404 research outputs found

    Indexing, browsing and searching of digital video

    Get PDF
    Video is a communications medium that normally brings together moving pictures with a synchronised audio track into a discrete piece or pieces of information. The size of a “piece ” of video can variously be referred to as a frame, a shot, a scene, a clip, a programme or an episode, and these are distinguished by their lengths and by their composition. We shall return to the definition of each of these in section 4 this chapter. In modern society, video is ver

    Summative Stereoscopic Image Compression using Arithmetic Coding

    Get PDF
    Image compression targets at plummeting the amount of bits required for image representation for save storage space and speed up the transmission over network. The reduction of size helps to store more images in the disk and take less transfer time in the data network. Stereoscopic image refers to a three dimensional (3D) image that is perceived by the human brain as the transformation of two images that is being sent to the left and right human eyes with distinct phases. However, storing of these images takes twice space than a single image and hence the motivation for this novel approach called Summative Stereoscopic Image Compression using Arithmetic Coding (S2ICAC) where the difference and average of these stereo pair images are calculated, quantized in the case of lossy approach and unquantized in the case of lossless approach, and arithmetic coding is applied. The experimental result analysis indicates that the proposed method achieves high compression ratio and high PSNR value. The proposed method is also compared with JPEG 2000 Position Based Coding Scheme(JPEG 2000 PBCS) and Stereoscopic Image Compression using Huffman Coding (SICHC). From the experimental analysis, it is observed that S2ICAC outperforms JPEG 2000 PBCS as well as SICHC

    Signal processing for improved MPEG-based communication systems

    Get PDF

    Algorithms for compression of high dynamic range images and video

    Get PDF
    The recent advances in sensor and display technologies have brought upon the High Dynamic Range (HDR) imaging capability. The modern multiple exposure HDR sensors can achieve the dynamic range of 100-120 dB and LED and OLED display devices have contrast ratios of 10^5:1 to 10^6:1. Despite the above advances in technology the image/video compression algorithms and associated hardware are yet based on Standard Dynamic Range (SDR) technology, i.e. they operate within an effective dynamic range of up to 70 dB for 8 bit gamma corrected images. Further the existing infrastructure for content distribution is also designed for SDR, which creates interoperability problems with true HDR capture and display equipment. The current solutions for the above problem include tone mapping the HDR content to fit SDR. However this approach leads to image quality associated problems, when strong dynamic range compression is applied. Even though some HDR-only solutions have been proposed in literature, they are not interoperable with current SDR infrastructure and are thus typically used in closed systems. Given the above observations a research gap was identified in the need for efficient algorithms for the compression of still images and video, which are capable of storing full dynamic range and colour gamut of HDR images and at the same time backward compatible with existing SDR infrastructure. To improve the usability of SDR content it is vital that any such algorithms should accommodate different tone mapping operators, including those that are spatially non-uniform. In the course of the research presented in this thesis a novel two layer CODEC architecture is introduced for both HDR image and video coding. Further a universal and computationally efficient approximation of the tone mapping operator is developed and presented. It is shown that the use of perceptually uniform colourspaces for internal representation of pixel data enables improved compression efficiency of the algorithms. Further proposed novel approaches to the compression of metadata for the tone mapping operator is shown to improve compression performance for low bitrate video content. Multiple compression algorithms are designed, implemented and compared and quality-complexity trade-offs are identified. Finally practical aspects of implementing the developed algorithms are explored by automating the design space exploration flow and integrating the high level systems design framework with domain specific tools for synthesis and simulation of multiprocessor systems. The directions for further work are also presented

    Algorithms & implementation of advanced video coding standards

    Get PDF
    Advanced video coding standards have become widely deployed coding techniques used in numerous products, such as broadcast, video conference, mobile television and blu-ray disc, etc. New compression techniques are gradually included in video coding standards so that a 50% compression rate reduction is achievable every five years. However, the trend also has brought many problems, such as, dramatically increased computational complexity, co-existing multiple standards and gradually increased development time. To solve the above problems, this thesis intends to investigate efficient algorithms for the latest video coding standard, H.264/AVC. Two aspects of H.264/AVC standard are inspected in this thesis: (1) Speeding up intra4x4 prediction with parallel architecture. (2) Applying an efficient rate control algorithm based on deviation measure to intra frame. Another aim of this thesis is to work on low-complexity algorithms for MPEG-2 to H.264/AVC transcoder. Three main mapping algorithms and a computational complexity reduction algorithm are focused by this thesis: motion vector mapping, block mapping, field-frame mapping and efficient modes ranking algorithms. Finally, a new video coding framework methodology to reduce development time is examined. This thesis explores the implementation of MPEG-4 simple profile with the RVC framework. A key technique of automatically generating variable length decoder table is solved in this thesis. Moreover, another important video coding standard, DV/DVCPRO, is further modeled by RVC framework. Consequently, besides the available MPEG-4 simple profile and China audio/video standard, a new member is therefore added into the RVC framework family. A part of the research work presented in this thesis is targeted algorithms and implementation of video coding standards. In the wide topic, three main problems are investigated. The results show that the methodologies presented in this thesis are efficient and encourage

    Enhancing a Neurosurgical Imaging System with a PC-based Video Processing Solution

    Get PDF
    This work presents a PC-based prototype video processing application developed to be used with a specific neurosurgical imaging device, the OPMI® PenteroTM operating microscope, in the Department of Neurosurgery of Helsinki University Central Hospital at Töölö, Helsinki. The motivation for implementing the software was the lack of some clinically important features in the imaging system provided by the microscope. The imaging system is used as an online diagnostic aid during surgery. The microscope has two internal video cameras; one for regular white light imaging and one for near-infrared fluorescence imaging, used for indocyanine green videoangiography. The footage of the microscope’s current imaging mode is accessed via the composite auxiliary output of the device. The microscope also has an external high resolution white light video camera, accessed via a composite output of a separate video hub. The PC was chosen as the video processing platform for its unparalleled combination of prototyping and high-throughput video processing capabilities. A thorough analysis of the platform and efficient video processing methods was conducted in the thesis and the results were used in the design of the imaging station. The features found feasible during the project were incorporated into a video processing application running on a GNU/Linux distribution Ubuntu. The clinical usefulness of the implemented features was ensured beforehand by consulting the neurosurgeons using the original system. The most significant shortcomings of the original imaging system were mended in this work. The key features of the developed application include: live streaming, simultaneous streaming and recording, and playing back of upto two video streams. The playback mode provides full media player controls, with a frame-by-frame precision rewinding, in an intuitive and responsive interface. A single view and a side-by-side comparison mode are provided for the streams. The former gives more detail, while the latter can be used, for example, for before-after and anatomic-angiographic comparisons.fi=Opinnäytetyö kokotekstinä PDF-muodossa.|en=Thesis fulltext in PDF format.|sv=Lärdomsprov tillgängligt som fulltext i PDF-format

    Development of Novel Image Compression Algorithms for Portable Multimedia Applications

    Get PDF
    Portable multimedia devices such as digital camera, mobile d evices, personal digtal assistants (PDAs), etc. have limited memory, battery life and processing power. Real time processing and transmission using these devices requires image compression algorithms that can compress efficiently with reduced complexity. Due to limited resources, it is not always possible to implement the best algorithms inside these devices. In uncompressed form, both raw and image data occupy an unreasonably large space. However, both raw and image data have a significant amount of statistical and visual redundancy. Consequently, the used storage space can be efficiently reduced by compression. In this thesis, some novel low complexity and embedded image compression algorithms are developed especially suitable for low bit rate image compression using these devices. Despite the rapid progress in the Internet and multimedia technology, demand for data storage and data transmission bandwidth continues to outstrip the capabil- ities of available technology. The browsing of images over In ternet from the image data sets using these devices requires fast encoding and decodin g speed with better rate-distortion performance. With progressive picture build up of the wavelet based coded images, the recent multimedia applications demand goo d quality images at the earlier stages of transmission. This is particularly important if the image is browsed over wireless lines where limited channel capacity, storage and computation are the deciding parameters. Unfortunately, the performance of JPEG codec degrades at low bit rates because of underlying block based DCT transforms. Altho ugh wavelet based codecs provide substantial improvements in progressive picture quality at lower bit rates, these coders do not fully exploit the coding performance at lower bit rates. It is evident from the statistics of transformed images that the number of significant coefficients having magnitude higher than earlier thresholds are very few. These wavelet based codecs code zero to each insignificant subband as it moves from coarsest to finest subbands. It is also demonstrated that there could be six to sev en bit plane passes where wavelet coders encode many zeros as many subbands are likely to be insignificant with respect to early thresholds. Bits indicating insignificance of a coefficient or subband are required, but they don’t code information that reduces distortion of the reconstructed image. This leads to reduction of zero distortion for an increase in non zero bit-rate. Another problem associated with wavelet based coders such as Set partitioning in hierarchical trees (SPIHT), Set partitioning embedded block (SPECK), Wavelet block-tree coding (WBTC) is because of the use of auxiliary lists. The size of list data structures increase exponentially as more and more eleme nts are added, removed or moved in each bitplane pass. This increases the dynamic memory requirement of the codec, which is a less efficient feature for hardware implementations. Later, many listless variants of SPIHT and SPECK, e.g. No list SPIHT (NLS) and Listless SPECK (LSK) respectively are developed. However, these algorithms have similar rate distortion performances, like the list based coders. An improved LSK (ILSK)algorithm proposed in this dissertation that improves the low b it rate performance of LSK by encoding much lesser number of symbols (i.e. zeros) to several insignificant subbands. Further, the ILSK is combined with a block based transform known as discrete Tchebichef transform (DTT). The proposed new coder isnamed as Hierar-chical listless DTT (HLDTT). DTT is chosen over DCT because of it’s similar energy compaction property like discrete cosine transform (DCT). It is demonstrated that the decoded image quality using HLDTT has better visual performance (i.e., Mean Structural Similarity) than the images decoded using DCT based embedded coders in most of the bit rates. The ILSK algorithm is also combined with Lift based wavelet tra nsform to show the superiority over JPEG2000 at lower rates in terms of peak signal-to-noise ratio (PSNR). A full-scalable and random access decodable listless algorithm is also developed which is based on lift based ILSK. The proposed algorithm named as scalable listless embedded block partitioning (S-LEBP) generates bit stream that offer increasing signal-to-noise ratio and spatial resolution. These are very useful features for transmission of images in a heterogeneous network that optimally service each user according to available bandwidth and computing needs. Random access decoding is a very useful feature for extracting/manipulating certain ar ea of an image with minimal decoding work. The idea used in ILSK is also extended to encode and decode color images. The proposed algorithm for coding color images is named as Color listless embedded block partitioning (CLEBP) algorithm. The coding efficiency of CLEBP is compared with Color SPIHT (CSPIHT) and color variant of WBTC algorithm. From the simulation results, it is shown that CLEBP exhibits a significant PSNR performance improvement over the later two algorithms on various types of images. Although many modifications to NLS and LSK have been made, the listless modification to WBTC algorithm has not been reported in the literature. Therefore,a listless variant of WBTC (named as LBTC) algorithm is proposed. LBTC not only reduces the memory requirement by 88-89% but also increases the encoding and decoding speed, while preserving the rate-distortion perform ance at the same time. Further, the combination of DCT with LBTC (named as DCT LBT) and DTT with LBTC (named as Hierarchical listless DTT, HLBTDTT) are compared with some state-of-the-art DCT based embedded coders. It is also shown that the proposed DCT-LBT and HLBT-DTT show significant PSNR improvements over almost all the embedded coders in most of the bit rates. In some multimedia applications e.g., digital camera, camco rders etc., the images always need to have a fixed pre-determined high quality. The extra effort required for quality scalability is wasted. Therefore, non-embedded algo rithms are best suited for these applications. The proposed algorithms can be made non-embedded by encoding a fixed set of bit planes at a time. Instead, a sparse orthogonal transform matrix is proposed, which can be integrated in a JEPG baseline coder. The proposed matrix promises a substantial reduction in hardware complexity with amarginal loss of image quality on a considerable range of bit rates than block based DCT or Integer DCT

    Semi-automatic video object segmentation for multimedia applications

    Get PDF
    A semi-automatic video object segmentation tool is presented for segmenting both still pictures and image sequences. The approach comprises both automatic segmentation algorithms and manual user interaction. The still image segmentation component is comprised of a conventional spatial segmentation algorithm (Recursive Shortest Spanning Tree (RSST)), a hierarchical segmentation representation method (Binary Partition Tree (BPT)), and user interaction. An initial segmentation partition of homogeneous regions is created using RSST. The BPT technique is then used to merge these regions and hierarchically represent the segmentation in a binary tree. The semantic objects are then manually built by selectively clicking on image regions. A video object-tracking component enables image sequence segmentation, and this subsystem is based on motion estimation, spatial segmentation, object projection, region classification, and user interaction. The motion between the previous frame and the current frame is estimated, and the previous object is then projected onto the current partition. A region classification technique is used to determine which regions in the current partition belong to the projected object. User interaction is allowed for object re-initialisation when the segmentation results become inaccurate. The combination of all these components enables offline video sequence segmentation. The results presented on standard test sequences illustrate the potential use of this system for object-based coding and representation of multimedia

    Survey of Transportation of Adaptive Multimedia Streaming service in Internet

    Full text link
    [DE] World Wide Web is the greatest boon towards the technological advancement of modern era. Using the benefits of Internet globally, anywhere and anytime, users can avail the benefits of accessing live and on demand video services. The streaming media systems such as YouTube, Netflix, and Apple Music are reining the multimedia world with frequent popularity among users. A key concern of quality perceived for video streaming applications over Internet is the Quality of Experience (QoE) that users go through. Due to changing network conditions, bit rate and initial delay and the multimedia file freezes or provide poor video quality to the end users, researchers across industry and academia are explored HTTP Adaptive Streaming (HAS), which split the video content into multiple segments and offer the clients at varying qualities. The video player at the client side plays a vital role in buffer management and choosing the appropriate bit rate for each such segment of video to be transmitted. A higher bit rate transmitted video pauses in between whereas, a lower bit rate video lacks in quality, requiring a tradeoff between them. The need of the hour was to adaptively varying the bit rate and video quality to match the transmission media conditions. Further, The main aim of this paper is to give an overview on the state of the art HAS techniques across multimedia and networking domains. A detailed survey was conducted to analyze challenges and solutions in adaptive streaming algorithms, QoE, network protocols, buffering and etc. It also focuses on various challenges on QoE influence factors in a fluctuating network condition, which are often ignored in present HAS methodologies. Furthermore, this survey will enable network and multimedia researchers a fair amount of understanding about the latest happenings of adaptive streaming and the necessary improvements that can be incorporated in future developments.Abdullah, MTA.; Lloret, J.; Canovas Solbes, A.; García-García, L. (2017). Survey of Transportation of Adaptive Multimedia Streaming service in Internet. Network Protocols and Algorithms. 9(1-2):85-125. doi:10.5296/npa.v9i1-2.12412S8512591-
    corecore