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Abstract
In some configurations, dispersion effects must be taken into account to improve the simu-
lation of complex fluid flows. A family of free-surface dispersive models has been derived
in Fernández-Nieto et al. (Commun Math Sci 16(05):1169–1202, 2018). The hierarchy of
models is based on a Galerkin approach and parameterised by the number of discrete layers
along the vertical axis. In this paper we propose some numerical schemes designed for these
models in a 1D open channel. The cornerstone of this family of models is the Serre – Green-
Naghdi model which has been extensively studied in the literature from both theoretical and
numerical points of view. More precisely, the goal is to propose a numerical method for the
L DN H2 model that is based on a projection method extended from the one-layer case to
any number of layers. To do so, the one-layer case is addressed by means of a projection-
correction method applied to a non-standard differential operator. A special attention is paid
to boundary conditions. This case is extended to several layers thanks to an original rela-
belling of the unknowns. In the numerical tests we show the convergence of the method and
its accuracy compared to the L DN H0 model.
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1 Introduction

Water waves and more generally water flows are of great interest in several scientific fields
with applications to society issues such as protection of populations (tsunamis, floods, …)
or energy production (water-turbines, …). Depending on the accuracy that is required in
the applications, more or less complex models are used, from fully resolved to averaged
equations.

In order to simulate the behaviour of free-surface fluid flows, let us consider the 2D Euler
equations for an incompressible free-surface flow under gravity:{ ∇ · û = 0, (1a)

∂t û + (û · ∇)û + ∇ p̂total = (0,−g), (1b)

set in the moving domain (see Fig. 1)

�(t) = {
(x, z) ∈ R

2
∣∣ x ∈ I , zb(x) ≤ z ≤ η̂(t, x)

}
.

Here, I = (x�, xr ) is a bounded interval of R and zb is the given topography (independent
from time). The unknowns are the velocity field û = (û, ŵ), the pressure field p̂total and
the water elevation η̂. The water height is deduced from ĥ(t, x) = η̂(t, x)− zb(x). Viscosity
effects are not taken into account in this work but we refer to [14] for instance to deal with
such terms.

The model is supplemented with kinematic boundary conditions:{
∂t η̂ + ûs∂x η̂ − ŵs = 0,

ûb∂x zb − ŵb = 0,
(2)

as well as
p̂total

(
t, x, η̂(t, x)

) = patm(t, x), (3)
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Fig. 1 Fluid domain for the Euler equations (1)

for some given atmospheric pressure patm(t, x) > 0. Classically, the pressure field is decom-
posed into three parts:

p̂total(t, x, z) = p̂hydro(t, x, z) + q̂(t, x, z)

where the hydrostatic part is given by

p̂hydro(t, x, z) = g(η̂(t, x) − z) + patm(t, x),

and where q̂ is the hydrodynamic pressure field – or commonly referred to as the non-
hydrostatic component.

Hydrostatic models such as the nonlinear shallow water equations [26] or the hydrostatic
Navier-Stokes equations [3] are based on the assumption q̂ ≡ 0.

Given this decomposition, BC (3) is equivalent to

q̂
(
t, x, η̂(t, x)

) = 0. (4)

In addition to its complex mathematical structure (see e.g. [12,38,49]), Model (1) coupled
to (2-4) is a real challenge owing to the fact the domain is moving: the water elevation is an
unknown in itself. That is why, in spite of the increase of computer performance, reduced-
complexity models have been introduced, analysed and discretised. There exists an extensive
literature about models approximating the Euler equations under simplifying hypotheses.
Depending on the physical phenomena at stake and thus the fluid regime under study, some
models turn out to be more accurate than others.

For example, the nonlinear shallow water equations (NLSW) [26,36,37,53] provide rel-
evant results for large wavelengths but seem restrictive in other regimes, in particular due to
the absence of dispersive effects. To go further, models were derived in a given regime of
magnitude for the nonlinearity (ε: wave amplitude/water depth ratio) and for the frequency
dispersion (μ: water depth/wavelength ratio). The competition between the two phenom-
ena is responsible for the shape of water waves. Dispersion is necessary for instance for
stratified flows or close to coastal areas. Different regimes lead to weakly/fully nonlinear –
weakly/fully dispersive models. For example, the NLSW equations correspond to μ = 0 for
any ε = O(1).

We may refer to pioneering works e.g. Boussinesq [13] and Peregrine [57], mod-
els obtained to improve linear dispersion properties e.g. Madsen & Sorensen [52] and
Nwogu [55], models suitable for deep waters [46], …For reviews of dispersive models,
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see [43,45]. A focus will be made below on two systems: the Depth-Averaged Euler (DAE)
system described in [1] and the Serre – Green-Naghdi (SGN) equations (see [39,62]).

It is worth noticing that classic dispersive models, usually written under a Boussinesq
form, introduce high order derivatives for two unknowns (water height and velocity). On
the contrary, non-hydrostatic pressure models introduce such effects by means of the non-
hydrostatic component of the pressure. In [21] a semi-implicit finite difference model for
non-hydrostatic free-surface flows is presented based on a vertical discretisation of the 3D
free-surface Navier-Stokes equations. A similar approach is used in [63] where again the
pressure is decomposed into hydrostatic and non-hydrostatic counterparts and a vertical
discretisation is proposed for the 3D system. A more recent work on the subject is [22],
where semi-implicit methods are extended to complex free-surface flows that are governed
by the full incompressible Navier-Stokes equations and are delimited by solid boundaries
and arbitrarily shaped free-surfaces. These approaches are comparable to the multilayer or
layer-averaged framework, see for example [5,50,60]. In [5] and [60] the multilayer model
is deduced by supposing within each layer a constant profile of the horizontal velocity.
The multilayer model proposed in [50] is based on the irrotational hypothesis and that the
horizontal velocity is quadratic (within each layer) and continuous at the interfaces. In [6] a
numerical study of the linear dispersive celerity shows convergence of the multilayer model.
In [35], a hierarchy of layer-averaged models has been derived: it is based on hypotheses
made for the vertical velocity and pressure profiles. An explicit linear dispersion relation for
each model is provided and authors proved that when the number of layer increases, celerity
converges to the exact one given by Euler equations in the Stokes linear theory.

The latter model is considered here. Classic dispersive systems, and in particular DAE
and SGN, may be written as a non-hydrostatic system. Readers can refer to [32] for the link
between the two approaches. Non-hydrostatic formulation has several advantages from the
numerical point of view, especially regarding boundary conditions. Notice that they do not
rely on any irrotational assumption.

In recent years, an effort has been made in using hyperbolic approximations of disper-
sive an non-hydrostatic systems. See for instance [4,40] where hyperbolic depth-averaged
equations use a hyperbolic approximation of a Boussinesq-type equation, or [54] for
hyperbolic approximations of the Korteweg–de Vries equations. Other examples, based on
non-hydrostatic models are given by [7,17,34] where authors proposed different hyperbolic
approximations for the SGNequations, or [31,32]where authors proposed hyperbolic approx-
imations for some well-known non-hydrostatic pressure and Boussinesq-type systems.

In this paper, we will focus on non-hydrostatic models. First, the non-hydrostatic model
derived in [1], namedDAE,which is an approximation of Euler equationswhen the frequency
dispersion is small, is considered:⎧⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

∂t h + ∂x (hu) = 0,

∂t (hu) + ∂x (hu2 + hq) = − γ 2

2 q∂x zb − gh∂xη − h∂x patm,

∂t (hw) + ∂x (huw) = γ q,

γw + h∂x u − γ 2

2 u∂x zb = 0,

(5)

where (u, w) is an approximation of (û, ŵ) along the water column, q is the non-hydrostatic
component of the pressure field and γ > 0 a parameter. The case γ = 2 was studied in [16]
and simulated in [2]. For a flat topography ∂x zb ≡ 0, γ = √

3 corresponds to the SGN
equations [39]. This is a well-known dispersive system that has been extensively studied, see
for instance [10,23,28,45]

The SGN model, also studied in [35], is given by
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⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

∂t h + ∂x (hu) = 0, (6a)

∂t (hu) + ∂x (hu2) + ∂x (hq) + qb∂x zb = −gh∂x (zb + h) − h∂x patm, (6b)

∂t (hw) + ∂x (huw) − qb = 0, (6c)

∂t (hσ) + ∂x (hσu) − 2
√
3
(

q − qb

2

)
= 0, (6d)

w − u∂x zb − √
3σ = 0, (6e)

2
√
3σ + h∂x u = 0. (6f)

Moreover, both (5) and (6) are proved in [35] to belong to the same hierarchy of models
depending on some orders of approximation for the set of unknowns1. Indeed, the key point
is the dependence of the solution on the vertical coordinate z.

More precisely, Equations (5) are referred to as L DN H0(1) as an approximation of the
Euler equations where (u, w, q) is a (P0,P0,P1)Galerkin approximation of (û, ŵ, q̂). Like-
wise, Equations (6) are referred to as L DN H2(1) and (u, w, q) is a (P0,P1,P2) Galerkin
approximation of (û, ŵ, q̂). In particular, (6) has a more accurate linear dispersion relation
than (5) for large wavelengths [35, Fig. 2].

Remark that System (6) is made of first-order PDEs which account for conservation of
mass (6a) and of momentum (6b-6d). (6e-6f) are diagnostic equations deduced from the
incompressibility constraint (1a). There are several equivalent ways to write down the diag-
nostic equations (6e) and (6f) but this very definition is the only choice that provides a duality
relation between the modified “pressure gradient” and the modified “velocity divergence”.

This duality property is crucial from both theoretical and numerical points of view as
highlighted in the following. It also allows to specify the boundary conditions:

① From the weak formulation associated to the underlying elliptic equation, we deduce
the boundary conditions for the pressure fields (see Remark 3 which shows that it is
necessary to specify q(∂x (hq) + qb∂x zb) at each boundary);

② We then infer from the numerical point of view how boundary conditions should be
naturally imposed by symmetry in the resulting linear system (see § 16.3.2).

For the sake of simplicity andwithout restrictions2, wewill consider in this paper a subcritical
flow (which corresponds to the hyperbolic regime3 in the Euler system (1)). Then, Model (6)
is supplemented with the following boundary conditions:

• For the non-hydrostatic pressure, we impose:

At x = x�, ∂x (hq) = χ�; (7a)

At x = xr , q = 0, (7b)

for some flux χ� ∈ R. The choice of these boundary conditions relies on the weak
formulation associated to the underlying elliptic problem (see Remark 3) and on the
boundary condition for the topography (7e).

1 The models of the hierarchy are denoted L DN Hk (L) where L DN H stands for Layerwise Discretisation
Non-Hydrostatic, k is the order of approximation and L the number of layers.
2 The location of boundary conditions depends on the one hand on the hyperbolic step (hence the hyperbolic
regime) and on the other hand on the compatibility between boundary conditions for both steps. The boundary
condition for the water height does not interfere with the elliptic step.
3 The hyperbolic part is not the core of this paper which is rather the elliptic part.
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• For the velocity field and thewater height, it depends on the underlying hyperbolic regime.
As mentioned above, we consider a subcritical flow so that, following the investigations
of § 16.3.2, we impose

At x = x�, hu = Qu, hw = Qw, hσ = Qw√
3

; (7c)

At x = xr , h = hr ; (7d)

for some constants Qu > 0, Qw ≥ 0 and hr > 0.

We also assume that the topography satisfies the following boundary condition:

∂x zb(x�) = 0. (7e)

It is shown in § 6.1 that System (6) can be rewritten under three different other formulations
(Props. 1, 2 and 3). In particular, Proposition 1 will show that (6) is equivalent to the SGN
equations under Boussinesq form, as presented in [45]. Then, from now on, System (6)
coupled to boundary conditions (7) will be referred to indifferently as SGN or L DN H2(1).

Although Model L DN H2(1) has a larger number of unknowns than L DN H0(1) (which
may provide a richer modelling), the first goal of this paper is to design a numerical method
for (6) with a reduced additional computational complexity compared to (5). See [56] for
another strategy. The second goal of this paper is to extend the aforementioned numerical
method designed for L DN H2(1) to its multilayer counterpart L DN H2(L) (for some number
of layers L > 1) as derived in [35]. Indeed, L DN H2(1) relies on the approximation that
the horizontal component of the velocity field does not depend on z, i.e. it is constant along
the water column. In some cases (for instance when the flow is not shallow), it is necessary
to add more degrees of freedom. The Galerkin method used for the semi-discretisation in z
leads to L DN H2(L) where L is the number of vertical cells.

The paper is organised as follows: in Sect. 6, we first show some properties of the
L DN H2(1) model: equivalent formulations (including the relationship with the SGN equa-
tions) and associated energy. Secondly, a numerical strategy to solve the monolayer model
L DN H2(1) is presented: it consists in an iterative algorithm taking into account the gradient-
divergence duality. In Sect. 17, the layer-averaged extension L DN H2(L) is reformulatedwith
similar differential operators. The previous numerical method is then extended to the multi-
layer case, still based on the gradient-divergence duality. In Sect. 18, some classic numerical
tests are presented to assess these strategies for L DN H2(1) and L DN H2(L), in particular
in terms of accuracy with respect to L DN H0(L).

6 Analysis and Numerical Method for the LDNH2(1)Model

In this section we first study some of the properties ofModel (6), such as some reformulations
and its associated energy. Secondly, the design of a numerical discretisation of the model is
presented.

6.1 Properties of theModel at the Continuous level

Let us set

X =
⎛
⎝u

w

σ

⎞
⎠ , Q =

(
q
qb

)
, and Sh =

⎛
⎝−gh∂x (zb + h) − h∂x patm,

0
0

⎞
⎠ . (8a)
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Let us also define the operators

∇sgn Q =
⎛
⎝∂x (hq) + qb∂x zb

−qb

−2
√
3
(
q − qb

2

)
⎞
⎠ and ∇sgn·X =

(
2
√
3σ + h∂x u

w − u∂x zb − √
3σ

)
(8b)

and notice that the following duality relation holds

X · ∇sgn Q = ∂x (hqu) − Q · (∇sgn·X). (9)

Given these notations, System (6) reads in a compact form

⎧⎪⎨
⎪⎩

∂t h + ∂x (hu) = 0, (10a)

∂t (hX) + ∂x (huX) + ∇sgn Q = Sh, (10b)

∇sgn·X = 0. (10c)

System (10) has the same mathematical structure as the incompressible Euler equations
with variable density except that differential operators are non-standard. Hence, this remark
will help to design a similar numerical strategy.

It is shown below that this system can be rewritten under three different other forms
(Props. 1, 2 and 3).

First, let us remark that System (10) is nothing but the SGN equations as presented in [45]:

Proposition 1 System (10) can be rewritten under the Boussinesq formulation{
∂t h + ∂x (hu) = 0,(
Id + T [h, zb]

)
(∂t u + u∂x u) + g∂x (h + zb) + Q[h, zb]u = −∂x patm,

(11)

where

T [h, zb]v = R1[h, zb](∂xv) + R2[h, zb](v∂x zb),

Q[h, zb]v = −2R1[h, zb]
(
(∂xv)2

)+ R2[h, zb](v2∂2xx zb),

R1[h, zb]w = − 1

3h
∂x (h

3w) − h

2
w∂x zb,

R2[h, zb]w = 1

2h
∂x (h

2w) + w∂x zb.

Proof Indeed, we deduce from (6) that

σ = −h∂x u

2
√
3

, w = −h∂x u

2
+ u∂x zb,

qb = −h2

2

[
∂x (∂t u + u∂x u) − 2(∂x u)2

]+ h
[
∂x zb (∂t u + u∂x u) + u2∂2xx zb

]
,

q = −h2

3

[
∂x (∂t u + u∂x u) − 2(∂x u)2

]+ h

2

[
∂x zb (∂t u + u∂x u) + u2∂2xx zb

]
.

Inserting the two last equalities into (6b) leads to the expected result. �	
The main difference between the non-hydrostatic formulation (6) and the Boussinesq

formulation given in Proposition 1 lies in the order of spatial derivatives (1 vs. 3). The
consequence is a larger number of unknowns in (6) (6 vs. 2) but with at most first order
derivatives. One key advantage of (6) is that the treatment of boundary conditions is easier
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as it will be shown later. Moreover, a smaller stencil is needed when one has to approach
numerically first order compared to higher order derivatives.

A numerical algorithm to simulate (11) is designed in [11] by introducing a second-order
parameterized perturbation and based on the inversion of Id +T . The parameter is set so that
the linear dispersion relation is optimised with respect to the Airy relation. The numerical
technique consists of a splitting method between the hyperbolic Saint-Venant equations
(solved with a finite-volume scheme) and the dispersive part (solved with a finite-difference
scheme).An extension to dimension 2 is provided in [47] by replacing the differential operator
Id + T by a time independent “diagonal” approximation. In [28], a Discontinuous Galerkin
Finite-Element method is applied.

We also mention the following formulation with high order derivatives of h:

Proposition 2 System (10) also reads

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

∂t h + ∂x (hu) = 0,

∂t (hu) + ∂x

(
hu2 + g

h2

2
+ h2ḧ

3
+ h2u̇

2
∂x zb + h2u2

2
∂2xx zb

)

+h

(
g + ḧ

2
+ u̇∂x zb + u2∂2xx zb

)
∂x zb = −h∂x patm .

Here we used the standard notation ξ̇ := ∂tξ + u∂xξ .

Proof We deduce from (6)

ḣ = −h∂x u = 2
√
3σ = 2(w − u∂x zb),

qb = hẇ = hḧ

2
+ h [∂t (u∂x zb) + u∂x (u∂x zb)] ,

q = qb

2
+ hḧ

12
= hḧ

3
+ h

2
[∂t (u∂x zb) + u∂x (u∂x zb)] .

�	
Inserting the two latter equalities into (6b), we obtain the expected result.

Remark 1 For a flat topography, we recover the model studied in [34,48]. In [48], the model

is reformulated by means of the change of variable (h, hu) 
→
(

h, u + ∂x (h2 ḣ)
3h

)
and solved

using a finite-difference method. The numerical technique used in [34] is based on an
augmented-Lagrangian approach.

In the framework of projection methods, we exhibit another formulation. The two
constraints (10c) can be replaced by applying the divergence (8b) to the momentum equa-
tion (10b) (initially divided by h):

Proposition 3 System (10) can be rewritten under the reduced formulation⎧⎪⎪⎪⎨
⎪⎪⎪⎩

∂t h + ∂x (hu) = 0, (12a)

∂t (hX) + ∂x (huX) + ∇sgn Q = Sh, (12b)

−∇sgn·
(∇sgn Q

h

)
= −∇sgn·

(
Sh

h

)
+ ∇sgn·(u∂xX). (12c)
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Eq. (12c) reads⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

12
q

h
− h∂x

(
∂x (hq)

h

)
− 6

qb

h
− h∂x

(qb

h
∂x zb

)
= 2h(∂x u)2 + h∂x

(
g∂x (zb + h) + ∂x patm),

(13a)(
4 + (∂x zb)2

) qb

h
− 6

q

h
+ ∂x zb

∂x (hq)

h
= u2∂2xx zb − (g∂x (zb + h) + ∂x patm)∂x zb. (13b)

Well-posedness of this system is studied in [8].

Remark 2 Notice that only h and u are involved (not w nor σ ) in the right hand side of (13).
Moreover, we also notice that qb can be expressed directly from (13b)

qb

h
= 1

4 + (∂x zb)2

[
6

q

h
− ∂x zb

∂x (hq)

h
+ u2∂2xx zb − (g∂x (zb + h) + ∂x patm)∂x zb

]
.

(14)
Inserting the latter expression into (13a) provides a unique equation for q:

12
1 + (∂x zb)

2

4 + (∂x zb)2

q

h
− h∂x

(
4

4 + (∂x zb)2

∂x (hq)

h

)
+ 6∂x zb

4 + (∂x zb)2

∂x (hq)

h

− h∂x

(
6∂x zb

4 + (∂x zb)2

q

h

)

= 2h(∂x u)2 + h∂x
(
g∂x (zb + h) + ∂x patm)

+ h∂x

(
∂x zb

4 + (∂x zb)2

(
u2∂2xx zb − (g∂x (zb + h) + ∂x patm)∂x zb

))
.

However, the complexity of the operators in the latter equation made us prefer working
with (13).

Remark 3 Whether it be from the theoretical or numerical points of view, the equation of
interest is

− ∇sgn·
(
1

h
∇sgn Q

)
= f (15)

for some right hand side f . The well-posedness of Eq. (15) is proved in [8] by means of the
Lax-Milgram theorem applied under some smoothness hypotheses on the water height h. In
particular, straightforward computations show that

−
∫

I
∇sgn·

(
1

h
∇sgn Q

)
· Q̃ dx = − [̃q (∂x (hq) + qb∂x zb)]∂ I +

∫
I

1

h
∇sgn Q · ∇sgn Q̃ dx,

which explains the present choice of boundary conditions (7a-7b).

Finally, we show that thanks to the correct formulation of diagnostic equations (6e)
and (6f), associated to the definition (8b) of ∇sgn·X that provides the duality relation (9)
we can deduce an associated energy for SGN model. It is crucial from both theoretical
and numerical points of view as highlighted in the following section, corresponding to the
definition of the numerical method.

Proposition 4 Smooth solutions of System (10) satisfy the following energy equality provided
patm and zb do not depend on time:
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∂t

[
h

( |X|2
2

+ g

(
zb(x) + h

2

)
+ patm(x)

)]

+∂x

[
hu

( |X|2
2

+ g (zb(x) + h) + patm(x) + q

)]
= 0.

Proof Let us multiply (6b) by u, (6c) by w and (6d) by σ so that

∂t

(
h

|X|2
2

)
+ ∂x

(
hu

|X|2
2

)
+ |X|2

2
[∂t h + ∂x (hu)]

+X · ∇sgn Q + hu∂x (g(h + zb) + patm) = 0.

Using the duality relation (9) as well as Eq. (6a) leads to the expected result. �	

12.2 Splitting Strategy at the Semi-Discrete Level

Let us write a semi-discretisation of System (10) based on a classic splitting technique for
some time step �t > 0, like e.g. in [1,30,33,47,56]. We first consider the hyperbolic step4

⎧⎪⎨
⎪⎩

hn+1/2 − hn

�t
+ ∂x (hnun) = 0,

(hX)n+1/2 − (hX)n

�t
+ ∂x (hnunXn) = Shn ,

(16)

coupled to boundary conditions (7c) and (7d). Any classic numerical method dedicated to
the Shallow Water equations (including well-balanced schemes) can be used to solve it.

Then the dispersive step reads

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

hn+1 − hn+1/2

�t
= 0, (17a)

(hX)n+1 − (hX)n+1/2

�t
+ ∇sgn Qn+1 = 0, (17b)

∇sgn·Xn+1 = 0, (17c)

which reads as a mixed velocity-pressure Darcy problem. Boundary conditions (7c), (7a) and
(7b) are considered. In this paper we investigate a projection-correction approach.

To preserve the order of the method, we can consider the incremental method (see e.g.
[41]) which consists of the following modified first step

⎧⎪⎨
⎪⎩

hn+1/2 − hn

�t
+ ∂x (hnun) = 0,

(hX)n+1/2 − (hX)n

�t
+ ∂x (hnunXn) + ∇sgn Qn = Shn ,

4 An explicit scheme is presented but an implicit strategy can also be chosen. It does not interfere with the
second step.
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(which requires an initialisation of the pressure unlike the non-incremental version) and the
modified second step⎧⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

hn+1 − hn+1/2

�t
= 0,

(hX)n+1 − (hX)n+1/2

�t
+ ∇sgn

(
Qn+1 − Qn

) = 0,

∇sgn·Xn+1 = 0.

This approach does not raise any additional issue, therefore for the sake of simplicity we
present the results by considering the splitting strategy (16)-(17).

To make the reading easier, we shall denote from now on: X = Xn+1 and X∗ = Xn+1/2.
System (17) implies

− ∇sgn·
(

1

h∗ ∇sgn Q
)

= −∇sgn·X∗

�t
, (18)

or equivalently, expanding the non-classic operators:⎧⎪⎪⎨
⎪⎪⎩
12

q

h∗ − h∗∂x

(
∂x (h∗q)

h∗

)
− 6

qb

h∗ − h∗∂x

( qb

h∗ ∂x zb

)
= −2

√
3σ ∗ + h∗∂x u∗

�t
,

(
4 + (∂x zb)

2
) qb

h∗ − 6
q

h∗ + ∂x zb
∂x (h∗q)

h∗ = −w∗ − u∗∂x zb − √
3σ ∗

�t
.

(18’)

We recover the same operators as in the continuous case – see (13), only the right hand side
is modified due to the splitting method. Hence the well-posedness investigated in [8] still
holds.

Remark 4 The right hand side in (18’) is not of order O(�t−1) but of order O(1). Indeed,
inserting the values from the hyperbolic step (16), we get

2
√
3σ ∗ + h∗∂x u∗

�t
= 2

√
3σ n + hn∂x un

�t
+ O(1) = O(1),

w∗ − u∗∂x zb − √
3σ ∗

�t
= wn − un∂x zb − √

3σ n

�t
+ O(1) = O(1),

since 2
√
3σ n + hn∂x un = 0 and wn − un∂x zb − √

3σ n = 0, provided initial conditions
satisfy the divergence constraints, i.e. initial conditions are well-prepared.

Once Equation (18) is solved for Q, the velocity field is updated using (17b)

X = X∗ − �t

h∗ ∇sgn Q.

16.3 Numerical Method at the Discrete Level

We focus in this section on the discretisation in space of the non-incremental version (16-17).
The incremental version does not raise major additional difficulties.

Let us consider a homogeneous Cartesian grid of interval I = [x�, xr ] with mesh size
�x = xr −x�

N for some integer N > 0 (see Fig. 2).
Standard approaches for Stokes-like problems rely on a staggered grid with velocity

fields at the centre of the cells and pressure fields at the interfaces. A similar approach is
also followed in [33]. The specific expression of ∇sgn Q in the present problem – see (8b) –
induced a different choice, namely a collocated approach with all variables (X and Q) at the
centres of the cells. This choice makes a discrete energy estimate easier to derive.
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Fig. 2 Collocated mesh

16.3.1 Hyperbolic Step

For the sake of completeness, let us briefly describe the numerical scheme applied to sys-
tem (16), which consists of the classic shallow water part and two transport equations for w

and σ .
Here, we considered a high-orderPolynomial Viscosity Matrixfinite-volumemethod using

a second-order MUSCL state reconstruction operator similar to those proposed in [30,33].
Moreover, a third-order CWENO –[25] reconstruction has been implemented as well.

The semi-discrete in space high-order path-conservative scheme for System (16) reads as
follows

(hX̃)′i (t) = − 1

�x

(
D−

i+1/2(t) + D+
i−1/2(t) + Ii (t)

)
,

where X̃ = (
1,XT

)T
.

Dropping the dependence on time, D±
i+1/2 is given by a Polynomial Viscosity Matrix

(PVM) path-conservative scheme

D±
i+1/2 = 1

2

(
F
(
(hX̃)+i+1/2

)
− F

(
(hX̃)−i+1/2

)
+ Si+1/2

(
(hX̃)+i+1/2 − (hX̃)−i+1/2

))

± 1

2
Qi+1/2,

Ii = F
(
(hX̃)−i+1/2

)
− F

(
(hX̃)+i−1/2

)
+
∫

�i

S
[

Pi,(hX̃)(x)
] ∂ Pi,(hX̃)(x)

∂x
dx .

Here, F(hX̃) = huX̃ and S(hX̃) = (gh, 0, 0)t .
In the expression above, Qi+1/2 is the numerical viscosity that depends on the choice of

the PVM method and (hX̃)±i+1/2 is computed by means of a reconstruction procedure on the
variables to the left (−) and right (+) of the inter-cell xi+1/2. This is done using a standard
MUSCL or CWENO reconstruction operator Pi,(hX̃)(x).

The term Si+1/2

(
(hX̃)+i+1/2 − (hX̃)−i+1/2

)
accounts for the path-integral of non-

conservative terms. In this work, the simple straight-line segment path is chosen, and thus
the path-integral can be computed exactly using the midpoint rule. In particular, all the com-
ponents are zero except the first one that reduces to

−g
h−

i+1/2 + h+
i+1/2

2

(
(h + zb)

+
i+1/2 − (h + zb)

−
i+1/2

)
.

The viscosity termQi+1/2 results from the evaluation of a Roe Matrix at xi+1/2 by a polyno-
mial that interpolates the absolute value function (see [20]). Here we are using a first-degree
polynomial that uses some estimation of the slowest (SL ) and fastest (SR) wave speeds. With
this choice, the numerical scheme coincides with an extension for non-conservative systems
of the standard HLL Riemann-solver.
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Finally, the volume integral∫
�i

S
[
Pi,U(x)

] ∂ Pi,U(x)

∂x
dx,

is numerically approximated using any Gaussian quadrature rule of the same order as the
scheme.

The considered explicit high-order methods are well-balanced for water at rest solutions

η = cst, u = w = σ = 0.

The eigenvalues of the hyperbolic operator in (16) are un ± √
ghn and un (transport

equations for w and σ ). Therefore, the scheme is linearly L∞ stable provided the following
condition holds

�t ≤ CC F L
�x

maxi
(|un

i | +√ghn
i

) . (19)

Moreover, the scheme is positive-preserving for the total water depth in the sense that: if
hn

i > 0 then hn+1
i > 0 for all i .

16.3.2 Non-Hydrostatic Step: Numerical Scheme for the Velocity-Pressure Problem

We could have directly discretised Eqs. (18’). However, in order to recover a discrete energy,
we first discretise the velocity-pressure problem (17) and we then deduce a discretisation
for (18’) mimicking the continuous level. Finite differences are applied in the present work.

Let us first consider the mixed formulation (17). Denote by H ∈ MN ,N (R) the diagonal
matrix with entries Hi,i = h∗

i .
We expect that the discretisation of System (17) has the form(

H/�t B
BT 0

)(
X

Q

)
=
(
HX∗/�t − 0̂

0̃

)
. (20)

where

• H ∈ M3N ,3N (R) is block-diagonal with block entries H ∈ MN ,N (R);
• B ∈ M3N ,2N (R) is an rectangular matrix to be specified;

• U = (ui )i∈{1,...,N }, W = (wi )i∈{1,...,N }, � = (σi )i∈{1,...,N } and X =
⎛
⎝U
W
�

⎞
⎠;

• 0i j = 0 for (i, j) ∈ {1, . . . , 2N }2;
• 0̂ ∈ R

3N and 0̃ ∈ R
2N account for boundary conditions as detailed below.

The matrix in (20) is symmetric due to the duality relation (9). However, a naive approach
where Eqs. (17b) and (17c) are discretised independently from each other would lead to a
non-symmetric matrix. Hence we first discretise Eq. (17b) as

1

�t
HX + BQ = 1

�t
HX∗ − 0̂.

OnceB is built,BTX = 0 should be a consistent discretisation of (17c) up to boundary terms.
More precisely, Equation (17b) is discretised for inner cells:

h∗
i Xi

�t
+
⎛
⎜⎝

1
�x

(
h∗

i+1/2
qi+1+qi

2 − h∗
i−1/2

qi +qi−1
2

)
+ qbi (∂x zb)i

−qbi

−2
√
3
(
qi − qbi

2

)

⎞
⎟⎠
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= h∗
i X

∗
i

�t
, i ∈ {2, . . . , N − 1}.

which leads to

B =

⎛
⎜⎜⎝

B11 B12

0 −IN

−2
√
3IN

√
3IN

⎞
⎟⎟⎠ . (21)

B12 is diagonal with entries (∂x zb)i while B11 is tridiagonal:

B11 = 1

�x

⎛
⎜⎜⎜⎝

. . .
. . .

. . .

− h∗
i−1/2
2

h∗
i+1/2−h∗

i−1/2
2

h∗
i+1/2
2

. . .
. . .

. . .

⎞
⎟⎟⎟⎠ (22)

Hence, for inner nodes xi :

(BTX)i = −
[
1

2

(
h∗

i−1/2
ui − ui−1

�x
+ h∗

i+1/2
ui+1 − ui

�x

)
+ 2

√
3σi

]
,

(BTX)N+i = −
[
wi − (∂x zb)i ui − √

3σi

]
,

which is consistent with (17c).

Boundary conditions. Let us now specify how boundary conditions are incorporated by
means of ghost cells. BC (7a) at x = x1/2 = x� is discretised by

h∗
1q1 − h∗

0q0
�x

= χ� �⇒ q0 = h∗
1q1 − χ��x

h∗
0

.

Hence, the momentum equation for u is discretised in the first cell by:

h∗
1u1

�t
+ 1

�x

[
h∗
3/2

q1 + q2
2

− h∗
1/2

q0 + q1
2

]
+ qb1(∂x zb)1 = h∗

1u∗
1

�t

�⇒ h∗
1u1

�t
+ h∗

3/2

2�x
q2 + 1

2�x

[
h∗
3/2 − h∗

1/2

(
1 + h∗

1

h∗
0

)]
q1 + qb1(∂x zb)1

= h∗
1u∗

1

�t
− h∗

1/2

2h∗
0

χ�.

This provides the first line of Matrix B11 as well as 0̂1 = −h∗
1/2

2h∗
0

χ�. It remains to specify h∗
0.

Given that no boundary condition is imposed on h at x = x�, we set h∗
0 = 2h∗

1 − h∗
2.

We then observe that

(BTX)1 = −1

2

(
h∗
3/2

u2 − u1

�x
+ h∗

1/2

(
1 + h∗

1

h∗
0

)
u1

�x

)
.

We remark that if we discretise BC (7c) by

Qu = h∗
1u1 + h∗

0u0

2
�⇒ u1 − u0

�x
=
(
1 + h∗

1

h∗
0

)
u1

�x
− 2Qu

h∗
0�x

.
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We deduce 0̃1 = h∗
1/2

h∗
0

Qu

�x
. Note that this result implies that imposing ∂x (hq) = χ at some

boundary is consistent with prescribing hu = Qu .
For the boundary conditions at x = xN+1/2 = xr , BC (7b) is discretised by

qN + qN+1

2
= 0,

which means that the momentum equation for u in the last cell becomes

h∗
N uN

�t
− h∗

N−1/2

2�x
(qN + qN−1) + qb N (∂x zb)N = h∗

N u∗
N

�t
.

This yields the last line of B11 and 0̂N = 0. It implies that

(BTX)N = −h∗
N−1/2

uN−1 − uN

2�x
= −1

2

(
h∗

N−1/2
uN − uN−1

�x
+ h∗

N+1/2
uN+1 − uN

�x

)

provided that uN+1 = uN , which is equivalent to imposing

∂x u = 0 at x = xr ,

and 0̃N = 0.
Let us comment the latter result. Imposing q = 0 at some boundary is consistent with

imposing ∂x u = 0 at the same location. Even if there is no BC required in the hyperbolic
problem, it is necessary from the numerical point of view in order to compute the flux at the
corresponding interface. We mention that the BC handled in the first step of the algorithm
must not be damaged by the second step. Likewise, still for numerical purposes, we impose

∂xw = 0, ∂xσ = 0 at x = xr .

16.3.3 Numerical Scheme for the Pressure Problem

For a resolution of the mixed velocity-pressure problem (20) by means of the Uzawamethod,
see [8]. In the present paper, we rather combine both equations in (20) to obtain

BT H−1BQ = f := BTX∗ − 0̃
�t

− BT H−1̂
0, (23)

which is nothing but a consistent discretisation of the velocity-correction approach (18).

Remark 5 It is crucial that the initial data satisfy at the discrete level BTX∗ − 0̃ = 0 in order
to prevent the propagation of errors of order O(�t−1) as explained in Remark 4

Notice that Matrix C = BT H−1B has the following structure:

C =
(

C11 C12

CT
12 C22

)
=
(

BT
11H−1B11 + 12H−1 BT

11H−1B12 − 6H−1

BT
12H−1B11 − 6H−1 BT

12H−1B12 + 4H−1

)
. (24)

Lemma 1 Matrix C is symmetric positive-definite.

Proof The symmetry comes from the definition C = BT H−1B. Moreover, we have

〈CQ,Q〉 = 〈
H−1BQ,BQ

〉 ≥ 0
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sinceH is a diagonal matrix with positive entries provided the hyperbolic scheme is positive.
Then BQ = 0 �⇒ Q = 0 as B is one-to-one – see (21).

More precisely, (24) provides the following discrete energy

〈CQ,Q〉 = 〈
H−1qb, qb

〉+ 12
〈
H−1

(
q − qb

2

)
, q − qb

2

〉

+ 〈H−1(B11q + B12qb), B11q + B12qb

〉
,

which is consistent with∫
I

1

h∗ | ∇sgn Q|2 dx =
∫

I

1

h∗

[
q2

b + 12
(

q − qb

2

)2 + (∂x (h
∗q) + qb∂x zb

)2] dx .

To solve (23), onemay apply different strategies. One of them is to apply a direct resolution
inverting C. Another variant is to use the Uzawa method. Here, we shall propose to follow
an iterative process of Gauss-Seidel type:

1. C11qk+1 = 1
�t f − C12qk

b;

2. C22q
k+1
b = 1

�t f b − CT
12q

k+1.

This method converges due to Lemma 1. This is the latter method which has been chosen in
the present work. Matrix C11 is more or less the same matrix as for the DAE model (5). The
extra additional time then corresponds to the iterative process (C11 is factorised once and
C22 is diagonal).

Remark 6 Notice that we could explicitly solve the second block of (23):

qb = C−1
22

(
1

�t
f b − CT

12q
)

�⇒ (C11 − C12C−1
22 CT

12)q = 1

�t

(
f − C12C−1

22 f b

)
,

which corresponds to a discretisation of (14).

Remark 7 It is easy to check that the numerical scheme is well-balanced for water at rest
solutions

h + zb = cst . u = w = σ = q = qb = 0.

The hyperbolic step for (10a)-(10b) is well-balanced. We refer the reader to [18,20] for
the details.

Since the first step of the numerical scheme is well-balanced for the hydrostatic underlying
system, then the proposed iterative process in Lemma 1 yields to the resolution of two
homogeneous linear systems with non-singular matrices C11 and C22

• C11qk+1 = 0;
• C22q

k+1
b = 0.

Therefore q = qb = 0, and thus the result follows.

16.3.4 Numerical Treatment of Wet-Dry Fronts

In order to ensure the robustness of the algorithm, a wet/dry treatment is needed for small or
null values of the water height h. In particular, we use the following strategy:

1. The hydrostatic pressure terms gh∂x (zb + h) at the horizontal velocity equations are
modified for emerging bottoms to avoid spurious pressure forces (see [19]).
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(a)

(b)

Fig. 3 Multilayer description

2. For the computation of values including a term in the form
1

h
, for very small values of

the water height h, we use the idea presented in [44], replacing
1

h
by

√
2h√

h4 + max
{
h4, ε

} ,

for some threshold ε > 0. In the tests described in this paper ε is set to 10−6.

Moreover, let us remark in vacuum situations the iterative process described in Lemma 1
leads to the resolution of two homogeneous linear systems with non-singular matrices C11

and C22

• C11qk+1 = 0;
• C22q

k+1
b = 0.

Therefore q = qb = 0 when the water thickness vanishes.
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17 Numerical scheme for the LDNH2(L)Model

17.1 Notations andModel

Without any assumption on the shallowness of the flow, we can also approximate the Euler
equations (1) by means of a “multilayer” model. The flow is split into arbitrary layers of
constant height hα = h

L for some integer L > 0 (see Fig. 3). We consider the dispersive
layer-averaged model derived in [35] under the following reformulation:

∂t h + ∂x
(
hu
) = 0, u =

L∑
α=1

�αuα,

and for α ∈ {1, . . . , L}
∂t (hαuα) + ∂x

(
hαu2

α + hαqα

)+ ũα+1/2α+1/2 − ∂x zα+1/2qα+1/2

− ũα−1/2α−1/2 + ∂x zα−1/2qα−1/2 = −ghα∂xη,

∂t (hαwα) + ∂x (hαuαwα) + w̃α+1/2α+1/2 + qα+1/2 − w̃α−1/2α−1/2 − qα−1/2 = 0,

∂t (hασα) + ∂x (hασαuα) = 2
√
3

[
qα − qα+1/2 + qα−1/2

2

−α+1/2

(
hα∂x uα

12
+ w̃α+1/2 − wα

2

)
+ α−1/2

(
hα∂x uα

12
+ wα − w̃α−1/2

2

)]
,

together with diagnostic equations

2
√
3σα + hα∂x uα = 0, α ∈ {1, . . . , L},

wα − wα−1 − (uα − uα−1)∂x zα−1/2 − √
3(σα−1 + σα) = 0, α ∈ {2, . . . , L},

w1 − u1∂x zb − √
3σ1 = 0,

and the boundary condition

qL+1/2 = 0.

The mass transfer term is given by

α+1/2 =
L∑

β=α+1

∂x
(
hβ

(
uβ − u

))
.

To close the model, we define

• ũα+1/2 = (1 − γα+1/2)uα+1 + γα+1/2uα;

• w̃α+1/2 = (1 − γα+1/2)
(
wα+1 + hα+1

2 ∂x uα+1

)
+ γα+1/2

(
wα − hα

2 ∂x uα

)
;

for any γα+1/2 ∈ [0, 1] such that [35, Prop. 1]
(

γα+1/2 − 1

2

)
α+1/2 ≥ 0. (25)

Let us recall the properties of this system:
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• Let us set Kα = u2
α + w2

α + σ 2
α

2
. If (H , uα,wα, qα) are smooth solutions to the multi-

layer model, we have under (25)

∂t

(
L∑

α=1

hα

(
Kα + gzα + patm(x)

))+∂x

(
L∑

α=1

hαuα

(
Kα + qα + gη + patm(x)

)) ≤ 0.

(26)
Moreover, if we take γα+1/2 = 1

2 , then (26) is an equality.
• The monolayer case L = 1 reduces to the SGN equations (6).

17.2 Differential Operators

Let us introduce the operators

Xα =
⎛
⎝uα

wα

σα

⎞
⎠ , Qα =

(
qα

qα−1/2

)
,

and

∇α
ldnh Qα =

⎛
⎜⎝

∂x (h∗qα)

L − qα+1/2∂x z∗
α+1/2 + qα−1/2∂x z∗

α−1/2
qα+1/2 − qα−1/2

−2
√
3
(

qα − qα+1/2+qα−1/2
2

)
⎞
⎟⎠ , α∈{1, . . . , L},

∇α
ldnh ·Xα =

(
2
√
3σα + h∗

L ∂x uα

wα − wα−1 − (uα − uα−1)∂x z∗
α−1/2 − √

3(σα−1 + σα)

)
, α∈{2, . . . , L},

∇1
ldnh ·X1 =

(
2
√
3σ1 + h∗

L ∂x u1

w1 − u1∂x zb − √
3σ1

)
.

We get a global duality relation

L∑
α=1

Qα · (∇α
ldnh ·Xα) = 1

L
∂x (hqαuα) −

L∑
α=1

Xα · ∇α
ldnh Qα. (27)

It is worth noticing that

∇α
ldnh Qα =

⎛
⎝

∂x (h∗qα)

L
0

−2
√
3qα

⎞
⎠+

⎛
⎝qα−1/2∂x z∗

α−1/2
−qα+1/2√
3qα+1/2

⎞
⎠−

⎛
⎝qα+1/2∂x z∗

α+1/2
−qα−1/2√
3qα−1/2

⎞
⎠+

⎛
⎝ 0

0
2
√
3qα+1/2

⎞
⎠ ,

(28a)

and

∇α
ldnh ·Xα =

(
2
√
3σα + h∗

L ∂x uα

wα − uα∂x z∗
α−1/2 − √

3σα

)
−
(

0
wα−1 − uα−1∂x z∗

α−1/2 − √
3σα−1

)

−
(

0
2
√
3σα−1

)
. (28b)

We mention that the divergence operator stated in the present work is not the same as
in [35]. We rather provide an equivalent formulation that satisfies the duality relation (27).
In particular, σα is involved instead of ∂x uα which is important for the order of derivatives.
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Let us proceed as in the single layer case with a splitting strategy between hyperbolic
terms and non-hydrostatic terms. The latter part reads⎧⎨

⎩
h∗Xα − h∗X∗

α

L�t
+ ∇α

ldnh Qα = 0,

∇α
ldnh ·Xα = 0,

(29)

which implies

−∇α
ldnh ·

(∇α
ldnh Qα

h∗

)
= − 1

L�t
∇α

ldnh ·X∗.

The latter equation is expanded as, for α ∈ {1, . . . , L}

− h∗∂x

(
∂x (h∗qα)

h∗

)
+ 12L2 qα

h∗ = − L

�t

(
2
√
3σ ∗

α + h∗

L
∂x u∗

α

)

− Lh∗∂x

(
qα+1/2∂x z∗

α+1/2 − qα−1/2∂x z∗
α−1/2

h∗

)
+ 6L2 qα+1/2 + qα−1/2

h∗ , (30a)

then for α ∈ {2, . . . , L}(
2 − ∂x z∗

α+1/2∂x z∗
α−1/2

) qα+1/2

h∗ + 2
(
4 + (∂x z∗

α−1/2)
2
) qα−1/2

h∗

+
(
2 − ∂x z∗

α−1/2∂x z∗
α−3/2

) qα−3/2

h∗

= − 1

L�t

(
w∗

α − w∗
α−1 − (u∗

α − u∗
α−1)∂x z∗

α−1/2 − √
3(σ ∗

α−1 + σ ∗
α )
)

− ∂x z∗
α−1/2

L

∂x
(
h∗(qα − qα−1)

)
h∗ + 6

qα−1 + qα

h∗ , (30b)

and finally

(2 − ∂x z∗
3/2∂x z∗

1/2)
q3/2
h∗ +

(
4 + (∂x z∗

1/2)
2
) q1/2

h∗

= − 1

L�t

(
w∗
1 − u∗

1∂x zb − √
3σ ∗

1

)
− ∂x zb

L

∂x (h∗q1)

h∗ + 6
q1

h∗ . (30c)

Let us remark is that the differential operator for qα in (30a) is independent from index α.
Moreover, up to a coefficient L2, this operator is the same as in themonolayer case – see (18’).

17.3 Structure of the Fully Discretised Equations

Our goal is to produce an algorithm that only relies on tools designed for the monolayer case.
Let us split the gradient matrix B = B1/2 from (21) into:

Bα−1/2 = B1 + Bα−1/2
2 , where B1 =

⎛
⎜⎜⎝

B11 0

0 0

−2
√
3IN 0

⎞
⎟⎟⎠ and Bα−1/2

2 =

⎛
⎜⎜⎝
0 Bα−1/2

12

0 −IN

0
√
3IN

⎞
⎟⎟⎠ ,

B11 is defined in equation (22) and Bα−1/2
12 is a N × N diagonal matrix with entries

(∂x z∗
α−1/2)i

. The fact that B1 is independent from layer α (and exactly the same as in the
monolayer case) is crucial for what is following.
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Hence ∇α
ldnh Qα is approximated according to (28a)

B1Qα + Bα−1/2
2 Qα − Bα+1/2

2 Qα+1 + RQα+1 = Bα−1/2Qα − Bα+1/2
2 Qα+1 + RQα+1,

where

R =

⎛
⎜⎜⎝
0 0

0 0

0 2
√
3IN

⎞
⎟⎟⎠ and Qα =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

qα,1
...

qα,N

qα−1/2,1
...

qα−1/2,N

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

.

The last two terms account for interactions between layers: the model under investigation
does not reduce to a monolayer model in each layer. Hence System (29) is approximated by⎛

⎝ H/(L�t) B + R(
B + R

)T
0

⎞
⎠
(
X

Q

)
=
(
HX

∗
/(L�t) − 0̂

0̃

)
.

where

B =

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

B1/2 −B3/2
2 0

. . .
. . .

Bα−1/2 −Bα+1/2
2

. . .
. . .

0 BL−1/2

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

∈ M3N L,2N L(R),

R =

⎛
⎜⎜⎜⎜⎝

0 R 0
. . .

. . .

. . . R
0 0

⎞
⎟⎟⎟⎟⎠ ∈ M3N L,2N L(R),

X =

⎛
⎜⎜⎜⎜⎜⎜⎝

...

Uα

Wα

�α

...

⎞
⎟⎟⎟⎟⎟⎟⎠

, Uα =
⎛
⎜⎝

uα,1
...

uα,N

⎞
⎟⎠ , Q =

⎛
⎜⎜⎝

...

Qα

...

⎞
⎟⎟⎠ .

It is easy to verify that
(
B + R

)T
X = 0̃ is consistent with (28b). For the treatment of

boundary conditions which are incorporated in vectors 0̂ and 0̃, we refer to the monolayer
case (§ 16.3.2). As previously, the symmetry of the global matrix is due to the duality
relation (27).

From the discrete velocity-pressure problem, we deduce as previously a discrete pressure
problem which reads

(
B + R

)T H−1 (B + R
)
Q = 1

L�t

[(
B + R

)T
X

∗ − 0̃
]

− (B + R
)T H−1̂

0. (31)

Let us set
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• C = (
B + R

)T H−1 (B + R
) ∈ M2N L,2N L(R) which is blockwise tridiagonal, sym-

metric positive-definite;

• Cα−1/2 = (
Bα−1/2

)T H−1Bα−1/2 which has exactly the same structure as C in (24) with

B12 replaced by Bα−1/2
12 .

The blockwise components of C are then:

• C1,1 = C1/2;
• For α ∈ {2, . . . , L}:

Cα,α = Cα−1/2 +
(
R − Bα−1/2

2

)T
H−1

(
R − Bα−1/2

2

)T =
⎛
⎝ C11 Cα−1/2

12(
Cα−1/2
12

)T
2Cα−1/2

22

⎞
⎠

and

Cα−1,α = CT
α,α−1 = (

Bα−3/2)T H−1
(
R − Bα−1/2

2

)

=
⎛
⎝ 0 −6H−1 − BT

11H−1Bα−1/2
12

0 2H−1 −
(

Bα−3/2
12

)T
H−1Bα−1/2

12

⎞
⎠ .

(31) is a consistent discretisation of (30).

17.4 Iterative Scheme

To solve the 2N L ×2N L linear system (31), we apply an alternating direction-type method.
More precisely, it amounts to solving iteratively:

x-direction For each layer α, (30a) in qα knowing qα+1/2 which corresponds to a linear
system with matrix C11 given in (24) (the same for all layers which requires a single
factorisation for all iterates at each time step):

C11q p+1
α = 1

L�t

(
BT
11U

∗
α − 2

√
3�∗

α

)
− Cα−1/2

12 q p
α−1/2;

z-direction For each node xi , (30b-30c) in qα+1/2 knowing qα . It is a tridiagonal system
with matrix S(i) solved by means of the Thomas’ algorithm [64]. Matrix S(i) is a L × L
tridiagonal symmetric positive-definite matrix with

• S(i)
1,1 = 4 + (∂x z∗

1/2)
2
i
;

• For α ≥ 2, S(i)
α,α = 2

(
4 + (∂x z∗

α−1/2)
2
i

)
and S(i)

α,α−1 = S(i)
α−1,α = 2 − (∂x z∗

α−1/2)i
(∂x z∗

α−3/2)i
.

Indeed, we check that

〈S(i)x, x〉 = 2x21 + (2 + (∂x zL−1/2)
2
i

)
x2L

+
L−1∑
α=2

[
4x2α + 2(xα + xα−1)

2 +
(
(∂x z∗

α−1/2)i
xα − (∂x z∗

α−3/2)i
xα−1

)2] ≥ 0.
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This strategy is equivalent to solving the following system by means of a Gauss-Seidel
iterative procedure:

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

C11 0
. . . E

0 C11

S(1) 0

ET . . .

0 S(N )

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

where unknowns have been re-labelled as⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

q̂α=1
...

q̂α=L

q̌i=1
...

q̌i=N

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

, with q̂α =
⎛
⎜⎝

qα,1
...

qα,N

⎞
⎟⎠ and q̌i =

⎛
⎜⎝

q1/2,i
...

qL−1/2,i

⎞
⎟⎠ .

Remark 8 It must be underlined that this algorithm can be easily parallelised insofar as each
direction (x and z) involves a blockwise diagonal matrix.

18 Numerical Simulations

Let us recall that the stability condition is prescribed by the hyperbolic part of the splitting
strategy – see (19) with a CFL number to be specified.

The numerical schemes presented in this paper, namely the resolution of (23) for
L DN H2(L = 1) and the resolution of (31) for L DN H2(L), L ≥ 1, are assessed bymeans of
some classic test cases and compared to numerical results obtained with the DAE model (5)
and its multilayer counterpart described in [35].

It is a well-known fact that dispersive non-hydrostatic models usually require an extra
dissipative mechanism to properly treat breaking waves near the coast. Otherwise, artificial
overshooting may appear when the wave approaches the shore, see for instance [33].

A breaking criterion as the ones presented in [33] for non-hydrostatic pressure system
or in [30] for a two-layer non-hydrostatic pressure system can be easily adapted to the
formulations shown in this paper. Nevertheless, we intend here to do a fair comparison of
the models L DN H0 and L DN H2 by themselves, without any other extra treatment such
as breaking. Note that such a breaking criteria would be needed in some cases for very fine
meshes, in particular in Tests 18.3 and 18.5.

18.1 Convergence Test

Let us start by a convergence test for both models, L DN H0 and L DN H2, in order to assess
the numerical strategy and the code. To do so, we consider the propagation of a solitary wave
in a rectangular channel with constant topography, that is, a travelling wave that propagates
at constant speed, without change in its shape. Let us remark that the particular definition of
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Table 1 Test 18.1 – L1 errors with the L DN H0-soliton and numerical orders of accuracy

No. of cells h hu hw

L1 error Order L1 error Order L1 error Order

50 3.04e-03 0.00 1.81e-03 0.00 2.17e-03 0.00

100 9.26e-04 1.72 5.17e-04 1.81 5.97e-04 1.86

200 2.57e-04 1.85 1.39e-04 1.89 1.88e-04 1.67

400 6.96e-05 1.88 4.22e-05 1.72 8.44e-05 1.15

Table 2 Test 18.1 – L1 errors with the L DN H2-soliton and numerical orders of accuracy

No. of cells h hu hw

L1 Error Order L1 Error Order L1 Error Order

50 1.21e-02 0.00 1.72e-02 0.00 1.22e-02 0.00

100 4.51e-03 1.42 4.02e-03 2.10 3.28e-03 1.89

200 1.33e-03 1.76 1.12e-03 1.85 8.50e-04 1.95

400 3.80e-04 1.80 3.24e-04 1.79 2.39e-04 1.83

solitary waves depend on the particular model used, see for instance [61] and the references
therein for further details on this topic.

Let us consider here the one layer models (5) and (6). Following [15], solitary waves for
these models are given by

h(t, x) = H∗ + A sech2
(

1

H∗

√
Aγ

2(A + H∗)
(x − ct)

)
, u(t, x) = c

(
1 − H∗

h(t, x)

)
,

w(t, x) = − cA

h(t, x)

√
Aγ

2(A + H∗)
sech3

(
1

H∗

√
Aγ

2(A + H∗)
(x − ct)

)

sinh

(
1

H∗

√
Aγ

2(A + H∗)
(x − ct)

)

(32)
where A and H∗ are constant fixed values, c = √

g(A + H∗) and

• γ = 2 in the case of L DN H0,
• γ = 3/2 in the case of L DN H2.

Here we set H∗ = 1, A = 0.1, g = 1 and zb = 0.
The propagation of a solitarywave over a long distance is a standard assessment of stability

and conservative properties of numerical schemes for Boussinesq-type equations [58,59,65].
A solitary wave propagates at constant speed and without change of shape over a horizontal
bottom.

The domain is [−20, 20]. We perform the simulation with different numbers of volume
cells at time t = 0.2 with a second-order scheme. The results are compared to the reference
solution and the errors are shown in Tables 1 and 2. These results show the convergence
towards the reference solution at second-order.
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Table 3 Test 18.2 –
Well-balancing L1 errors for the
still water steady states with the
L DN H2(1) system

No. of cells η u w

50 2.27e-18 1.07e-17 2.62e-18

100 9.99e-18 3.28e-17 1.26e-17

200 7.77e-18 2.99e-17 1.49e-17

400 2.62e-17 4.89e-17 4.52e-17

Table 4 Test 18.2 –
Well-balancing L1 errors for the
still water steady states with the
L DN H2(4) system, and

u = 1

4

4∑
α=1

uα, w = 1

4

4∑
α=1

wα

No. of cells η u w

50 5.66e-18 6.50e-18 4.91e-18

100 6.66e-18 1.07e-17 8.98e-18

200 1.58e-17 1.26e-17 1.01e-17

400 2.84e-17 4.08e-17 3.25e-17

18.2 StillWater Steady-State

In this test we consider the same domain and boundary conditions as in the previous test.
The topography zb is given by

zb(x) = 0.9e−x2 − 1.

We consider the initial condition given by h0(x) = −zb(x), and the rest of the flow variables
are set to zero.

The exact solution is a steady-state with still water, coinciding at all times with the initial
condition. We have performed the numerical test for the L DN H2(L) system for L = 1, 4
with increasing number of cells. Tables 3 and 4 show the error observed at time T = 10,
with a C F L number set to 0.9. It clearly shows that the scheme is well-balanced since these
are all of the order of the machine precision.

18.3 SolitaryWave Propagation Over Reefs

A test case propagating a solitary wave over an idealised fringing reef assesses the ability
of the model to handle nonlinear dispersive waves, breaking waves and bore propagation.
The test configuration includes a fore reef, a flat reef, and an optional reef crest to represent
fringing reefs commonly found in a tropical environment. Figure 4 shows a sketch of the
laboratory experiments carried out at theO.H.HinsdaleWaveResearchLaboratory ofOregon
State University. See for instance [66] for more details. The 1D domain [0, 45] is discretised
with �x = 0.045 m.

A solitary wave of amplitude 0.5 m is placed at point x = 10 m. Finally C F L = 0.9 and
g = 9.81 m · s−2. Free outflow boundary conditions are imposed.

Figure 5 shows snapshots at different times, t
√

g/H∗ = t0 where H∗ = 1m. Comparisons
between experimental and simulated data allow to validate the numerical approach presented
in this paper. Results are shown for L DN H0(L = 1) and L DN H2(L = 1)models. Thewater
rushes over the flat reef without producing a pronounced bore-shape. The simulation also
captures the offshore component of the rarefaction falls, exposing the reef edge, below the
initial water level. The simulations match with experimental data and the L DN H2 provides
slightly better results.
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Fig. 4 Test 18.3 – sketch of the topography

Fig. 5 Test 18.3 – comparison between experimental data (red points) and numerical results (solid blue line
for L DN H0 and dashed pink line for L DN H2) at times t

√
g/H∗ = 0, 7.8, 10, 13, 17, 20.5 s (Color figure

online)

Fig. 6 Test 18.4 – sketch of the bathymetry

18.4 Wave Propagation Over a Submerged Bar

The Dingemans experiment [27] of plunging breaking periodic waves over a submerged bar
is considered. This case allows to study frequency dispersion characteristics and non-linear
interactions. As waves propagate over a submerged bar, multiple phenomena occur, like the
appearance of higher harmonics. The 1D domain [0, 30] is discretised with �x = 0.005 and
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Table 5 Test 18.4 – wave gauge
locations

Label 1 2 3 4 5 6 7 8

Location 10.5 12.5 13.5 14.5 15.7 17.3 19 21

the bathymetry is defined on Fig. 6. Locations of the measurement points are specified in
Table 5. The CFL number is set to CC F L = 0.9 and the gravity field to g = 9.81 m · s−2. We
run the numerical test from the “lake at rest” steady state as an initial condition. Boundary
conditions correspond to free outflow at x = 30 and a sinusoidal wave train for η generated
at x = 0. This is done as in [30] imposing in a relaxation zone:

η�(t) = A sin

(
2π

T
t

)
,

where A = 0.01 and T = 2.02 denote resp. amplitude and period.
This test produces, up to the front slope, waves with wavenumbers k ≈ 0.63/H∗ and

k ≈ 1.58H∗ respectively, where H∗ = 0.4 is the typical depth. Fig. 7 shows numerical
results of time series of the free surface for Model L DN H0(L), for L ∈ {1, 2, 4}, while
Fig. 8 concerns L DN H2(L) and Fig. 9 shows comparisons between L DN H0(L = 4) and
L DN H2(L = 4).

Good agreements with experimental data are observed for all models up to Gauge #4.
Beyond the bar, higher harmonics are released which explains discrepancies. We recover
observations from the literature, such as [51] where σ -coordinates are used, or [30] where
an enhanced two-layer version of the non-hydrostatic pressure system L DN H0 is used. The
results in [23] with a three-parameter Green-Naghdi model optimised for uneven bottoms,
show the same level of agreement. Here, we would like to stress the ability of the pro-
posed models to deal with a wide range of dispersive waves. The main difference between
L DN H0(4) and L DN H2(4), as pictured on Fig. 9, can be seen for gauges #6 to #8 where
the L DN H2 model is more accurate.

18.5 Shoaling of a SolitaryWave on a Plane Beach

We finally consider the shoaling of a solitary wave on a beach with a constant slope (1 : 30)
as described by Guibourg in [42] and then investigated in [11,28].

A sketch of the geometry is described on Fig. 10. The initial condition is a solitary wave
at location x = 10 with amplitude A = 0.298, as described in [24,29]. The computational
domain � = [0, 27.5] is divided into cells of length �x = 0.01. Free-outflow boundary
conditions are considered and the CFL number is set to CC F L = 0.9.

WecompareModels L DN H0(L) and L DN H2(L) for L ∈ {1, 2, 4}. Some temporal series
of the free-surface elevation are measured at various locations (see Table 6) and compared
with the corresponding numerical results.

Results are shown on Figs. 11. Numerical outputs for A = 0.289 predict the shoaling
phenomenon during the wave run-up satisfactorily. The output clearly shows better perfor-
mance for Model L DN H2, which is expected according to the linear dispersion relation of
the continuum models.
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Fig. 7 Test 18.4 – comparison of experiment data (red points) and simulated ones with the model L DN H0
setting 1 layer (green), 2 layers (blue) and 4 layers (black) (Color figure online)
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Fig. 8 Test 18.4 – comparison of experiment data (red points) and simulated ones with the model L DN H2
setting 1 layer (green), 2 layers (blue) and 4 layers (black) (Color figure online)
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Fig. 9 Test 18.4 – comparison of experiment data (red points) and simulated ones with the model L DN H0
(blue) and L DN H2 (black) setting 4 layers (Color figure online)
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Fig. 10 Test 18.5 – sketch of the bathymetry used for the shoaling of a solitary wave test problem

Table 6 Test 18.5 – position of
the wave probes

A x1 x2 x3 x4 x5

0.289 23.520 23.735 23.990 24.210 24.448

19 Conclusion

This paper deals with some numerical approaches to simulateModels L DN H0 and L DN H2

introduced in [35]. The main objective is to compare their accuracy when applied to differ-
ent standard test case scenarios. The L DN H2 model presented in [35] may be seen as a
multilayer extension of the Serre – Green-Naghdi equations. This model was derived from
Euler equations assuming linear and quadratic vertical profiles for the vertical velocity and
pressure. The L DN H0 model presented in [35] differs from L DN H2 due to the assumption
of a linear vertical profile for pressure. One of the most attractive properties of the models
relies on the increasing accuracy of the linear dispersion relation as the number of layers
increases, whereas the model L DN H2 shows better accuracy than L DN H0 for the same
number of layers.

The L DN H0 model is solved by using a projection technique similar to the one introduced
in [30]. The extension of this technique to L DN H2 is not straightforward. We proposed a
numerical method based on this projection technique to approximate the solution of the
L DN H2 model.

The complexity of the model L DN H2 requires the design of an efficient strategy to solve
it numerically for an increasing number of layers. To this aim, we have exploited here a
duality relation at the continuous level. This allows to design an algorithm relying on an
iterative process that solves a one-layer case in each iteration.

In particular, the algorithm may be decomposed into two different problems: The first one
corresponds to a discrete parabolic problem per layer and the second to a tridiagonal linear
system at each point of the horizontal discretisation that couples each layer. Moreover, (i) the
matrix of the linear system of the parabolic problem per layer is the same for all layers, and
(ii) each tridiagonal linear system at each point of the horizontal discretisation is independent.
Then, we can observe that (i) since we have the same matrix for all layers, we may consider,
for example, an LU-factorisation to reduce the computational time in all layers and (ii) this
implies that, although this is not done in the paper, the proposed technique can be easily
parallelised, especially when the number of layers increases.

Moreover, the final numerical scheme proposed here is also high-order, well-balanced for
the water at rest solution, and positive-preserving for the total water depth. That results in
an efficient and robust numerical scheme, even in the presence of wet/dry transitions. It is
worth mentioning that, while an extensive literature is dedicated to the numerical resolution
of shallow water flows such as the Depth-Averaged Euler equations or the Serre – Green-
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(a)

(b)

Fig. 11 Test 18.5 with A = 0.289 – blue lines indicate the numerical solution with models L DN H0 a and
L DN H2 b for different layers; red points represent the experimental measurements at the probe positions

Naghdi equations, this is the first attempt, up to our knowledge, to design a robust and efficient
numerical strategy for the multilayer extension of the SGN equations.

The proposed numerical scheme has been carefully validated, showing the second order
of accuracy and comparing it with available experimental data. The obtained results exhibit
an excellent fitting with the experiments and show that the proposed strategy is well-suited
for most coastal processes: wave propagation, shoaling of the waves, run-up of waves onto
a beach, higher dispersive harmonic waves, among others.

In the numerical tests presented in the paper, we can also see that for a fixed number of
layers, the L DN H2 is in many situations more accurate than L DN H0. This result shows that
the L DN H2 is of interest since the accuracy of both models has been compared by using a
generalisation of classic projection techniques.

One should recall that L DN H2 has twice more pressure unknowns than L DN H0. There-
fore, if we apply a projection method to approximate the solution of L DN H2, it results in a
more expensive algorithm, from the computational point of view, than for L DN H0. Hence,
a fair comparison of both models from the computational point of view is beyond the scope
of this paper.

Nevertheless, it is worth mentioning that this paper was aimed to analyse and propose a
projection technique as a starting point for designing efficient and robust numerical methods
of high-order for multilayer non-hydrostatic systems. As further research, it will be interest-
ing to investigate the development of other numerical strategies for the L DN H2 model and
compare them with the one proposed here. For example, it may be of interest to consider
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relaxation techniques or rapid numerical methods and pseudo-compressibility approxima-
tions, as the ones proposed for one-layer dispersive shallow models in [31], [34] and [9],
respectively.
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