;W−,W+) ds, (2.2.8)

where ξ is the speed of propagation of the discontinuity, and W− and W+ are the left
and right limits of the solution at the discontinuity. If A(W ) is the Jacobian matrix for
some function F (W ), (2.2.8) reduces to the standard Rankine-Hugoniot condition:

ξ(W+ −W−) = F (W+)− F (W−), (2.2.9)

independently of Φ.
As it happens for systems of conservation laws, in order to have uniqueness of solution,

an entropy condition has to be added to the notion of weak solution: let us assume that
(2.2.1) is equipped with an entropy pair (H, Q), i.e, a convex function H : Ω→ R and a
function Q : Ω→ R such that ∇Q(W ) = ∇H(W ) · A(W ). Then, a weak solution is said
to be an entropy solution if it satisfies the inequality

∂tH(W ) + ∂xQ(W ) ≤ 0, (2.2.10)
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in the sense of distributions.
Therefore, it is clear that the concept of weak solution strongly depends on the chosen

family of paths, which is a priori arbitrary. The crucial question is thus how to choose the
“good” family of paths. The answer to this question is not easy and it will be discussed in
Section 2.2.1. Meanwhile, let us assume that the family of paths, and thus the definition
of weak solution, has been chosen.

2.2.1 Path-conservative numerical schemes

In order to discretize the system, computing cells Ii = [xi−1/2, xi+1/2] are considered, whose
size ∆x is supposed to be constant for simplicity. Let us also suppose that xi+1/2 = i∆x
and we denote by xi = (i− 1/2)∆x the center of the cell Ii. Let ∆t be the constant time
step and define tn = n∆t. Let us denote by W n

i the approximation of the cell average of
the weak solution at the cell Ii at time tn provided by the scheme. The initial cell values
are thus given by:

W 0
i =

1

∆x

∫ xi+1/2

xi−1/2

W0(x) dx. (2.2.11)

From (2.2.7), the cell averages of weak solutions satisfy the equality:

1

∆x

∫
Ii

W (x, tn+1) dx =
1

∆x

∫
Ii

W (x, tn) dx− ∆t

∆x

1

∆t

∫ t1

tn

−
∫
Ii

A(W )∂xW dxdt, (2.2.12)

In the following let us relax the notation in time by denoting W (xi, tn) = W n
i . According

to Parés [205], we consider thus numerical methods of the form:

Definition 1. Given a family of paths Φ, a numerical scheme is said to be Φ-conservative
if it can be written under the form:

W n+1
i = W n

i −
∆t

∆x

(
D+
i−1/2 +D−i+1/2

)
, (2.2.13)

where
D±i+1/2 = D±

(
W n
i ,W

n
i+1

)
,

D− and D+ being two continuous functions from Ω2 to Ω satisfying

D±(W,W ) = 0 ∀W ∈ Ω, (2.2.14)

and

D−(WL,WR) +D+(WL,WR) =

∫ 1

0

A
(
Φ(s;WL,WR)

)
∂sΦ(s;WL,WR) ds, (2.2.15)

for every set {WL,WR} ⊂ Ω.
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Remark 2.2.1. The notion of path-conservative is a generalization of that of conservative
method for a system of conservation laws in the following sense: if A(W ) is the Jacobian
of a flux function F , then (2.2.15) reduces to

D−(WL,WR) +D+(WL,WR) = F (WR)− F (WL). (2.2.16)

Therefore, we can define

F(WL,WR) = D−(WL,WR) + F (WL), (2.2.17)

or, equivalently,
F(WL,WR) = F (WR)−D+(WL,WR). (2.2.18)

Then, (2.2.14) leads to
F(W,W ) = F (W )

so that F is a numerical flux consistent with F , and using (2.2.17)-(2.2.18) in (2.2.13),
it can be easily checked that the numerical method can be rewritten as the conservative
method:

W n+1
i = W n

i −
∆t

∆x

(
Fi+1/2 −Fi−1/2

)
, (2.2.19)

with
Fi+1/2 = F

(
W n
i ,W

n
i+1

)
.

Due to this, if the system (2.2.1) involves some conservation laws (as it happens with
the mass equations in the one or the two-layer shallow water system) a path-conservative
method will be conservative for these equations. The same happens if a linear combination
of some of the equations gives a conservation law.

Finally, let us remark that path-conservative schemes have been successfully applied to
many different problems, besides the shallow-water or multi layer shallow-water models.
For instance, they have been applied to Saint Venant-Exner [50], turbidity currents
[192], Ripa model [224], two-modes shallow-water system [31], Baer-Nunziato model [100],
Pitman-Le model [209], Savage-Hutter models [119], Bingham shallow-water system [120],
blood flow [194], two-phase flows [195], among others.

Convergence and choice of paths

In [33] a negative result of convergence for path-conservative numerical methods was
given together with several numerical examples. Later, a new example was given in [2].
These results have led in many cases to an oversimplified picture according to which path-
conservative methods do not converge. The goal of this paragraph is to shed some light
in this rather involved aspect of the convergence failure and to show that this is due to
the mathematical nature of nonconservative systems.
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The experience proves that path-conservative numerical methods converge with the
expected order of accuracy and, under the adequate CFL condition, with the same
stability property as their conservative counterparts. The difficulty comes from the fact
that the limits of numerical solutions may differ from the correct ones. Nevertheless,
as it has been mentioned, weak solutions of nonconservative systems may be defined in
infinitely many ways. Then, what does the correct weak solutions mean?

In many cases, mathematical models based on hyperbolic system are the vanishing
diffusion and/or dispersion limit of a family of PDE system involving higher order terms.
In order to fix the ideas, let us suppose that we have a system of the form (2.2.1) which
is the vanishing diffusion limit of

∂tW +A(W )∂xW = εR∂xxW, (2.2.20)

where R is a positive definite matrix. Then, the adequate notion of weak solution (and
thus the correct choice of the family of paths) should be consistent with the traveling
waves of the regularized system: see [170]. Remember that a traveling wave

Wε(x, t) = V

(
x− σt
ε

)
, (2.2.21)

is a solution of (2.2.20) satisfying

lim
ξ→−∞

V (ξ) = W−, lim
ξ→+∞

V (ξ) = W+, lim
ξ→±∞

V ′(ξ) = 0.

If there exists a traveling wave of speed σ linking the states W−, W+, the limit when
ε tends to 0 of Wε,

W (x, t) =

{
W− if x < σt

W+ if x > σt

should be an admissible weak solution of the nonconservative hyperbolic system. An easy
computation shows that V has to solve

− σV ′ + A(V )V ′ = RV ′′. (2.2.22)

By integrating (2.2.22) from −∞ to∞ and taking into account the boundary conditions,
we obtain the jump condition∫ ∞

−∞
A(V (ξ))V ′(ξ) dξ = σ(W+ −W−).

If this jump condition is compared with the generalized Rankine-Hugoniot condition
(2.2.8), it is clear that the good choice for the path connecting the states W− and W+

would be, after a reparametrization, the viscous profile.
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Observe that, while for systems of conservation laws, the jump condition reduces to
the standard Rankine-Hugoniot one regardless of the form of the diffusion term, now
the jump condition depends explicitly of the viscous profile that, in turns, depend of the
specific choice of the matrix R.

This observation is the key point to understand the fact that many numerical methods
fail in converging to the correct weak solutions: the limits of the numerical solutions satisfy
a jump condition which is related to the numerical viscosity of the method and not to
the physically relevant one. Of course, this phenomenon affects to any numerical method
in which the small scale effects (the vanishing diffusion and/or dispersion) are not taken
into account, regardless of whether it is path-conservative or not. For instance, even
the Godunov method based on the right weak solutions of the Riemann problems fails, in
general, to converge to the right solution: this is due to the numerical viscosity introduced
in the averaging step.

In order to overcome this difficulty, one could use viscosity-free methods based on
Random Choice, as Glimm, or front-tracking methods; or methods based on the equivalent
equation; or use methods that control the entropy losses across discontinuities like
nonlinear projection methods; or methods based on kinetic relations (see [171] and the
references therein).

Unfortunately, many of these techniques are very difficult or very costly to apply to
complex nonconservative systems as the two-layer shallow water model.

Let us conclude with some remarks:

• The difficulties of convergence to the right weak solutions is not always present. For
instance, in systems of balance laws with continuous σ there is no ambiguity in the
definition of weak solution and all the numerical methods discussed in Chapter 3
converge to them.

• The computation of viscous profiles may be a very difficult task. In that case,
the family of straight segments is a sensible choice, as their corresponding jump
conditions give a third order approximation of the physically correct ones [49].

• In many cases, the numerical results provided by different numerical methods are
very close to each other, although all of them may be far from the right weak
solutions. This fact is in good agreement with the results obtained in [57] according
to which the Hugoniot curve coincides up to third order (in the amplitude of the
shock) when the matrix of the system and the viscosity matrix commute.

2.2.2 Some path-conservative schemes: Roe and PVM methods

In this subsection, we present some examples of path-conservative systems for the
system (2.2.1) that we will use throughout this dissertation.
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Roe methods

Roe methods are based on the following extension of a Roe linearization to the
nonconservative case introduced in [248]:

Definition 2. Given a family of paths Φ, a function AΦ : Ω × Ω 7→ MM×M(R) is called
a Roe linearization if it verifies the following properties:

• for each WL,WR ∈ Ω, AΦ(WL,WR) has M distinct real eigenvalues,

• AΦ(W,W ) = A(W ) for every W ∈ Ω,

• for any WL,WR ∈ Ω,

AΦ(WL,WR) · (WR −WL) =

∫ 1

0

A(Φ(s;WL,WR))∂sΦ(s;WL,WR) ds. (2.2.23)

Once the linearization has been chosen, the corresponding Roe scheme can be written
as a path-conservative scheme in the form (2.2.13) with

D±(WL,WR) = A±Φ(WL,WR) · (WR −WL),

where, as usual,

A±Φ(WL,WR) =
1

2

(
AΦ(WL,WR)± |AΦ(WL,WR)|

)
, (2.2.24)

where

|AΦ(WL,WR)| = KΦ(WL,WR) · |LΦ(WL,WR)| ·KΦ(WL,WR)−1. (2.2.25)

Here, |LΦ(WL,WR)| is the diagonal matrix whose coefficients are the absolute value of
the eigenvalues of AΦ(WL,WR) and KΦ(WL,WR) a M ×M matrix whose columns are
associated eigenvectors.

Using this expression, the numerical method can be rewritten as follows:

W n+1
i = W n

i −
∆t

2∆x

(
AΦ(W n

i−1,W
n
i )(W n

i −W n
i−1) +AΦ(W n

i ,W
n
i+1)(W n

i+1 −W n
i )
)

− ∆t

2∆x

(∣∣AΦ(W n
i−1,W

n
i )
∣∣ (W n

i −W n
i−1)−

∣∣AΦ(W n
i ,W

n
i+1)
∣∣ (W n

i+1 −W n
i )
)
. (2.2.26)

In this form, it is clear that the second term in the right-hand side is a centered
approximation of A(W )∂xW and the third term is the numerical viscosity.

Let us discuss now the application of Roe methods to systems of the form (2.2.1). Let
us denote the path written as

Φ =

ΦU

Φσ

 .
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Following [208], we consider linearizations of the form:

AΦ(WL,WR) =

(
AΦ(WL,WR) −GΦ(WL,WR)

0 0

)
,

where

AΦ(WL,WR) = JF (UL, UR) +BΦ(WL,WR), (2.2.27)

JF (UL, UR) being a Roe linearization of the Jacobian of the flux F in the usual sense:

JF (UL, UR) · (UR − UL) = F (UR)− F (UL); (2.2.28)

BΦ(WL,WR) a matrix satisfying:

BΦ(WL,WR) · (UR − UL) =

∫ 1

0

B(Φ(s;WL,WR))∂sΦU(s;WL,WR) ds, (2.2.29)

and GΦ(WL,WR) a vector satisfying

GΦ(WL,WR) · (UR − UL) =

∫ 1

0

G(Φ(s;WL,WR))∂sΦσ(s;WL,WR) ds, (2.2.30)

where it has been used that Φ =
(
ΦU , Φσ

)t
. An easy calculation shows that, if (2.2.28)-

(2.2.30) are satisfied, then (2.2.27) is a Roe linearization, provided that AΦ(WL,WR) has
N real distinct not vanishing eigenvalues:

λ1(WL,WR) < · · · < λN(WL,WR).

Finally, taking into account the structure of the matrices AΦ and |AΦ|, as well as
the Roe property (2.2.28), the numerical scheme (2.2.13) can be written in terms of the
variable U as follows

Un+1
i = Un

i −
∆t

∆x

(
D+
i−1/2 +D−i+1/2

)
,

where skipping the notation in time:

D±i+1/2

(
Wi,Wi+1

)
=

1

2

(
F (Ui+1)− F (Ui) +Bi+1/2(Ui+1 − Ui)−Gi+1/2(σi+1 − σi)

)
± 1

2

∣∣Ai+1/2

∣∣ (Ui+1 − Ui − A−1
i+1/2Gi+1/2(σi+1 − σi))

)
, (2.2.31)

and Ai+1/2 = AΦ(Wi,Wi+1), Bi+1/2 = BΦ(Wi,Wi+1), Gi+1/2 = GΦ(Wi,Wi+1).
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Polynomial viscosity methods

Besides the Roe methods, some other strategies can be used to construct path-conservative
numerical schemes. The computation of the particular decomposition of Roe methods,
requires the explicit knowledge of the eigenvalues and eigenvectors of the intermediate
matrix. When an easy analytic expression is not available, as it is the case for the multi
layer shallow water system or other geophysical models, the eigenvalues and eigenvectors
of the matrix have to be numerically calculated at every intercell and at every time step,
which is computationally expensive. The same difficulty arises in the Osher-Solomon
solver [32, 203].

We present here some ideas introduced in [35], [43] and [48] to obtain numerical
methods based on decomposition (2.2.24) of Roe matrices that overcomes this difficulty.
The idea is to replace (2.2.24) by:

Â±Φ(WL,WR) =
1

2
(AΦ(WL,WR)±QΦ(WL,WR)) , (2.2.32)

where

QΦ(WL,WR) =

(
QΦ(WL,WR) QΦ(WL,WR)A−1

Φ (WL,WR)GΦ(WL,WR)
0 0

)
.

The expression of the corresponding numerical method is like (2.2.26) replacing the
absolute value of the intermediate matrix by an approximation QΦ, easier to compute,
that plays the role of viscosity matrix.

Note that different numerical schemes can be obtained when choosing QΦ. For
instance, a rough approximation is given by the local Lax-Friedrichs (or Rusanov) method,
in which:

QΦ(WL,WR) = max(|λi(WL,WR)|, i = 1, . . . , N)I, (2.2.33)

I being the identity matrix. Remark that the definition of QΦ(WL,WR) only requires
an estimation of the largest wave speed in absolute value. However, this approach
gives excessive numerical diffusion for the waves corresponding to the lower eigenvalues.
Alternatively, the choice

QΦ(WL,WR) = |AΦ(WL,WR)| ,

corresponds to the Roe scheme, which needs the knowledge of the eigenstructure of the
matrix AΦ that might result expensive.

The strategy is then to consider viscosity matrices of the form

QΦ(WL,WR) = f(AΦ(WL,WR)), (2.2.34)

where, f : R 7→ R satisfies the following properties:
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(f1) f(x) ≥ 0,∀x ∈ R,

(f2) f(x) is easy to evaluate,

(f3) the graph of f(x) is close to the graph of |x|.

Moreover, if

(f4) f(0) > 0

no entropy-fix techniques are required to avoid the appearance of non-entropy disconti-
nuities at the numerical solutions.

The stability of the scheme is strongly related to the definition of the function f(x).
In particular, let

λ1,i+1/2 < · · · < λN,i+1/2,

be the eigenvalues of AΦ(Wi,Wi+1), i.e. λj,i+1/2 ≡ λj(Wi,Wi+1), j = 1, . . . , N, and assume
that an usual CFL condition holds:

∆t

∆x
max
i,j
|λj,i+1/2| ≤ 1, (2.2.35)

then the resulting scheme is L∞-stable if f(x) verifies the following condition [48]:

f(x) ≥ |x|, ∀x ∈ [λ1,i+1/2, λN,i+1/2], ∀ i ∈ Z, (2.2.36)

i.e., the graph of the function f(x) must be above the one corresponding to the absolute
value function in the interval containing the eigenvalues.

At the beginning of the eighties, Harten, Lax and van Leer [151] proposed to choose f
as the linear polynomial p(x) that interpolates |x| at the smallest and largest eigenvalue,
which results in a considerable improvement of the local Lax-Friedrichs method. This
idea, which is on the basis of the HLL method, has been improved by several authors
later (see [245] for a review).

Degond et al. in [84] constructed a simple approximation of |A| by means of a
polynomial that approximates |x| without interpolation of the absolute value function
at the exact eigenvalues. This approach has been extended to a general framework in
[48], where the so-called PVM (Polynomial Viscosity Matrix) methods are defined in
terms of viscosity matrices based on general polynomial evaluations of a Roe matrix. The
idea is to consider viscosity matrices of the form:

QΦ(Wi,Wi+1) = P i+1/2
r (AΦ(Wi,Wi+1),

where P
i+1/2
r (x) is a polynomial of degree r.

A number of well-known schemes can be redefined as a PVM method: this is the case
for Roe, Lax-Friedrichs, Rusanov, HLL [151], FORCE [240], MUSTA [130],[242], etc. (see
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Scheme Polynomial Coefficients

Lax-Friedrichs P0(x) = α0 α0 =
∆x

∆t

HLL P1(x) = α0 + α1x α0 =
λN,i+1/2|λ1,i+1/2| − λ1,i+1/2|λN,i+1/2|

λN,i+1/2 − λ1,i+1/2

α1 =
|λN,i+1/2| − |λ1,i+1/2|
λN,i+1/2 − λ1,i+1/2

FORCE P2(x) = α0 + α2x
2 α0 =

∆x

2∆t
, α2 =

∆t

2∆x

Table 2.1: Some well-known solvers as PVM schemes

[48] for details). The numerical scheme introduced in [84] and the Krylov-Riemann solver
recently introduced in [246] can be viewed as particular case of PVM scheme as well.
In Table 2.1 we show the polynomial corresponding to Lax-Friedrichs, HLL and FORCE
schemes.

The numerical scheme for a PVM method can be expressed in the form (2.2.31) for
the variables Ui with

D±i+1/2

(
Wi,Wi+1

)
= D±i+1/2

(
Ui, σi, Ui+1, σi+1

)
=

1

2

(
F (Ui+1)− F (Ui) +Bi+1/2(Ui+1 − Ui)−Gi+1/2(σi+1 − σi)

)
± 1

2
Qi+1/2

(
Ui+1 − Ui − A−1

i+1/2Gi+1/2(σi+1 − σi))
)
, (2.2.37)

where Qi+1/2 = P
i+1/2
r (Ai+1/2).

Besides the interpretation of known numerical methods as PVM, this framework
allows the derivation of new ones. For instance, in [125] a numerical method based
on a polynomial that interpolates three values (the largest and lowest eigenvalues and
the maximum of the intermediate ones) has been derived. This numerical method gives
excellent results for the two-layer shallow water model. Another interesting family of PVM
schemes based on Chebyshev polynomials, which provide optimal uniform approximations
to the absolute value function has been proposed in [43].

We will consider the following notation for PVM methods. We will denote PVM-
l(S0, . . . , Sk) for a numerical scheme whose viscosity matrix Qi+1/2 is defined by a
polynomial of degree l whose coefficients depends on S0, . . . , Sk. In practice, the
parameters S0, . . . , Sk are related with the approximations of some of the wave speeds. For

example, Lax-Friedrichs corresponds to PVM-0(S0), being S0 =
∆x

∆t
, where ∆t is related

with the maximum of the propagation speed of the waves through the CFL condition.
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Definition 3. A numerical method PVM is said to be upwind if

P i+1/2
r (Ai+1/2) =

{
Ai+1/2, if λ1,i+1/2 > 0,

−Ai+1/2, if λN,i+1/2 < 0,

and we denote as PVM-U.
Thus, if

P i+1/2
r (x) =

{
x, if λ1,i+1/2 > 0,

−x, if λN,i+1/2 < 0,

then the resulting PVM method is upwind.

Notice that the term
C = Qi+1/2A

−1
i+1/2Gi+1/2, (2.2.38)

in (2.2.37) can be interpreted as the up-winding part of the source term discretization.
This term makes no sense if any of the eigenvalues of Ai+1/2 vanishes. One way to deal
with this kind of resonant problems has been proposed in [134].

In the subsequent paragraphs, we present the PVM methods that will be used along
this thesis. For the sake of simplicity, we will suppress the dependency on the index i+1/2
appearing on the polynomial as well as on its coefficients. Thus, we will denote Pr(x)

instead of P
i+1/2
r , and αj instead of α

i+1/2
j .

• PVM-1U(SL, SR) or HLL method

Let us consider in this section a PVM method defined with a polynomial of degree
1, this is (See Figure 2.1),

P1(x) = α0 + α1x. (2.2.39)

In order to define the coefficients α0 y α1 let us impose the following two conditions:

P1(SL) = |SL| y P1(SR) = |SR|, where SL (respectively SR) is an approximation
of the minimum (respectively maximum) of the wave speeds. A possibility is to
take SL = λ1,i+1/2, SR = λN,i+1/2, although a simple choice has been proposed by
Davis [73], as follows:

SL = min(λ1,i+1/2, λ1,i), SR = max(λN,i+1/2, λN,i+1),

being λi,1 < · · · < λi,N the eigenvalues of the matrix AΦ(Wi,Wi). This enforces the
entropy preserving property of the scheme. After some algebraic manipulations, it
yields

α0 =
SR|SL| − SL|SR|

SR − SL
, α1 =

|SR| − |SL|
SR − SL

. (2.2.40)
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PVM-1U(SL,SR)

SL λ1 λ2 λj · · · λN SR

Figure 2.1: Polynomial associated to the method PVM-1U(SL, SR).

Remark 2.2.2. Note that if SL > 0 ⇒ P1(x) = x and if SR < 0 ⇒ P1(x) = −x.
Then, the resulting method is upwind.

Remark 2.2.3. If we are in the case of a system of conservation laws (B = 0 y
G = 0), the the flux is conservative and the PVM method coincides with the usual
HLL scheme [152]. Thus, the described PVM-1U(SL, SR) scheme gives a natural
generalization of the HLL method for nonconservative problems.

• PVM-2U(SL, SR, Sint) method or IFCP

This method was proposed by E. Fernández et al. in [125] for the resolution of
the two layer shallow water system. In [223], C. Sánchez-Linares et al. describe a
generalisation for general case of nonconservative systems.

To do that, let us consider a polynomial of degree 2

P2(x) = α0 + α1x+ α2x
2, (2.2.41)

and let us impose the following conditions:

P2(SL) = |SL|, P2(SR) = |SR| and P2(Sint) = |Sint|,

where SL (respectively SR) is an approximation of the minimum (respectively
maximum) wave speeds and Sint is defined as

Sint = Sext ·max{|λ2,i+1/2|, ..., |λN−1,i+1/2|},

being

Sext =

{
sgn(SR + SL), if (SR + SL) 6= 0,
1, otherwise.

(2.2.42)
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The coefficients αj, j = 0, 1, 2 are given by:

α0 = δL SR Sint + δR SLSint + δint SL SR,

α1 = −SL(δR + δint)− SR(δL + δint)− Sint(δL + δR),

α2 = δL + δR + δint,

(2.2.43)

where

δL =
|SL|

(SL − SR)(SL − Sint)
, δR =

|SR|
(SR − SL)(SR − Sint)

,

δint =
|Sint|

(Sint − SL)(Sint − SR)
.

Remark 2.2.4. In [223], it shown that the IFCP scheme is linearly L∞-stable under
the usual CFL condition.

2.2.3 High order finite volume schemes based on reconstruction
of states

The goal of this section is to present the general expression of a high order method
for (2.2.1) based on the use of a first order path-conservative numerical scheme and a
reconstruction operator.

Let us denote by W i(t) the exact cell average of the solution W of (2.2.1) over the cell
Ii at time t,

W i(t) =
1

∆x

∫ xi+1/2

xi−1/2

W (x, t) dx.

The following equation can be easily obtained from (2.2.1):

W
′
i = − 1

∆x
−
∫ xi+1/2

xi−1/2

A(W (x, t))∂xW (x, t) dx. (2.2.44)

Let us consider a first order path-conservative numerical scheme (2.2.13) and a
reconstruction operator of order s, i.e. an operator that associates to a given sequence
{Wi} two new sequences {W−

i+1/2}, {W
+
i+1/2} in such a way that, whenever

Wi =
1

∆x

∫
Ii

W (x) dx ∀ i ∈ Z

for some smooth function W , then

W±
i+1/2 = W (xi+1/2) +O (∆xs) ∀ i ∈ Z.
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In practice, the reconstructed states W±
i+1/2 are calculated as follows; given a sequence

{Wi} of values at the cells, an approximation function is calculated at every cell Ii using
the values Wj at a given stencil,

Pi(x) = Pi(x;Wi−l, . . . ,Wi+r),

with l, r two natural numbers. The reconstructions W±
i+1/2 are then calculated by taking

the limits of these functions at the intercells:

lim
x→x+

i−1/2

Pi(x) = W+
i−1/2, lim

x→x−
i+1/2

Pi(x) = W−
i+1/2. (2.2.45)

Following [207], we consider the semi-discrete method:

W ′
i = − 1

∆x

(
D+
i−1/2 +D−i+1/2 +

∫
Ii

A[Pi(x)]∂xPi(x) dx

)
, (2.2.46)

where D±i+1/2 are evaluated in W±
i+1/2(t)

D±i+1/2 = D±(W−
i+1/2(t),W+

i+1/2(t)), (2.2.47)

where {W±
i+1/2(t)} represent the reconstructed states associated to {Wi(t)}, and

Pi(x) ≡ Pi(x;Wi−l(t), . . . ,Wi+r(t)). (2.2.48)

In (2.2.46) the approximation functions are used to approximate the regular part of the
weak integral in (2.2.44) and the terms D±i−1/2 are used again to split the Dirac measures
corresponding to the discontinuities at the intercells.

The semi-discrete method (2.2.46) in terms of the variable Ui can be written, similarly
to (2.2.37), as:

U ′i = − 1

∆x

(
D+
i−1/2(U−i−1/2, σ

−
i−1/2, U

+
i−1/2, σ

+
i−1/2) +D−i+1/2(U−i+1/2, σ

−
i+1/2, U

+
i+1/2, σ

+
i+1/2)

)
− 1

∆x

(∫
Ii

∂xF [Pi,U(x)] +B[Pi,U(x)]∂xPi,U(x)−G[Pi,U(x)]∂xPi,σ(x) dx

)
. (2.2.49)

Pi,U(x) and Pi,σ(x) being the reconstruction of U and σ in the cell i respectively. In
practice, the integral terms in (2.2.49) are numerically approached with a 1D quadrature
formula.

Notice that (2.2.49) is a system of ordinary differential equations to be solved by using
a high order numerical solver with good properties. In practice the TVD Runge-Kutta
schemes are used (see [143], [228]). Other time discretization can be considered, as ADER
schemes developed by Toro and Dumbser (see [238],[92]).
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Observe that there is an important difference between the conservative and the
nonconservative case: while in the conservative case the numerical scheme is independent
of the functions Pi chosen at the cells (only the property (2.2.45) is important), this is
not the case for nonconservative systems. As a consequence, while the numerical scheme
has order s for conservative systems, in the case of the scheme (2.2.46) the order is
α = min(s, s1, s2), where s1 and s2 are the order of accuracy of the reconstruction and its
derivative inside the cell:

Pi(x) = W (x) +O (∆xs1) ∀x ∈ Ii,
P ′i (x) = W ′(x) +O (∆xs2) ∀x ∈ Ii.

For the usual reconstruction techniques one has s2 ≤ s1 ≤ s and the order of (2.2.46)
is thus s2 for nonconservative systems and s for systems of conservation laws. Therefore
a loss of accuracy may be observed when a technique of reconstruction is applied to
a nonconservative problem. This effect has been detected and numerically verified for
WENO-Roe methods in [29]. Nevertheless, the error estimate shown is rather pessimistic:
in practice, the order of the observed error is usually s2 + 1: see [24] or [29].

In [198] a very interesting technique has been introduced to avoid the explicit
computation of P ′i (x) so that the expected order of accuracy is increased to min(s, s1).
This technique is based on the use of the trapezoidal rule and Romberg extrapolation for
the numerical approximation of the integrals in (2.2.46).

In [36] a high order finite volume central scheme on staggered grids for general
hyperbolic systems, including those not admitting a conservation form, has been
introduced. The method is based on a path-conservative method on staggered cells and
central Runge–Kutta time discretization. In [31] a second order path-conservative Central-
Upwind scheme for the two-mode shallow-water system was proposed.

ADER-FV and ADER-DG approaches proposed by Titarev and Toro [238] and
Dumbser and Munz [97] are two other alternatives to construct high order schemes. In
their original formulations, both approaches use the governing PDE itself in its strong
differential form to achieve high order accuracy in time. This is done by means of the
Cauchy-Kovalewski procedure that substitutes time derivatives with space derivatives via
successive differentiation of the governing PDE with respect to space and time. This
procedure may become cumbersome for general nonlinear hyperbolic PDE systems. In
[99] and [93] an entirely numerical approach was presented that replaces the Cauchy-
Kovalewski procedure by a local weak formulation of the governing PDE in space-time.
The extension to nonconservative systems has been considered in [92] and the methodology
will be briefly recalled in Subsection 2.4.

MUSCL reconstruction operator

In the literature, several reconstruction operators can be found, that usually are calculated
by means of interpolation or approximation techniques. This is the case for ENO, WENO,
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or hyperbolic reconstructions (see [153], [186], [62], [229], [93], [101], [102], among others.)
In this subsection we describe the MUSCL [169] reconstruction operator that will

be used in this dissertation for rectangular meshes. Let us consider the second order
reconstruction operator in one space dimension defined in a cell Ii by

Wi(x, t) = Wi(t) + (x− xi) (∂xW (t))i , (2.2.50)

where Wi(t) is the averaged value of the solution at time t on the cell given by the
numerical scheme and (∂xW (t))i is an constant approximation of the partial derivative of
the solution with respect to x. Here, we use the MUSCL reconstruction described in [169]
where

(∂xW )i = minmod

(
θ
Wi −Wi−1

∆x
,
Wi+1 −Wi−1

2∆x
, θ
Wi+1 −Wi

∆x

)
, θ ∈ [1, 2], (2.2.51)

where

minmod(z1, z2, . . .) =


minj zj si zj > 0 ∀ j,
maxj zj si zj < 0 ∀ j,
0 en otro caso.

(2.2.52)

The parameter θ is used to control the amount of numerical viscosity: higher values of θ
corresponds with less dissipative numerical schemes but, in general, more oscillatory.

2.2.4 Well-balanced schemes

As it was said previously, when dealing with systems in the form (2.2.1), special care
has to be taken when solving solutions that are close to a stationary solution. As it was
mentioned in the introduction, the well-balanced property of the numerical method is
crucial in these cases. In this section, first we state a precise definition of well-balanced
method and next the well-balanced properties of the numerical methods introduced in
the previous section are analyzed. Let us consider the following definitions:

Definition 4. Consider a semi-discrete method to approximate (2.1.1) U ′i(t) =
1

∆x
H (Uj(t), j ∈ Bi) ,

U(0) = U0,
(2.2.53)

where U(t) = {Ui(t)}NTi=1 represents the vector of the approximations to the averaged values
of the exact solution; U0 = {U0

i } is the vector of the all averages of the initial conditions;
and Bi are the stencils. Given a smooth stationary solution U of the system, the numerical
scheme is said to be exactly well-balanced for U if the vector of its cell averages is a critical
point of (2.2.53), i.e.

H(Uj, j ∈ Bi) = 0. (2.2.54)
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Let us also introduce the concept of well-balanced reconstruction operator:

Definition 5. Given a smooth stationary solution of (2.1.1), a reconstruction operator
is said to be well-balanced for U(x) if the approximation functions Pi(x) associated to the
averaged values of U are also stationary solutions of the system (2.1.1).

Remark 2.2.5. Here, as σ(x) is a given function, we set that its reconstruction is P σ
i (x) =

σ(x), x ∈ Vi.

In general, it is not easy to design a reconstruction operator which is well-balanced
for every stationary solution. In [45] a strategy to construct such an operator has been
introduced. The following results can be proved:

Theorem 2.2.1. Let U be a stationary solution of (2.1.1) and let us assume that the
family of paths Φ(s,WL,WR) = (ΦU(s,WL,WR), Φσ(s,WL,WR))T connecting two states
WL = (U(xL), σ(xL))T and WR = (U(xR), σ(xR))T with xL < xR is a reparametrization
of x ∈ [xL, xR] 7→ U(x), then the first order PVM scheme (2.2.37) is exactly well-balanced
for U whenever Ai+1/2 being a non-singular matrix.

Remark 2.2.6. Note that if the stationary solution is smooth, then U−ij = U+
ij and D±Φ =

0, therefore, the well-balanced property of the high order method only depends on the well-
balanced property of the reconstruction operator.

Theorem 2.2.2. Let U be a stationary solution of (2.1.1). Let us suppose that the first
order PVM path-conservative scheme (2.2.37) and the reconstruction operator chosen are
exactly well-balanced for U . Then the numerical scheme (2.2.49) is also exactly well-
balanced for U whenever Ai+1/2 being a non-singular matrix.

Finally, let us remark that quadrature formulae also play an important role to preserve
the well-balanced properties of the scheme. In fact, the previous results have been
established assuming that the integrals are exactly computed. Thus, in order to preserve
the well-balanced properties, quadrature formulae should be exact for the stationary
solutions. For that purpose, the strategy developed in [34] can be used.

Well-balanced methods for a subset of stationary solutions of the system (SWE)

In many cases, depending on the characteristics of the phenomena, there is interest in
preserving only a certain family of solutions. This is the case, for instance, in the one
layer or the two-layer shallow water model with the stationary solutions corresponding to
water at rest.

So, let us suppose that we are only interested in preserving stationary solutions related
to a subset Γ0 of Γ. In the particular case of the shallow water model (SWE), the family
of stationary solution corresponding to water at rest are given by:

q = 0, h−H = constant,
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meaning that the velocity is zero and the free surface elevation is constant. The
corresponding curves are straight lines in the space h, q,H and thus the family of straight
segments

Φ(s;WL,WR) = WL + s(WR −WL),

satisfies the property (WB). Therefore, Roe and PVM methods based on this family of
paths are well-balanced for water at rest.

Concerning high order schemes, let us consider the case of the shallow water system. In
order to have a reconstruction operator which is well-balanced for water at rest solutions,
the following strategy may be followed: given a sequence (qi, hi, Hi) of cell values and H
being the bathymetry, consider the new sequence (qi, hi, ηi) with ηi = hi −Hi and apply
the reconstruction operator to obtain polynomials

pi,q, pi,h, pi,η;

then, define
pi,H = pi,h − pi,η.

This reconstruction is exactly well-balanced for stationary solutions corresponding to
water at rest if the operator is exact for constant functions.

2.3 Finite volume path-conservative schemes in two

space dimension

In this section the extension for two dimensional domains is introduced for the concepts
presented in the previous sections. A family of high order finite volume methods combining
a reconstruction operator and a first order path-conservative scheme is described. Then,
the well-balanced property of the proposed methods is analysed. Let us recall the general
system (2.1.2)

∂tU +∇ · F (U) +B(U) · ∇U = G(U) · ∇σ,
where F = (F1, F2), B = (B1, B2), G = (G1, G2).

Thus, let us consider first order quasi-linear PDE systems:

∂tW +A(W ) · ∇W = 0, (2.3.1)

for x ∈ Ω ⊂ R2, t > 0, with initial condition

W (x, 0) = W0(x), x = (x, y) ∈ D ⊂ R2,

in which the unknown W (x, t) is defined in Ω× [0, T ], Ω being a domain of R2, and takes
values in an open convex set O of RM , and

A = (A1,A2) , W ∈ O 7→ Ai(W ) ∈MM×M(R), i = 1, 2
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is a smooth locally bounded map. Note that any system (2.1.2) may be written in the
quasi-linear form by considering σ as an unknown that satisfies ∂tσ = 0, and

W = (U, σ)T ,

Ai(W ) =

(
Ai(U) −Gi(U)

0 0

)
,

where Ai(U) = JF,i(U) + Bi(U) and JF,i(U) =
∂Fi
∂U

(U) denotes the Jacobian of Fi. It

is also assumed that (2.3.1) is strictly hyperbolic, i.e. for all W ∈ O = O × R and
∀ n = (n1, n2) ∈ S1, where S1 ⊂ R2 denotes the unit sphere, the matrix

A(W,n) := A(W ) · n

has M = N + 1 real and distinct eigenvalues

λ1(W,n) < · · · < λM(W,n),

and A(W,n) is thus diagonalizable.
As already mentioned in the one space dimension case (2.2.3), the nonconservative

product A1(W )∂xW + A2(W )∂yW does not make sense in the classical framework of
distributions if W is discontinuous. However, the theory developed by Dal Maso, LeFloch
and Murat in [72] allows to give a rigorous definition of nonconservative products as
bounded measures provided that a family of Lipschitz continuous paths Φ: [0, 1] × Ω ×
Ω×S1 → Ω is prescribed. This family must satisfy certain natural regularity conditions,
in particular:

C1: Φ(0;WL,WR,n) = WL and Φ(1;WL,WR,n) = WR, for any WL,WR ∈ Ω, n ∈ S1.

C2: Φ(s;WL,WR,n) = Φ(1− s;WR,WL,−n), for any WL,WR ∈ Ω, s ∈ [0, 1], n ∈ S1.

2.3.1 Path-conservative numerical schemes

The goal of this subsection is to present the general expression of a high order method
for (2.3.1) based on the use of a first order path-conservative numerical scheme and a
reconstruction operator.

To discretize (2.3.1) the computational domain Ω is covered with a set of non-
overlapping Cartesian control volumes in space

Vi =

[
xi −

1

2
∆xi, xi +

1

2
∆xi

]
×
[
yi −

1

2
∆yi, yi +

1

2
∆yi

]
,

where the vector xi = (xi, yi) describes the location of the barycentre of cell Vi, and the
index i ranges from 1 to the total number of elements NE. Furthermore, we denote the
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vector of the mesh spacings in each direction by ∆xi = (∆xi,∆yi). Let us denote by
W i(t) the cell average of the solution W of (2.3.1) over the volume Vi at time t,

W i(t) =

∫
Vi

W (x, t) dx.

As usual, the computational domain or the main grid is the union of all spatial control
volumes, hence

Ω =

NE⋃
i=1

Vi.

Given a finite volume Vi, |Vi| will represent its area; Ni ∈ R2 its center; Ni the set
of indexes j such that Vj is a neighbour of Vi; Eij the common edge of two neighbouring
cells Vi and Vj, and |Eij| its length; nij = (nij,1, nij,2) the normal unit vector at the edge
Eij pointing towards the cell Vj; and W n

i the constant approximation to the average of
the solution in the cell Vi at time tn provided by the numerical scheme:

W n
i
∼=

1

|Vi|

∫
Vi

W (x, tn) dx.

According to Parés [207], a first order path-conservative scheme for the system (2.3.1)
has the form:

Definition 6. Given a family of Lipschitz continuous paths Φ: [0, 1]× Ω× Ω× S1 → Ω
satisfying (C1-C2), a numerical scheme is said to be Φ-conservative if it can be written
under the form:

W n+1
i = W n

i −
1

|Vi|
∑
j∈Ni

|Eij| D−Φ(W n
i ,W

n
j ,nij), (2.3.2)

where D−Φ(W n
i (γ),W n

j (γ),nij) is a path-conservative scheme for system (2.3.1), that
is D−Φ(WL,WR,n) is a regular function from Ω× Ω× S1 to RM , M = N + 1 satisfying

D−Φ(W,W,n) = 0 ∀W ∈ Ω, ∀n ∈ S1 (2.3.3)

and

D−Φ(WL,WR,n) +D+
Φ(WL,WR,n) =

∫ 1

0

A(Φ(s;WL,WR,n),n)
)
∂sΦ(s;WL,WR,n) ds,

(2.3.4)
where D+

Φ(WL,WR,n) = D−Φ(WR,WL,−n) and Φ is the chosen family of paths. Notice
that an analogous to the Remark 2.2.1 can be extended in this case.
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2.3.2 Some path-conservative schemes: PVM methods

The extension for two dimensional domains of the PVM methods presented in Subsec-
tion 2.2.2 is briefly introduced.

Definition 7. Given a family of paths Φ, a Roe linearization of system (2.3.1) is a
function

AΦ : Ω× Ω× S1 →MM(R)

satisfying the following properties for each WL,WR ∈ Ω and n = (n1, n2) ∈ S1:

1. AΦ(WL,WR,n) has M distinct real eigenvalues

λ1(WL,WR,n) < λ2(WL,WR,n) < · · · < λM(WL,WR,n).

2. AΦ(W,W,n) = A(W,n).

3. AΦ(WL,WR,n) · (WR −WL) =∫ 1

0

A(Φ(s;WL,WR,n),n)∂sΦ(s;WL,WR,n) ds. (2.3.5)

Note that in the particular case in which Ak(W ), k = 1, 2, are the Jacobian matrices
of smooth flux functions Fk(W ), property (2.3.5) does not depend on the family of paths
and reduces to the usual Roe property:

AΦ(WL,WR,n) · (WR −WL) = Fn(UR)− Fn(UL) (2.3.6)

where
Fn(U) = F (U) · n,

for any n = (n1, n2) ∈ S1.
As in Subsection 2.2.2, one may consider the decomposition

A±Φ(WL,WR) =
1

2

(
AΦ(WL,WR)± |AΦ(WL,WR)|

)
,

and thus the numerical scheme introduced in 2.2.26 can be also generalized to the case of
two space domains.

As it was warned in Subsection 2.2.2, in many situations, as in the case of the multilayer
shallow-water system, it is not possible to obtain an easy analytical expression of the
eigenvalues and eigenvectors. Similarly to what is done in Subsection 2.2.2, some other
strategies can be used to construct path-conservative numerical schemes. The idea relies
in to replace the absolute value of the intermediate matrix in 2.3.9, by an approximation
QΦ easier to compute that plays the role of viscosity matrix.
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Thus, in order to introduced PVM methods, given a Roe matrix AΦ(WL,WR,n), let
us consider:

Â±Φ(WL,WR,n) =
1

2
(AΦ(WL,WR,n)±QΦ(WL,WR,n)) ,

where QΦ(WL,WR,n) is a semi-definite positive matrix that can be seen as the viscosity
matrix associated to the method.

Now, it is straightforward to define a path-conservative scheme in the sense defined in
[207] based on the previous definition:

D±φ (WL,WR,n) = Â±Φ(WL,WR,n)(WR −WL). (2.3.7)

Finally, we could also define a path-conservative scheme for the system (2.3.1) as
follows:

Un+1
i = Un

i −
1

|Vi|
∑
j∈Ni

|Eij|D−Φ(W n
i ,W

n
j ,nij), (2.3.8)

D±Φ(WL,WR,n) = D±Φ(UL, σL, UR, σR,n)

1

2

(
Fn(UR)− Fn(UL) +BΦ · (UR − UL)

−GΦ(σR − σL)

±QΦ · (UR − UL − A−1
Φ ·GΦ(σR − σL))

)
(2.3.9)

where the path is supposed to be given by Φ = (ΦU Φσ)T and

BΦ · (UR − UL) = BΦ(UL, UR,n) · (UR − UL)

=

∫ 1

0

Bn(ΦU(s;WL,WR,n))∂sΦ(s;WL,WR,n) ds

with
Bn(U) = B(U) · n;

GΦ(σR − σL) = GΦ(UL, UR,n)(σR − σL)

=

∫ 1

0

Gn(ΦU(s;WL,WR,n))∂sΦ(s;WL,WR,n) ds

with
Gn(U) = G(U) · n.

The matrix AΦ is defined as follows

AΦ = AΦ(UL, UR,n) = J(UL, UR,n) +BΦ(UL, UR,n)

where J(UL, UR,n) is a Roe matrix for the flux Fn(U), that is

J(UL, UR,n) · (UR − UL) = Fn(UR)− Fn(UL).
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Remark 2.3.1. Notice that the term QΦ · (UR − UL − A−1
Φ · GΦ(σR − σL)) is not well

defined and makes no sense if one of the eigenvalues of AΦ vanishes. In this case, two
eigenvalues of AΦ(WL,WR,n) vanish and the problem is said to be resonant. Resonant
problems exhibit an additional difficulty, as weak solutions may not be uniquely determined
by their initial data. The analysis of this difficulty depends on the considered problem and
it is beyond of this dissertation. A general procedure, that formally avoids this difficulty
is described in [35].

A rough approximation is given by the local Lax-Friedrichs (or Rusanov) method, in
which:

QΦ(UL, UR,n) = max(|λi(UL, UR,n)|, i = 1, . . . , N)I, (2.3.10)

I being the identity matrix. Note that this definition of QΦ(UL, UR,n) only requires an
estimation of the largest wave speed in absolute value. However, this approach gives
excessive numerical diffusion for the waves corresponding to the lower eigenvalues.

In general, one may consider viscosity matrices of the form

QΦ(UL, UR) = f(AΦ(UL, UR,n)), (2.3.11)

where f satisfies the conditions (f1)-(f4) given in Subsection 2.2.2. Then, a similar
stability property than for the 1D case, can be shown. In particular, if λ1(UL, UR,n) <
· · · < λN(UL, UR,n) denote the eigenvalues of AΦ(UL, UR,n) and the usual CFL condition
is assumed

∆t ·max

{
|λij,k|
dij

; i = 1, . . . , NT , j ∈ Ni, k = 1, . . . , N

}
= δ, (2.3.12)

with 0 < δ ≤ 1, where dij is the distance from the center of cell Vi to the edge Eij, then
the resulting scheme is L∞-stable if f(x) satisfies the following condition (see [48]):

f(x) ≥ |x|, ∀x ∈ [λ1(UL, UR,n), λN(UL, UR,n)]. (2.3.13)

The approach presented in Subsection 2.2.2 , where the so-called PVM (Polynomial
Viscosity Matrix) methods are defined in terms of viscosity matrices based on general
polynomial evaluations of a Roe matrix can be easily extended to two dimensional
domains. The idea is to consider viscosity matrices of the form:

QΦ(UL, UR,n) = Pr(AΦ(UL, UR,n)),

where Pr(x) is a polynomial of degree r and then the expression (2.3.9) becomes:

D±Φ(WL,WR,n) = D±Φ(UL, σL, UR, σR,n)

=
1

2

(
Fn(UR)− Fn(UL) +BΦ · (UR − UL)

−GΦ(σR − σL)

±QΦ · (UR − UL − A−1
Φ ·GΦ(σR − σL))

)
(2.3.14)
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Thus, for example the HLL scheme presented in (2.2.39) can be extended to bidimensional
domains by considering an approximation of the minimum and maximum of the
eigenvalues.

2.3.3 High order finite volume schemes based on reconstruction
of states

Let us consider a reconstruction operator of order p. We will assume that the reconstruc-
tions are calculated as follows: given a family {Wi}NTi=1 of cell values, first an approximation
function is constructed at every cell Vi, based on the values at some of the cells close to
Vi:

Pi(x) = Pi (x; {Wj}j∈Bi) ,

for some set of indexes Bi (the stencil). If, for instance, the reconstruction only depends
on the neighbour cells of Vi, then Bi = Ni ∪ {i}. These approximation functions are
calculated usually by means of an interpolation or approximation procedure. Once these
functions have been constructed, the reconstruction at γ ∈ Eij are defined as follows:

W−
ij (γ) = lim

x→γ
Pi(x), W+

ij (γ) = lim
x→γ

Pj(x). (2.3.15)

As usual, the reconstruction operator must satisfy the following properties:

(P1) It is conservative, i.e. the following equality holds for any cell Vi:

Wi =
1

|Vi|

∫
Vi

Pi(x)dx. (2.3.16)

(P2) If the operator is applied to the cell averages {Wi} for some smooth function W (x),
then

W±
ij (γ) = W (γ) +O(∆xs), ∀γ ∈ Eij,

and
W+
ij (γ)−W−

ij (γ) = O(∆xs+1), ∀γ ∈ Eij.

(P3) It is of order s1 in the interior of the cells, i.e. if the operator is applied to a sequence
{Wi} for some smooth function W (x), then:

Pi(x) = W (x) +O(∆xs1), ∀x ∈ int(Vi). (2.3.17)

(P4) Under the assumption of the previous property, the gradient of Pi provides an
approximation of order s2 of the gradient of W :

∇Pi(x) = ∇W (x) +O(∆xs2), ∀x ∈ int(Vi). (2.3.18)
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In the literature one can find many examples of reconstruction operators that satisfy
(P1) and (P2): ENO, WENO, CWENO, hyperbolic reconstructions, among others (see
[153], [186], [62], [229], [93],[101], [102], [131], [70]).

Remark 2.3.2. Notice that, in general, s2 ≤ s1 ≤ s. If, for instance, the approximation
functions are polynomials of degree s obtained by interpolating the cell values on a fixed
stencil, then s2 = s−1 and s1 = s. In the case of WENO-like reconstructions (see [228]),
the approximation functions are obtained as a weighted combination of interpolation
polynomials whose accuracy is greater on the boundary than at the interior of the cell:
in this case s1 < s. An interesting alternative of WENO reconstruction operator for
which s1 = s is given by CWENO reconstruction (see [70]).

Let us denote by Pi the approximation functions defined using the cell averages Wi(t),
i.e.

Pi(x) = Pi (x; {Wj(t)}j∈Bi) .

W−
ij (γ, t) (resp. W+

ij (γ, t)) is then defined by

W−
ij (γ, t) = lim

x→γ
Pi(x), W+

ij (γ, t) = lim
x→γ

Pj(x). (2.3.19)

According to Parés [207], a high order path-conservative scheme for the nonconserva-
tive system (2.3.1) is given by:

W ′
i = − 1

|Vi|
∑
j∈Ni

∫
Eij

D−Φ(W−
ij (γ, t),W+

ij (γ, t),nij) dγ

− 1

|Vi|

∫
Vi

A (Pi(x)) · ∇Pi(x) dx,

(2.3.20)

where D−Φ are evaluated in W±
ij (γ, t) given by (2.3.19).

Theorem 2.3.1. Let us assume that A1 and A2 are of class C2 with bounded derivatives
and D−Φ(·, ·,nij) is bounded for all i, j. Let us also suppose that the reconstruction operator
satisfies the hypothesis (P1)-(P4). Then (2.3.20) is an approximation of order at least
α = min(s, s1, s2) to the system (2.3.1) in the following sense:

1

|Vi|
∑
j∈Ni

[∫
Eij

(
D−Φ(W−

ij (γ, t),W+
ij (γ, t),nij)

)
dγ +

∫
Vi

A (Pi(x)) · ∇Pi(x) dx

]

=
1

|Vi|
∑
j∈Ni

∫
Vi

A(W (x, t)) · ∇W (x, t) dx+O(∆xα),

(2.3.21)
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for every solution W smooth enough, W±
ij (γ, t) being the associated reconstructions and

Pi the approximation functions corresponding to the family

W i(t) =
1

|Vi|

∫
Vi

W (x, t) dx.

Remark 2.3.3. According to Remark 2.3.2 for the 1D case, the expected order of the
numerical scheme is s2. Nevertheless, this theoretical result is rather pessimistic: in
practice order s1 is often achieved.

Now, taking into account the relation between systems (2.1.2) and (2.3.1), it is possible
to rewrite (2.3.20) as follows:

U ′i = − 1

|Vi|
∑
j∈Ni

∫
Eij

D−Φ(W−
ij (γ, t),W+

ij (γ, t),nij) dγ

− 1

|Vi|

∫
Vi

∇ · F (Pi,U(x)) +B (Pi,U(x)) · ∇Pi,U(x)−G (Pi,U(x)) · ∇Pi,σ(x) dx

(2.3.22)

where Pi,U is the reconstruction approximation function at time t of Ui(t) at cell Vi defined
using the stencil Bi:

Pi,U(x) = Pi (x; {Uj(t)}j∈Bi) ,

and Pi,σ is the reconstruction approximation function of σ. The functions U±ij (γ, t) are
given by

U−ij (γ, t) = lim
x→γ

Pi,U(x), U+
ij (γ, t) = lim

x→γ
Pj,U(x),

and σ±ij(γ) are given by

σ−ij(γ) = lim
x→γ

Pi,σ(x), σ+
ij(γ) = lim

x→γ
Pj,σ(x).

Again, as in the 1D case, notice that (2.3.22) is a system of ordinary differential
equations to be solved by using a high order numerical solver with good properties.
In practice the TVD Runge-Kutta schemes are used (see [143], [228]). Other time
discretization can be considered, as ADER schemes developed by Toro and Dumbser
(see [92],[238]).

In practice, the integral terms in (2.3.22) are numerically approached using a high order
quadrature formula, whose order is related to the one of the reconstruction operator (see
[24] for more details). In this case, together with a 1D formula for the integrals on the
edges, it can also be necessary to choose a quadrature formula for the integrals in the
cells.

Concerning the well-balanced properties of the schemes, the 2D extensions of the
1D scheme do not inherit this property in general: this property is only preserved for
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stationary solutions which are essentially 1D and for rectangular and properly oriented
meshes. For the well-balanced properties, the aforementioned choice of the quadrature
rule also plays a fundamental role. Nevertheless, in the case of the shallow-water and the
two-layer systems, the 2D extension of all of the 1D numerical schemes presented here are
well-balanced for water at rest solutions (see [24]).

2.4 Discontinuous Galerkin numerical schemes in

two space dimension

In this section the ADER-DG scheme on rectangular grids with a posteriori subcell finite
volume limiter (SCL) and applied to hyperbolic systems (2.1.2) including a source term
vector S(U),

∂tU +∇ · F (U) +B(U) · ∇U = G(U) · ∇σ + S(U) (2.1.2)

is briefly recalled. For more details, the reader is referred to [98],[261].

The PDE system (2.1.2) is solved by the aid of a high order one-step ADER-DG
method, which provides at the same time high order of accuracy in both space and
time in one single step, without the need of any intermediate Runge-Kutta stages.
The construction of fully-discrete high order one-step schemes is typical of the ADER
approach, which was introduced by Toro and Titarev in the finite volume context,
see [237],[244],[238],[241].

The scheme is written under the form of a one-step predictor corrector method [132],
where the predictor step solves (2.1.2) within each element in the small (see also [150])
by means of an element-local space-time discontinuous Galerkin scheme. The corrector
step is obtained by directly integrating a weak form of the governing PDE in time by the
aid of the predictor. In the following we only summarize the main steps, while for more
details the reader is referred to [93],[155],[132],[12].

2.4.1 Data representation and spatial discretization

Similarly as in Subsection 2.3.1 we recall some of the nomenclature that will be used.

The computational domain Ω is covered with a set of non-overlapping Cartesian control
volumes in space

Vi =

[
xi −

1

2
∆xi, xi +

1

2
∆xi

]
×
[
yi −

1

2
∆yi, yi +

1

2
∆yi

]
,

where the vector xi = (xi, yi) describes the location of the barycentre of cell Vi, and
the index i ranges from 1 to the total number of elements NE. Furthermore, we denote
the vector of the mesh spacings in each direction by ∆xi = (∆xi,∆yi). As usual, the
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computational domain or the main grid is the union of all spatial control volumes, hence

Ω̄ =

NE⋃
i=1

Vi.

Let us introduced the space PN of piecewise polynomials up to degree N , spanned by
the basis functions φl(x), l = (l1, l2) being a multi-index.

In the following, the discrete solution of the PDE system (2.1.2) for the state vector
U, as well as the known parameter function σ, are represented within each cell Vi of the
main grid by piecewise polynomials of maximum degree N ≥ 0

Uh(x, t) = Ui,h(x, t) ∈ PN , i being such that x ∈ Vi,

σh(x) = σi,h(x) ∈ PN , i being such that x ∈ Vi,
where

Ui,h(x, tn) = Ûn
i,lφl(x) :=

N+1∑
l=1

Ûn
i,lφl(x), x ∈ Vi,

σi,h(x) = σ̂i,lφl(x) :=
N+1∑
l=1

σ̂i,lφl(x), x ∈ Vi,
(2.4.1)

where Uh (and σh) is referred to as the discrete “representation” of the solution (known
parameter function resp.) and the Einstein summation convention for repeated indexes
is introduced.

In this thesis, we adopt a nodal basis for the spatial basis functions

φl(x) = ϕl1(ξ)ϕl2(ζ).

The nodal basis is generated via tensor products of one-dimensional nodal basis functions
ϕk(ξ) on the reference interval [0, 1], for which we have used the Lagrange interpolation
polynomials of maximum degree N passing through the Gauss-Legendre quadrature
nodes. The transformation from physical coordinates x ∈ Vi to reference coordinates
ξ = (ξ, ζ) ∈ [0, 1]d is given by the linear mapping x = xi − 1

2
∆xi + (ξ∆xi, ζ∆yi)

T . With
this choice, the nodal basis functions satisfy the interpolation property ϕk(ξj) = δkj, where
δkj is the usual Kronecker symbol, and the resulting basis is by construction orthogonal.
Furthermore, due to this particular choice of a nodal tensor-product basis, the entire
scheme can be written in a dimension-by-dimension fashion, where all integral operators
can be decomposed into a sequence of one-dimensional operators acting only on the N +1
degrees of freedom in the respective dimension.

2.4.2 ADER-DG space-time predictor

As already mentioned previously, the element-local space-time predictor is an important
key feature of ADER-DG schemes and is briefly discussed in this subsection. The
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computation of the predictor solution is based on a weak formulation of the governing
PDE system in space-time and was first introduced in [93],[91]. Starting from the known
solution Uh(x, tn) at time tn and following the terminology of Harten et al. [150], we solve
a so-called Cauchy problem in the small, i.e. without considering the interaction with the
neighbour elements. In the ENO scheme of Harten et al. [150] and in the original ADER
approach of Toro and Titarev [244],[238],[241] the strong differential form of the PDE was
used, together with a combination of Taylor series expansions and the so-called Cauchy-
Kovalewskaya procedure. The latter is very cumbersome or gets even unfeasible, since it
requires a lot of analytic manipulations of the governing PDE system, in order to replace
time derivatives with known space derivatives at time tn. This is achieved by successively
differentiating the governing PDE system with respect to space and time and inserting
the resulting terms into the Taylor series. Instead of, the local space-time discontinuous
Galerkin predictor introduced in [93],[91], requires only point–wise evaluations of the
fluxes, source terms and nonconservative products.

For each element Vi we denote the predictor solution qh that is a solution of a weak
formulation of the governing PDE system within each space-time control volume Vi ×
[tn, tn+1]. The predictor is now expanded in terms of a local space-time basis

qh(x, t) = qi,h(x, t), i being such that (x, t) ∈ Vi × [tn, tn+1],

where
qi,h(x, t) = q̂i,lθl(x, t) :=

∑
l

q̂i,lθl(x, t), (x, t) ∈ Vi × [tn, tn+1] (2.4.2)

with the multi-index l = (l0, l1, l2) and where the space-time basis functions

θl(x, t) = ϕl0(τ)ϕl1(ξ)ϕl2(ζ)

are again generated from the same one-dimensional nodal basis functions ϕk(ξ) as before,
i.e. the Lagrange interpolation polynomials of maximum degree N passing through N +1
Gauss-Legendre quadrature nodes. The spatial mapping x = x(ξ) is also the same as
before and the physical time is mapped to the reference time τ ∈ [0, 1] via t = tn + τ∆t.
In the predictor step, and for each (x, t) ∈ Vi × [tn, tn+1], we use the ansatz

∇ · F (qi,h(x, t)) = θl(x, t)∇̂ · F i,l,

B(qi,h(x, t)) · ∇qi,h(x, t) = θl(x, t)B̂ · qi,l,

G(qi,h(x, t)) · ∇σi,h(x) = θl(x, t)Ĝ · ∇σi,l,

S(qi,h(x, t)) = θl(x, t)Ŝi,l,
where the gradient of fluxes the nonconservative products and the source terms are
expressed in the space time basis. For example, Ŝi,l denote the degree of freedom of
S(qi,h(x, t)) when is represented in the space-time basis {θl}.
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Thus, if one employs a nodal basis, one simply has

∇̂ · F i,l = (∇ · F (q))|q=q̂i,l , (2.4.3)

B̂ · qi,l = (B(q) · ∇q)|q=q̂i,l , (2.4.4)

Ĝ · ∇σi,l = G(q̂i,l) · (∇σ)|σ=σ̂i,l
(2.4.5)

Ŝi,l = S(q̂i,l), (2.4.6)

which is computationally more efficient than L2-projection via Gaussian quadrature
formulae.

Multiplication of the PDE system (2.1.2) with a space-time test function θk and
integration over the space-time control volume Vi × [tn, tn+1] yields the following weak
form of the governing PDE:

tn+1∫
tn

∫
Vi

θk(x, t)

(
∂tqi,h(x, t) +∇ · F (qi,h(x, t))

)
dx dt

+

tn+1∫
tn

∫
Vi

θk(x, t)

(
B(qi,h(x, t)) · ∇qi,h(x, t)−G(qi,h(x, t)) · ∇σi,h

)
dx dt

=

tn+1∫
tn

∫
Vi

θk(x, t)

(
S(qi,h(x, t))

)
dx dt .

(2.4.7)

Since we are only interested in an element local predictor solution, i.e. without
considering interactions with the neighbour elements we do not yet take into account
the jumps in qh across the element interfaces, since this will be done in the final corrector
step of the ADER-DG scheme. Instead, we introduce the known discrete solution Uh(x, tn)
at time tn. For this purpose, the first term is integrated by parts in time. This leads to

∫
Vi

θk(x, tn+1)qi,h(x, tn+1)− θk(x, tn)Ui,h(x, tn) dx−
tn+1∫
tn

∫
Vi

qi,h(x, t)∂tθk(x, t) dx dt

+

tn+1∫
tn

∫
Vi

θk(x, t)

(
∇ · F (qi,h(x, t)) +B(qi,h(x, t)) · ∇qi,h(x, t)

)
dx dt

=

tn+1∫
tn

∫
Vi

θk(x, t)

(
G(qi,h(x, t)) · ∇σi,h + S(qi,h(x, t))

)
dx dt

(2.4.8)
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Using the local space-time ansatz (2.4.2)-(2.4.6) along with the Einstein summation
convention, the equation (2.4.8) in a given element Vi becomes an element-local nonlinear
system for the unknown degrees of freedom q̂i,l of the space-time polynomials qh

∫
Vi

θk(x, tn+1)θl(x, tn+1) dx−
tn+1∫
tn

∫
Vi

θl(x, t)∂tθk(x, t) dx dt

 q̂i,l

=

∫
Vi

θk(x, tn)φl(x) dx

 q̂ni,l −
tn+1∫
tn

∫
Vi

θk(x, t)

(
∇̂ · F i,l + B̂ · qi,l − Ĝ · σi,l

)
dx dt

+

tn+1∫
tn

∫
Vi

θk(x, t)Ŝi,l dx dt

(2.4.9)
The solution of (2.4.9) can be easily found via a simple and fast converging fixed point
iteration detailed e.g. in [93],[155] for the degrees of freedom q̂i,l.

For linear homogeneous systems, the iteration converges in a finite number of at
most N + 1 steps. We emphasize that the choice of an appropriate initial guess
q0
h(x, t) for qh(x, t) is of fundamental importance to obtain a faster convergence and

thus a computationally more efficient scheme. For this purpose, one can either use an
extrapolation of qh from the previous time interval [tn−1, tn], as suggested e.g. in [260], or
one can employ a second-order accurate MUSCL-Hancock-type approach, as forwarded
in [155], which is based on discrete derivatives computed at time tn. As alternative, one
can also use a Taylor series expansion of the solution qh(x, t) about time tn and then
use a continuous extension Runge-Kutta scheme (CERK) in order to generate the initial
guess for the space-time predictor, as recently pointed out in [115]. For details, see [115]
and [204],[132]. If an initial guess with polynomial degree N − 1 in time is chosen, it is
sufficient to use one single Picard iteration to solve (2.4.9) to the desired accuracy, see
[91]. For an efficient task-based formalism of ADER-DG schemes, see [59].

2.4.3 Fully discrete one-step ADER-DG scheme

With the aid of the local space-time predictor qh, a fully discrete one-step ADER-
DG scheme can now be simply obtained by multiplication of the governing PDE
system (2.1.2) by the space test functions φk, and subsequent integration over the space-
time control volume Vi × [tn, tn+1]. Due to the presence of nonconservative products,
and that qh, is allowed to jump across element interfaces, the resulting jump terms
have to be taken properly into account. In this context, this is achieved via numerical
flux functions (approximate Riemann solvers) and via the path-conservative approach
previously presented (see [216],[92],[95]).
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Let nij ∈ S1 denote the normal unit vector at the edge Eij pointing towards the cell
Vj. According to the framework of path-conservative schemes, the path-conservative jump
term in normal direction is defined as in (2.3.9). This jump term, denoted by D−Φ is a
function of the boundary-extrapolated data:

D−Φ ≡ D−Φ(qi,h, qj,h,nij),

where qi,h and qj,h are the extrapolated degree of freedoms of the space-time predictor qi,h
and qi,h to same edge Eij respectively.

Thus, we obtain the following path-conservative one-step ADER Discontinuous
Galerkin (ADER-DG) scheme for the unknown U , see [92]:∫

Vi

φkφl dx

(Ûn+1
i,l − Ûn

i,l

)
+
∑
j∈Ni

tn+1∫
tn

∫
Eij

D−Φ(qi,h(γ, t), qj,h(γ, t),nij) dγ dt

+

tn+1∫
tn

∫
V ◦i

φk (∇ · F (qi,h) +B(qi,h) · ∇qi,h −G(qi,h) · ∇σi,h − S(qi,h)) dx dt = 0,

(2.4.10)
where qi,h is the local space-time predictor computed at the previous space-time predictor.
The first integral leads to the element mass matrix, which is diagonal since our basis is
orthogonal. The boundary integral contains the approximate Riemann solver and accounts
for the jumps across element interfaces. The last volume integral account for the smooth
part of the flux, the nonconservative product, and the algebraic source terms.

We also recall that, having selected the nodal points in this way, we will compute the
volume integrals through Gaussian quadrature rules, that is known to be exact for all
polynomials up to degree 2N + 1.

Concerning the surface integral that appears in (2.4.10), it can be simply evaluated via
some sufficiently accurate numerical quadrature formula. We typically use a the Gauss-
Legendre quadrature rule. Here, the time integral is approximated by the rectangle rule,
that is by using the information at the time level tn. This will leads us to a simplification
of the final numerical scheme. Since this integral contribution is a term of order O(∆x)N

for smooth solutions, then the order of accuracy of the numerical scheme is maintained
for regular solutions. Nevertheless, in [92] an alternative strategy to compute the time
integral is discussed.

2.4.4 A posteriori subcell finite volume limiter

In regions where the discrete solution is smooth, there is indeed no need for using nonlinear
limiters.

However, there are some situations where we have to supplement the high order
unlimited ADER-DG method described above with a nonlinear limiter (e.g in the presence
of shock waves, discontinuities or strong gradients).
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In order to build a simple, robust and accurate limiter, we follow the ideas outlined in
[98],[261],[96],[17], where a novel a posteriori limiting strategy for ADER-DG schemes was
developed, based on the ideas of the MOOD paradigm introduced in [64],[88],[89],[173] in
the finite volume context. In a first run, the unlimited ADER-DG scheme is used and
produces a so-called candidate solution, denoted by U∗h(x, tn+1) in the following. This
candidate solution is then checked a posteriori against several physical and numerical
detection criteria. For example, we require some relevant physical quantities of the
solution to be positive (e.g. pressure and density or the total water depth in the case
of shallow water flows), we require the absence of floating point errors (NaN) and we
impose a relaxed discrete maximum principle (DMP) in the sense of polynomials, see
[98]. As soon as one of these detection criteria are not satisfied, a cell is marked as
troubled zone and is scheduled for limiting. The details of the MOOD detection criteria
introduced in [173] will be described in the next subsection.

A cell Vi that has been marked for limiting is now split into (2N + 1)d finite volume
subcells, which are denoted by Vi,s and that satisfy

Vi =
⋃
s

Vi,s. (2.4.11)

Note that this very fine division of a DG element into finite volume subcells does not
reduce the time step of the overall ADER-DG scheme, since the CFL number of explicit
DG schemes scales with 1/(2N + 1), while the CFL number of finite volume schemes
(used on the subgrid) is of the order of unity. The discrete solution in the subcells Vi,s is
represented at time tn in terms of piecewise constant subcell averages U

n

i,s, i.e.

U
n

i,s =
1

|Ωi,s|

∫
Ωi,s

U(x, tn) dx . (2.4.12)

These subcell averages are now evolved in time with a second or third order accurate
finite volume scheme, where the ODE in time can be numerically solved via a standard
TVD Runge-Kutta method (see [142]).

Once all subcell averages U
n+1

i,s inside a cell Vi have been computed according to the
finite volume numerical scheme, the limited DG polynomial U ′h(x, tn+1) at the next time
level is obtained again via a classical constrained least squares reconstruction procedure
requiring

1

|Ωi,s|

∫
Ωi,s

U ′h(x, tn+1) dx = U
n+1

i,s ∀Ωi,s ∈ Ωi, (2.4.13)

and ∫
Ωi

U ′h(x, tn+1) dx =
∑

Ωi,s∈Ωi

|Ωi,s|U
n+1

i,s . (2.4.14)

Here, the second relation is a constraint and means conservation at the level of the control
volume Ωi.
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Detection criteria

In this dissertation, we apply the following detection criteria at each volume cell Vi (see
[64],[88],[89],[173]):

+ Physical admissibility detection (PAD): The detection criteria contains physic-based
admissibility properties. In our case, we must ensured the positivity of the total
water depth and hence, a candidate solution U

∗
i,s is said to be physically valid inside

the cell Vi for this system if

h
∗
i,s > 0, ∀s ∈ Si, (2.4.15)

where Si accounts for the degree of freedom of the DG polynomial on the cell Vi,
and h is a given total water depth variable. Furthermore, the candidate solution
U
∗
i,s is explicitly checked for the occurrence floating point errors, i.e. not-a- number

(NaN ) values that may have been produced by non-physical divisions by zero or by
taking roots of negative numbers.

+ Numerical admissibility detection (NAD): In the past, the discrete maximum
principle (DMP) was a very successful guideline for the construction of high
resolution shock capturing schemes. In this dissertation, we therefore use the
following relaxed discrete version of a discrete maximum principle, which takes
into account the data representation of the DG method under the form of piecewise
polynomials. The DMP is applied in an a posteriori manner as follows. A candidate
solution U

∗
i,s is said to fulfill the numerical admissibility detection criterion in cell

Vi in cell Vi if the following relation is fulfilled component-wise for all conserved
variables:

min
ī∈Vi, s̄∈Si

U
n

ī,s̄ − δ ≤ U
∗
i,s ≤ max

ī∈Vi, s̄∈Si
U
n

ī,s̄ + δ, ∀s ∈ Si, (2.4.16)

where Vi denote the Voronoi neighbourhood of cell Vi, i.e. the cells that share at
least a common node with Vi. The small number δ is a parameter used to relax the
discrete maximum principle thus allowing for very small undershoots and overshoots,
which permits to maintain a good accuracy when dealing with smooth extrema. The
value used in [98] and adopted in this thesis is

δ = max

(
ε0, ε

(
max

ī∈Vi, s̄∈Si

(
U
n

ī,s̄

)
− min

ī∈Vi, s̄∈Si

(
U
n

ī,s̄

)))
, (2.4.17)

where we set ε = 10−3 and ε0 = 10−4. In other words, parameter δ defined allows
the occurrence of new extrema. New extrema do not exceed one thousandth of the
local jump at time tn in the neighbourhood of the current cell. The value ε0 is
needed in the case where the jump is zero.

This completes the brief description of the subcell finite volume limiter used in this
thesis.
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In this chapter the numerical methods employed to solve the PDE systems presented
in Chapter 1 are described.

First, in Section 3.1 the numerical scheme employed to discretize the one-layer
non-hydrostatic pressure system (YAM) is described. The numerical scheme is based
on a projection-correction technique, wherein a first step the underlying hydrostatic
system (SWE) is solved by means of a finite volume scheme. Then, in a second step,
the non-hydrostatic terms are included using a finite difference discretization. In this
case, a staggered-grid is considered that contains the point values of the non-hydrostatic
pressure and vertical velocity. The results of this section as well as the extension to
bidimensional domains from Section 3.2, have been published by Escalante et al. in [112].

In Section 3.3 the numerical scheme employed to discretize the two-layer non-
hydrostatic pressure system (NH-2L) is described. Similarly to the previous case, the
scheme is based on a projection-correction technique, wherein a first step the underlying
hydrostatic system (SWE-2L) is solved using a finite volume scheme. In a second step,
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the non-hydrostatic terms are included employing a finite difference discretization. In this
case, staggered-grids are not considered, and the non-hydrostatic pressure and vertical
velocities variables are approximated as point values approximation in the centre of each
finite volume cell. The results of this section have been recently submitted by Escalante
et al. [118].

The system (NHyp) is discretized in Section 3.4. Note that, this non-hydrostatic
pressure system is hyperbolic. Thus, it can be solved explicitly under a usual CFL
restriction with a finite volume numerical scheme.

Finally, a Discontinuous Galerkin numerical scheme for the system (NHyp) will be
described in Section 3.5. Since a non-linear limiter is needed, we will describe the a
posteriori subcell finite volume limiter strategy adopted to limit numerical solution in
presence of discontinuities, strong gradients or in the presence of wetting and drying
fronts. To do that, we will use the previously described finite volume numerical scheme.
The results of this section have been recently submitted by Escalante et al. [111] and are
under a minor revision process.

In the subsequent Sections 3.1 to 3.5, for the sake of clarity, the corresponding
numerical schemes are described for a fixed bed, that is:

∂tH = 0. (3.0.1)

The extension of the proposed numerical schemes to the case of moving bottom is
straightforward.

Furthermore, in Sections 3.1 to 3.4 the source term vector that contains friction,
breaking and in the case of the system (NHyp), some non-hydrostatic terms, is set initially
to zero:

S(U) = 0, (3.0.2)

and later, it will be taken into account in a semi-implicit manner.
However, In Section 3.5 the source term is treated in a different way, that will be

explained later.

3.1 An implicit projection-correction finite volume

discretization of the system (YAM) on a staggered

mesh

We describe now the numerical scheme used to discretize the system (YAM) with the
assumptions made in (3.0.1) and (3.0.2). The numerical scheme employed is based on
a two-step projection-correction method. First, we shall solve the underlying hyperbolic
system (SWE) given by

∂tU + ∂xF (U) = G(U)∂xH, (SWE)
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where U , F and G are defined in (SWE). Then, in a second step, non-hydrostatic terms
will be taken into account. System (SWE) is discretized by a second order finite volume
PVM positive-preserving well-balanced path-conservative method to be detailed in the
next subsection. As usual, we consider a set of Nx finite volume cells Ii = [xi−1/2, xi+1/2]
with constant lengths ∆x and define

Ui(t) =
1

∆x

∫
Ii

U(x, t) dx,

the cell average of the function U(x, t) on cell Ii at time t. Regarding non-hydrostatic
terms, we consider a staggered-grid (see Figure 3.1) formed by the points xi−1/2, xi+1/2

of the interfaces for each cell Ii, and denote the point values of the functions p and w on
point xi+1/2 at time t by

pi+1/2(t) = p(xi+1/2, t), wi+1/2(t) = w(xi+1/2, t).

Non-hydrostatic terms will be approximated by second order compact finite differences.

Figure 3.1: Numerical scheme stencil. Up: finite volume mesh. Down: staggered mesh
for finite differences.

Time stepping

Assume given time steps ∆tn, and denote tn =
∑

j≤n ∆tj. To obtain second order accuracy
in time, the two-stage second-order TVD Runge-Kutta scheme [142] is adopted. At the
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kth stage, k ∈ {1, 2}, the two-step projection-correction method is given by

U (k̃) − U (k−1)

∆t
+ ∂xF (U (k−1)) = G(U (k−1))∂xH,

U (k) − U (k̃)

∆t
= T (U (k), ∂xU

(k), P (k), ∂xP
(k), H, ∂xH)

w(k) − w(k−1)

∆t
= 2

p(k)

h(k)

I(U (k), ∂xU
(k), H, ∂xH,w

(k)) = 0

(3.1.1a)

(3.1.1b)

(3.1.1c)

(3.1.1d)

where U (0) is U at the time level tn, U (k̃) is an intermediate value in the two-step projection-
correction method that contains the numerical solution of the hydrostatic system (SWE)
(system (3.1.1a)) at the corresponding kth stage of the Runge-Kutta, and U (k), w(k) are
the kth stage estimate. After that, a final value of the solution at the tn+1 time level is
obtained:

Un+1 =
1

2
Un +

1

2
U (2). (3.1.2)

Note that, equations (3.1.1b)-(3.1.1d) require, at each stage of the calculation, to solve a
Poisson-like equation on the non-hydrostatic pressure p(k). This will be described bellow.

For the computation of the time step the usual CFL restriction is considered given by

∆t < CFL
∆x

|λmax|
, 0 < CFL ≤ 1, |λmax| = max

i∈{1,...,Nx}

{
|ui|+

√
ghi

}
. (3.1.3)

Finite volume discretization for the underlying hyperbolic system

A second order path-conservative PVM scheme based on reconstruction operator for the
discretization in space of the system (3.1.1a) is considered. To do so, we consider here
a Roe linearization based on the simple straight-line segment path for the conserved
variables. Following the high order numerical scheme in space (2.2.49) and approximating
the ODE in time, we obtain the following numerical scheme that at the kth stage of the
Runge-Kutta method reads:

U
(k̃)
i = U

(k−1)
i − ∆t

∆x

(
D

(k−1),−
i+1/2 +D

(k−1),+
i−1/2 + I(k−1)

i

)
, (3.1.4)
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where, skipping the time dependence in k to relax the notation, D±i+1/2 is given by a PVM

path-conservative scheme (see (2.2.37))

D±i+1/2 = D±i+1/2(U−i+1/2, H
−
i+1/2, U

+
i+1/2, H

+
i+1/2) =

=
1

2

(
F (U+

i+1/2)− F (U−i+1/2)−Gi+1/2

(
H+
i+1/2 −H

−
i+1/2

))
± 1

2
Qi+1/2

(
U+
i+1/2 − U

−
i+1/2 − A

−1
i+1/2Gi+1/2

(
H+
i+1/2 −H

−
i+1/2

))
,

(3.1.5)

where

Gi+1/2

(
H+
i+1/2 −H

−
i+1/2

)
=

 0

gh̃i+1/2

(
H+
i+1/2 −H

−
i+1/2

) ,

is obtained from (2.2.30). U±i+1/2 is the vector defined by a reconstruction procedure on

the variables to the left (−) and right (+) of the inter-cell xi+1/2. This reconstruction
procedure is done using a MUSCL reconstruction operator, combined with a minmod
limiter as detailed in (2.2.50)-(2.2.52). The MUSCL reconstruction operator also takes
into account the positivity of the water height. Finally, as explained in Subsection 2.2.4,
the variable H±i+1/2 is recovered from H±i+1/2 = h±i+1/2 − η

±
i+1/2.

Qi+1/2 is the viscosity matrix associated to PVM-1U(SL, SR) or HLL method. In this
case, as in (2.2.39) Qi+1/2 is obtained by a polynomial evaluation of the Roe Matrix

Qi+1/2 = α0Id+ α1Ai+1/2,

where

Ai+1/2 =

(
0 1

−ũ2
i+1/2 + gh̃i+1/2 2ũi+1/2

)
is the Roe Matrix associated to the flux F (U) of the SWE, h̃i+1/2 and ũi+1/2 being the
Roe averages

h̃i+1/2 =
h+
i+1/2 + h−i+1/2

2
, ũi+1/2 =

u+
i+1/2

√
h+
i+1/2 + u−i+1/2

√
h−i+1/2√

h+
i+1/2 +

√
h−i+1/2

,

α0, α1 are given by

α0 =
SR|SL| − SL|SR|

SR − SL
, α1 =

|SR| − |SL|
SR − SL

.

where SL, SR are estimates of the smallest and biggest wave speeds respectively at the
interface xi+1/2, as it is usually considered for such methods:

SL = min

(
u−i+1/2 −

√
gh−i+1/2, ũi+1/2 −

√
gh̃i+1/2

)
,
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SR = max

(
ũi+1/2 +

√
gh̃i+1/2, u

+
i+1/2 +

√
gh+

i+1/2

)
.

Notice that the term
Qi+1/2A

−1
i+1/2Gi+1/2

(
H+
i+1/2 −H

−
i+1/2

)
in (3.1.5) can be interpreted as the up-winding part of the source term discretization and
that the contribution

α0A
−1
i+1/2Gi+1/2

(
H+
i+1/2 −H

−
i+1/2

)
makes no sense if any of the eigenvalues of Ai+1/2 vanishes. In this case the problem is
said to be resonant. Resonant problems exhibit an additional difficulty, as weak solutions
may not be uniquely determined by their initial data. In this thesis we follow the strategy
described in [46], where Ai+1/2 is replaced by an appropriate matrix A∗i+1/2

A∗i+1/2 =

(
0 1

gh̃i+1/2 0

)
.

After applying this technique, one has

α0

(
U+
i+1/2 − U

−
i+1/2 − A

−1
i+1/2Gi+1/2

(
H+
i+1/2 −H

−
i+1/2

))
= α0

η+
i+1/2 − η

−
i+1/2

q+
i+1/2 − q

−
i+1/2

 .

Let us introduce the following notation:

Ri+1/2 = FC(U+
i+1/2)− FC(U−i+1/2) + Tp,i+1/2,

where FC is the convective flux and Tp,i+1/2 contains the pressure terms:

FC(U) =

 q

q2

h

 , Tp,i+1/2 =

 0

gh̃i+1/2

(
η+
i+1/2 − η

−
i+1/2

) .

Thus, one can rewrite D±i+1/2 as

D±i+1/2 =
1

2

(
(1± α1)Ri+1/2 ± α0

η+
i+1/2 − η

−
i+1/2

q+
i+1/2 − q

−
i+1/2

).
Finally, the last term Ii in (3.1.4) comes from the volume integral that appears

in (2.2.49). Notice that the integral in (2.2.49)∫
Ii

∂xF [Pi,U(x)]−G[Pi,U(x)]
dPi,H
dx

(x) dx
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can be written as ∫
Ii

∂xFC [Pi,U(x)] +

 0

gPi,h(x)
dPi,η
dx

(x)

 dx.

Taking into account that Pi,h(x) and Pi,η(x) are lineal functions, Ii can be written as

Ii = FC(U−i+1/2)− FC(U+
i−1/2) +

 0

ghi

(
η−i+1/2 − η

+
i−1/2

) ,

where the integral of the pressure term has been exactly computed using a mid-point
quadrature rule.

Remark 3.1.1. The numerical scheme ( 3.1.4) considered for the underlying hyperbolic
system is well-balanced for the steady state water at rest solutions

η = h−H = cst, u = 0,

and linearly L∞ − stable under the usual CFL condition (3.1.3). Moreover the scheme is

positive preserving for the water height for a smooth bathymetry under
1

2
CFL condition.

Finite difference discretization for the non-hydrostatic terms

In this subsection we describe the discretization of the non-hydrostatic terms. From
equations (3.1.1b)–(3.1.1d), for every k ∈ {1, 2} of the Runge-Kutta stage, we get

h
(k)
i = h

(k̃)
i ,

q
(k)
i = q

(k̃)
i −∆t

(
h

(k)
i ∂xp

(k)
i + p

(k)
i ∂x

(
2η

(k)
i − h

(k)
i

))
,

w
(k)
i+1/2 = w

(k−1)
i+1/2 + ∆t

p
(k)
i+1/2

h
(k)
i+1/2

,

h
(k)
i+1/2∂xq

(k)
i+1/2 − q

(k)
i+1/2∂x

(
2η

(k)
i+1/2 − h

(k)
i+1/2

)
+ 2h

(k)
i+1/2w

(k)
i+1/2 = 0,

(3.1.6a)

(3.1.6b)

(3.1.6c)

(3.1.6d)
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where we will use a second order point value approximation in the center of the cell to
compute ∂xhi, ∂xηi, pi and ∂xpi as follows:

∂xhi =
hi+1 − hi−1

2∆x
, ∂xηi =

ηi+1 − ηi−1

2∆x
,

pi =
pi+1/2 + pi−1/2

2
, ∂xpi =

pi+1/2 − pi−1/2

∆x
.

(3.1.7)

In a similar way, second order point value approximations of hi+1/2, ∂xhi+1/2, ∂xηi+1/2,
qi+1/2, ∂xqi+1/2, on the staggered-grid will be computed from the approximations of the
average values on the cell Ii and Ii+1 as follows:

hi+1/2 =
hi+1 + hi

2
, ∂xhi+1/2 =

hi+1 − hi
∆x

, ∂xηi+1/2 =
ηi+1 − ηi

∆x
,

qi+1/2 =
qi+1 + qi

2
, ∂xqi+1/2 =

qi+1 − qi
∆x

.

(3.1.8)

Substituting equations (3.1.6b)-(3.1.6c) into (3.1.6d), we obtain a discrete Poisson-like
linear system for the non-hydrostatic pressure:

AP =RHS, (3.1.9)

where A is a tridiagonal matrix. The matrix A as well as the Right Hand Side vector
RHS are given in Appendix B. We would also like to stress the dependency of A

and RHS on the variables U ≡ U (k̃) and w ≡ w(k̃). P is a vector containing the non-
hydrostatic pressure values p

(k)
i+1/2.

The linear system is efficiently solved using the Thomas algorithm [236]. Once the non-

hydrostatic pressure terms p
(k)
i+1/2 have been computed, the discharges q

(k)
i as well as the

vertical velocities w
(k)
i+1/2 can be updated from equations (3.1.6b)-(3.1.6c), where in a

similar way, a second order point value approximation in the centre of the cell will be
used.

Final numerical scheme

For the sake of clarity, a guideline of the final numerical scheme will be highlighted in what
follows. For every kth stage k ∈ {1, 2} of the Runge-Kutta method, the problem (YAM)
is split into two parts. A two-step projection-correction method on staggered grids is
used:

• Finite volume step (solving the hydrostatic system): From (3.1.4), solve explicitly
the System (SWE) at the kth stage of the Runge-Kutta:

U
(k̃)
i = U

(k−1)
i − ∆t

∆x

(
D

(k−1),−
i+1/2 +D

(k−1),+
i−1/2 + I(k−1)

i

)
,
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by means of a PVM path-conservative finite volume scheme (3.1.4) combining

a MUSCL reconstruction operator to obtain the intermediate value U
(k̃)
i in the

two-step projection-correction method that contains the numerical solution of the
System (SWE).

• Finite Difference step (non-hydrostatic pressure correction):

+ Solve the discrete Poisson-like linear system (3.1.9) to obtain the non-
hydrostatic pressures

p
(k)
i+1/2.

To do so, we use:

∗ Second order point value approximations in the center of the cell of ∂xhi,
∂xηi, pi and ∂xpi computed from the averaged values to compute (3.1.6b).

∗ Second order point value approximations of hi+1/2, ∂xhi+1/2, ∂xηi+1/2,
qi+1/2, ∂xqi+1/2, on the staggered-grid that are computed from the
approximations of the average values on the cell Ii and Ii+1 to compute
(3.1.6d).

+ With the computed non-hydrostatic pressure terms p
(k)
i+1/2, the horizontal

discharge as well as the vertical velocity can be updated from (3.1.6b)–(3.1.6d).
Notice that in order to update the horizontal discharge, a second order point
value approximation in the centre of the cell will be used using (3.1.7).

Finally,

Un+1 =
1

2
Un +

1

2
U (2).

Remark 3.1.2. In order to include friction with the bottom and the breaking mechanism,
the source term S(U) is discretized in a semi-implicit way at the end of the second step
of the proposed numerical scheme, at each Runge-Kutta stage.

Remark 3.1.3. Since non-hydrostatic, friction and breaking terms appear only in the
momentum equations, the final numerical scheme is well-balanced for the water at rest
solutions

η = h−H = cst, u = w = p = 0,

and positive preserving for the water height for a smooth bathymetry under
1

2
CFL

condition.
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3.2 An implicit projection-correction finite volume

discretization of the system (YAM-2D) on a stag-

gered mesh

We describe now the extension of the previously described numerical scheme in two space
dimension used to discretize the system (YAM-2D) with the assumptions made in (3.0.1)
and (3.0.2). The numerical scheme employed is based on a two-step projection-correction
method. First, we shall solve the underlying hyperbolic system (SWE-2D) given by

∂tU +∇ · F (U) = G(U) · ∇H, (SWE-2D)

where U , F and G are defined in (SWE-2D). Then, in a second step, non-hydrostatic
terms will be taken into account. System (SWE-2D) is discretized by a second order
finite volume PVM positive-preserving well-balanced segment path-conservative method
to be detailed in the next subsection. As usual, let us consider a set of NE = Nx × Ny

non-overlapping Cartesian control volumes

Vij =

[
xi −

1

2
∆x, xi +

1

2
∆x

]
×
[
yj −

1

2
∆y, yj +

1

2
∆y

]
,

i, j denote a multi-index

i = 1, . . . , Nx, j = 1, . . . , Ny.

Let us define Uij(t) the constant approximation to the average of the solution in the cell
Vij at time t :

Uij(t) ∼=
1

|Vij|

∫
Vij

U(x, t) dx.

Regarding non-hydrostatic terms, we will use one common arrangement of the variables,
known as the Arakawa C-grid (See Figure 3.2). This is an extension of the procedure used
for the 1D case. Variables p and w will be computed at the intersection of the edges:

pi+1/2j+1/2(t) = p

(
xi +

1

2
∆x, yj +

1

2
∆y, t

)
, wi+1/2j+1/2(t) = w

(
xi +

1

2
∆x, yj +

1

2
∆y, t

)
.

We will also use second order point-value approximations of the non-hydrostatic pressure
and vertical velocity at the center of the cell:

pij(t) = p(xi, yj, t), wij(t) = w(xi, yj, t).

Non-hydrostatic terms will be approximated by second order compact finite differences.
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Figure 3.2: Numerical scheme stencil

Time stepping

Assume given time steps ∆tn, and denote tn =
∑

j≤n ∆tj. To obtain second order accuracy
in time, the two-stage second-order TVD Runge-Kutta scheme [142] is adopted. At the
kth stage, k ∈ {1, 2}, the two-step projection-correction method is given by

U (k̃) − U (k−1)

∆t
+∇ · F (U (k−1)) = G(U (k−1)) · ∇H,

U (k) − U (k̃)

∆t
= T (U (k),∇U (k), p(k),∇p(k), H,∇H)

w(k) − w(k−1)

∆t
= 2

p(k)

h(k)

I(U (k),∇U (k), H,∇H,w(k)) = 0

(3.2.1a)

(3.2.1b)

(3.2.1c)

(3.2.1d)

where U (0) is U at the time level tn, U (k̃) is an intermediate value in the two-step
projection-correction method that contains the numerical solution of the hydrostatic
system (SWE-2D) (system (3.2.1a)) at the corresponding kth stage of the Runge-Kutta,
and U (k), w(k) are the kth stage estimate. After that, a final value of the solution at the
tn+1 time level is obtained:

Un+1 =
1

2
Un +

1

2
U (2). (3.2.2)
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Note that, equations (3.2.1b)-(3.2.1d) requires, at each stage of the calculation respec-
tively, to solve a Poisson-like equation on the non-hydrostatic pressure p(k). This will be
described bellow.

For the computation of the time step the usual CFL restriction is considered given by

∆t < CFL
max (∆x,∆y)

2|λmax|
, 0 < CFL ≤ 1,

|λmax| = max
ij

{
|uij|+

√
ghij, |vij|+

√
ghij

}
.

(3.2.3)

Finite volume discretization for the underlying hyperbolic system

A second order path-conservative PVM scheme based on reconstruction operator for the
discretization in space of the system (3.2.1a) is considered. To do so, we consider here
a Roe linearization based on the simple straight-line segment path for the conserved
variables. Following the high order numerical scheme in space (2.3.22) and approximating
the ODE in time, we obtain the following numerical scheme that at the kth stage of the
Runge-Kutta method reads:

U
(k̃)
ij = U

(k−1)
ij − ∆t

|Vij|
∑
ij∈Nij

∫
Eijij

D
(k−1),−
Φ (W−

ijij
(γ),W+

ijij
(γ),nijij) dγ

− ∆t

|Vij|

∫
Vij

∇ · F (Pij,U(x))−G (Pij,U(x)) · ∇Pij,H(x) dx

(3.2.4)

where D
(k−1),−
Φ (W−

ijij
(γ),W+

ijij
(γ),nijij) is given by a HLL PVM path-conservative scheme

(see (2.3.14)).
In order to compute the surface integral, a numerical quadrature mid-point rule is

used. Thus, the reconstructed states W±
ijij

(γ) are evaluated at the mid-point of each edge.

Concerning the volume integral, let us first rewrite it as in the 1D case as∫
Vij

∇ · F C (Pij,U(x))−G (Pij,U(x)) · ∇Pij,η(x) dx

F C being the convective flux, defined as before. Then, notice that from the divergence
theorem ∫

Vij

∇ · F C (Pij,U(x)) dx =
∑
ij∈Nij

∫
Eijij

FC,nijij(U
−
ijij

(γ)),

which is also approximated numerically by a mid-point quadrature rule at each edge.
Second, note that the term G (Pij,U(x)) ·∇Pij,η(x) is linear due to the use of the MUSCL
operator reconstruction and that of the form of G. Then, the volume integral can be
exactly computed by using a mid-point quadrature rule.
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Remark 3.2.1. The numerical scheme ( 3.2.4) considered for the underlying hyperbolic
system is well-balanced for the steady state water at rest solutions

η = h−H = cst, u = v = 0,

and linearly L∞ − stable under the usual CFL condition (3.2.3). Moreover the scheme is

positive preserving for the water height for a smooth bathymetry under
1

2
CFL condition.

Finite difference discretization for the non-hydrostatic terms

In this subsection we give some guidelines for the discretization of the non-hydrostatic
terms. The details of the scheme can be found in the Appendix C. From equa-
tions (3.2.1b)– (3.2.1d), for every k ∈ {1, 2} of the Runge-Kutta stage, we get

U
(k)
ij = U

(k̃)
ij + ∆tT (U (k),∇U (k), p(k),∇p(k), H,∇H)ij

w
(k)
i+1/2j+1/2 = w

(k−1)
i+1/2j+1/2 + 2∆t

p
(k)
i+1/2j+1/2

h
(k)
i+1/2j+1/2

I(U (k),∇U (k), H,∇H,w(k))i+1/2j+1/2 = 0.

(3.2.5a)

(3.2.5b)

(3.2.5c)

The term T (U (k),∇U (k), p(k),∇p(k), H,∇H)ij appearing in equation (3.2.5a) denote
the point value discretization in the center of the cell Vij of the operator T that is
approximated in space by second order finite differences (see (C.0.1) in the Appendix C).

In the same way, second order point value approximations of equations (3.2.5b) and
(3.2.5c) on the staggered-grid points are computed from the approximations of the average
values on the cell (see (C.0.2) and (C.0.3) in the Appendix C).

System (3.2.5a)–(3.2.5c) leads to solve a penta-diagonal linear system for the unknowns

p
(k)
i+1/2. As for the 1D case, let us remark that the coefficients of the matrices depend on

the variables h(k̃) and η(k̃). Since the resulting coefficients of the matrix are too tedious to
be given here, we shall omit them. A rigorous analysis of the matrices in general is not
an easy task. Nevertheless, in all the numerical computations, we have checked that the
matrices are strictly diagonally dominant. Thus, due to the Gershgorin circle theorem,
the matrices are non-singular for all the test cases shown in this dissertation.

The linear system is solved using an iterative Jacobi method combined with a scheduled
relaxation method following [3].

Remark that the compactness of the numerical stencil and the easy parallelization
of the Jacobi method adapts well to the implementation of the scheme on GPUs
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architectures. Given P a vector that contains the non-hydrostatic pressure unknowns, in
order to define a convergence criteria, as in the 1D case we use

||P (s+1) −P (s)|| < εtol, (3.2.6)

where P (s+1) denotes the k-th approximation of P n+1 given by the Jacobi algorithm. In
the subsequent numerical test performed in this work, εtol is set to 10−8. It is observed
that the Jacobi method converges in a few iterations for the problems tested here.

Once the non-hydrostatic pressure terms p
(k)
i+1/2j+1/2 have been computed, the horizon-

tal discharges can be updated from equation (3.2.5a), where in a similar way, a second
order point value approximation in the centre of the cell will be used (see (C.0.1) in the
Appendix C). Finally, the vertical velocities can be easily updated from (3.2.5b) and
using (C.0.3) for the computation of hi+1/2j+1/2 (See in Appendix C).

Final numerical scheme

For the sake of clarity, a guideline of the final numerical scheme will be highlighted
in what follows. For every kth stage k ∈ {1, 2} of the Runge-Kutta method, the
problem (YAM-2D) is split into two parts. A two-step projection-correction method
on staggered grids is used:

• Finite volume step (solving the hydrostatic system): From (3.2.4), solve explicitly
the System (SWE-2D) at the kth stage of the Runge-Kutta:

U
(k̃)
ij = U

(k−1)
ij − ∆t

|Vij|
∑
ij∈Nij

∫
Eijij

D
(k−1),−
Φ (W−

ijij
(γ),W+

ijij
(γ),nijij) dγ

− ∆t

|Vij|

∫
Vij

∇ · F (Pij,U(x))−G (Pij,U(x)) · ∇Pij,H(x) dx

by means of a PVM path-conservative finite volume scheme (3.2.4) combining

a MUSCL reconstruction operator to obtain the intermediate value U
(k̃)
ij in the

two-step projection-correction method that contains the numerical solution of the
System (SWE-2D).

• Finite Difference step (non-hydrostatic pressure correction):

+ Solve the discrete Poisson-like linear system arising in (3.2.5a)–(3.2.5c) to
obtain the non-hydrostatic pressures

p
(k)
i+1/2.

To do so, we use:
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∗ Second order point value approximations in the center of the cell of the
variables h, η, p and its gradients, computed from the averaged values to
compute (3.2.5a) (See (C.0.1) in the Appendix C).

∗ To compute (3.2.5c), second order point value approximations of h, η, q
and its gradients on the staggered-grid are used (See (C.0.2) in the
Appendix C).

+ With the computed non-hydrostatic pressure terms p
(k)
i+1/2, the horizontal

discharges as well as the vertical velocity can be updated from (3.2.5a)–(3.2.5b).
Notice that in order to update the horizontal discharge, a second order point
value approximation in the centre of the cell will be used (See (C.0.1) in the
Appendix C).

Finally,

Un+1 =
1

2
Un +

1

2
U (2).

3.3 An implicit projection-correction finite volume

discretization of the system (NH-2L)

We describe now the numerical scheme used to discretize the system (NH-2L) with the
assumptions made in (3.0.1) and (3.0.2). The numerical scheme employed is based
on a two-step projection-correction method. First, we shall solve the underlying non-
conservative hyperbolic system (SWE-2L) given by

∂tU + ∂xF (U) +B(U)∂xU = G(U)∂xH, (SWE-2L)

where U , F , B and G are defined in (NH-2L). Then, in a second step, non-hydrostatic
terms will be taken into account. System (SWE-2L) is discretized by a second order finite
volume PVM positive-preserving well-balanced segment path-conservative method to be
detailed in the next subsection. As usual, we consider a set of Nx finite volume cells
Ii = [xi−1/2, xi+1/2] with constant lengths ∆x and define

Ui(t) =
1

∆x

∫
Ii

U(x, t) dx,

the cell average of the function U(x, t) on cell Ii at time t. In this case, we do not
consider a staggered grid as in Subsection 3.1 for the non-hydrostatic term vector defined
in (NH-2L). Instead, we consider the mid-points xi of each cell Ii and denote the point
values of the function P at time t by

Pi(t) = P (xi, t).

Non-hydrostatic terms will be approximated by second order compact finite differences.
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Time stepping

Assume given time steps ∆tn, and denote tn =
∑

j≤n ∆tj. To obtain second order accuracy
in time, the two-stage second-order TVD Runge-Kutta scheme [142] is adopted. At the
kth stage, k ∈ {1, 2}, the two-step projection-correction method is given by



U (k̃) − U (k−1)

∆t
+ ∂xF (U (k−1)) +B(U (k−1))∂xU

(k−1) = G(U (k−1))∂xH,

U (k) − U (k̃)

∆t
= T (U (k), ∂xU

(k), P (k), ∂xP
(k), H, ∂xH)

I(U (k), ∂xU
(k), H, ∂xH) = 0

(3.3.1a)

(3.3.1b)

(3.3.1c)

where U (0) is U at the time level tn, U (k̃) is an intermediate value in the two-step
projection-correction method that contains the numerical solution of the hydrostatic
system (SWE-2L) (system (3.3.1a)) at the corresponding kth stage of the Runge-Kutta,
and U (k) is the kth stage estimate. After that, a final value of the solution at the tn+1

time level is obtained:

Un+1 =
1

2
Un +

1

2
U (2). (3.3.2)

Note that, equations (3.3.1b)-(3.3.1c) requires, at each stage of the calculation
respectively, to solve a Poisson-like system for each one of the variables contained in
P (k). This will be described bellow.

Considering the upper bound for the maximum wave speed estimated in Subsec-
tion (1.2.2)

|λmax| ≤ max
(
|u1|+

√
gh, |u2|+

√
gh
)
,

then the usual CFL condition considered for the computation of ∆t is given by

∆t < CFL
∆x

|λmax|
, 0 < CFL ≤ 1, |λmax| = max

i∈{1,...,Nx}
α∈{1,2}

{
|uα,i|+

√
ghi

}
. (3.3.3)

Finite volume discretization for the underlying hyperbolic system

A second order path-conservative PVM scheme based on reconstruction operator for the
discretization in space of the system (3.3.1a) is considered. To do so, we consider here
a Roe linearization based on the simple straight-line segment path for the conserved
variables. Following the high order numerical scheme in space (2.2.49) and approximating
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the ODE in time, we obtain the following numerical scheme that at the kth stage of the
Runge-Kutta method reads:

U
(k̃)
i = U

(k−1)
i − ∆t

∆x

(
D

(k−1),−
i+1/2 +D

(k−1),+
i−1/2 + I(k−1)

i

)
, (3.3.4)

where, skipping the time dependence in k to relax the notation, D±i+1/2 is given by a PVM

path-conservative scheme (see (2.2.37))

D±i+1/2 = D±i+1/2(U−i+1/2, H
−
i+1/2, U

+
i+1/2, H

+
i+1/2) =

=
1

2

(
F (U+

i+1/2)− F (U−i+1/2) +Bi+1/2

(
U+
i+1/2 − U

−
i+1/2

)
−Gi+1/2

(
H+
i+1/2 −H

−
i+1/2

))
± 1

2
Qi+1/2

(
U+
i+1/2 − U

−
i+1/2 − A

−1
i+1/2Gi+1/2

(
H+
i+1/2 −H

−
i+1/2

))
,

(3.3.5)

where
Gi+1/2

(
H+
i+1/2 −H

−
i+1/2

)
= gh̃i+1/2

(
H+
i+1/2 −H

−
i+1/2

)
(~e2 + ~e3) ,

is obtained after compute the path-integral appearing in (2.2.30), (~ei)j = δi,j being the ith
vector of the canonical basis on R4. Similarly, the path-integral (2.2.29) is approximated
by

Bi+1/2

(
U+
i+1/2 − U

−
i+1/2

)
= B(Ũi+1/2)

(
U+
i+1/2 − U

−
i+1/2

)
,

where

Ũi+1/2 =
U+
i+1/2 + U−i+1/2

2
, ũα,i+1/2 =

q̃u,α,i + q̃u,α,i+1

h̃i + h̃i+1

.

w̃α,i+1/2 is defined in the same way as ũα,i+1/2. U
±
i+1/2 is the vector defined by a

reconstruction procedure on the variables to the to the left (−) and right (+) of the
inter-cell xi+1/2. This reconstruction procedure is done using a MUSCL reconstruction
operator, combined with a minmod limiter as detailed in (2.2.50)-(2.2.52). The MUSCL
reconstruction operator also takes into account the positivity of the water height.

Qi+1/2 is the viscosity matrix associated to PVM-1U(SL, SR) or HLL method (2.2.39).
Here SL and SR are estimated by using the bounds proposed in Subsection 1.2.2:

SL = min
α∈{1,2}

(
u−α,i+1/2 −

√
gh−i+1/2, ũα,i+1/2 −

√
gh̃i+1/2

)
,

SR = max
α∈{1,2}

(
ũα,i+1/2 +

√
gh̃i+1/2, u

+
α,i+1/2 +

√
gh̃i+1/2

)
.

The matrix Ai+1/2 is the Roe matrix

Ai+1/2 = JF (Ũi+1/2) +Bi+1/2,



152 Numerical discretization of dispersive systems

JF being the Jacobian matrix of the flux F.
Again,

α0A
−1
i+1/2Gi+1/2

(
H+
i+1/2 −H

−
i+1/2

)
makes no sense if any of the eigenvalues of Ai+1/2 vanishes. Here we propose the following
approximation

α0

(
U+
i+1/2 − U

−
i+1/2 − A

−1
i+1/2Gi+1/2

(
H+
i+1/2 −H

−
i+1/2

))
= α0

(
U+
i+1/2 − U

−
i+1/2 −

(
H+
i+1/2 −H

−
i+1/2

)
~e1

)
.

Let us introduced the following notation:

Ri+1/2 = FC(U+
i+1/2)− FC(U−i+1/2) + Tp,i+1/2 +Bi+1/2,

where FC is the convective flux, and is given by

FC(U) =

(
l1qu,1 + l2qu,2,

q2
u,1

h
,
q2
u,2

h
,
qu,1qw,1
h

,
qu,2qw,2
h

)T
,

and Tp,i+1/2 contains the pressure terms

Tp,i+1/2 = gh̃i+1/2

(
η+
i+1/2 − η

−
i+1/2

)
(~e2 + ~e3) .

Thus, one can rewrite D±i+1/2 as

D±i+1/2 =
1

2

(
(1± α1)Ri+1/2 ± α0

(
U+
i+1/2 − U

−
i+1/2 −

(
H+
i+1/2 −H

−
i+1/2

)
~e1

))
,

Finally, the last term Ii in (3.3.4) comes from the volume integral that appears
in (2.2.49). Notice that the integral in (2.2.49)∫

Ii

∂xF [Pi,U(x)] +B[Pi,U(x)]
dPi,U
dx

(x)−G[Pi,U(x)]
dPi,H
dx

(x) dx

can be written as∫
Ii

∂xFC [Pi,U(x)] +B[Pi,U(x)]
dPi,U
dx

(x) + gPi,h(x)
dPi,η
dx

(x) (~e2 + ~e3) dx.

Taking into account that Pi,U(x) and Pi,η(x) are lineal functions, then VI i can be written
as

Ii = FC(U−i+1/2)− FC(U+
i−1/2) +B(Ui)

(
U−i+1/2 − U

+
i−1/2

)
+ ghi

(
η−i+1/2 − η

+
i−1/2

)
(~e2 + ~e3)

Remark 3.3.1. The numerical scheme ( 3.3.4) considered for the underlying hyperbolic
system is well-balanced for the steady state water at rest solutions

η = h−H = cst, uα = wα = 0, α ∈ {1, 2}
and linearly L∞ − stable under the usual CFL condition (3.3.3). Moreover the scheme is
positive preserving for the water height for a smooth bathymetry under 1

2
CFL condition.
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Finite difference discretization for the non-hydrostatic terms

In this subsection we describe the discretization of the non-hydrostatic terms. From
equation (3.3.1b), for every k ∈ {1, 2} of the Runge-Kutta stage, we get

h
(k)
i = h

(k̃)
i ,

q
(k)
u,1 = q

(k̃)
u,1 −∆t

(
∂x(h

(k)p
(k)
1 )− 1

l1

(
p

(k)
b ∂xH + p

(k)
I ∂xzI

(k)
))

,

q
(k)
u,2 = q

(k̃)
u,2 −∆t

(
∂x(h

(k)p
(k)
2 ) +

1

l2

(
γ1p

(k)
b + γ2p

(k)
I

)
∂xzI

(k)

)
,

q
(k)
w,1 = q

(k̃)
w,1 −

∆t

l1

(
p

(k)
b − p

(k)
I

)
,

q
(k)
w,2 = q

(k̃)
w,2 −

∆t

l2

(
γ1p

(k)
I + γ2p

(k)
b

)
.

(3.3.6a)

(3.3.6b)

(3.3.6c)

(3.3.6d)

(3.3.6e)

Replacing equations (3.3.6b)-(3.3.6e) into (3.3.1c), we obtain the Poisson-like equations

a1∂xxp
(k)
b + a2∂xp

(k)
b + a3p

(k)
b + a4∂xxp

(k)
I + a5∂xp

(k)
I + a6p

(k)
I = RHS1, (3.3.7)

b1∂xxp
(k)
b + b2∂xp

(k)
b + b3p

(k)
b + b4∂xxp

(k)
I + b5∂xp

(k)
I + b6p

(k)
I = RHS2, (3.3.8)

where the coefficients aj, bj as well as the Right-Hand-Sides RHSj, j ∈ {1, 2}, are given
in Appendix D. We point out the dependency of the aforementioned coefficients

aj ≡ aj(U
(k)), bj ≡ bj(U

(k)), RHSj ≡ RHSj(U
(k̃))

and remark that, due to the form of the numerical scheme and that of the absence of
non-hydrostatic terms on the mass equation, then one has equation (3.3.6a) and thus

aj ≡ aj(U
(k̃)), bj ≡ bj(U

(k̃)), RHSj ≡ RHSj(U
(k̃)).

Equations (3.3.7) and (3.3.8) are discretized using second order finite differences. In
order to obtain point value approximations of the non-hydrostatic pressure variables,
terms p

(k)
I,i , p

(k)
b,i and RHSj,i, j ∈ {1, 2}, i ∈ {1, . . . , N} will be approximated at every

mid point xi of each cell Ii. In the same way, the corresponding space derivatives will be
approximated using compact second order finite differences

∂xP
(k)
i =

P
(k)
i+1 − P

(k)
i−1

2∆x
, ∂xxP

(k)
i =

P
(k)
i+1 − 2P

(k)
i + P

(k)
i−1

∆x2
. (3.3.9)
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To compute the coefficients aj, bj, RHSj, that contain terms depending on U (k̃) as well

as first derivatives ∂xU
(k̃), we will use the averaged values on the cell Ii of variables U (k̃)

and H as second order point value approximations of U
(k̃)
i and Hi at the centre of the cell

Ii. The space derivatives are computed from the averaged values using compact second
order finite differences

∂xU
(k̃)
i =

U
(k̃)
i+1 − U

(k̃)
i−1

2∆x
, ∂xHi =

Hi+1 −Hi−1

2∆x
. (3.3.10)

After replacing (3.3.9) and (3.3.10) in (3.3.7) and (3.3.8), one has to solve a linear system

AP =RHS, (3.3.11)

where

RHS =

RHS1

RHS2

 , RHSj =

RHSj, 1
...

RHSj,N

 , P =



p
(k)
b,1
...

p
(k)
b,N

p
(k)
I,1
...

p
(k)
I,N


,

and

A = D +M , D =

T(1) 0

0 T(2)

 , M =

 0 C(1)

C(2) 0

 , (3.3.12)

T(j), C(j) being tridiagonal and symmetrical matrices of dimension N ×N (see details in
Appendix D).

To solve the linear system (3.3.11), we propose an iterative linear solver based on a
block version of the Jacobi method:

P(0) = 0,

DP(s) =RHS −MP(s−1), s ∈ 1, 2, . . . ,
(3.3.13)

where at each iteration s, a tridiagonal linear system is efficiently solved by using the
Thomas algorithm [236]. As stopping criteria for the iterative linear solver (3.3.13), we
choose

||P (s+1) −P (s)|| < εtol.

In the subsequent numerical test performed in this work, εtol is set to 10−8.
Once the non-hydrostatic pressure terms P (k) have been computed, the discharges

contained in U (k) can be updated from equations (3.3.6b)-(3.3.6e), where in a similar way,
a second order point value approximation in the centre of the cell will be used.
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Remark 3.3.2. The proposed iterative linear solver has some advantages over other
standard linear solvers such as Krylov gradient based methods (e.g., biconjugate gradient
stabilized method) or LU factorization. A sort discussion is summarized:

• The proposed linear solver reaches the convergence in less than 100 iterations for
the numerical tests showed in this work.

• It can be easily implemented, and it is matrix-free, since only tridiagonal systems
have to be solved, which is done with the matrix-free Thomas algorithm [236].
This makes this algorithm extremely convenient for an implementation on GPU
architectures, where memory is an important issue.

• A LU factorization method it is not feasible, since the matrix of the linear system
A depends on time step. This will demand a considerable computational effort.
Moreover, this choice is more memory consuming than the iterative method proposed
in this dissertation in ( 3.3.13).

• Let us denote by P̃ a convenient reorganization of the variable P , such that

P̃ =
(
p

(k)
b,1 , p

(k)
I,1, . . . p

(k)
b,N , p

(k)
I,N

)t
.

Then the corresponding associated matrix Ã is symmetric and penta-diagonal.
This organization is more convenient for an iterative Krylov space based method.
Nevertheless, we have found that this methods are more memory consuming.

• Considering the extension of the scheme to bidimensional domains, this will lead
to a Poisson-like equation in two dimensions. The proposed algorithm can be
combined with a Jacobi or Jacobi relaxation method (see [3]) to take into account
this extension.

Final numerical scheme

For the sake of clarity, a guideline of the final numerical scheme will be highlighted in what
follows. For every kth stage k ∈ {1, 2} of the Runge-Kutta method, the problem (NH-2L)
is split into two parts. A two-step projection-correction method is used:

• Finite volume step (solving the hydrostatic system): From (3.3.4), solve explicitly
the System (SWE-2L) at the kth stage of the Runge-Kutta:

U
(k̃)
i = U

(k−1)
i − ∆t

∆x

(
D

(k−1),−
i+1/2 +D

(k−1),+
i−1/2 + I(k−1)

i

)
,

by means of a PVM path-conservative finite volume scheme (3.3.4) combining

a MUSCL reconstruction operator to obtain the intermediate value U
(k̃)
i in the
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two-step projection-correction method that contains the numerical solution of the
System (SWE-2L).

• Finite Difference step (non-hydrostatic pressure correction):

+ Solve the Poisson-like equations (3.3.7) and (3.3.8) to obtain the non-
hydrostatic pressures

P (k) =

p(k)
b

p
(k)
I

 .

To do so, compact centred second order finite differences are used for the
discretization of the derivatives that appear in (3.3.7)-(3.3.8), and a linear
system is solved to obtain P (k).

+ With the computed non-hydrostatic pressure terms P (k), the discharges can be
updated from (3.3.6b)-(3.3.6e), where in a similar way, a second order point
value approximation in the centre of the cell will be used to compute the non-
hydrostatic contribution.

Finally,

Un+1 =
1

2
Un +

1

2
U (2).

Remark 3.3.3. In order to include friction with the bottom, the source term S(U) is
discretized in a semi-implicit way at the end of the second step of the proposed numerical
scheme, at each Runge-Kutta stage.

Remark 3.3.4. In order to include the breaking mechanism, the breaking terms are
discretized in a explicit manner using centred second order finite differences at the end of
the second step of the proposed numerical scheme, at each Runge-Kutta stage.

Remark 3.3.5. Since non-hydrostatic, friction and breaking terms appear only in the
momentum equations, the final numerical scheme is well-balanced for the water at rest
solutions

η = h−H = cst, uα = wα = pα = 0, α ∈ {1, 2}

and positive preserving for the water height.

Remark 3.3.6. The extension of the proposed numerical scheme to the case of two space
dimension is straightforward. To do that, the same time stepping procedure is employed,
and a second order finite volume PVM HLL solver as well. Non-hydrostatic terms are
approximating using central second order finite differences. This will leads to solve a two
space dimension Poisson-like equation, that can be solve in an efficient way using the
linear solver employed for the 1D case.
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3.4 An explicit finite volume discretization of the

system (NHyp)

We describe now the numerical scheme used to discretize the system (NHyp) with the
assumptions made in (3.0.1) and (3.0.2). The system (NHyp) is discretized by means
of a second order finite volume PVM positive-preserving well-balanced path-conservative
method. As usual, we consider a set of Nx finite volume cells Ii = [xi−1/2, xi+1/2] with
constant lengths ∆x and define

Ui(t) =
1

∆x

∫
Ii

U(x, t) dx,

the cell average of the function U(x, t) on cell Ii at time t.

Time stepping

Assume given time steps ∆tn, and denote tn =
∑

j≤n ∆tj. To obtain second order accuracy
in time, the two-stage second-order TVD Runge-Kutta scheme [142] is adopted. At the
kth stage, k ∈ {1, 2}, numerical method is given by

U (k) − U (k−1)

∆t
+ ∂xF (U (k−1)) +B(U (k−1))∂xU

(k−1) = G(U (k−1))∂xH, (3.4.1)

where U (0) is U at the time level tn, U (k) is an intermediate value that contains the
numerical solution of the system (NHyp) at the corresponding kth stage of the Runge-
Kutta, and U (k) is the kth stage estimate. After that, a final value of the solution at the
tn+1 time level is obtained:

Un+1 =
1

2
Un +

1

2
U (2). (3.4.2)

For the computation of the time step ∆t the usual CFL condition is considered given
by

∆t < CFL
∆x

|λmax|
, 0 < CFL ≤ 1, |λmax| = max

i∈{1,...,Nx}

{
|ui|+

√
ghi + pi + c2

}
. (3.4.3)

Finite volume discretization

A second order path-conservative PVM scheme based on reconstruction operator for the
discretization in space of the system (3.4.1) is considered. To do so, we consider in this
case a Roe linearization based on the simple straight-line segment path for the variables
h, u and p. Following the high order numerical scheme in space (2.2.49) and approximating
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the ODE in time, we obtain the following numerical scheme that at the kth stage of the
Runge-Kutta method reads:

U
(k̃)
i = U

(k−1)
i − ∆t

∆x

(
D

(k−1),−
i+1/2 +D

(k−1),+
i−1/2 + I(k−1)

i

)
, (3.4.4)

where, skipping the time dependence in k to relax the notation, D±i+1/2 is given by a PVM

path-conservative scheme (see (2.2.37))

D±i+1/2 = D±i+1/2(U−i+1/2, H
−
i+1/2, U

+
i+1/2, H

+
i+1/2)

=
1

2

(
F (U+

i+1/2)− F (U−i+1/2) +Bi+1/2

(
U+
i+1/2 − U

−
i+1/2

)
−Gi+1/2

(
H+
i+1/2 −H

−
i+1/2

))
± 1

2
Qi+1/2

(
U+
i+1/2 − U

−
i+1/2 − A

−1
i+1/2Gi+1/2

(
H+
i+1/2 −H

−
i+1/2

))
.

(3.4.5)

Note that in this case, due to the election of the family of paths, linear on h, u and p,
the path-integrals can be exactly computed from the simple mid-point quadrature rule,
and thus:

Gi+1/2

(
H+
i+1/2 −H

−
i+1/2

)
=
((
gh̃i+1/2 + 2p̃i+1/2

)
~e2 − 2c2ũi+1/2~e4

)(
H+
i+1/2 −H

−
i+1/2

)
is obtained after integrating the path-integral (2.2.30), and similarly from (2.2.29) we
obtain

Bi+1/2

(
U+
i+1/2 − U

−
i+1/2

)
= −2c2ũi+1/2

(
h+
i+1/2 − h

−
i+1/2

)
~e4,

h̃i+1/2, ũi+1/2 and p̃i+1/2 being the Roe averages computed as usually. U±i+1/2 is the vector

defined by a reconstruction procedure on the variables to the to the left (−) and right (+) of
the inter-cell xi+1/2. This reconstruction procedure is done using a MUSCL reconstruction
operator, combined with a minmod limiter as detailed in (2.2.50)-(2.2.52). The MUSCL
reconstruction operator also takes into account the positivity of the water height. Finally,
as explained in Subsection 2.2.4, the variable H±i+1/2 is recovered from H±i+1/2 = h±i+1/2 −
η±i+1/2.

Qi+1/2 is the viscosity matrix associated to PVM-1U(SL, SR) or HLL method (2.2.39).
Here SL and SR are estimated as follows

SL = min

(
u−i+1/2 −

√
gh−i+1/2 + p−i+1/2 + c2, ũi+1/2 −

√
gh̃i+1/2 + p̃i+1/2 + c2

)
,

SR = max

(
ũi+1/2 +

√
gh̃i+1/2 + p̃i+1/2 + c2, u+

i+1/2 +
√
gh+

i+1/2 + p+
i+1/2 + c2

)
.
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Again,

α0A
−1
i+1/2Gi+1/2

(
H+
i+1/2 −H

−
i+1/2

)
makes no sense if any of the eigenvalues of Ai+1/2 vanishes. Here we propose the following
approximation

α0

(
U+
i+1/2 − U

−
i+1/2 − A

−1
i+1/2Gi+1/2

(
H+
i+1/2 −H

−
i+1/2

))
= α0

(
U+
i+1/2 − U

−
i+1/2 − ~e1

(
H+
i+1/2 −H

−
i+1/2

))
,

Let us introduced the following notation:

Ri+1/2 = FC(U+
i+1/2)− FC(U−i+1/2) + Tp,i+1/2 + Ci+1/2,

where FC is the convective flux and Tp,i+1/2 contains the pressure terms:

FC(U) =

(
qu,

q2
u

h
+ qp,

quqw
h

,
quqp
h

+ c2qu

)
,

Tp,i+1/2 =
((
gh̃i+1/2 − 2p̃i+1/2

)(
η+
i+1/2 − η

−
i+1/2

)
+ 2p̃i+1/2

(
h+
i+1/2 − h

−
i+1/2

))
~e2,

Ci+1/2 = −c2ũi+1/2

(
2(η+

i+1/2 − η
−
i+1/2)− (h+

i+1/2 − h
−
i+1/2)

)
~e4.

Thus, one can rewrite D±i+1/2 as

D±i+1/2 =
1

2

(
(1± α1)Ri+1/2 ± α0

(
U+
i+1/2 − U

−
i+1/2 − ~e1

(
H+
i+1/2 −H

−
i+1/2

)))
. (3.4.6)

Finally, the last term Ii in (3.4.4) comes from the volume integral that appears
in (2.2.49). Notice that the integral in (2.2.49)∫

Ii

∂xF [Pi,U(x)] +B[Pi,U(x)]
dPi,U
dx

(x)−G[Pi,U(x)]
dPi,H
dx

(x) dx

can be written as∫
Ii

∂xFC [Pi,U(x)]+

(
(gPi,h(x)− 2Pi,p(x))

dPi,η
dx

(x) + 2Pi,p(x)
dPi,h
dx

(x)

)
~e2 dx

−
∫
Ii

c2Pi,u(x)

(
2
dPi,η
dx

(x)− dPi,h
dx

(x)

)
~e4 dx

Taking into account that Pi,u(x), Pi,p(x), Pi,h(x), Pi,η(x) and Pi,H(x) = Pi,h(x) − Pi,η(x)
are lineal, then VI i can be written as

Ii = FC(U−i+1/2)− FC(U+
i−1/2) +

(
(ghi − 2pi)

(
η−i+1/2 − η

+
i−1/2

)
+ 2pi

(
h−i+1/2 − h

+
i−1/2

))
~e2

− c2ui

(
2
(
η−i+1/2 − η

+
i−1/2

)
− 2

(
h−i+1/2 − h

+
i−1/2

))
~e4
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Remark 3.4.1. The numerical scheme considered ( 3.4.1) is well-balanced for the steady
state water at rest solutions

η = h−H = cst, u = w = p = 0,

and linearly L∞ − stable under the usual CFL condition (3.4.3). Moreover the scheme is
positive preserving for the water height for a smooth bathymetry under 1

2
CFL condition.

Remark 3.4.2. In order to include friction with the bottom, the breaking mechanism, and
others geometrical non-hydrostatic source terms, S(U) is discretized in a semi-implicit way
at the end of the second step of the proposed numerical scheme, at each Runge-Kutta stage.

3.5 An explicit ADER-DG discretization of the sys-

tem (NHyp-2D)

In this section is proposed the use of an arbitrary high order accurate (ADER)
discontinuous Galerkin (DG) finite element scheme with an a posteriori subcell finite
volume limiter to solve numerically the PDE system (NHyp-2D).

The key idea of the employed limiter is to run first an unlimited ADER-DG scheme
and then check the obtained solution for validity at the end of each time step. The discrete
solution is recomputed in those elements (so-called troubled zones) where the positivity
of the water depth is violated, where invalid floating point numbers have been produced
due to divisions by zero or by taking roots of negative numbers, or in elements where the
numerical solution produces spurious oscillations due to the presence of discontinuities
and strong gradients.

In those troubled cells, a more robust finite volume scheme is employed, starting
again from a valid solution at the previous time step, but using a finer subgrid to preserve
the subcell resolution capability of the underlying DG scheme. The final scheme is highly
accurate in smooth regions of the flow and very robust and positive preserving for emerging
topographies and wet-dry fronts. It is well-balanced making use of a path-conservative
formulation of HLL-type Riemann solvers based on the straight line segment path for the
variables h, u, v and p. The resulting subcell finite volume limiter used in this section is
the natural high order extension of the previously described numerical scheme presented
in (3.4.4) in the framework of DG schemes.

Furthermore, the proposed ADER-DG scheme with a posteriori subcell finite volume
limiter adapts very well to modern GPU architectures, resulting in a very accurate, robust
and computationally efficient computational method for non-hydrostatic free surface flows.

For the sake of simplicity, let us rewrite the system in terms of convective fluxes and
pressure terms. This allow us to easily mimic the procedure introduced in Section 3.4 (as
well as for the other systems), where the numerical scheme is fully written in terms of the
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free-surface, instead of the bathymetry. Thus, we propose to rewrite (NHyp-2D) as

∂tU + ∂xF C(U) +B(U) · ∇U = S(U), (3.5.1)

where U is defined as in (NHyp-2D). The convective flux is given by

F C = (FC,1, FC,2), FC,1(U) =



qx

q2
x

h
+ qp

qxqy
h

qxqw
h

qxqp
h

+ c2qx


, FC,2(U) =



qy

qxqy
h

q2
y

h
+ qp

qyqw
h

qyqp
h

+ c2qy


,

and the nonconservative product B(U) · ∇U is given by:

B(U) · ∇U =



0

(gh− 2p) ∂xη + 2p∂xh

(gh− 2p) ∂yη + 2p∂yh

0

− c2u∂x (2η − h)− c2v∂y (2η − h)


.

Finally the source term vector S(U) contains the friction and breaking terms as well as
the non-hydrostatic terms included in (NHyp-2D):

S(U) = −



0

τb,x

τb,y

− 2p+Rbr

2c2(
qw
h

+ ∂tH)


,

where Rbr contains the breaking terms defined in (1.5.8).
As usual, the computational domain Ω is covered with a set of non-overlapping

Cartesian control volumes in space

Vi =

[
xi −

1

2
∆x, xi +

1

2
∆x

]
×
[
yi −

1

2
∆y, yi +

1

2
∆y

]
.
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In the following, we give a summary of the ADER-DG scheme with an a posteriori subcell
based MOOD limiting:

• Space-time predictor. Following (2.4.9), we solve the nonlinear problem in the
small via a simple and fast converging fixed point iteration for the degrees of freedom
q̂i,l: ∫

Vi

θk(x, tn+1)θl(x, tn+1) dx−
tn+1∫
tn

∫
Vi

θl(x, t)∂tθk(x, t) dx dt

 q̂i,l

=

∫
Vi

θk(x, tn)φl(x) dx

 q̂ni,l −
tn+1∫
tn

∫
Vi

θk(x, t)

(
∇̂ · F Ci,l + B̂ · qi,l

)
dx dt

+

tn+1∫
tn

∫
Vi

θk(x, t)Ŝi,l dx dt.

(3.5.2)
Here we just use the trivial initial guess given by the extrapolation of qh from the
previous time interval [tn−1, tn]. Another better initial guesses that can be employed
have been commented in Subsection 2.4.2.

• Fully discrete one-step ADER-DG scheme. Once the space-time predictor
q̂i,h has been computed, then we update Ûn+1

i,l with the path-conservative one-step
ADER-DG scheme (2.4.10)∫

Vi

φkφl dx

(Ûn+1
i,l − Ûn

i,l

)
+
∑
j∈Ni

tn+1∫
tn

∫
Eij

D−Φ(qi,h(γ, t), qj,h(γ, t),nij) dγ dt

+

tn+1∫
tn

∫
V ◦i

φk (∇ · F C(qi,h) +B(qi,h) · ∇qi,h − S(qi,h)) dx dt = 0.

D−Φ represent the path-conservative jump term in the normal direction nij ∈ S1.
In this dissertation, D−Φ consists in the extension of the HLL PVM method (3.4.6)
to bidimensional domains. In a similar way, the choice of the straight-line segment
path for the variables h, u, v, and p has been considered.

We also recall that, having selected the nodal points in this way, we will compute
the volume integrals through Gaussian quadrature rules, that is known to be exact
for all polynomials up to degree 2N + 1.

Concerning the surface integral that appears in (2.4.10), it can be simply evaluated
via some sufficiently accurate numerical quadrature formula. We typically use a the
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Gauss-Legendre quadrature rule. Here, the time integral is approximated by the
rectangle rule, that is by using the information at the time level tn. This will leads
us to a simplification of the final numerical scheme. Since this integral contribution
is a term of order O(∆x)N for smooth solutions, then the order of accuracy of
the numerical scheme is maintained for regular solutions. Nevertheless, in [92] an
alternative strategy to compute the time integral is discussed.

• A posteriori subcell finite volume limiter. As described in (2.4.11) in
Chapter 2, let us consider a set of subcells Vi,s such that

Vi =

(2N+1)d⋃
s=1

Vi,s,

N being the order of the DG polynomials and d = 2 the dimension of the problem.

Cell-to-subcell scattering (projection):

Let us consider the discrete solution in the subcells Vi,s is at time tn in terms of
piecewise constant subcell averages U

n

i,s, i.e.

U
n

i,s =
1

|Ωi,s|

∫
Ωi,s

U(x, tn) dx .

Then, let us compute the projection onto the subcell grid of the candidate solution
computed at the previous step with the unlimited ADER-DG scheme:

U
∗
i,s =

1

|Ωi,s|

∫
Ωi,s

U(x, tn+1) dx .

A posteriori MOOD detection procedure:

An a posteriori Multi dimensional Optimal Order Detection (MOOD) described in
Chapter 2 is applied:

+ The Physical admissibility detection (PAD) is applied to ensure the positivity
of the water depth h (see (2.4.15)). The appearance of floating point errors is
also checked.

+ The Numerical admissibility detection (NAD) described in (2.4.16)–(2.4.17) is
applied.

Subcell-based TVD Runge-Kutta update:

Each subcell averages, contain in an invalid cell, are now evolved in time with the
extension to two space domains of the second order accurate finite volume scheme
described in Subsection 3.4.
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Note that this very fine division of a DG element into finite volume subcells does
not reduce the time step of the overall ADER-DG scheme, since the CFL number of
explicit DG schemes scales with 1/(2N +1), while the CFL number of finite volume
schemes (used on the subgrid) is of the order of unity.

Subcell-to-cell gathering (reconstruction):

For any troubled cell gather the new subgrid information into a cell-centered DG
polynomial of degree N on the main grid by applying the subcell reconstruction
operator defined by (2.4.13)–(2.4.14).

Remark 3.5.1. The numerical scheme considered is well-balanced for water at rest
solutions, linearly L∞-stable under the usual CFL condition and positive preserving
for the water height.

Remark 3.5.2. In practice, on this dissertation, a cell is marked as troubled if the
water depth h is bellow certain water depth value h0, that has been fixed from the
beginning. On this thesis, we set h0 = 10−3H0, where H0 is the typical water depth.

In such a way, we will employ a second order accurate finite volume scheme that is
robust and positive preserving for the water depth.

Remark 3.5.3. Note that at wet-dry fronts the source term S(U) may become stiff.
Therefore, this term is discretized explicitly only in the unlimited ADER-DG solver,
while S(U) is discretized in a semi-implicit way inside the subcell finite volume
limiter, in order to deal with the potential stiffness of, for example, the bottom
friction source term. Due to the assumption made in Remark 3.5.2, we ensure the
semi-implicit treatment of the source terms in regions where they may become stiff.

3.6 Boundary conditions

In this dissertation, three types of Boundary Conditions (BC) have been considered:
periodic, outflow and generating/absorbing BCs.

In the following, the imposition of the boundary conditions is described for the
numerical schemes given in Sections 3.1–3.5 for one-dimensional domains. The techniques
can be easily applied to the case of two space dimension.

1. Periodic BCs: Given the domain subdivided into a set of Nx cells, cell I1 and INx ,
which are the extremes of the domain, are considered as the same cell, surrounded
by the neighbour cells INx to the left and I2 to the right.

2. Outflow BCs: homogeneous Neumann conditions are applied on the left and right
boundaries. Since a second order MUSCL scheme is used, the usage of one ghost cell
I0, INx+1 in each boundary is required to determine the values of the closest nodes
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to the boundary. The values of the variables at the ghost cells are extrapolated from
the adjacent cells.

Nevertheless, reflections at the boundaries might modify the numerical solution at
the interior of the domain. As in many other works (see [163], [217] among others),
this condition is sometimes supplemented with an absorbing BC described below.

3. Generating/absorbing BCs: Periodic wave generation as well as absorbing BCs are
achieved by using a generation/relaxation zone method similar to the one proposed
in [183].

Generation/absorption of waves is achieved by simply defining a relaxation coeffi-
cient 0 ≤ m(x) ≤ 1, and a target solution (h∗, u∗, w∗, p∗). Given a width LRel of
the relaxation zone on each boundary, kRel is defined as the first natural number
that kRel∆x ≥ LRel. The solution within the relaxation zone is then redefined to be,
∀i ∈ {1, . . . , kRel, Nx − krel, . . . Nx} :

f̃i = mifi + (1−mi)f
∗
i , f being one of the variables of the system f = h, u, w, p.

Note that in the case of the scheme (3.1) described for the system (YAM), due to
the staggered grid it is applied:

w̃i±1/2 = mi±1/2wi±1/2 + (1−mi±1/2)w∗i±1/2,

p̃i±1/2 = mi±1/2pi±1/2 + (1−mi±1/2)p∗i±1/2,

where mi is defined as

mi =

√
1−

(
di
LRel

)2

, mi±1/2 =
mi +mi±1

2
,

where di is the distance between the centre of the cells Ii and I1 (respectively Ii and
INx−k), in the case of i ∈ {1, . . . , k} (respectively i ∈ {Nx − k, . . . , Nx}).

For the numerical experiments

L ≤ LRel ≤ 1.5L,

L being the typical wavelength of the outgoing wave.

Absorbing BC is a particular case where u∗ = w∗ = p∗ = 0. This will dump all the
waves passing through the boundaries.
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3.7 Wetting and drying treatment

In this subsection, some guidelines are given in order to make the numerical schemes
described in Sections 3.1–3.5, able to deal with emerging topographies.

For the computation of U (k̃) in the finite volume discretization of the underlying
hyperbolic systems (SWE) and (SWE-2L), as well as for the system (NHyp), a wet-
dry treatment adapting the ideas described in [42] is applied. The key of the numerical
treatment for wet-dry fronts with emerging bottom topographies relies in:

• First, notice that, one of the remarkable features of the described numerical schemes
is that they have been entirely written in terms of the free-surface η instead of the
bathymetry (see the implicit schemes described in (3.1) and (3.3) along with the
corresponding coefficients of the matrices in Appendix (B), (D), as well as the
explicit schemes described in (3.4) and (3.5)). This enables us to set the hydrostatic
pressure terms gh∂xη that appears, for instance at the horizontal velocity equations,
to be modified for emerging bottoms to avoid spurious pressure forces (see similar
techniques applied in [42]).

• To compute velocities appearing in the numerical schemes from the discharges, in
general one has u = qu/h, w = qw/h. This may present difficulties close to dry
areas due to small values of h, resulting in large round-off errors. The velocities are
computed analogously as in [166], applying the desingularization formula, that for
instance, for the horizontal velocity u reads:

u =
hqu
√

2√
h4 + max(h4, δ4)

,

which gives the exact value of u for h ≥ δ, and gives a smooth transition of u to zero
when h tends to zero, with no truncation. In this work δ = 10−5 for the numerical
tests. A more detailed discussion about the desingularization formula can be seen
in [166]. In the numerical scheme (3.4), the variable p has to be computed from the
conserved quantity hp, and thus, the same desingularization formula is applied in
this case.

This is, so far, the end of the guidelines for the numerical treatment for wetting and
drying fronts. Note that, in the second step of the numerical schemes (3.1) and (3.3), no
special treatment is required due to the rewriting of the incompressibility equations, which
have been multiplied by h2, and they are expressed in terms of discharges. In presence
of wet-dry fonts, the non-hydrostatic pressures vanish and no artificial truncation up to
a threshold value is needed. This is shown in Appendix B and D, where an analysis is
carried out for the case of an initial condition with zero speed, a planar bottom

∂xH = m



and a thin water layer
h = ε.

In such a situation, the linear system that defines the non-hydrostatic pressures at each
step is always invertible. Since the Right Hand Side vector of the linear systems vanishes,
then the only solution for the homogeneous linear system is that the non-hydrostatic
pressures vanish.

Remark 3.7.1. It is worth to mention that, for the numerical scheme described in
Section 3.3, for the studied case of planar bottom, zero velocities and h = ε, the inverse
of the matrix A can be computed:

A−1 =
1

4(γ1 + γ2)(m2 + 1)

 γ1I I

−γ2I I

 .

The resulting matrix is invertible due to the assumption in Remark 1.2.2 that γ1 +γ2 6= 0.

Chapter 4

Numerical validation

Contents
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In this chapter some numerical tests are shown for the described systems (YAM-2D),
(NH-2L2D) and (NHyp-2D) presented in Chapter 1 and numerically solved in Chapter 3.
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Furthermore, the breaking and friction terms introduced previously will be taken into
account. Since the numerical schemes presented here exhibits a high potential for data
parallelization, a parallel implementation of the numerical schemes has been carried out on
GPU architectures. Some guidelines about the implementation are given in Appendix E.

The chosen tests have already been widely studied in the literature on dispersive water
waves modelling (see [112], [39], [118], [182], [177], [53], [176], [163], [217], [108], [180] and
references therein). Thus, this choice constitutes a proper way to validate the presented
dispersive models and the numerical schemes with analytical solutions and real laboratory
tests.

The first and fifth tests aim at validating the mathematical models and the numerical
scheme with a comparison against exact or approximated analytical solutions for the
original dispersive systems. The rest of the tests show that the proposed solved equations
can simulate complex laboratory experiments, showing the comparison with real data.

The quantities of the parameters concerning the following numerical simulations are
expressed in units of measure of the International System of Units.

Concerning the simulations carried out with the equations (NHyp-2D), are performed
with a third order ADER-DG scheme (P2), except for the test where a systematic
convergence analysis of the scheme is carried out, as well as for the computation of the
GPU-performance tables. The limiting strategy presented in Chapters 2-3 is employed,
with the parameters defined in (2.4.16), (2.4.17) and Remark (3.5.2) set to

ε = 10−3, ε0 = 10−4, h0 = 10−3H0,

being H0 the typical depth. Similarly, as it was set in Section 3.7, the velocities are
computed applying the desingularization formula where

δ = 10−5,

as it was described in Subsection 3.7 where a general methodology to be applied in presence
of wet-dry fronts for all the numerical schemes described within this thesis was given.

The small tolerance error defined for the linear solvers defined in (3.2.6) and (3.3.13)
is set to

εtol = 10−8.

The proposed numerical tests also aim at validating the two-layer approach introduced
in this thesis in Section 1.2 Chapter 1.

The proposed breaking mechanism for the systems (YAM-2D) and (NHyp-2D) given
in (1.5.8) is used with the parameters B1 = 0.15 and B2 = 0.5 for all the test cases.
Similarly, the proposed ad-hoc breaking mechanism for the system is also . The CFL
number is set to 0.9. The artificial non-hydrostatic pressure wave speed c is set to c =
α
√
gH, α = 3 for all test cases, except for the first test case where an analytical solution

of the original system is studied, and thus α ∈ {5, 10}. Concerning the parameters that

improve the dispersion relation for the two layer approach, the parameters l
(5)
1 , γ

(5)
1 , γ

(5)
2

will be used, except for some numerical test that will be warned.
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4.1 Solitary waves on a flat bottom

In this section, the simulation of solitary waves will be used to check the performance of
the described models when dealing with this particular waves.

Moreover, the propagation of a solitary wave over a long distance is a standard test
of the stability and conservative properties of numerical schemes for Boussinesq-type and
non-hydrostatic pressure systems (see [21], [259], [219], [217], [231], [239], [112], [111],
[118] among others). This also will be checked. The section is split into three parts:

• First, it is shown that the two layer system (NH-2L) with the proposed set of

parameters (l
(5)
1 , γ

(5)
1 , γ

(5)
2 ), can propagate eulerian solitary waves of amplitude up

to A = 0.6 in a more accurate way than the original two-layer system, which
corresponds to the election of the parameters (l

(2L)
1 , γ

(2L)
1 , γ

(2L)
2 ).

Moreover, it has been proved numerically the observation carried out in Sub-
section 1.6.3: the one-layer non-hydrostatic pressure systems can not correctly
propagate eulerian solitary waves for bigger amplitudes.

• Secondly, the computed eulerian solitary waves (1.6.4) with L = 2 are used as the
initial condition to check the numerical accuracy of the scheme for the two layer
system (NH-2L).

The numerical accuracy of the one-layer systems is also checked by using the
analytical solitary wave described in Subsection 1.6.1.

• Finally, a solitary wave for the system (NHyp) is propagated in a very long
integration of time for a coarse mesh with the third order ADER-DG scheme. This
shows the abilities of ADER-DG schemes for the simulation of solitary waves in a
very long integration times with coarser meshes. In other works (see [112], [117])
finer meshes were needed to maintain the correct amplitude. This especially occurs
when flux limiters such as minmod ([112]) are present in the numerical scheme,
resulting in an undesired clipping of local extrema.

In the subsequent test, periodic boundary conditions are considered and the minmod
limiter for the SWE step of the numerical scheme is turned off to measure the order of
accuracy of the numerical scheme.

Eulerian solitary gravity waves. Capabilities of the non-hydrostatic
systems

When the amplitude of a solitary wave is small compared to the typical depth H, the
characteristic length of the wave is relatively large. Thus, the solitary wave is a long wave
and weakly-nonlinear weakly-dispersive models such as [21], or [259] can simulate the wave
perfectly. However, as the amplitude increases, the wavelength decreases, and therefore
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higher-order non-linear and dispersive effects become more important. This phenomenon
will be investigated here with the two-layer model.

Let us consider the solitary wave computed in (1.6.4) with L = 2 that will be used as
initial condition for the two layer system (NH-2L).

For the two solitary waves examined in this section, with amplitudes of A1 = 0.2, A2 =
0.6, a grid length ∆x = 0.01 and a CFL number 0.4 is employed. The bathymetry is
constant H = 1.0, the gravity acceleration is set to g = 1, and the simulations are carried
out in a channel of 500 meters during 350 seconds.

The tests are performed with the two-layer with the improved parameters (l
(5)
1 , γ

(5)
1 , γ

(5)
2 )

and with the non-improved parameters (l
(2L)
1 , γ

(2L)
1 , γ

(2L)
2 ). The simulation with the one-

layer system corresponding to the choice of the parameters (1, γ
(2L)
1 , γ

(2L)
2 ) is also carried

out. In the subsequent, only the results obtained with the parameters (l
(5)
1 , γ

(5)
1 , γ

(5)
2 ) will

be commented.

As this wave solution is not an analytical solitary wave solution of the two layer model,
when the numerical simulation is started the solitary wave drops some waves at the tail.
Due to this initial fluctuation in wave form, the wave decreases in amplitude and so the
celerity. Nevertheless, the solitary wave, which moves rapidly due to its large amplitude,
eventually leaves this tail far behind and reaches a steady form. This initial mismatch
effects also occurs when considering approximated solitary wave solutions for Boussinesq
systems (see [176]).

Fig. 4.1 shows the evolution of the amplitude and speed of both solitary waves. The
steady amplitudes and speeds reached for both cases are Ã1 = 0.197, c̃A1 = 1.094 and
Ã2 = 0.588, c̃A2 = 1.243. Steady states are achieved not so far. This means that waves
travel at constant speed even in the case of large amplitudes, which is one of the abilities
of the two-layer model that is intended to show in this test.

It can be seen that celerities of the simulations c̃A1 and c̃A2 are both in agreement with
the reference celerities that can be seen in [104].

Fig. 4.2 shows the numerical solutions obtained with the two-layer model at 350
seconds shifted by (x − 350cAi) meters and compared with the corresponding initial
conditions. For all the cases, the two-layer model matches the initial conditions to a
very high accuracy. It can be observed that a better fitted is obtained when considering
the two-layer model with the improved parameters.

Fig. 4.3 shows the results obtained with the one-layer system corresponding to l1 = 1
for the case of A2 = 0.6. In this case, although a steady amplitude and celerity is also
reached, it can be observed that the system can not maintain the initial amplitude. Thus
the celerity decreases and the computed solitary wave is delayed in approximately 5 meters
at 350 seconds.

It can be stated from these comparisons that the two-layer model presented here
captures, to a highly accurate degree, the physics of a non-linear solitary wave.
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Figure 4.1: Comparison of surface at time t = 350 shifted by (x − cAit) m (blue) and
initial condition (red). (a) and (c) show the comparison with the improved parameters

(l
(5)
1 , γ

(5)
1 , γ

(5)
2 ) for the trial A1 = 0.2 and A2 = 0.6 respectively. (b) and (d) show the

comparison with the non-improved parameters (l
(2L)
1 , γ

(2L)
1 , γ

(2L)
2 ) for the trial A1 = 0.2

and A2 = 0.6 respectively.

A convergence analysis with solitary waves

In this subsection we verify that the desired theoretical order of accuracy in both space
and time of the proposed numerical schemes is achieved, as expected. Some numerical
simulations for different grids have been computed up to time t = 30 s for the case of a
solitary wave of amplitude A = 0.2 in a channel of 600 m. Periodic boundary conditions
are used.

For the case of the system (YAM), the second order staggered numerical scheme
introduced in Section 3.1 is used. As solitary wave for the initial condition, the
approximated expression (1.6.1)-(1.6.2) is considered. Since the considered solitary wave
is not an exact solution for the system, we take as reference solution a numerical simulation
at time t = 30 s for a very fine grid with Nx = 12000 cells. Table 4.1 shows the L2 errors
and numerical orders of accuracy obtained.

The order of the numerical scheme proposed in Section 3.3 for the system (NH-2L) is
numerically checked in Table 4.2. As solitary wave for the initial condition, we consider
the eulerian solitary gravity wave computed in (1.6.4) with L = 2. Again, since the
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Figure 4.2: Variation through the time of the amplitude (blue) and celerity (red). (a)

and (c) show the comparison with the improved parameters (l
(5)
1 , γ

(5)
1 , γ

(5)
2 ) for the trial

A1 = 0.2 and A2 = 0.6 respectively. (b) and (d) show the comparison with the non-

improved parameters (l
(2L)
1 , γ

(2L)
1 , γ

(2L)
2 ) for the trial A1 = 0.2 and A2 = 0.6 respectively.

Figure 4.3: Comparison of surface at time t = 350 shifted by (x − cA2t) m (blue)
and initial condition (red) for the trial A = 0.6 with the one-layer system. (b) shows the
variation through the time of the amplitude (blue) and celerity (red) for the trial A2 = 0.6
with the one-layer system.
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considered solitary wave is not an exact solution for the system, we take as reference
solution a numerical simulation at time t = 30 s for a very fine grid with Nx = 12000
cells.

Finally, the order of the numerical scheme presented in Section 3.5 for the sys-
tem (NHyp) is numerically checked in Table 4.3. We use the analytical solution for
the system (NH-1L), given in (1.6.1)-(1.6.2), as an approximate solitary wave solution for
the new hyperbolic system (NHyp) (see Subsection 1.6.2). The artificial non-hydrostatic
pressure wave speed c is set to c = α

√
gH, α = 5. Although the a posteriori limiter

strategy is implemented, it not detect any troubled elements, hence during the entire
simulation of the solitary wave the pure unlimited ADER-DG scheme is used. Table 4.3
shows the L2 errors and numerical convergence rates for general ADER-DG PN schemes
with N = 2, 3, 4. The error is computed with respect to the analytical solution of the
original system (NH-1L). One can observe that the desired theoretical order of accuracy
in both space and time is achieved, as expected. In the case of the scheme P4 and α = 5,
it can be seen that the desired theoretical order of the method is lost. This is due to the
fact that the analytical solitary wave solution it is not the exact solution of the discretized
system (NHyp), but it is the exact solution of the original dispersive system (NH-1L).
Therefore, we cannot obtain errors below 1E-7 for α = 5. This is a well-known issue in
hyperbolic relaxation systems, see e.g. [243], as well as the discussion in [83]. Table 4.3
therefore also shows the results for the scheme P4 and α = 10, where the above mentioned
problem disappears, and the theoretical convergence order is again achieved.

One can observe that the desired theoretical order of accuracy in both space and time
is achieved for all the test cases, as expected. We would like to remark that the proposed
convergence analysis test is usually done for solitary waves of smaller amplitudes and
integration times. Thus, this constitutes a standard test to check the order of accuracy
of the numerical schemes for dispersive water waves models.

Solitary wave problem — System (YAM) — Staggered FV
Nx L2 error h L2 error hu L2 order h L2 order hu Theor.

3·103 4.6979E-03 4.2391E-03 — —

2
4·103 2.6308E-03 2.2622E-03 2.02 2.18

5·103 1.5997E-03 1.4327E-03 2.23 2.05

6·103 1.1040E-03 9.4255E-04 2.03 2.30

Table 4.1: L2 errors and convergence rates for the Solitary wave problem for the finite
volume staggered scheme. The errors have been computed for the variables h and hu.

A solitary wave over a long integration time

The propagation of a solitary wave over a long distance is a standard test of the stability
and conservative properties of numerical schemes for weakly-nonlinear weakly-dispersive
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Solitary wave problem — Two layer System (NH-2L) — FV
Nx L2 error h L2 error hu L2 order h L2 order hu Theor.

3·103 3.6000E-03 5.7000E-03 — —

2
4·103 2.0460E-03 3.0471E-03 1.96 2.18

5·103 1.2805E-03 1.8396E-03 2.10 2.26

6·103 8.9302E-04 1.2789E-03 1.98 1.99

Table 4.2: L2 errors and convergence rates for the Solitary wave problem for the finite
volume scheme. The errors have been computed for the variables h and hu = l1qu,1+l2qu,2.

Solitary wave problem — System (NHyp) — ADER-DG-PN
Nx L2 error h L2 error hu L2 order h L2 order hu Theor.

D
G
-P

2

α
=

5

50 1.4166E-3 4.9592E-3 — —

3
100 3.0634E-4 8.3081E-4 2.21 2.58

150 1.2784E-4 1.7910E-4 2.15 3.78

200 6.3940E-5 5.6724E-5 2.40 3.99

D
G
-P

3

α
=

5

50 6.2700E-4 1.5000E-3 — —

4
100 5.9129E-5 7.6146E-5 3.41 4.30

150 1.0752E-5 9.6921E-6 4.20 5.08

200 3.2610E-6 2.9417E-6 4.15 4.14

D
G
-P

4

α
=

5

50 1.6450E-4 3.4611E-4 — —

5
100 6.0518E-6 5.2054E-6 4.76 6.06

150 1.0289E-6 1.8248E-6 4.37 2.59

200 5.9428E-7 1.7494E-6 1.91 0.15

D
G
-P

4

α
=

10

50 2.1115E-4 4.0671E-4 — —

5
100 8.4101E-6 8.6210E-6 4.65 5.56

150 1.3955E-6 8.4100E-7 4.43 5.74

200 3.9809E-7 1.7584E-7 4.36 5.44

Table 4.3: L2 errors and convergence rates for the Solitary wave problem for the ADER-
DG-PN scheme. The errors have been computed for the variables h and hu.

models ([21], [259], [239], [217], [219], [231]). We use the analytical solution for the
system (NH-1L), given by (1.6.1)-(1.6.2), as an approximate solitary wave solution for
the new hyperbolic system (NHyp).

In this subsection we assess the abilities of the ADER-DG P2 scheme for the
propagation of solitary waves of relatively big amplitudes with coarser meshes. In
our test the solitary waves of amplitudes A = 0.1, 0.3, 0.5, 0.7 travels at a speed of
cA =

√
g(A+H) over a constant still-water depth H = 1 in a channel of length 200

m along the x direction. The domain is divided just into 200 cells along the x axis.
Periodic boundary conditions are used. The final simulation time is t = 120 s. The
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Figure 4.4: Solitary wave of amplitude A = 0.2 at t = 0, 50, 100, 150. ADER-DG P2

scheme

artificial non-hydrostatic pressure wave speed c is set to c = α
√
gH, α = 5. Although the

a posteriori limiter strategy is implemented, it not detect any troubled elements, hence
during the entire simulation of the solitary wave the pure unlimited ADER-DG scheme
is used.

Figure 4.4 shows the evolution of the solitary waves at different times using the ADER-
DG P2 scheme. Figures 4.5, 4.6, 4.7 and 4.8 show a perfect match between the numerical
and the analytical solution after a large integration time for the free surface, the horizontal
and vertical velocities as well as for the non-hydrostatic pressure.

It is worth mentioning that excellent results are obtained with a spatial discretization
of only ∆x = 1 m. In other works (see [112], [117]) usually it was necessary to refine
the grid substantially in order to maintain the correct amplitude of the solitary wave
for large integration times. This especially occurs when flux limiters such as minmod
([112]) are present in the numerical scheme, resulting in an undesired clipping of local
extrema. This makes the high order accurate DG schemes an appropriate framework for
the propagation of dispersive water waves, and in particular, for solitary waves, see also
the numerical results obtained in [109], [94].
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Figure 4.5: Comparison of surface η at time t = 120 shifted by (x − CAt) m (blue) and
initial condition (red) for the solitary wave of amplitude A = 0.2. ADER-DG P2 scheme
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Figure 4.6: Comparison of horizontal velocity u at time t = 120 shifted by (x − CAt) m
(blue) and initial condition (red) for the solitary wave of amplitude A = 0.2. ADER-DG
P2 scheme
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Figure 4.7: Comparison of vertical velocity w at time t = 120 shifted by (x − CAt) m
(blue) and initial condition (red) for the solitary wave of amplitude A = 0.2. ADER-DG
P2 scheme
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Figure 4.8: Comparison of non-hydrostatic pressure p at time t = 120 shifted by (x −
CAt) m (blue) and initial condition (red) for the solitary wave of amplitude A = 0.2.
ADER-DG P2 scheme
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4.2 Solitary wave run-up on a plane beach

Synolakis [233] carried out laboratory experiments for incident solitary waves, to study
propagation, breaking and run-up over a planar beach with a slope 1 : 19.85. Many
researchers have used this data to validate numerical models. With this test case we
assess the ability of the models to describe shoreline motions and wave breaking, when it
occurs. Experimental data are available in [233] for surface elevation at different times.
The bathymetry of the problem is described in Figure 4.9. A solitary wave of amplitude

10.0 m 19.85 m 20.0 m

0.3 m

1.0 m

Figure 4.9: Sketch of the bathymetry used for the solitary wave run-up onto a beach test
problem. .

A = 0.3, computed initially for each model following Section 4.1, is placed at the location
x = 20. This serves as initial condition for the free-surface elevation and all other flow
quantities. A Manning coefficient of nm = 0.01 is used in order to define the glass surface
roughness used in the experiments. The computational domain Ω = [−10, 40] is divided
into 1000 equidistant cells. Free-outflow boundary conditions are considered.

Figure 4.10 and Figure 4.11 show snapshots, at different times, t
√
g/H = t0 where

H = 1, comparing experimental and simulated data. Figure 4.10 also shows where the
breaking mechanism is active (region between the bars), for the system (NH-2L) and
demonstrates the efficacy of its criteria. Similar region between bars can be shown for the
rest of systems with their corresponding breaking mechanisms.

The breaking mechanism also works properly in terms of grid convergence. Figure 4.13
shows the snapshots at times t

√
g/H = 15 (run-up) and t

√
g/H = 55 (run-down) for

different mesh sizes and systems.
Finally, Figure 4.12 represents the obtained numerical results when the breaking

mechanism is not considered. In this case, a spurious overshoot of the wave amplitude
appears, which underlines the importance to consider wave breaking in the context of
dispersive non-linear shallow water models.

Due to the fact that the propagated wave in this test is weakly-nonlinear weakly-
dispersive, the results obtained with the two-layer system are quite similar to the results
obtained with the one-layer systems. Nevertheless, this test shows that the breaking
mechanism introduced in this thesis, as well as friction terms, perform adequately for the
two-layer system.
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Figure 4.10: Comparison of experiments data (red) and simulated ones with the proposed
non-hydrostatic systems including friction and wave breaking mechanism at different times
during the run-up. Between bars, regions where breaking mechanism is active are shown
for the case of the system (NH-2L2D).

In addition, good results are obtained for the maximum wave run-up, where the friction
terms play an important role. Note that no additional wet-dry treatment for the non-
hydrostatic pressure is needed. This test shows that the proposed a posteriori limiting
strategy, the chosen breaking mechanism, as well as the standard SWE friction term
perform adequately for the proposed hyperbolic system. Moreover, the corresponding
discretization is robust and can deal with the presence of wet-dry fronts correctly.
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Figure 4.11: Comparison of experiments data (red) and simulated ones with the proposed
hyperbolic system including friction and wave breaking mechanism at different times
during the run-down.

4.3 Solitary wave propagation over a reef

A test case on solitary wave over an idealized fringing reef examines the model’s capability
of handling nonlinear dispersive waves, breaking waves and bore propagation. The test
configurations include a fore reef, a flat reef, and an optional reef crest to represent
fringing reefs commonly found in tropical environment. Figure 4.14 shows a sketch of the
laboratory experiments carried out at the O.H. Hinsdale Wave Research Laboratory of
Oregon State University.
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Figure 4.12: Comparison of experiments data (red) and simulated ones with the proposed
hyperbolic system including friction at different times during the run-up without a
breaking mechanism.

1.0 m

17.0 m 5.0 m 23.0 m

0.5 m

Figure 4.14: Sketch of the topography

A solitary wave of amplitude A = 0.5, computed initially for each model following
Section 4.1, is placed at the location x = 10. This serves as initial condition for the free-
surface elevation and all other flow quantities. A Manning coefficient of nm = 0.012 is used
in order to define the glass surface roughness used in the experiments. The computational
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Figure 4.13: Comparison of free-surface simulation at times t
√
g/H = 15 and t

√
g/H =

55 for different mesh sizes and systems.
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domain Ω = [0, 45] is divided into 900 equidistant cells. Free-outflow boundary conditions
are considered.

Figure 4.15 shows snapshots at different times, t
√
g/H = t0 where H = 1. Again,

comparison between experimental and simulated data allows us to validate the numerical
approach followed here. The water rushes over the flat reef without producing a
pronounced bore-shape. The simulation also captures the offshore component of the
rarefaction falls, exposing the reef edge, below the initial water level.

Again, as in the previous test case, due to the fact that the propagated wave in this
test is weakly-nonlinear weakly-dispersive, the results obtained with the two-layer system
are quite similar to the results obtained with the one-layer systems.

3 3

Figure 4.15: Comparison of experimental data (red points) and numerical at times
t
√
g/H = 0, 80, 100, 130, 170, 250 s
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4.4 Favre waves

Here we consider an experiment where a fluid layer with a free surface is impacting against
a vertical wall (see e.g. [117], [116], [249]). Due to dispersion, the reflected wave is a wave
train of waves of different lengths and amplitudes (see Figure 4.16), rather than a simple
shock wave as predicted by the shallow water equations (SWE).

Figure 4.16: Sketch of Favre waves.

In this test we check again the performance of the proposed breaking mechanism for
the systems (NH-2L), (YAM) and (NHyp).

The one-dimensional computational domain is Ω = [0, 180] and we set H = 1. The
impact velocity u0 is related to the relative Froude number F by the formula ([133])

u0 =

(
F − 1 +

√
1 + 8F 2

4F

)√
gH. (4.4.1)

Hence, the initial condition for the horizontal velocity is given by (4.4.1) and h = H.
The rest of the hydrodynamical variables are set to zero. The final simulation time was
t = 54 s.

Figure 4.17 shows a comparison at time t = 54 for the Froude number Fr = 1.35
for different mesh sizes with the ADER-DG P2 scheme applied to the system (NHyp).
One can observe that the results for 250 and 500 elements are quite similar, hence good
numerical results can be obtained also on reasonably coarse meshes.

It is well-known that above the critical value Fr = 1.35, breaking waves arise (see [117],
[133]) and the model is not valid without a breaking mechanism. Figure 4.18 shows
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Figure 4.17: Comparison of the numerical results obtained at time t = 54 for the Froude
number Fr = 1.35. The numerical simulations are shown for different mesh sizes: 125
(blue), 250 (red) and 500 (orange) elements.

the comparison between the experimental and the numerical results with a breaking
mechanism included and without it. With wave breaking the obtained numerical results
are in excellent agreement with the measured experimental data. Figure 4.18 also clearly
shows that the breaking mechanism only acts when and where it is really needed, since
similar results with respect to the simulations without the breaking mechanism are
observed for F < 1.35, where no wave breaking occurs in the experiments.
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Figure 4.18: Comparison between the experimental data (red asterisks) and the numerical
results with a breaking mechanism (triangles) and without (squares) with the systems
(NH-2L), (YAM) and (NHyp). The upper markers indicate the amplitude of the first
wave; the lower show the amplitude of the trough after the first wave.

4.5 Standing wave in closed basin

In this test case, we shall study the dispersive properties of the two layer system (NH-2L).
To do so, we consider the analytical solution from the Stokes linear theory of a standing
wave in closed basin with length L and flat bottom H = 10. The initial surface elevation
is given by

η(x, 0) = A cos

(
2πx

L

)
,

where A = 0.1 is the amplitude of the standing wave. The wave length is the same
than the length of the basin. This test case has been studied by various authors. For
instance, Casulli and Stelling [51] use more than 20 vertical layers in order to correctly
simulate wave dispersion. Using Keller-box scheme, Stelling and Zijlema [231] obtained
good agreement with analytical solution by using two layers. Using a σ−coordinates
discretization of the free-surface Euler equations, [180] shows excellent agreement with
three layers.

To check the performance of the two proposed improved parameters, we will show two
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cases: L = 20/n, n = 1, 3. Since kH = 20π/L = nπ, the waves are highly dispersive.
From the dispersion relationship, we know that 2π/T =

√
gk tanh (kH), and we can

calculate the wave period T . The Stokes first order solution for this standing wave is

η(x, t) =
A

2
cos (kx) cos

(
2π

T
t

)
.

As in [181], a grid ∆x = 0.2/n that corresponds to 100 cells per wavelength for both
cases of n = 1, 3. A CFL = 0.45 is employed. Periodic boundary conditions are imposed.
The simulation time is 40 seconds. The test is performed with the one-layer system that
corresponds to l2 = 0, and with the two-layer system proposed in this dissertation for
some values of the optimization parameters that will be detailed.

Fig. 4.19 shows the comparison of the time series between the analytical solution for
the case of L = 20 and the numerical solution, at x = L/2. In this case, kH = π, and

the two-layer system with the non-optimized parameters (l
(2L)
1 , γ

(2L)
1 , γ

(2L)
2 ) gives good

results. Nevertheless, the optimized parameters (l
(5)
1 , γ

(5)
1 , γ

(5)
2 ) improve the results and

the solution matches perfectly with the analytical reference solution. This case highlights
that the one-layer systems can not reproduce well these dispersive waves. This is due
to the poor accuracy of the linear dispersion relation that the one-layer systems has for
kH ≈ π.

The case L = 20/3 gives kH ≈ 9.42 and becomes more challenging. Fig. 4.20 shows
comparisons of the time series at x = L/2. In this case, the two-layer model with the
non-optimized parameters can not maintain the correct frequency, and it quickly loses the
initial trim, which is also missed from the beginning in the case of the one-layer system.
Fig. 4.20 also shows the results with the presenting improved parameters (l

(15)
1 , γ

(15)
1 , γ

(15)
2 )

with an excellent agreement. The numerical test shows the ability of the optimized two
layer model presented here to deal with a wide range of waves.
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Figure 4.19: Comparison of analytical (red) and numerical (blue) for the case L = 20.
In (a) the numerical results for the one-layer (l2 = 0); (b) the numerical results with the

non-optimized parameter (l
(2L)
1 , γ

(2L)
1 , γ

(2L)
2 ); (c) the numerical results with the optimized

parameters (l
(5)
1 , γ

(5)
1 , γ

(5)
2 ).
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Figure 4.20: Comparison of analytical (red) and numerical (blue) for the case L = 20/3.
In (a) the numerical results for the one-layer (l2 = 0); (b) the numerical results with the

non-optimized parameters (l
(2L)
1 , γ

(2L)
1 , γ

(2L)
2 ); (c) the numerical results with the optimized

parameters (l
(15)
1 , γ

(15)
1 , γ

(15)
2 ).
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4.6 Periodic waves over a submerged bar

The experiments of plunging breaking periodic waves over a submerged bar by Dinge-
mans [87] and Beji and Battjes [13] are considered here. The experiments studies the
frequency dispersion characteristics and non-linear interaction. As waves propagates over
a submerged bar, multiple phenomena occurs, such as non-linear shoaling, amplification
of higher harmonics and wave breaking.

Figure 4.21: Periodic waves breaking over a submerged bar. Sketch of the bathymetry

The one-dimensional domain [0, 30] is discretized with ∆x = 0.01 and the bathymetry
is defined in the Fig. 4.21 for all the experiment cases. The CFL is set to 0.5 and
g = 9.81. Horizontal and vertical velocities and η are set initially to 0. Boundary
conditions correspond to free-outflow at x = 30 and a sinusoidal wave train for η generated
at x = 0. This is done using the target initial condition at the relaxation zone with
LRel = 2 :

η∗(t) = A sin

(
2π

T
t

)
, u∗α(t) =

√
gH0η

∗(t),

where A and T denotes amplitude and period and H0 = 0.4. The rest of hydrodynamical
variables of the system are set to zero. We focus on test cases (a), (b), (c) and (d), that
have been described in the table below along with the models used to its simulation

Case A (m) T (s) Waves Model used
(a) 0.01 2.02 non-breaking waves (NH-2L)
(b) 0.0145 2.525 breaking waves (NH-2L)
(c) 0.0205 1.01 non-breaking waves (NH-2L)
(d) 0.01 1.25 non-breaking waves (NH-2L), (YAM), (NHyp),

The test cases (a)-(c) corresponds to the experiment by Dingemans, whereas the case (d)
corresponds to the experiment by Beji and Battjes.
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Depth gauges, which measure the free surface elevation, are placed for cases along
x = gi, g1 = 4, g2 = 5.7, g3 = 10.5, g4 = 12.5, g5 = 13.5, g6 = 14.5, g7 = 15.7, g8 =
17.3, g9 = 19, g10 = 21.

Test (a) and (c) produce, up to the front slope, waves with kH ≈ 0.63 and kH ≈ 1.58
respectively. Fig. 4.22 shows the time series of free surface for case (a). The numerical
model maintains good agreement with the experimental data at each station. Minor
discrepancies can be observed behind the bar at stations g5−g10, where higher harmonics
are released. The test case (a) coincides with one of the proposed in [13], and similar good
agreement with other numerical models can be found in literature. Let us remark that
in [180] σ−coordinate discretization of the free-surface Euler equations is used. While in
that paper the authors need three layers for the test, we can achieve good results with
the technique proposed here that only considers two layers. The results in [61] with a
three-parameter Green-Naghdi model optimized for uneven bottoms, are also in good
agreement. Comparing to that, let us remark that the Green-Naghdi system described
there includes high order terms by means of third order derivatives. We would like to
stress the ability of the proposed two-layer system to deal with a widely range of dispersive
waves, which is achieved without including high order terms in the system of equations.
Only first order derivatives are used here. In [9] the test is also studied with a depth-
integrated free-surface two-layer non-hydrostatic system.

The results from case (c) are given in Fig. 4.24. In this situation, larger values of kH
give short waves and make this case more challenging. Due to this fact, waves propagate
and typical cnoidal profile can be observed over the top of the bar. This is well reproduced
at gauges g1, g2, g3, g4. Behind the bar, at g5, g6, g7, higher harmonics appear. As we
see, a good fit for the amplitude is observed. This test case was studied in [176], where
excellent results are obtained at g5, g6, g8, g10, with a two-layer system that it has been
also optimized up to the a second-order nonlinear dispersive analysis.

Fig. 4.22 and Fig. 4.24 also show comparison with (l
(5)
1 , γ

(5)
1 , γ

(5)
2 ) and (l

(2L)
1 , γ

(2L)
1 , γ

(2L)
2 )

parameters. One can see a better matching in favour of the former. The next case
presented is (b), where waves start to break on the top of the bar. Numerical time

series of surface elevation are shown in Fig. 4.23 for (l
(5)
1 , γ

(5)
1 , γ

(5)
2 ). Here we use the

proposed ςα for the breaking mechanism described in Subsection 1.5. To evince that
a breaking mechanism is needed, the corresponding numerical simulation without the
breaking mechanism is also shown in Fig. 4.23. The test shows the need to consider a
breaking mechanism. Before reaching the bar, both simulations coincide as expected,
since the wave breaking starts around x = 12, revealing that the start/stopping criteria
performs properly. In all gauges that follows, the wave shape, frequency and amplitude
is well reproduced in favour of the simulations with the breaking mechanism. In [103],
the test case (b) is performed with a Serre Green-Naghdi system and a different and well-
validated breaking mechanism. The results obtained in this work, are in accordance with
the ones presented in [103]. The experiment concerning to the case (d) is carried out
with the one-layer systems. Figure 4.25 shows the time evolution of the free surface at
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Figure 4.22: Comparison of experiment data (a) (red points) and simulated ones with

improved dispersive parameters (l
(5)
1 , γ

(5)
1 , γ

(5)
2 ) (green) and (l

(2L)
1 , γ

(2L)
1 , γ

(2L)
2 ) (blue)

points g3, . . . , g8. Both amplitude and frequency of the waves are captured on all wave
gauges successfully, and all the models give similar results. In this test case, the resulting
waves are weakly-nonlinear weakly-dispersive. These are in a range in which the one-layer
systems has an accurate linear dispersion relation, and excellent results are obtained. For
the test cases (a)-(c) studied here, high harmonic waves appear, as well as kH can increase
up to 10. Thus, many dispersive models can not reproduce well the experiment. This
is the case of the weakly-nonlinear weakly-dispersive one-layer models. The comparison
with experimental data emphasizes the need to consider a dispersive model to faithfully
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Figure 4.23: Comparison of experiment data (b) (red points) and simulated ones with
breaking mechanism (green) and without (blue)

capture the shape of the waves near the continental shelf, where a wide range of dispersive
waves can be released. Thus, the two-layer system presented in this work can simulate an
extensive range of frequencies of dispersive waves, which typically arises in nature from
intermediate to shallow waters.
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Figure 4.24: Comparison of experiment data (c) (red points) and simulated ones with

improved dispersive parameters (l
(5)
1 , γ

(5)
1 , γ

(5)
2 ) (green) and (l

(2L)
1 , γ

(2L)
1 , γ

(2L)
2 ) (blue)

4.7 Solitary wave impinging on a conical island

The goal of this 2D numerical test is to compare the results of the mathematical
models described in this dissertation with laboratory measurements for a two-dimensional
problem. The experiment was carried out at the Coastal and Hydraulic Laboratory,
Engineer Research and Development Center of the U.S. Army Corps of Engineers ([20]).
The laboratory experiment consists in an idealized representation of Babi Island in the
Flores Sea in Indonesia. The produced data sets have been frequently used to validate
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Figure 4.25: Comparison of experiment data (red line) and simulated ones

run-up models ([259], [179]).

A directional wave-maker is used to produce planar solitary waves of specified crest
lengths and heights. The set–up consists in a 25 × 30 m2 basin with a conical island
situated near the centre. The still water level is H = 0.32 m. The island had a base
diameter of 7.2 m, a top diameter of 2.2 m and it is 0.625 m high. Four wave gauges,
{WG1, WG2, WG3, WG4}, are distributed around the island in order to measure the
free surface elevation (see Figure 4.26).

For the numerical simulation we will use the systems (NH-2L2D),(YAM-2D) and
(NHyp-2D).

The computational domain is chosen as Ω = [−5, 23] × [0, 28] with ∆x = 0.02 and
∆y = 0.02. Free outflow boundary conditions are imposed. A solitary wave of amplitude
A = 0.06, computed initially for each model following Section 4.1, is placed at the location
x = 0. The wave propagates until t = 30 seconds and a Manning coefficient of nm = 0.015
is used.

The numerical simulation shows two wave fronts splitting in front of the island and
collide behind it (see Figures 4.31 and 4.32 ). Comparison between measured and
computed water levels at gauges WG1, WG2, WG3, WG4 show good results (4.28)
for the three systems. However, the simulation corresponding to (NHyp-2D) reveals a
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Figure 4.26: Sketch of the topography for the conical island test case.

better fit. This is due to the high order ADER-DG P2 scheme in opposition to the second
order finite volume schemes used to discretize the systems (NH-2L2D) and (YAM-2D). A
comparison between the computed run-up and the laboratory measurement, is shown in
Figure 4.27. The results are in an excellent agreement with the laboratory measurement.

Table 4.4 shows the execution times on a NVIDIA Tesla P100 GPU for the
system (NHyp-2D) with α = 0 (SWE) and α = 3. In view of the obtained results, we
can conclude that the implementation of the DG scheme for the non-hydrostatic code can
achieve a good computational performance with an additional computational cost that is
only about 2.68 times the cost of a simple SWE simulation. This additional computational
cost is similar to the one presented in [112], where the non-hydrostatic pressure system
proposed in [259] was discretized with a second order hybrid finite volume–finite difference
scheme, by solving a mix hyperbolic-elliptic problem. The real highlight in this work is
that the same low additional computational cost is maintain for any order of accuracy in
space and time of the numerical scheme.

Moreover, Figure 4.29 shows that the computational time required to evolve a degree
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of freedom remains constant when the order of the DG scheme is increased.
As can be expected, almost all the execution time is spent in the space-time

predictor kernel. Figure 4.30 shows graphically the GFLOPS/s obtained in the CUDA
implementation for the space-time predictor kernel. The code achieves 700 GFLOPS/s for
big enough meshes. Theoretical maximum peak performance for the Tesla P100 is 4.761
TFLOPS in double precision, and therefore the code can achieved around a 14% of this
theoretical maximum peak performance value. Moreover, the GFLOP/s values obtained
are independent on the order of the scheme.

It can thus be stated that the numerical scheme used here is computationally efficient
and can correctly simulate dispersive water waves with only a moderate computational
overhead compared to the classical SWE model.

Figure 4.27: Maximum run-up measured (red) and simulated (legend) on a 200× 200 cell
mesh.
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Figure 4.28: Comparison of data time series (red) and numerical (legend) at wave gauges
WG1, WG2, WG3, WG4 on a mesh composed of 200× 200 elements.

Figure 4.29: Computational time (×10−6) to evolve a degree of freedom for a DG-PN
scheme for the system (NHyp-2D).
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Runtime(s) GPU — ADER-DG-PN
Nx ×Ny α = 3 α = 0 Ratio

D
G
-P

1
100 × 100 7.29 4.85 1.50

200 × 200 47.09 29.02 1.62

300 × 300 147.88 70.04 2.11

400 × 400 336.07 138.47 2.43

D
G
-P

2

100 × 100 89.98 40.23 2.24

200 × 200 705.90 296.10 2.38

300 × 300 2323.79 932.51 2.49

400 × 400 4953.49 1913.17 2.59

D
G
-P

3

100 × 100 548.56 230.83 2.38

200 × 200 4446.10 1803.18 2.47

300 × 300 14496.71 5625.33 2.58

400 × 400 40155.22 15009.88 2.68

Table 4.4: Execution times in sec for non-hydrostatic and SWE GPU implementations

Figure 4.30: GFLOPS/s obtained for the space-time predictor kernel for several meshes
and DG− PN schemes.
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Figure 4.31: Snapshot of the free surface
profile at time t = 8.

Figure 4.32: Snapshot of the free surface
profile at time t = 10.

4.8 Dispersive water waves generated by rigid land-

slides

This benchmark problem is based on the 3D laboratory experiments of [108]. It was
also used as a test problem in the International Workshop on Landslide Tsunami Model
Benchmarking, that was held on Galveston in 2017, where all relevant data were also
provided ([200]). A recent work has been submitted (see [158]), where the systems and
numerical tools described in this thesis has been employed. In this subsection we will
focus in one of the considered benchmarks.

This problem consists on the modelling of the water free surface perturbation due to a
sliding mass down a plane slope. Experiments were performed in the University of Rhode
Island (URI), in a wave tank of 3.6 m width, 30 m length and 1.8 m deep. The sliding
mass down a plane slope built in the tank with an angle θ = 15◦. The vertical cross
section of the landslide is shown in Figure 4.33. The geometry is defined using smoothed
hyperbolic functions

T

1− ε
(sech(kb(x− xg))sech(kwy)− ε),

kb = 2C/b, kw = 2C/w, C = acosh(1/ε).

The slide has a length b = 0.395, width w = 0.680 and thickness T = 0.081. The
smoothness parameter is ε = 0.717. At time t = 0, the slide is initially located at given
submergence depth d, and two cases for two different values of d will be shown: d = 61 mm
and d = 120 mm. xg ≡ xg(d) is the x-abscissa point where the slide has d millimeters
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depth. The movement of the landslide is prescribed as

S(t) = S0 ln

(
cosh

t

t0

)
, S0 =

u2
t

a0

, t0 =
ut
a0

,

where ut, a0 are the slide terminal velocity and initial acceleration, respectively. ut = 1.7
and a0 = 1.2 for the case of d = 61 mm, and ut = 2.03 and a0 = 1.17 for the case
of d = 120 mm. After t0 seconds the slide is stopped. To measure the free-surface
perturbation, four wave gauges, g0, . . . , g3 are located at (x, y) meters

g0 = (xg, 0), g1 = (1.469, 0.350), g2 = (1.929, 0), g3 = (1.929, 0.5),

where x denotes distance from the sill water shoreline and y denotes distances off the
centre-line axis of the sliding mass.

To represent the experiment, the two-dimensional domain [−1, 10] × [−1.8, 1.8] is
discretized with ∆x = ∆y = 0.02. The simulated time is 4 seconds. We set g = 9.81.
Outflow boundary conditions are used at x = −1, x = 10 and wall boundary conditions
at y = −1.8, y = 1.8.

Figure 4.33: Sketch of the slide

Figure 4.35 shows the results for the first case, d = 61 mm, and Figure 4.36 the results
for the second case, d = 120 mm. In this second case measured laboratory data for gauge
g2 are not available.

In this test case, the presence in the model of the term ∂tH plays an important role
and is numerically computed from the displacement of the bottom H, which is prescribed
in this experiment.
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The one-layer systems (YAM-2D) and (NHyp-2D), fail when modelling such waves,
as can be seen in Figure 4.34. Nevertheless, the two-layer model with the optimized
parameters (l

(5)
1 , γ

(5)
1 , γ

(5)
2 ) represents the amplitude and frequency of generated waves

correctly. As it can be seen, wave heights are highest at the gauge lying along the
axis y = 0 and decreasing with the distance to the same. We note that the results
presented in [180] showed comparable capabilities in predicting waves, using a Navier-
Stokes equations written in surface and terrain using a three layer σ-coordinates.

Table 4.5 shows execution times using a GPU implementation on a GTX Titan
Black for both codes. The improved two-layer non-hydrostatic code can achieve a good
performance with an additional computation cost that is only between 4.55 and 5.89 times
that of a SWE code. It can be stated thus that the scheme presented here is efficient and
can model dispersive effects with a moderate computational cost. To our knowledge,
similar models and/or numerical schemes that intend to simulate dispersive effects in
such frameworks are much more expensive from the computational point of view.

The test shows the ability of the presented model to deal with dispersive water waves,
that are not weakly-nonlinear weakly-dispersive, in bidimensional domains with varying
bathymetries and with a moderate computational cost.

Number of Volumes
Runtime (s)

SWE Non-Hydrostatic
1 layer 2 layer

225× 90 6.68 12.61 30.43
550× 180 56.18 157.62 299.09
1100× 360 225.25 557.98 1327.28

Table 4.5: Execution times in seconds for SWE and non-hydrostatic GPU implementations



4.8 Dispersive water waves generated by rigid landslides 203

Figure 4.34: Comparison of data time series (red) and numerical (blue) with the one-layer
system (YAM-2D) at wave gauges g0, g1, g2, g3 (up to the down) for the case d = 61 mm
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Figure 4.35: Comparison of data time series (red) and numerical (blue) with the two-layer

system with the improved parameters (l
(5)
1 , γ

(5)
1 , γ

(5)
2 ) at wave gauges g0, g1, g2, g3 (up to

the down) for the case d = 61 mm
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Figure 4.36: Comparison of data time series (red) and numerical (blue) with the two-layer

system with the improved parameters (l
(5)
1 , γ

(5)
1 , γ

(5)
2 ) at wave gauges g0, g1, g3 (up to the

down) for the case d = 120 mm
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Figure 4.37: Snapshots at times (a) t = 0, (b) t = 1.5 for the case d = 61 mm. Free
surface elevation is exaggerated 5 times.



Chapter 5

On the influence of dispersive water
waves in bedload transport
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In this chapter, it is presented an interesting, recent and new branch of the simulation
of dispersive water waves applied to the simulation of bedload transport. In particular, we
study the influence when considering non-hydrostatic or dispersive effects applied to the
modelling of bedload transport processes. This chapter is based on a recent and ongoing
work C. Escalante et al. [110]. In this work, a two-layer shallow water type model is
proposed to describe bedload sediment transport for strong and weak interactions between
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the fluid and the sediment. The critical point falls into the definition of the friction law
between the two layers, which is a generalization of those introduced in Fernández-Nieto et
al. [123]. This definition allows to properly apply the two-layer shallow water model for the
case of intense and slow bedload sediment transport. Moreover, we prove formally that the
two-layer model converges to a Saint-Venant-Exner system (SVE) including gravitational
effects when the ratio between the hydrodynamic and morphodynamic time scales is
small. The SVE with gravitational effects is a degenerated nonlinear parabolic system,
whose numerical approximation can be very expensive from a computational point of
view, see for example T. Morales de Luna et al. [81]. In this work, gravitational effects are
introduced into the two-layer system without any parabolic term. Finally, we also consider
a generalization of the model that includes a non-hydrostatic pressure correction for the
fluid layer and the boundary condition at the sediment surface. Numerical simulations
show that the model provides promising results and behave well in low transport rate
regimes as well as in many other situations.

5.1 Introduction

Our goal is to obtain a general model for bedload sediment transport that is valid in any
regime, for strong and weak interactions between the fluid and sediment.

In most models, a weak interaction between the sediment and the fluid is assumed.
In this case, Saint-Venant-Exner models are usually considered (SVE in what follows, see
[113]). For the case of high bedload transport rate, two-layer shallow water type model
are considered instead, see for example [230], [232], [225]. In this work, we focus into the
definition of a two-layer shallow water type model that can be applied in both situations.

In [123], a multi-scale analysis is performed taking into account that the velocity of
the sediment layer is smaller than the one of the fluid layer. This leads to a shallow water
type system for the fluid layer and a lubrication Reynolds equation for the sediment one.

For the case of uniform flows the thickness of the moving sediment layer can be
predicted, because erosion and deposition rates are equal in those situations. This is
a general hypothesis that is assumed when modelling weak bedload transport. The
usual approach is to consider a coupled system consisting of a Shallow Water system for
the hydrodynamical part combined with a morphodynamical part given by the so-called
Exner equation. The whole system is known as Saint Venant Exner system [113]. Exner
equation depends on the definition of the solid transport discharge. Different classical
definitions can be found for the solid transport discharge, for instance the ones given by
Meyer-Peter & Müller [190], Van Rijn’s [218], Einstein [107], Nielsen [197], Fernández-
Luque & Van Beek [175], Ashida & Michiue [5], Engelund & Fredsoe [114], Kalinske
[161], Charru [60], etc. A generalization of these classical models was introduced in
[123] where the morphodynamical component is deduced from a Reynolds equation and
includes gravitational effects in the sediment layer. Classical models do not take into
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account in general such gravitational effects because in their derivation the hypothesis of
nearly horizontal sediment bed is used (see for example [165]).
In general, classical definitions for solid transport discharge can be written as follows,

qb
Q

= sgn(τ)
k1

(1− ϕ)
θm1 (θ − k2 θc)

m2
+

(√
θ − k3

√
θc

)m3

+
, (5.1.1)

where Q represents the characteristic discharge, Q = ds
√
g(1/r − 1)ds, r = ρ1/ρ2 is the

density ratio, ρ1 being the fluid density and ρ2 the density of the sediment particles; ds the
mean diameter of the sediment particles, and ϕ is the averaged porosity. The coefficients
kl and ml, l = 1, 2, 3, are positive constants that depend on the model. We usually find
m2 = 0 or m3 = 0, for example, Meyer-Peter & Müller model takes m3 = 0 and Ashida
& Michiue’s model uses m2 = 0.

The Shields stress, θ, is defined as the ratio between the agitating and the stabilizing
forces, θ = |τ |d2

s/(g(ρ2 − ρ1)d3
s), τ being the shear stress at the bottom. For example, for

Manning’s law, we have τ = ρ1gh1n
2u1|u1|/h4/3

1 . Where h1 and u1 are the thickness and
the velocity of the fluid layer, respectively, and n is the Manning coefficient.
Finally, θc is the critical Shields stress. The positive part, ( · )+, in the definition implies
that the solid transport discharge is null if θ ≤ kθc (with k = k2 when m2 > 0 and
k =
√
k3 when m3 > 0). If the velocity of the fluid is zero, u1 = 0, we have θ = 0 < kθc,

and for any model that can be written under the structure (5.1.1) we obtain that qb = 0,
which means that there is no movement of the sediment layer. This is even true when the
sediment layer interface is not horizontal which is a consequence of the fact that classical
models do not take into account gravitational effects.

In order to introduce gravitational effects in classical models, Fowler et al. proposed
in [126] a modification of the Meyer-Peter & Müller formula that consists in replacing θ
by θeff, where:

θeff = |sgn(u1)θ − ϑ∂x(h2 −H)| , (5.1.2)

with

ϑ =
θc

tan δ
, (5.1.3)

δ being the angle of repose of the sediment particles. The sediment surface is defined by
z = h2−H, where h2 is the thickness of the sediment layer and b the topography function
or bedrock layer. Then, θeff is defined in terms of the gradient of sediment surface. This
is a definition that can be also considered for 2D simulations, because in this case θeff is
defined as the norm of the vector θu1/‖u1‖ − ϑ∂x(h2 −H). Other alternatives have been
proposed in the literature, namely consisting in the replacement of θc by a modified value
θ̂c depending on the angle α of the slope.

More explicitly, it is usually assumed that (θeff−θc)+ = (θ− θ̂c)+. Nevertheless, remark
that this is not true in general due to the absolute value (or the norm of the vectorial
case) appearing in the definition of θ. Both approximations are equivalent in particular
for the case of u1 > 0 and ∂xb = − tanα < 0 (see [123]).
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In particular, in [175], it was proposed to modify the critical Shields parameter by

θ̂c = θc

(
1− tanα

tan δ

)
, (5.1.4)

where the gravitational effects are taken into account based on the angle of the slope α.

It is important to notice that in many situations it is assumed that the sediment
transport follows the same direction as the flow. This is not always true as the sediment
transport in rivers can deviate its direction from the depth-averaged flow direction due
to the transverse slopping bed for instance (see [193]).

Moreover, the definition of θ̂c for arbitrarily sloping bed for 2D problems is not an
easy task (see [128], [129]).

As we mentioned previously, in [123] a SVE model is deduced from a multiscale
analysis.

The model includes gravitational effects and the authors deduce that it can also be
seen as a modification of classical models: θ is replaced by the proposed values θ

(L)
eff or

θ
(Q)
eff , depending on whether the friction law between the fluid and the sediment is linear or

quadratic. In the case when hm is of order of ds/ϑ, for a linear friction law, the definition
of the effective shear stress proposed in [123] can be written as follows:

θ
(L)
eff =

∣∣∣∣sgn(u1)θ − ϑ∂x(h2 −H)− ϑ ρ1

ρ2 − ρ1

∂x(h1 + h2 −H)

∣∣∣∣ . (5.1.5)

Let us remark that if the water free surface is horizontal, the definition of θ
(L)
eff coincides

with θeff (5.1.2), proposed by Fowler et al. in [126]. Otherwise, the main difference is that
this definition for the effective shear stress takes into account not only the gradient of the
sediment surface but also the gradient of the water free surface.

For the case of a quadratic friction law, although the definition is a combination of
the same components, it is rather different. In this case we can write the effective Shields
parameter proposed in [123] as follows:

θ
(Q)
eff =

∣∣∣∣∣sgn(u1)
√
θ −

√
ϑρ1

ρ2 − ρ1

|∂x(
ρ1

ρ2

h1 + h2 −H)| sgn

(
∂x(

ρ1

ρ2

h1 + h2 −H)

)∣∣∣∣∣
2

.

(5.1.6)
In the case of submerged bedload sediment transport, the drag term is defined by a
quadratic friction law. Thus, we should consider an effective Shields stress given by θ

(Q)
eff .

Nevertheless, in the bibliography it is θeff (5.1.2) which is usually considered, regardless

the fact that θeff is an approximation of θ
(L)
eff which is deduced from a linear friction law.

Although the quantities involved in the definitions of the effective Shields parameter
associated to linear or quadratic friction are the same, their values may be very different.
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They verify

|θ(L)
eff − θ

(Q)
eff | = O

(
|∂x(

ρ1

ρ2

h1 + h2 −H)|

(
√
θ −

√
ϑρ1

ρ2 − ρ1

|∂x(
ρ1

ρ2

h1 + h2 −H)|

))
.

For instance, if we consider an initial condition with water at rest and a high gradient in
the sediment surface, the difference between θ

(L)
eff and θ

(Q)
eff is of order of the gradient of

the sediment surface. Thus, in the framework of SVE model, the definition θ
(Q)
eff should

be considered in order to be consistent with the quadratic friction law usually considered
for the drag force between the fluid and the sediment.

In any case, considering the definitions θeff (5.1.2), θ
(L)
eff (5.1.5), or θ

(Q)
eff (5.1.6), means

that the corresponding SVE system with gravitational effects is a parabolic degenerated
partial differential system with non linear diffusion. Moreover, the system cannot be
written as combination of a hyperbolic part plus a diffusion term.

Let us remark that in the literature a linearized version can be found, where
gravitational effects are included by considering a classical SVE model with an additional
viscous term, see for example [235], [191] and references therein. The drawback of this
approach is that the diffusive term should not be present in stationary situations, for
instance when the velocity is not high enough and sediment slopes are under the one
given by the repose angle. In such situations, it is necessary to include some external
criterion that controls whether the diffusion term is applied or not. This is not the case
in definitions (5.1.5) or (5.1.6) where the effective Shields stress is automatically limited
by the effect of the Coulomb friction angle.

In this work, we propose a two-layer shallow water model for bedload transport.
The model converges to a generalization of SVE model with gravitational effects for low
transport regimes while being valid for higher transport regimes as well. Moreover, it has
the advantage that the inclusion of gravitational effects does not imply to approximate any
non-linear parabolic degenerated term, as for the case of SVE model with gravitational
effects.

An additional advantage of the model introduced here is that it will take into account
dispersive effects. When modelling and simulating geophysical shallow flows, the nonlinear
shallow water equations are often a good choice as an approximation of the Navier-Stokes
equations. Nevertheless, they are derived by assuming hydrostatic pressure and they do
not take into account non-hydrostatic effects or dispersive waves. In coastal areas, close to
the continental shelf, non-hydrostatic effects or equivalently, dispersive waves may become
significant.

In recent years, an effort has been done in the derivation of relatively simple
mathematical models for shallow water flows that include long nonlinear water waves.
See for instance the works in [21], [184], [210], [259] among others. The hypothesis is that
this dispersive effects will have an important impact on the sediment layer.

Following this idea, in this work, we will consider a non-hydrostatic pressure for the
fluid layer. The non-hydrostatic pressure influences the sediment evolution in two ways.
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First, the non-hydrostatic pressure acts on the sediment layer as a boundary condition on
the interface between the fluid and the sediment. Second, it modifies the profile obtained
of the water free-surface and the water velocity which will be reflected on the sediment
pattern (see [250]). The model proposed in this work takes into account both influences.

The Chapter is organized as follows: We propose the new two-layer Shallow Water
model for bedload transport in Section 5.2. Section 5.3 is devoted to showing the
properties of the model: energy balance; the formal convergence to the SVE model; a
simplified system in typical regimes; and hyperbolicity. In Section 5.4 we present the
generalization of the proposed model by including non-hydrostatic pressure in the fluid
layer and its influence on the sediment layer as a modification of the gradient pressure at
the interface. A numerical method to approximate this model is described in Section 5.5.
Finally, three numerical tests are shown in Section 5.6.

5.2 Proposed model

We consider a domain with two immiscible layers corresponding to water (upper layer)
and sediment (lower layer). The sediment layer is in turn decomposed into a moving layer
of thickness hm and a sediment layer that does not move of thickness hf , adjacent to the
fixed bottom. These thicknesses are not fixed because there is an exchange of sediment
material between the layers. Particles are eroded from the lower sediment layer and come
into motion in the upper sediment layer. Conversely, particles from the upper layer are
deposited into the lower sediment layer and stop moving.

We propose a one space dimension shallow water model that may be obtained by
averaging on the vertical direction the Navier-Stokes equations and taking into account
suitable boundary conditions. In particular, at the free surface we impose kinematic
boundary conditions and vanishing pressure; at the bottom, a Coulomb friction law is
considered. The friction between water and sediment is introduced through the term F
at the water/sediment interface and T denotes the mass transference term in the internal
sediment interface. The general notation for the water layer corresponds to the subindex
1 and for the sediment layer to the subindex 2. Thus, the water of layer has a thickness
h1 and moves with horizontal velocity u1. The thickness of the total sediment layer is
denoted by h2 = hf + hm, and the moving sediment layer hm flows with velocity um. −H
denotes the fixed bottom. See Figure 5.1 for a sketch of the domain.

Note that the velocity of the sediment layer is defined as u2 = um in the moving layer
and u2 = 0 in the static layer. We assume first a hydrostatic pressure regime.
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Figure 5.1: Sketch of the domain for the fluid-sediment problem

Then we propose the following two-layer shallow water model:



∂th1 + ∂x(h1u1) = 0,

∂t(h1u1) + ∂x(h1u
2
1) + gh1∂x(h1 + h2 −H) = −F,

∂th2 + ∂x(hmum) = 0,

∂t(hmum) + ∂x(hmu
2
m) + ghm∂x(rh1 + h2 −H) = rF+

+
1

2
umT − (1− r)ghmsgn(um) tan δ,

∂thf = −T,

(5.2.1a)

(5.2.1b)

(5.2.1c)

(5.2.1d)

(5.2.1e)

where r = ρ1/ρ2 is the ratio between the densities of the water, ρ1, and the sediment
particles, ρ2. δ is the internal Coulomb friction angle. In the next lines we give the
closures for the friction term F and the mass transference T .

Following [123] we consider two types of friction laws: linear and quadratic. The friction
term for the linear friction law is defined as

FL = CL(u1 − um) with CL = g
(1

r
− 1
) h1hm

ϑ(h1 + hm)
√

(1
r
− 1)gds

(5.2.2)
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and for the quadratic friction law,

FQ = CQ(u1 − um)|u1 − um| with CQ =
1

β

h1hm
ϑ(h1 + hm)

, (5.2.3)

ds being the mean diameter of the sediment particles. ϑ is defined by equation (5.1.3).
This definition of ϑ verifies the analysis of Seminara et al. [129], who concluded that the
drag coefficient is proportional to tan(δ)/θc.

Remark that the calibration coefficient β has units of length so that CQ is non-
dimensional. In [123], β = ds was assumed for the bedload in low transport situations. In
our case, given that we deal with a complete bilayer system for any regime, this value is
not always valid. In bedload framework, we can establish from experimental observations
that the region of particles moving at this level is at most 10-20 particle-diameter in height
[58].
So we may assume that the thickness of the bed load layer is hm = k ds with k ∈ [0, kmax]
(kmax = 10 or 20). So that, when hm ≤ kmaxds we are in a bedload low rate regime and
it makes sense to consider the friction coefficient as in [123], that is, of the order of ds.
Conversely, when hm > kmaxds we are in an intense bedload regime and then we must
turn to a more appropriate friction coefficient. Thus, to be consistent with our previous
work, we propose to take:

β =

{
hm if hm > kmaxds
ds if hm ≤ kmaxds

Another possibility for the second case would be to define β = kmaxds when hm ≤ kmaxds.
The coefficient kmax can be then considered as a calibration constant for the friction law.

The mass transference between the moving and the static sediment layers T is defined
in terms of the difference between the erosion rate, że, and the deposition rate żd. There
exists in the literature different forms to close the definition of the erosion and deposition
rates (see for example [60]). We consider in this work the following definitions (see [122]):

T = że − żd with że = Ke(θe − θc)+

√
g(1/r − 1)ds

1− ϕ
, żd = Kdhm

√
g(1/r − 1)ds

ds
.

The coefficients Ke and Kd are erosion and deposition constants, respectively, ϕ is the
porosity. For the case of nearly flat sediment bed, θe = θ is usually set. This corresponds
to the Bagnold’s relation (see [8]). Nevertheless, in order to take into account the gradient
of the sediment bed θe must be defined in terms of the effective Shields stress (see [123]).
Then we define θe in terms of the friction law between the fluid and the sediment layers:

θe =


θ

(L)
eff , defined in equation (5.1.5), for a linear friction law,

θ
(Q)
eff , defined in equation (5.1.6), for a quadratic friction law.
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The system (5.2.1) can be written in the compact form

∂tU + ∂xF (U) +B(U)∂xU = G(U)∂xH̃ + S(U), (5.2.4)

defining

U =



h1

h1u1

hm

hmum

hf


, F (U) =



h1u1

h1u
2
1 + 1

2
gh2

1

hmum

hmu
2
m + 1

2
gh2

m

0


, B(U) =



0 0 0 0 0

0 0 gh1 0 0

0 0 0 0 0

rghm 0 0 0 0

0 0 0 0 0


,

G(U) =



0

gh1

0

ghm

0


, H̃ = hf −H, S(U) =



0

− F

T

rF + 1
2
umT − (1− r)ghmsgn(um) tan δ

− T


.

5.3 Properties of the model

In this section the energy balance, the convergence of the proposed model to SVE system
and several possible simplifications are presented. Some comments on the hyperbolicity
of the model are also given.

5.3.1 Energy balance

The proposed model has an exact dissipative energy balance, which is an easy consequence
of two-layer shallow water systems, opposed to classical SVE models which have not, and
we obtain the following result.
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The system (5.2.4) admits a dissipative energy balance that reads:

∂t

(
rh1
|u1|2

2
+ hm

|um|2

2
+

1

2
g(rh2

1 + h2
2) + g rh1h2 − g(rh1 + h2)H

)
+∂x

(
rh1u1

|u1|2

2
+ hmum

|um|2

2
+ g rh1u1(h1 + h2 −H) + ghmum(rh1 + h2 −H)

)
≤ −r(u1 − um)F − (1− r)ghm|um| tan δ,

where the friction term F is given by (5.2.2) or (5.2.3).
The proof of the previous result is straightforward and for the sake of brevity we omit it.

Notice that classical SVE model does not verify in general a dissipative energy balance.
In [123] a modification of a classical SVE models and a generalization, by including
gravitational effects, has been proposed that allows to verify a dissipative energy balance.
In the following subsection we see that the proposed two-layer model converges to the
SVE model proposed in [123].

5.3.2 Convergence to the classical SVE system for large mor-
phodynamic time scale

In this subsection we show formally the convergence of system (5.2.4) to the Saint-Venant-
Exner model presented in [123]. This model is obtained from an asymptotic approximation
of the Navier-Stokes equations. In particular, it has the following advantages: it preserves
the mass conservation, the velocity (and hence, the discharge) of the bedload layer is
explicitly deduced, and it has a dissipative energy balance.

The model introduced in [123] reads as follows:

d∂th1 + ∂x(h1u1) = 0,

d∂t(h1u1) + ∂x(h1u
2
1) + gh1∂x(b+ h2 + h1) = −ghm

r
P ,

d∂th2 + ∂x

(
hm vb

√
(1/r − 1)gds

)
= 0,

∂thf = −T.

(5.3.1)

with
P = ∂x(rh1 + h2 −H) + (1− r)sgn(u2) tan δ. (5.3.2)

The definition of the non-dimensional sediment velocity vb depends on the friction law.
When a linear friction law is considered, it reads:

v
(LF )
b =

u1√
(1/r − 1)gds

− ϑ

1− r
P , (5.3.3)
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where

sgn(u2) = sgn

(
u1√

(1/r − 1)gds
− ϑ

1− r
∂x(rh1 + h2 + b)

)
.

For a quadratic friction law:

v
(QF )
b =

u1√
(1/r − 1)gds

−
( ϑ

1− r

)1/2

|P|1/2sgn(P), (5.3.4)

where sgn(u2) = sgn(Ψ) and

Ψ =
u1√

(1/r − 1)gds
−
∣∣∣∣ ϑ

1− r
∂x(rh1 + h2 + b)

∣∣∣∣1/2 sgn

(
ϑ

1− r
∂x(rh1 + h2 + b)

)
.

The convergence is obtained when we assume the adequate asymptotic regime in terms
of the time scales. As it is well known, for the weak bedload transport problem, the
morphodynamic time is much larger than the hydrodynamic time, which makes the
pressure effects much more important than the convective ones. As a consequence,
the behavior of the sediment layer is just defined by the solid mass equation (Exner
equation), omitting a momentum equation. This large morphodynamic time turns into
an assumption of a smaller velocity for the lower layer. In order to fall into the low
bedload transport regime we must also assume that the thickness of the bottom layer is
smaller, because it represents the layer of moving sediment. Thus, we suppose:

um = εuũm; hm = εhh̃m; T = εuT̃ . (5.3.5)

Now we take these values into the momentum conservation equation for the lower layer
in (5.2.4):

d∂t(εhεuh̃mũm) + ∂x(εhε
2
uh̃mũ

2
m) + gεhh̃m∂x(rh1 + h2 −H)

d = rF̃ + ε2
u

1
2
ũmT̃ − (1− r)gεhh̃msgn(ũm) tan δ

Then, if we neglect second order terms, we get

gεhh̃m∂x(rh1 + h2 −H) = rF̃ − (1− r)gεhh̃msgn(ũm) tan δ.

In dimension variables, this equation reads:

rF = ghm∂x(rh1 + h2 −H) + (1− r)ghmsgn(um) tan δ = ghmP ,

where the last equality follows from the definition of P . Thus the expression of the friction
term is

rF = ghmP ; (5.3.6)
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which coincides with the friction term in the momentum equation of layer 1, r.h.s. of
(5.3.1).
Now, from this equation and using the expressions of F , for linear (5.2.2) and quadratic
(5.2.3) laws, we have to compute the value of um to check that it fits with (5.3.3) and
(5.3.4) respectively.

◦ Linear friction law:

F̃ = g
(1

r
− 1
) εhh1h̃m

ϑ(h1 + εhh̃m)
√

(1
r
− 1)gds

(u1 − εuũm)

= g
(1

r
− 1
) 1

ϑ
√

(1
r
− 1)gds

εhh̃m

1 + εh
h̃m
h1

(u1 − εuũm)

= g
(1

r
− 1
) εhh̃m

ϑ
√

(1
r
− 1)gds

(u1 − εuũm) +O(ε2
h) (5.3.7)

where in the last equality we have used that d 1

1+εh
h̃m
h1

= 1− εh h̃mh1 +O(ε2
h).

So turning to the dimension variables and neglecting second order terms, the equation
(5.3.6) reads:

rg
(1

r
− 1
) hm

ϑ
√

(1
r
− 1)gds

(u1 − um) = ghmP .

From where we directly obtain that um = v
(LF )
b

√
(1
r
− 1)gds.

◦ Quadratic friction law:
Note that in this case β reduces to ds and then

F̃ =
εhh1h̃m

ϑds(h1 + εhh̃m)
(u1 − εuũm)|u1 − εuũm|

=
εhh̃m
ϑds

(u1 − εuũm)|u1 − εuũm|+O(ε2
h). (5.3.8)

Following the same reasoning as above, the equation (5.3.6) reads:

r
hm
ϑds

(u1 − um)|u1 − um| = ghmP .

From where we obtain that

r
1

ϑds
(u1 − um)2 = gP sgn(P) and then um = v

(QF )
b

√(1

r
− 1
)
gds.
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5.3.3 Simplifications in typical regimes

In this subsection we consider two possible simplifications of the proposed model:

i) Nearly constant water free surface (h2 + h1 −H = cst).

ii) Uniform flows where the water thickness h1 and the sediment layer h2 are nearly
constant.

Remark that both cases imply the following condition,

γh2 + h1 −H = cst, γ = 0, 1. (5.3.9)

For a constant free surface we set γ = 1 and for the case of a uniform flow we set
γ = 0. Using this hypothesis we can simplify the momentum equation of the sediment
layer. Then, the model is described by system (5.2.4) replacing equation (5.2.1d) by

∂t(hmum) + ∂x(hmu
2
m) + ghm∂x((rγ − 1)H + (1− r)h2)

= rF +
1

2
umT − (1− r)ghmsgn(um) tan δ (5.3.10)

By another way, it is related to the simplifications considered in the deduction of
classical SVE models.

For case i), following the same arguments as in previous subsection and using this
momentum equation, we obtain that the model converges formally to a SVE model where
the effective Shields parameter coincides, for the case of a linear friction law, with (5.1.2).
Then, for the case of a constant bed slope ∂xH = tanα, with u1 > 0 and tanα > 0 we
obtain

θ
(L)
eff − θc = θ − θc

(
1− tanα− ∂xh2

tan δ

)
.

Notice that for the case where the height of sediment layer is constant this coincides with
the modification proposed in [175] (see equation (5.1.4)).

For case ii), we obtain from (5.1.5)

θ
(L)
eff =

∣∣∣∣sgn(u1)θ + ϑ
∂xH

1− r

∣∣∣∣ .
Notice that, for a constant bed slope ∂xH = tanα, with u1 > 0 and tanα > 0, then we
get

θ
(L)
eff − θc = θ − θc

(
1− tanα

tan δ

1

1− r

)
.

This implies a modification of (5.1.4) that takes into account the influence of density ratio
in gravitational effects (see [187]).

We conclude that the model proposed in this Chapter can be seen as a generalization
that recovers these particular cases and agrees with existing studies concerning bedload
transport.
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5.3.4 Hyperbolicity of the model

The eigenvalues of the system are the roots of the following characteristic polynomial,

P (λ) = λ

(
(λ2 − 2u1λ+ u2

1 − gh1)(λ2 − 2umλ+ u2
m − gh2)− g2h1h2r

)
.

In general we cannot state that the model is always hyperbolic. However, we have not
found complex eigenvalues in any of the performed numerical tests.

Nevertheless, considering the simplified model described in previous subsection,
defined by equations (5.2.1a)-(5.2.1b)-(5.2.1c)-(5.3.10)-(5.2.1e), we get that the system
is always hyperbolic. Indeed, in such case the eigenvalues of the system are

u1 ±
√
gh1, 0, um ±

√
ghm(1− r).

5.4 Non-hydrostatic pressure model

The hydrostatic hypothesis may be inaccurate and fails when non-hydrostatic pressure
can affect the mobility of sediment and hence the bedload transport. We present in this
section the two-layer shallow water model described in (5.2.4) with a correction in the
total pressure applying a similar approach to the one proposed by Yamazaki et al. in
[259], where the non-hydrostatic effects are taken into account for the SWE.

The challenge is thus to improve nonlinear dispersive properties of the model by
including information on the vertical structure of the flow while designing fast and efficient
algorithms for its simulation. First, we resume the development introduced by Yamazaki
et al. in [259] to later apply it to our system. The idea is that in the depth averaging
process, the vertical velocity average is not neglected and the total pressure is decomposed
into a sum of hydrostatic and non-hydrostatic components.

Besides, during the process of depth averaging, vertical velocity is assumed to have
a linear vertical profile as well as the non-hydrostatic pressure. Moreover, in the
vertical momentum equation, the vertical advective and dissipative terms, which are
small compared with their horizontal counterparts, are neglected. At the free surface,
we assume that the non-hydrostatic pressure vanishes as a boundary condition.

Now, using a similar procedure as in [259], the proposed model with non-hydrostatic
effects reads:
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• Water layer:

∂th1 + ∂x(h1u1) = 0,

∂t(h1u1) + ∂x(h1u
2
1+h1p̃1h2+h1/2−H)

+gh1∂x(b+ h1 + h2) = −p̃1h2−H∂x(h2 −H)− F,

∂tw =
p̃1h2−H

h
,

∂xu1 +
w1 − w1

+
h2−H

h1/2
= 0.

(5.4.1)

The sediment layer will also be affected by the non-hydrostatic terms. This influence
comes from the boundary condition at the interface. Therefore we obtain:

• Sediment layer:

∂th2 + ∂x(hmum) = 0,

∂t(hmum)+∂x(hmum ⊗ um) + ghm∂x(rh1 + h2 −H)

+rhm∂x(p̃1h2−H) = rF +
1

2
umT − (1− r)ghmsgn(um) tan δ,

∂thf = −T,

(5.4.2)

The system is completed with closures relations on the pressure and vertical velocity of
the water layer:

p̃1h2+h1/2−H =
1

2
p̃1h2−H , w1

+
h2−H = ∂th2 + u1∂x(h2 −H).

For more details see [124]. Note that system (5.4.1)-(5.4.2) reduces to (5.2.4) when the
non-hydrostatic pressure is set to zero.
In Section 5.6 we will present a numerical test to show the importance of taking into
account the non-hydrostatic effects in suitable cases.
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Similarly to what is done in (5.2.4) and in (YAM), let us denote p := p̃1h2+h1/2−H .
Then the resulting non-hydrostatic pressure system can be written in the compact form

∂tU + ∂xF (U)+B(U)∂xU = G(U)∂xH̃

+T (U, ∂xU, p, ∂xp, H̃, ∂xH̃) + S(U),

∂tw = 2
p

h1

,

I(U, ∂xU, p, ∂xp, H̃, ∂xH̃, w) = 0,

(2L-NHBED)

U, F,B,G and H̃ are defined as in (5.2.4). Finally,

T (U, ∂xU, p, ∂xp, H̃, ∂xH̃) = −



0

h1∂xp+ p∂x

(
h1 + 2(H̃ + hm)

)
0

2rhm∂xp

0


, (5.4.3)

and

I(U, ∂xU, H̃, ∂xH̃, w) = h1∂xq1 − q1∂x

(
h1 + 2(H̃ + hm)

)
+ 2h1w + 2h1∂xqm. (5.4.4)

Note that last equation in (5.4.1), corresponding to free-divergence equation, has been
multiplied by h1, giving equation (5.4.4).

5.5 Numerical scheme

The system (2L-NHBED) is solved numerically using a two-step algorithm following ideas
described by Escalante et al. in [112]. As in Chapter 3, the source term vector that
contains friction terms, is set initially to zero:

S(U) = 0,

and later, it will be taken into account in a semi-implicit manner. As in Section 3.1, the
numerical scheme employed is based on a two-step projection-correction method. First,
we shall solve the underlying hydrostatic system:

∂tU + ∂xF (U) +B(U)∂xU = G(U)∂xH̃, (5.5.1)
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where U, F, B and G are defined in (5.2.4). System (5.5.1) is discretized by a second
order finite volume PVM positive-preserving well-balanced path-conservative method to
be detailed in the next subsection. As usual, we consider a set of Nx finite volume cells
Ii = [xi−1/2, xi+1/2] with constant lengths ∆x and define

Ui(t) =
1

∆x

∫
Ii

U(x, t) dx,

the cell average of the function U(x, t) on cell Ii at time t. Regarding non-hydrostatic
terms, we consider a staggered-grid (see Figure 5.2) formed by the points xi−1/2, xi+1/2

of the interfaces for each cell Ii, and denote the point values of the functions p and w on
point xi+1/2 at time t by

pi+1/2(t) = p(xi+1/2, t), wi+1/2(t) = w(xi+1/2, t).

Non-hydrostatic terms will be approximated by second order compact finite differences.

Figure 5.2: Numerical scheme stencil. Up: finite volume mesh. Down: staggered mesh
for finite differences.

Time stepping

Assume given time steps ∆tn, and denote tn =
∑

j≤n ∆tj. To obtain second order accuracy
in time, the two-stage second-order TVD Runge-Kutta scheme [142] is adopted. At the
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kth stage, k ∈ {1, 2}, the two-step projection-correction method is given by

U (k̃) − U (k−1)

∆t
+ ∂xF (U (k−1)) +B(U (k−1))∂xU

(k−1) = G(U (k−1))∂xH̃,

U (k) − U (k̃)

∆t
= T (U (k), ∂xU

(k), p(k), ∂xp
(k), H̃, ∂xH̃)

w(k) − w(k−1)

∆t
= 2

p(k)

h
(k)
1

I(U (k), ∂xU
(k), H̃, ∂xH̃, w

(k)) = 0,

(5.5.2a)

(5.5.2b)

(5.5.2c)

(5.5.2d)

where U (0) is U at the time level tn, U (k̃) is an intermediate value in the two-step projection-
correction method that contains the numerical solution of the hydrostatic system (5.5.1)
(system (5.5.2a)) at the corresponding kth stage of the Runge-Kutta, and U (k), w(k) are
the kth stage estimate. After that, a final value of the solution at the tn+1 time level is
obtained:

Un+1 =
1

2
Un +

1

2
U (2). (5.5.3)

Note that, equations (5.5.2b)-(5.5.2d) require, at each stage of the calculation, to solve a
Poisson-like equation on the non-hydrostatic pressure p(k). This will be described bellow.
For the computation of the time step the usual CFL restriction is considered.

5.5.1 Finite volume discretization for the underlying hydro-
static system

The system (5.5.1)

∂tU + ∂xF (U) +B(U)∂xU = G(U)∂xH̃.

is solved numerically by using a finite volume method. In this Section, we will describe
a formally first order in space numerical scheme for the underlying hydrostatic system
for the sake of simplicity. The higher order extension can be obtained following ideas
described in Chapters 2-3.

As usual, we subdivide the horizontal spatial domain into standard computational
cells Ii = [xi−1/2, xi+1/2] with length ∆xi and define

Ui(t) =
1

∆xi

∫
Ii

U(x, t)dx,
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the cell average of the function U(x, t) on cell Ii at time t. We shall also denote by xi the
centre of the cell Ii. For the sake of simplicity, let us assume that all cells have the same
length ∆x.

In [105] authors introduce a first order path-conservative numerical scheme, named
IFCP, which is constructed by using a suitable decomposition of a Roe matrix of
system (5.5.1) by means of a parabolic viscosity matrix, that captures information
of the intermediate fields. IFCP is a path-conservative scheme in the sense defined
in (2.2.13). We remind the written of the IFCP numerical scheme previously described in
Subsection 2.2.2:

U
(k̃)
i = U

(k−1)
i − ∆t

∆x

(
D

(k−1),−
i+1/2 +D

(k−1),+
i−1/2

)
, (5.5.4)

being D±i−1/2 = D±i−1/2(Ui, Ui+1, H̃i, H̃i+1) defined by

D±i+1/2 =
1

2

(
F (Un

i+1)− F (Un
i ) +Bi+1/2(Un

i+1 − Un
i )

−Gi+1/2(H̃i+1 − H̃i)

± Qi+1/2

(
Un
i+1 − Un

i − A−1
i+1/2Gi+1/2(H̃i+1 − H̃i)

))
,

(5.5.5)

where

Bi+1/2 =


0 0 0 0
0 0 gh1,i+1/2 0
0 0 0 0

rghm,i+1/2 0 0 0

 , Gi+1/2 =


0

−gh1,i+1/2

0
−ghm,i+1/2

 ,

Ai+1/2 = JF,i+1/2 +Bi+1/2,

being JF,i+1/2 a Roe linearisation of the Jacobian of the flux F in the usual sense:

Ai+1/2 =


0 1 0 0

−u2
1,i+1/2 + gh1,i+1/2 2u1,i+1/2 gh1,i+1/2 0

0 0 0 1
rghm,i+1/2 0 −u2

m,i+1/2 + ghm,i+1/2 2um,i+1/2

 ,

and

h∗,i+1/2 =
h∗,i + h∗,i+1

2
, u∗,i+1/2 =

u∗,i
√
h∗,i + u∗,i+1

√
h∗,i+1√

h∗,i +
√
h∗,i+1

, ∗ ∈ {1, 2}.

The key point is the definition of the matrix Qi+1/2 ,that in the case of the IFCP is defined
by:

Qi+1/2 = α0Id+ α1Ai+1/2 + α2A
2
i+1/2,

where αj, j = 0, 1, 2 are given by (2.2.43). It can be proved that the numerical scheme is
linearly L∞ –stable under the usual CFL condition.
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In the eventual case that eigenvalues become complex we can always apply this method.
Because, it depends only on the norm of the internal eigenvalues λ2 and λ3 in the definition
of χint. In the numerical simulations that we have performed we do not found any spurious
oscillations.

5.5.2 Finite difference discretization for the non-hydrostatic
terms

In this subsection we describe the discretization of the non-hydrostatic terms. As
in Section 3.1, we consider a staggered-grid (see Figure 5.2) formed by the points
xi−1/2, xi+1/2 of the interfaces for each cell Ii, and denote the point values of the functions
p̃1|h2−H and w1 on point xi+1/2 at time t by

pi+1/2(t) = p̃1|h2−H(xi+1/2, t), wi+1/2(t) = w1(xi+1/2, t).

Following [112] and ideas applied in Section 3.1, p̃1|h2−H and w1 will be discretized using
second order compact finite differences. In order to obtain point value approximations
for the non-hydrostatic variables pi+1/2 and wi+1/2, operator I(U, ∂xU, H̃, ∂xH̃, w) will be
approximated for every point xi+1/2 of the staggered-grid (Figure 5.2). Then, a second
order compact finite difference scheme is applied to

∂tU = T (U, ∂xU, p, ∂xp, H̃, ∂xH̃),

∂tw = 2
p

h
,

I(U, ∂xU, H̃, ∂xH̃, w1) = 0,

(5.5.6)

where the values obtained in previous step are used as initial condition for the system.
The resulting tridiagonal linear system is solved using an efficient Thomas algorithm [236].

Final numerical scheme

For the sake of clarity, a guideline of the final numerical scheme will be highlighted
in what follows. For every kth stage k ∈ {1, 2} of the Runge-Kutta method, the
problem (2L-NHBED) is split into two parts. A two-step projection-correction method
on staggered grids is used:

• Finite volume step (solving the hydrostatic system): From (5.5.4), solve explicitly
the hydrostatic System (5.5.1) at the kth stage of the Runge-Kutta:

U
(k̃)
i = U

(k−1)
i − ∆t

∆x

(
D

(k−1),−
i+1/2 +D

(k−1),+
i−1/2

)
,
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by means of a PVM path-conservative finite volume scheme (5.5.4) to obtain the

intermediate value U
(k̃)
i in the two-step projection-correction method that contains

the numerical solution of the System (SWE). The method can be combined with a
MUSCL reconstruction operator to obtain second order in space.

• Finite Difference step (non-hydrostatic pressure correction):

+ Consider the discrete Poisson-like linear system that arises in (5.5.6) when
applied a second order finite difference scheme in the spirit of Section 3.1.
Then the non-hydrostatic pressures are obtained:

p
(k)
i+1/2.

+ With the computed non-hydrostatic pressure terms p
(k)
i+1/2, the horizontal

discharges as well as the vertical velocity can be updated from (5.5.2b)-
(5.5.2c). Notice that in order to update the horizontal discharge, a second
order point value approximation in the centre of the cell will be used using a
similar approach that the one used in (3.1.7).

Finally,

Un+1 =
1

2
Un +

1

2
U (2).

5.6 Numerical simulations

In this section, we present three numerical simulations, for the model proposed in
Section 5.4 with the quadratic friction law proposed in (5.2.3). The first one corresponds
to the evolution of a dune, where the computed velocity of the two-layer model and the
one deduced for the SVE model are compared. The second test is a dam break problem
over an erodible sediment layer where laboratory data is used to validate the model. The
test proves as well its validity for regions where the interaction between the fluid and the
sediment is strong. In those situations, the velocities computed by the two-layer model
and the SVE one are not close. The last test shows the difference between the hydrostatic
and the non-hydrostatic model on the shape of the bed surface.

The numerical results follow from a combination of the scheme described in Section 5.5
with a discrete approximation of bottom and surface derivatives. The numerical
simulations are done with a CFL number equal to 0.9.

5.6.1 Test 1: weak bedload transport

In this test, we would like to show the ability of the proposed model to reproduce the
low bedload transport regime. Two cases are presented. First, in Test 1.a we study



228 On the influence of dispersive water waves in bedload transport

Figure 5.3: Test 1.a: Initial condition

the formation and evolution of a dune. Secondly, in Test 1.b we compare the numerical
solution of the two-layer proposed model with the numerical solution of a system verified
by a semi-analytical solution of the SVE model (5.3.1).

Test 1.a: formation and evolution of a dune

In particular we study the formation and evolution of a dune. To do so, let us consider
the following initial condition over a domain of 25m, (see Figure 5.3):

h2(0, x) =

{
0.2 m, if x ∈ [5, 10],
0.1 m, otherwise.

h1(0, x) + h2(0, x) = 1 m, h1u1(0, x) = 1 m2/s2.

The fixed bottom is set to H(x) = 0. We set left boundary condition h1u1(t, 0) =
1m2/s2, and open boundary condition on the right hand side. The parameters for the
model in this academic test have been set as follows: r = 0.34, ds = 0.01m, θc =
0.047, δ = 25o. Additionally for the transference term we introduce: Ke = 0.1, Kd =
0.01, ϕ = 0.4, n = 0.01. We use a discretization of 5000 points for the computational
domain.

In Figure 5.4 we show the free surface and the sediment bottom surface at different
times. We can see the dune profile that is transported by the flow.
In Figure 5.5 we show the difference between the velocities um obtained by the model and
v

(QF )
b , the velocity deduced in [123] for the Saint Venant Exner model given in equation



5.6 Numerical simulations 229

Figure 5.4: Test 1.a: (a) Surface and (b) bottom, at times t = 0, 500, 1000, 1500 s

Figure 5.5: Test 1.a: Comparison between um and v
(QF )
b at time t = 1500 s

(5.3.4). The difference is of order 10−2 at last computed time t = 1500s. In Figure 5.6 we

show the evolution in time of the relative error between v
(QF )
b and um. We remark that

it remains constant in time and the difference is small. The results show that the model
behaves well in low bedload transport regimes and behaves in a similar way as a SVE.

Test 1.b: comparison with a semi-analytical solution of the SVE model

In this test we compare the solution computed with the proposed two-layer model with
a semi-analytical solution of the SVE model (5.3.1). Let us remember that in Section
5.3.2 we showed that the proposed model converges formally to the SVE model when
the morphodynamic time is much larger than the hydrodynamic time. In this section we
present a system of partial differential equations verified by a semi-analytical solution of
the SVE model (5.3.1) to which the two-layer model converges. A comparison between
the numerical solutions of the two-layer model and the one associated to the system that
verifies the semi-analical solution of the SVE model is presented.

A semi-analytical solution of classical SVE models (see [156]) is deduced by assuming
a weak interaction between the fluid and the sediment layer, what implies that the
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Figure 5.6: Test 1.a: Evolution in time of the relative error between um and v
(QF )
b in L1,

L2 and L∞ norm.

morphodynamic time is much larger than the hydrodynamic time. The second assumption
is that the water free surface and the water discharge are nearly constant. Let us denote
by Ar the constant that defines the reference level of the water surface and q1 the constant
value of the water discharge. Under these assumptions we can deduce that the evolution
of the sediment layer of the SVE model (5.3.1) is done by the solution of the following
partial differential sytem with unknowns h2 and hf ,

d∂th2 + ∂x

(
(h2 − hf ) vb

√
(1/r − 1)gds

)
= 0,

∂thf = −T ;

(5.6.1)

where the definition of the non-dimensional sediment velocity vb depends on the friction
law. In this test we only consider the quadratic friction law, from which we deduce

vb =
h1u1

(Ar +H − h2)
√

(1/r − 1)gds

−ϑ1/2 |∂x(h2 −H) + sgn(u2) tan δ|1/2sgn(∂x(h2 −H) + sgn(Ψ) tan δ),

where,

Ψ =
h1u1

(Ar +H − h2)
√

(1/r − 1)gds
− |ϑ∂x(h2 −H)|1/2 sgn (∂x(h2 −H)) .
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The transference term is defined in this case as follows:

T = że− żd with że = Ke(θe− θc)+

√
g(1/r − 1)ds

1− ϕ
, żd = Kd(h2−hf )

√
g(1/r − 1)ds

ds
,

with θe =
∣∣∣sgn(q1)

√
θ −

√
|∂x(h2 −H)| sgn (∂x(h2 −H))

∣∣∣2 and

θ =
g(Ar +H − h2)n2q2

1

g(1/r − 1)ds(Ar +H − h2)4/3
.

The Manning coefficient, n, erosion and deposition parameters, Ke, Kd and the initial
condition for h2 are set as in previous test. Nevertheless, we consider the following initial
condition for the free surface and the fluid discharge, following the assumptions that
consider the semi-analytical solution,

h1(0, x) + h2(0, x) = 10 m, h1u1(0, x) = 20 m2/s2.

To compare the solution of the two-layer model with the analytical solution of the SVE
system, we consider a numerical approximation for both systems with the same number
of points. We have set 2500 points in the domain. To approximate the semi-analytical
solution a finite volume method is also considered, the one corresponding to the method
considered for the two-layer system applied to system (5.6.1). In Figure 5.7 we can see
that the numerical solution reached with the two-layer system and the one verified by the
semi-analytical solution of the SVE model are indeed very close.

5.6.2 Test 2: Comparison with experimental data for strong
bedload transport

The purpose of this second test is to validate the ability of the proposed model to reproduce
sheet-flow transport by a comparison with experimental data. In particular, erosional
dam break problems are simulated for three different cases. The first two cases have been
presented in Fraccarollo and Capart [127] and carried out in two laboratories: Taipei (Case
A) and Louvain-la-Neuve (Case B). The third one (Case C) has been also performed in
the laboratory Louvain-la-Neuve and presented in Spinewine and Zech [7]. All of them
occur for a layer of water confined behind a removable gate over an erodible saturated
sediment layer of beads with mean diameter ds and density ρs. The sediment is disposed
all along the flume with a height hs0 and the water level has a depth hw0 above the top
of the granular bed. Table below summarizes these characteristics for each case:

Case ds (mm) ρs (kg/m3) hs0 (m) hw0 (m)
A 6.1 1048 0.05 0.10
B 3.5 1540 0.05 0.10
C 3.9 1580 0.05 0.35
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Figure 5.7: Test 1.b: Comparison with a semi-analytical solution of the SVE model at
times t = 100 s and t = 1800 s.

The morphological characteristics of the sediment are similar in Cases B and C, being
more dense than in Case A where the material is not much heavier than water.
The same numerical test has been performed in [213] for the Cases A, B and in [252]
for Case C, using classical models. Nevertheless we remark again that classical models
make an assumption of low transport regime so that this test is not in the range of their
validity.
The experimental test takes place in a rectangular flume, the river bed is flat and, at the
initial state, the retained water mass is released. To do so, let us consider the following
initial condition at the domain [−1 m, 1 m] for the Cases A, B:

h1(0, x) =

{
10−12 m, if x > 0,
0.10 m, if x ≤ 0,

h2(0, x) = 0.05 m, h1u1(0, x) = h2u2(0, x) = 0 m2/s2.

For the Case C the domain is [−3 m, 3 m] and the following initial condition is considered

h1(0, x) =

{
10−12 m, if x > 0,
0.35 m, if x ≤ 0,

h2(0, x) = 0.05 m, h1u1(0, x) = h2u2(0, x) = 0 m2/s2.

Finally, the fixed bottom is set to zero and open boundary conditions are imposed.
The table below sums up the parameters used in the model. Notice that since the sediment
layer is saturated, we use the bulk density to calculate the density ratio r, that is, r = ρ1

ρ2
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with ρ2 = ϕρ1 + (1− ϕ)ρs for ϕ the porosity.

Case r ds (mm) θc δ (o) Ke Kd ϕ n
A 0.972 6.1 0.047 35 0.1 0.1 0.4 0.045
B 0.755 3.5 0.047 35 0.1 0.15 0.4 0.012
C 0.741 3.9 0.047 35 0.15 0.15 0.4 0.085

The Manning coefficient n as well as the erosion and deposition parameters Ke, Kd are
calibrated in terms of the laboratory data, the focus being on accurately describing the
front position at the final time.
The computational domain used is discretized with ∆x = 0.0075 for the three cases. In
Figures 5.8-5.10 we show the results obtained with the model proposed here compared
to the experimental data for several times. In particular, three interfaces are depicted:
free surface (h1 + h2 − H), upper limit transport layer (h2 − H) dividing the flow into
water and sediment regions and the seabed level (hf − H) for the motionless sediment
bed. Since the curves for experiments are obtained from the digital images [127, 7] we
focus on a qualitative comparison. These interfaces lines help to know quite precisely the
behaviour of the flow and we can see that the model qualitative agree with experimental
data.

Given the results, the front position is well captured for the three cases at the final
time. We can also see that the front of the flow is filled with sediment material as in real
data, only in Case C this point is not captured. As a typical behaviour in the results,
the water thickness is overestimated and the sediment layer is underestimated, but in
general, both free surface and sediment bottom are captured successfully. Notice that the
calculated interface between water and sediment (h2 − H) fits always between the lines
of experimental data for the sediment interfaces (black and red lines in figures) so the
position of the sediment interface is qualitative well captured by the model. For initial
times the erosion is underestimated but at final times the position of the seabed level is
not so far from the experimental data except in Case A. Note that in that case, the ratio
between the densities is close to 1. The use of classical models in this type of situations,
where the interaction between the sediment and the fluid is strong, does not allow to
accurately capture the sediment layer (see [213], [252]). Here we see a better fit to the
data for the advancing front of the sediment thanks to the proposed bilayer model.

As expected, in this test the difference between the velocities um and v
(QF )
b is not

so small (see Figure 5.11). Thus, the hypothesis of sediment transport in a large
morphodynamic time scale is not fulfilled for this test. The difference is specially
relevant at the advancing front, where the hypothesis of low transport rate is no longer
valid. The new model introduced here does not requires such an assumption and it
adjusts automatically to the physical situation. Figure ?? shows the evolution in time
of the relative error between v

(QF )
b and um. We can observe that the error in norm L∞

remains constant until the simulated time, where the error in norms L1 and L2 decrease.
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Nevertheless, during all the simulation these errors are of a degree of magnitude bigger
than for the case of a dune evolution presented in the previous test.
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Figure 5.8: Test 2. Case A. Comparison of the obtained flow interfaces (solid lines) with
experimental data (symbol lines) for times t = 0.1 s, 0.2 s, 0.3 s, 0.4 s, 0.5 s.

5.6.3 Test 3: non-hydrostatic effects

The focus now is to study the influence of the non-hydrostatic effects on the sediment layer,
solving the model proposed in Section 5.4. The computational domain is [0 m, 15 m]. Let
us consider the following initial condition

h1(0, x) = 0.8 m h2(0, x) = 0.2 m, q1(0, x) = q2(0, x) = 0 m2/s2.
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Figure 5.9: Test 2. Case B. Comparison of the obtained flow interfaces (solid lines) with
experimental data (symbol lines) for times t = 0.25 s, 0.5 s, 0.75 s, 1.00 s.

An incoming wave train is simulated through the left boundary condition h1(t, 0) =
0.8 + 0.1 sin(5t), and open boundary condition on the right hand side is considered. The
parameters for the model have been set as follows r = 0.63, ds = 0.1, θc = 0.047, δ =
35o, Ke = 0.001, Kd = 0.01, ϕ = 0.4, n = 0.1. We take 1200 points to discretize the
domain.

In Figure ?? we show the evolution of the sediment bottom surface at times t =
500, 750, 1000 s for the model with and without non-hydrostatic effects. A zoom
by comparing the final bottom and free surface can be seen in Figure ??. Two main
differences can be observed in these figures. First, the form of the water waves are very
different for the hydrostatic and the non-hydrostatic models, see Figure ??. The profile
closer to real life pattern is the one given by the non-hydrostatic model (see [13]). Indeed,
the hydrostatic model generates a shock in the water surface that should not be present
in the configuration of this test. Second, it is clear that the wave pattern on the surface
has a deep impact on the profile of the bed form, as can be seen in Figure ??. Remark
that here the bedload model is the same for both configurations so that the differences in
the bedform are due to the non-hydrostatic effect in the water layer.
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Figure 5.10: Test 2. Case C. Comparison of the obtained flow interfaces (solid lines) with
experimental data (symbol lines) for times t = 0.25 s, 0.5 s, 0.75 s, 1.00 s, 1.25 s, 1.5 s.
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Figure 5.11: Test 2: Difference between um and v
(QF )
b at times t = 0.5 s (case A), t = 1.0

s (case B) and t = 1.5 s (case C).
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Chapter 6

Conclusions and future work

Here we present a summary of the results achieved in this dissertation. Then, some
possible and auspicious future research trends are given.

6.1 Conclusion

Given that a wide number of topics have been considered here, the conclusions obtained
from this thesis are many. This thesis adds some relevant and novel contributions to
areas such as mathematical modelling and numerical analysis, as well as some good results
concerning validation throughout laboratory or field experiments and efficient and parallel
computation of geophysical flows. Thus, we split the conclusions into those three topics:

• Mathematical modelling:

We highlight the main contributions in the field of mathematical modelling of
dispersive water waves: The introduction of two novel non-hydrostatic pressure
systems for free surface flows has been proposed in order to incorporate dispersive
effects in the propagation of waves in a homogeneous, inviscid and incompressible
fluid: the system (NH-2L) with enhanced dispersive properties and the hyperbolic
system (NHyp).

- System (NH-2L), recently submitted by C. Escalante, E.D. Fernández-Nieto,
T. Morales de Luna and M.J. Castro [118] and under review with minor
revision. In this work, a non-hydrostatic two-layer model has been proposed to
incorporate dispersive effects in the propagation of dispersive water waves. The
presented model corresponds to the system derived by E.D.Fernández Nieto et
al. in [124] for the two-layer case, with a slight difference in the definition of the
non-hydrostatic pressure at the interface. This allows us to derive a two-layer
non-hydrostatic model with improved dispersive properties. This improvement
on the dispersive properties expands the range of validity of the system for kH
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values up to 15, while reducing the relative error of the phase velocity in a factor
of 8.6 concerning the original two layer system derived in [124] (see Table 1.2).
The advantage is that this is done while keeping the computational cost of the
model low.

- System (NHyp), recently submitted by C. Escalante, M. Dumbser and M.J.
Castro [111]. The presented model corresponds to a hyperbolic approximation
of the dispersive system derived by Sainte-Marie et al in [21]. The dispersion
properties of our new hyperbolic system are close to those of the aforementioned
original model. Moreover, the new system satisfies an extra energy conservation
law and the full eigenstructure of the system can be easily computed. However,
the big advantage of our new hyperbolic reformulation is that it can be
easily discretized with explicit and high order accurate numerical schemes
for hyperbolic conservation laws, without requiring the solution of an elliptic
problem in each time step, in contrast to the original PDE system proposed
in [21] (see [4], [112]).

- System (2L-NHBED). A two-layer shallow water model that can deal with
intense and slow bedload sediment transport has been introduced, as an
ongoing work by C. Escalante, G.Narbona–Reina, E.D. Fernández–Nieto and
T. Morales [110]. The system leads to measure the influence of a non-
hydrostatic pressure in the fluid layer and its influence on the gradient pressure
of the sediment layer as well. In the case that the interaction between the
fluid and the sediment is weak, we are in a regime where SVE models can
be considered. In this case, we show that the proposed two-layer model
converges formally to the SVE with gravitational effects. The proposed model
has the advantage that the inclusion of gravitational effects does not imply to
approximate any non-linear parabolic degenerated term, as for the case of SVE
model with gravitational effects.

Some other contributions are highlighted. As it is well known, Boussinesq-type
and non-hydrostatic pressure systems described need some dissipative mechanism
for breaking waves to accurately model waves near the coastal areas (see [112]).
Breaking mechanisms are based on a diffusive term that must be discretized
implicitly due to the high order derivatives from the diffusion. Thus, an extra
discrete Poisson-like operator must be solved, losing efficiency. This challenge is
overcome by C. Escalante et al. [112] for the systems (YAM), (NH-2L) and (NHyp)
in [112], [118] and [111] respectively. There, we have proposed a new, simple and
efficient breaking mechanism that performs properly in the tests shown.

Finally, in the spirit of Sainte-Marie et al. in [21] where Serre-Green-Naghdi
system is written as a first order hyperbolic-elliptic non-hydrostatic pressure system
for a flat bottom, we have proposed, up to our knowledge, a novel rewriting of
system (PER) for a given arbitrary bathymetry in a similar way. Similar techniques
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can also be applied in a future for some of the most used Boussinesq-type systems
(e.g. Madsen et al. systems [184]).

• Numerical analysis:

We highlight the main contributions from Chapter 3 in the field of numerical analysis
for the discretization of the described systems: the hyperbolic systems (SWE-2D)
and (NHyp-2D), and the hyperbolic-elliptic systems (YAM-2D) and (NH-2L2D), for
one and two space dimensions.

In this thesis, the systems (YAM-2D) and (NH-2L2D) have been approximated by
using a hybrid finite volume finite difference numerical schemes, based on an implicit
projection-correction technique. The system (YAM-2D) has been discretized by
using a staggered Arakawa C-grid. However, the hyperbolic system (NHyp-2D) is
discretized using an explicit finite volume numerical scheme. The aforementioned
numerical schemes are second order accurate in both space and time, by using the
polynomial reconstruction of states, second order finite differences and a second
order Runge-Kutta TVD discretization in time.

As an alternative to getting arbitrary high order numerical schemes in space and
time, we have considered finite element Discontinuous Galerkin schemes, with an a
posteriori subcell finite volume limiter. Since hyperbolic systems are amenable to be
discretized using ADER-DG schemes, we have considered an arbitrarily high order
numerical scheme for the hyperbolic system (NHyp-2D). Up to our knowledge,
this is the first time that this strategy of using a DG scheme combined with a
finite volume subcell limiter based is employed for the simulation of dispersive/non-
hydrostatic water waves.

To sum up, the proposed numerical schemes satisfy the following properties:

- The proposed numerical schemes can deal with conservative and nonconserva-
tive systems by means of path-conservative schemes. In particular, a robust
and efficient HLL written as a PVM scheme is used for both finite volume and
ADER-DG solvers.

- The numerical schemes are linearly L∞-stable under the usual CFL condition.

- The numerical schemes are well-balanced for water at rest solutions.

- The numerical schemes can deal with a variety of challenging domains that
involves wetting and drying areas. Moreover, the schemes are positive

preserving for smooth bathymetries and under
1

2
of usual CFL condition. In

the particular case of hybrid finite volume finite difference numerical schemes
for systems (NH-2L) and (YAM), we have shown that non-hydrostatic pressure
vanishes in areas where the water height is small or identically zero (dry area).
Thus, no numerical truncation for the non-hydrostatic pressure is needed at
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wet-dry areas, as it is usually done (see [259]). This is due to the writing of
the incompressibility condition, written in terms of discharges. To the best of
our knowledge, this is an improvement in non-hydrostatic numerical schemes,
where usually non-hydrostatic pressure is truncated to zero up to a threshold
value.

- The numerical schemes exhibit a high degree of parallelism. Although implicit
schemes need to solve a linear system at each time step, it can be done efficiently
on GPU architectures.

• Numerical validation and parallel computing:

Concerning the numerical validation, system (YAM-2D) has been widely validated
by Y.Yamazaki et al. Moreover, this system and its corresponding discretization
given in [259] corresponds to the well-known tsunami code NEOWAVE. Moreover,
this system with our corresponding discretization proposed in this thesis has been
validated in a series of papers ([157], [182], [177]). Similarly, system (NH-2L2D)
and its corresponding discretization are benchmarked using laboratory experiment
data for rigid slides. The experimental data used have been proposed by the US
National Tsunami Hazard and Mitigation Program (NTHMP) and established for
the NTHMP Landslide Benchmark Workshop, held in January 2017 at Galveston.

As a general concluding remark, the comparison with experimental data requires to
incorporate dispersive effects to capture faithfully wave propagation in the vicinity of
the continental shelf, in particular involving complex processes such as wave run-up,
shoaling, the appearance of higher harmonics and wet-dry areas. A simple shallow
water model would not be able to capture all these physical effects simultaneously,
hence more sophisticated non-hydrostatic models are needed.

The described numerical schemes for the systems mentioned above can simulate
properly the run-up and run-down process in wet-dry areas on the shore, as well
as shoaling processes and breaking waves. The numerical experiments show that
the new approaches presented here correctly describes the propagation of solitary
waves and can accurately preserve their shape even for very long integration times.
In particular for solitary waves, high order DG type schemes are ideal due to their
little numerical dissipation and dispersion error, and since the undesired clipping of
local extrema that is typical for second order TVD finite volume schemes can be
completely avoided. This is achieved with the hyperbolic non-hydrostatic pressure
system (NHyp-2D) for smaller values of the relaxation parameter C = α

√
gH, with

α typically equals to 3.

Moreover, numerical simulations show that the described system (NH-2L) correctly
solves the propagation of eulerian solitary waves of high amplitude, preserving their
shape for large integration times accurately. Moreover, complicated processes such
as run-up or shoaling can be simulated with the two layer system. Furthermore,
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the appearance of higher harmonics that can not be well reproduced with a one-
layer non-hydrostatic pressure system, are simulated successfully for the proposed
tests with the novel two-layer system (NH-2L). We would like to stress the good
performance when dealing with a wide range of non-linear dispersive waves, as it
was said in Section 4.6, where usually a Green-Naghdi type model or multilayer
non-hydrostatic model is needed to correctly simulate the tests. Numerical tests
also evince that the proposed model introduced in this work with the jump of
the non-hydrostatic pressure at the interface (1.2.15), improves the results with
respect to the two-layer system derived in [124]. This has been shown by comparing
with analytical solutions from the Stokes first order theory. This improvement is
achieved without the need for increasing the order of the derivatives or adding more
layers which would increase the complexity of the model and its computational cost.
Instead, the two layer performs perfectly with the same computational cost than
the original two-layer system derived in [124],

The GPU implementations of the described 2D numerical schemes are carried out
and some guidelines are given in Appendix E. From a computational point of
view, the non-hydrostatic GPU implementation for the two layer system (NH-2L2D)
presents good computational times concerning the SWE GPU times. A numerical
test was carried out to illustrate such claim and reveals that the wall-clock times for
the two layer non-hydrostatic code are no higher than 5.89 times than the SWE code
for refined meshes (see table 4.5). Concerning the GPU implementation of the finite
volume scheme described for the system (YAM-2D), the wall-clock times for the non-
hydrostatic code are no higher than 2.8 times than the SWE code for refined meshes
(see table 4.5). It is worth mentioning that a similar ratio is also maintained for
the GPU implementation of the DG numerical scheme for the system (NHyp-2D)
(see Table 4.4). The real highlight, in this case, is that the same low additional
computational cost is maintained for any order of accuracy in space and time of
the DG numerical scheme. This point is underlined in Figure 4.29, that reveals the
computational time needed to evolve a degree of freedom, which is independent on
the order of the DG scheme.

The considered numerical schemes for the different systems presented in this work
provides thus an efficient and accurate approach to model dispersive effects in the
propagation of waves near coastal areas.

Moreover, the multi-layer non-hydrostatic pressure system (NH-L) has been im-
plemented on GPU architectures, following the same ideas for its numerical
approximation than the ones described in this thesis for the two layer system, and
has been integrated on the high-performance software package HySEA (Hyperbolic
Systems and Efficient Algorithms) that consists of a family of geophysical codes
based on either single layer, two-layer stratified systems or multilayer shallow water
models developed by the EDANYA group at the University of Málaga (see [254]).
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We conjecture that the present hyperbolic approach applied to the original system (0.0.8),
can be applied in general to the multi layer non-hydrostatic pressure system (NH-L), and
thus, a straightforward generalization of the finite volume as well as ADER-DG schemes
could be easily applied.

Moreover, given the apparent connexion between some Boussinesq-type systems and
first order non-hydrostatic pressure PDE systems, a future line of work follows this idea.
In that way, Boussinesq-type systems written as a first order PDE non-hydrostatic system
will be amenable to be approximated by a first order hyperbolic PDE system, and thus
again, arbitrary high order ADER-DG schemes could be also considered to numerically
solve them.

Further research will concern a direct comparison of the new mathematical model
proposed in this thesis (NHyp-2D) with the hyperbolic reformulation of the Serre-Green-
Naghdi (SGN) equations recently forwarded by S.Gavrilyuk et al. in [117].

An extension of the work proposed in [34] is being considered for non-hydrostatic flows
and its integration on the software package HySEA. In that paper, the shallow water
equations in spherical coordinates are efficiently solved by means of a path-conservative
finite volume scheme, resulting in a robust, efficient and well balanced numerical method.

We would like to point out that the techniques that have been employed in this
dissertation also fit other problems. In particular, the design of numerical schemes
well-balanced for the resolution of PDEs on manifolds that is a topic in demand on
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computational astrophysics.

Appendix A

Breaking waves parameters for the
two layer system (NH-2L)

By taking into account the two vertical velocities equations and the incompressibility
equations, which relates wα with uα, lead us to write P in terms of the derivatives of U

A(xx)∂xxU + A(xt)∂xtU + A(x)∂xU + A(t)∂tU + AU +B =

 pb − pI

γ1pb + γ2pI

+ I(ς)∂xU ,

where

I(ς) =

−ς1l1h 0

0 −ς2l2h

 , A(·) ∈M2(R).

We propose define ςα such that

I(ς) := Diag(A(x)).

We then proceed to compute A(x). The two continuity equations can be written as
w1 = u1∂xH −

1

2
l1h∂xu1 − ∂tH,

w2 = −u1∂xl1h+ u2∂xzI − l1h∂xu1 −
1

2
l2h∂xu2 − ∂tH.

Neglecting mass transfer terms due to ΓI , the vertical equations can be written as
∂t (l1hw1) + ∂x (l1hu1w1) = pb − pI + ς1l1h∂xu1,

∂t (l2hw2) + ∂x (l2hu2w2) = γ1pb + γ2pI + ς2l2h∂xu2.

(A.0.2)



Then, retaining at the left hand side of equation (A.0.2) only the terms multiplied by
∂xuα at the equation concerning to the layer α, leads to

I(ς) =

l1h (−∂tl1h+ w1 − u1∂x (l1h+H)) 0

0 l2h (−∂tl2h+ w2 + u2∂x (zI − l2h))

 ,

Again, using that ΓI = 0, I(ς) can be rewritten as

I(ς) =

l1h (−w1 + 3u1∂xH − 2∂tH) 0

0 l2h (−w2 − 2∂tH − 3u2∂xzI)

 ,

and finally we propose 
ς1 = (w1 − 3u1∂xH + 2∂tH) ,

ς2 = (w2 + 3u2∂xzI + 2∂tH) .

(A.0.3)

Appendix B

Coefficients and matrix of the linear
system for the one layer
system (YAM)

Coefficients for the one-dimensional case

The linear system defined in (3.1.9)

An+1/2Pn+1 =RHSn+1/2,
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where

Pn+1 =


pn+1

1/2

pn+1
1+1/2

...
pn+1
N+1/2


is given by:

An+1/2 =



b
n+1/2
0 c

n+1/2
0 · · · 0

a
n+1/2
1 b

n+1/2
1 c

n+1/2
1

. . . . . . . . .
...

a
n+1/2
i b

n+1/2
i c

n+1/2
i

...
. . . . . . . . .

a
n+1/2
N−1 b

n+1/2
N−1 c

n+1/2
N−1

0 · · · a
n+1/2
N b

n+1/2
N


, (B.0.1)

where for k ∈ {0, . . . , N}, neglecting the dependence on time in the notation:

ai = (ξ∆x,i − 2hi)(ξ∆x,i+1/2 + 2hi+1/2),

bi = 16∆x2 + ξ∆x,i+1/2(ξ∆x,i + ξ∆x,i+1 + 2hi − 2hi+1) + 2hi+1/2(ξ∆x,i − ξ∆x,i+1 + 4hi+1/2),

ci = (ξ∆x,i+1 + 2hi+1)(ξ∆x,i+1/2 − 2hi+1/2).

(B.0.2)
The coefficients described above are conveniently modified depending on the choice of

the boundary conditions.
hi+1/2 is given by (3.1.8) and

ξ∆x,i = ∆x (2ηx,i − hx,i) , ξ∆x,i+1/2 = ∆x
(
2ηx,i+1/2 − hx,i+1/2

)
,

being ηx,i and hx,i given by (3.1.7) and ηx,i+1/2 and hx,i+1/2 given by (3.1.8).
Finally, the Right Hand Side is given by

(RHS)i =
8∆x2

∆t

(
hi+1/2qx,i+1/2 − qi+1/2

(
2ηx,i+1/2 − hx,i+1/2

)
+ 2hi+1/2wi+1/2

)
,

where qi+1/2 and qx,i+1/2 are given by (3.1.8).

Analysis of the linear system for small water heights

If we assume
h = ε, q = w = 0, H = mx



then the coefficients (B.0.2) reduce to

ai = 4(m− ε)(m+ ε),

bi = 8(2∆x2 +m2 + ε2),

ci = 4(m− ε)(m+ ε),

and the Right Hand Side vector vanishes

RHS = 0

Moreover, since the linear system is strictly diagonal dominant, the matrix A is
invertible.

Appendix C

Finite difference approximations. 2D
numerical scheme for the
system (YAM-2D)

Le us denote the non-hydrostatic terms appearing in the horizontal momentum equations
as

T (U,∇U, p,∇p,H,∇H) =


0

T Hor(h, hx, p, px, H,Hx)

T V er(h, hy, p, py, H,Hy)

 ,

T Hor, T V er being the horizontal and vertical non-hydrostatic contributions respectively:

T Hor(h, hx, p, px, H,Hx) = −1

2
(hpx + p((2η − h)x)),

T V er(h, hy, p, py, H,Hy) = −1

2
(hpy + p((2η − h)y)).
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system (YAM-2D)

Let us also define the North and South approximations in the middle of the horizontal
edges for the volume Vij of T Hor by

T HorN(ij)(h, hx, p, px, H,Hx) = −1

2
hij
p
i+1/2j+1/2

− pi−1/2,j+1/2

∆x

− 1

2

pi+1/2j+1/2 + pi−1/2j+1/2

2
· 2ηi+1j − hi+1j − (2ηi−1j − hi−1j)

2∆x
,

T HorS(ij)(h, hx, p, px, H,Hx) = −1

2
hij
pi+1/2j−1/2 − pi−1/2j−1/2

∆x

− 1

2

pi+1/2j−1/2 + pi−1/2j−1/2

2
· 2ηi+1j − hi+1j − (2ηi−1j − hi−1j)

2∆x
,

respectively. Same ideas for the East and West approximations in the middle of the
vertical edges for the volume Vij of T V er:

T V erE(i,j)(h, hy, p, py, H,Hy) = −1

2
hi,j

pi+1/2j+1/2 − pi+1/2j−1/2

∆y

− 1

2

pi+1/2j+1/2 + pi+1/2j−1/2

2
· 2ηij+1 − hij+1 − (2ηij−1 − hij−1)

2∆y
,

T V erW (ij)(h, hy, p, py, H,Hy) = −1

2
hij
pi−1/2j+1/2 − pi−1/2j−1/2

∆y

− 1

2

pi−1/2j+1/2 + pi−1/2j−1/2

2
· 2ηij+1 − hij+1 − (2ηij−1 − hij−1)

2∆y
.

Note that, if we approximate

T (U,∇U, p,∇p,H,∇H)ij ≈


0

1

2

(
T HorN(ij) + T HorS(ij)

)
1

2

(
T V erE(ij) + T V erW (ij)

)
 , (C.0.1)

then we have a second order approximation of T (U (k),∇U (k), p(k),∇p(k), H,∇H) at the
center of the volume Vij.

Likewise, I(U,∇U,H,∇H,w)i+1/2j+1/2 will be discretized for every point (xi+1/2yj+1/2)
of the staggered mesh by

I(U,∇U,H,∇H,w)i+1/2j+1/2 ≈ hi+1/2j+1/2 (∇ · q)i+1/2j+1/2

− qi+1/2j+1/2 · ∇ (2η − h)i+1/2j+1/2 + 2hi+1/2j+1/2wi+1/2j+1/2,

(C.0.2)

where q = (qx, qy), and

hi+1/2j+1/2 =
1

4
(hij + hi+1j + hi+1j+1 + hij+1) , (C.0.3)



(∇ · q)i+1/2j+1/2 =
qx,E − qx,W

∆x
+
qy,N − qy,S

∆y
,

qi+1/2j+1/2 =


qx,E + qx,W

2
qy,N + qy,S

2

 , ∇(2η − h)i+1/2j+1/2 =


(2η − h)E − (2η − h)W

2
(2η − h)N − (2η − h)S

2

 ,

where qx,E, qx,W , qy,N , qy,S and (2η − h)E, (2η − h)W , (2η − h)N , (2η − h)S are second
order approximations of qx, qy and (2η − h) respectively in the middle of the edges (see
Figure 3.2) given by:

qx,E =
1

2
(qx,i+1j+1 + qx,i+1j)

+
1

2
∆tT HorS(i+1j+1)(h, hx, p, px, H,Hx) +

1

2
∆tT HorN(i+1j)(h, hx, p, px, H,Hx),

qx,W =
1

2
(qx,ij+1 + qx,ij)

+
1

2
∆tT HorS(ij+1)(h, hx, p, px, H,Hx) +

1

2
∆tT HorN(ij)(h, hx, p, px, H,Hx),

qy,N =
1

2
(qy,i+1j+1 + qy,ij+1)

+
1

2
∆tT V erW (i+1j+1)(h, hy, p, py, H,Hy) +

1

2
∆tT V erE(ij+1)(h, hy, p, py, H,Hy),

qy,S =
1

2
(qy,i+1j + qy,ij)

+
1

2
∆tT V erW (i+1j)(h, hy, p, py, H,Hy) +

1

2
∆tT V erE(ij)(h, hy, p, py, H,Hy),

(2η − h)E =
2ηi+1j+1 − hi+1j+1 + (2ηi+1j − hi+1j)

2
,

(2η − h)W =
2ηi,j+1 − hij+1 + (2ηij − hij)

2
,
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(2η − h)N =
2ηi+1j+1 − hi+1j+1 + (2ηij+1 − hij+1)

2
,

(2η − h)S =
2ηi+1j − hi+1j + (2ηij − hij)

2
.

Appendix D

Coefficients and matrix of the linear
system for the two layer
system (NH-2L)

Coefficients of the Poisson-like equations

The coefficients appearing in (3.3.7) and (3.3.8) are:



a1 = −(l1h)2,

a2 = −l21h∂xh,

a3 = l1h∂xx (l1h+ 2l2h− 2η) + ∂x (h1 + 2l2h− 2η)2 + 4,

a4 = −(l1h)2,

a5 = −l1h∂x (3l1h+ 4l2h− 4η) ,

a6 = −l1h∂xx (l1h+ 2l2h− 2η)− ∂x (l1h+ 2l2h− 2η)2 − 4,

(D.0.1)
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

b1 = −(l2h)2

(
γ1 + 2

l1
l2

)
,

b2 = l2h∂x ((4− γ1)l2h− 4η) ,

b3 = l2h∂xx (2l1h+ (2γ1 + 3)l2h− 2(γ1 + 2)η) + γ1∂x (l2h− 2η) + 4γ1,

b4 = −(l2h)2

(
γ2 + 2

l1
l2

)
,

b5 = l2h∂x (4l1h+ (4− γ2)l2h− 4η) ,

b6 = l2h∂xx (−2l1h+ (2γ2 − 5)l2h− 2(γ2 − 2)η) + γ2∂x (l2h− 2η) + 4γ2,

(D.0.2)

RHS1 = l1h
(k̃)∂xq

(k̃)
u,1 − 2q

(k̃)
u,1∂xz

(k̃)
1 + 2q

(k̃)
w,1 + 2h(k̃)∂tH,

RHS2 = 2l1h
(k̃)∂xq

(k̃)
u,1 + l2h

(k̃)∂xq
(k̃)
u,2 − 2q

(k̃)
u,2∂xz

(k̃)
2 + 2q

(k̃)
w,2 + 2h(k̃)∂tH.

Matrices of the linear systems

After replace (3.3.9) and (3.3.10) in (3.3.7) and (3.3.8), one has to solve a linear system

AP =RHS,

A = D +M , D =

T(1) 0

0 T(2)

 , M =

 0 C(1)

C(2) 0

 ,

being T(j), C(j) tridiagonal matrices of dimension N ×N given by:

T(1) =
A(1)

∆x2
T(1,−2,1) +

A(2)

2∆x
T(−1,0,1) + A(3)I,

C(1) =
A(4)

∆x2
T(1,−2,1) +

A(5)

2∆x
T(−1,0,1) + A(6)I,

T(2) =
B(1)

∆x2
T(1,−2,1) +

B(2)

2∆x
T(−1,0,1) +B(3)I,

C(2) =
B(4)

∆x2
T(1,−2,1) +

B(5)

2∆x
T(−1,0,1) +B(6)I,
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where

T(a,b,c) =


b c 0
a b c

. . . . . . . . .

a b c
0 a b

 ,

gather the centred finite difference matrix of second (T(1,−2,1)) and first (T(−1,0,1)) order,
and I the identity matrix of dimension 2N × 2N.
The matrices A(j) and B(j), j ∈ {1, . . . , 6} are diagonal matrices of dimension N ×N

A(j) =


aj,1 0

aj,2
. . .

aj,N−1

0 aj,N

 , B(j) =


bj,1 0

bj,2
. . .

bj,N−1

0 bj,N

 ,

where the coefficients aj,i (and bj,i ) are the point value approximations of aj (and bj) by
using compact centred second order finite differences.

Analysis of the linear system for small water heights

If we assume
h = ε, uα = wα = 0,

then the coefficients (D.0.1) and (D.0.2) reduce to

a1 = −l21ε2,

a2 = 0,

a3 = 4(1 + (∂xH)2) + 2l1ε∂xxH,

a4 = −l21ε2,

a5 = −4l1ε∂xH,

a6 = −4(1 + (∂xH)2)− 2l1ε∂xxH,



b1 = −l2((γ1 − 2)l2 + 2)ε2,

b2 = 4l2ε∂xH,

b3 = 4γ1(1 + (∂xH)2) + 2l2(γ1 + 2)ε∂xxH,

b4 = −l2((γ2 − 2)l2 + 2)ε2,

b5 = −4l2ε∂xH,

b6 = 4γ2(1 + (∂xH)2) + 2l2(γ2 − 2)ε∂xxH,

and the Right Hand Side vectors reduce to

RHS =

RHS1

RHS2

 =

0

0

 .



In the following analysis we will assume:

ε2 ≈ 0, ε∂xH ≈ 0, ε∂xxH ≈ 0, (D.0.3)

and for the sake of simplicity we assume that ∂xH = m. Then the linear system becomes

A = 4(1 +m2)

 I −I

γ2I γ1I

 .

The matrix A is invertible

A−1 =
1

4(γ1 + γ2)(m2 + 1)

 γ1I I

−γ2I I

 ,

since we assume in Remark 1.2.2 that γ1 + γ2 6= 0.
We note that (D.0.3) collects the particular case of a slowly varying bathymetry ∂xH ≈

0, and in particular some of the cases under study within this dissertation, when ∂xH = m
with ε ·m ≈ 0.

Appendix E

GPU implementation

We are mainly interested in the application to real-life problems: simulation in channels,
dambreak problems, ocean currents, tsunami propagation, etc. Simulating those
phenomena gives place to long time simulations in big computational domains. Thus,
extremely efficient implementations are needed to be able to analyze those problems in
low computational time.

The numerical schemes presented here exhibits a high potential for data parallelization.
This fact suggests the design of parallel implementation of the numerical scheme. NVIDIA
has developed the CUDA programming toolkit [201] for modern Graphics Processor Units
(GPUs). CUDA includes an extension of the C language and facilitates the programming
on GPUs for general purpose applications by preventing the programmer to deal with low
level language programming on GPU.



254 GPU implementation

In this appendix, guidelines for the implementation of the numerical schemes presented
in the previous Section 3.2 for the system (YAM-2D) and in Section 3.5 for the
system (NHyp-2D) are given.

GPU implementation for the system (YAM-2D)

The general steps of the parallel implementation for the scheme described in Section 3.2
are shown in Figure E.1. Each step executed on the GPU is assigned to a CUDA kernel,
which is a function executed on the GPU. Let us describe the main loop of the program.
To do so, let us assume that we have at time tn the values Un

ij for each volume Vij and a
precomputed estimation ∆tn. We will also describe the numerical algorithm for the first
order in time case.

At the beginning of the algorithm we build the finite volume mesh and the main data
structure to be used in GPU. For each volume Vij we store the state variables in one array
of type double41. This array contains h, qx, qy and H, given by Un

ij. A series of CUDA
kernels will do the following tasks:

1. Process fluxes on edges: In this step, each thread computes the contribution
at every edge of two adjacent volumes. This thread will also compute the volume
integral appearing in (3.2.4) using the mid-point rule. This implementation follows
a similar approach to the one applied in [75] and [76]. The edge processing is
succesively done in the horizontal and vertical direction, computing even and odd
edges separetly. This avoids simultaneous access to the same memory values by two
different threads. The computed contributions are stored in an array accumulator of
type double4 with size equal to the number of volumes (see [75] for further details).

Note that previous computations require the use of the reconstructed values,
Un,−
ij , Un,+

ij , as well as the reconstructed topography values, H−ij , H
+
ij .

2. Update U
n+1/2
ij for each volume: In this step, each thread will compute the next

state U
n+1/2
ij for each volume Vij by using the values stored in accumulator and

the precomputed estimation of ∆tn. Moreover, a local ∆tn+1
ij is computed for each

volume from the CFL condition.

3. Solve the linear system for non-hydrostatic pressure: In order to solve the
linear system arising in Subsection 3.2, we use a Jacobi iterative method. This
implementation is matrix-free, as the the coefficients of the matrix are not pre-
computed and stored. Instead, the coefficients are computed on the fly, which
means less memory usage. For each point of the staggered mesh (xi+1/2, yj+1/2), we

1The double4 data type represent structures with four double precision real components
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store the last two iterations of the non-hydrostatic pressure of the Jacobi algorithm,
the local error, and the vertical velocity using an array of type double4.

This step is splitted into two parts: first, given P (s), a kernel will perform an

iteration of the Jacobi method, obtaining P (s+1) and E(k+1) = |P (s+1) − P (s)|.
Second, another CUDA kernel will compute the minimum of all local errors by
applying a reduction algorithm in GPU.

4. Compute the values Un+1
ij for each volume: In this step, each thread has access

to a given volume and it computes the next state Un+1
ij by using the values of the

non-hydrostatic pressure obtained previously.

5. Get estimation of ∆tn+1: Similarly to what is done in [75] and [76], the minimum
of all the local ∆tn+1

ij values is obtained by applying a reduction algorithm in GPU.
This value shall be used as precomputed ∆tn+1 for the next step of the loop.

When considering a second order discretization in time, the steps 1-4 are repeated
twice, for each step of the Runge-Kutta method. Finally, the step 5 is done at the end of
the temporal evolution for every time step.

Figure E.1: Parallel CUDA implementation.
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GPU implementation for the system (NHyp-2D)

The general steps of the parallel implementation for the scheme described in Section 3.5
are shown in Figure E.2. As before, each step executed on the GPU is assigned to a
CUDA kernel.

At the beginning of the algorithm we build the main grid, that corresponds to the
Cartesian finite element mesh {Vi} as well as the finite-volume subcell {Vi,S}, that we will
call the subcell grid. For each element Vi on the main grid we store the degree of freedom
of the variables h, hu, hv, hw and hp, in one array u of type double52. The bathymetry
H is stored in another array of type double.

Once the data structure is created, the grids are initialized. To do so, we first compute
the mean values from a given initial condition on the subcell grid and they are stored in
a vector v0 of type double5. In a second place, the main grid is initialized by computing
the degree of freedom of the DG polynomial by the reconstruction procedure described
in 2.4.13 from the computed mean values. Now the initial time step ∆t is computed and
the main loop in time of the algorithm starts, where the numerical scheme is iterated
until the final simulation time is reached. A series of CUDA kernels will do the following
tasks:

1. Space-time predictor and sum regular contributions: Each thread computes
for each element on the main grid, the degree of freedom of the predictor solution
qh. This kernel also computes the local regular contribution to each element
following (2.4.10), avoiding the computation of the double integral over [tn, tn+1]×
Eij. This regular contribution is stored in u. Note that the kernel acts over each
element Vi of the main grid and is one of the most intensive but parallelizable part
of the proposed numerical scheme.

2. Solve the Riemann-problems and sum jump contributions: In this step, the
boundary extrapolated states at a given interface Eij are computed

qi,h(γk, tn) and qj,h(γk, tn),

γk being the Gaussian quadrature points. This boundary extrapolated states are
computed from the degree of freedom qh, obtained at the previous predictor kernel
for each interface of a given element Vi. After that, it is computed the aforementioned
integral. Then, the value of the variable u1 is upgrade to include the jump
contribution:

u← u+
∑
j∈Ni

tn+1∫
tn

∫
Eij

D−Φ(qi,h(γ, t), qj,h(γ, t),nij) dγ dt,

where the integral is approximated as it was indicated in Section 3.5.

2The double5 data type represent structures with five double precision real components
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3. A posteriori subcell finite volume limiter:

Let us give some brief ideas employed in the implementation of the subcell finite
volume solver. It is clear that a kernel to project the DG polynomial onto the subcell
grid must be implemented. The same applies for the reconstruction procedure.
Also a third kernel to check the validity of the candidate solution computed with
the unlimited ADER-DG is also needed. Note that, the third kernel can be
launched whenever the projected values onto the subcell grid are already computed.
Additionally, this third kernel can not be combined with the first one, since to
check the validity of the numerical solution, the corresponding Voronoi neighbours
are needed. Therefore, it is justified to split this procedure into at least three parts.

Another kernel to evolve the numerical solution with the finite volume solver is
needed. In this case, the kernel will compute a numerical solution for a given
marked Vi,S of the subcell grid at the previous step, stored in v0. We would like to
remark that this procedure applied to two different elements Vi,S, V

′
i,S are completely

independent. Thus each thread acts over differents marked subcells independently.

Note that the finite-volume kernel only acts on a subset contained in the subcell grid,
in particular the kernel acts over those subcells that are marked with the MOOD
detector. The number of elements of the subgrid is changing along the simulation,
since the number of troubled cells changes. Due to that, it has been implemented
a kernel that take advantage of such situation. Let us described now the following
kernels that define the steps during the a posteriori subcell finite volume limiter
procedure:

• Projection: In this kernel, u that contains Uh(x, t
n+1) is projected onto the

subcells and stored in an array of type double5 v1.

• A posteriori MOOD detection procedure: Each thread checks the relaxed
discrete maximum principle, the positivity of the water height and the presence
of floating point errors (NaN) within each cell Vi. This kernel also uses v0.

To do so, an array of type int2 is defined on the main grid as (fli, posi), being

fli =

{
1, if Vi is detected as a troubled cell
0, Otherwise

, posi =

{
i, if fli = 1
−1, if fli = 0

• Counting troubled cells: In this step, a kernel is used to count the number of
troubled cells, and it is stored in a integer variable Mtroubled. To do so, we
remark that:

Mtroubled =
∑
i

fli,

that is computed by applying a reduction algorithm in GPU, similarly to what
is done in [75] and [76].
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• Sorting troubled cells: A sorting algorithm is applied to the vector posi. The
algorithm separates positive from negative values. In that way, we can separate
the marked index cells from the rest (see Figure ?? to better clarify). To do
so, we use the Thrust c++ library for CUDA.

• Finite volume solver: This kernel contains a finite volume solver that computes
a numerical solution on the time-dependent cluster formed by the marked
subcells, whose indexes are ordered and stored in posi. Thanks to that, the
kernel it is configured on the small grid that contains the troubled cells and
acts in parallel over a smaller set of data. Note that with this procedure, no
communication is needed for the computation of two different marked subcells.
The results are stored in v1.

• Reconstruction: In this kernel, the degree of freedom of the DG polynomial,
are reconstructed from the news computed mean values v1 that contains the
solution given by the finite-volume method at the previous step. This kernel,
as the previous one, only acts on those subcells that are marked as troubled.

4. Element update and computing the local ∆tn+1
i : In this kernel the mean

values are updated, v1 ← v0, and a local ∆tn+1
i is computed for each element of the

main grid.

5. Computing the minimum of all local ∆n+1
i : Similarly to what is done in [75]

and [76], the minimum of all the local ∆tn+1
i values is obtained by applying a

reduction algorithm in GPU. This value shall be used as precomputed ∆tn+1 for the
next step of the loop.

Figure E.2: Parallel CUDA implementation.



Figure E.3: Troubled cells marking process. In a), an example of tagging. In b) and c)
the array of integers posi before and after the Sorting troubled cells kernel.
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