
Development of Novel Image Compression
Algorithms for Portable Multimedia Applications

Ranjan Kumar Senapati
[Roll No. 508EC107]

Department of Electronics and Communication Engineering
National Institute of Technology
Rourkela-769 008, Odisha, India
December 2012

Development of Novel Image Compression
Algorithms for Portable Multimedia

Applications

Thesis submitted in partial fulfillment

of the requirements for the degree of

Doctor of Philosophy

in

Electronics and Communication Engineering

by

Ranjan Kumar Senapati
(Roll: 508EC107)

under the guidance of

Dr. Umesh Chandra Pati

Prof. Kamala Kanta Mahapatra

Department of Electronics and Communiation Engineering
National Institute of Technology Rourkela

Rourkela-769 008, Odisha, India

Dedicated

to

my family

Department of Electronics and Communication Engg.

National Institute of Technology Rourkela

Rourkela-769 008, Odisha, India.

September 26, 2013

Certificate

This is to certify that the thesis titled Development of novel image compres-

sion algorithms for portable multimedia applications by Ranjan Kumar

Senapati is a record of an original research work carried out under our supervision

and guidance in partial fulfillment of the requirements for the award of the degree of

Doctor of Philosophy in Electronics and Communication Engineering during

the session 2011-2012. We believe that the thesis fulfills part of the requirements for

the award of degree of Doctor of Philosophy. The results embodied in the thesis have

not been submitted for award of any degree.

Dr. Umesh C. Pati Prof. Kamala K. Mahapatra

Associate Professor Professor

Dept. of Electronics & Comm. Engg. Dept. of Electronics & Comm. Engg.

National Institute of Technology, Rourkela National Institute of Technology, Rourkela

Odisha, India - 769 008 Odisha, India - 769 008

Acknowledgement

“The will of God will never take you where Grace of God will not protect you.”

Thank you God for showing me the path. . .

I owe deep gratitude to the ones who have contributed greatly in completion of this

thesis.

Foremost, I would like to express my sincere gratitude to my supervisors Dr.

Umesh Chandra Pati and Prof. Kamala Kanta Mahapatra for providing me with

a platform to work on challenging and mature area of Image Compression. Their

profound insights and attention to details have been true inspirations to my research.

I am very much indebted to Prof. Sukadev Meher, Prof. Sarat Kumar Patra,

Prof. Deviprasad Priyabrata Acharya, Prof. Banshidhar Majhi and Prof. K. Barada

Mohanty for providing insightful comments at different stages of thesis that were

indeed thought provoking.

My special thanks go to Prof. Upendra Kumar Sahoo and Prof. Ajit Kumar Sahoo

for contributing towards enhancing the quality of the work in shaping this thesis.

I would like to thank Karuppanan, Dandpat sir, Bhasker, Ayaskanta sir, Aditya,

Madhusmita, Nataraj, Deepak for their encouragement and understanding. Their

help can never be penned with words. I acknowledge all staff, research scholars and

juniors of ECE department, NIT Rourkela for helping me.

I specially thank the management and principal of GMR Institute of Technology-

Rajam for granting study leave during my Ph.D program.

Most importantly, none of this would have been possible without the love and

patience of my family. My parents, Sri Purandara Senapati and Smt. Kunti lata

Senapati, my wife Subhalaxmi and my little son Pradnesh to whom this dissertation

is dedicated to, have been a constant source of love, concern, support and strength

all these years. I would like to express my heartfelt gratitude to them.

Ranjan Kumar Senapati

Abstract

Portable multimedia devices such as digital camera, mobile devices, personal digi-

tal assistants (PDAs), etc. have limited memory, battery life and processing power.

Real time processing and transmission using these devices requires image compres-

sion algorithms that can compress efficiently with reduced complexity. Due to limited

resources, it is not always possible to implement the best algorithms inside these de-

vices. In uncompressed form, both raw and image data occupy an unreasonably large

space. However, both raw and image data have a significant amount of statistical and

visual redundancy. Consequently, the used storage space can be efficiently reduced by

compression. In this thesis, some novel low complexity and embedded image compres-

sion algorithms are developed especially suitable for low bit rate image compression

using these devices.

Despite the rapid progress in the Internet and multimedia technology, demand

for data storage and data transmission bandwidth continues to outstrip the capabil-

ities of available technology. The browsing of images over Internet from the image

data sets using these devices requires fast encoding and decoding speed with better

rate-distortion performance. With progressive picture build-up of the wavelet based

coded images, the recent multimedia applications demand good quality images at the

earlier stages of transmission. This is particularly important if the image is browsed

over wireless lines where limited channel capacity, storage and computation are the

deciding parameters. Unfortunately, the performance of JPEG codec degrades at low

bit rates because of underlying block based DCT transforms. Although wavelet based

codecs provide substantial improvements in progressive picture quality at lower bit

rates, these coders do not fully exploit the coding performance at lower bit rates. It is

evident from the statistics of transformed images that the number of significant coef-

ficients having magnitude higher than earlier thresholds are very few. These wavelet

based codecs code zero to each insignificant subband as it moves from coarsest to

finest subbands. It is also demonstrated that there could be six to seven bit plane

passes where wavelet coders encode many zeros as many subbands are likely to be

insignificant with respect to early thresholds. Bits indicating insignificance of a coeffi-

cient or subband are required, but they don’t code information that reduces distortion

of the reconstructed image. This leads to reduction of zero distortion for an increase

in non zero bit-rate.

Another problem associated with wavelet based coders such as Set partitioning

in hierarchical trees (SPIHT), Set partitioning embedded block (SPECK), Wavelet

block-tree coding (WBTC) is because of the use of auxiliary lists. The size of list

data structures increase exponentially as more and more elements are added, removed

or moved in each bitplane pass. This increases the dynamic memory requirement

of the codec, which is a less efficient feature for hardware implementations. Later,

many listless variants of SPIHT and SPECK, e.g. No list SPIHT (NLS) and Listless

SPECK (LSK) respectively are developed. However, these algorithms have similar

rate distortion performances, like the list based coders. An improved LSK (ILSK)

algorithm proposed in this dissertation that improves the low bit rate performance of

LSK by encoding much lesser number of symbols (i.e. zeros) to several insignificant

subbands. Further, the ILSK is combined with a block based transform known as

discrete Tchebichef transform (DTT). The proposed new coder is named as Hierar-

chical listless DTT (HLDTT). DTT is chosen over DCT because of it’s similar energy

compaction property like discrete cosine transform (DCT). It is demonstrated that

the decoded image quality using HLDTT has better visual performance (i.e., Mean

Structural Similarity) than the images decoded using DCT based embedded coders

in most of the bit rates.

The ILSK algorithm is also combined with Lift based wavelet transform to show

the superiority over JPEG2000 at lower rates in terms of peak signal-to-noise ratio

(PSNR). A full-scalable and random access decodable listless algorithm is also devel-

oped which is based on lift based ILSK. The proposed algorithm named as scalable

listless embedded block partitioning (S-LEBP) generates bit stream that offer in-

creasing signal-to-noise ratio and spatial resolution. These are very useful features for

transmission of images in a heterogeneous network that optimally service each user

according to available bandwidth and computing needs. Random access decoding is a

very useful feature for extracting/manipulating certain area of an image with minimal

decoding work. The idea used in ILSK is also extended to encode and decode color

images. The proposed algorithm for coding color images is named as Color listless

embedded block partitioning (CLEBP) algorithm. The coding efficiency of CLEBP

is compared with Color SPIHT (CSPIHT) and color variant of WBTC algorithm.

From the simulation results, it is shown that CLEBP exhibits a significant PSNR

performance improvement over the later two algorithms on various types of images.

Although many modifications to NLS and LSK have been made, the listless mod-

ification to WBTC algorithm has not been reported in the literature. Therefore,

a listless variant of WBTC (named as LBTC) algorithm is proposed. LBTC not

only reduces the memory requirement by 88-89% but also increases the encoding and

decoding speed, while preserving the rate-distortion performance at the same time.

Further, the combination of DCT with LBTC (named as DCT LBT) and DTT with

LBTC (named as Hierarchical listless DTT, HLBT DTT) are compared with some

state-of-the-art DCT based embedded coders. It is also shown that the proposed

DCT LBT and HLBT DTT show significant PSNR improvements over almost all the

embedded coders in most of the bit rates.

In some multimedia applications e.g., digital camera, camcorders etc., the images

always need to have a fixed pre-determined high quality. The extra effort required for

quality scalability is wasted. Therefore, non-embedded algorithms are best suited for

these applications. The proposed algorithms can be made non-embedded by encoding

a fixed set of bit planes at a time. Instead, a sparse orthogonal transform matrix is

proposed, which can be integrated in a JEPG baseline coder. The proposed matrix

promises a substantial reduction in hardware complexity with a marginal loss of image

quality on a considerable range of bit rates than block based DCT or Integer DCT.

Contents

Certificate iii

Acknowledgement iv

List of Figures xii

List of Tables xvi

List of Abbreviations xix

1 Introduction 1

1.1 Representation of Digital Images . 1

1.1.1 Need of Image Compression 2

1.2 Image Compression Fundamentals . 2

1.2.1 Measuring Image Information 4

1.2.2 Fidelity Criteria . 5

1.2.3 Image Compression Model . 6

1.2.4 JPEG Baseline Image Compression 7

1.2.5 JPEG2000 Image Coding Standard 10

1.2.6 Embedded Image Compression 11

1.3 Background and Scope . 12

1.4 Motivation . 16

1.5 Objective . 17

1.6 Organization of the Dissertation . 18

1.7 Conclusions . 20

2 Compression Performance Assessment of Discrete Tchebichef Trans-
form 21

2.1 Introduction . 22

2.2 Discrete Tchebichef Transform . 23

2.3 Similar Properties between DTT and DCT 26

2.4 Application of DTT on JPEG baseline Standard 29

2.4.1 Simulation Results . 30

viii

2.4.1.1 Coding Performance for Grayscale Images 30

2.4.1.2 Coding Performance for Color Images 32

2.5 Application of DTT on SPIHT Embedded Coder 41

2.5.1 The Proposed DTT SPIHT Embedded Coder 41

2.5.1.1 Rearrangement Algorithm of Transformed Coefficients 41

2.5.1.2 Human Visual System 42

2.5.1.3 SPIHT Algorithm 43

2.5.2 Simulation Results and Analysis 43

2.6 Development of 4× 4 Zigzag Pruning DTT Algorithm 46

2.6.1 Proposed Zigzag Prune 4× 4 DTT Algorithm 47

2.6.2 Complexity Analysis . 48

2.6.3 Hardware Utilization . 49

2.6.4 Results and Comparisons . 50

2.7 Conclusions . 51

3 Low Complexity Embedded Image Compression Algorithm Using
Hierarchical Listless DTT 53

3.1 Introduction . 53

3.2 The Proposed HLDTT Embedded Coder 55

3.2.1 Algorithm for Rearrangement of Transformed Coefficients . . . 56

3.2.2 Improved LSK Algorithm . 56

3.2.3 The Pseudo code of ILSK Algorithm 59

3.2.3.1 Description of Functions and Parameters used in Pseu-

docode . 60

3.2.4 Region of Interest Retrievability 62

3.2.4.1 Rate-Distortion optimization 65

3.2.4.2 Strengths of the proposed method compared to Maxshift

method in JPEG2000 69

3.2.5 Memory Requirement . 70

3.2.5.1 Dynamic Memory Comparison 71

3.2.6 Complexity Analysis . 73

3.3 Comparison of DTT with ICT, DCT, IWT, Filter based DWT and Lift

based DWT . 74

3.4 Simulation Results and Analysis . 77

3.4.1 Coding Performance . 77

3.4.2 Statistical Analysis . 86

3.4.3 Computational Complexity . 93

3.4.4 Effect of Block Size . 94

3.5 Conclusions . 95

4 Reduced Memory Listless Scalable Embedded Image Compression
Algorithms 97

4.1 Introduction . 97

4.2 Listless Embedded Block Partitioning Algorithm for Gray Scale Images 99

4.2.1 Comparison with LSK and NLS Algorithms 99

4.2.2 Memory Allocation . 99

4.2.2.1 Dynamic Memory Comparison 100

4.3 Listless Embedded Block Partitioning Algorithm for Color Images . . 102

4.3.1 Pseudocode of CLEBP Algorithm 104

4.3.2 Complexity Analysis . 105

4.4 Simulation Results and Analysis . 106

4.4.1 Coding Performance . 107

4.4.1.1 Coding Performance for Gray Scale Images 108

4.4.1.2 Coding Performance for Color Images 110

4.4.1.3 Coding Performances Between Gray scale and Color

Images . 111

4.4.1.4 Progressive Transmission and Scalability Efficiency . 115

4.4.1.5 Region of interest and Random access decoding . . . 118

4.4.2 Effect of Block Size . 120

4.4.2.1 Impact of Coding Eficiency on Varying Block Sizes . 120

4.4.2.2 Impact of Encoding and Decoding Times on Varying

Block Sizes . 123

4.4.3 Computational Complexity . 124

4.5 Conclusions . 124

5 Listless Block-Tree Set Partitioning Algorithm for Very Low Bit
Rate Embedded Image Compression 126

5.1 Introduction . 126

5.2 The Proposed LBTC Algorithm . 128

5.2.1 Initialization . 130

5.2.2 The Pseudo-code of LBTC(2× 2) Encoder Algorithm 132

5.3 The Proposed DCT LBT Embedded Encoder 133

5.3.1 Relation Between Transformed Coefficients 134

5.4 The proposed HLBT DTT Embedded Coder 135

5.4.1 Coefficient Scanning Order . 135

5.5 Memory Allocation . 136

5.5.1 Dynamic Memory Requirement Comparison 137

5.6 Experimental Results and Performance Comparison 137

5.6.1 Coding Efficiency of LBTC Embedded Wavelet Coder 137

5.6.2 Coding Efficiency of DCT LBT Embedded Coder 140

5.6.3 Coding Efficiency of HLBT DTT Embedded Coder 145

5.6.4 Computational Complexity . 151

5.7 Conclusions . 153

6 A Low Complexity and Efficient Sparse 8× 8 Orthogonal Transform
Matrix for Image Compression 154

6.1 Introduction . 154

6.2 Signed Discrete Cosine Transform . 155

6.3 Proposed 8× 8 Transform Matrix . 157

6.4 Distributed Arithmetic based Algorithm for Fast Computation 158

6.5 Application to JPEG Color Image Compression 160

6.5.1 Chroma Subsampling and Color Space Conversion 160

6.5.2 Merge and Quantize . 161

6.6 FPGA Synthesis Results of the Proposed Transform Matrix 161

6.7 Matlab Simulation Results and Discussion 163

6.8 Conclusion . 165

7 Conclusions 169

7.1 Summary of Work Done . 169

7.2 Contributions . 171

7.3 Future Work . 172

References 173

Dissemination 181

Appendix A 185

List of Figures

1.1 Alternative views of an image data 3

1.2 General image compression system 6

1.3 Baseline JPEG: (a) Compression, (b) Decompression 8

1.4 Parent-child relationship of wavelet coefficients of a 3-level wavelet de-

composition pyramid. 11

2.1 The 8× 8 basis images of 2D (a) DTT (b) DCT. 26

2.2 Plot of Tchebichef polynomials for N = 20 27

2.3 The Energy Compaction Property on a 256×256 image using (a) DCT,

and (b) DTT. 28

2.4 Implementation of FDTT on the 8× 8 blocks of image data. 29

2.5 The Compression ratio vs scaling factor plots between DCT and DTT

on a JPEG baseline codec (a) Lena, (b) Mandrill, and (c) Ruler images. 31

2.6 The rate-distortion comparison plots between DCT and DTT on a

JPEG baseline codec (a) Fingerprint, and (b) Slope images. 33

2.7 The rate-distortion comparison plots between DCT and DTT on a

JPEG baseline codec (a) Lena, and (d) Resolution chart images. . . 34

2.8 The rate-distortion comparison plots between DCT and DTT on a

JPEG baseline codec (a) Ruler, and (b) Numbers images. 35

2.9 The rate-distortion comparison plots between DCT and DTT on a

JPEG baseline codec (a) Barbara, and (b) Mandrill images. 36

2.10 The reconstructed Lena images at a scale factor of 5 using DCT and

DTT . 37

2.11 The reconstructed Ruler images at a scale factor of 5 using DCT and

DTT . 37

2.12 The reconstructed Mandrill images at a scale factor of 5 using DCT

and DTT . 38

2.13 The rate-distortion comparison plots between DCT and DTT on a

JPEG baseline codec (a) f16 and (b) Lena color images. 38

xii

2.14 Visual quality of the f16 decoded images between DCT and DTT on a

JPEG baseline codec . 39

2.15 Visual quality of the Lena decoded images between DCT and DTT on

a JPEG baseline codec . 40

2.16 Block diagram of HVS based DTT SPIHT embedded image coder . . 41

2.17 Rearrangement algorithm of 8× 8 transformed coefficients. 42

2.18 The reconstructed images of Lena using HVS based DTT SPIHT at a

bit-rate of 0.25 bpp . 46

3.1 Block diagram of HLDTT embedded image coder 55

3.2 The one to one correspondence between MV (k) values and coefficient

values X(k) . 61

3.3 Procedure of finding ROI. 64

3.4 ROI retrievability on Barbara image (a) Before RD optimization, (b)

After RD optimization . 67

3.5 Formation of compressed bit stream using ROIs (a) Overall bit stream

structure after ROI arrangement (b) Formation of quality layers for

different codeuints (c) Final SNR scalable compressed bit stream of an

ROI using quality layers. 69

3.6 (a) Convex hull of the distortion-rate pairs for the code block Ci, (b)

R-D optimization on Barbara image 70

3.7 MSSIM vs. bit rate on (a) Lena (b) Barbara (c) Boat (d) Mandrill (e)

Ruler and (f) 256 Level Test Pattern images. 85

3.8 Barbara and Mandrill images compressed at 0.5 bpp using DCT SPIHT

and HLDTT . 89

3.9 Boat images decoded at a target bit rate of 0.05 bpp using DCT SPIHT,

HLDTT, DWT SPIHT, JPEG 2000 and DWT ILSK. 90

3.10 Ruler images decoded at a target bit rate of 1.0 bpp using DWT SPIHT,

JPEG 2000, DWT ILSK, DCT SPIHT, and HLDTT. 91

3.11 (a) Table and left side part of Barbara (b) Hair and face part of Lena

(c) Facial portion of Zelda (d) Hair and warps part of Barbara images. 91

4.1 Sequential numbering pattern across correlated wavelet subbands in

4:2:0 color planes . 103

4.2 Steps for partitioning a combined wavelet level 103

4.3 Rate-distortion performance comparison of Lena image on L-C planes 111

4.4 Rate-distortion performance comparison of Hall-Monitor image on L-C

planes . 112

4.5 Rate-distortion performance comparison of News image on L-C planes 113

4.6 Hall monitor image compressed using CLEBP at 1 bpp using replicate

and symmetrical paddings . 114

4.7 News image compressed using CLEBP at 0.5 bpp using replicate and

symmetrical padding . 114

4.8 Decoded Lena images compressed at bit rates of 0.01 using SPIHT,

NLS, LSK and LEBP. 116

4.9 Decoded cameraman images using SPIHT, NLS, LSK and LEBP . . . 117

4.10 Resolution scalable Lena images decoded at a bit rate of 0.05 bpp by

LEBP algorithm . 118

4.11 Rearrangement of wavelet transformed coefficients for ROI/random ac-

cess decoding where correlated coefficients across different scales are

mapped into a localized region of the source image. 119

4.12 ROI of facial portion of Lena image (128× 128 size) which is retrieved

at a bit rate of (a)0.125 bpp, (b)0.25bpp, (c)0.5bpp, and (d)1.0bpp. . 119

4.13 Random access decoding of kth block at 1.0 bpp 120

4.14 Proposed block diagram of DCT based embedded coder using various

block sizes . 121

4.15 Rate-distortion performance of DCT LEBP algorithm on varying block

sizes for (a)Lena and (b)Barbara images. 123

4.16 Comparison of (a) Encoding time(sec) and (b)Decoding time(sec) on

varying block sizes of LEBP algorithm on Barbara image. 124

5.1 Two dimensional morton scan sequence of the transformed coefficients 129

5.2 Parent-child relationship of a block-tree in a three level pyramid . . . 130

5.3 Block diagram of proposed DCT LBT embedded image coder 134

5.4 Rearrangement algorithm of transformed coefficients 135

5.5 Scanning order of hierarchical subbands 136

5.6 Rate distortion performance comparison of WBTC and LBTC 139

5.7 Rate distortion performance comparison of DCT LBT on varying block

sizes . 142

5.8 Decoded Bike images compressed at 0.1 bpp 143

5.9 Decoded Woman images compressed at 0.05 bpp 147

5.10 Decoded Lena images compressed at 0.1 bpp 148

5.11 Decoded Ruler images compressed at 0.5 bpp 149

6.1 Hardware structure of the proposed matrix 160

6.2 Block diagram of proposed transform matrix on the 8 × 8 blocks of

image data. 161

6.3 Rate-distortion plots of (a) Cameraman, (c) Lena, (d) Goldhill images.

MSSIM vs. bit rate plots of (b) Cameraman, (d) Lena, (f) Goldhill

images. 164

6.4 Cameraman image reconstructed at a scale factor of 5 using DCT,

Approx. DCT, Bouguezel et al., SDCT and Proposed matrix. 166

6.5 Rate-distortion and MSSIM vs. bit rate plots of (a) and (b) Pepper,

(c) and (d) f16 images respectively. 167

6.6 f16 image reconstructed at a scale factor of 5 using DCT, Approx.

DCT, Bouguezel et al., SDCT and Proposed matrix. 168

List of Tables

1.1 Storage and transmission need for various types of uncompressed images 3

2.1 Perceptual weights applied to high frequency sub-band at coarsest scale 42

2.2 PSNR(dB) Comparison of DTT SPIHT With Other Algorithms . . . 44

2.3 Comparison of PSNR(dB) Values of DCT SPIHT With DTT SPIHT 45

2.4 Comparison of PSNR(dB) and MSSIM Values of DTT SPIHT With

HVS and Without HVS on Lena Image 45

2.5 Computational complexity comparison between different DTT algo-

rithms and our proposed algorithm. 49

2.6 H/W utilization of 1D floating point and integer DTT in Xilinx XC2VP30. 50

2.7 H/W utilization of 2D floating point, integer and Zigzag prune DTT

in Xilinx XC2VP30. 50

2.8 Comparison of PSNR between block-pruned and zigzag-pruned recon-

structed images of (a) Lena, (b) Barbara and (c) Crowd. 51

2.9 Comparison of PSNR between block-pruned and zigzag-pruned recon-

structed images of (d) Finger print, (e) Mountain, and (f) Library. . . 51

2.10 Comparison of PSNR between DCT and DTT of block pruned and

zigzag pruned reconstructed images of (a) Lena, (b) Barbara and (c)

Crowd. 51

2.11 Comparison of PSNR between block-pruned and zigzag-pruned recon-

structed images of (d) Finger print, (e) Mountain, and (f) Library. . . 52

3.1 Distribution of DTT coefficient magnitudes along thresholds and fre-

quency levels(6: Highest, 1: Lowest) for Lena(512× 512) image . . . 71

3.2 Comparison of memory requirements between LSK, SPIHT and ILSK

algorithms on top 9 passes. 72

3.3 Parameter comparison matrix. A ‘+’ indicates that it is supported.

The more ‘+’ indicate that it is more supported. A ‘-’ indicates separate

techniques are required to support. 76

xvi

3.4 Comparison of cumulative number of bits generated in the first six

passes, BRI improvement and % of bit savings 79

3.5 Performance comparison (PSNR in dB) between various algorithms on

Lena and Barbara Images . 81

3.6 PSNR(dB) comparison of various standard gray scale images without

backend arithmetic coding. All the block based transforms use blocks

of size 8× 8. 87

3.7 PSNR(dB) comparison of various standard gray scale images without

backend arithmetic coding. All the block based transforms use blocks

of size 8× 8. 88

3.8 PSNR(dB) comparison of standard color images without back end

arithmetic coding . 88

3.9 Cumulative number of bits generated in the first seven pth passes of

DCT SPIHT, DTT LSK and HLDTT techniques. 92

3.10 Encoding and Decoding times (msec) on Lena image 94

3.11 PSNR(dB) performance on Lena image with varying block sizes with-

out backend arithmetic coding . 94

3.12 Encoding and Decoding time of Lena image with varying block sizes . 95

4.1 Distribution of wavelet coefficient magnitudes along thresholds and fre-

quency levels(Highest: 6, Lowest: 1) for Lena(512× 512) image . . . 100

4.2 Comparison of memory requirement between LSK, SPIHT and ILSK

algorithms on top 7 passes. 101

4.3 Cumulative number of bits generated in the first six passes of SPIHT,

LSK and proposed LEBP technique 107

4.4 Performance comparison (PSNR in dB) between various algorithms on

Lena and Barbara Images. No back end arithmetic coding employed. 107

4.5 PSNR(dB) comparison of JPEG2000 standard test images (Grayscale) 108

4.6 PSNR comparison for the SPIHT and LEBP coder at different spatial

resolutions (Lena 512× 512, 0.05 bpp) 115

4.7 PSNR (dB) performance of various standard gray scale images without

using back end arithmetic coding . 121

4.8 PSNR(dB) performance on Lena image with varying block sizes . . . 122

4.9 PSNR(dB) performance on Barbara image with varying block sizes . 123

4.10 Encoding and Decoding times of Lena and Barbara images with differ-

ent bit rates . 125

5.1 Comparison of encoded string length between NLS and LBTC for Lena

and Barbara Images on top six cumulative bit plane passes 138

5.2 Comparison of PSNR(dB) values between SPIHT, NLS, WBTC and

LBTC at very low bit rates . 139

5.3 Comparison of PSNR(dB) values between SPIHT, NLS, WBTC and

LBTC algorithms . 140

5.4 Comparison of PSNR(dB) values between JPEG 2000, SPIHT, NLS,

WBTC and LBTC algorithms . 141

5.5 Comparison of cumulative encoded string length between DCT NLS

and DCT LBT for Lena and Barbara images on top six bit plane passes141

5.6 PSNR comparison between Hou et al., JPEG 2000, Song and Cho and

DCT LBP algorithms on 2560× 2048 size images. 144

5.7 PSNR comparison between Hou et al., JPEG 2000, Song and Cho and

DCT LBT algorithms on 512× 512 size images 145

5.8 Comparison of encoded string length between DCT NLS, DTT NLS

and HLBT DTT for Lena image on top seven cumulative bit plane

passes . 146

5.9 Comparison of encoded string length between DCT NLS, DTT NLS

and HLBT DTT for Ruler image on top five cumulative bit plane passes146

5.10 Comparison of PSNR(dB) values between DTT NLS, DCT LBT(2×2),

DCT LBT(4× 4) and HLBT DTT(4× 4) algorithms on 512× 512 size

images. 150

5.11 PSNR(dB) comparison between Hou et al., JPEG 2000, Song and Cho,

WBTC, DCT LBT and HLBT DTT Algorithms 152

5.12 Comparison of encoding and decoding time (sec) for Lena image (Wavelet

transform and DCT are not included). 153

6.1 Explanation of the Hardware structure of Figure 6.1. (symbols ‘+’

means positive, ‘-’ means negative and ‘No’ means no operation) . . . 160

6.2 Proposed Luminance 8× 8 Quantization Matrix 162

6.3 H/W Utilization of 1-D transform of proposed matrix in XC2VP30. . 162

6.4 H/W Utilization of 2-D transform of proposed matrix in XC2VP30. . 162

6.5 Comparison of Adder Cost Savings 163

List of Abbreviations

JPEG Joint Picture Expert Group

DCT Discrete Cosine Transform

DTT Discrete Tchebichef Transform

DWT Discrete Wavelet Transform

IWT Integer Wavelet Transform

RB-IWT Reversible Integer Wavelet Transform

WHT Walsh Hardmard Transform

RSWT Reversible Squre Wave Transform

SDFT Shifted Discrete Fourier Transform

EZW Embedded Zerotree Wavelet

PSNR Peak Signal to Noise Ratio

MSSIM Mean Structural SIMilarity index metric

SPIHT Set Partitioning in Hierarchical Trees

EBCOT Embedded Block Coding with Optimized Truncation

SPECK Set Partitioning Embedded Block

EZBC Embedded Zero Block Coding

SBHP Subband Hierarchical Block Partitioning

PCRD Post Compression Rate Distortion

NLS No List SPIHT

LSK Listless SPECK

MPEG Motion Picture Expert Group

STQ Significance Tree Quantization

SLCCA Significance Linked Connected Component Analysis

EQDCT Embedded Quad Tree DCT

ICT Integer Cosine Transform

HVS Human Visual System

SDCT Signed Discrete Cosine Transform

DA Distributed Arithmetic

FPGA Field Programmable Gate Array

WBTC Wavelet Block Tree Coding

CSPIHT Color Set Partitioning in Hierarchical Trees

LMSPIHT Listless Modified Set Partitioning in Hierarchical Trees

SNR Signal to Noise Ratio

ROI Region of Interest

CDF 9/7 Cohen Daubechies Feauveau 9/7 tap filter

MRWD Morphological Representation of Wavelet Data

LIP List of Insignificant Pixels

LSP List of Significant Pixels

LIS List of Insignificant Sets

DCT SPIHT Discrete Cosine Transform-Set Partitioning in Hierarchical Trees

DTT SPIHT Discrete Tchebichef Transform-Set Partitioning in Hierarchical Trees

DTT LSK Discrete Tchebichef Transform-Listless SPECK

HLDTT Hierarchical Listless Discrete Tchebichef Transform

DWT SPIHT Discrete Wavelet Transform-Set Partitioning in Hierarchical Trees

IWT SPIHT Integer Wavelet Transform-Set Partitioning in Hierarchical Trees

IS Insignificant Set

IL Insignificant Level

IGL Insignificant Group-of-Level

ILSK Improved Listless SPECK

OOS Optimal Subband Shift

BRI Bit Rate Improvement

LEBP Listless Embedded Block Partitioning

CLEBP Color Listless Embedded Block Partitioning

LBTC Listless Block Tree Coding

DCT LBTC Discrete Cosine Transform-Listless Block Tree Coding

HLBT DTT Hierarchical Listless Block Tree Discrete Cosine Transform

MCU Minimum Coded Unit

NEDA New Efficient Distributed Arithmetic

Chapter 1

Introduction

Pictures have been with us since the dawn of the time. However, the way the pictures

have been presented and displayed has changed significantly. In old age, pictures

are represented and displayed in a physical way such as painting in cave walls or

etching in stones. In recent times, pictures are dealt electronically. Interestingly, the

representation used for storage and transmission is quite different from its display.

For example, in traditional broadcast television, where this representation which is

transmitted is not directly related to the intensities of red, green and blue electron

guns in a television set.

The possibilities of image representation increases dramatically by storing images

in digital form. There can be numerous ways an image can be stored in any repre-

sentation, provided that there should be algorithms to convert back to a form usable

for display. This process of changing the representation of an image is called image

coding. If the image representation consumes less storage space than the original, it

is called image compression [1].

Most of the encoders discussed in this thesis are based on progressive encoding to

compress an image into a bit stream with increasing accuracy. This means that when

more bits are added to the bit stream, the decoded image will contain more details, a

property similar to progressive Joint Picture Expert Group (JPEG) encoded images.

It will be similar to the representation of a number like π where addition of every

digit increases the accuracy of the number, but it can stop at any desired accuracy as

needed. Progressive encoding is also known as Embedded encoding.

1.1 Representation of Digital Images

Let f(s, t) be represents a continuous image function of two continuous variables,

s and t. The continuous image function f(s, t) can be converted to digital image

function f(x, y) (i.e., pixels) by spatial sampling and amplitude quantization, where

1

Chapter 1 Introduction

(x, y) are spatial coordinates. The 2D array f(x, y) contains M rows and N columns.

Therefore, x = 0, 1, 2,M − 1 and y = 0, 1, 2,N − 1. The relation between pixel

values and image is illustrated in Figure 1.1.

The sampling process may be viewed as partitioning xy-plane into grid with origin

at f(0, 0) with x-axis vertically downward and horizontal y-axis directs to the right.

The number of samples in the grid determines the resolution of the image. For

example, 1024 samples points per row and 768 samples per column, yield an image

with resolution 1024× 768.

Each sample is generally thought of as representing the intensity of a picture

element or pixel or pel. The set of intensity values that a pixel can be taken is always

a power of 2. If a pixel has 2n values, then it requires n bits of storage. Thus, a

two-tone image (e.g., text) will have binary values for each pixel. Continuous-tone

gray scale (monochrome) images generally use 8 bits per pixel (bpp) and color images

use 24 bits per pixel (each color component requires 8 bpp). Medical and scientific

images typically use more bits per pixel, sometimes up to 16 bpp for gray scale.

Taking together, the values of all the pixels in an image constitute the raw data

representation of the image. The amount of storage required by this raw data will

be calculated as the product of the number of pixels and the bits used per pixel.

Therefore, the raw data required by 1024× 768 resolution color image will be:

1024× 768× 24=18874368 bits=2.25 MB.

1.1.1 Need of Image Compression

The raw data required by a single color image may not be a great deal of storage space.

Total storage requirements become overwhelming as the number of images need to

be stored or transmitted increases. Table 1.1 shows the storage size, transmission

bandwidth and transmission time needed for various types of uncompressed images [2].

It is obvious that images requires large transmission bandwidths, more transmission

time and large storage space, which are proportional to the size of the image. With

the present state of technology, the only solution is to compress the image before its

storage and transmission. Then, the compressed image can be decompressed at the

receiver end.

1.2 Image Compression Fundamentals

The 2D intensity arrays discussed in section 1.1 are the preferred format for human

viewing and interpretation. When it comes to compact image representation, these

formats are far from optimal. The reason is that it suffers from three principal kind

2

Chapter 1 Introduction

149 174

165

180

191

144

181

189

158

54

179

188

172

74

53

186

178

94

65

54

182

113

81

74

51

Figure 1.1: Alternative views of an image data

Table 1.1: Storage and transmission need for various types of uncompressed images

Image type Size bits/pixel Uncompressed Transmission Transmission time
bandwidth (using 28.8K Modem)

Grayscale 512× 512 8 262 KB 2.1 Mbit/image 1 min 13 sec

Color 512× 512 24 786 KB 6.29 Mbit/image 3 min 39 sec

Medical 2048× 1680 12 5.16 MB 41.3 Mbits/image 23 min 54 sec

Super High 2048× 2048 24 12.58 MB 100 Mbit/image 58 min 15 sec
Density (SHD)

of data redundancy. These are be explained below:

• Coding Redundancy: Coding redundancy is present when the codes assigned to

gray levels do not take full advantage of gray levels probability. For example,

considering a gray level image having n pixels, the number of gray levels in the

image is L and the number of pixels with gray level k is nk. Then, the probability

of occurring gray level k is p(k) = nk

n
. If the number of bits used to represent

gray level k is l(k), then the average number of bits required to represent each

pixel is

Lavg =
L−1
∑

k=0

l(rk)pk(rk). (1.1)

Hence, the number of bits required to represent the whole image is n × Lavg.

Maximum compression ratio is achieved when Lavg is minimized. The gray levels

are coded in such a way that it results in an image containing coding redundancy

if Lavg is not minimized.

• Spatial and temporal redundancy: Since the neighboring pixels in an image are

highly correlated, information is unnecessary replicated in the representations of

3

Chapter 1 Introduction

correlated pixels. In a video sequence, temporally correlated pixels also duplicate

the information.

• Psycho visual redundancy: Image contain information which is not sensitive to

the human visual system (HVS) and/or extraneous to the intended use of image.

1.2.1 Measuring Image Information

An important question to answer is ‘How many bits are necessary to represent the

information of an image ?’ or alternatively, Is there any minimum amount of data that

are sufficient to describe an image without loss of information ?’. The information

theory states that, generation of information can be modeled as a probabilistic process.

A random event E with probability P (E) contains

I(E) = log
1

P (E)
= − logP (E) (1.2)

units of information. For true events (i.e., P(E)=1), I(E)=0 and such events do not

contain information. Therefore, information is a measure of uncertainty. The base

of the logarithm determines the number of units used to measure information. If the

base 2 is used, the unit of information is the bit. When P (E) = 1
2
, I(E) = −log2

1
2

= 1

bit. Therefore, 1 bit is conveyed when one of the two possible equally likely events

occurs.

For a source of statistically independent random events a1, a2,aJ with associated

probabilities P (a1), P (a2),P (aJ), the average information (entropy of the source)

per source output is:

H = −
J
∑

j=1

P (aj) logP (aj). (1.3)

where aj, j = 1, 2, ...J are symbols. Since they are statistically independent, the

source is called a zero-memory source.

Considering an image as an output of an imaginary zero-memory ‘intensity source’,

the histogram of the image can be used to estimate the symbol probabilities of source.

The intensity of entropy of source is:

Ĥ = −
L−1
∑

k=1

Pr(rk) log2 Pr(rk) (1.4)

It is not possible to code the intensity values of the imaginary source (and thus the

sample image) with fewer Ĥ bits/pixel.

4

Chapter 1 Introduction

1.2.2 Fidelity Criteria

Removal of irrelevant visual information may lead to a loss of real or quantitative

image information. Two types of criteria can be used to quantify loss of information:

• Objective fidelity criteria: Information loss is expressed as a mathematical func-

tion of the input and output of the compression process. For example root-mean-

square (rms) or Peak-signal-to-noise-ratio (PSNR).

Let ˆf(x, y) be an approximation of input image f(x, y) after compression and

decompression process. For any value of x and y, the error is

e(x, y) = f̂(x, y)− f(x, y). (1.5)

Therefore, the total error between the two images is:

e =
M−1
∑

x=0

N−1
∑

y=0

[f̂(x, y)− f(x, y)] (1.6)

The rms error is:

erms =

√

√

√

√

1

MN

M−1
∑

x=0

N−1
∑

y=0

[f̂(x, y)− f(x, y)]2. (1.7)

The PSNR is defined as the ratio of peak signal power to noise power. If the

signal lies in the range [0,1], then the expression for PSNR in decibel (dB) scale

is given as:

PSNR = 20 log10

1

erms

dB. (1.8)

For a monochrome image having pixel range [0, 255], the numerator of Eqn. 1.8

must be changed to 255.

Though these image metrics in Eqn. 1.7 and Eqn. 1.8 are used extensively

for evaluating the quality of the reconstructed image, none of these considered

the visual perception system into account. Another metric called Mean Struc-

tural SIMilarity Index (MSSIM) which considered image degradation as perceived

change in structural information rather than perceive errors in PSNR or MSE

[3]. MSSIM is expressed as:

MSSIM(F, F̂) =
1

M

M
∑

j=1

SSIM(fj, f̂j) (1.9)

where, F and F̂ are the reference and distorted images. fj and f̂j are the image

5

Chapter 1 Introduction

content of the jth local window, M is the number of local windows. For each

local window

SSIM(f, f̂) =
(2µfµf̂ + c1)(2σff̂ + c2)

(µ2
f + µ2

f̂
+ c1)(σ2

f + σ2
f̂

+ c2)
(1.10)

where µf is the average of f(x, y), µf̂ is the average of f̂(x, y), σ2
f is the variance

of f(x, y), σ2
f̂

is the variance of f̂(x, y), σff̂ is the covariance of f(x, y) and f̂(x, y).

c1 = (k1L)2, c2 = (k2L)2 are two variables to stabilize the division with weak

denominator. L is the dynamic range of pixel values (typically, 2#bits per pixel−1).

k1=0.1 and k2=0.03 by default. If F and F̂ are identical then MSSIM=1. For

highly uncorrelated case MSSIM=-1.

• Subjective fidelity criteria: Images are viewed by number of viewers and their

evaluations are averaged [1].

1.2.3 Image Compression Model

f (x,y)

Compressed data

for storage and

transmission

f
^ (x,y)

Mapper Quantizer
Symbol

encoder

Symbol

decoder

Inverse

mapper

Encoder

Decoder

Figure 1.2: General image compression system

A general image compression model is shown in Figure 1.2. The encoder performs

compression and decoder performs decompression. The encoder consists of mapper,

quantizer and symbol encoder. Usually the mapper transforms an image into an invis-

ible format designed to reduce spatial and temporal (in video sequences) redundancy.

Generally, this operation is reversible and may or may not reduce the amount of data

needed to represent the image. In video applications, the mapper uses previous and

future frames to facilitate removal of temporal redundancy.

The quantizer reduces the accuracy of the output of mapper according to the

fidelity criterion. This operation is irreversible and targets to remove irrelevant in-

6

Chapter 1 Introduction

formation from the image. When lossless compression is needed, quantizer must be

removed.

The final stage of the encoding process is the symbol encoder, which generates a

fixed or variable-length code to represent the quantizer output. Usually the shortest

code words are assigned to the most frequently occurring quantizer output values to

minimize coding redundancy. This operation is reversible. These three operations

lead to removal or decrease of all three redundancies from the input image.

The decoder contains two components: symbol decoder and inverse mapper per-

forming the inverse operations of the symbol encoder and mapper. The inverse quan-

tizer block is not included since quantization is irreversible.

Suppose b and b′ represent number of bits in the original data f(x, y) and com-

pressed data f ′(x, y) respectively. The relative data redundancy R of the representa-

tion with b bits is:

R = 1− 1

C
(1.11)

where C is called the compression ratio, is expressed as:

C =
b

b′
. (1.12)

If C = 10, the larger representation b has 10 bits of data for every 1 bit of data in

the smaller representation b′. This indicates that 90% data(R = 0.9) are redundant.

In the context of digital image compression, b usually is the number of bits needed

to represent the original image as 2D array of intensity values (pixels). Considering

the case of gray scale image, 8 bits are needed to represent each pixel. Another term

called bit rate (BR) which is expressed as:

BR =
8

C
bits/pixel(bpp). (1.13)

BR = 0.8 bpp for C = 10. That means, the number of bits that is required to

represent the compressed image is 0.8 bits/pixel.

1.2.4 JPEG Baseline Image Compression

JPEG is the first international image compression standard for continuous-tone still

gray scale and color images [4]. The goal of this standard is to support a variety of

applications for compression of continuous-tone still images of different image sizes in

any color space. It has user-adjustable compression ratio with very good to excellent

reconstruction quality. It has lower computational complexity for widespread practical

applications. Discrete cosine transform (DCT) [5] is used as the transform in the

JPEG standard. JPEG defines four modes of operations:

7

Chapter 1 Introduction

• Sequential lossless mode: It compresses the image in a single scan and the de-

coded image is an exact replica of the original image.

• Sequential DCT-based mode: It compresses the image in a single scan using

DCT-based lossy compression technique. Therefore, the decoded image is an

approximation of the original image. This Mode is also called as JPEG baseline

mode and it is widely used.

• Progressive DCT-based mode: It compresses/decompresses the image in multi-

ple scans. Each successive scan produces better quality image.

• Hierarchical mode: It compresses the image at multiple resolution for display on

different devices.

Each mode consists of a multiple number of options as well, totaling 44 different

options or submodes [4], [6],[7]. A brief review JPEG baseline compression is presented

in this section because it is widely used (more than 90% of users) among the four

modes of JPEG family.

FDCT Quantizer Zig-zag

scanning
Entropy

Encoding

Quantization

Table

Huffman

Table

Specifications

Color

Space

Conversion

8x8 blocks

Encoder

100100..

Compressed

image data

Entropy

Decoding
Zig-zag

re-ordering
Dequantizer IDCT

Restoring

color space

Compressed

image data

100100..

Huffman

Table

Specifications

Quantization

Table

Decoder

Reconstructed

Image

(a)

(b)

Input Image

Figure 1.3: Baseline JPEG: (a) Compression, (b) Decompression

In JPEG baseline codec as shown in Figure 1.3, a RGB color image is first mapped

into Luminance-chrominance (L-C) color space such as YCbCr, YUV, CIELAB, etc

8

Chapter 1 Introduction

in order to have a better decorrelation between color components. The chrominance

channels contain more redundant information and can be subsampled without sac-

rificing any visual quality of the reconstructed image. Baseline supports 4:2:0, 4:2:2

and 4:4:4 color formats. 4:2:0 format is formed by subsampling the chrominance com-

ponents by half horizontally and vertically. Each chrominance component in 4:2:2

color format has same vertical resolution as that of luminance component, but the

horizontal resolution is halved. In 4:4:4 format both the chrominance components

have identical vertical and horizontal resolution as that of luminance components.

No color transformation is required for grayscale image.

To apply Forward DCT (FDCT), first the image is divided into non-overlapping

8×8 blocks in raster scan order from left to right and top-to-bottom as shown in Figure

1.3. Then, each pixel is level shifted to convert into signed integer by subtracting 128

from each pixel. The FDCT of an 8× 8 block of pixels f(x, y) for (x, y = 0, 1,7) is

expressed as follows:

F (u, v) = 1
4
C(u)C(v)

7
∑

x=0

7
∑

y=0

f(x, y) cos
[

π(2x+1)u
16

]

cos
[

π(2y+1)v
16

]

for u = 0, 1,, 7 and v = 0, 1,, 7, where

C(k) =

{

1√
2

for k = 0

1 otherwise.

(1.14)

After transformation, the transformed coefficients are need to be quantized. This step

is primarily responsible for the loss of information and hence introduces distortion in

the reconstructed image. Each 64 DCT coefficients are uniformly quantized according

to the formula

Fq(u, v) = Round

(

F (u, v)

Q(u, v)

)

(1.15)

where F (u, v) is a DCT coefficient and Q(u, v) is the quantizer step-size parameter.

The standard does not define any quantization table. It is prerogative of the user’s

choice to select the quantization matrix. JPEG standard defines two quantization

matrices for luminance and chrominance planes. These two quantization matrices have

been designed based on the psycho visual experiments by Lohsceller [8] to determine

the visibility threshold for 2-D basis functions. These matrices are best suited for

natural images with 8-bit precision. If the elements in these tables are divided by 2,

perceptually lossless compression is obtained. Quality of the reconstructed image can

be controlled by scaling the matrices.

After the transformation and quantization over an 8 × 8 image sub-blocks, the

new 8 × 8 sub-block shall be reordered in zigzag scan into a linear array. The first

9

Chapter 1 Introduction

coefficient is the DC coefficient and the other 63 coefficients are AC coefficients. The

DC coefficient contains lot of energy, hence it is usually of much larger value than

AC coefficients. Since there is a very close relation between the DC coefficients of

adjacent blocks, the DC coefficients are differentially encoded. This process further

reduces entropy. The entropy coding process consists of Huffman coding tables as

recommended in JPEG standard. These tables are stored as header information

during the compression process so that it is possible to uniquely decode the coefficients

during decompression process.

1.2.5 JPEG2000 Image Coding Standard

Although baseline JPEG has been very successful in the market place for more than

a decade, it lacks many features desired by interactive multimedia applications, its

usage in wired or wireless environments and Internet applications. A fundamental

shift in the image compression approach came after the Discrete Wavelet Transform

(DWT) became popular [9]-[12]. Exploiting the interesting features in DWT, many

scalable image compression algorithms were proposed in the literature [13]-[17]. To

overcome the inefficiencies in JPEG standard and serve emerging applications areas

in the age of mobile and Internet communications, the new JPEG2000 standard has

been developed by ISO/IEC standard committee. It provide a unified optimized tool

to accomplish both lossless and lossy compression, as well as decompression using

the same algorithm. The systems architecture is not only optimized for compression

efficiency for very low bit rates, but also optimized for scalability and interoperability

in networks and noisy environments. The JPEG2000 standard will be effective in

wide application areas such as Internet, digital photography, digital library, image

archival, compound documents, image databases, color reprography (photocopying,

printing, scanning, facsimile), graphics, medical imaging, multispectral imaging such

as remotely sensed imagery, satellite imagery, mobile multimedia communications, 3G

cellular telephony, client-server networking, e-commerce, etc.

The main drawback of the JPEG2000 standard compared to JPEG is that the

coding algorithm is much more complex and the computational needs are much higher.

Moreover, the bit-plane wise processing may restricts computational performance in

a general-purpose computing platform. Analysis [18],[19] shows that the JPEG2000

compression is more than 30 times complex as compared with JPEG. JPEG2000

standard has 12 parts (Part 7 abandoned) with each part adding new features to the

core coding standard in Part 1. Out of 11 parts some parts are still under development

(Part 8-Part 12). Part 1-Part 6 are explained in [20]-[25].

10

Chapter 1 Introduction

A spatial orientation tree : A coefficient

LL3 HL3

LH3 HH3
HL2

LH2 HH2 HL1

HH1LH1

Figure 1.4: Parent-child relationship of wavelet coefficients of a 3-level wavelet decomposi-
tion pyramid.

1.2.6 Embedded Image Compression

The Shapiro’s EZW (Embedded Zerotree Wavelet) coder exploits the self similarity

of the wavelet transformed image across different scales by using a hierarchical tree

structure [15]. The coefficients are viewed as a collection of spatial orientation trees.

Each tree consists of coefficients from all subbands (both frequency and orientation)

that corresponds to the same spatial area in an image. The parent child relationship

of a 3-level wavelet decomposition structure is shown in Figure 1.4. The coefficient in

LL3 band (root) does not have any children. The coefficients in HL3, LH3 and HH3

have four children each. A coefficient cij is called significant with respect to a given

threshold n if |cij|≥n. Otherwise, it is insignificant. Meaningful image statistics have

shown that if a wavelet coefficient is insignificant at a particular threshold T, it is

very likely that its descendants are insignificant with respect to the same threshold.

This constitutes a zerotree. A single symbol can be used efficiently to encode all the

coefficients in a zerotree.

EZW coding can be thought of as bit-plane coding if the thresholds are powers of 2.

It encodes one bit plane at a time starting from most significant bitplane (MSB). With

successive bitplane coding and scanning of the trees from lower to higher frequency

subbands on bit-plane, EZW achieves embedded coding.

11

Chapter 1 Introduction

The bit-mapped position information of significant coefficients at each threshold is

called significance map. The successive passes of sorting (Dominant) and refinement

(Subordinate) with decreasing threshold is called successive approximation quantiza-

tion.

The dominant pass and subordinate pass are repeated for every bit-plane pass gen-

erating an encoded bit string. This process stops whenever the size of the encoded bit

stream reaches the exact target bit rate. By exploiting the parent-child relationship

across different scales in a wavelet transformed image, progressive wavelet coders can

effectively order the coefficients by bit-planes and transmit most significant informa-

tion first. Therefore, it results in an embedded bit stream with a set of attributes like

progressive transmission, precise rate control, resolution and fidelity scalable. These

set of rich features are completely absent in JPEG.

Though a number of coding methods have been proposed in the literature, the

fundamental idea inherits from EZW algorithm. One of the listed method is Set par-

titioning in hierarchical trees (SPIHT) algorithm [16]. SPIHT is very popular since

it is able to achieve equal or better performance than EZW without using arithmetic

coding. The reduction in complexity from eliminating the arithmetic encoder is sig-

nificant. Therefore, it is used frequently as a benchmark for performance in evaluation

of the state-of-the-art image compression algorithms.

1.3 Background and Scope

Over the past few years, a variety of powerful and sophisticated wavelet based image

compression schemes such as Embedded Zerotree Wavelet (EZW) coding scheme,

Set Partitioning in Hierarchical Trees (SPIHT), Set Partitioning in Embedded Block

(SPECK)[26] and Embedded Block Coding with Optimized Truncation (EBCOT)[27]

have been developed. Among the wavelet zerotree based image coding algorithms,

SPIHT is the most recognized coding method because of its excellent rate-distortion

performance. SPECK is a block based low complexity coding scheme compared to

SPIHT because it consists of only two ordered list data structures, whereas SPIHT

consists of three ordered auxiliary list data structures. However, performance of

SPECK is closer to SPIHT. EBCOT is also block based coding scheme with modest

amount of complexity.

SPIHT exploits zero-tree structure, whereas SPECK exploits zero-block structure

to achieve inter and intra subband correlations. In zero-tree based algorithms, wavelet

coefficients corresponding to same spatial location and orientation are grouped to form

a spatial orientation tree. In significance test, a tree with no significant coefficient

12

Chapter 1 Introduction

with respect to a given threshold is coded as zerotree. On the other hand, zero-block

based algorithms divide the transformed coefficients into contiguous blocks and per-

form significant test on the individual blocks. Insignificant blocks are coded as zero

blocks while significant blocks are recursively partitioned for search of significant co-

efficients. The advantage of this method is that it uses adaptive quadtree splitting

scheme to zoom into high energy areas in a region to code the blocks with minimum

significant maps. Other well-known block based algorithms are embedded zero-block

coding (EZBC) by Hsiang and Woods [28] and Subband Hierarchical Block Partition-

ing (SBHP) by Chrysafis et al. [29]. SBHP is a form of SPECK incorporated into

JPEG 2000 under development. EZBC exploited the dependence among quadtree

representations of subbands and sophisticated context based arithmetic coding to im-

prove the coding efficiency. Danyali and Mertins [30] proposed fully scalable-SPIHT

(FS-SPIHT) suitable for heterogeneous networks where users having different net-

work access bandwidth and processing capabilities. Recently, Xie et al. [31] enabled

SPECK to have full scalability based on the idea of quality layer formation similar

to Post Compression Rate Distortion (PCRD) in JPEG 2000. Being a block based

coder, EBCOT which is adopted in JPEG 2000 standard, generates feature rich bit

streams with low memory requirements but it is highly complex. This is due to use

of multiple coding passes within each bit plane, use of context adaptive arithmetic

coding and rate-distortion optimization. Cho and Pearlman [32] addressed the reason

for different coding performances between different zerotree coding schemes, which

are EZW and SPIHT. Subsequently, Moinuddin et al. [33],[34] proposed list based

block-tree coding algorithms which reduces the dynamic memory requirements with

excellent low bit rate performance.

Most of the algorithms discussed above require a large amount of memory space

and need for memory management as the list nodes are updated on each bit plane

pass. To overcome these shortcomings, listless variants of SPIHT (i.e., No list SPIHT

(NLS))[35] and SPECK (Listless SPECK (LSK))[36] have been reported in literature.

However, the performance NLS and LSK are very closer to SPIHT and SPECK re-

spectively. Hence, there is a scope to further improve the performance of LSK and

NLS.

Though wavelet based coding algorithms provides substantial improvement in im-

age quality at lower rates compared to DCT based coders at a cost of complexity, DCT

is still used in many applications such as JPEG[4], MPEG-4 and H.264 [37],[38] be-

cause of its compression performance and computational advantages. Recently, DCT

based coders with innovative data organization strategies and representation of coeffi-

cients have been reported with high compression efficiency [39]-[44]. Embedded image

13

Chapter 1 Introduction

coder based on DCT by Xiong et al. [39]. They have introduced a wavelet-like tree

structure of DCT coefficients and applied embedded zerotree quantizer to the DCT

coefficients as in EZW coder, which yielded a better performance than wavelet based

EZW. Davis and Chawla [40] have proposed significance tree quantization (STQ) op-

timized for a given class of images. Monoro and Dickson [41] have applied sorting

algorithm of EZW. Junqiang and Zhuang [42] have applied SLCCA wavelet-based

image coder to DCT subbands. Hou et al. [43] have presented an image coder that

utilizes set partitions based on quadtree splitting (EQDCT). It provides excellent cod-

ing performance with lower complexity. Recently, Song and Cho [44] have reported

DCT based embedded coders with compression performance higher than JPEG2000

for texture images.

A new class of transform called Discrete Tchebichef Transform (DTT) which is

derived from a discrete class of popular Tchebichef polynomials, is a novel orthonor-

mal version of orthogonal transform. It has found applications on image analysis and

compression [45]-[49]. Mukundan [45]-[47] proposed orthonormal version of Tchebichef

moments and analyzed some of their computational aspects. Mukundan and Hunt [48]

have shown that for natural images, DTT and DCT exhibit similar energy compact-

ness performance. Lang et al.[49] have made a comparison between 4× 4 Tchebichef

moment transform and DCT. They claim that there is a significant advantage for 4×4

Tchebichef moments in terms of error reconstruction and average length of Huffman

codes. A block wise moment computation scheme which avoids numerical instabili-

ties to yield a perfect reconstruction has been introduced in the literature [50]. For

computation of Tchebichef moments, a number of fast algorithms have been proposed

[51]-[53]. The Tchebichef moment compression is meant for smaller computing de-

vices owing to its low computational complexity. Ishwar et al. [52] have shown that

DTT has lower complexity since it requires the evaluation of only algebraic (only add

and shift operations, no multiplications) expressions whereas implementation of DCT

requires integer approximation or intermediate scaling like Integer cosine transform

(ICT) [37]. Abdelwahab [53] has proposed a fast 2 × 2 pruned DTT algorithm for

4 × 4 DTT. This reduces computational complexity by 26% compared to the algo-

rithm in [51] without reducing the image reconstruction accuracy. Several algorithms

for pruning the 1-D DCT in [54]-[58] and 2-D DCT in [59]-[62] have been addressed.

Therefore, there is a need to develop DTT based fast pruning algorithms with better

PSNR performance.

Some important characteristics of DTT can be summarized as follows:

• A discrete domain of definition which matches exactly with image coordinates

14

Chapter 1 Introduction

space.

• Absence of numerical approximation terms allows a more accurate representation

of image features than others which is not possible using conventional transforms.

• DTT is invariant to linear transforms and can be efficiently used for image

reconstruction [45].

• Dynamic range of DTT is comparable to that of DCT [52].

• DTT is robust against channel errors [63].

• DTT polynomials have properties that matches closely with Human visual sys-

tems (HVS) [64].

• In video compression, the prediction residuals of motion compensation can con-

tain large variations. DTT can help a consistent video quality when inter-frame

coding is used [65].

Therefore, there is a need to further analyze the performance of DTT over DCT

on a JPEG baseline codec and embedded codec coupled with some novel coefficient

arrangement techniques.

The performance of Listless embedded coding algorithms such as NLS and LSK

can be improved using some novel techniques. The algorithms can be coupled with

wavelet and DCT/DTT based transforms in order to access the performance over

other wavelet or DCT based SPIHT coders. For complexity constrained encoding

situations where even a fast fixed-complexity DCT algorithm is too complex, one can

resort to approximate the computation of DCT at the cost of some degradation in

the image quality. These applications could be multimedia, mobile communications,

personal digital assistants (PDAs), digital cameras and Internet where a lot of image

transmission and processing are required.

Even though a number of algorithms for fast computation of DCT are available

in the literature, there has been a lot of interest towards finding out the approximate

integer versions of floating point DCT [66]-[71].A family of integer cosine transforms

(ICT) using the theory of dyadic symmetry is proposed [66] where it has been shown

that the performance of ICTs are close to that of DCT. A novel architecture has been

presented [67] for a 2D 8×8 DCT which needs only 24 adders. The architecture allows

scalable computation of 2D 8×8 DCT using integer encoding of 1D radix-8 DCT. 8×8

versions of two transformation matrices, one for the coarsest and another for the finest

(represented as D̂1 and D̂5 respectively) approximation levels of exact DCT have been

proposed in [68]. Using these two matrices, a trade off of speedup versus accuracy in

15

Chapter 1 Introduction

various bit ranges can be achieved. The performance shows 73 % complexity reduction

with only 0.2 dB PSNR degradation. A family of 8×8 biorthogonal transforms called

binDCT which are all approximates of popular 8 × 8 DCT have been proposed in

[69]. These binDCT show a coding gain of range 8.77-8.82 dB despite requiring as

low as 14 shifts and 31 additions per eight input samples. 8× 8 binDCT shows finer

approximations to exact DCT and are suitable for VLSI implementation. A new

kind of transform called signed DCT (SDCT) by applying signum function to DCT

is proposed in [70]. However, SDCT and its inverse are not orthogonal and it needs

24 additions for transformation. A 8 × 8 transform matrix is presented in [71] by

appropriately inserting 20 zeros into the elements of D̂1 [68]. A reduction of 25 %

in computation is achieved over SDCT and this matrix is orthogonal. Unlike the

proposed matrices [72]-[74], the transform order need not be a specific integer or a

power of 2.

It requires a number of multipliers to implement a transform kernel using con-

ventional approach. Multipliers are the major source of power hungry elements in a

hardware device. Here the focus is given on distributed arithmetic (DA) computation

which do not require multipliers [75]-[77].Several DA based approaches has been pre-

sented in the literature. These approaches uses either look-up table [75] or without

look-up table [76],[77] techniques. Therefore, there is a scope to develop integer based

novel 8× 8 orthogonal sparse transform matrix for the considered set of applications.

1.4 Motivation

Recent applications such as multimedia, mobile communications and Internet require

faster algorithms that can compress the image efficiently with reduced complexity.

The amount of information that is transported by the computing device/network

is also growing exponentially. Therefore, good quality images at earlier stages of

transmission are becoming an important element in these types of codecs. This is

particularly important if the image is browsed over wireless lines where limited channel

capacity, storage requirements and computational complexity are decisive factors.

Therefore, NLS and LSK could be the best candidates for the above applications

because of their low complexity and fast encoding/decoding speed. However, the

performance of these coders is poor at low bit rates. In other words, the decoded

image quality is poor at the earlier stages of transmission. Some of the algorithms

like wavelet block-tree coding (WBTC) [33], listless modified SPIHT (LMSPIHT)

[78] improve the low bit rate performance of SPIHT. WBTC is a wavelet block-tree

algorithm which also makes use of three ordered list structure. Though it reduces

16

Chapter 1 Introduction

the memory requirement compared to SPIHT, it is still undesirable for real time

hardware implementations because of its list arrays. WBTC requires a lot of memory

management as the list nodes are added, removed or moved during bit plane passes.

Subsequently, a variant of WBTC algorithm is proposed in [34] that can compress color

images. This algorithm also uses similar kind of list arrays. It shows an improved low

bit rate performance in case of color images compared to CSPIHT [26]. LMSPIHT

is a listless version of modified SPIHT. The low memory feature and excellent low

bit rate performance makes LMSPIHT a good candidate for the considered set of

applications. However, its performance degrades compared to SPIHT in most of the

images at higher rates.

As per the above discussion, some efficient algorithms based on wavelet or block

transform are developed. These algorithms provides

• Better low bit rate performance without sacrificing much on the higher rates.

• Lower computational complexity and memory requirement.

• Rich set of features such as scalable in terms of pixel accuracy and resolution,

random access, region of interest (ROI) and precise rate control in most of

wavelet based coders.

1.5 Objective

Strong academic and commercial interest in image compression results various effi-

cient compression techniques. Some of these techniques have evolved into interna-

tional standard such as JPEG and JPEG2000. However, the manifold of multimedia

applications demand for further improvement in image quality. JPEG 2000 provides

superior low bit rate performance with increase of bit stream functionalities than

JPEG. This is achieved with a substantial increase of computational complexity.

The objective of the research work is to develop reduced memory, low complexity

image compression algorithms which exhibit superior low bit rate performance with a

set of desirable attributes like resolution scalability, region of interest (ROI) retriev-

ability, random access decodability and embeddedness. Since block based transforms

such as DCT and DTT are have near optimal energy compaction properties, it is

possible to make use of these transforms with innovative wavelet like coefficient ar-

rangements to improve the rate distortion performance, while retaining most of the

above set of attributes. Therefore, the objectives can be summarized as:

• To analyze the performance of DTT on JPEG baseline as well as embeddded

17

Chapter 1 Introduction

codecs for various kind of test images and to devise a method that reduces the

computation as well as hardware requirements.

• To improve the performance of low complexity algorithms such as LSK and NLS,

especially at lower rates using DTT based some novel proposed techniques.

• To estimate the complexity and performance improvement of the improved

LSK and NLS with the state-of-the-art wavelet based embedded coders such

as SPIHT, SPECK, WBTC, JPEG 2000. To incorporate some desirable fea-

tures such as pixel scalability, resolution scalability, random access decodability

and ROI retrievability to the proposed algorithms.

• To extend the domain of improved LSK algorithm for compressing color images

and also compare its performance with CSPIHT and other embedded coding

techniques.

• To develop efficient low complexity DCT/DTT based embedded coding algo-

rithms especially suitable for low bit rate applications. The decoded image

quality performance between proposed DCT and DTT based embedded coders

are to be analyzed in comparison with existing state-of-the-art DCT based em-

bedded coders.

• To develop other low complexity transform matrices suitable for portable mul-

timedia applications, such as digital camera, camcorders, etc.

1.6 Organization of the Dissertation

Including this introductory chapter, the thesis has been divided in to seven chapters.

The organization of the dissertation is presented below:

Chapter II

Compression performance assessment of discrete Tchebichef transform

This chapter presents the compression performance (PSNR vs. compression ratio) of

DTT on a JPEG baseline codec. DTT has been evaluated on 8×8 blocks of image data

from left to right and then top to bottom over the whole image in a raster scan order

like DCT in JPEG. The compression ratios at different scale factors are also compared

between DCT and DTT. A 3 × 3 zigzag pruning low complexity DTT algorithm is

developed and its impact on the decoded image quality is also studied. The distributed

arithmetic (DA) based algorithm is also implemented on Xilinx FPGA device to

compare it’s hardware utilization over DCT and ICT. Finally, this chapter deals with

18

Chapter 1 Introduction

DTT SPIHT embedded coding algorithm which combines DTT with SPIHT coding

algorithm. The algorithm also incorporates human visual system (HVS) properties

to improve the visual performance of the decoded images. The comparison with

DCT SPIHT algorithm indicates a significant PSNR improvement on images having

sharp edges and slightly inferior performance with smooth as well as textured images.

Chapter III

A reduced memory, low complexity embedded image compression algo-

rithm using Hierarchical listless DTT

An improved LSK (ILSK) algorithm which combines with DTT algorithm is presented

in this Chapter. The ILSK algorithm is based on the fundamental principle of coef-

ficient decaying spectrum of transformed images where it is possible to encode more

number of subband blocks using few symbols. The proposed coder named as Hier-

archical listless DTT (HLDTT) shows improved low bit rate performance (PSNR or

MSSIM) compared to DCT SPIHT based embedded coders. From extensive simula-

tions, it is verified that the MSSIM performance of HLDTT decoded images are better

over most of the existing DCT based embedded coders over a wide range of bit rates.

HLDTT reduces the dynamic memory requirements at earlier passes significantly. It

also possesses region of interest retrievability (ROI) and random access decodability

features. Further, the listless feature of HLDTT reduces the overall hardware com-

plexity and hence, it can be an attractive candidate for browsing images over narrow

bandwidth channel or streaming data in the Internet.

Chapter IV

Reduced memory listless scalable embedded image compression algorithms

In this chapter, two listless algorithms are proposed which are Listless embedded block

partitioning (LEBP) for gray scale images, and Color listless embedded block parti-

tioning (CLEBP) for color images. The LEBP algorithm comprises ILSK algorithm

with lift based discrete wavelet transform. The CDF 9/7 filter taps are used in the lift

based wavelet transform because of its good compression performance. The coding

performance of these algorithms are compared with some of the best known wavelet

based coding algorithms such as SPIHT, SPECK, LSK, NLS and JPEG 2000. With

minor rearrangement of the encoded output, LEBP generates feature rich bit stream.

This could be an alternative to JPEG2000 for some applications. The reduction of

dynamic memory at lower rates and improved scalability of the proposed algorithms

by pixel accuracy and resolution are very effective for real-time browsing of images on

the Web, downloading or reconstructing the images in a system with limited mem-

ory buffer, transmission of images through limited bandwidth channels, decoding the

19

Chapter 1 Introduction

images depending on the available resolution of the rendering systems, etc.

Chapter V

Listless block-tree set partitioning algorithm for very low bit-rate embed-

ded image compression

In this chapter, an improved depth first search algorithm has been developed instead

of improved breadth first search algorithm proposed in Chapter 3 and 4. The pro-

posed algorithm named as Listless block-tree embedded coder (LBTC) is a listless

approach to wavelet block-tree coding (WBTC) algorithm. LBTC not only reduces

the dynamic memory requirements compared to wavelet based WBTC and SPIHT,

but also speeds up compression and decompression process without compromising im-

age quality especially at lower bit rates. Further, the proposed algorithm is combined

with DCT and DTT block transforms to indicate the superiority compared to almost

all the DCT based embedded coders.

Chapter VI

An efficient sparse 8× 8 transform matrix for Image compression

A low complexity orthogonal transform matrix by appropriately inserting more num-

ber of zeros is proposed in this chapter. The compression performance of the pro-

posed matrix is evaluated on a JPEG baseline codec and compared with some of the

DCT/ICT based algorithms for gray scale and color images. A DA based algorithm

for fast computation of the matrix is also developed. FPGA synthesis results show

that the matrix needs less number of hardware resources. Hence, it can be used in

low power and complexity constrained H/W platforms.

Chapter VII

This chapter concludes the dissertation with the contributions. Details of further

research directions which can be attempted subsequently are also presented.

1.7 Conclusions

This chapter provides a brief introduction about the fundamentals of image compres-

sion and information theory. The fidelity criteria for evaluating the quality of decoded

images is discussed. A brief introduction to JPEG image compression and embedded

image compression is presented. The background and scope of the work, the motiva-

tion and the objective of the thesis are systematically discussed. A brief chapter wise

description has been also presented.

20

Chapter 2

Compression Performance
Assessment of Discrete Tchebichef
Transform

Preview

The Discrete Tchebichef Transform (DTT) based on orthogonal Tchebichef polyno-

mials can be an alternative to Discrete Cosine Transform (DCT) for JPEG image

compression standard. The properties of DTT are not only very similar to DCT, but

it has also higher energy compactness and lower computational advantage using a set

of recurrence relation. Through extensive simulation, image reconstruction accuracy

(i.e., PSNR and MSSIM) and the compression performance at various scaling factors

for both DCT and DTT is verified. It has been demonstrated that DTT exhibit better

PSNR/MSSIM performance than DCT for images having higher intensity gradation.

DTT shows nearly similar PSNR/MSSIM performance with DCT for smooth and

textured images. It is also further verified that DTT has better compression ability

than DCT in most of the images.

A DTT based hybrid embedded coder has been proposed for image compression

applications. In this coder, DTT is coupled with Set partitioning in hierarchical

coding techniques (SPIHT). Further, human visual system (HVS) with appropriate

perceptual weights are applied to improve the perceptual quality of the reconstructed

image. The compression and image reconstruction performance has been compared

with some the state-of-the-art coders in the literature. Extensive simulations on

various kinds of images indicates strongly that the proposed coder outperforms most

of the coders.

A fast zigzag pruning DTT algorithm of different prune lengths has been pro-

posed and compared with the existing DTT fast algorithms. The principal idea of

the proposed algorithm is to make use of the distributed arithmetic and symmetry

21

Chapter 2 Compression Performance Assessment of Discrete Tchebichef Transform

property of 2-D DTT, which combines the similar terms of the pruned output. Nor-

malization of each coefficient has been done by merging the multiplication terms with

the quantization matrix so as to reduce the computation. Equal number of zigzag

pruned coefficients and block pruned coefficients are used for comparison to test the

efficiency of our algorithm. Experimental method shows that the proposed method is

quite competitive with the block pruned method. Specifically for 3× 3 block pruned

case, the proposed method provides lesser computational complexity and has higher

peak signal to noise ratio (PSNR). The reconstructed image quality of different pruned

length is evaluated both subjectively and objectively. The proposed method has been

implemented on a Xilinx XC2VP30 FPGA.

2.1 Introduction

Image Transform methods using orthogonal kernel functions are commonly used in im-

age compression. One of the most widely known image transform method is Discrete

Cosine Transform (DCT), used in JPEG compression standard [4].The computing de-

vices such as Personal digital assistants (PDAs), digital cameras and mobile phones

require a lot of image transmission and processing. Therefore, it is essential to have

efficient image compression techniques which could be scalable and applicable to these

smaller computing devices. Discrete Tchebichef Transform (DTT) which is derived

from a discrete class of popular Tchebichef polynomials is a novel orthonormal version

of orthogonal transform. It has found applications on image analysis and compression

[45],[49].

Though various efficient compression techniques have been reported, the wide

range of multimedia applications demands for further improvement in compression

quality. Therefore, most of the research activities are focused on wavelet based coders

rather than DCT based image coders. Wavelet based coders offers superior perfor-

mance in terms of visual quality and PSNR at very low bit rates (below 0.25 bpp)

[15],[16],[79],[80]. This is mainly attributed due to innovative strategies of data orga-

nization and representation of wavelet transformed coefficients.

Although wavelets are capable of more flexible space-frequency resolution trade

offs than DCT, DCT is still widely used in many practical applications because of

its compression performance and computational advantages. Recently, DCT-based

coders with innovative data organization strategies and representations of DCT coef-

ficients have been reported with high compression efficiency [39]- [43].

Recently, DTT has found excellent rate-distortion trade-off like DCT and outper-

forms DCT for image having high intensity gradations [48],[81]. Therefore, DTT is

22

Chapter 2 Compression Performance Assessment of Discrete Tchebichef Transform

used as a substitute for DCT in an embedded coder. Further, human visual system

(HVS) has been applied to increase the subjective quality of the image [82]. The

proposed embedded coder consists of HVS with DTT and SPIHT coding techniques.

The performance of this kind of coder has been evaluated and compared with DCT

based embedded coders, JPEG, improved JPEG [83], Significance tree quantization

(STQ) [40], and STQ+Haar.

The Tchebichef moment compression that has been proposed in this dissertation

is meant for smaller computing devices owing to its low computational complexity

[51]-[53]. Ishwar et al. [52] have shown that DTT has lower complexity since it

requires the evaluation of only algebraic (only add and shift operations, no multipli-

cations) expressions, whereas implementation of DCT requires integer approximation

or intermediate scaling, like Integer cosine transform (ICT) [37].

There are many DCT compression algorithms which can be computed in a fast

way by means of direct or indirect methods [84]-[86]. These algorithms assume same

number of input and output points. However, in image coding applications, the most

useful information about the image data is kept in the low-frequency DCT coefficients.

Therefore, only these coefficients could be computed. This gives rise to the application

of pruning techniques. Additional processing speed-up is also possible using this idea.

Several algorithms for pruning the 1-D DCT in [54]-[58] and 2-D DCT in [59]-[62]

have been addressed.

A 2× 2 block pruned out of 4× 4 DTT algorithm which computes the upper left

quarter of 4×4 image blocks has proposed in [53]. Saleh [87] has proposed a fast 4×4

algorithm suitable for different block sizes. Having surveyed on different DCT pruning

algorithms, a fast zigzag pruning algorithm and its image reconstruction quality for

image coding applications have been proposed.

2.2 Discrete Tchebichef Transform

The Discrete Tchebichef Transform (DTT) is relatively a new transform that uses the

Tchebichef moments to provide a basis matrix. As with DCT, the DTT is derived

from the orthonormal Tchebichef polynomials. This leads to presume that it will

exhibit similar energy compaction properties [45].

For a 2-D image function f(x, y) on the discrete domain of [0, N−1]× [0, M−1],

the discrete forward Tchebichef Transform of order (u× v) is defined as:

Tuv = 1
ρ̃(u,N)ρ̃(v,M)

N−1
∑

x=0

M−1
∑

y=0

f(x, y)t̃u(x)t̃v(y)

where, u, x = 0, 1, 2....., N − 1., and v, y = 0, 1, 2,,M − 1.

(2.1)

23

Chapter 2 Compression Performance Assessment of Discrete Tchebichef Transform

Given a set of Tchebichef transform Tuv for a digital image f(x, y), the inverse trans-

formation of Tchebichef moment can be defined as:

f(x, y) =
N−1
∑

u=0

M−1
∑

v=0

Tuv t̃u(x)t̃v(y)

where, u, x = 0, 1, 2....., N − 1., and v, y = 0, 1, 2,,M − 1.

(2.2)

The scaled Tchebichef polynomials t̃u(x) are defined using the following recurrence

relation [88]:

t̃u(x) =
(2u−1)t̃u−1(x)−(u−1)

(

1− (u−1)2

N2

)

t̃u−2(x)

u

where, u = 0, 1,N − 1., and t̃0(x) = 1, t̃1(x) = 2x+1−N
N

(2.3)

The definition as specified above uses the following scale factor [46] for the polynomial

of degree u as

β(u,N) = Nu. (2.4)

The set {t̃u(x)} has a squared-norm given by

ρ̃(u,N) =
N−1
∑

i=0

{t̃u(x)}2 =
N
(

1− 1
N2

)

(

1− 22

N2

)

......
(

1− n2

N2

)

2n+ 1
(2.5)

The values of the squared-norm affect the magnitudes of the corresponding moments

Tuv. As specified in [46], the computation of Tuv can lead to erroneous results when

N is large. This problem can be solved by constructing orthonormal versions of

Tchebichef polynomials by modifying the scale factor in Eqn. 2.4 as

β(u,N) =

√

N(N2 − 1)(N2 − 22)........(N2 − n2)

2n+ 1
(2.6)

By denoting the new set of polynomials with the above scale factor as {tu}, the

recurrence relation given in Eqn. 2.3 can change to the following

tu(x) = (A1x+ A2)tu−1(x) + A3tu−2(x).

where, u = 2, 3,N − 1; x = 0, 1,N − 1.
(2.7)

The coefficients A1, A2 and A3 are as follows:

A1 =
2

u

√

4u2 − 1

N2 − u2
, A2 =

1−N
u

√

4u2 − 1

N2 − u2
, and A3 =

u− 1

u

√

2u+ 1

2u− 3

√

N2 − (u− 1)2

N2 − u2
.

(2.8)

24

Chapter 2 Compression Performance Assessment of Discrete Tchebichef Transform

The starting values for the above recursion can be obtained from the following equa-

tions:

t0(x) =
1√
N
, t1(x) = (2x+ 1−N)

√

3

N(N2 − 1)
. (2.9)

Denoting the squared norm by ρ̃(u,N), so that

ρ̃(u,N) =
N−1
∑

i=0

{tu(i)}2 = 1.0 (2.10)

The moment equation in Eqn. 2.1 now reduces to

Tuv =
N−1
∑

x=0

M−1
∑

y=0

tu(x)tv(y)f(x, y).

u = 0, 1, 2,N − 1; v = 0, 1, 2,M − 1.

(2.11)

The inverse moment transform becomes

f(x, y) =
N−1
∑

u=0

M−1
∑

v=0

Tuvtu(x)tv(y).

x = 0, 1, 2,N − 1; y = 0, 1, 2,M − 1.

(2.12)

Eqn. 2.12 can also be expressed using a series representation involving matrices as

follows

f(x, y) =
N−1
∑

u=0

M−1
∑

v=0

Tuvψuv(x, y)

u = 0, 1,N − 1; v = 0, 1,M − 1.

(2.13)

where, ψuv is called basis image. Assuming equal image dimensions N=M=8, the

basis image ψuv can be represented as:

ψuv =













tu(0)tv(0) tu(0)tv(1) .. tu(0)tv(7)

tu(1)tv(0) tu(1)tv(1) .. tu(1)tv(7)

..

tu(7)tv(0) tu(7)tv(1) .. tu(7)tv(7)













(2.14)

Therefore, Tchebichef transform of a square image I = {f(x, y)}x,y=N−1
x,y=0 as in Eqn.

2.1 can be viewed as the projection of the image I on the basis image ψuv, which

is the product of the vectors tu and tv. Where tu = [tu(0) tu(1) tu(N − 1)] and

tv = [tv(0) tv(1) tv(N − 1)]. Eqn. 2.14 can be written as:

ψuv = [tu]
′[tv] (2.15)

25

Chapter 2 Compression Performance Assessment of Discrete Tchebichef Transform

(a) (b)

Figure 2.1: The 8× 8 basis images of 2D (a) DTT (b) DCT.

In other words, Tchebichef transform Tuv measures the correlation between image I

and basis image ψuv. It records a high positive value if there is a strong similarity

between those. The basis image ψuv of an 8 × 8 image block is shown in Figure

2.1(a). It shows that when the order of the transform is increased, the basis images

are changed from low spatial frequency (upper left corner of the figure) to high spatial

frequency (lower right corner of the figure). This is quite similar to the basis image

of 8 × 8 DCT which is shown in Figure 2.1(b). Figure 2.2 shows the Tchebichef

polynomials tu(x) for u = 0, ..., 7. This conforms that there will be neither large

variations in dynamic range of transformed values nor numerical instabilities that

occur for large values of N .

2.3 Similar Properties between DTT and DCT

The definition of DTT can be written in separable form as:

Tuv =
N−1
∑

x=0

tu(x)
M−1
∑

y=0

tv(y)f(x, y) (2.16)

Therefore it can be evaluated using two dimensional transform as follows:

gv(x) =
M−1
∑

y=0

tv(y)f(x, y) (2.17)

26

Chapter 2 Compression Performance Assessment of Discrete Tchebichef Transform

0 5 10 15 20
−1.5

−1

−0.5

0

0.5

1

1.5

x

tu
(x

)

u=0
u=1
u=2
u=3
u=4
u=5
u=6
u=7

Figure 2.2: Plot of Tchebichef polynomials for N = 20

Tuv =
N−1
∑

x=0

tu(x)gv(x) (2.18)

The transform equation of DCT can be expressed as:

Cuv = α(u)α(v)
N−1
∑

x=0

cos
[

π(2x+1)u
2N

]M−1
∑

y=0

f(x, y)cos
[

π(2y+1)v
2N

]

where, α(u)α(v) =

{

√

1/N, for u, v = 0
√

2/N, otherwise

(2.19)

From Eqn. 2.18 and Eqn. 2.19, it is clear that 2-D DTT and 2-D DCT are just

one dimensional DTT and DCT applied twice by successive 1-D operations, once in

x-direction, and once in y-direction.

• Even Symmetry: From [47], it can be shown that Tchebichef polynomials satisfy

the property

tu(N − 1− x) = (−1)utu(x), u = 0, 1,, N − 1. (2.20)

For DCT:

Cm(n) = (−1)mCm(N − n− 1), m = 0, 1,, N − 1. (2.21)

The above two properties are commonly used in transform coding methods to

get substantial reduction in the number of arithmetic operations.

• Orthogonality: DTT and DCT basis functions are orthogonal. Thus, the inverse

27

Chapter 2 Compression Performance Assessment of Discrete Tchebichef Transform

(a) (b)

Figure 2.3: The Energy Compaction Property on a 256 × 256 image using (a) DCT, and
(b) DTT.

transformation matrix of A is equal to its transpose (i.e., AT). Therefore, this

property render some reduction in the pre-computation complexity. 2-D basis

images of DTT and DCT are shown in Figure 2.1.

From Figure 2.1, it is clear that the basis images of DTT and DCT are quite

similar in nature. Rows in the spectrum are increased in horizontal frequen-

cies while columns are increased in vertical frequencies. For both images low

frequencies resides in the upper part of spectrum.

• Energy Compaction: Efficiency of a transformation scheme can be judged by

its ability to pack input energy into as few coefficients as possible. Further,

the quantizer discard coefficients with relatively small amplitudes without in-

troducing visual distortion in the reconstructed image. DTT and DCT exhibit

excellent energy compaction properties for highly correlated images. The energy

of the image is packed into low frequency region i.e. top left region as shown

in Figure 2.3. It is observed from Figure 2.3(b) that the basis function of DTT

collapse for large image sizes. This is due to the numerical error that propagates

through the calculation using Eqn. 2.7 [46]. By performing image blocks of size

less than 64× 64, the errors can be safely avoided.

28

Chapter 2 Compression Performance Assessment of Discrete Tchebichef Transform

FDTT Quantizer Zig-zag

scanning
Entropy

Encoding

Quantization

Table

Specifications

Huffman

Table

Specifications

8x8 blocks

Encoder

100100..

Compressed

image data

Input Image

 ...

.

.

Figure 2.4: Implementation of FDTT on the 8× 8 blocks of image data.

2.4 Application of DTT on JPEG baseline Standard

Using the JPEG Compression platform, 8 × 8 forward DTT has been used in place

of DCT. Figure 2.4 shows how the FDTT is performed on the 8× 8 blocks of image

data in order to achieve good compression performance. The image is divided into

8 × 8 blocks of pixels in order to apply FDTT. The 8 × 8 blocks are processed from

left-to-right and from top-to-bottom. After transformation, quantization process and

entropy coding are performed.

Quantization is a process which removes the high frequencies present in the original

image. This is due to the fact that the eye is much more sensitivity to lower frequencies

than to higher frequencies. This is done by dividing values of high indexes in the

vector (the amplitude of higher frequencies) with larger values. Values of low indexes

are divided with amplitudes of lower frequencies. The standard JPEG luminance

quantization table have been used in simulation.

After the transformation and quantization over an 8×8 image sub-blocks, the new

8×8 sub-block shall be reordered in zigzag scan into a linear array. The first coefficient

is the DC coefficient and the other 63 coefficients are AC coefficients. Because the

DC coefficient contains a lot of energy, it has usually much larger value than AC

coefficients. Since there is a very close relation between the DC coefficients of adjacent

blocks, the DC coefficients are differentially encoded. This process further reduces

entropy.

The entropy coding process consists of Huffman coding tables as recommended in

JPEG standard. Table K.3 is supplied for coding the luminance DC difference and

Table K.4 is supplied for coding chrominance DC difference. Similarly, there are two

Huffman tables (Table K.5 for luminance and K.6 for chrominance) for encoding the

AC coefficients in Annex K of the baseline JPEG standard for reference. These tables

are stored as header information during the compression process so that it is possible

29

Chapter 2 Compression Performance Assessment of Discrete Tchebichef Transform

to uniquely decode the coefficients during decompression process.

2.4.1 Simulation Results

To evaluate the performance of DTT, simulations are conducted on various kinds of

monochrome images such as Fingerprint image of (798 × 958) size; Lena, slope and

Resolution chart of (256× 256) sizes; Ruler, Mandrill, Barbara and Numbers images

of (512× 512) sizes. The performance of DTT is also performed on color images such

as Lena and f16, each of (512 × 512) sizes. All the simulations are performed on a

MATLAB software running on Windows XP platform.

2.4.1.1 Coding Performance for Grayscale Images

Figure 2.5 shows the compression performance of Lena, Mandrill and ruler images by

varying the scaling factor of the quantization matrix from 1 to 15. It is observed that

DTT has similar or higher compression performance than DCT in most of the images.

The PSNR performance of Figure 2.6 - Figure 2.9 are plotted by varying the scale

factor from 1 to 15. It is observed that the PSNR/ rate-distortion performance of

DTT is better than (∼ 0.2 dB) DCT in Fingerprint and Slope images shown in Figure

2.6 (a) and (b) respectively. In smooth image such as Lena, DCT outperforms DTT,

which is shown in Figure 2.7 (a). The performance of DTT follows closely with DCT

on lower compression ratios, while DCT outperforms DTT at higher compression

ratios in resolution chart image shown in Figure 2.7 (b).

Figure 2.10 shows the visual quality of Lena image decoded at a scale factor of

5 using DCT and DTT on a JPEG baseline standard. It is observed that DCT

outperform DTT in Lena image.

DTT exhibit a significant PSNR performance (typically, 1.5-2.5 dB) over all the

compression ratios in Ruler image shown in Figure 2.8(a). This can be analyzed

by observing Figure 2.11 that the decoded image using DTT shows less artifacts in

between the black lines of Ruler image. Numbers image consists of a lot of edge details

and smooth areas. Therefore, DTT follows closely or even better than DCT. DCT

performs closely and even better than DTT in texture images such as Barbara and

Mandrill images of Figure 2.9(a) and (b) respectively. The decoded image of Mandrill

using DCT (shown in Figure 2.12) has 0.2386 dB of PSNR improvement at a scale

factor of 5 compared to DTT decoded image.

Therefore, it concluded that DTT exhibit better coding performance (PSNR and

MSSIM) in Ruler, slope, Fingerprint and Numbers images, while the coding perfor-

mance lowers in Lena and Mandrill and Barbara images. However, DTT has similar

30

Chapter 2 Compression Performance Assessment of Discrete Tchebichef Transform

0 5 10 15
0

10

20

30

40

50

60

70

80

scaling factor

C
om

pr
es

si
on

 R
at

io

DTT
DCT

(a)

0 5 10 15
0

10

20

30

40

50

60

70

80

90

scaling factor

C
om

pr
es

si
on

 R
at

io

DTT
DCT

(b)

0 5 10 15
6

8

10

12

14

16

18

20

22

24

26

scaling factor

C
om

pr
es

si
on

 R
at

io

DTT
DCT

(c)

Figure 2.5: The Compression ratio vs scaling factor plots between DCT and DTT on a
JPEG baseline codec (a) Lena, (b) Mandrill, and (c) Ruler images.

31

Chapter 2 Compression Performance Assessment of Discrete Tchebichef Transform

or better compression capability than DCT. In other words, the average number of

Huffman encoded bits using DTT is lesser than DCT.

2.4.1.2 Coding Performance for Color Images

Additional processing steps such as color conversion and chroma sub sampling are

used at the front end and back end in the proposed system (like in Figure 1.3) while

compressing color images. 4:2:0 chroma sub sampling is selected for evaluation in this

experiment.

It is observed from Figure 2.13(a) that the rate-distortion performance of DTT

in f16 image follows closely with DCT. There is a slight decrease in performance of

DTT is observed at lower compression ratios in Lena image of Figure 2.13(b). The

MSSIM performance between DCT and DTT is very closely related in both images.

Figure 2.14 and Figure 2.15 show the decoded visual quality of f16 and Lena images

respectively as the scale factor is varied from 1 to 5. This indicate that images decoded

using DTT exhibit similar visual performance as with images decoded using DCT.

32

Chapter 2 Compression Performance Assessment of Discrete Tchebichef Transform

0 10 20 30 40 50 60
22

24

26

28

30

32

34

Compression Ratio

P
S

N
R

(d
B

)

DTT
DCT

(a)

20 30 40 50 60 70 80 90 100
25

30

35

40

Compression Ratio

P
S

N
R

(d
B

)

DTT
DCT

(b)

Figure 2.6: The rate-distortion comparison plots between DCT and DTT on a JPEG base-
line codec (a) Fingerprint, and (b) Slope images.

33

Chapter 2 Compression Performance Assessment of Discrete Tchebichef Transform

0 10 20 30 40 50 60 70 80
23

24

25

26

27

28

29

30

31

32

33

Compression Ratio

P
S

N
R

(d
B

)

DTT
DCT

(a)

5 10 15 20 25 30 35 40 45
20

22

24

26

28

30

32

34

Compression Ratio

P
S

N
R

(d
B

)

DTT
DCT

(b)

Figure 2.7: The rate-distortion comparison plots between DCT and DTT on a JPEG base-
line codec (a) Lena, and (d) Resolution chart images.

34

Chapter 2 Compression Performance Assessment of Discrete Tchebichef Transform

6 8 10 12 14 16 18 20 22 24 26
18

20

22

24

26

28

30

32

34

36

Compression Ratio

P
S

N
R

(d
B

)

DTT
DCT

(a)

5 10 15 20 25 30 35 40 45 50 55
16

18

20

22

24

26

28

30

Compression Ratio

P
S

N
R

(d
B

)

DTT
DCT

(b)

Figure 2.8: The rate-distortion comparison plots between DCT and DTT on a JPEG base-
line codec (a) Ruler, and (b) Numbers images.

35

Chapter 2 Compression Performance Assessment of Discrete Tchebichef Transform

0 20 40 60 80 100 120
22

24

26

28

30

32

34

Compression Ratio

P
S

N
R

(d
B

)

DTT
DCT

(a)

0 10 20 30 40 50 60 70 80 90
20

21

22

23

24

25

26

27

28

29

Compression Ratio

P
S

N
R

(d
B

)

DTT
DCT

(b)

Figure 2.9: The rate-distortion comparison plots between DCT and DTT on a JPEG base-
line codec (a) Barbara, and (b) Mandrill images.

36

Chapter 2 Compression Performance Assessment of Discrete Tchebichef Transform

(a) (b)

Figure 2.10: The reconstructed Lena images at a scale factor of 5 using (a) DCT
(PSNR=27.6998, MSSIM=0.8011) (b) DTT (PSNR=27.4198, MSSIM=0.7930).

(a) (b)

Figure 2.11: The reconstructed Ruler images at a scale factor of 5 using (a) DCT
(PSNR=23.4805, MSSIM=0.9890) (b) DTT (PSNR=25.1387, MSSIM=0.9904).

37

Chapter 2 Compression Performance Assessment of Discrete Tchebichef Transform

(a) (b)

Figure 2.12: The reconstructed Lena images at a scale factor of 5 using (a) DCT
(PSNR=23.4209, MSSIM=0.8708) (b) DTT (PSNR=23.1823, MSSIM=0.8582).

5 10 15 20 25 30 35 40 45
28

29

30

31

32

33

34

35

36

37

Compression Ratio

P
S

N
R

DCT
DTT

(a)

10 15 20 25 30 35 40 45 50
28

29

30

31

32

33

34

35

36

37

38

Compression Ratio

P
S

N
R

DCT
DTT

(b)

Figure 2.13: The rate-distortion comparison plots between DCT and DTT on a JPEG
baseline codec (a) f16 and (b) Lena color images.

38

C
h
a
p
t
e
r

2
C

o
m

p
ressio

n
P
erfo

rm
a
n
ce

A
ssessm

en
t

o
f
D

iscrete
T

ch
eb

ich
ef

T
ra

n
sfo

rm

(a) (b) (c) (d) (e)

(f) (g) (h) (i) (j)

Figure 2.14: Visual quality comparison of the decoded images between DCT(e.g., (a)-(e)) and DTT(e.g., (f)-(j)) on a JPEG baseline codec
by varying the scale factor from 1 to 5: (a)CR=9.6289, MSSIM=0.9331, (b)CR=14.9181, MSSIM=0.9063 (c)CR=19.3893, MSSIM=0.8772,
(d)CR=23.0964, MSSIM=0.8578, (e)CR=26.3267, MSSIM=0.8398.; (f)CR=9.6680, MSSIM=0.9307, (g)CR=15.0113, MSSIM=0.9019,
(h)CR=19.3626, MSSIM=0.8728, (i)CR=23.1402, MSSIM=0.8538, (j)CR=26.4556, MSSIM=0.8379.

39

C
h
a
p
t
e
r

2
C

o
m

p
ressio

n
P
erfo

rm
a
n
ce

A
ssessm

en
t

o
f
D

iscrete
T

ch
eb

ich
ef

T
ra

n
sfo

rm

(a) (b) (c) (d) (e)

(f) (g) (h) (i) (j)

Figure 2.15: Visual quality comparison of the decoded images between DCT(e.g., (a)-(e)) and DTT(e.g., (f)-(j)) on a JPEG baseline codec by
varying the scale factor from 1 to 5: (a)CR=10.7668, MSSIM=0.9247, (b)CR=17.3498, MSSIM=0.8888 (c)CR=22.5746, MSSIM=0.8550,
(d)CR=27.0908, MSSIM=0.8250, (e)CR=30.9071, MSSIM=0.8013.; (f)CR=10.7577, MSSIM=0.9209, (g)CR=17.3623, MSSIM=0.8865,
(h)CR=22.5636, MSSIM=0.8535, (i)CR=27.1774, MSSIM=0.8239, (j)CR=30.9973, MSSIM=0.7997.

40

Chapter 2 Compression Performance Assessment of Discrete Tchebichef Transform

2.5 Application of DTT on SPIHT Embedded Coder

In this section, the application of DTT on SPIHT embedded coder is discussed. The

quality of reconstructed images is analysed both subjectively and objectively.

2.5.1 The Proposed DTT SPIHT Embedded Coder

The proposed DTT SPIHT embedded coder is shown in Figure 2.16. The input image

is divided into non-overlapping 8 × 8 blocks. Each block is transformed using DTT.

The coefficients are arranged into 3 level wavelet pyramid structure. The coefficients

are quantized by SPIHT coding algorithm. The next stage is to use entropy coding

which will give additional compression to the bit stream. For fair comparison, the

back end entropy coding is not employed into the proposed algorithm.

8x8 blocks

extraction
FDTT

Wavelet like

Hierarchical

coefficients

arrangement

Segmentation

Human

Visual System

Perceptual

weights

SPIHT

encoder

Input

image

Compressed

image

Figure 2.16: Block diagram of HVS based DTT SPIHT embedded image coder

2.5.1.1 Rearrangement Algorithm of Transformed Coefficients

Figure 2.17 shows the arrangement of 8 × 8 DTT coefficients in a 3-level wavelet

pyramid structure. After labeling 64 coefficients in each block, the parent child rela-

tionship is defined as follows: The parent of coefficient i is ⌊ i
4
⌋ for 1≤ i ≤63, while

the set of four children associated with coefficient j is {4j, 4j + 1, 4j + 2, 4j + 3} for

1 ≤ j ≤ 15. The DC coefficient 0 is the root of DTT coefficients tree, which has only

three children: coefficients 1,2 and 3. In the proposed structure, offsprings corre-

sponds to direct descendants in the same spatial location in the next finer band of

the pyramid. A tree corresponds to a node having 4 children which always form a

group of 2 × 2 adjacent pixels. In Figure 2.16, arrows indicate that the same index

coefficients of other 8 × 8 blocks are grouped together so that the entire image can

form an overall 3-level pyramid structure.

41

Chapter 2 Compression Performance Assessment of Discrete Tchebichef Transform

0 1

2 3

4 5

6 7

8 9

10 11

12 13

14 15

16 17 20 21

18 19 22 23

24 25 28 29

26 27 30 31

48 49 52 53

50 51 54 55

56 57 60 61

58 59 62 63

32 33 36 37

34 35 38 39

40 41 44 45

42 43 46 47

0 1

2 3

4 5

6 7

12 13

14 15

8 9

10 11

16 17 20 21

18 19 22 23

24 25 28 29

26 27 30 31

48 49 52 53

50 51 54 55

56 57 60 61

58 58 62 63

32 33 36 37

34 35 38 39

40 41 44 45

42 43 46 47

Coefficients rearrange

Figure 2.17: Rearrangement algorithm of 8× 8 transformed coefficients.

Table 2.1: Perceptual weights applied to high frequency sub-band at coarsest scale

Image block Texture image Edge image Smooth image

Texture 0.5 1 1

Edge 2 2 2

Smooth 1.5 1.5 1.8

In the proposed decomposition method, further decomposition of LL3 band into

a 3-level pyramid is performed so that the coarsest level will be a 8 × 8 band. The

overall level of decomposition is six. Then, SPIHT encoding algorithm is applied to

the overall structure.

2.5.1.2 Human Visual System

In the proposed coder, different perceptual weights have been added across the sub-

bands. It is found from the research in vision psychophysics that sensitivity of human

eyes to the distortion reduces in order from edge block, smooth block and texture

block. Different sensitivities suggest that different perceptual weights should be as-

signed to different blocks [82]. These perceptual weights decreases from coarse to fine

scale in accordance with the energy decreasing characteristics of the wavelet coeffi-

cients. On the other hand, this ensures most significant coefficients transferred with

highest priority. Therefore, it can improve the reconstructed image quality. Table

2.1 shows the perceptual weights applied to high frequency sub-bands at the coarsest

scale.

The segmentation process determines the type of image block. Entropy and vari-

42

Chapter 2 Compression Performance Assessment of Discrete Tchebichef Transform

ance values of different blocks play an important role during segmentation. The

entropy value of smooth block is smaller than the edge and textured block. The

variance of textured block is smaller than edge and smooth block.

2.5.1.3 SPIHT Algorithm

SPIHT algorithm [16] keeps track of the state of sets by means of three lists, i.e, list of

insignificant sets (LIS), list of significant pixels (LSP) and lists of insignificant pixels

(LIP). The algorithm uses the following sets to code a bitmap effectively: O(i, j) is

the set of coordinates of all offspring of node (i, j), D(i, j) is set of coordinates of all

descendants of node (i, j), L(i, j) is the set of coordinates defined as D(i, j)−O(i, j),

and H(i, j) is set of all tree roots. The significance test of a wavelet coefficient is

defined as follows:

Sn(Γ) =

{

1, max
(i,jǫΓ)

| (T (i, j) | ≥ 2n

0, otherwise.
(2.22)

where, T (i, j) is the coefficient at node (i, j). Γ is the testing coordinate set in Eqn.

2.22. Briefly, SPIHT coding method is described in the following two passes:

1. Initialization: LSP=φ. LIP contains all tree roots at coarsest scale. LIS contains

all tree nodes. Choose the threshold according to (2.22).

2. Sorting pass: Output Sn(i, j) for all the nodes (i, j) of LIP. If Sn = 1, move

the node (i, j) to the LSP and output the sign of T (i.j). For all the nodes of (i, j)

of LIS, if the nodes belongs to type A, output Sn(D(i, j)). If Sn(D(i.j)) = 1, output

Sn(k, l) for any node (k, l) ǫ O(i, j). If Sn(k, l) = 1, append node (k, l) to the LSP

and output its sign. Otherwise, move (k, l) to the LIP. If L(i, j)6= φ, then move (i, j)

from LIS, while marking as type B. Otherwise, remove the node (i, j) from LIS. If the

node belongs to type B, then output Sn(L(i, j)). If Sn(L(i, j)) = 1, append the four

direct subsequent nodes to the LIS as type A.

3. Refinement pass: For each elements (i, j) in the LSP, output the n-th most

significant bit except those added above.

4. Update: Decrement n by 1 and go to sorting pass.

2.5.2 Simulation Results and Analysis

To evaluate the performance of the proposed hybrid image coding algorithm, experi-

ments are conducted on Lena, Barbara, 256 Level Test Pattern, Ruler and Numbers

images. The size of each image is 512 × 512. The first image is a smooth image,

second one is a texture image, third, fourth and fifth are images having sharp edges.

Table 2.2 shows a comparison of proposed DTT SPIHT algorithm with some of

the best known algorithms in the literature. In comparison to Improved JPEG,

43

C
h
a
p
t
e
r

2
C

o
m

p
ressio

n
P
erfo

rm
a
n
ce

A
ssessm

en
t

o
f
D

iscrete
T

ch
eb

ich
ef

T
ra

n
sfo

rm

Table 2.2: PSNR(dB) Comparison of DTT SPIHT With Other Algorithms

Rate(b/p) JPEG Improved JPEG EZDCT STQ STQ+Haar DCT SPIHT DTT SPIHT

Image Barbara Lena Barbara Lena Barbara Lena Barbara Lena Barbara Lena Barbara Lena Barbara Lena

0.25 25.2 31.6 26.0 31.9 25.4 30.7 26.6 31.2 26.8 32.3 26.9 31.8 26.5 31.6
0.50 28.3 34.9 30.1 35.5 29.4 34.8 30.1 35.4 30.7 35.6 30.6 35.6 29.8 35.3
0.75 31.0 36.6 33.0 37.5 32.5 37.1 32.7 37.0 33.4 37.2 33.5 37.7 32.7 37.5
1.00 33.1 37.9 35.2 38.8 34.9 38.7 35.4 38.8 35.6 39.0 36.1 39.3 35.3 39.2

44

Chapter 2 Compression Performance Assessment of Discrete Tchebichef Transform

DTT SPIHT shows a PSNR reduction of 0.2 dB for bit-rates 0.5 and 0.3 dB for

bit-rate 0.25 bpp on Lena image. The PSNR values of DTT SPIHT is high at bit

rate above 0.75 bpp. For Barbara image, DTT SPIHT shows a PSNR reduction of

0.3 dB between 0.5-0.75 bpp. The advantage of the proposed method is its simplicity

in comparison to improved JPEG. Entropy encoding and decoding processes are not

used by our algorithm. By incorporating back end arithmetic coding stage in the our

coder, additional 5-10 % compression can be achieved.

Comparing with EZDCT algorithm, the proposed DTT SPIHT shows a PSNR gain

up to 1.0 dB at low bit-rates in Lena and Barbara images. For Barbara image, STQ

algorithm shows a PSNR gain of almost 0.1 dB over 0.25 to 1 bit-rates. DTT SPIHT

outperforms STQ on all bit rates in case of Barbara image. STQ+Haar shows a

maximum of 0.9 dB gain over DTT SPIHT on Barbara image. For bit-rates between

0.5 and 1 bpp DTT SPIHT shows a good PSNR gain over STQ+Haar algorithm on

Lena image. DCT SPIHT always outperform the proposed DTT SPIHT algorithm

for Lena and Barbara images.

Table 2.3: Comparison of PSNR(dB) Values of DCT SPIHT With DTT SPIHT

Rate(b/p) DCT SPIHT DTT SPIHT
256 Level- Ruler Numbers 256 Level- Ruler Numbers

Test Pattern Test Pattern

0.125 17.3 13.0 17.4 17.3 13.8 17.4
0.25 19.1 16.3 19.3 19.0 19.3 19.1
0.50 21.8 22.9 22.1 21.8 23.1 22.1
0.75 24.4 26.5 25.0 24.5 27.4 25.1
1.00 26.6 28.6 27.7 26.8 31.0 27.8

Table 2.4: Comparison of PSNR(dB) and MSSIM Values of DTT SPIHT With HVS and
Without HVS on Lena Image

Bit-rate DTT SPIHT without HVS DTT SPIHT with HVS
in bpp PSNR MSSIM PSNR MSSIM

0.125 28.5 0.8432 28.4 0.8552
0.25 31.6 0.9172 31.5 0.9238
0.50 35.3 0.9637 35.0 0.9655
0.75 37.5 0.9785 37.2 0.9737
1.00 39.3 0.9856 38.7 0.9861

The performance of propose DTT SPIHT algorithm can be well judged form Table

2.3, which shows a PSNR comparison between DCT SPIHT and DTT SPIHT on 256

Level Test Pattern, Ruler and Numbers images. It is observed that DTT SPIHT

shows a gain of 0.1 to 0.2 dB on 256 Level Test Pattern image in all the considered

bit rates. On Ruler image, the proposed algorithm outperforms DCT SPIHT at any

45

Chapter 2 Compression Performance Assessment of Discrete Tchebichef Transform

(a) (b)

Figure 2.18: The reconstructed images of Lena using HVS based DTT SPIHT at a bit-
rate of 0.25 bpp (a) HVS on (PSNR=31.5, MSSIM=0.9236) (b) HVS off (PSNR=31.6,
MSSIM=0.9172).

bit-rate significantly (e.g., 3.0 dB at 0.25 bpp). Maximum PSNR improvement in

Numbers image is 0.1 dB on the considered bit rates except at 0.25 bpp.

Table 2.4 shows the comparison of hybrid DTT SPIHT with HVS is on and off. It

is demonstrated that when HVS is on, it reduces the objective quality of the image

between 0.1 to 0.3 dB at lower bit-rates (0.125 to 0.5 bpp) for Lena image. Figure 2.16

(a) and (b) shows the reconstructed Lena image at a bit-rate of 0.25 bpp while HVS

is on and HVS is off respectively. It has been observed that the shoulder and facial

portion of Lena image in Figure 2.18(a) is smoother than in Figure 2.18(b). This is

obvious by comparing the MSSIM performances listed out in the same table. This

indicates that a significant improvement in the subjective quality of decoded Lena

image at lower bit rates compared to higher bit rates is observed. Similar perceptual

improvement is also observed for other images.

2.6 Development of 4× 4 Zigzag Pruning DTT Algorithm

Although the result analysis discussed in the previous Section 2.4 uses 8 × 8 DTT,

the following analysis deals with 4 × 4 DTT. Because, small block size DTT needs

lower computation; which is highly desirable for low power computing devices.

46

Chapter 2 Compression Performance Assessment of Discrete Tchebichef Transform

2.6.1 Proposed Zigzag Prune 4× 4 DTT Algorithm

The 2-D DTT from Eqn. 2.11 can be expressed in matrix form as:

T == τFτ ′. (2.23)

where F is the 2-D input data, τ is the Tchebichef basis and T is the 2-D matrix of

transformed coefficients. The transform kernel for 4 point DTT can be defined from

Eqn. 2.11 as:

τ =













1/2 1/2 1/2 1/2

−3/2
√

5 −1/2
√

5 1/2
√

5 3/2
√

5

1/2 −1/2 −1/2 1/2

−1/2
√

5 3/2
√

5 −3/2
√

5 1/2
√

5













(2.24)

By defining x = 1/2 and y=1/
√

5, Eqn. 2.23 can be written as:

τ =













x x x x

−3xy −xy xy 3xy

x −x −x x

−xy 3xy −3xy xy













(2.25)

Factorizing τ in Eqn. 2.25, we can have

S =













x x x x

xy xy xy xy

x x x x

xy xy xy xy













, τ̂ =













1 1 1 1

−3 −1 1 3

1 −1 −1 1

−1 3 3 1













(2.26)

S is a scaling matrix and can be separated from the core transform computation. The

expression in Eqn. 2.23 can be factorized as

T = (τ̂F τ̂ ′)⊙ Ŝ, where, Ŝ =













x2 x2y x2 x2y

x2y x2y2 x2y x2y2

x2 x2y x2 x2y

x2y x2y2 x2y x2y2













and T̂ = τ̂F τ̂ ′. (2.27)

Symbol ⊙ indicates element-by-element multiplication. Since τ̂ is orthogonal, but not

orthonormal, normalization can be done by merging Ŝ into the quantization matrix.

By substituting Eqn. 2.24 in Eqn. 2.23, each transformed coefficients can be

calculated for the input matrix F . Furthermore, the even symmetry property allows

to group terms of the form f(x, 1) ± f(x, 3) for x = 0, 1, 2, 3 to further reduce the

47

Chapter 2 Compression Performance Assessment of Discrete Tchebichef Transform

number of arithmetic operations. The coefficients are selected in a zigzag pruned way

and the computational complexity is compared with that of equal number of block

pruned coefficients as specified in [87]. For the specific case, the nine zigzag pruned

coefficients are compared with nine block pruned coefficients. Starting from upper

left coefficients, the normalized nine zigzag pruned coefficients, T̂ij’s from Eqn. 2.27

are given as:

T̂00 = [(A+ C) + (E +G) + (I +K) + (M +O)],

T̂01 = [{(3B +D) + (3F +H)}+ {(3J + L) + (3N + P)}],
T̂10 = [3{(E +G)− (A+ C)}+ (M +O)− (I +K)],

T̂20 = [(A+ C) + (E +G)− {(I +K) + (M +O)}],
T̂11 = [3(3F +H)− 3(3B +D) + (3N + P)− (3J + L)],

T̂02 = [(A− C) + (E −G) + (I −K) + (M −O)],

T̂03 = [(B − 3D) + (F − 3H) + (J − 3L) + (N − 3P)],

T̂12 = [3{−(A− C) + (E −G)} − (I −K) + (M −O)],

T̂21 = [{(3B +D) + (3F +H)} − {(3J + L) + (3N + P)}],

(2.28)

where
A = f(0, 3) + f(0, 0), B = f(0, 3)− f(0, 0),

C = f(0, 2) + f(0, 1), D = f(0, 2)− f(0, 1),

E = f(3, 3) + f(3, 0), F = f(3, 3)− f(3, 0),

G = f(3, 2) + f(3, 1), H = f(3, 2)− f(3, 1),

I = f(1, 3) + f(1.0), J = f(1, 3)− f(1, 0),

K = f(1, 2) + f(1, 1), L = f(1, 2)− f(1, 1),

M = f(2, 3) + f(2, 0), N = f(2, 3)− f(2, 0),

O = f(2, 2) + f(2, 1), P = f(2, 2)− f(2, 1).

The nine normalized block pruned coefficients are given as:

T̂00, T̂01, T̂02, T̂10, T̃11, T̂12, T̂20; T̂21, T̂22. (2.29)

The expressions for all the coefficients are same as that of zigzag pruned coefficients

defined in Eqn. 2.28 except, coefficient T̂22, which is can be expressed as:

T̂22 = [{(A− C) + (E −G)} − {(I −K) + (M −O)}]. (2.30)

2.6.2 Complexity Analysis

The proposed zigzag pruned DTT algorithm is compared with the recently proposed

algorithms in [51],[52],[53],[87] and the traditional separability-symmetry algorithm.

For a n× n pruned block, n2 coefficients are needed for image reconstruction. There-

48

Chapter 2 Compression Performance Assessment of Discrete Tchebichef Transform

Table 2.5: Computational complexity comparison between different DTT algorithms and
our proposed algorithm.

No. of coefficients Number of operations
used for image Multiplications/ Additions/ Shifts
reconstruction Separability & Nakagaki & Block Pruned Proposed
(pruned DTT) Symmetry Mukundnan[51] Ishwar2008 et. al.[52] Abdelwaheb[53] Method[87]

1 - - - - 0/15/1 0/15/0
4 - - - 24/48/0 2/39/7 0/39/5
9 - - - - 6/66/14 0/67/11
16 64/96/0 32/60/0 0/80/16 - 12/80/20 0/80/16

fore, it is obvious that comparison should be made between n× n block pruned with

n2 zigzag pruned.

Table 2.5 shows that the proposed zigzag pruned algorithm gives lower computa-

tion complexity than other algorithms. Specifically comparing with recently proposed

block pruned method in [87], zigzag prune algorithm has lower computational com-

plexities for any pruned sizes. By using only one coefficient, (DC component) 15

additions are required to compute T̂00. For 4 zigzag pruned coefficients, 39 additions

and 5 shift operations are required as compared with 2 multiplications, 39 additions

and 7 shift operations in 2× 2 pruned size. Similarly, for 9 zigzag pruned coefficients,

the proposed algorithm needs 67 additions and 11 shift operations compared to 6 mul-

tiplications, 66 additions and 14 shift operations in 3 × 3 block pruned coefficients.

A substantial reduction in computational complexities is achieved. This is due to the

fact that the coefficients are normalized by merging the multiplication terms with the

quantization matrix.

It is also clear that the complexity of the proposed algorithm is lower than that

of algorithm in [53] for 2× 2 pruned block. The DTT algorithm presented in [52] is

a full 4× 4 DTT algorithm which is having same complexity as the full 16-coefficient

zigzag algorithm.

2.6.3 Hardware Utilization

The proposed algorithm is implemented on Xilinx XC2VP30 FPGA device. We devel-

oped a distributed arithmetic based approach to compute 1-D and 2-D DTT trans-

form on Xilinx XC2VP30 platform. This is due to the fact that, DA is free from

multiplications [77]. All the coefficients are determined by integer shift and addition

operations. Table 2.6 shows the hardware resource utilization of 1-D floating point

DTT algorithm. The number of slices and 4 input LUTs are 2% and 1.2% of the

available resources. This is much higher than 1-D integer DTT.

Considering the case of 2-D DTT, it can be seen from Table 2.7 that pruned DTT

does not require any flip flops (memory) in comparison to 2-D DTT which requires

49

Chapter 2 Compression Performance Assessment of Discrete Tchebichef Transform

Table 2.6: H/W utilization of 1D floating point and integer DTT in Xilinx XC2VP30.

Float DTT Integer DTT
Resources Available Utilise % Utilisation Utilize % Utilisation

No. of slices 13696 277 2 61 0.4
Flip Flops 27392 0 0 0 0
4 input LUTs 27392 493 1.2 112 0.4
Bonded IOBs 556 76 13 84 11

Table 2.7: H/W utilization of 2D floating point, integer and Zigzag prune DTT in Xilinx
XC2VP30.

Float DTT Integer DTT Zigzag prune DTT
Resources Available Utilise % Utilisation Utilize % Utilisation Utilize % Utilisation

No. of slices 13696 707 5 98 0.7 380 2.7
Flip Flops 27392 204 0.9 94 0.3 0 0
4 input LUTs 27392 1286 4 157 0.6 715 2
Bonded IOBs 556 59 10 63 11 263 47

almost 1% of the resources. This makes the transform a combinational circuit instead

of a sequential one. This is a major advantage of using pruning method. Further, the

number of slices and 4 input LUTs are 2.3% and 2% lesser in 9-pruned DTT than

2-D float point DTT. However, the number of bonded IOBs are 37% more in pruned

DTT. By observing into Table 2.7, it is evident that using integer based transform

a number of hardware resources can be saved. The pruned DTT is calculated using

direct approach rather than row-column approach. The merit of direct approach in

calculating transform is that it does not need any memory elements.

2.6.4 Results and Comparisons

A comparison of reconstructed image quality is made between block-pruned sizes of

1 × 1, 2 × 2 and 3× 3 with that of 1,4 and 9 zigzag pruned coefficients respectively.

Table 2.8 Shows the PSNR comparison between block pruned DTT and zigzag pruned

DTT. It can be observed that the PSNR of reconstructed images using 9 zigzag pruned

coefficients are higher than that of 3× 3 block-pruned image sizes. Comparing with

4 zigzag pruned coefficients and 2 × 2 block pruned coefficients, the PSNR of block

pruned coefficients are higher. Nevertheless, there is advantage of computational

complexities in both cases. Similarly, comparison is made between block-pruned DTT

with block-pruned DCT and zigzag-pruned DTT with zigzag-pruned DCT in Table

2.9. It has seen observed that 9 zigzag pruned coefficients of DTT/DCT show always

a higher PSNR than that of 3× 3 block-pruned coefficients. For example, in case of

Lena image, 9 zigzag pruned DTT shows a PSNR gain of 0.7 dB, Barbara shows a

significant gain of 1.54 dB and Crowd image shows a PSNR gain of 1.02 dB. Similar

performance improvement is also noticed in 9 zigzag pruned DCT images shown in

50

Chapter 2 Compression Performance Assessment of Discrete Tchebichef Transform

Table 2.10 and 2.11. Furthermore, for images such as Lena, Barbara and Crowd of

Table 2.10, DCT shows slight better performance than that of DTT. For images such

as Finger print, Mountain and Library of Table 2.11, DTT outperforms DCT of any

pruning sizes. For instance, Finger print image shows a PSNR gain of 1.27 dB in 9-

prune sizes and 0.27 dB in 4-prune sizes. For Mountain and Library images the PSNR

gain is slightly higher. Hence, 9 zigzag pruned coefficients are enough for practical

image or video coding applications.

Table 2.8: Comparison of PSNR between block-pruned and zigzag-pruned reconstructed
images of (a) Lena, (b) Barbara and (c) Crowd.

No. of DTT PSNR(dB)
coefficients Lena Barbara Crowd
retained Block prune Zigzag prune Block prune Zigzag prune Block prune Zigzag prune

1 26.92 26.92 23.37 23.37 21.62 21.62
4 33.35 32.35 25.61 25.23 30.13 29.43
9 39.29 40.00 30.03 31.57 38.54 39.59

Table 2.9: Comparison of PSNR between block-pruned and zigzag-pruned reconstructed
images of (d) Finger print, (e) Mountain, and (f) Library.

No. of DTT PSNR(dB)
coefficients Finger print Mountain Library
retained Block prune Zigzag prune Block prune Zigzag prune Block prune Zigzag prune

1 11.08 11.08 17.08 17.08 16.25 16.25
4 14.94 16.84 19.60 19.82 18.90 19.44
9 22.28 24.38 22.97 23.17 22.69 23.45

Table 2.10: Comparison of PSNR between DCT and DTT of block pruned and zigzag
pruned reconstructed images of (a) Lena, (b) Barbara and (c) Crowd.

No. of PSNR(dB)
coefficients Lena Barbara Crowd
retained for Block prune Zigzag prune Block prune Zigzag prune Block prune Zigzag prune

image DCT DTT DCT DTT DCT DTT DCT DTT DCT DTT DCT DTT
reconstruction

1 26.92 26.92 26.92 26.92 23.37 23.37 23.37 23.37 21.62 21.62 21.62 21.62
4 33.43 33.36 32.38 32.35 25.68 25.61 25.29 25.23 30.20 30.12 29.47 29.43
9 39.65 39.29 40.24 39.99 30.29 30.03 31.78 31.57 39.15 38.54 40.03 39.59

2.7 Conclusions

In this chapter, an 8 × 8 DTT algorithm is implemented in the JPEG in place of

8× 8 DCT algorithm. By using various test images, it has been observed that DTT

has energy compaction property competitive with that of DCT and thereby provides

compression performance relatively close with DCT. Therefore, it can be a suitable

51

Chapter 2 Compression Performance Assessment of Discrete Tchebichef Transform

Table 2.11: Comparison of PSNR between block-pruned and zigzag-pruned reconstructed
images of (d) Finger print, (e) Mountain, and (f) Library.

No. of PSNR(dB)
coefficients Finger print Mountain Library
retained for Block prune Zigzag prune Block prune Zigzag prune Block prune Zigzag prune

image DCT DTT DCT DTT DCT DTT DCT DTT DCT DTT DCT DTT
reconstruction

1 21.88 21.88 21.88 21.88 17.07 17.07 17.07 17.07 16.25 16.25 16.25 16.25
4 28.05 28.25 29.11 29.38 19.59 19.59 19.80 19.82 18.90 18.90 19.42 19.44
9 30.42 30.75 31.94 33.21 22.96 22.97 23.16 23.17 22.69 22.69 23.42 23.45

candidate for applications such as PDA, mobile phones and digital cameras where ef-

ficient image compression techniques are required. The proposed technique uses same

quantization matrix and zigzag scan pattern as used in JPEG standard. The perfor-

mance of DTT can be improved further by suitably selecting a proper quantization

matrix and adaptive scanning technique.

A novel hybrid HVS based DTT SPIHT embedded image coding algorithm has

been proposed. It has been demonstrated that the proposed image coding algorithm

shows an impressive PSNR gain over standard baseline JPEG, EZDCT and STQ,

at all bit-rates but comparable with Improved JPEG, STQ+Haar and DCT SPIHT

on smooth and textured images. DTT SPIHT consistently outperforms DCT SPIHT

for images having sharp edges. By incorporating HVS, the perceptual quality of

the proposed algorithm has been improved at a little cost of PSNR values. This

is especially noticeable at bit-rates ≤ 0.5 bpp. Future research direction is to use

adaptive HVS and modified SPIHT algorithm, which is expected to improve the

image quality subjectively and objectively at low bit-rates.

Finally, a fast algorithm of 2-D 4 × 4 DTT has been proposed which pruned the

coefficients in a zigzag fashion. This zigzag order pruning can be more suitable for

still images and video coding applications because of considerable improvement in

objective image quality and fast processing. The pruning algorithm is implemented

in a Xilinx XC2VP30 FPGA, which shows considerable amount of hardware savings

than a 4 × 4 floating point DTT. Furthermore, it has been shown that compression

using DTT is very similar to compression using DCT for natural and artificial images.

Further research work in this field can be extended to develop a fast DTT algorithm

for input block of size 8× 8.

52

Chapter 3

Low Complexity Embedded Image
Compression Algorithm Using
Hierarchical Listless DTT

Preview

Listless set partitioning embedded block (LSK) and Set partitioning embedded block

(SPECK) are known for their low complexity and simple implementations. However,

the drawback is that these block based algorithms encode each insignificant subband

by a zero. Therefore, these algorithms generate many zeros at earlier passes. It is

known from the statistics of transformed images that the numbers of significant co-

efficients at higher bitplanes are likely to be very few. An improved LSK (ILSK)

algorithm that codes a single zero to several insignificant subbands has proposed.

This reduces the length of the output bit string, encoding/decoding time and mem-

ory requirement at early passes. Further, ILSK algorithm has been coupled with

discrete Tchebichef transform (DTT). The proposed new coder named as Hierarchi-

cal listless DTT (HLDTT) has some desirable attributes like full embeddedness for

progressive transmission, precise rate control for constant bit-rate traffic, region of in-

terest retrievability and low complexity for low power applications. The performance

of HLDTT is assessed using PSNR and MSSIM. From the simulation result, HLDTT

shows significant improvement in PSNR values from lower to medium bit rates. At

the same time, HLDTT shows an improvement in MSSIM values over most of the

DCT based embedded coders on all bit rates.

3.1 Introduction

Hand held mobile or portable devices have limited memory, processing power and

battery life. Real time processing and transmission of images using these devices

53

Chapter 3

Low Complexity Embedded Image Compression Algorithm Using Hierarchical Listless

DTT

require an image coding algorithm that can compress efficiently with reduced com-

plexity. Wavelet based image coders such as Embedded zerotree wavelet coder (EZW)

[15], Set partitioning in hierarchical trees (SPIHT) [16], Set partitioning embedded

block (SPECK) [26], Morphological representations of wavelet data (MRWD)[79] and

Significance-linked connected component analysis (SLCCA) [80] provide excellent rate

distortion performances by exploiting magnitude correlation within or across bands

of decomposition. Each of these coders generates a fidelity progressive bit stream by

encoding bit-planes of quantized dyadic subband coefficients.

SPIHT exhibits much better performance over EZW due to additional partitioning

steps. The SPIHT algorithm has low complexity. However, being a tree based algo-

rithm, it is memory intensive. SPECK is a block based distortion scalable embedded

coder. It uses recursive block splitting methods to isolate significant coefficients. It

has excellent coding performance with very low computational complexity. However,

it requires memory intensive operation as it uses list structure. A variant of SPIHT

called NLS which uses a state table with four bits per coefficient to keep track of set

partitions is presented in [35]. Latte et al. [36] presented a listless SPECK (LSK)

algorithm which uses special markers as in NLS. These markers are updated as block

splitting forms new significant blocks.

Though SPECK and LSK are low complexity image coding algorithms with perfor-

mance nearly close to SPIHT, these coders do not fully exploit the coding performance

at lower bit rates. By looking at the statistics of transformed images, the number of

significant coefficients whose magnitudes are higher than certain thresholds are very

few on earlier bitplane passes. Since LSK does an explicit breadth first search, it

codes zeros to each insignificant subbands as it moves from coarsest to finest sub-

bands. There could be six to seven bit plane passes where LSK codes many zeros

as many subbands are likely to be insignificant with respect to early thresholds. A

block-tree based wavelet algorithm presented in [33] exploits both inter and intra sub-

band correlations to improve the coding performance at very low bit rates. However,

it uses depth first scanning and processes ordered list arrays for set partitioning.

In this chapter, an improved LSK algorithm (ILSK) which combines with DTT

has been proposed. The proposed new coder which combines DTT with ILSK is

named as Hierarchical Listless DTT (HLDTT) is proposed. HLDTT not only re-

duces the encoder and decoder complexity, but also improves the coding efficiency at

lower bit rates. This is achieved by comparing magnitude of coefficients within and

across several subbands/levels. A combination of DTT with LSK coder (named as

DTT LSK) is also proposed to test the effectiveness of HLDTT. The performance of

these coders are evaluated and compared with some of DCT based embedded coders.

54

Chapter 3

Low Complexity Embedded Image Compression Algorithm Using Hierarchical Listless

DTT

It has been found that the proposed coders DTT LSK and HLDTT outperforms al-

most all DCT based embedded coders at lower bit rates. The performance of HLDTT

with Integer wavelet transformed based SPIHT (IWT SPIHT) [89], discrete wavelet

transformed/Lift based SPIHT [10] (DWT SPIHT)[90],[91] and JPEG 2000 [92] is

also compared. It is observed that HLDTT shows an average of 1.0 dB PSNR reduc-

tion over the JPEG 2000 on considered bit rates. The performance of all these coders

are also assessed using state-of-the-art image quality metric MSSIM [3]. It is found

that the proposed coder outperforms DCT SPIHT on all the bit rates for most of the

images.

3.2 The Proposed HLDTT Embedded Coder

The proposed HLDTT embedded coder is shown in Figure 3.1. The input image is

divided into non-overlapping 8× 8 blocks. Each block is transformed using DTT. At

the first iteration, the coefficients are arranged into 3 levels of wavelet like pyramid

structure. In the next iteration, coefficients in LL3 subband are further divided into

8× 8 blocks and DTT is reapplied to these 8× 8 blocks. This facilitates compression

at lower bit rates. This is due to better compaction of energy into few DC coefficients.

Further, three levels of pyramidal arrangement made using these DTT coefficients.

Reapplication of DTT to 8× 8 blocks of LL3 subband makes the coarsest level to be

of 8× 8. The overall decomposition levels become six. The coefficients are converted

to integers and quantized by ILSK coding algorithm. Reverse process is carried out

at the decoder side for image reconstruction.

Figure 3.1: Block diagram of HLDTT embedded image coder

55

Chapter 3

Low Complexity Embedded Image Compression Algorithm Using Hierarchical Listless

DTT

3.2.1 Algorithm for Rearrangement of Transformed Coefficients

The algorithm for rearrangements of the DTT transformed coefficients is exactly

similar to that shown in Figure 2.17 in Chapter 2.

3.2.2 Improved LSK Algorithm

The proposed ILSK algorithm uses linear indexing scheme to address a coefficient [35].

The two dimensional arrangement of M ×N wavelet coefficients are arranged into an

one dimensional array of length I. The partitioning rules of ILSK are presented as

follows:

ILSK makes use of two types of state table markers. These are (i) Fixed markers

(MF [k] and M [k]) (ii) Variable markers (MV [k]) where k ∈ N. In case of fixed

markers, ks’ are the leading indices of wavelet levels, whereas in case of variable

markers, ks’ are the indices of all wavelet coefficients in a transformed image. The

initial and final value of state table markers MF [k] and MV [k] depend upon the

desired level of decomposition. For instance, for a N×N (assuming equal dimensions)

image and L level of decompositions, the initial and final values are given by

[log2(N)− L] and [log2(N)] (3.1)

respectively. M [k] state table hold markers having fixed values (i.e., log2(N)). These

markers point to the leading nodes of each wavelet level. Each marker holds 4 bits

per coefficients to keep track of set partitions. MF [k] state table markers track the

pyramid levels rather than a particular band in a pyramid level. So, a particular

pyramid level can be skipped at once instead of a subband by just assigning a single

0 instead of 3 zeros (a wavelet pyramid level consists of 3 subbands, i.e, HL, LH and

HH). Next, M [k] state table markers are used to skip several wavelet pyramid levels

rather than a single pyramid level at higher bit planes during significant passes. Lastly,

MV [k] markers keep track of set partitions within a pyramidal band. ILSK algorithm

uses strictly breadth first scan like LSK, though, both coders produce different output

bit strings.

There are three passes per bit plane. First, the insignificant pixel (IP) pass which

is similar to LIP pass in SPECK where a lone insignificant pixel is being tested for

significance. Second, the insignificant set (IS) pass tests each multiple pixel sets for

significance like LIS pass in SPECK. IS pass comprises two passes. These are: (a)

The insignificant level (IL) pass which tests a pyramid level for insignificance and

(b) The insignificant group of levels (IGL) pass which tests several pyramid levels for

insignificance. Finally, the refinement (REF) pass that refines pixels found significant

56

Chapter 3

Low Complexity Embedded Image Compression Algorithm Using Hierarchical Listless

DTT

in previous bit-plane passes. IL and IGL passes in IS pass are effective for some of

the higher (initial passes) bit plane. As the scanning of bit planes from MSB to LSB

goes down, IL and IGL passes shall be ignored. This is because most of the wavelet

coefficients become significant at lower bit planes. It can be noted that IL pass and

IGL pass make use of MF [k] and M [k] state tables respectively.

Each marker and its meaning is listed below

S ∗P Each of these three symbols is used for a single pixel.

• SIP: The pixel is insignificant or untested for this bit plane.

• SNP: The pixel is newly significant so it will not be refined for this bit plane.

• SSP: The pixel is significant and will be refined in this bit plane.

The following markers are used on the leading node of each lower level of pyramid.

As the image is scanned, these markers indicate that the next level or subband or a

block is insignificant.

Fixed markers (MF [k]):

• MF [1]: The pixel is the first index of pyramid level L. This pixel along with all

coefficients in the same pyramid level can be skipped.

• MF [257]: The pixel is the first index of pyramid level L − 1. This pixel along

with all coefficients in the same pyramid level can be skipped.

• MF [1025]: The pixel is the first index at pyramid level L− 2. This pixel along

with all coefficients in the same pyramid level can be skipped.
...

• MF [65537]: This is the first index at the finest pyramid level. This pixel along

with all coefficients in this level can be skipped.

Variable markers (MV [k]): The function of variable markers for (L−1)th level (whose

leading index is 257) is explained below. The same can be generalized for other levels.

• MV [257]=MF [257] indicates that the entire wavelet level L−1 can be skipped.

• MV [257]=MF [257]-1 indicates that a subband in the wavelet level L−1 can be

skipped.

• MV [257]=MF [257]-2 indicates that 1/4th of a subband block in the wavelet

level L− 1 can be skipped.
...

57

Chapter 3

Low Complexity Embedded Image Compression Algorithm Using Hierarchical Listless

DTT

• MV [257]=0 indicates that block size equals to pixel size. The pixel is to be

tested for significance.

Fixed markers (M [k]):

• M [65] indicates that all pyramid levels except L can be skipped.

• M [257] indicates that all pyramid levels except L and L− 1 can be skipped.

• M [1025] indicates that all pyramid levels except L, L − 1 and L − 2 can be

skipped.
...

• M [65537] indicates that only the first(finest) pyramid level can be skipped.

k = 65, 257, 1025...65537 are the leading indices starting from resolution level L to

the finest resolution level. A total of six levels of arrangement is made in images of

512× 512 dimensions.

After mapping the two dimensional arrangement of wavelet coefficients into an

one dimensional array of length I, the coding process starts with most significant

bit plane and proceeds towards the finest resolution until a bit budget is met. The

significance level for each bit plane is s=2n which is done with bitwise AND operation.

The decoding operation is exactly reverse of encoding operation with some low level

changes. The decoder sets the bits and sign of coefficients with bitwise OR instead of

bitwise AND. Symbol Γn is significance test function and symbol LL is the Lth level

of a pyramid. In each pass, the coefficient array val is examined for significance with

respect to current threshold. The output of Γn() will be ‘0’ or ‘1’ depending on the

relative magnitude of the coefficient array (val) with respect to current threshold n.

Note that val[k] refers to a single coefficient and val[k : I] or val[k : end of LL] refer

to a coefficient array. The algorithm is initialized by computing maximum threshold

which is defined as:

n =
⌊

log2(max
k
|val(k)|)

⌋

(3.2)

The initialization of state table markers are defined below:

1. Initially, the markers MF [k] and MV [k] correspond the leading indices of sub-

bands. The markers are initialized according to Eqn. 3.1 as follows:

• MF [1, 17, 33, 49] = MV [1, 17, 33, 49] = 3 for LL6(Coarsest subband). (Assum-

ing M∗[k1, k2, ...kn] = M∗[k1] = M∗[k2] = ... = M∗[kn], where symbol M∗ can

be replaced by MV or MF or M and k1, k2, .., kn ∈ k).

58

Chapter 3

Low Complexity Embedded Image Compression Algorithm Using Hierarchical Listless

DTT

• MF [65, 129, 193] = MV [65, 129, 193] = 4, correspond the leading nodes of HL6,

LH6 and HH6 subbands.

• MF [257, 513, 769] = MV [257, 513, 769] = 5, correspond the leading nodes of

HL5, LH5 and HH5 subbands.
...

• MF [65537, 131073, 196609] = MV [65537, 131073, 196609] = 9, correspond the

leading nodes of HL1, LH1 and HH1 subbands.

2. M [65, 257, 1024,, 65537] = 9.

3. Other MV [k] markers which do not correspond the leading indices of subbands

are initialized to any arbitrary value greater than the highest marker value. These

MV [k] markers are marked as SIP.

3.2.3 The Pseudo code of ILSK Algorithm

Pass1 : Insignificant Pixel Pass
k = 0, while k ≤ I //Start of IP pass
1○. IF MV [k] = SIP //insignificant pixel

output(d←val[k] AND s) //send bit
if d

output(sign[k]) //send the sign
MV [k]← SNP //newly significant
else, move to next pixel.

2○.ELSE, move to Insignificant set pass

Pass2 : Insignificant Set Pass
1○. IF MV [k] = MF [k] & MV [k] 6= SIP //Significance test a Level

if k ≤ I/22L //if at coarsest subband, LL6

ProcessS()
else, output{d←Γn(val[k : I])} //IGL pass(uses M [k] state table)

if d, output{d←Γn(val[k : end of L
L
)]} //IL pass(uses MF [k] state table)

if d, ProcessL()
else, skip to Refinement Pass.

2○. ELSEIF, MV [k] 6= MF [k] & MV [k] 6= SIP //Significance test of
//a subband/block

ProcessS()
3○. ELSE, Move past the pixel.

if k > I, Move to Refinement pass

59

Chapter 3

Low Complexity Embedded Image Compression Algorithm Using Hierarchical Listless

DTT

Pass3 : Refinement Pass :
k = 0, while k ≤ I
1○. IF MV [k] = SSP //if significant

output(val[k] AND s) //refine the pixel
move past the pixel

2○. ELSEIF, MV [k] = SNP //if newly significant
MV [k]← SSP //significant for next plane
move past the pixel

3○. ELSEIF, MV [k] = MF [k] & MV [k] 6= SIP

if k ≤ I/22L, skip the set tested insignificant
else, check Γn(val[k : I]) //IGL pass

if insignificant
skip to Pass4

else, check Γn(val[k : end of LL]) //IL pass
if insignificant

skip the Level
else, move to the next subband/set

4○. ELSE, move to the next subband/set/pixel

Pass4 : Update Pass :
n = n− 1 //Decrease threshold by 1
Move to Pass2

ProcessS()
output(d← Γn(subband/set))

if d, QuadSplit()
if (block size = pixel size)

move to Pass1
else, move past subband/set

ProcessL()
output(d← Γn(Level LL))

if d, Split LL into 3 parts.
else, move to the leading index of LL−1.

3.2.3.1 Description of Functions and Parameters used in Pseudocode

1. Significance test function (Γn(X)): The significance test function computes whether

any coefficient inside a wavelet level/subband/block or even a coefficient is significant

with respect to current threshold or not. This is simply achieved by logical AND

operation. For an example, assuming coefficients inside a block X=[-126 110 20 -34],

and current threshold value n = 6. Γn can be calculated as

Γn(X) =
∑

all k

[(2n ≤ |X(k)|) AND (|X(k)| ≤ 2n+1)] (3.3)

if Γn(X)= 0, then output = 0

else, QuadSplit().

2. Function QuadSplit():

Figure 3.2 shows one to one correspondence between MV [k] values and the coeffi-

60

Chapter 3

Low Complexity Embedded Image Compression Algorithm Using Hierarchical Listless

DTT

Figure 3.2: The one to one correspondence between MV [k] values and coefficient values
X(k) is shown. Here the values of k=0,1,2 and 3. If Γn(X) 6= 0, MF [0] do not change its
value while MV [0] change its value to indicate quad partitioning.

cient values X(k). By updating the markers, it is possible to quad split X. This can

be explained as follows:

Let initially MV [0] = MF [0] = 1 and n = 6. MV [1], MV [2] and MV [3] will be

initialized to any value other than the values that are initialized to fixed and variable

markers (i.e., symbol SIP). MV [k] = 12 for k=1,2, and 3 is shown in Figure 3.2 for

illustration. Since Γn(X) 6= 0 for threshold n = 6, MF [0] marker does not change its

value; while MV [0] changes its value by decrementing to 1. The following code will

split X into four individual coefficients by updating MV [k] values to 0.

MV [k] = MV [k]− 1;

for j = 1, 2, 3

MV [k + (j × 22×MV [k])] = MV [k]

end

It is to be noted that if MV [k] = 0, there would not be any quad splitting. The

corresponding coefficient in X is an insignificant pixel (SIP) and it will be tested for

significance in Insignificant pixel pass (Pass 1) of the algorithm.

If X is a wavelet level (In Figure 3.2, X is shown as a quad block. At least 3 such

quad blocks are needed for X to become a level), then the significance function for Lth

level, Γn(LL) is examined according to Eqn. 3.3. If Γn(LL) 6= 0, then LL is to be split

into 3 parts instead of quad split, because a wavelet level consists of three subbands.

The lines of the code are exactly equal to the function QuadSplit(), except, j takes

the values 1 and 2. Assuming MV [k] marker be initialized to 2, the code will update

MV [k] markers to 1 for values of k=0, 4 and 8. This is because, it is assumed that X

61

Chapter 3

Low Complexity Embedded Image Compression Algorithm Using Hierarchical Listless

DTT

consists of 12 coefficients, so k varies from 0 to 11. Therefore, by updating markers, X

is partitioned into 3 parts. When HLDTT examines Γn(LL), this condition is called

IL pass. The IL pass is effective (i.e., when Γn(LL)=0) for higher bit planes, because

more coefficients present in lower subband levels are likely to become insignificant.

If X consists of several wavelet pyramid levels (At least 3 quad blocks for 1st level

and (3× 4) quad blocks like X in Figure 3.2 for 2nd level), the Γn(X) function is also

calculated according to Eqn. 3.3. If Γn(X) is significant, then the algorithm check

the significance of a wavelet level. i.e., Γn(LL). If Γn(LL) 6= 0, it will be split into 3

parts, else the Lth wavelet level can be skipped according to equation:

k = 22×MF [k] + 1 (3.4)

The value k will be the leading index of next lower wavelet level (LL−1). If Γn(X)=0,

the algorithm immediately proceeds to Refinement pass by skipping all wavelet levels

according equation

k = 22×M [k] + 1 (3.5)

This is the situation where IGL pass is effective. Typically, IGL pass will be effective

for top 1 to 5 passes in most of the standard gray scale images. As the algorithm

scans down towards least significant bit planes, IGL pass shall be ignored. This is

because, most of the coefficients are likely to become significant.

3. MV [k] = MF [k] indicates, a level to be skipped. MV [k] 6= MF [k] indicates a

subband/block (not level) is significant w.r.t. threshold n. If it is a subband, it will

be quad split and encoded. Each block can be split in to individual coefficients.

4. If MV [k] 6= SIP , then marker is pointing to the leading index of a set/block. If

MV [k] = SIP , marker points to a coefficient which is insignificant (i.e., MV [k] = 0)

or not yet tested for significance (i.e, MV [k] = 12 in Figure 3.2).

3.2.4 Region of Interest Retrievability

HLDTT groups the transformed coefficients into different subbands as shown in Figure

3.3(a). This is similar to a hierarchical octave band decomposition as shown in Figure

3.3(b), where L levels of decomposition results in 3L + 1 subbands. For an image of

size M × N which is decomposed at level L, the number of trees NT that can be

organized will be equals to the number of coefficients inside the lowest frequency

subband. Therefore,

NT = M/2L ×N/2L (3.6)

62

Chapter 3

Low Complexity Embedded Image Compression Algorithm Using Hierarchical Listless

DTT

If we denote the coordinate of a coefficient in the coarsest subband by (i, j) and

the coordinate of the top left corner of the ROI block by (i∗, j∗), then we have the

following relationship:

i∗ = i× 2L

j∗ = j × 2L (3.7)

In Figure 3.3(b), 64 square regions are retrieved independently by organizing 6 levels

of decompositions of Barbara image (three resolution levels R0, R1 and R2 are shown

here for illustration). In order to detect ROI, it is necessary to group the coefficients

as trees. This can be explained as follows:

Figure 3.3(c) shows 3 hierarchical trees extracted from Figure 3.3(b). Therefore, it

is obvious that 3 such trees having a root located in the coarsest subband constitute a

single ROI. Extending Figure 3.3(c) up to 6 levels, the finest level of each tree consists

of 32 × 32 coefficients. Arranging 3 such trees like in Figure 3.3(d), each ROI will

have 64× 64 coefficients. In the proposed algorithm each tree constitutes 6 resolution

levels. Therefore, the whole image comprises 64 × 3 such trees having roots located

on the coarsest subband. Figure 3.3(d) shows the arrangement of 3 × 4 = 12 such

trees to form 4 ROIs.

Since each ROI is 64 × 64 size, selecting 64 × 64 blocks starting from top left

coordinate (0,0) of Barbara image of Figure 3.4(a) in a horizontal raster scan manner

(left to right and then top to bottom), we can find the selected facial portion is at

a co-ordinate (64,256). It is observed that 64× 64 block size at (64,256) only covers

a quarter of Barbara face. Therefore, it need to select some more 64 × 64 blocks

to accommodate the complete face portion. This requires selecting next top left co-

ordinate (64,320) as well as the blocks having top left co-ordinates (128,256) and

(128,320) of the original 512× 512 image.

In order to detect the facial portion of Barbara image whose top left co-ordinates

are at location i∗ = 64 and j∗ = 256 in the original image, the corresponding coor-

dinates (i, j) in the lowest frequency band is (1,4) according to Eqn. 3.7. Similarly,

other 3 descendant coefficients of (1,4) are located at (9,4) in HL6, (1,12) in LH6 and

(9,12) in HH6 subbands in 6 levels of hierarchical arrangements. Therefore, we need

to group together (1,4), (9,4), (1,12) and (9,12) coefficients corresponds to resolution

level R0 and their respective descendant tree blocks of next finer resolution levels. Af-

ter grouping the coefficients the arrangement look like ROI0 portion of Figure 3.3(d).

Similar coefficient arrangements are made for ROI1 having tree root (1,5) in LL6,

ROI2 having tree root (2,4) in LL6 and ROI3 having tree root(2,5) also in LL6 to

63

Chapter 3

Low Complexity Embedded Image Compression Algorithm Using Hierarchical Listless

DTT

(a)

HL1

HH1LH1

HL2

HH2LH2

HL3

HH3LH3

LL3

(b)

R0

R1

R2

ROI

(c)

R0 R1
R2

ROI0 ROI2

ROI1 ROI3

(d)

Figure 3.3: (a) Arrangement of DTT coefficients after 6 levels of decompositions on Barbara
image (b) Hierarchical decomposition of transformed coefficients across different scales of
a pyramid (c) Grouping of DTT coefficients as trees and resolution levels (d) Arranging 4
ROIs from the whole image.

accommodate the face of Barbara image. Then, each ROI block is mapped into one

dimensional arrangement in a recursive zigzag manner. The length of each ROI form

R0 to RL−1 is initially compressed at 2.0 bpp. Therefore, the length of each ROI be-

comes (64× 64)pixels× 2(bpp) = 8192 bits. This length information is used to locate

the ROI positions. Figure 3.4(b) shows the Barbara image with ROI after applying

rate-distortion (R-D) optimization. A detailed discussion about R-D optimization is

64

Chapter 3

Low Complexity Embedded Image Compression Algorithm Using Hierarchical Listless

DTT

deferred to subsection 3.2.4.1.

HLDTT is not resolution scalable. However, it is signal-to-noise-ratio (SNR) scal-

able. In order to optimally allocate bits across different ROIs for a given overall bit

rate, we have used the quality layer concept of EBCOT [27] algorithm. The set of

coefficients in the same resolution level of a spatial orientation tree (SOT) is called

codeunit [31]. This means, codeunit C0 corresponds to resolution level R0, C1 corre-

sponds to R1 and CL−1 corresponds to RL−1 as shown in Figure 3.5(a).

Figure 3.5(a) also shows the encoded bit stream structure of ROI blocks. The

initial ROI block includes two overhead fields, i.e. l0 and R. Other ROIs only include

l field. The l field records the length of ROI and it also differentiates the boundary

between ROIs. R field records the number of resolution levels. These two fields are

generally set by the user.

R0 is the lowest resolution level that corresponds to codeunit C0, RL−1 is the

highest resolution level corresponding to codeunit CL−1. c0, c1, ...and cL−1 are the bit

strings generated during encoding codeunits.

Each codeunit Ci in a ROI consists of quality layers (Qj, Qj+1, ...) as shown in

Figure 3.5(b). The header of quality layer Qj consists of li
j fields as shown in Figure

3.5(c). li
j is the length of optimal truncation point (marked as Ti

j) for Ci codeunit.

The boundary between the quality layers is obviously the sum of li
j, where i =

0, 1, 2, ..L− 1.

Therefore, total number of overhead bits are ((Nl ×NROI) +NR)×OH , where Nl

is the number of bits in l field, NROI is the number of ROIs, NR is the number of

bits in R field and OH is the overhead bits in codeuints. Then each ROI is decoded

by HLDTT algorithm with bit rate lower than the encoded rate. In this example,

the 4 ROI blocks corresponding to facial portion are decoded at 1.0 bpp while the

ROI corresponding to other blocks are decoded with 0.125 bpp. Therefore, to retain

ROI retrievability, it is necessary to group the coefficients into trees and code them

independently. The main difference between the proposed algorithm and S-SPECK

is that S-SPECK is a scalable wavelet coder which can achieve ROI retrievability and

resolution scalability at one time. The proposed coder do not possesses resolution

scalability unlike wavelet coders where resolution scalability is an inherent property.

This is because the size of DTT is fixed for a particular coder.

3.2.4.1 Rate-Distortion optimization

Each codeunit is bit plane coded. The R-D characteristics curve of Figure 3.6(a)

shows the available truncation points corresponds to each pass for a codeunit Ci.

For each truncation points, z ∈ {1, 2,Zj}, the length T
(z)
i , identifies the smallest

65

Chapter 3

Low Complexity Embedded Image Compression Algorithm Using Hierarchical Listless

DTT

prefix of the embedded bit stream for each pass. The first available truncation point

z = 0 always correspond to discarding the entire bit stream so that T
(0)
i = 0. In the

proposed method, each code units are of varying size which are proportional to their

resolution levels.

It is evident that the R-D properties of the overall compressed image representa-

tion depend upon the selection of appropriate truncation points for each code block.

Therefore, in general, given any s > 0, any set of truncation points, {zj} which

minimizes the Lagrangian cost function [93]

∑

j

D
(zj)
i + s

∑

j

T
(zj)
i (3.8)

is optimal. Where D
(zj)
i is the distortion associated with codeblock Ci truncated at

pointed zj and T
(zj)
i is the distance associated with same truncated point zj. The

value of s is selected so that the solution which minimizes Eqn. 3.8 achieves the

desired overall bit rate or distortion.

The algorithm to find the valid truncation points zj, that minimizes Eqn. 3.8 is as

follows:

Algorithm 1 R-D optimization

Step-1: initialize zj = 0.
Step-2: Find all the set of truncation points for codeunit Ci;
Step-3:
for k = 1, 2, do

Set ∆T k
i = T k

i − T
zj

i and ∆Dk
i = Dk

i −D
zj

i ;

if
∆Dk

i

∆T k
i

> s then

update zj = k
else

remove zj

end if

end for

Let Hi be the set of all truncation points for codeblock Ci, which are solution to the

optimization problem for some value of the parameter s. Hi describes the vertices

of the lower convex hull of the set of distortion-rate pairs, (D
(z)
i , T

(z)
i). These are

illustrated in Figure 3.6(a) as black dots. Vertices in the interior of convex hull (whose
∆Dk

i

∆T k
i

< s, and shown as white dots) shall never be selected by an optimal algorithm

because these truncation points contribute least to the overall image quality.

Since the distribution of the magnitude of DTT coefficients vary among code units,

each codeunit contributes different number of bits to a quality layer. The optimized

codeunit truncation length Ti
j mark the different contributions from each codeunits

66

Chapter 3

Low Complexity Embedded Image Compression Algorithm Using Hierarchical Listless

DTT

to quality layer Qj, which minimize the distortion Dj
i =

∑

j

D
zj

i , subject to the length

constraint,
∑

j

T
zj

i ≤ T j
i as shown in Figure 3.5(b). Subsequent layer, Qj+1, contain

additional contributions from each codeunit, having length T j+1
i −T j

i , which minimizes

the distortion, Dj+1
i =

∑

j

D
zj

i subject to the length constraint
∑

j

T
zj

i ≤ T j+1
i .

(a) (b)

Figure 3.4: ROI retrievability on Barbara image (a) Before RD optimization, (b) After RD
optimization

The pseudocode for ROI detection is as follows:

Algorithm for ROI:

Initialization :
Threshold n = ⌊log2(max |cij |)⌋ .
Set the index of the current ROI as 0.
Set the maximum encoding bit length as lk
and the maximum resolution levels as R.

Step1 : Organize the wavelet coefficients as spatial orientation trees,
and then group them into ROI blocks.

Step2 : Map each resolution level to it′s codeunit
Step3 : If current index of ROI is 0 then

Fill the header of ROI with {l0,R}
Else fill {lk} where, k = 1, 2,....

Step4 : For each codeunit perform HLDTT encoding.
Use rate− distortion optimization and mark the truncation points for each codeunit.

Step5 : Generate quality layer Qj by concatenating
the overall incremental contribution (Tj − Tj−1) from all the codeunits.

Step6 : If the maximum length of quality layer is met
or if the desired rate is achieved then
k = k + 1; j = j + 1
Go to step 3
Else, go to step 4.

67

Chapter 3

Low Complexity Embedded Image Compression Algorithm Using Hierarchical Listless

DTT

If the length of every codeunit is determined, then finding out the exact target rate

for every code block is a trivial task. In most of the cases, valid truncation points do

not lie at desired target bit rate. If the truncation points for each codeunits are large,

it is sufficient to find smallest value of T such that R(T) ≤ Rmax. R(T) is the bit rate

at truncation point and Rmax is the available bit rate corresponding to the codeunit.

The lowest quality layer is formed by concatenating the valid truncation points for

all the codeunit of an ROI. The following example illustrated below, discusses how to

find out the exact bit rate for a quality layer Qi.

Example: Let the target rate for quality layer-0 is R(Q0). For each codeunit, the

R-D optimization algorithm sets a maximum slope s and eliminated all the slopes that

are smaller than s (The coefficient with maximum R-D slope determines the initial

value of s). Then, s is reduced by a certain factor, and is adjusted until the desired

length (rate) is reached. Let the bit string length corresponding to the truncation

points for codeunit C0 is T 0. Then the bit rate for the codeunit-0 (C0) is, R0 = T 0

T max
0

,

where, Tmax
0 is the maximum available length of the bit string corresponding to C0.

Similarly for other codeunits C1, C2, ...CL−1, the bit rates can be expressed as R1 =
T 1

T max
1

, R2 = T 2

T max
2

,, RL−1 = T L−1

T max
L−1

respectively.

The overall bit rate of the quality layer Q0 formed by concatenating the truncation

points. This means overall rate for the quality layer-0 is

R(Q0) =
T 0 + T 1 ++ TL−1

Tmax
0 + Tmax

1 + ...+ Tmax
L−1

(3.9)

In our experiment, every codeunits for a quality layer is truncated at a bit rate of 1.0

bpp in the facial part of barbara image. That means R0 ≈ R1 ≈ ≈ RL−1 ≈ 1.0

bpp. It is interesting to note that the overall bit rate for the quality layer, R(Q0) ≈
R0+R1+....+RL−1

L
. The reason is that the ratio of the proportional increase between

truncation points length and maximum bit length of codeunits have kept the bit rate

fixed.

Figure 3.4(b) shows the overall PSNR improvements on the reconstructed Barbara

image before R-D optimization and after R-D optimization. In both the cases, the

bit rate of ROI part is varied (from 0.125-2.0) while keeping bit rate fixed on the rest

of the part at 0.125 bpp. It is observed that there is an overall PSNR improvement of

0.13-0.25 dB. Subjective enhancement in Figure 3.4(b) over Figure 3.4(a) shows the

validity of the proposed R-D optimization algorithm.

In case of EBCOT, post compression rate distortion (PCRD) is applied to compute

the truncation points. However, the PCRD in EBCOT is a time consuming operation

because of computation of square values of each coded pixel. S-SPECK [31] speeds

68

Chapter 3

Low Complexity Embedded Image Compression Algorithm Using Hierarchical Listless

DTT

l0 R R0
R

1
RL-1 l1 R0 R1

R
L-1

ROI0

overhead overhead

Initial block

l1 C0 C1 CL-1

(a)

Q
j T0

j

T1
j

T2
j

TL-1
j

Q
j+1 T0

j+1

T1
j+1 T2

j+1
TL-1

j+1

Codeunits

Q
u

al
it

y
 l

ay
er

s

C0 C1 C2 CL-1

(b)

Q0 Q1 QL-1

l0
1

l1
1 l2

1 lL-1
1

interleaved bitsover head bits

(c)

Figure 3.5: Formation of compressed bit stream using ROIs (a) Overall bit stream structure
after ROI arrangement (b) Formation of quality layers for different codeuints (c) Final SNR
scalable compressed bit stream of an ROI using quality layers.

up this computation by executing rate distortion method during its encoding process.

HLDTT executes the rate distortion function during the encoding process like S-

SPECK. In HLDTT, the quality layer Qj is formed by collecting the bits from different

codeunits of the encoder like in S-SPECK. If the maximal length of quality layer is

met, a new empty quality layer Qj+1 replaces the current quality layer Qj and waits

for bits from the encoder. This ensures that the quality layers in HLDTT are optimal

because these consist of as many significant coefficients as possible.

3.2.4.2 Strengths of the proposed method compared to Maxshift method in

JPEG2000

• In the proposed method, it is possible to have grading the compression among

different ROIs depending on user priorities. Since the background and several

69

Chapter 3

Low Complexity Embedded Image Compression Algorithm Using Hierarchical Listless

DTT

(Ti
(0)

, Di
(0))

(Ti(1)
, Di

(1))

(Ti
(2)

, Di
(2))

(Ti
(3)

, Di
(3))

(Ti
(4)

, Di
(4))

(Ti
(5)

, Di
(5))

(Ti
(6)

, Di
(6))

(Ti
(7)

, Di
(7))

(Ti
(8), Di

(8))

(Ti
(10)

, Di
(10))

convex hull

D

T

(a)

0 0.5 1 1.5 2

23.8

23.9

24

24.1

24.2

24.3

24.4

Bit rate(bpp)

P
S

N
R

(d
B

)

Before RD optimization
After RD optimization

(b)

Figure 3.6: (a) Convex hull of the distortion-rate pairs for the code block Ci, (b) R-D
optimization on Barbara image

ROIs are compressed at the same bit rate in Maxshift method, there is no

possibility of grading the compression among different ROIs is allowed.

• In Maxshift method, scaling parameter is greater than or equal to maximum

bit plane coefficient. Therefore, overflow problem arises due to limited precision

implementation. The problem is avoided by scaling the background coefficients

rather than scaling up the ROI coefficients. Still, some of the least significant

planes for the background may lost in most of the implementation. However,

overflow problem never arises in the proposed method.

• Several artifacts can disturb the general appearance of the recovered image in

Maxshift method if not enough information about the background is encoded.

However, artifacts never appear on the ROI part of the image in the proposed

method (The artifacts which appear in the proposed scheme at lower rates is

due to block based DTT).

• The proposed scheme naturally supports random access attributes without hav-

ing information about the background pixels. Maxshift supports random access

attributes but background pixel values are to be known beforehand in order to

scale up the ROI part.

3.2.5 Memory Requirement

The number of coefficients in the DC band is Idc = Mdc ×Ndc where Mdc = M×2−L,

Ndc=N×2−L, M is the number of rows, N is the number of columns and L is the

number of subband decomposition levels. The coefficients are stored in a single array

70

Chapter 3

Low Complexity Embedded Image Compression Algorithm Using Hierarchical Listless

DTT

of length I. Zero tree coders can optionally trade memory for computation by pre-

computing and storing maximum magnitude of all possible descendant and grand

descendant sets [35]. For ILSK, the precomputed maximum length array Lmax has

length [I − (2L + 1)]. If W bytes are needed for each sub band coefficients, then the

bulk storage memory required is IW for the subband data and MN/2 (each marker

is of half byte) for the state table MV [k]. For L levels of wavelet decomposition,

MF [k] needs ⌈(3L+ 4)/2⌉ bytes (the number of fixed markers are (3L+ 4) and each

marker is of half byte) and M [k] state table needs ⌈(L/2)⌉ bytes. Therefore, the total

memory required for ILSK is

MILSK = IW +MN/2 + ⌈(3L+ 4)/2⌉+ ⌈(L/2)⌉. (3.10)

The memory required for LSK is:

MLSK = IW +MN/2 (3.11)

It is to be noted that MF [k] markers do not update. This is used as a reference for

MV [k] markers to check the significance of a level/subband. When comparing Eqn.

3.10 with Eqn. 3.11, MILSK is (2L+ 2) bytes higher than MLSK . Assuming L = 6, it

is only 14 bytes.

Table 3.1: Distribution of DTT coefficient magnitudes along thresholds and frequency lev-
els(6: Highest, 1: Lowest) for Lena(512× 512) image

Threshold, 2n Magnitude range Frequency level
6 5 4 3 2 1

212 212,, (213 − 1) 1 0 0 0 0 0
211 211,, (212 − 1) 28 0 0 0 0 0
210 210,, (211 − 1) 51 15 2 0 0 0
29 29,, (210 − 1) 52 69 19 1 0 0
28 28,, (29 − 1) 45 149 126 134 4 0
27 27,, (28 − 1) 30 148 333 597 156 4

3.2.5.1 Dynamic Memory Comparison

Comparing Eqn. 3.10 and Eqn. 3.11, it is concluded that ILSK requires slightly more

memory than LSK. However, the memory required by ILSK is significantly lower

than LSK, typically on top 5 bit plane passes. The reason is that markers M [k] skip

MF [k] and MV [k] markers corresponding to several lower subbands/levels. Table 3.1

shows the distribution of DTT subband coefficients on top 6 thresholds of 6 levels of

coefficient arrangement. An estimation of approximate memory required for ILSK,

SPIHT and LSK on top 9 passes on Lena image is shown in Table 3.2. Note that

71

Chapter 3

Low Complexity Embedded Image Compression Algorithm Using Hierarchical Listless

DTT

Table 3.2: Comparison of memory requirements between LSK, SPIHT and ILSK algorithms
on top 9 passes.

No. of Lena Image
sorting passes MLSK(kB) MSPIHT (kB) MILSK(kB)

1 128 0.8985 0.0313
2 128 0.9004 0.1250
3 128 0.9375 0.5
4 128 5.0088 2.0
5 128 10.039 8.0
6 128 48.872 128
7 128 82.535 128
8 128 136.892 128
9 128 208.512 128

the minimum number of bits required to represent markers depends upon the level of

decomposition and number of markers. For six levels of decomposition LSK needs at

least 4 bits to represent each marker, which is same as ILSK.

It is observed that in most of the images there are few coefficients above most

significant bit (MSB) plane. For an instance, Barbara/Lena/Mandrill image is having

only one significant coefficient in LL6 subband above MSB plane as shown in Table

3.4. Similarly, all 7 significant coefficients above MSB plane in Boat image are confined

inside the coarsest subband. According to ILSK algorithm, M [k] markers related to

leading node of next subband simply skip MF [k] and MV [k] markers related to the

lower levels/subbands. Therefore, ILSK algorithm skips to next lower significant bit

plane from the MSB plane. Since, LL6 subband is having a dimension of 8 × 8, the

maximum dynamic memory required is 8×8
2

= 32 bytes (∼ 0.0313 kB) on first sorting

pass. The memory required by other passes is calculated in a similar procedure.

LSK needs a fixed amount of memory i.e., MN
2

irrespective of the number of passes.

However, the memory required by the ILSK are almost same as that of LSK, typically

6, and above passes. The memory required by SPIHT coder can be found from [33].

For a 512 × 512 image using 2 bytes per coefficient and 6 levels of wavelet like

arrangement, with using the optional pre-computed maximum length array, the worst

case memory required is: { (512×512)
2

× (8bits) + (2L+ 2)} ≃ 128 kB for ILSK, 128 kB

for LSK and 1450 kB for SPIHT. The memory required for DTT is not calculated

here. This part can be efficiently handled by distributed arithmetic based approaches

[77]. Therefore, our algorithm is suitable for a fast and simple implementation.

72

Chapter 3

Low Complexity Embedded Image Compression Algorithm Using Hierarchical Listless

DTT

3.2.6 Complexity Analysis

The complexity of a coding algorithm depends upon target rates, number of bit

planes to be processed and number of list arrays to be processed. Encoding algorithm

performs basic operations such as memory access, magnitude comparison against a

threshold and some input/output operations. On the other hand, decoding algorithm

performs bit manipulations, input/output and memory access operations. It is to be

noted that decoding algorithms are faster than encoding algorithms because:

• No comparison operations are required.

• Efficient skipping of insignificant sets/blocks/subbands.

The complexity of a algorithm also depends upon target rate, because more number

of operations are required at higher target rates.

In the list based coders, the processing of the lists account for much overhead

computations. DCT SPIHT and proposed algorithms DTT LSK and HLDTT are

based on bit plane and requires multiple passes across bit planes to reconstruct a

coefficient. DCT SPIHT algorithm accesses coefficients through lists many times

to reconstruct itself. Coefficients in LSP of SPIHT are further processed by the

refinement pass. A bit of DCT coefficient is added to the compressed bit stream for

each entry of LSP.

In DCT SPIHT, the information about the coefficient significance is managed by

LIP. A coefficient, once entered in LIP, remains there until it becomes significant

and moves to LSP. The proposed coders, DTT LSK and HLDTT do an explicit

breadth first search without using lists. State informations are kept in fixed size

arrays to enable fast scanning of bit planes. In HLDTT, special markers are placed

on the lower nodes of subbands/levels/group of levels instead of searching for the trees

to find predictable insignificance. These markers are updated when new significant

sets/blocks are formed by magnitude comparison. With these sparse marking, a large

section (blocks/subband/level/group of levels) are skipped at once as the breadth

first scan moves through the lower nodes of pyramidal decomposition array. If a

subband/level/group of levels are insignificant with respect to a threshold, it is just

skipped. Otherwise, it is partitioned recursively until a significant coefficient is found.

The probability that a block/subband is insignificant at higher bitplanes is relatively

high. Therefore, the proposed algorithm ILSK has the advantages of quickly finding

significance of a coefficient by recursively partitioning scheme and efficient block skip-

ping. Hence, it has the advantage over memory access time. This expect that the

encoder of HLDTT and DTT LSK are faster than DCT SPIHT.

73

Chapter 3

Low Complexity Embedded Image Compression Algorithm Using Hierarchical Listless

DTT

At the decoder, significance of a coefficient is reconstructed from the received bit

map. When a coefficient/block/subband/level is insignificant, the decoder skips all op-

erations and moves to test the significance of the next coefficient/block/subband/level.

However, the reconstruction of a significant coefficient in the larger sets is more

time consuming operation in DCT SPIHT. This is because of quad or set partition-

ing. Therefore, the decoder of DCT SPIHT is expected to be more complex than

DTT LSK and HLDTT.

3.3 Comparison of DTT with ICT, DCT, IWT, Filter based
DWT and Lift based DWT

Generally, DCT of 8 × 8 block size is used in JPEG standard due to its superior

compression performance. H.264 standard uses 4× 4 ICT owing to its low computa-

tional complexity [37]. The transition from DCT to ICT has inflicted approximation

error but the computational ease of ICT out weights the error. In addition to all the

advantages of ICT, DTT has some additional advantages. These are:

• Due to polynomial nature of DTT, the transform can be converted to an integer

representation without the need of intermediate scaling which is contrary to

4 × 4 ICT. Further, DTT can be implemented using multiplier free and less

computationally intensive algorithms. This, not only makes DTT accurate, but

also reduces computational cost.

• The dynamic range of DTT is comparable to ICT. 4 × 4 DTT has a dynamic

range gain of 8. Two dimensional transform is computed by transforming rows

and columns. Therefore, the total gain is 82 = 64. Since log264 = 6, 6 more bits

are required to store transformed coefficients than the signal input. Therefore,

DTT needs 16-bit arithmetic to compute the transform like DCT.

• DTT orthogonal polynomials basis are less sensitive to noise [63].

• DTT is invariant to linear transforms and can be efficiently used for image

reconstruction.

• The compression performance of DTT is very close to DCT for natural images.

For unnatural images having sharp edges and large intensity variations, DTT

outperforms DCT.

• In case of video compression, the prediction residuals of motion compensation

can also contain large variations. DTT can help a consistent video quality when

inter-frame coding is used [65].

74

Chapter 3

Low Complexity Embedded Image Compression Algorithm Using Hierarchical Listless

DTT

• A 4×4 DCT needs 74 additions and 16 multiplications [94], whereas 4× 4 DTT

needs 66 additions and 32 multiplications [51].

• A 4 × 4 ICT requires 64 additions and 16 shift operations [95] while integer

transformation of 4× 4 DTT requires 80 additions and 16 shift operations [52].

• The fast algorithm proposed by Cho and Lee [96] requires 96 multiplications and

466 additions for 8× 8 DCT implementation. Therefore, each point requires 1.5

multiplications and 7.28 addition operations. On the other hand, computational

cost of DWT depends on the length of the filters. Complexity of conventional

Mallat algorithm [9] has (| h | + | g | +2) multiplications and (| h | + | g |)
additions, where h and g are the length of the filter. Hence CDF 9/7 [90] roughly

has 18 multiplications and 16 additions per point. This complexity is further

reduced by 50% using lifting scheme. However, this is still large compared to

DCT. There is no fast 8 × 8 DTT algorithm reported in the literature. Using

distributed arithmetic based approach [77], a fast and low complexity 8×8 DTT

can be implemented which can compete with 8 × 8 DCT. The reason is that

DTT has similar properties like DCT and both transforms have been derived

from Chebyshef polynomials of the first kind. Recently, Shu et al. [97] reported

a fast Tchebichef transform algorithm which is independent of block size.

• By investing retinal receptive field, Balvias [64] has showed that orthogonal poly-

nomials have certain properties that are similar to those of human visual systems

(HVS). It is also suggested that visual analysis of retina can be regarded as a

process of expansion in orthogonal polynomial basis. It has been experimentally

verified that the decoded images using Tchebichef polynomials have better visual

characteristics than that of DCT polynomials.

• Lossless IWT scheme presented by Sweldens [10],[91] allows low complexity and

efficient implementation of DWT. The IWT mainly has three advantages.

– It has prefect lossless reconstruction capabilities. This is particularly im-

portant for medical image processing.

– It has lower computational complexities than DWT.

– It reduces memory demands of compression algorithms.

• However, using IWT instead of DWT, degrades the rate distortion performance

of lossy codecs (about 3-5 dB than CDF 9/7 bi-orthogonal wavelets). This

is due to the fact that the transform is no more unitary and the information

75

Chapter 3

Low Complexity Embedded Image Compression Algorithm Using Hierarchical Listless

DTT

content is no longer directly related to magnitude. This is particularly harm-

ful for decoders with rate allocation based on bit planes such as SPIHT and

SPECK. Mantissa-rounding operations are needed in order to confirm that the

transformed coefficients should be integers for integer inputs.

• In Table 3.3, various parameters between DCT, ICT, IWT, Filter based DWT,

Lift based DWT and DTT are summarized using a parameter comparison ma-

trix. Although most of the parameters are self-explanatory, others deserve some

comment. Concerning to coding efficiency, DWT is having higher coding effi-

ciency than any block based transforms. The coding efficiency of DTT is very

near to DCT. Parameter such as genericity refers to the ability to compress dif-

ferent types of images. DTT is quite competitive with DCT and DWT, because

DCT and DWT exhibit lesser compression compared to DTT for images having

higher intensity gradation. However, DCT and DWT perform best for smooth

images. In wavelet based coding scheme, a separate HVS model is adopted

to improve the perceptual quality of images in contrast to DTT/DCT based

embedded coding schemes, where polynomials have certain HVS properties.

Table 3.3: Parameter comparison matrix. A ‘+’ indicates that it is supported. The more
‘+’ indicate that it is more supported. A ‘-’ indicates separate techniques are required to
support.

Parameter Transforms
DCT ICT IWT Filter based DWT Lift based DWT DTT

Lossless ++++ +++ +++++ ++++ +++++ ++++
compression
performance

Lossy ++++ ++++ ++ +++++ +++++ ++++
compression
performance

Coding
efficiency ++++ +++ +++ +++++ +++++ ++++

Image recon. ++++ ++ ++ +++ +++ +++++
quality for
un-natural
images

Image recon. +++++ ++++ ++++ +++++ +++++ +++++
quality for
natural
images

Low ++++ +++++ +++ ++ +++ ++++
complexity

Similarity with +++ ++ - - - +++++
HVS properties

Separability +++++ +++++ +++++ +++++ +++++ +++++
& symmetry

Genericity ++++ +++ +++ ++++ ++++ ++++

• In order to ensure optimum rate-distortion performance using IWT, optimal

76

Chapter 3

Low Complexity Embedded Image Compression Algorithm Using Hierarchical Listless

DTT

subband shift scheme (OSS) is employed [89]. In this case, each subband is mul-

tiplied by integer powers of two. This increases the PSNR performance (about

3-5 dB) of most of the medical images. OSS scheme takes the full advantages

of scaling factor K of the Reversible IWT (RB-IWT) which is defined to be 1

[10]. Table 3.5 shows the PSNR performances using OOS scheme for Lena and

Barbara images. It is observed that the lossy compression performance is de-

graded by 0.67-2.48 dB in Lena and 0.3-3.12 dB in Barbara images compared to

DWT SPIHT. In order to take the full advantage of K, the value of K is defined

to be
√

2. This violates the very purpose of integer transforms. The PSNR per-

formances using K =
√

2 are also presented in Table 3.5 for same set of images.

It is observed that the performance is still 0.33-0.80 dB lower in Lena image and

0.22-1.79 dB lower in Barbara image compared to DWT SPIHT. While compar-

ing with HLDTT(16 × 16)[No AC], IWT SPIHT(OOS scheme) shows a PSNR

loss of 0.33-1.7 dB at 0.5-1.0 bpp in Lena image and 0.05-1.93 dB on all the

considered bit rates for Barbara image. However, IWT SPIHT(OOS scheme)

shows a gain of 0.21-0.63 dB on 0.0313-0.25 bpp for Lena image.

• In order to make ICT orthonormal, the scaling matrix is to be multiplied with

integer matrix. In JPEG like codecs, the scaling matrix will be merged with the

quantization process so as to ensure integer transform with fast compression and

decompression processes. However, the scaling matrix of ICT cannot be merged

with SPIHT quantization process like in JPEG. Furthermore, if ICT is combined

with SPIHT, the algorithm will similar to DCT with SPIHT. Therefore, the

purpose of generating integer transformed coefficients will be destroyed because

of scaling matrix.

3.4 Simulation Results and Analysis

To evaluate the performance of proposed hybrid image coding algorithms, experiments

are conducted on Lena, Barbara, Mandrill, Boat, Goldhill, ruler, 256 level test pattern

and Texmos1 images. The implementation is done in MATLAB 7.10.0 under Window

XP, Intel Core 2 Duo CPU with 3 GHz speed and 4 GB of RAM space. The size of

each image is 512× 512.

3.4.1 Coding Performance

In order to evaluate the coding performance, we first compare the cumulative num-

ber of bits generated in different pass of DCT SPIHT and the proposed techniques

77

Chapter 3

Low Complexity Embedded Image Compression Algorithm Using Hierarchical Listless

DTT

DTT LSK as well as HLDTT. Table 3.4 shows the cumulative number of bits gen-

erated in the first six passes of three algorithms on four different types of standard

images (a) Barbara, (b) Lena, (c) Mandrill and (d) Boat.

The symbols illustrated in Table 3.4 are defined as follows:

• A0(S0): A0 is the cumulative number of bits generated on top n passes of

DCT SPIHT and S0 is the number of significant coefficients corresponding to

these n passes, where, n = 1, 2, 3, ...6.

• A1(S1): A1 is the cumulative number of bits generated on top n passes of

DTT LSK and S1 is the number of significant coefficients corresponding to these

n passes.

• A2(S2): A2 is the cumulative number of bits generated on top n passes of HLDTT

and S2 is the number of significant coefficients corresponding to these n passes.

• αA20 is the percentage of bit saving in HLDTT with respect to DCT SPIHT.

• βA21 is percentage of bit saving in HLDTT with respect to DTT LSK.

• BRI20 is the bit rate improvement of HLDTT with respect to DCT SPIHT.

• BRI21 is the bit rate improvement of HLDTT with respect to DTT LSK.

The bit rate (bpp) at nth pass is give by:

Bit rate =
Cumulative number of bits generated

Original image size
. (3.12)

The bit rate improvement (BRI) in bits per pixel (bpp), can be found by taking the

bit rate difference between any two algorithms. For example, at nth pass

BRI20 = Bit rate(DCT SPIHT)− Bit rate(HLDTT), and

BRI21 = Bit rate(DTT LSK)− Bit rate(HLDTT). (3.13)

It is evident form the Table 3.4 that the proposed technique HLDTT consistently

outperforms the other two. The percentage of bits saved (i.e., αA20) by the proposed

technique, HLDTT over DCT SPIHT in the first six passes are about 91-96 %, 81-89

%, 60-76 %, 36-54 %, 15-23 % and 8-21 % respectively. Further HLDTT saves (i.e.,

βA21) 58-82 %, 30-50 %, 10-23 %, 5-10 %, 1-4 % and 0.4 -0.6 % of bits in the first

six bit plane passes respectively compared to DTT LSK. Therefore, HLDTT is more

efficient in sorting significant coefficients than DCT SPIHT and DTT LSK. One of

the main reason is that clusters of zeros are more likely to occur at the early passes

78

Chapter 3

Low Complexity Embedded Image Compression Algorithm Using Hierarchical Listless

DTT

Table 3.4: Cumulative number of bits generated in the first six passes of DCT SPIHT,
DTT LSK and HLDTT techniques, % of bit savings and BRI improvements on various
monochrome images.

Pass no.
Barbara

A0(S0) A1(S1) A2(S2) αA20 βA21 BRI20 BRI21

1 449(1) 83(1) 15(1) 96.7 82.0 0.0017 0.0003
2 933(28) 251(27) 174(27) 81.4 30.7 0.0029 0.0003
3 1537(92) 677(90) 599(90) 61.0 11.5 0.0036 0.0003
4 2555(235) 1720(245) 1634(245) 36.0 5.0 0.0035 0.0004
5 6238(680) 5140(731) 5060(731) 18.9 1.5 0.0045 0.0003
6 21599(2362) 16937(2254) 16857(2254) 21.9 0.5 0.0181 0.0003

Lena
1 449(1) 83(1) 15(1) 96.7 82.0 0.0017 0.0003
2 924(28) 237(29) 163(29) 82.4 31.2 0.0029 0.0003
3 1557(101) 693(98) 618(98) 60.3 10.8 0.0036 0.0003
4 2550(241) 1699(241) 1621(241) 36.5 4.6 0.0035 0.0003
5 5845(663) 5005(696) 4927(696) 15.7 1.6 0.0035 0.0003
6 15197(1945) 14032(1963) 13956(1963) 8.2 0.6 0.0047 0.0003

Mandrill
1 449(1) 83(1) 15(1) 96.7 82.0 0.0017 0.0003
2 906(10) 186(10) 92(10) 89.8 50.5 0.0031 0.0004
3 1416(62) 436(61) 333(61) 76.5 23.6 0.0041 0.0004
4 2156(157) 1084(157) 977(157) 54.7 9.9 0.0045 0.0004
5 4257(406) 3380(444) 3275(444) 23.1 3.1 0.0037 0.0004
6 20719(2325) 18153(2232) 18050(2232) 12.9 0.6 0.0102 0.0004

Boat
1 445(7) 89(7) 37(7) 91.7 58.43 0.0016 0.0002
2 938(27) 234(26) 161(26) 82.8 31.2 0.0030 0.0003
3 1532(92) 589(90) 517(90) 66.3 12.2 0.0039 0.0003
4 2453(199) 1427(201) 1347(201) 45.1 5.6 0.0042 0.0003
5 6126(651) 4799(642) 4721(642) 23.0 1.7 0.0054 0.0003
6 17253(2112) 15695(2120) 15619(2120) 9.5 0.4 0.0062 0.0003

when the threshold is high. The proposed algorithm encodes these clusters more

efficiently than DCT SPIHT and DTT LSK. It is to be noted that the number of

significant coefficients for a particular transform do not vary at a given threshold. It

can vary if the core transform differs. For instance, at bit plane pass 6 on Barbara

image, DCT SPIHT has 108 more significant coefficients than DTT LSK and HLDTT.

But the coding gain of DTT LSK or HLDTT at lower bit rates are high. This is

due to the fact that the encoding bit length of DCT SPIHT is quite larger (i.e.,

21.9 %) and contains many zeros than that of DTT LSK or HLDTT. This, lowers

down the coding gain of DCT SPIHT. The BRI (bpp) of HLDTT over DCT SPIHT

shows an impressive gain compared to DTT LSK. This indicates the inefficiency of

DCT SPIHT at higher bit plane passes (lower bit rates). Therefore, the performance

79

Chapter 3

Low Complexity Embedded Image Compression Algorithm Using Hierarchical Listless

DTT

of DCT SPIHT at lower bit rates is poorer than HLDTT and DTT LSK.

In Table 3.5, the PSNR results of four DCT based algorithms on Lena and Bar-

bara images are quoted from the corresponding papers [4],[41],[79],[95]. These coders

employed adaptive arithmetic coding which produces additional compression to the

final bit stream. MRDCT [79] performs best than other DCT-based methods on Lena

image, whereas, EQDCT [43] performs best on Barbara image. In order to compare

the effective low bit rate gain of HLDTT(8× 8), DCT SPIHT is evaluated under the

same approach as that shown in Figure 3.1. In order to compare the performance im-

provement for the reason of DCT, DCT is combined with SPIHT and compare with

DCT ILSK in first case. In second case, DTT is kept fixed and compare DTT SPIHT

with HLDTT coding techniques. In third case, wavelet transform is adopted and in

fourth case the coding method is kept same and changed the transforms.

ILSK shows PSNR improvement of 0.08-0.55 dB with respect to SPIHT while

using DCT in both the coding schemes on Lena image for the considered bit rates.

Similarly HLDTT shows 0.10-0.33 dB PSNR improvement between 0.0156-0.25 bpp

over DTT SPIHT. However, the PSNR of HLDTT reduces by 0.05-0.08 dB between

0.5-1.0 bpp with respect to DTT SPIHT. HLDTT shows an improvement of 0.01-

0.15 dB on the considered bit rates with respect to DTT LSK. JPEG2000 exhibit

a coding gain of 0.07-1.13 dB on Lena image while comparing with HLDTT(16 ×
16)[No AC]. DWT ILSK outperforms JPEG2000 by 0.27-1.13 dB on all the considered

bit rates. Similarly, DWT ILSK outperforms DWT SPIHT by 0.02-0.72 dB below

0.125 bpp. DWT SPECK and IWT SPIHT show lower performance in most of the

bit rates than the DWT ILSK. Similar trends are also observed in Barbara image.

Jasper-JPEG2000 encoder [98] is used to find the PSNR values of all images while

bypassing the arithmetic coding stage. Figure 3.7(a) and (b) show the the MSSIM

performance improvement of ILSK algorithm over SPIHT on Lena and Barbara images

using different kinds of transform techniques.

Coding results of Boat, Mandrill and Texmos1 images are presented in Table 3.6.

ILSK shows a PSNR improvement of 0.07-0.8 dB with respect to SPIHT by keeping

DCT fixed in Boat image. Similarly, HLDTT outperform SPIHT by 0.31-0.73 dB

while keeping DTT fixed. Keeping the coding method same (i.e., ILSK), DTT shows

some PSNR improvement at very low bit rates. However, the MSSIM performance

due to the reason of DTT is better over DCT. This can be observed in Figure 3.7(c).

Similar trends are also observed for Mandrill and Texmos1 images.

The PSNR performance of 256-level-test-pattern and Ruler images are shown in

Table 3.7. While keeping the transform fixed (say, DCT), the PSNR performance of

ILSK is 0.01-0.39 dB higher than SPIHT in 256-level-test-pattern image.

80

Chapter 3

Low Complexity Embedded Image Compression Algorithm Using Hierarchical Listless

DTT

Table 3.5: Performance comparison (PSNR in dB) between various algorithms on Lena and
Barbara Images

Coder
Lena(512× 512)

0.0156 0.0313 0.0625 0.125 0.25 0.5 1.0

Block transform (DCT) (AC)
EZDCT [41] - - - 28.50 32.27 35.98 39.60
MRDCT[79] - - - 29.26 32.55 35.99 39.49
JPEG [4] - - - 28.00 31.60 34.90 37.90
EQDCT [43] - - - 29.07 32.35 35.90 39.50
DCT SPIHT [43] 22.62 24.18 26.61 28.95 32.31 36.10 39.72
DCT ILSK 23.17 24.52 26.77 29.22 32.39 36.18 39.80

Block transform (DTT) (AC)
DTT SPIHT 22.72 24.20 26.51 28.89 32.19 36.00 39.61
DTT LSK 23.10 24.53 26.75 29.21 32.29 35.95 39.53
HLDTT (8× 8) 23.25 24.58 26.79 29.23 32.31 36.00 39.54
HLDTT (16× 16) 23.19 24.81 27.20 29.65 32.98 36.42 39.65
HLDTT (16× 16)[No AC] 22.47 24.31 26.44 29.12 32.30 35.72 39.21

Wavelet transform (No AC)
JPEG2000 22.58 25.06 27.47 30.25 33.27 36.30 39.28
DWT SPIHT 22.99 25.19 27.61 30.54 33.62 36.80 39.99
DWT SPECK 22.71 24.98 27.32 30.37 33.39 36.51 39.66

IWT SPIHT(K =
√

2) 22.50 24.85 27.28 29.99 32.93 36.07 39.19
IWT SPIHT(OSS scheme) 21.95 24.52 26.98 29.75 32.62 35.39 37.51
DWT ILSK 23.71 25.67 27.90 30.56 33.54 36.62 39.75

Barbara (512× 512)
Block transform (DCT) (AC)

EZDCT [41] - - - 24.07 26.83 30.82 36.10
MRDCT [79] - - - 24.22 26.84 30.61 35.89
JPEG [4] - - - 23.20 25.20 28.30 33.10
EQDCT [43] - - - 24.28 27.02 30.74 35.89
DCT SPIHT [43] 21.16 22.05 22.92 24.57 27.12 30.93 36.42
DCT ILSK 21.45 22.22 23.22 24.85 27.15 31.12 36.48

Block transform (DTT) (AC)
DTT SPIHT 21.25 22.18 23.05 24.52 27.09 30.82 35.98
DTT LSK 21.42 22.21 23.20 24.80 27.03 30.82 36.20
HLDTT (8× 8) 21.51 22.26 23.25 24.83 27.08 30.83 36.21
HLDTT (16× 16) 21.35 22.39 23.46 24.98 27.22 31.14 36.38
HLDTT (16× 16)[No AC] 20.77 21.98 23.15 24.61 27.03 30.63 35.75

Wavelet transform (No AC)
JPEG2000 20.81 22.34 23.39 25.06 27.82 31.42 36.49
DWT SPIHT 21.24 22.49 23.53 24.82 27.54 31.58 36.79
DWT SPECK 21.10 22.25 23.43 24.62 27.10 30.82 35.61

IWT SPIHT(K =
√

2) 20.87 22.27 23.26 24.36 26.58 30.31 35.00
IWT SPIHT(OSS scheme) 20.50 22.13 23.20 24.24 26.44 30.13 33.87
DWT ILSK 21.68 22.63 23.64 25.05 27.43 31.48 36.72

AC: With arithmetic coding, No AC: Without arithmetic coding

81

Chapter 3

Low Complexity Embedded Image Compression Algorithm Using Hierarchical Listless

DTT

Similarly, the PSNR performance of HLDTT is 0.05-0.32 dB higher than DTT SPIHT

for 0.0156-0.5 bit rates. In case of DWT, the performance of ILSK is 0.05-0.47 dB

higher than SPIHT for 0.0156-0.5 bit rates. However, JPEG2000 shows a PSNR gain

up to 3.05 dB compared to HLDTT for the considered bit rates. While keeping the

coding method same (say, SPIHT), DTT shows up to 0.04-0.48 dB gain than DCT

for 0.25-1.0 bit rates in 256-level-test-pattern image. A slight decrease in PSNR (∼
0.05 dB) is observed below 0.25 bpp for the same image.

Table 3.8 shows the rate distortion performances of various color images. The

results are based on 4:4:4 chroma sub sampling with non-interleaved color plane scan

pattern. The bit rate is varied from 0.005 to 1.0 bpp to effectively show the coding

efficiency of the proposed techniques at low (≤ 0.1 bpp) to medium (≥ 0.1 bpp to

≤ 0.5 bpp) bit rates. Lena image shows a very significant (0.07-3.11 dB) improvement

of PSNR values at low bit rates (i.e., form 0.005-0.1 bpp). Similar improvements are

also observed in other smooth images at low bit rates. At medium to higher bit rates,

a slight reduction of coding gain is observed. Baboon image shows a gain of 0.05-0.91

dB at low bit rates and marginal loss at medium to high bit rates. HLDTT also shows

a good improvement of coding gain over DTT LSK at lower bit rates. Improvement

at lower bit rates is highly desirable for transmission of images through a narrow

bandwidth channel where a significant amount of information can be transmitted at

the outset. It is worth noting form experimental results that the coding performance of

color images is higher than gray scale images. The coding performance of color images

can be further improved by exploiting the interdependency between color planes.

Back-end arithmetic coding using contexts and joint encoding generally improves

an additional gain of 0.5 to 1 dB. The same amount of improvement in HLDTT is

expected as well.

Figure 3.7 shows the MSSIM vs. bit rate plot for 6 standard test images. It can

be observed from the figures that the decoded images by HLDTT consistently show

better perception qualities than DCT SPIHT decoded images irrespective of the bit

rate considered. It is also well known that block based embedded coders have lower

perceptual qualities than wavelet based embedded coders at lower rates. This is due

to the blocking effect manifest in lower rate compressed images. Therefore, HLDTT

has lower MSSIM than DWT SPIHT and JPEG 2000 coders at lower rates. The

blocking effect gradually vanishes at higher rates in block based embedded coders.

This increases the MSSIM of HLDTT decoded images at higher rate. For images

having sharp edges such as ruler and 256-level-test-pattern, HLDTT performs better

than DCT SPIHT and IWT SPIHT on all the considered bit rates. The reason is

that DTT has higher energy compaction properties for unnatural images than DCT.

82

Chapter 3

Low Complexity Embedded Image Compression Algorithm Using Hierarchical Listless

DTT

(a)

(b)

83

Chapter 3

Low Complexity Embedded Image Compression Algorithm Using Hierarchical Listless

DTT

(c)

(d)

84

Chapter 3

Low Complexity Embedded Image Compression Algorithm Using Hierarchical Listless

DTT

(e)

(f)

Figure 3.7: MSSIM vs. bit rate on (a) Lena (b) Barbara (c) Boat (d) Mandrill (e) Ruler
and (f) 256 Level Test Pattern images.

85

Chapter 3

Low Complexity Embedded Image Compression Algorithm Using Hierarchical Listless

DTT

Figure 3.8 shows the decoded Barbara and Mandrill images which are compressed

at 0.5 bpp using DCT SPIHT and HLDTT algorithm. It is clearly evident that the

visual quality of HLDTT decoded images are much better than DCT SPIHT decoded

images. The higher values of MSSIM in HLDTT decoded images indicate the result,

even though the PSNR values of DCT SPIHT in both the images at the specified bit

rate are higher compared to HLDTT.

Figure 3.9 shows the coding efficiency of the proposed algorithms at very low (0.05

bpp) bit rate. While comparing with DCT SPIHT decoded image (Figure 3.9(b)),

HLDTT decoded image (Figure 3.9(c)) conveys a significant amount of detail infor-

mation than DCT SPIHT at much lower bit rates. This clearly demonstrates the

enhanced recognizability of the proposed coders. Figure 3.9(f) is the reconstructed

image by DWT ILSK algorithm using CDF 9/7 bi-orthogonal wavelet [90]. Figures

3.9(d) and (e) are the images decoded by DWT SPIHT and JPEG 2000 respectively.

It is observed that DWT ILSK has better PSNR gain than DWT SPIHT and JPEG

2000. Therefore, the enhanced low bit rate performance on wavelet based coders

further confirms the effectiveness of the proposed ILSK algorithm.

Figure 3.10 shows the decoded ruler image compressed at 1.0 bpp using DWT SPIHT,

JPEG2000, DWT ILSK, DCT SPIHT and HLDTT algorithms. It is observed that

HLDTT performs significantly better over DCT SPIHT and DWT SPIHT by 1.85 dB

and 9.34 dB respectively. Further DWT ILSK outperforms DWT SPIHT by 0.11 dB.

This concludes that the performance of DWT/DCT based coders are poor for images

having high intensity variations compared to DTT based coders. JPEG 2000 performs

significantly better than all algorithms. Similar kind of improvement in performance

is observed in 256-level-test-pattern image.

3.4.2 Statistical Analysis

It is can be shown that the proposed method outperforms other coding techniques

by giving a probabilistic model of the average gains. Figure 3.11 shows the cropped

portion of Lana, Barbara and Zelda images of two different sizes. Table 3.9 illustrates

a comparison between cumulative number of bits generated in top 7 passes as well as

the PSNR improvements of HLDTT over DCT SPIHT and DTT LSK for the cropped

parts of images.

The coding gain of HLDTT can be written as:

Yk(p) = YHLDTT (p)− yk(p). (3.14)

where yk(p) is the PSNR value at pth cumulative pass when a specified coding scheme

86

Chapter 3

Low Complexity Embedded Image Compression Algorithm Using Hierarchical Listless

DTT

Table 3.6: PSNR(dB) comparison of various standard gray scale images without backend
arithmetic coding. All the block based transforms use blocks of size 8× 8.

Coder Bit rates (bpp)
0.0156 0.0313 0.0625 0.125 0.25 0.5 1.0

Boat

Block transform (DCT)
DCT SPIHT 20.94 22.61 24.27 26.50 29.44 33.12 37.84
DCT ILSK 21.74 23.04 24.67 26.81 29.58 33.23 37.91

Block transform (DTT)
DTT SPIHT 21.04 22.67 24.26 26.37 29.21 32.82 37.50
DTT LSK 21.70 23.02 24.66 26.80 29.58 33.13 37.81
HLDTT 21.77 23.05 24.67 26.81 29.59 33.14 37.81

Wavelet transform

IWT SPIHT (K =
√

2) 21.36 23.08 25.06 27.25 29.69 33.13 37.89
IWT SPIHT (OSS scheme) 20.54 22.57 24.47 26.63 28.96 31.91 36.08
JPEG2000 21.55 23.35 25.41 27.42 30.45 33.88 38.46
DWT SPIHT 21.66 23.34 25.43 27.61 30.28 33.72 38.35
DWT ILSK 22.33 23.67 25.51 27.72 30.39 33.78 38.38

Mandrill

Block transform (DCT)
DCT SPIHT 19.02 19.55 20.13 21.08 22.44 24.70 28.19
DCT ILSK 19.29 19.75 20.33 21.26 22.62 24.71 28.25

Block transform (DTT)
DTT SPIHT 19.31 19.62 20.14 21.06 22.34 24.50 28.00
DTT LSK 19.30 19.70 20.29 21.18 22.51 24.63 28.06
HLDTT 19.31 19.71 20.30 21.19 22.52 24.64 28.07

Wavelet transform

IWT SPIHT (K =
√

2) 19.15 19.59 20.14 21.10 22.36 24.47 27.91
IWT SPIHT (OSS scheme) 19.04 19.58 20.04 20.66 21.78 23.25 26.99
JPEG2000 19.35 19.77 20.44 21.33 22.81 25.07 28.64
DWT SPIHT 19.40 19.80 20.36 21.38 22.78 25.03 28.55
DWT ILSK 19.52 19.94 20.59 21.40 22.90 24.77 28.30

Texmos1

Block transform (DCT)
DCT SPIHT 11.27 11.70 12.31 13.44 15.03 17.38 20.57
DCT ILSK 11.46 11.89 12.69 13.67 15.36 17.53 20.68

Block transform (DTT)
DTT SPIHT 11.35 11.77 12.40 13.44 15.00 17.12 20.20
DTT LSK 11.48 11.88 12.66 13.59 15.18 17.20 20.27
HLDTT 11.49 11.90 12.67 13.60 15.19 17.21 20.28

Wavelet transform

IWT SPIHT (K =
√

2) 11.20 11.64 12.42 13.55 15.19 17.25 20.33
IWT SPIHT (OSS scheme) 11.17 11.56 12.31 13.36 14.77 16.82 19.05
JPEG2000 11.10 11.66 12.38 13.85 15.63 17.80 21.13
DWT SPIHT 11.37 11.92 12.68 13.91 15.50 17.67 20.83
DWT ILSK 11.56 12.05 12.91 14.05 15.76 17.84 20.88

87

Chapter 3

Low Complexity Embedded Image Compression Algorithm Using Hierarchical Listless

DTT

Table 3.7: PSNR(dB) comparison of various standard gray scale images without backend
arithmetic coding. All the block based transforms use blocks of size 8× 8.

Coder Bit rates (bpp)
0.0156 0.0313 0.0625 0.125 0.25 0.5 1.0

256 Level Test Pattern
Block transform (DCT)

DCT SPIHT 14.88 15.55 16.32 17.32 19.10 21.90 27.35
DCT ILSK 15.27 15.84 16.62 17.52 19.40 22.08 27.36

Block transform (DTT)
DTT SPIHT 14.88 15.53 16.27 17.36 19.13 22.11 27.84
DTT LSK 15.18 15.78 16.52 17.52 19.42 22.15 27.57
HLDTT 15.20 15.80 16.54 17.54 19.43 22.16 27.58

Wavelet transform

IWT SPIHT (K =
√

2) 15.16 15.70 16.16 17.03 18.32 20.99 26.51
IWT SPIHT (OSS scheme) 15.16 15.68 16.12 17.04 18.29 21.14 26.64
JPEG2000 15.08 15.74 16.57 17.66 19.77 23.46 30.08
DWT SPIHT 15.36 15.74 16.11 17.11 18.64 21.62 27.16
DWT ILSK 15.50 15.86 16.50 17.34 19.11 21.67 27.03

Ruler
Block transform (DCT)

DCT SPIHT 10.30 10.44 11.30 13.00 16.26 22.98 28.61
DCT ILSK 10.43 10.82 11.78 13.44 16.38 22.95 27.96

Block transform (DTT)
DTT SPIHT 10.30 10.49 11.58 13.75 19.27 23.14 31.05
DTT LSK 10.38 10.88 12.02 14.32 19.42 23.20 30.45
HLDTT 10.41 10.90 12.09 14.35 19.43 23.21 30.46

Wavelet transform

IWT SPIHT (K =
√

2) 10.21 10.84 11.16 12.07 13.43 14.74 18.45
IWT SPIHT (OSS scheme) 10.11 10.75 10.96 11.88 12.92 14.40 17.55
JPEG2000 10.99 12.28 13.29 15.85 23.16 35.01 42.48
DWT SPIHT 10.37 10.30 11.10 11.80 12.84 15.64 21.12
DWT ILSK 10.59 10.85 11.18 11.93 13.35 15.81 21.23

Table 3.8: PSNR(dB) comparison of standard color images without back end arithmetic
coding

Coder Bit rates (bpp)
0.005 0.01 0.05 0.1 0.2 0.5 1.0

Lena
DCT SPIHT 23.78 26.36 30.66 32.94 35.74 39.83 42.85
DTT LSK 25.68 27.24 30.83 33.00 35.68 39.48 42.51
HLDTT 26.89 27.27 30.85 33.01 35.68 39.48 42.51

Baboon

DCT SPIHT 22.63 23.77 25.12 25.92 26.98 29.51 32.42
DTT LSK 23.50 24.03 25.24 25.97 27.00 29.22 32.23
HLDTT 23.54 24.05 25.25 25.97 27.01 29.22 32.33

88

Chapter 3

Low Complexity Embedded Image Compression Algorithm Using Hierarchical Listless

DTT

(a) (b)

(c) (d)

Figure 3.8: Barbara and Mandrill images compressed at 0.5 bpp using (a),(c)
DCT SPIHT (MSSIM=0.9298 for Barbara, MSSIM=0.8572 for Mandrill) (b),(d) HLDTT
(MSSIM=0.9318 for Barbara, MSSIM=0.8837 for Mandrill)

is applied and k={DCT SPIHT, DTT LSK}. Y (p) represents the PSNR difference

between HLDTT and one other coding technique. For example, YDCT SPIHT (1) means

the PSNR difference between HLDTT and DCT SPIHT on pass no. 1. If Y (p) > 0,

it means that HLDTT has better coding gain than the other coding schemes at the

same pass number. It is assumed that Y (p) is normally distributed and µ and σ are

89

Chapter 3

Low Complexity Embedded Image Compression Algorithm Using Hierarchical Listless

DTT

(a) (b) (c)

(d) (e) (f)

Figure 3.9: (a) Original boat image reconstructed at a target bit rate of 0.05 bpp us-
ing (b) DCT SPIHT (PSNR=23.74 dB, MSSIM=0.6987) (c) HLDTT (PSNR=24.02 dB,
MSSIM=0.7172) (d) DWT SPIHT (PSNR=24.77 dB, MSSIM=0.7537) (e) JPEG 2000
(PSNR=24.70 dB, MSSIM=0.7754) and (f) DWT ILSK (PSNR=24.98, MSSIM=0.7659)
respectively.

mean and standard deviations. From the simulation results reported in Table 3.9, we

have listed µ, σ and the corresponding 95% confidence bound. Taking a population

size of 21 in each case, the following PSNR gains are obtained.

• Case 1: PSNR improvement of HLDTT over DCT SPIHT on 256× 256 images:

µ=2.2547 dB, σ=2.4818 dB, 95% confidence interval=2.2547± 1.1698 dB.

• Case 2: PSNR improvement of HLDTT over DTT LSK on same set of 256×256

images:

µ=0.2798 dB, σ=0.2786 dB, 95% confidence interval=0.2798± 0.1313 dB.

• Case 3: PSNR improvement of HLDTT over DCT SPIHT on 128 × 128 size

90

Chapter 3

Low Complexity Embedded Image Compression Algorithm Using Hierarchical Listless

DTT

(a) (b) (c)

(d) (e) (f)

Figure 3.10: Reconstructed ruler images at a target bit rate of 1.0 bpp using (a)
DWT SPIHT (PSNR=21.12 dB, MSSIM=0.9530) (b) JPEG 2000 (PSNR=42.48 dB,
MSSIM=0.9991) (c) DWT ILSK (PSNR=21.23 dB, MSSIM=0.9585) (d) DCT SPIHT
(PSNR=28.61 dB, MSSIM=0.9936) (e) HLDTT (PSNR=30.46 dB, MSSIM=0.9954) and
(f) Original image respectively.

(a) (b) (c) (d)

Figure 3.11: (a) Table and left side part of Barbara (b) Hair and face part of Lena (c) Facial
portion of Zelda (d) Hair and warps part of Barbara images.

91

Chapter 3

Low Complexity Embedded Image Compression Algorithm Using Hierarchical Listless

DTT

images:

µ=0.3924 dB, σ=0.2857 dB, 95% confidence interval=0.3924± 0.1347 dB.

• Case 4: PSNR improvement of HLDTT over DTT LSK on same set of 128×128

images:

µ=0.2805 dB, σ=0.3051 dB, 95% confidence interval=0.2805± 0.1438 dB.

Table 3.9: Cumulative number of bits generated in the first seven pth passes of DCT SPIHT,
DTT LSK and HLDTT techniques. Symbols A0(S0), A1(S1), A2(S2), αA20 and βA21 are
same as defined for Table 3.2.

pth pass no. A0(S0) A1(S1) A2(S2) αA20 βA21 YDCT SPIHT (p) YDTT LSK(p)

Barbara(warp part), (size=256× 256)

1 121(5) 39(5) 23(5) 67.8 41 8.530 0.910
2 244(16) 84(16) 52(16) 78.7 38 2.320 0.418
3 363(18) 140(18) 101(18) 72.2 27.9 2.331 0.263
4 517(27) 280(29) 235(29) 54.5 16 1.431 0.241
5 747(56) 517(57) 464(57) 37.9 9.7 0.878 0.086
6 1632(174) 1237(165) 1187(165) 27.3 4.0 0.452 0.056
7 6229(626) 4374(565) 4326(565) 30.5 1.0 0.189 0.046

Lena(face and Hair portion), (size=256× 256)

1 120(4) 38(4) 18(4) 85 52.6 7.501 1.041
2 244(16) 84(16) 49(16) 80 41.7 2.320 0.418
3 356(16) 118(16) 66(16) 81.4 44.1 2.451 0.286
4 484(27) 211(27) 152(27) 68.6 28 1.727 0.323
5 769(69) 515(69) 450(69) 41.5 12.8 0.831 0.116
6 1748(190) 1594(210) 1531(210) 12.4 4.0 0.413 0.084
7 5494(727) 5132(723) 5071(723) 7.7 1.2 0.221 0.016

Zelda(facial portion), (size=128× 128)

1 36(4) 34(4) 19(4) 47.2 44.2 0.811 0.810
2 92(12) 91(9) 68(9) 26.1 25.3 0.299 0.478
3 268(38) 283(39) 259(39) 3.4 8.5 0.092 0.101
4 929(139) 930(149) 906(149) 2.5 2.6 0.063 0.205
5 2383(363) 2423(386) 2401(386) -0.7 0.9 0.076 0.104
6 4763(737) 4773(745) 4751(745) 0.25 0.4 0.115 0.032
7 8685(1313) 8817(1337) 8795(1337) -1.2 0.3 0.114 0.063

Barbara(Hair and warps part), (size=128× 128)

1 33(1) 23(1) 7(1) 78.8 69.6 0.733 0.732
2 69(4) 60(4) 37(4) 50.7 38.4 0.866 0.865
3 127(15) 118(15) 84(15) 33.9 28.8 0.450 0.420
4 401(55) 359(57) 324(57) 19.2 9.7 0.172 0.133
5 1718(208) 1466(208) 1435(208) 16.5 2.1 0.273 0.086
6 5046(714) 4749(706) 4718(706) 6.5 0.66 0.330 0.057
7 10344(1619) 10803(1734) 10772(1738) -4.1 0.3 0.190 0.016

Therefore, it is observed form all 4 cases that there is 95% probability that the PSNR

gain of HLDTT is significantly high (i.e., 0.1467-3.4245 dB) compared to other coding

techniques. It is also observed from Table 3.9 that HLDTT has more number of

encoded bits compared to DCT SPIHT at pass no. 5 and 7 in Zelda (face portion)

image. Similar trend is also observed in Barbara (Hair and warp part) image on pass

no. 7. In spite of that, the PSNR improvement in HLDTT is higher than DCT SPIHT.

This is because the number of significant coefficients are higher in HLDTT than

92

Chapter 3

Low Complexity Embedded Image Compression Algorithm Using Hierarchical Listless

DTT

DCT SPIHT for the specified number of passes. It can be easily verified that the

bit rate corresponding to pass 7 can be between 0.1-0.2 bpp for the considered set of

images.

3.4.3 Computational Complexity

The run time of an algorithm depends on computational platform and number of oper-

ations. In this chapter, computational complexity is analyzed in terms of (A) Number

of arithmetic and logical operations, and (B) Run time of the algorithm(s)[16],[33],[34].

These two methods are discussed below:

(A) Number of arithmetic and logical operations:

In HLDTT, markers are employed to encode the coefficients in coarsest subband. It

was shown in Table 3.4 that the number of significant coefficients are very few on MSB

plane in most of the natural images. Therefore, HLDTT skips a large insignificant

set/block in the highest level/subband using fixed markers MF [k] and M [k]. Unlike

HLDTT, DTT LSK and DCT SPIHT compare and code each coefficient present in

the highest subband. This indicates that the number of insignificant blocks encoded

by HLDTT is lesser than DTT LSK and DCT SPIHT. Therefore, the initial encod-

ing/decoding cost of HLDTT is much lesser than LSK. Assuming one comparison

operation per insignificant block/set, HLDTT has significantly less than NLL6 com-

parisons and DTT LSK has at least (NLL6 +3L) comparisons with MSB plane, where

NLL6 is the number of coefficients in the highest wavelet level.

In case of DCT SPIHT, LIP is initialized to all the coefficients present in the

coarsest subband. LIS contains the root of all trees. Therefore, the number of coef-

ficient comparisons is at least {(4×NLL6) + 3
4
× (NLL6)} with the MSB plane. This

clearly indicates that the number of comparisons in DCT SPIHT on top bit plane

pass are significantly higher compared to HLDTT. As demonstrated in Table 3.4 that

the number of encoded bits is lower in HLDTT than DTT LSK and DCT SPIHT.

This is almost lower by 21.9-96% compared to DCT SPIHT and 0.5-82% compared

to DTT LSK in Barbara image for top six passes. Since, the number of comparisons

with significant coefficients and number of insignificant blocks/sets to be encoded

are directly proportional to string lengths, it is obvious that HLDTT requires lesser

comparison operations than DCT SPIHT and DTT LSK at lower rates. The math-

ematical proof of the complexity (in worst case) between SPIHT, ILSK and LSK is

deferred to Appendix A.

(B) Run time of the algorithms:

Computational complexity is assessed in terms of the run time of encoder and decoder.

Table 3.10 shows the encoding and decoding timings in seconds for the three algo-

93

Chapter 3

Low Complexity Embedded Image Compression Algorithm Using Hierarchical Listless

DTT

rithms on Lena image at various bit rates. It is observed that the encoding/decoding

time of DTT LSK and HLDTT are approximately proportional to bit rates. i.e., dou-

bles for doubling the bit rates. In case of DCT SPIHT the encoding/decoding times

are about 2-4 times slower below 0.125 bpp, and 5-15 times slower than HLDTT

within 0.125-1.0 bit rates. The reduction of time complexity is a highly desirable fea-

ture for image transmission from hand held mobile devices where power consumption

and processing speed are the limiting factors. It may be noted that the encoding time

of HLDTT is slightly more than DTT LSK. This is because of overheads required to

test the significance of a group of levels (IL or IGL pass) on earlier bit plane passes.

At the decoder end, this overhead is being compensated because of efficient skipping

of a number of subbands. This reduces the decoding time of HLDTT compared to

DTT LSK.

Table 3.10: Encoding and Decoding times (msec) on Lena image

Coder Bit rates (bpp)
0.0156 0.0313 0.0625 0.125 0.25 0.5 1.0

Encoding time
DCT SPIHT 302 371 741 1612 3529 8081 29610
DTT LSK 119 133 210 354 620 1241 2376
HLDTT 87 137 236 392 702 1507 2898

Decoding time
DCT SPIHT 71 96 245 680 2289 5609 24602
DTT LSK 42 71 128 233 453 867 1755
HLDTT 38 66 123 215 420 869 1750

Table 3.11: PSNR(dB) performance on Lena image with varying block sizes without backend
arithmetic coding

Coder Bit rates(bpp)
0.0156 0.0313 0.0625 0.125 0.25 0.5 1.0

(16× 16) blocks
DCT SPIHT 21.52 23.88 26.29 29.06 32.27 35.79 39.35
DTT LSK 22.32 24.29 26.43 29.11 32.28 35.71 39.20
HLDTT 22.47 24.31 26.44 29.12 32.30 35.72 39.21

(32× 32) blocks
DCT SPIHT 18.25 20.96 24.94 28.65 32.50 36.13 39.52
DTT LSK 18.10 21.04 24.80 28.11 31.47 35.23 38.76
HLDTT 18.16 21.14 24.82 28.13 31.48 35.24 38.76

3.4.4 Effect of Block Size

In order to understand the impact of block sizes on the performance of the pro-

posed techniques, the coding efficiency and encoding/decoding time are measured

94

Chapter 3

Low Complexity Embedded Image Compression Algorithm Using Hierarchical Listless

DTT

Table 3.12: Encoding and Decoding time of Lena image with varying block sizes

Coder Bit rates(bpp)
0.0156 0.0313 0.0625 0.125 0.25 0.5 1.0

Encoding time(msec)
(16× 16) blocks

DCT SPIHT 228 360 700 1447 3506 8691 30602
DTT LSK 91 128 210 364 656 1233 2369
HLDTT 86 136 238 416 783 1520 2881

(32× 32) blocks
DCT SPIHT 211 341 653 1317 2746 7561 31901
DTT LSK 88 111 117 338 639 1263 2433
HLDTT 116 138 231 422 774 1562 3017

Decoding time (msec)
(16× 16) blocks

DCT SPIHT 60 98 219 617 1963 6837 28456
DTT LSK 44 73 129 235 455 899 1800
HLDTT 39 67 125 235 453 917 1774

(32× 32) blocks
DCT SPIHT 54 95 204 532 1613 5406 28604
DTT LSK 43 74 134 249 464 888 1750
HLDTT 39 65 123 234 443 575 1720

with blocks of 8× 8, 16× 16 and 32× 32 sizes. The results of PSNR values, encoding

and decoding times using 8 × 8 blocks on Lena image are summarized in Table 3.5

and 3.10 respectively. The results of 16 × 16 and 32 × 32 blocks on Lena image are

summarized in Table 3.11 and 3.12. It is observed that as the block size increases from

8 × 8 to 16 × 16, the rate distortion performance from medium to higher bit rates

increases. This is because as the bit rate increases, the number of significant map

increases with increase of block size. For low bit rates, the performance deteriorates

because the number of significant map reduces. Block size of 32× 32 shows superior

performance over 8 × 8 and 16 × 16 block sizes at higher bit rates (≥ 0.5 bpp) on

DCT SPIHT algorithm. The reason is that the number of significant map increases

in DCT than DTT with block of large sizes. Therefore, DCT with SPIHT show su-

perior performances with increase of block size as well as with increase of bit rates.

The encoding and decoding times show some marginal improvement with increase of

block size on the proposed coders. Similar trends are also observed for other standard

images.

3.5 Conclusions

In this chapter, two low complexity embedded image coders DTT LSK and HLDTT

are presented. The image reconstruction performance, encoding and decoding times of

95

Chapter 3

Low Complexity Embedded Image Compression Algorithm Using Hierarchical Listless

DTT

both gray scale and color images are compared with some state-of-the-art DCT based

embedded coders. HLDTT exploits the inefficiency of DTT LSK and DCT SPIHT

coders at low bit rates by efficiently encoding large clusters of zero blocks at initial bit

plane passes. The proposed coder HLDTT not only shows a significant improvement

in PSNR values at lower bit rates but also shows a significant reduction of encod-

ing and decoding time over DCT based embedded coders. It is also demonstrated

that HLDTT shows better MSSIM performance even at higher rates, though the

PSNR values are slightly lower than DCT SPIHT in most of the images. In order to

have a fair comparison with wavelet based SPIHT and JPEG2000, ILSK is combined

with DWT (acronym DWT ILSK). It is observed that DWT ILSK shows significant

improvements in PSNR/MSSIM over DWT SPIHT and JPEG2000 at very low bit

rates. The proposed coders do not use list structures like DCT/DWT based embed-

ded coders. This reduces the dynamic memory requirement by 91.17% compared to

SPIHT. Further, HLDTT provides better coding efficiency, low computational com-

plexity and reduced memory requirements. These features facilitate HLDTT to be an

attractive candidate for image communications where limited channel capacity, stroge

and computational complexity would be decisive factors.

96

Chapter 4

Reduced Memory Listless Scalable
Embedded Image Compression
Algorithms

Preview

In this chapter, two simple yet efficient embedded block based image compression algo-

rithms has been proposed. The first algorithm compresses gray scale images, whereas

the second algorithm is for the color images. The proposed algorithms not only im-

prove the rate distortion performance of set partitioning in hierarchical trees (SPIHT)

and set partitioning in embedded block coder (SPECK) at lower bit rates, but also

reduce the dynamic memory requirement by 91%. The former objective is achieved by

encoding a large cluster of zeros using few symbols at earlier bit plane passes and the

later objective is realized by improved listless implementation of the algorithms. The

proposed algorithms explicitly perform breadth first search like SPECK. In addition,

the algorithms generate feature rich bit streams which are absent in SPIHT/SPECK.

The reduction of encoding and decoding times as well as improvement in coding

efficiency at lower bit rates make these coders attractive candidates for real time

multimedia applications.

4.1 Introduction

Some of the embedded coding algorithms which are primarily designed for coding gray

scale images are simply extended for coding of three planes of color images [26], [99].

For efficient coding, usually color images are transformed to luminance-chrominance

(YUV or YCbCr) color planes. The extended color coding algorithms for SPIHT

and SPECK are CSPECK [26] and CSPIHT [99] respectively, which generate fully

embedded bit streams. However, being tree based algorithm, these are memory inten-

97

Chapter 4 Reduced Memory Listless Scalable Embedded Image Compression Algorithms

sive. Block based coder such as EBCOT [27] generates feature rich bit stream with

low memory requirements, but it is highly complex because of multiple coding passes

per bit plane, use of context adaptive arithmetic coding and post compression rate

distortion optimization. Block tree algorithm presented in [34] shows a significant

improvement in coding efficiency by integrating set partitioning strategies of hierar-

chical trees and blocks into a single algorithm. However, the encoder and decoder are

more complex because of additional steps of set partitioning.

Therefore, two low complexity wavelet based block partitioning algorithms has

been proposed. These are Listless Embedded Block Partitioning (LEBP) for gray

scale images and Color Listless Embedded Block Partitioning (CLEBP) for color

images. These algorithms encode large clusters of zero blocks (e.g., many wavelet

subbands) by few symbols in contrast to SPECK so as to improve the low bit rate

performance. The proposed algorithms incorporate the feature of LSK to reduce

the overall memory requirements. Although wavelet based image coding algorithms

supports signal-to-noise-ratio scalable and progressive (by quality) image compression,

these algorithms do not support spatial scalability and do not provide bit stream which

can be adapted easily according to the type of scalability desired by the user. The

ability to reorder the encoded bit stream into arbitrary spatial resolution and signal-to-

noise-ratio (SNR) is an important feature to access images in heterogeneous networks

having large variation in bandwidth and user device capabilities. Danyali and Mertins

[30] proposed scalable SPIHT suitable for heterogeneous networks. However, multiple

list array structure for each spatial resolution may be a memory intensive. Xie et

al. [31] enabled SPECK to have full scalability (known as S-SPECK) based on the

idea of quality layer formation similar to post compression rate distortion (PCRD) in

JPEG 2000. It uses multiple list array structure like FS-SPIHT for set partitioning.

Furthermore, the seek time of a block in S-SPECK depends on the block position.

S-EZBA [100] uses less number of overhead bits compared to S-SPECK. Our proposed

scalable LEBP (S-LEBP) uses marker table instead of list arrays. The same set of

markers in the table are reused for encoding region of interest (ROI) unlike multiple list

arrays in FS-SPIHT ans S-SPECK. The use of markers in stead of multiple list arrays

reduce the memory intensive operation without sacrificing the PSNR performance.

Further, S-LEBP uses the idea of bi-section method [101] to reduce average seek time

and less number of overhead bits to improve compression efficiency.

In order to test the efficiency with DCT based embedded coders presented in [39]-

[44]. The combination of LEBP with DCT with varying block sizes has been made.

By using variety of test images, it is observed that the proposed coder (acronym

DCT LEBP) outperforms most of the state-of-the-art DCT based embedded coders.

98

Chapter 4 Reduced Memory Listless Scalable Embedded Image Compression Algorithms

4.2 Listless Embedded Block Partitioning Algorithm for Gray
Scale Images

The LEBP algorithm is quite similar to ILSK algorithm proposed in Chapter 3.

The only difference is that LEBP uses Lifting wavelet transform instead of discrete

Tchebichef transform. LEBP is inherently resolution scalable in contrast to HLDTT

because LEBP uses wavelet transformed coefficients.

4.2.1 Comparison with LSK and NLS Algorithms

The main differences between LSK and LEBP are:

1. The encoding technique used in coarsest (LL6) subband.

2. The method of skipping large clusters (i.e. several/single wavelet levels) of in-

significant coefficients.

3. Significant memory reduction at initial passes. The reason is that M[k] skips

MF[k] and MV[k] markers corresponding to lower insignificant wavelet levels if

all the coefficients are insignificant.

4. LEBP provides additional desirable features such as resolution scalability and

random access decodability to the compressed bit stream by simply reordering

the bit string according to scale and resolution level.

While comparing with NLS algorithm,

1. LEBP does explicit breadth first search (zero blocks), while NLS does depth first

search (zero trees).

2. The markers are placed in the lower levels of insignificant trees in NLS, whereas

markers are placed in leading indices of each subband/level in LEBP.

3. The markers are updated during block partitioning in LEBP, whereas the mark-

ers are updated during tree partitioning in NLS.

4. Scalability and random access decodability features are introduced in LEBP.

Whereas, these features are lacking in NLS.

4.2.2 Memory Allocation

In LEBP, the precomputed maximum length array, Lmax has length [I − (2L + 1)]

similar to LSK. If W bytes are needed for each sub band coefficients, then the bulk

storage memory required is IW for the subband data and RC/2 (each marker is of

99

Chapter 4 Reduced Memory Listless Scalable Embedded Image Compression Algorithms

half byte) for the state table MV [k]. For L level of wavelet decomposition, MF [k]

needs ⌈(3L+4)/2⌉ bytes (the number of fixed markers are (3L+4) and each marker is

of half byte) and M [k] state table needs ⌈(L/2)⌉ bytes. Therefore, the total memory

required for LEBP is:

MLEBP = IW +RC/2 + ⌈(3L+ 4)/2⌉+ ⌈(L/2)⌉. (4.1)

The memory required for LSK is:

MLSK = IW +RC/2 (4.2)

It is to be noted that MF [k] markers do not update. This is used as a reference for

MV [k] markers to check the significance of a level/subband. When comparing Eqn.

4.1 with Eqn. 4.2, MLEBP is (2L+ 2) bytes higher than MLSK . Assuming L=6, it is

only 14 bytes.

Table 4.1: Distribution of wavelet coefficient magnitudes along thresholds and frequency
levels(Highest: 6, Lowest: 1) for Lena(512× 512) image

Threshold, 2n Magnitude range Frequency level
6 5 4 3 2 1

212 212,, (213 − 1) 1 0 0 0 0 0
211 211,, (212 − 1) 23 0 0 0 0 0
210 210,, (211 − 1) 45 9 0 0 0 0
29 29,, (210 − 1) 92 81 15 0 0 0
28 28,, (29 − 1) 104 158 131 30 1 0
27 27,, (28 − 1) 122 212 395 343 43 0
28 26,, (27 − 1) 119 291 644 950 615 5

4.2.2.1 Dynamic Memory Comparison

Comparing Eqn. 4.1 and Eqn. 4.2, it is concluded that MLEBP requires slightly

more memory than MLSK at the end of all passes. However, the memory required by

MLEBP is significantly lower than MLSK in top 6 bit plane passes. Table 4.1 shows the

distribution of wavelet coefficient magnitudes along thresholds and frequency levels

for Lena image. This indicates a few coefficients are significant at higher threshold

level while comparing with lower levels of threshold. For example, only 1 coefficient

is significant above threshold 212, but a total of 2624 coefficients are significant above

threshold 28. By using this statistical property (i.e., decaying coefficient spectrum on

higher passes) markers M[k] in LEBP algorithm skip the markers (MF[k] and MV[k])

corresponding to several lower subbands/levels on top six passes. An estimation of

approximate memory requirement between MLEBP , MSPIHT and MLSK on top 7

100

Chapter 4 Reduced Memory Listless Scalable Embedded Image Compression Algorithms

Table 4.2: Comparison of memory requirement between LSK, SPIHT and ILSK algorithms
on top 7 passes.

No. of Lena Image
sorting passes MLSK(kB) MSPIHT (kB) MILSK(kB)

1 128 0.8985 0.0313
2 128 0.9004 0.125
3 128 0.9375 0.5
4 128 5.0088 2.0
5 128 10.039 32.0
6 128 43.872 32.0
7 128 82.532 128.0

passes is shown in Table 4.2.

It is observed in Table 4.3 that the significant coefficients above most significant

bit (MSB) plane, lie in top 1/4th portion of highest level in Lena image. An excellent

demonstration regarding the location of significant coefficients in various bit plane

passes is presented in [101]. The M[k] marker, which points to leading node of next

subband skips MF[k] and MV[k] markers pointing to the lower levels/subbands. So,

LEBP algorithm simply skips to next lower significant bit plane from the MSB plane.

Therefore, the worst case dynamic memory required is 8×8
2

= 32 bytes for MSB plane,

since the top 1/4th of highest level is having a dimension of 8 × 8. The memory

required by other passes is calculated in a similar procedure. The maximum bit rate

correspond to 6 passes of LEBP can be up to 0.05-0.06 bpp, where the significant

detail of an image can be visualized. MLSK needs a fixed amount of memory, i.e,
RC
2

(assuming 4 bits per marker in 6 levels of wavelet decomposition), irrespective of

the number of passes [36]. However, the memory required by the proposed algorithm

LEBP at higher passes are fixed (typically 6 and above passes it is approx. same as

that of LSK) because most of the coefficients at finest subbands are likely to become

significant. It may be noted that while making dynamic memory comparison, the

memory required for initialization of markers/lists are not considered.

In SPIHT coders, the number of elements in auxiliary lists represent the required

dynamic memory. The SPIHT uses LIP, LIS and LSP arrays. LIS additionally re-

quires type ‘A’ or ‘B’ information to recognize the nodes.

Let, NLIP is the number of nodes in LIP, NLSP is the number of nodes in LSP, NLIS

is the number of nodes in LIS, and W is the number of bits to store the addressing

information of a node. Then, the total memory required (in bytes) due to auxiliary

lists is [33]

MSPIHT = [W (NLIP +NLIS +NLSP) +NLIS]/8 (4.3)

101

Chapter 4 Reduced Memory Listless Scalable Embedded Image Compression Algorithms

Since, the memory size increases in each bit plane pass, in worst case the values of

Eqn. 4.3 becomes

NLIP +NLSP = M ×N,NLIS = (M ×N)/4. (4.4)

For a 512 × 512 image using 2 bytes per coefficient and 6 levels of wavelet like ar-

rangement, while using the optional pre-computed maximum length array, the worst

case memory requirement is (512×512)
2

× (8bits) + (2L + 2) ≃ 128 kB for LEBP, 128

kB for LSK and 1450 kB for SPIHT. Therefore the proposed algorithm is suitable

for a fast and simple implementation. The memory required for wavelet transform is

not calculated here. This part can be efficiently handled by Lifting wavelet transform

[10],[102].

4.3 Listless Embedded Block Partitioning Algorithm for Color
Images

The proposed CLEBP algorithm for color images uses two types of state table markers

in contrast to three markers in LEBP algorithm. These are MF [k] and MV [k], where

k’s are starting indices of each wavelet levels calculated in a zigzag scan manner. Each

marker holds 4 bits per coefficients to keep track of set partitions.

MF [k] markers are used to keep track of these composite levels in CLEBP al-

gorithm. If a composite level is insignificant, entire level can be skipped at once by

coding using a single zero in contrast to 9 zeros in CSPECK and LSK. MV [k] markers

keep track of set partitions within a composite level. At any given time, MV [k] mark-

ers are updated by splitting the wavelet composite level if a wavelet level is significant

with respect to threshold. The meaning of each symbols are same as described for

HLDTT algorithm in Chapter 3.

Considering YCbCr color space (4:2:0 format), each plane is separately wavelet

transformed using 9/7 filter [90] to the same number of decomposition levels. The Fig-

ure 4.1(a) shows two levels of wavelet decompositions for ease of illustration whereas,

four levels of decompositions are used in our simulations for (512 × 512) and CIF

images. In QCIF images, three levels of wavelet decomposition are used. Wavelet

subbands of Y, Cb and Cr planes are interleaved using the numbering pattern as

shown in Figure 4.1(a). Then, two dimensional subbands are mapped to one dimen-

sional arrangement as in Figure 4.1(b). At higher bit plane passes, this arrangement

facilitates to encode a single symbol to a composite level, in contrast to many symbols

required to encode in CSPIHT or CSPECK algorithm.

102

Chapter 4 Reduced Memory Listless Scalable Embedded Image Compression Algorithms

1

2

3
4

5 6

7

8 9

10

11 12 13

14 15

16

17 18

19

20 21

Y-plane

Cb-plane

Cr-plane

(a)

1 2 3 4 5 67 8 910 11 12

{
YCbCr coarsest level

{YCbCr combined level: YCbCrYCbCrYCbCr

{

YCbCr combined subband

(b)

Figure 4.1: (a) Numbering pattern across correlated wavelet subbands in 4:2:0 YCbCr color
planes (b)One dimensional arrangement of Y, Cb and Cr subbands to form composite levels.

Y Cb Cr Y Cb Cr Y Cb Cr

Y Cb Cr

y1 y2 y3 y4 Cb Cr

Step 1: YCbCr Combined level after tri partitioning

Step 2: YCbCr Combined subband

Step 3: Hexa partitioning the YCbCr Combining subband

Step 4: After quad patitioning each block

1-D zig-zag arrangement of coefficients

Figure 4.2: Steps for partitioning a combined wavelet level

103

Chapter 4 Reduced Memory Listless Scalable Embedded Image Compression Algorithms

4.3.1 Pseudocode of CLEBP Algorithm

Pass1 : Insignificant Pixel Pass :
Same as Pass1 of HLDTT algorithm.

Pass2 : Insignificant Set Pass :
1. If, (MV[k] = MF[k])&(MV[k] 6= SIP) (Test significance

of a combined level)
If k ∈ (YCbCr coarsest level)
output(d = Γn(LL)).

If d, Split LL by 6 parts.
Else, Move to the next combined level.

Else, output(d = Γn(LL)).
If d, Split the combined level into 3 parts.
Else, move past the combined level.

2. If, MV[k] = (MF[k]− 1)&MV[k] 6= SIP (Test significance
of a combined subband)

if k ∈ (YCbCr combined subband)
output(d =Γn(val[k : end of (LL)])).

if d, split LLby 6 parts.
Else, move to next combined level.

3. If, (MV[k] 6= MF[k])&(MV[k] 6= SIP) (Test significance
of a block/pixel)

output(d =Γn(subband/block))
if d, QuadSplit().

if (block size = pixel size)
Move to Pass1.

Else, move past the subband/block.
Pass3 : Refinement Pass :

If MV[k] = SSP
Output(Γn(val[k]))
Move past the pixel.

Elseif, MV[k] = SNP
MV[k] = SSP
Move past the pixel.

Elseif, Check all the steps of (1, 2, and 3) of Pass2.
Else, move to the next subband/block/set.

In the pseudocode of the algorithm, the meaning of the following points are defined

as

• (MV [k] = MF [k]) & (MV [k] 6= SIP) indicate YCbCr combined level is (Figure

4.1(b))to be tested for significance.

• (MV [k] = MF [k] − 1) & (MV [k] 6= SIP) indicate YCbCr combined subband

is to be tested for significance.

• (MV [k] 6= MF [k]) & (MV [k] 6= SIP) indicate a block within YCbCr combined

subband is to be tested for significance.

Partitioning rule

The partitioning rule of a YCbCr combined level is shown in Figure 4.2. In step

1, if any wavelet coefficient is found significant for a certain threshold, the entire

104

Chapter 4 Reduced Memory Listless Scalable Embedded Image Compression Algorithms

YCbCr combined level is partitioned in to 3 parts. Each part is a YCbCr combined

subband which is shown in step 2. Further, the combined subband is split in to 6

parts if any coefficient is found significant to the same threshold level as shown in step

3. Proceeding from step 4, each partitioned part recursively quad split to search for

significant coefficient. Then, each significant coefficient is coded and transmitted along

with the sign bit. The entire partitioning rule is presented in terms of pseudocode in

section 4.3.1.

In SPECK algorithm, initially the image is partitioned into two sets, i.e., set S

and set I. If set S is significant with respect to current threshold level, it is quad split,

otherwise a single symbol (e.g., zero) is being coded for set S. Further, set I is tested

for significance. if I is significant, it is partitioned into three S type contiguous sets

and a new I type set. At the same resolution level, if these three new S type sets are

insignificant with respect to current threshold, these will be coded with three zeros.

In the case of color images, 3× 3 = 9 insignificant subbands will be coded by 9 zeros

in CSPECK algorithm. The proposed CLEBP algorithm codes these 9 insignificant

subbands by a single symbol (i.e., zero). This, saves a considerable amount of symbols

at early bit plane passes. As the coding process proceeds towards the finer resolution,

the proposed CLEBP algorithm performs like CSPECK.

4.3.2 Complexity Analysis

The complexity of a coding algorithm depends upon target rates, number of bit planes

to be processed and the number of list arrays to be processed. Encoding algorithm

performs basic operations such as memory access, magnitude comparison against a

threshold and some input/output operations. On the other hand, decoding algorithm

performs bit manipulations, input/output and memory access operations. It is to be

noted that the decoding algorithms are faster than encoding algorithms because:

• No comparison operations are required.

• Efficient skipping of insignificant sets/blocks/subbands.

The complexity of an algorithm also depends upon target rate as more number of

operations are required at higher target rates.

In the list based coders, the processing of the lists accounts for much heavier com-

putations. SPIHT, SPECK and proposed algorithms (LEBP/CLEBP) are bit plane

based which require multiple passes across bit planes to reconstruct a coefficient.

SPIHT and SPECK algorithms access coefficients multiple times through lists to re-

construct itself. Coefficients in LSP of SPIHT are further processed by the refinement

105

Chapter 4 Reduced Memory Listless Scalable Embedded Image Compression Algorithms

pass. A bit of wavelet coefficient is added to the compressed bit stream for each entry

of LSP.

In SPIHT, the information about the significance of a coefficient is managed by

LIP. A coefficient once entered in LIP remains there until it becomes significant and

moves to LSP. The proposed coders perform an explicit breadth first search without

using lists. State informations are kept in fixed size arrays to enable fast scanning of

bit planes. In LEBP/CLEBP, special markers are placed on the lower nodes of sub-

bands or levels or group of levels instead of searching for the trees to find predictable

insignificance. These markers are updated when new significant sets/blocks are formed

by magnitude comparison. With these sparse marking, a large sections of blocks (sub-

band, level or group of levels) are skipped at once as the breadth first scan moves

through the lower nodes of wavelet decomposition array. If a block is insignificant with

respect to a threshold, it is just skipped; otherwise, it is partitioned recursively until a

significant coefficient is found. The probability that a block/subband is insignificant

at higher bit planes is relatively high. Therefore, the proposed algorithms have the

advantages of quickly finding significance of a coefficient by recursively partitioning

scheme and efficient block skipping. Hence, it has the advantage of memory access

time. This indicates that the encoder is faster than SPIHT and SPECK.

At the decoder, significance of a coefficient is reconstructed from the received bit

map. When a coefficient/block/subband/level is insignificant, the decoder skips all op-

erations and moves to test the significance of the next coefficient/block/subband/level.

However, in SPIHT, the reconstruction of a significant coefficient in the larger sets

is a more time consuming operation. This is because of quad or set partitioning.

Therefore, the decoder of SPIHT is more complex than LEBP.

4.4 Simulation Results and Analysis

The performance of the proposed LEBP and DCT LEBP coding algorithms are evalu-

ated on two sets of standard monochrome images (8 bits/pixel). The first set includes

Barbara and Lena images each of size 512× 512. The second set includes two higher

resolution images from JPEG 2000 test set, which are Bike and Woman images of

size 2048 × 2560. The performance of the proposed algorithm is evaluated in terms

of coding efficiency and encoder/decoder complexity. Since the coders are embedded,

the results of various bit rates are obtained from a single encoded bit stream.

Investigation on the effects of various block sizes to the performance of DCT LEBP

algorithm and performance comparison with some state-of-the-art DCT based embed-

ded coders has been made. The proposed image coding algorithms are implemented

106

Chapter 4 Reduced Memory Listless Scalable Embedded Image Compression Algorithms

Table 4.3: Cumulative number of bits generated in the first six passes of SPIHT, LSK and
proposed LEBP technique

No. of sorting passes
Barbara

A0(S0) A1(S1) A2(S2) αA20 βA21 BRI20 BRI21

SPIHT LSK LEBP

1 455(1) 85(1) 21(1) 96 76 0.0017 0.0003
2 923(23) 231(23) 152(23) 84 34 0.0029 0.0003
3 1445(72) 551(72) 464(72) 68 16 0.0037 0.0003
4 2353(208) 1411(208) 1319(208) 44 7 0.0039 0.0004
5 4547(532) 3634(534) 3539(534) 22 3 0.0038 0.0004
6 11702(1524) 10436(1539) 10345(1539) 11 1 0.0052 0.0003

Lena
1 453(1) 83(1) 15(1) 97 82 0.0017 0.0003
2 924(24) 230(24) 143(25) 85 38 0.0030 0.0003
3 1451(68) 538(68) 442(67) 70 18 0.0038 0.0004
4 2421(218) 1440(218) 1336(216) 45 8 0.0041 0.0004
5 4689(535) 3764(536) 3665(536) 22 3 0.0039 0.0004
6 10741(1392) 9863(1403) 9762(1403) 9 1 0.0037 0.0004

Table 4.4: Performance comparison (PSNR in dB) between various algorithms on Lena and
Barbara Images. No back end arithmetic coding employed.

Coder
Bit rates (bpp)

0.0156 0.0313 0.0625 0.125 0.25 0.5 1.0

Lena (512× 512)
JPEG 2000 22.58 25.06 27.47 30.25 33.27 36.30 39.28
SPECK 22.71 24.98 27.32 30.37 33.39 36.51 39.66
SPIHT 22.99 25.19 27.61 30.54 33.62 36.80 39.99
NLS 23.22 25.40 27.70 30.41 33.42 36.49 39.62
LSK 23.64 25.62 27.85 30.54 33.53 36.62 39.75
LEBP 23.71 25.67 27.90 30.56 33.54 36.62 39.75

Barbara(512× 512)
JPEG 2000 20.81 22.34 23.39 25.06 27.82 31.42 36.49
SPECK 21.10 22.25 23.43 24.62 27.10 30.82 35.61
SPIHT 21.24 22.49 23.53 24.82 27.54 31.58 36.79
NLS 21.44 22.50 23.48 24.48 27.06 31.13 36.31
LSK 21.65 22.61 23.62 25.03 27.42 31.48 36.72
LEBP 21.68 22.63 23.64 25.05 27.43 31.48 36.72

in MATLAB 7.10.0 under Window XP, Intel Core 2 Duo CPU with 3 GHz speed and

4 GB of RAM space.

4.4.1 Coding Performance

The coding performance for gray scale and color images are discussed in terms of

percentage of bits saved and the PSNR improvements.

107

Chapter 4 Reduced Memory Listless Scalable Embedded Image Compression Algorithms

Table 4.5: PSNR(dB) comparison of JPEG2000 standard test images (Grayscale)

Coder
Bit rates (bpp)

0.0313 0.0625 0.125 0.25 0.5 1.0 2.0

Bike (2560× 2048)
JPEG 2000(AAC) - 23.74 26.31 29.56 33.43 37.99 43.95
SPIHT(No AAC) - 22.86 25.29 28.51 32.36 36.98 42.90
SPECK(No AAC) - 22.53 24.79 27.96 31.74 36.24 42.28
WBTC(No AAC) - 23.14 25.48 28.76 32.51 37.12 43.13
NLS(No AAC) - 23.40 25.86 28.75 32.15 36.46 42.53
LSK(No AAC) 21.73 23.66 26.03 28.94 32.33 36.54 41.94
LEBP(No AAC) 21.75 23.67 26.08 28.96 32.34 36.54 41.95

Woman (2560× 2048)

JPEG 2000(AAC) - 25.59 27.33 29.95 33.57 38.28 43.97
SPIHT(No AAC) - 25.07 26.91 29.43 32.43 37.73 43.21
SPECK(No AAC) - 24.84 26.91 29.10 32.40 37.02 43.19
WBTC(No AAC) - 25.29 27.08 29.71 33.23 37.91 43.62
NLS(No AAC) - 26.61 28.34 30.56 33.30 36.99 42.60
LSK(No AAC) 25.76 26.95 28.67 30.84 33.51 37.05 41.99
LEBP(No AAC) 25.80 26.96 28.68 30.89 33.51 37.05 42.00

4.4.1.1 Coding Performance for Gray Scale Images

In order to evaluate the coding performance, we first compare the cumulative number

of bits generated in different pass of SPIHT, LSK and LEBP algorithms. Table

4.3 shows the cumulative number of bits generated in the first six passes of three

algorithms on two different type of standard images (a) Barbara and (b) Lena.

Let us denote the symbols illustrated in Table 4.3 as follows:

• A0(S0): A0 is the cumulative number of bits generated on top n passes of SPIHT

and S0 is the number of significant coefficients corresponding to these n passes,

where n = 1, 2, 3, ...6.

• A1(S1): A1 is the cumulative number of bits generated on top n passes of LSK

and S1 is the number of significant coefficients corresponding to these n passes.

• A2(S2), A2 is the cumulative number of bits generated on top n passes of LEBP

and S2 is the number of significant coefficients corresponding to these n passes.

• αA20 is the percentage of bit saving in LEBP with respect to SPIHT.

• βA21 is percentage of bit saving in LEBP with respect to LSK.

• BRI20 is the bit rate improvement of LEBP with respect to SPIHT.

• BRI21 is the bit rate improvement of LEBP with respect to LSK.

108

Chapter 4 Reduced Memory Listless Scalable Embedded Image Compression Algorithms

The bit rate at nth pass is given by:

Bit rate =
Cumulative number of bits generated

Original image size
. (4.5)

The BRI (bpp) can be found by taking the bit rate difference between any two

algorithms. For example, at nth pass

BRI20 = Bit rate(SPIHT)− Bit rate(LEBP),

BRI21 = Bit rate(LSK)− Bit rate(LEBP). (4.6)

It is evident form Table 4.3 that the proposed LEBP algorithm consistently out-

performs the other two. The percentage of bits saved (αA20)by LEBP over SPIHT

in the first six passes is about 96-97 %, 84-85 %, 68-70 %, 44-45 %, 22 % and 9-11

% respectively. Further comparing with LSK, LEBP saves (αA21) 76-82 %, 34-38 %,

16-18 %, 7-8 %, 3.0 % and 1.0 % of bits in the first six bit plane passes respectively.

Therefore, LEBP is more efficient in sorting significant coefficients than SPIHT and

LSK. One of the main reason is that clusters of zeros are more likely to occur at

the early passes when the threshold is high. The proposed algorithm encodes these

clusters more efficiently than SPIHT and LSK.

In Table 4.4, the PSNR results of JPEG 2000, SPECK, SPIHT and LSK algorithms

on Lena and Barbara images are compared with LEBP algorithm. For fair comparison,

the results are shown without arithmetic coding. It is observed that LEBP algorithm

exhibits superior performance for the range of bit rates considered. LEBP brings a

gain of approximately 0.58-1.0 dB, 0.29-0.72 dB and 0.05-0.07 dB over SPECK, SPIHT

and LSK respectively on Lena image particularly for very low bit rates (≤ 0.0625 bpp).

Similarly, LEBP brings a gain of approximately 0.21-0.58 dB, 0.11-0.44 dB and 0.02-

0.03 dB over SPECK, SPIHT and LSK respectively on Barbara image. At medium bit

rates, the improvement in PSNR gain is slightly higher. At higher bit rates, the gain

of the proposed algorithm reduces slightly than SPIHT. Considering the case with

JPEG 2000, LEBP outperform 0.13-0.61 dB over the range of bit rates considered on

Lena image. LEBP exhibit a coding gain of 0.25-0.87 dB below 0.0625 bpp in case

of Barbara image. However, JPEG2000 shows PSNR improvement of 0.01-0.39 dB

between 0.125-0.25 bpp. It is also observed that LEBP algorithm outperforms JPEG

2000 at lower bit rates (≤ 0.0625 bpp) in most of the images.

In Table 4.5, ‘AAC’ in the parenthesis indicates that the results are obtained using

arithmetic coding. ‘No AAC’ indicates that the results are obtained without using

arithmetic coding. The meaning is followed consistently throughout the thesis. It is

observed that LEBP outperforms SPIHT by 0.45-0.81 dB on bit rates ≤ 0.25 bpp,

109

Chapter 4 Reduced Memory Listless Scalable Embedded Image Compression Algorithms

SPECK by 0.6-1.14 dB on bit rates ≤ 0.5 bpp, WBTC [33] by 0.2-0.53 dB on bit rates

≤ 0.25 bpp and LSK by 0.01-0.05 dB on bit rates ≤ 0.5 bpp. For medium (i.e., ≥ 0.5

bpp) to higher bit rates (i.e., ≤ 2 bpp) LEBP under performs SPIHT by 0.02-0.95

dB, SPECK by 0.33 dB, WBTC by 0.17-1.18 dB on Bike image.

On Woman image, LEBP outperforms SPIHT by 0.89-1.87 dB on bit rates ≤ 0.5

bpp, SPECK by 0.03-2.12 dB on bit rates ≤ 1.0 bpp, WBTC by 0.38-1.18 dB on bit

rates ≤ 0.5 bpp and LSK by 0.01-0.05 dB on bit rates 0.0156-2 bpp. Similarly, for

medium to higher bit rates, LEBP under performs SPIHT by 0.0.68-1.21 dB, SPECK

by 1.19 dB and WBTC by 0.86-1.21 dB.

4.4.1.2 Coding Performance for Color Images

In order to understand the effectiveness of the proposed algorithm, simulation is

carried out on standard still color images such as Lena of 512× 512 size, first frame

‘Hall-Monitor’ of quarter common intermediate format (QCIF: 176 × 144 size) and

‘News’ of common intermediate format (CIF: 352×288 size) of the standard MPEG-4

test video sequences. The comparison results are shown in Figure 4.2, 4.3 and 4.4

respectively. The experimental results of the proposed algorithm has been carried out

in YCbCr color space because of its higher compression performance than YUV color

space. The results of CSPIHT and algorithm by Moinuddin et al. [34] are directly

quoted from [34]. These results are reported in YUV color space. CLEBP(case 1)

uses lanczos2 sub-sampling or up-sampling techniques in chrominance planes, whereas

CLEBP(case 2) subsamples chrominance planes by discarding alternate rows and

columns. It is observed that the PSNR values of CLEBP(case 1) outperform the

PSNR results reported in [34] by 1.4-1.6 dB on Y plane and 0.6-3.9 dB on chrominance

planes. Considering CLEBP(case 2), Lena image shows higher performance in Y-

plane. However, in chrominance plane the performance goes down by 2 dB. Hall-

Monitor and News images are compressed using a slight different procedure than

Lena image since their dimensions are not equal. If the image is padded using border

extension (replicate), then the algorithm is considered as CLEBP(case 3). The border

is extended symmetrically in case of CLEBP(case 4). Using CLEBP(case 3) a gain

of 0.1-0.2 dB in Y-plane and 0.1-3.6 dB in chrominance planes is observed on Hall-

Monitor image. A slight degradation in PSNR values are observed in Y-plane between

0.0625-0.25 bit rates. News image shows a gain of 0-0.8 dB in Y-plane and gain up to

2.5 dB in chrominance planes over algorithm in [34]. The decoded Hall-Monitor image

shows PSNR degradation up to 3 dB in Y-plane while compressed using CLEBP(case

4). The decoded images of Hall-Monitor are shown in Figure 4.5(b) and (c). It

is observed that the decoded images using CLEBP(case 3) have better perceptual

110

Chapter 4 Reduced Memory Listless Scalable Embedded Image Compression Algorithms

qualities than CLEBP(case 4). Similar kind of change in performance is observed in

News image, shown in Figure 4.6(b) and (c).

0 0.2 0.4 0.6 0.8 1
15

20

25

30

35

40

45

rate(bpp)

P
S

N
R

(d
B

)

CSPIHT
Moinuddin et al.[34]
CLEBP(case 1)
CLEBP(case 2)

(a)

0 0.2 0.4 0.6 0.8 1
26

28

30

32

34

36

38

40

42

44

46

rate(bpp)

P
S

N
R

(d
B

)

CSPIHT
Moinuddin et al.[34]
CLEBP(case 1)
CLEBP(case 2)

(b)

0 0.2 0.4 0.6 0.8 1
26

28

30

32

34

36

38

40

42

44

46

rate(bpp)

P
S

N
R

(d
B

)

CSPIHT
Moinuddin et al.[34]
CLEBP(case 1)
CLEBP(case 2)

(c)

Figure 4.3: Rate-distortion performance comparison of Lena image on (a)Y-plane (b)U-
plane for CSPIHT and algorithm by Moinuddin et al. [34], Cb-plane for CLEBP(case 1 and
case 2) (c) V-plane for CSPIHT and algorithm by Moinuddin et al., Cr-plane for CLEBP.

4.4.1.3 Coding Performances Between Gray scale and Color Images

While comparing the results between SPIHT and LEBP on gray scale images, LEBP

shows poor results than SPIHT at higher rates (e.g., 0.25 to 1.0 bpp). However, in

case of color images CLEBP(case 1) shows consistently better performance even in

luminance plane at higher rates (Figure 4.2(a)). The possible reasons for inconsistency

111

Chapter 4 Reduced Memory Listless Scalable Embedded Image Compression Algorithms

0 0.2 0.4 0.6 0.8 1
15

20

25

30

35

40

rate(bpp)

P
S

N
R

(d
B

)

CSPIHT
Moinuddin et al.[34]
CLEBP(case 3)
CLEBP(case 4)

(a)

0 0.2 0.4 0.6 0.8 1
30

32

34

36

38

40

42

rate(bpp)

P
S

N
R

(d
B

)

CSPIHT
Moinuddin et al.[34]
CLEBP(case 3)
CLEBP(case 4)

(b)

0 0.2 0.4 0.6 0.8 1
36

37

38

39

40

41

42

43

44

45

rate(bpp)

P
S

N
R

(d
B

)

CSPIHT
Moinuddin et al.[34]
CLEBP(case 3)
CLEBP(case 4)

(c)

Figure 4.4: Rate-distortion performance comparison of Hall-Monitor image on (a)Y-plane
(b)U-plane for CSPIHT and algorithm by Moinuddin et al., Cb-plane for CLEBP (c)V-plane
for CSPIHT and algorithm by Moinuddin et al.,Cr-plane for CLEBP.

between the two results can be as follows:

CLEBP(case 1) uses lanczos2 sub-sampling and up-sampling of the chrominance

planes at the encoder and the decoder sides respectively. CSPIHT and algorithm in

[34] uses the type of sub-sampling like the one in CLEBP(case 2). By simply dis-

carding alternate rows and columns in chrominance planes, CLEBP(case 2) performs

worst than CSPIHT and algorithm in [34], but better in luminance plane. From

the simulation results, it is observed that the overall performance of CLEBP (case

2) is lower than the above two algorithms at higher rates while the performance of

112

Chapter 4 Reduced Memory Listless Scalable Embedded Image Compression Algorithms

0 0.2 0.4 0.6 0.8 1
15

20

25

30

35

40

45

rate(bpp)

P
S

N
R

(d
B

)

CSPIHT
Moinuddin et al.[34]
CLEBP(case 3)

(a)

0 0.2 0.4 0.6 0.8 1
26

28

30

32

34

36

38

40

42

44

rate(bpp)

P
S

N
R

(d
B

)

CSPIHT
Moinuddin et al.[34]
CLEBP(case 3)

(b)

0 0.2 0.4 0.6 0.8 1
28

30

32

34

36

38

40

42

44

46

rate(bpp)

P
S

N
R

(d
B

)

CSPIHT
Moinuddin et al.[34]
CLEBP(case 3)

(c)

Figure 4.5: Rate-distortion performance comparison of News image on (a)Y-plane (b)U-
plane for CSPIHT and algorithm by Moinuddin et al., Cb-plane for CLEBP (c)V-plane for
CSPIHT and algorithm by Moinuddin et al., Cr-plane for CLEBP.

CLEBP(case 1) is higher on all the bit rates. Since the human eye is more sensitive to

luminance components than the chrominance components, the decoded images using

CLEBP(case 2) have better perceptual qualities than CSPIHT.

The procedure for encoding and decoding of CIF and QCIF images by CLEBP(case

3) algorithm are as follows:

• The image is padded by extending the border pixels(i.e., replicate padding), since

the algorithm is highly dependent on images having equal dimensions and having

dimensions integer powers of 2 (e.g. QCIF and CIF dimensions are changed to

113

Chapter 4 Reduced Memory Listless Scalable Embedded Image Compression Algorithms

(a) (b) (c)

Figure 4.6: (a) Original Hall monitor image compressed by CLEBP at 1 bpp using (b)
replicate padding (case 3) (c) symmetric padding (case 4).

(a) (b) (c)

Figure 4.7: (a) Original News image compressed by CLEBP at 0.5 bpp using (b) replicate
padding (case 3) (c) symmetric padding (case 4).

256 × 256 and 512 × 512 respectively). However, CSPIHT algorithm accesses

the coefficients from the lists. Therefore, the image dimensions are need not to

be equal or an integer power of 2.

• It is verified that the performance of CLEBP(case 3) is degraded by padding

symmetrically/ circularly/ zero across border of QCIF or CIF images compared

to replicate type of padding.

• CLEBP encodes luminance and chrominance planes by an efficient one dimen-

sional clustering arrangement of all the subband coefficients.

• The PSNR is calculated by removing the padded portion from the decoded image

at the decoder side.

The procedure for encoding/decoding color images in CLEBP (case 4) is similar to

CLEBP(case 3).

114

Chapter 4 Reduced Memory Listless Scalable Embedded Image Compression Algorithms

Table 4.6: PSNR comparison for the SPIHT and LEBP coder at different spatial resolutions
(Lena 512× 512, 0.05 bpp)

Spatial resolution
PSNR(dB)

SPIHT NLS LSK LEBP

32× 32 37.84 36.05 38.63 38.63
64× 64 29.65 30.32 31.53 31.55

128× 128 26.07 26.25 26.38 26.41
256× 256 24.60 24.86 24.91 25.05

The results of CSPIHT and algorithm by Moinuddin et al. are directly quoted form

[34]. CSPIHT does not need any kind of border extension to encode images because

each coefficient in the coarsest subband constitutes a quad tree. The block-tree al-

gorithm presented by Moinuddin et al. needs some kind of adjustment to form root

blocks of equal dimensions. As a result, additional circuits are needed for image

size adiustment in CIF/QCIF images. It is observed from the simulations that the

type of sub-sampling/border extensions (e.g., symmetrical, replicate, circular or zero

padding) has greater impact on coding performance in chrominance planes than lumi-

nance plane. The effect can be observed in Figures 4.3, 4.4 and 4.5. CSPIHT is tree

based and it uses inter and intra subband correlations. Algorithm proposed in [34]

also uses inter as well as intra subband correlations more efficiently than CSPIHT due

to block-trees. CSPIHT and algorithm in [34] use list structure whereas, the proposed

CLEBP uses markers. CLEBP exploits inter and intra subband correlations by effi-

ciently clustering similar blocks and coding of the zero clusters in a one dimensional

manner. It is expected that the coding performances of CLEBP and algorithm in [34]

have similar rate-distortion performances at lower rates.

4.4.1.4 Progressive Transmission and Scalability Efficiency

The progressive transmission performance of LEBP relative to SPIHT and LSK is

indicated by percentage of encoded bit saved at lower bit plane passes. As discussed

in above sections, the percentage of bit saved at top 1 to 6 passes is significant. The

difference decreases with increase in sorting passes (higher rates) as all coders include

many wavelet coefficients to represent image. Therefore, a large amount of saving

in encoded bit length in LEBP contributes to a substantial increase of progressive

performance as the image is recognized at a much lower rates. For example, in figures

4.8 and 4.9, Lena and Cameraman images are compressed at 0.01 and 0.0313 bpp re-

spectively using SPIHT, NLS, LSK, JPEG2000 and LEBP coders clearly demonstrate

the enhanced recognizability of LEBP decoded images.

The spatial scalability efficiency of LEBP relative to the SPIHT, NLS and LSK

115

Chapter 4 Reduced Memory Listless Scalable Embedded Image Compression Algorithms

(a) (b)

(c) (d)

(e) (f)

Figure 4.8: Decoded Lena images compressed at bit rates of 0.01 using (a) SPIHT
(PSNR=21.44 dB, MSSIM=0.5800), (b) NLS (PSNR=21.95 dB, MSSIM=0.6029), (c)
LSK(PSNR=22.58 dB, MSSIM=0.6333), (d) JPEG2000(PSNR=21.01, MSSIM=0.5664),(e)
LEBP(PSNR=22.71 dB, MSSIM=0.6386), and (f)Original image

116

Chapter 4 Reduced Memory Listless Scalable Embedded Image Compression Algorithms

(a) (b)

(c) (d)

(e) (f)

Figure 4.9: Decoded Cameraman images compressed at bit rates of 0.0313 using (a) SPIHT
(PSNR=24.88 dB, MSSIM=0.7447), (b) NLS (PSNR=25.09 dB, MSSIM=0.7561), (c)
LSK(PSNR=25.30 dB, MSSIM=0.7626), (d) JPEG2000(PSNR=24.85, MSSIM=0.7543),
(e) LEBP(PSNR=25.33 dB, MSSIM=0.7640), and (f) Original image

117

Chapter 4 Reduced Memory Listless Scalable Embedded Image Compression Algorithms

(a) (b) (c) (d)

Figure 4.10: Resolution scalable Lena images decoded at a bit rate of 0.05
bpp by LEBP algorithm (a) 32 × 32(PSNR=38.63 dB,MSSIM=0.9971), (b) 64 ×
64(PSNR=31.55 dB,MSSIM=0.9806), (c) 128× 128(PSNR=26.41 dB,MSSIM=0.8905), (d)
256× 256(PSNR=25.05 dB,MSSIM=0.7886)

is indicated by the quality of the decoded images at different spatial resolutions.

Therefore, it can be evaluated by comparing the quality of the lower resolution versions

of the image. Table 4.6 shows the PSNR comparison for the Lena image coded at

0.05 bpp with LEBP, NLS, LSK and SPIHT coders. The PSNR values are obtained

by scaling the original image appropriately from the subband decompositions. It

is observed that the PSNR values of LEBP are higher than SPIHT with decreasing

spatial resolutions. The quality of decoded images between LSK and LEBP are nearly

same at lower resolutions. Figure 4.10 shows the resolution scalable decoded Lena

images.

4.4.1.5 Region of interest and Random access decoding

The user may desire certain parts of an image that are of greater importance to be

encoded with higher fidelity compared to rest of the image. During decompression,

the quality of the image can be adjusted depending on the degree of interest. In order

to obtain region of interest (ROI), the wavelet coefficients of the transformed image

are arranged in such way that a block of wavelet coefficients corresponds to a local

region of an image has been shown in Figure 4.11. The encoding bit stream format

is exactly similar to Figure 3.4 which is shown in chapter 3. The detail explanation

of how to achieve ROI was also discussed in chapter 3. Figure 4.12(a)-(d) illustrate

an example of LEBP’s ROI retrievability scalability, where the facial portion of Lena

image is retrieved from the coded bit stream at 4 different bit rates, i.e., 0.125 bpp,

118

Chapter 4 Reduced Memory Listless Scalable Embedded Image Compression Algorithms

0.25 bpp, 0.50 bpp and 1.0 bpp respectively.

: A wavelet coefficient

LL3 HL3

LH3 HH3

HL2

LH2 HH2 HL1

HH1
LH1

block

 k-1

block

k+1

mapped wavelet coefficient

arrangement of block, k

Figure 4.11: Rearrangement of wavelet transformed coefficients for ROI/random access
decoding where correlated coefficients across different scales are mapped into a localized
region of the source image.

Random access decoding scheme is for extracting the target image information

for the compressed bit string with minimal decoding work. It is useful in interactive

image browsing systems, where the user first browses coarse resolution images and

then probably looks into details of these parts according to its interest. The random

access decoding, naturally follows the same kind of bit stream format as that for ROI

retrievability.

(a) (b) (c) (d)

Figure 4.12: ROI of facial portion of Lena image (128× 128 size) which is retrieved at a bit
rate of (a)0.125 bpp, (b)0.25bpp, (c)0.5bpp, and (d)1.0bpp.

The beginning of the target bit stream block can be estimated by using the length

119

Chapter 4 Reduced Memory Listless Scalable Embedded Image Compression Algorithms

information of every block which has been coded before the target block. This leads

to minimal decoding time. The length information stored in each block causes an

inevitable overhead and loss of coding efficiency. The average seek time is LpNb

2
,

where L is the number of resolution scales, p is the average skip time and Nb is the

total number of image blocks. From [103], it is clear that the linear method has O(n)

seek time, while bi-section method has O(log2n) seek time. Therefore, the average

seek time can be improved to an order of O(n
log2n

) faster using bi-section method [101].

random access

Encoded bit stream of Lena image

block k

Decode a

16x16 block

at (256,256)

Progressive resolution

decoding in each block

Figure 4.13: Random access decoding of kth block at 1.0 bpp

In the example is shown in Figure 4.13, once the beginning of the target block is

seeked, each bit after the point of bit stream is decoded until the requested resolution

is achieved. A size of 16 × 16 block located at indices (256, 256) of a 512 × 512

Lena image is randomly accessed from the compressed bit stream, then three higher

resolutions are progressively decoded.

4.4.2 Effect of Block Size

In order to better understand the impact of block sizes on the performance of the

proposed techniques, the coding efficiency and encoding/decoding time are measured

with blocks of 8× 8, 16× 16 and 32× 32 sizes using the technique which is shown in

Figure 4.14.

4.4.2.1 Impact of Coding Eficiency on Varying Block Sizes

The PSNR results of 8×8, 16×16 and 32×32 blocks on Lena and Barbara images are

presented in Table 4.7, 4.8 and 4.9 respectively. It is observed that the path map bits

of the significant blocks from medium to higher bit rates increases as the block size

increases. For low bit rates, a reduction in coding performance is observed, because

120

Chapter 4 Reduced Memory Listless Scalable Embedded Image Compression Algorithms

NxN blocks

extraction

DCT of NxN

blocks

Wavelet like

coefficient

arrangement

SPIHT/LSK/

LEBP

coding algorihm

Extract coarsest

subband

Input

image

Compressed

output

bit string

Figure 4.14: Proposed block diagram of DCT based embedded coder using various block
sizes

the number of significant map reduces in a larger block/set. Therefore, block size

of 32 × 32 shows inferior performance over 8 × 8 and 16 × 16 block sizes at lower

rates. This is clearly shown in Figure 4.15 on (a) Lena and (b) Barbara images for

DCT LEBP only. It can be observed that the overall rate-distortion performance of

16× 16 block size is better over the bit rates considered.

Table 4.7: PSNR (dB) performance of various standard gray scale images without using
back end arithmetic coding

Coder
Bit rates (bpp)

0.0156 0.0313 0.0625 0.125 0.25 0.5 1.0

Lena
EQDCT 18.12 20.91 24.70 27.98 31.56 35.40 39.27
DCT SPIHT 22.01 23.77 25.99 28.56 31.88 35.68 39.36
DCT LSK 22.51 24.05 26.25 28.79 31.99 35.71 39.22
DCT LEBP 22.57 24.10 26.27 28.82 32.00 35.72 39.23

Barbara
EQDCT 17.75 19.98 22.25 24.32 27.05 30.85 36.25
DCT SPIHT 20.56 21.68 22.63 24.40 26.90 30.66 36.09
DCT LSK 20.88 21.90 23.04 24.69 27.30 31.05 36.09
DCT LEBP 20.92 21.93 23.05 24.70 27.31 31.06 36.10

Mandrill
EQDCT 17.78 19.08 19.99 21.01 22.48 24.75 28.19
DCT SPIHT 19.09 19.59 20.15 21.09 22.45 24.71 28.20
DCT LSK 19.30 19.70 20.30 21.18 22.51 24.62 28.05
DCT LEBP 19.31 19.71 20.31 21.19 22.52 24.63 28.06

Table 4.7 shows the PSNR performances of proposed techniques, viz. DCT SPIHT,

DCT LSK, DCT LEBP with Embedded quad-tree DCT (EQDCT) [43] on 8×8 block

sizes. It is observed that DCT LEBP outperforms EQDCT (0.32-4.45 dB over 0.0156

to 0.5 bpp) and DCT SPIHT (0.04-0.56 dB over bit rate 0.0156-0.5 bpp). At higher

rates (≥ 1.0 bpp) slight reduction of PSNR value (approx. 0.04-0.13 dB) is observed

in Lena image. On Barbara image a gain of 0.21-3.17 dB and 0.01-0.42 dB is observed

121

Chapter 4 Reduced Memory Listless Scalable Embedded Image Compression Algorithms

over the considered bit rates. Similar kinds of performance is observed on Mandrill

image. The large PSNR gain on the above images at rates lower than 0.0313 bpp

indicates the superior coding efficiency of the proposed DCT LEBP algorithm at lower

bit rates. Therefore, the proposed coder has better capability in sorting significant

coefficients in earlier passes.

Table 4.8: PSNR(dB) performance on Lena image with varying block sizes

Coder
Bit rates (bpp)

0.0156 0.0313 0.0625 0.125 0.25 0.5 1.0
(16× 16) blocks

EQDCT(AAC) 21.82 24.18 26.66 29.56 32.90 36.40 39.75
Song [44](AAC) - - 27.57 30.28 33.36 36.64 39.93
DCT SPIHT(No AAC) 21.52 23.88 26.29 29.06 32.29 35.79 39.35
DCT LSK(No AAC) 22.50 24.41 26.77 29.60 32.87 36.23 39.58
DCT LEBP(No AAC) 22.54 24.43 26.78 29.61 32.88 36.24 39.59

(32× 32) blocks
EQDCT(AAC) 18.96 21.89 25.39 29.08 32.72 36.28 39.59
DCT SPIHT(No AAC) 18.25 20.96 24.94 28.65 32.50 36.13 39.52
DCT LSK(No AAC) 18.80 21.89 25.36 28.99 32.68 36.06 39.29
DCT LEBP(No AAC) 18.82 21.90 25.37 29.00 32.68 36.06 39.29

Table 4.8 shows the PSNR performance of Lena image using DCT SPIHT, DCT LSK

and DCT LEBP algorithms. Among the proposed coders, DCT LEBP exhibits better

rate distortion (PSNR) performance. Therefore, the coding performance of DCT LEBP

embedded coder is compared with coders proposed by Song and Cho [44] and EQDCT.

It is to be noted that embedded coder proposed by Song and Cho consists of block

sizes 32 × 32 together with five levels of wavelet like DCT coefficient arrangement,

combined with SPIHT and context based arithmetic coding. Comparing with [44],

coder DCT LEBP (without arithmetic coded) with 16×16 block shows PSNR reduc-

tion of 0.4-0.79 dB over bit rates 0.0625-1.0 bpp. By using context based arithmetic

coding, it is expected that DCT LEBP coder can outperform the coder in [44]. Fur-

ther, DCT LEBP outperforms EQDCT by 0.05-0.72 dB in low bit rates. At medium

bit rates, a slight reduction of PSNR value (0.02 to 0.16 dB) is observed.

In Table 4.9 results are shown for Barbara image, DCT LEBP with 16× 16 block

shows PSNR reduction of 0.15-0.9 dB in comparison with [44] on 0.0625-1.0 bit rates.

It is observed further that DCT LEBP with 32 × 32 blocks has slightly more gain

than 16× 16 sizes at medium to higher bit rates. Therefore, the proposed algorithm

DCT LEBP with 32×32 block sizes has comparable performance with algorithm pro-

posed by Song and Cho [44]. As far as algorithm complexity is concerned, DCT LEBP

is less complex as it do not use list structure and avoids complex kind of coefficient

122

Chapter 4 Reduced Memory Listless Scalable Embedded Image Compression Algorithms

Table 4.9: PSNR(dB) performance on Barbara image with varying block sizes

Coder
Bit rates (bpp)

0.0156 0.0313 0.0625 0.125 0.25 0.5 1.0
(16× 16) blocks

EQDCT(AAC) 20.43 21.90 23.57 25.79 28.60 32.41 37.57
Song and Cho[44](AAC) - - 24.06 26.43 29.27 32.82 37.52
DCT SPIHT(No AAC) 20.26 21.61 23.11 25.28 28.05 32.10 37.27
DCT LSK(No AAC) 20.87 22.11 23.55 25.53 28.37 32.10 37.37
DCT LEBP(No AAC) 20.88 22.14 23.56 25.53 28.37 32.11 37.37

(32× 32) blocks
EQDCT(AAC) 20.08 22.02 23.90 26.32 29.18 32.96 37.89
DCT SPIHT(No AAC) 17.64 19.83 22.61 25.31 28.33 32.24 37.38
DCT LSK(No AAC) 18.23 20.57 23.02 25.54 28.50 32.29 37.37
DCT LEBP(No AAC) 18.30 20.59 23.04 25.55 28.51 32.29 37.37

sorting method like in [44].

4.4.2.2 Impact of Encoding and Decoding Times on Varying Block Sizes

The results of encoding and decoding times using 8 × 8, 16 × 16 and 32 × 32 blocks

of Barbara image are compared in Figure 4.16 for LEBP algorithm only. It can be

observed that the encoding and decoding times slightly varies over changing block

sizes. In fact, decoding times are slightly higher with increase of block sizes. This

phenomenon is true on encoding times. However, encoding time is always higher than

decoding time for a given bit rate. Similar trends are also observed in other standard

images.

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

20

22

24

26

28

30

32

34

36

38

bit

rate(bpp)

P
S

N
R

(d
B

)

DCT

LEBP(8x8)

DCT

LEBP(16x16)

DCT

LEBP(32x32)

(a)

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

20

22

24

26

28

30

32

34

36

bit

rate(bpp)

P
S

N
R

(d
B

)

DCT

LEBP(8x8)

DCT

LEBP(16x16)

DCT

LEBP(32x32)

(b)

Figure 4.15: Rate-distortion performance of DCT LEBP algorithm on varying block sizes
for (a)Lena and (b)Barbara images.

123

Chapter 4 Reduced Memory Listless Scalable Embedded Image Compression Algorithms

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.5

1

1.5

2

2.5

Bit rate(bpp)

E
nc

od
in

g
T

im
e(

se
c)

LEBP(8x8 blocks)
LEBP(16x16 blocks)
LEBP(32x32 blocks)

(a)

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

Bit rate(bpp)

D
ec

od
in

g
T

im
e(

se
c)

LEBP(8x8 blocks)
LEBP(16x16 blocks)
LEBP(32x32 blocks)

(b)

Figure 4.16: Comparison of (a) Encoding time(sec) and (b)Decoding time(sec) on varying
block sizes of LEBP algorithm on Barbara image.

4.4.3 Computational Complexity

The computational complexity is analyzed in terms run times and number of arith-

metic operations. Table 4.10 summarizes the run times (seconds) for the four algo-

rithms on standard gray scale images such as Lena and Barbara at various bit rates.

It is observed that the encoding times of LEBP are about 1.5-2 times faster at lower

rates, 3-15 times faster than SPIHT and SPECK at higher rates in Lena image. But

it is slightly more (1.3 times) than LSK. The decoding times are approximately 2-4

times faster at lower rates and 4-20 times faster at higher rates than SPIHT and

SPECK. Decoding times of LEBP are lesser than LSK. Similar trends are observed

for other standard images. It is observed that the encoding time of the proposed

algorithm is slightly more than LSK. This is because of extra overhead is required to

test the significance of a group of levels (IL or IGL pass) on earlier bit plane passes.

At the decoder end, this overhead gets compensated because of efficient skipping of

a number of subbands from a larger set. This reduces the decoding times of LEBP

compared to LSK. Considering the number of arithmetic operation, the mathematical

proof of the complexity is deferred to Appendix A.

4.5 Conclusions

In this chapter, two low complexity embedded image coders i.e., LEBP and CLEBP

are proposed. The image reconstruction performance on gray scale and color images

124

Chapter 4 Reduced Memory Listless Scalable Embedded Image Compression Algorithms

Table 4.10: Encoding and Decoding times of Lena and Barbara images with different bit
rates

Coder
Bit rates (bpp)

0.0156 0.0313 0.0625 0.125 0.25 0.5 1.0
Encoding time(sec)
Lena

SPECK 0.16 0.25 0.51 1.12 2.64 8.15 29.13
SPIHT 0.24 0.39 0.71 1.43 3.26 9.07 36.56
LSK 0.09 0.11 0.18 0.32 0.60 1.17 2.27
LEBP 0.11 0.14 0.24 0.42 0.79 1.47 2.87

Barbara
SPECK 0.27 0.32 0.64 1.11 3.19 8.19 20.86
SPIHT 0.23 0.39 0.63 1.58 3.33 7.86 26.60
LSK 0.08 0.11 0.18 0.39 0.55 1.07 2.18
LEBP 0.12 0.14 0.24 0.35 0.66 1.32 2.73

Decoding time (sec)
Lena

SPECK 0.12 0.16 0.38 0.92 2.26 7.16 24.20
SPIHT 0.04 0.08 0.21 0.65 2.01 6.75 31.31
LSK 0.04 0.07 0.13 0.24 0.48 0.95 1.89
LEBP 0.03 0.05 0.11 0.23 0.45 0.90 1.78

Barbara
SPECK 0.12 0.16 0.37 0.63 2.17 5.97 16.33
SPIHT 0.04 0.08 0.19 0.74 2.14 6.05 22.76
LSK 0.04 0.07 0.13 0.26 0.52 0.99 1.98
LEBP 0.03 0.06 0.11 0.21 0.45 0.91 1.87

are compared with some state-of-the-art wavelet and DCT based embedded coders.

For a fair comparison, back-end arithmetic coding is not employed in the proposed

coders. LEBP exploits the inefficiency of tree based SPIHT/NLS and block based

SPECK/LSK coders at low bit rates by efficiently encoding a large clusters of zero

blocks with few symbols at early passes. The proposed coders are fully embedded and

do not use list structures like SPIHT and SPECK. This reduces memory/hardware

requirements.

LEBP has better progressive-in-resolution feature capability than others. This

feature is particularly useful while transmitting images in narrow band channels. The

LEBP is made scalable in terms of pixel accuracy and resolution using a minor rear-

rangement to the bit string. These are very useful features for transmission of images

in heterogeneous network having different access bandwidth and computational need.

Other important features, such as random access and region of interest naturally fol-

low in the scalable LEBP. It is also demonstrated that CLEBP exhibit better rate

distortion trade-off than CSPIHT in almost all the bit rates using replicate padding

and lanczos2 interpolation techniques. Like scalable LEBP, scalability in CLEBP can

be realized using similar kind of rearrangement to the output bit string.

125

Chapter 5

Listless Block-Tree Set Partitioning
Algorithm for Very Low Bit Rate
Embedded Image Compression

Preview

This chapter presents a listless implementation of wavelet based block tree coding

(WBTC) algorithm of varying root block sizes. WBTC algorithm improves the image

compression performance of set partitioning in hierarchical trees (SPIHT) at lower

rates by efficiently encoding both inter and intra scale correlation using block trees.

Though WBTC lowers the memory requirement by using block trees compared to

SPIHT, it makes use of three ordered auxiliary lists. This feature makes WBTC

undesirable for hardware implementation as it needs a lot of memory management

when the list nodes grow exponentially on each pass. The proposed listless imple-

mentation of WBTC algorithm uses special markers instead of lists. This reduces

memory requirement by 88% with respect to WBTC and 89% with respect to SPIHT.

The proposed algorithm is combined with discrete cosine transform (DCT), discrete

Tchebichef transform (DTT) and discrete wavelet transform (DWT) to show its su-

periority over DCT and DWT based embedded coders including JPEG 2000 at lower

rates. The compression performance on most of the standard test images is nearly

same as WBTC and outperforms SPIHT by a wide margin particularly at lower bit

rates.

5.1 Introduction

Recently, low bit rate image compression has assumed a major role in applications

such as processing and storage on handheld mobile or portable devices, wireless trans-

mission, streaming data on the Internet and transmission in narrow band channels.

126

Chapter 5

Listless Block-Tree Set Partitioning Algorithm for Very Low Bit Rate Embedded Image

Compression

Contemporary wavelet based coding provides substantial improvement in progressive

picture build up qualities at lower rates. In addition, it supports a wide range of

functionalities either with increase computational complexities, e.g., JPEG 2000 or

increase memory requirements, e.g., EZW, SPIHT, S+P [17], SLCCA and [104].

SPIHT uses list structure to keep track of set partitions. However, the use of

lists in these coders causes a variable data dependent memory management as the

list nodes are updated on every passes. At high rates, it is possible that the number

of list nodes can be more than the number of coefficients. This is an undesirable

feature for hardware implementations. A variant of SPIHT called No list SPIHT

(NLS) [35] which uses a state table with four bits per coefficients to keep track of set

partitions is reported. Lanuzza et al. [105] proposed two modifications to NLS. In

first case, refinement pass is executed at the first step instead of the last step in NLS

and in second case, less number of markers are used. Then, the modified algorithm

is implemented in a FPGA. Lian et al. [106] applied lifting wavelet transform to the

image and replaced the lists used in SPIHT by flag maps. This lowers the memory

requirements and improves the coding process. Recently, Li et al. [107] applied listless

SPIHT for satellite image compression.

Though NLS is a low complexity image coding algorithm with performances nearly

close to SPIHT, NLS does not fully exploit the coding performances at lower bit rates.

A block-tree algorithm called wavelet block truncation coding presented in [33],[34]

exploits both inter and intra subband correlation to improve the coding performance

at very low bit rates with a slight increase of the decoder complexity. Pan et al.

[78] presented a listless modified SPIHT algorithm which improves the low bit rate

performance of SPIHT. However, it’s performance drastically reduces from medium to

higher bit rates. Our proposed algorithm named as Listless block-tree coding (LBTC)

which not only reduces the dynamic memory requirement almost by 88-89% but also

enhances the low to higher bit rate performance with an average reduction of encoder

and decoder complexity.

The proposed algorithm performs explicit breadth and depth searches. State in-

formation is kept in a fixed size array which corresponds to the array of coefficient

values with four bits per coefficient. Special markers are placed on lower levels of

insignificant block trees when they are created. These markers are updated during

tree partitioning. Efficient skipping of insignificant block tree is accomplished using a

morton scan sequencing. In stead of addressing each coefficient using two indices, lin-

ear indexing scheme is used because this particular format has several computational

and organizational advantages.

Though most of the research activities are focused on wavelet coders, DCT is

127

Chapter 5

Listless Block-Tree Set Partitioning Algorithm for Very Low Bit Rate Embedded Image

Compression

still widely used in many practical applications such as JPEG [4],[108], MPEG-4 and

H.264 [37] because of its compression performance and computational advantages. In

the literature [39]-[44], DCT-based coders with innovative data organization strate-

gies and representations of DCT coefficients have been reported. These coders exhibit

high compression efficiency. Therefore, in order to evaluate the coding efficiency on

the DCT based coders, the proposed LBTC algorithm is combined with DCT. The

proposed new coder is named as Listless block-tree DCT (DCT LBT). It is also dis-

cussed in previous chapters that discrete Tchebichef transform (DTT) has comparable

coding performance as DCT. Therefore, another coder named as Hierarchical listless

DTT (HLBT DTT) is proposed which is similar to DCT LBT. All these block based

coders have some desirable attributes like progressive image compression, precise rate

control and lower complexity. This makes DCT LBT/HLBT DTT to be an ideal

candidate for modern multimedia applications.

5.2 The Proposed LBTC Algorithm

Generally, the encoding process of a wavelet transformed image is performed bit-

plane by bit-plane. In order to do this, an appropriate threshold is pre-computed.

Considering the transformed image as an indexed set of transformed coefficients cij

located at ith row and jth column, the initial threshold is:

T =
⌊

log2(maxi.j{ |ci,j| })
⌋

(5.1)

The new coder presented here uses eight class of markers for partitioning a block tree.

These are defined below:

• BIP: The pixel is insignificant or untested for this bit plane.

• BNP: The pixel is newly significant and it will not be refined for this bit plane.

• BSP: The pixel is significant and it will be refined for this bit plane.

• BDS: The pixel is the first (lowest index) child in a single tree consisting of all

descendants of its parents

• BCP: Like BIP which is applied during partitioning of IS pass, but it will be

tested for significance immediately during same IS pass.

• SD: The pixel is the first child (lowest index) in a composite tree consisting of

all descendants of its parent block.

128

Chapter 5

Listless Block-Tree Set Partitioning Algorithm for Very Low Bit Rate Embedded Image

Compression

• SG: The pixel is the first grandchild (lowest index) in a set consisting of all grand

descendants of its grandparent block.

• SN*: The following markers are used on the leading nodes of each generations

of an insignificant block tree.

– SN2: The pixel is first child of SD set. This pixel and its 16 neighbors (4×4

blocks) can be skipped.

– SN3: The pixel is first grandchild of SD or child of SG set. This pixel and

its 64 neighbors (8× 8 blocks) can be skipped.

– SN4: The pixel is first great grandchild of SD or grand child of SG set. This

pixel and its 256 neighbors (16× 16 blocks) can be skipped.
...

– SN6: The pixel is 5th generation descendants of SD or 4th generation de-

scendants of SG set. This pixel and its 4096 neighbors (64× 64 blocks) can

be skipped.

Figure 5.1: Two dimensional morton scan sequence of the transformed coefficients

The two dimensional arrangement of wavelet transformed coefficients are mapped

to an one dimensional array of length I using morton scan sequencing which is shown

in Figure 5.1, where two levels of wavelet decomposition has been illustrated. The

129

Chapter 5

Listless Block-Tree Set Partitioning Algorithm for Very Low Bit Rate Embedded Image

Compression

algorithm scans from top most bit plane to the lowest bit plane while updating thresh-

old (T) by half every time. In each pass, the coefficient array called val is examined

for significance. A coefficient s is significant, if s ≥ 2T . The simplest method to test

the significance is by bit wise AND operation. The decoder does exactly the reverse

process. At the arrival of first significant bit of a coefficient, it is reconstructed as

±1.5 × 2T . The decoder add or subtract 2T−1 to its current reconstructed value de-

pending on whether it inputs significant bit in the current pass or not. There is one

to one correspondence between markers and val. This means that markers update

its value each time val at ith position becomes significance.

5.2.1 Initialization

HL1

HH1LH1

HL2

HH2

HL3

HH3LH3

LL3

LH2

2x2 Root block

m=2

n=2

starting index, i of

2x2 root block
Offspring

Grand-descendants

O
m,n

gm,n

block-tree

Figure 5.2: Parent-child relationship of a block-tree in a three level pyramid with initial
root block size m× n shown in the right side.

Figure 5.2 shows the parent-child relationship of block-trees in a three level octave

band decomposition. All the block-trees having root block size of 2× 2 are shown for

the sake of simplicity. During encoding, two maximum magnitude descendant arrays

are computed. These are (a) dm,n
max(i) calculates the maximum descendant of a block

tree which root block size is m × n. Where, index ‘i’ is the lowest index of the root

block and (b) gm,n
max(i) calculates the maximum grand descendant sets of the root block

130

Chapter 5

Listless Block-Tree Set Partitioning Algorithm for Very Low Bit Rate Embedded Image

Compression

m× n. Therefore,

dm,n
max(i) = max

[

dm/2,n/2
max (i), dm/2,n/2

max (i+ (m/2 + n/2)),

dm/2,n/2
max (i+ 2(m/2 + n/2)), dm/2,n/2

max (i+ 3(m/2 + n/2))
]

(5.2)

and, gm,n
max(i) = max

[

dm,n
max(4i), d

m,n
max(4i+ (m+ n)),

dm,n
max(4i+ 2(m+ n)), dm,n

max(4i+ 3(m+ n))
]

. (5.3)

The descendants of a single tree is represented by:

d1,1
max(i) = max [val(4i), val(4i+ 1), val(4i+ 2), val(4i+ 3), g1,1

max(i)]. (5.4)

Zero is substituted for gm,n
max(i) when i ≥ I/16. The function insert is used to push

markers SN* wherever needed by the lower tree levels when descendants are created.

The insert function can be defined for 2× 2 blocks as follows

mark[4i] = SN2, mark[16i] = SN3, mark[64i] = SN4, ...etc. (5.5)

For 4× 4 blocks:

mark[4i] = 4× SN2, mark[16i] = 4× SN3, mark[64i] = 4× SN4, ...etc. (5.6)

A five levels of hierarchical tree have 1364× (m×n) descendants, if the root block

is of size m × n. When the block tree is processed, SD marker and 5 SN* markers

associated with the tree are encountered. Therefore, a large number of predictable

insignificant coefficients can be skipped with little effort.

The DC (coarsest) subband block is coded using a slight different procedure than

that in NLS. Assuming the number of coefficients inside DC subband are Idc), NLS

codes each coefficients in the DC band whereas, special markers are used for coding

the DC subband. The number of markers required depend on the size of DC band.

The pseudo-code for the initialization procedure is shown as follows:

Algorithm 2 DC subband initialization

while i ≤ Idc − 1 do

mark[i : Idc/4 : end(i)] ← M∗

end while

Algorithm 3 Initialization of remaining 3 highest subbands

for all subbands do

mark[Idc : 16 : 4(Idc − 1)] ← SD
end for

131

Chapter 5

Listless Block-Tree Set Partitioning Algorithm for Very Low Bit Rate Embedded Image

Compression

Markers M* are updated and the corresponding coefficients inside the subband are

coded each time these become significant. It can be noted that markers M* are only

used to partition the DC subband. The coefficients from Idc to (4Idc − 1) are marked

as SD at a step of 16 or (4 × 4) blocks. This is because these are the offspring of

block-trees having their root blocks (sizes are 2× 2) lying in DC subband. A further

compression is achieved as more blocks are likely to be insignificant on earlier passes

using this techniques.

A function named ‘skip’ is used to indicate how many coefficients need to be

skipped when a marker is encountered during scanning process.

For (2× 2) initial root block, skip[SD]=16 if the marker is SD. Similarly, skip[S*P]=1

for BIP,BNP and BSP. skip[SG]=64 for marker SG; For SN*, skip[SN2]=16,

skip[SN3]=64,, skip[SN6]=4096.

If the marker is SD, skip[SD]=64, skip[S*P]=1, skip[SG]=256, skip[SN2]=64,

skip[SN3]=256, ... skip[SN6]=16385 for (4× 4) initial root block.

It is to be noted that the pseudo-code presented in Section 5.2.2 is exclusively for

LBTC having initial root block size of (2× 2). Additional markers are to be inserted

into the algorithm during partitioning a block tree having initial root block size of

(4 × 4) to (2 × 2). Then, the block tree of initial root block size of (2 × 2) is to be

processed until it becomes a single tree at a bit plane pass. Once it is partitioned into

a single tree, the root of the descendant is to be marked as BCP. Then, the algorithm

switches to the one proposed for LBTC(2× 2).

Therefore, in general, the algorithm uses additional (n − 1) markers for each in-

crease of root block size (2n × 2n) blocks, where n = 1, 2, 3... etc.

5.2.2 The Pseudo-code of LBTC(2× 2) Encoder Algorithm

i = 0, while i ≤ I
Step1 : Insignificant pixel pass

if mark[i]← BIP if insignificant
output(d ← val[i]AND s) send the coeff significance
if d, if significance

output(sign[i])
mark[i] ← BNP mark as newly significant
i = i + 1 move past the coeff

else,
i ← i + skip(mark[i]) skip to the next block/set

end.

132

Chapter 5

Listless Block-Tree Set Partitioning Algorithm for Very Low Bit Rate Embedded Image

Compression

Step2 : Insignificant set pass

1. If mark[i] ← SD set of descendants

output (d ← dm, n
max

⌊

i
4

⌋

AND s) send the block tree significance
if d, if significance

mark[i] = mark[i + (m× n)] ← BDS quad split
mark[i + 2(m× n)] = mark[i + 3(m× n)] ← BDS
mark[4i] ← SG set of grand descendants block tree

else,
i = i + 4(m× n). skip to the next block tree

2. Elseif mark[i] ← SG if grand descendant block tree

output(d ← dm,n
max

⌊

i
16

⌋

AND s) send the significance
if d,

mark[i] = mark[i + 4(m× n)] ← SD quad split and mark
mark[i + 8(m× n)] = mark[i + 12(m× n)] as descendant block trees
insert(i), insert(i + 4(m× n)), mark boarders of these new sets
insert(i + 8(m× n)), insert(i + 12(m× n))

else,
i = i + 16(m× n) skip to the next grand descendant block tree

3. Elseif mark[i] ← BDS if it is a single tree

output(d ← d1,1
max

⌊

i
4

⌋

AND s) check for significance
if d, if significance

mark[i] = mark[i + 1] ← BCP quad split and mark each
mark[i + 2] = mark[i + 3] ← BCP coeff as insignificant
mark[4i] ← SD

else, i = i + 4 skip to the next tree
4. Elseif mark[i] ← BCP if insignificant during current pass

output(d ← val[i]AND s) send the significance
if d, output(sign[i]) if significant, send the sign bit

mark[i] ← BNP mark as newly significant
else, mark[i] ← BIP else insignificant
i = i + 1 go to the next coefficient

5. Else
i = i + 1 skip to the next coeff

Step3 : Refinement pass

i = 0, while i ≤ I
1. If mark[i]← BSP significant coeff

output(val[i]AND s) refine the coeff
i = i + 1 move past the coeff

2. Elseif, mark[i]← BNP newly significant coeff
mark[i] ← BSP significantfor next pass
i = i + 1 move past the coeff

3. Elseif, mark[i] 6= BIP if SN∗
i = i + skip(mark[i]) skip to the next block/set

4. Else, i = i + 1 move past the coeff
End.

5.3 The Proposed DCT LBT Embedded Encoder

The block diagram of the proposed DCT LBT embedded coder is shown in Figure

5.3. First, the input image is divided into non-overlapping N ×N blocks. Then each

block is transformed using DCT. The DCT coefficients of each block are arranged

in a wavelet like hierarchical manner. Though there exists a number of possible

arrangement of coefficients, few arrangements are described below.

Case-1: The DCT coefficients are arranged in M levels of wavelet like hierarchical

arrangement (e.g., M = 4 if N = 16; M = 3 if N = 32 or 8). The decision logic

roots the coefficients of coarsest subband to the input. The coarsest subband is further

divided intoN×N blocks. AnotherM1 level of wavelet like hierarchical rearrangement

133

Chapter 5

Listless Block-Tree Set Partitioning Algorithm for Very Low Bit Rate Embedded Image

Compression

NxN

blocks

extraction

DCT

of NxN

blocks

Wavelet like

coefficient

arrangement

Bit rate

control &

Decision logic

LBTC

encoder

Arithmetic

encoder

(optional)

Extract

coarsest

subband

Arithmetic

decoder

(optional)

LBTC

decoder

Restore coefficients

position from

coarsest subband

Restore coefficients

position from

remaining subband

IDCT

of NxN

blocks

Decision

logic

Merge NxN

blocks

Decoding Part

Encoding Part

Input

original

image

Output

compressed

image

Figure 5.3: Block diagram of proposed DCT LBT embedded image coder

(e.g., M1 = 1 if N = 16; M1 = 2 if N = 32 or 8) is made by reapplying DCT to the

N ×N blocks of coarsest subband. The resultant rearrangement of DCT coefficients

makes the coarsest level to be of size 16× 16 with an overall five levels of hierarchical

arrangement in a standard 512 × 512 size monochrome image. The coefficients are

converted to integers and quantized by the proposed LBTC algorithm. For image

reconstruction, exactly the same reverse process is carried out at the decoder side.

Case-2: The input image is dived into 32 × 32 blocks. The DCT coefficients of

each block are arranged into 5 levels of hierarchical arrangement. Coefficients present

in the similar subband of all 32 × 32 blocks are grouped together. This makes an

overall of 5 levels of arrangement in a standard 512 × 512 size image. This types

of arrangement of coefficients has already been reported [40],[42],[41],[39],[44]. The

function of decision logic is simply to root the overall coefficient arrangement to the

proposed LBTC coding algorithm instead of rooting into the feedback path. The rate

control logic decides the exact target rate at which the image is to be compressed.

5.3.1 Relation Between Transformed Coefficients

Figure 5.4 shows the arrangement of 8×8 DCT coefficients in a typical 3-level wavelet

pyramid structure. After labeling 64 coefficients in a 8 × 8 block, the parent child

relationship is explained as follows

The parent of coefficient i is ⌊ i
4
⌋ for 1 ≤ i ≤ 64, while the set of four children associ-

ated with coefficient j is {4j, 4j + 1, 4j + 2, 4j + 3} for 1 ≤ j ≤ 15. The DC coefficient

0 is the root of DCT coefficients tree, which has only three children: coefficients 1,2

and 3. In the proposed structure, offspring corresponds to direct descendants in the

same spatial location in the next finer band of the pyramid. A tree corresponds to

a node having 4 children which always form a group of 2 × 2 adjacent pixels. In

134

Chapter 5

Listless Block-Tree Set Partitioning Algorithm for Very Low Bit Rate Embedded Image

Compression

0 1

2 3

4 5

6 7

8 9

10 11

12 13

14 15

16 17 20 21

18 19 22 23

24 25 28 29

26 27 30 31

48 49 52 53

50 51 54 55

56 57 60 61

58 59 62 63

32 33 36 37

34 35 38 39

40 41 44 45

42 43 46 47

0 1

2 3

4 5

6 7

12 13

14 15

8 9

10 11

16 17 20 21

18 19 22 23

24 25 28 29

26 27 30 31

48 49 52 53

50 51 54 55

56 57 60 61

58 58 62 63

32 33 36 37

34 35 38 39

40 41 44 45

42 43 46 47

Coefficients rearrange

Figure 5.4: Algorithm for rearranging the transformed coefficients (A three levels of coeffi-
cient arrangement is shown here for illustration).

Figure 5.4, arrows indicate that the same index coefficients of other 8× 8 blocks are

grouped together. Further, one or two levels (depending upon the block size) of co-

efficient rearrangement is performed on the coarsest band in the proposed coefficient

rearrangement algorithm. Therefore, five levels of DCT coefficients are subjected to

be processed by the proposed algorithm.

5.4 The proposed HLBT DTT Embedded Coder

The block diagram of HLBT DTT embedded coder is similar to DCT LBT embedded

coder except the following differences:

• 16× 16 DCT is replaced by 16× 16 DTT.

• A hybrid kind of scanning order is used instead of morton scanning order.

• The coefficient arrangement algorithm is same as defined for DCT LBT in Case

1. The refinement pass is executed in the first step instead of last one. This

modification causes a reordering of the information into the encoded bit strings.

5.4.1 Coefficient Scanning Order

After arranging the DTT coefficients into five levels like the one for DCT LBT, the

coefficients are converted to integers and quantized by LBTC coding algorithm. LBTC

coding algorithm scans the coefficients using the pattern as shown in Figure 5.5.

Morton scanning is performed in the highest subbands. Vertical and horizontal snake

scanning are performed in lower HL and LH subbands. Zigzag scanning is performed

135

Chapter 5

Listless Block-Tree Set Partitioning Algorithm for Very Low Bit Rate Embedded Image

Compression

in lower HH subbands. The parent-child relationship among the coefficients among

the different scales are same as mentioned in DCT LBT. For image reconstruction,

the reverse operation is done at the decoder side.

Figure 5.5: Scanning order of hierarchical subbands
.

5.5 Memory Allocation

The number of coefficients in the DC band is Idc = Rdc × Cdc, where Rdc = R× 2−L,

Cdc = C × 2−L. R is the number of rows, C is the number of columns and L is the

number of subband decomposition levels. The number of block trees in a root block

of size (2× 2), (4× 4), and (8× 8) required for LBTC is 1/4th, 1/16th and 1/64th of

that required by NLS respectively. This reduces the initial cost by 25%, 6.25% and

1.25% respectively compared to NLS.

The coefficients are stored in one dimensional array of length I. If W bits are

needed for each sub band coefficients, then the bulk storage memory required is IW

for the subband data and RC/2 (half byte per pixel) for the eight state table markers.

Therefore,

MLBTC = IW +RC/2 (5.7)

Hence, from Eqn. 5.7, the total memory required by LBTC is 704 kB (assuming

W=18 bits/coefficients) which is 22.3% more than the image alone.

136

Chapter 5

Listless Block-Tree Set Partitioning Algorithm for Very Low Bit Rate Embedded Image

Compression

5.5.1 Dynamic Memory Requirement Comparison

In case of SPIHT, assuming total number of list entries (LIP and LSP) is twice the

number of coefficients RC and LIS ≃ RC/4; at the end of all passes, the total memory

required by SPIHT is

MSPIHT =
RC

4
× (8W + 1) (5.8)

The total number of list entries are less than the number of coefficients because of

block nature of WBTC. Therefore, total memory required at any time is less than

SPIHT. Though memory required by WBTC is approximately 1/3rd of SPIHT for

some earlier bit plane passes, by the end of all passes the memory required is almost

85%-95% as that of SPIHT. Therefore, the worst case memory required by WBTC is

MWBTC =∼ 0.95×MSPIHT . (5.9)

For a 512×512 image with 18 bits per coefficient, this is (512×512)
1024

× 1
2

(bytes/coeff)=128

kB for LBTC, 1160 kB for SPIHT and 1100 kB for WBTC.

5.6 Experimental Results and Performance Comparison

The performance of LBTC, DCT LBT and HLBT DTT algorithms are compared in

terms of coding efficiency and computational complexity with other algorithms such as

SPIHT, WBTC, NLS, JPEG 2000, Song and Cho[44] and Hou et al.[43] on standard

monochrome images. The implementation is done in MATLAB 7.10.0 under Window

XP, Intel Core 2 Duo CPU with 3 GHz speed and 4 GB of RAM space.

5.6.1 Coding Efficiency of LBTC Embedded Wavelet Coder

The performance of LBTC algorithm is evaluated on two sets of standard 8 bpp

monochrome images. The first set includes Lena and Barbara images of size 512×512.

The second set includes higher resolution images from JPEG 2000 test set which are

Bike and Woman of size 2560× 2048. Five levels of dyadic wavelet decomposition are

carried out using 9/7-biorthogonal filter [90] with symmetric extension at the image

edges.

In order to evaluate the coding performance, we first compare the cumulative

number of bits generated in different passes of NLS and proposed LBTC(2 × 2) as

well as LBTC(4×4). The results are shown in Table 5.1 for Lena and Barbara images.

It is evident form the Table 5.1 that LBTC(2× 2) saves 51.3%, 37.7%, 22.3%, 9.8%,

3.6%, 1.4% of bits, and LBTC(4 × 4) saves 58.9%, 43.1%, 25%, 10.9%, 3.8%, 10%,

1.4% of bits respectively on top six bit plane passes. This gives rise to a Peak-signal-

137

Chapter 5

Listless Block-Tree Set Partitioning Algorithm for Very Low Bit Rate Embedded Image

Compression

to-noise-ratio (PSNR) improvement of (1.69-2.01 dB), (1.68-1.79) dB, (0.80-0.88) dB

and (0.22-0.24) dB over NLS. On Barbara image, LBTC(2 × 2) saves 64.6%, 42%,

23.4%, 10%, and LBTC(4 × 4) saves 72.3%, 42%, 26.3% of bits respectively on top

four passes. Therefore, the PSNR improvement is (2.08-2.29) dB, (1.62-1.83) dB,

(0.47-0.51) dB, and 0.22 dB for the corresponding passes respectively. This indicates

that LBTC is more efficient in sorting significant coefficients than NLS. It can be

estimated form Figure 5.6 that the percentage of bit saving in LBTC is nearly same

as WBTC in most of the images.

Table 5.1: Comparison of encoded string length between NLS and LBTC for Lena and
Barbara Images on top six cumulative bit plane passes

Images No. of NLS LBTC(2× 2) LBTC(4× 4) PSNR(dB) PSNR(dB)
sorting encoding string- encoding string- encoding string- improvement improvement
passes length(no. of length(no. of length(no. of LBTC(2× 2) LBTC(4× 4)

significant coeff.) significant coeff.) significant coeff.) vs. NLS vs. NLS

Lena 1 481(29) 234(29) 198(29) 1.69 2.01
2 1041(106) 649(106) 593(106) 1.68 1.79
3 2015(262) 1566(262) 1511(262) 0.80 0.88
4 4296(571) 3874(571) 3825(571) 0.22 0.24
5 10483(1422) 10105(1422) 10087(1422) 0.17 0.17
6 23754(3367) 23430(3367) 23420(3367) 0.07 0.07

Barbara 1 469(19) 166(19) 130(19) 2.08 2.29
2 1023(98) 593(98) 532(98) 1.62 1.83
3 1952(256) 1496(256) 1440(256) 0.47 0.51
4 4139(564) 3725(564) 3670(564) 0.22 0.22
5 11444(1544) 11100(1544) 11045(1544) 0.06 0.07
6 44476(17756) 44150(17756) 44095(17756) 0.04 0.04

Table 5.2 shows comparison of PSNR values between SPIHT, NLS, WBTC(2 × 2),

LBTC(2×2), LBTC(4×4) and LBTC(8×8) for the same set of images at very low bit

rates. It can be observed that the average PSNR loss of LBTC(2×2) over WBTC(2×2)

is 0.126 dB on Lena image, whereas the average PSNR gain of LBTC(2 × 2) over

WBTC(2 × 2) on Barbara image is 0.473 dB on 0.005-0.1 bit rates. However, the

average rate distortion (R-D) performance increases slightly over WBTC by increasing

the root block size of LBTC.

In Figure 5.6, it is observed that the R-D performance of Lena and Barbara images

using LBTC(2 × 2) algorithm is nearly same as WBTC (2 × 2) on (0.0-2.0) bpp.

However, on Lena image, a slight fall in performance is observed in LBTC at higher

bit rates. On the contrary, LBTC shows an improvement in performance over all the

considered bit rates in Barbara image.

Table 5.3 shows the comparisons of LBTC algorithm with SPIHT, NLS and WBTC

algorithms for (0.0625-2.0) bit rates on Woman and Bike images without arithmetic

coding. It can be seen that LBTC shows a coding gain of (0.08-1.42) dB with respect

to WBTC, and (0.38-1.67) dB with respect to SPIHT over bit rates (0.0625-0.5) bpp

138

Chapter 5

Listless Block-Tree Set Partitioning Algorithm for Very Low Bit Rate Embedded Image

Compression

Table 5.2: Comparison of PSNR(dB) values between SPIHT, NLS, WBTC and LBTC at
very low bit rates (All the results are without arithmetic coding)

Images Algorithm Bit rate (bpp)
0.005 0.01 0.03 0.05 0.1

Lena SPIHT 19.46 21.94 25.22 27.06 29.71
NLS 19.39 21.97 25.20 26.97 29.61
WBTC(2× 2) 20.74 22.52 25.48 27.19 29.78
WBTC(4× 4) 20.80 22.54 25.49 27.20 29.79
WBTC(8× 8) 20.82 22.55 25.50 27.20 29.79
LBTC(2× 2) 20.60 22.40 25.44 27.00 29.64
LBTC(4× 4) 20.77 22.51 25.45 27.00 29.64
LBTC(8× 8) 20.79 22.51 25.45 27.00 29.64

Barbara SPIHT 17.99 19.84 21.91 22.58 23.95
NLS 18.86 20.53 22.42 23.18 23.98
WBTC(2× 2) 18.64 20.12 22.06 22.80 24.23
WBTC(4× 4) 18.82 20.22 22.21 22.89 24.25
WBTC(8× 8) 19.00 20.32 22.29 22.95 24.29
LBTC(2× 2) 19.66 20.88 22.51 23.21 23.98
LBTC(4× 4) 19.71 20.93 22.52 23.22 23.98
LBTC(8× 8) 19.73 20.95 22.52 23.22 23.98

on Woman image. However, the gain in LBTC falls by (0.91-1.0) dB and (0.59-0.73)

dB over rates (1.0-2.0) bpp on WBTC and SPIHT respectively. Comparing with NLS,

LBTC shows a coding gain of (0.01-0.1) dB over the considered bit rates on Woman

image. In Bike image, LBTC shows a coding gain of (0.01-0.43) dB on WBTC and

(0.26-0.63) dB on SPIHT for bit rates (0.0625-0.25) bpp. However, the coding gain

reduces to approximately (0.34-0.65) dB in WBTC and (0.19-0.51) dB in SPIHT over

bit rates (0.5-2.0) bpp. LBTC consistently shows a PSNR gain between (0.01-0.09)

0 0.5 1 1.5 2
20

25

30

35

40

45

Bit rate (bpp)

P
S

N
R

 (
dB

)

LBTC
WBTC

(a)

0 0.5 1 1.5 2
15

20

25

30

35

40

45

Bit rate (bpp)

P
S

N
R

 (
dB

)

LBTC
WBTC

(b)

Figure 5.6: Rate distortion performance comparison of WBTC(2 × 2) and LBTC(2 × 2)
algorithms on (a) Lena and (b) Barbara images. (No back-end arithmetic coding employed)

139

Chapter 5

Listless Block-Tree Set Partitioning Algorithm for Very Low Bit Rate Embedded Image

Compression

dB over NLS in all the bit rates on Bike image.

Table 5.3: Comparison of PSNR(dB) values between SPIHT, NLS, WBTC and LBTC
algorithms (All the results are without arithmetic coding).

Images Algorithm Bit rate (bpp)
0.0625 0.125 0.25 0.5 1.0 2.0

Woman SPIHT 25.07 26.91 29.43 32.93 37.73 43.21
NLS 26.61 28.34 30.56 33.30 36.99 42.60
WBTC 25.29 27.08 29.71 33.23 37.91 43.62
LBTC 26.71 28.38 30.59 33.31 37.00 42.62

Bike SPIHT 22.86 25.29 28.51 32.36 36.98 42.90
NLS 23.40 25.86 28.75 32.15 36.46 42.53
WBTC 23.14 25.48 28.76 32.51 37.12 43.13
LBTC 23.49 25.91 28.77 32.17 36.47 42.55

Table 5.4 shows the PSNR performance comparisons of LBTC with JPEG 2000,

SPIHT, NLS and WBTC algorithms using arithmetic coding [109] for the same set

of images. Comparing with JPEG 2000, LBTC shows a significant gain (0.28-1.46)

dB over (0.0625-0.5) bpp on Woman image. However, LBTC shows a coding gain

of 0.12 dB at 0.0625 bpp and a loss of (0.04-0.72) dB over (0.125-2.0) bpp in Bike

image. WBTC shows poor performance than LBTC below 0.5 bpp. At higher rates

(approx. ≥ 1.0 bpp), WBTC outperforms LBTC by a wide margin. In nutshell, LBTC

outperforms most of the algorithm at lower rates (typically ≤ 1.0 bpp) and under

performs at higher rates in most of the images. One possible reason for reduction of

PSNR values at higher rates is that more bits are required to indicate the significance

of block-tree as well as each tree inside a block-tree as more and more coefficients

became significant with decreasing thresholds. This leads to a cumulative increase

of bit string length at the encoder output. Bits indicating significance of block-trees

are required, but these bits don’t carry any information related to PSNR. This leads

to reduction of zero distortion with non zero increase of bit rate. This effect is more

dominant in images of higher dimensions. The reason is that higher dimension images

have more block-trees as compared to lower dimension images.

5.6.2 Coding Efficiency of DCT LBT Embedded Coder

Table 5.5 shows a comparison of cumulative number of bits generated on top six bit

plane passes of Lena and Barbara images using DCT LBT coder. It is observed that

DCT LBT(4×4) encoder saves 6.0%-82.8% of bits on Lena and 3.8%-92.5% of bits on

Barbara images for the considered range of bit plane passes. This gives rise to a PSNR

gain of (0.27-2.85) dB and (0.17-2.66) dB on Lena and Barbara images respectively.

Input image partitioned into (8×8) blocks, (16×16) blocks, and (32×32) blocks-I

140

Chapter 5

Listless Block-Tree Set Partitioning Algorithm for Very Low Bit Rate Embedded Image

Compression

Table 5.4: Comparison of PSNR(dB) values between JPEG 2000, SPIHT, NLS, WBTC and
LBTC algorithms (All the results are with arithmetic coding).

Images Algorithm Bit rate (bpp)
0.0625 0.125 0.25 0.5 1.0 2.0

Woman JPEG2000 25.59 27.33 29.95 33.57 38.28 43.97
SPIHT 25.50 27.33 29.94 33.59 38.28 43.99
NLS 26.89 28.74 30.86 33.77 37.88 43.60
WBTC 25.67 27.34 30.05 33.73 38.30 44.10
LBTC 27.05 28.98 30.96 33.85 37.92 43.62

Bike JPEG2000 23.74 26.31 29.56 33.43 37.99 43.95
SPIHT 23.44 25.89 29.12 33.01 37.70 43.80
NLS 23.70 26.20 29.25 32.75 37.22 43.23
WBTC 23.61 25.97 29.29 33.17 37.82 43.93
LBTC 23.86 26.27 29.31 32.91 37.27 43.27

Table 5.5: Comparison of cumulative encoded string length between DCT NLS and
DCT LBT for Lena and Barbara images on top six bit plane passes

Images No. of DCT NLS DCT LBT(2× 2) DCT LBT(4× 4) % of bit PSNR(dB)
sorting encoding string- encoding string- encoding string- saving improve-
passes length(no. of length(no. of length(no. of DCT LBT(4× 4) ment

significant coeff.) significant coeff.) significant coeff.) vs. DCT NLS

Lena 1 458(6) 115(6) 79(6) 82.8 2.85
2 925(25) 301(25) 229(25) 75.3 2.46
3 1473(76) 653(76) 561(76) 62.0 1.43
4 2799(243) 1949(243) 1853(243) 33.8 0.74
5 6544(761) 5708(761) 5623(761) 14.1 0.54
6 15082(1963) 14268(1963) 14188(1963) 6.0 0.27

Barbara 1 453(1) 70(1) 34(1) 92.5 2.66
2 926(21) 240(21) 172(21) 81.4 2.31
3 1452(70) 554(70) 461(70) 68.3 1.32
4 2873(252) 1980(252) 1884(252) 34.4 0.75
5 8280(822) 7469(822) 7376(822) 10.9 0.34
6 23375(2486) 22577(2486) 22484(2486) 3.8 0.17

use the coefficient rearrangement algorithm as explained in Case-1; whereas, (32×32)

blocks-II uses the coefficient arrangement as explained in Case-2 of Section 5.3. Figure

5.7 shows the coding performance of DCT LBT(4 × 4) algorithm on (a) Lena, (b)

Barbara, (c) Boat and (d) Mandrill images using the above block sizes associated

with their respective coefficient arrangements. It is clearly evident from the results

that (16× 16) block sizes show a good trade-off of coding performance over the range

of considered bit rates on most of the images. (32×32) blocks-II shows slightly better

performance at lower rates. However, its performance is seriously affected at higher

rates which is typically ≥ 1.0 bpp in most of the standard images.

Figure 5.8 (a)-(d) displays the decoded cropped portions of Bike image at 0.1

bpp using DCT SPIHT, DCT NLS, DCT LBT(2 × 2) and DCT LBT(4 × 4) coding

schemes. It is to be noted that the blocking effect is manifested in the above simula-

tions. These effects vanishes gradually with the increase of bit rate. Figure 5.9 (a)-(d)

141

Chapter 5

Listless Block-Tree Set Partitioning Algorithm for Very Low Bit Rate Embedded Image

Compression

0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2

20

25

30

35

40

Bit rate (bpp)

P
S

N
R

 (
dB

)

8x8 blocks
16x16 blocks
32x32 blocks−I
32x32 blocks−II

(a)

0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2

20

25

30

35

40

Bit rate (bpp)

P
S

N
R

 (
dB

)

8x8 blocks
16x16 blocks
32x32 blocks−I
32x32 blocks−II

(b)

0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2

20

25

30

35

40

Bit rate (bpp)

P
S

N
R

 (
dB

)

8x8 blocks
16x16 blocks
32x32 blocks−I
32x32 blocks−II

(c)

0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2

18

20

22

24

26

28

30

32

Bit rate (bpp)

P
S

N
R

 (
dB

)

8x8 blocks
16x16 blocks
32x32 blocks−I
32x32 blocks−II

(d)

Figure 5.7: Rate distortion performance comparison of DCT LBT (4 × 4) algorithm for
input block sizes of (8× 8), (16× 16), (32× 32)blocks-case I, (32× 32)blocks-case II on (a)
Lena (b) Barbara (c) Boat and (d) Mandrill images without using arithmetic coding.

shows the decoded cropped portions of Woman image when coded using DCT SPIHT,

DCT NLS, DCT LBT(2× 2) and DCT LBT(4× 4) at 0.05 bpp. It is observed that

the decoded images using DCT LBT coding schemes have better perceptual qualities

than other coding schemes.

Table 5.6 and 5.7 show a comparison of R-D performance of DCT LBT(4 × 4)

algorithm with other state-of-the-art DCT coders presented by Hou et al. and Song

and Cho including JPEG 2000 for (512× 512) size test images (Peppers, Boat, Man-

drill, Lena and Barbara) and (2560×2048) size images (Woman, Bike and Cafe). The

proposed algorithm uses input block size of (16 × 16). These binary coded version

results (i.e. arithmetic coding) of other algorithms are taken directly from [44].

When compared with the results by Song and Cho in Table 5.6, it is clear that

the proposed algorithm shows a PSNR gain of (0.3-1.33) dB between (0.0625-0.5)

142

C
h
a
p
t
e
r

5

L
istless

B
lo

ck
-T

ree
S
et

P
a
rtitio

n
in

g
A

lg
o
rith

m
fo

r
V

ery
L
o
w

B
it

R
a
te

E
m

b
ed

d
ed

Im
a
g
e

C
o
m

p
ressio

n

(a) (b)

(c) (d)

Figure 5.8: Decoded Bike images compressed at 0.1 bpp using (a)DCT SPIHT, (b)DCT NLS, (c)DCT LBT(2 × 2), (d)DCT LBT(4 × 4)
respectively.

143

Chapter 5

Listless Block-Tree Set Partitioning Algorithm for Very Low Bit Rate Embedded Image

Compression

bpp and a loss of (0.37-0.76) dB between rates (1.0-2.0) bpp on Woman image. In

case of bike image, the gain is (0.06-1.27) dB over (0.0625-0.5) bpp and a loss of

(0.9-0.98) dB above 0.5 bpp is observed. Similarly, a PSNR gain of (0.37-1.56) dB

is achieved over (0.0625-2.0) bit rates in Cafe image. The proposed technique shows

approximately same or better performance at lower bit rates (≤ 0.5 bpp) and under

performs at higher rates (≥ 1.0 bpp) in most of the images when compared with

JPEG 2000,. Improvement at lower rates is a desirable feature for browsing images

over wireless lines where a significant amount of information is required at the earlier

stages of transmission. Though the coding performances are lower at higher rates,

the subjective quality of the image does not show any significant change even for a

PSNR loss over 1.0 dB.

Table 5.6: Comparison of PSNR(dB) values between Hou et al., JPEG 2000, Song and Cho
and DCT LBP(4× 4) algorithms on 2560× 2048 size images(with arithmetic coding)

Images Algorithm Bit rate (bpp)
0.0625 0.125 0.25 0.5 1.0 2.0

Woman Hou et al. 24.90 26.69 28.63 31.70 35.98 41.34
JPEG2000 25.59 27.35 29.99 33.62 38.42 43.99
Song and Cho 25.60 27.29 29.84 33.38 37.89 43.77
DCT LBT 26.85 28.62 30.87 33.68 37.52 43.01

Bike Hou et al. 22.18 24.47 27.35 30.73 34.77 39.91
JPEG2000 23.80 26.36 29.62 33.51 38.10 43.98
Song and Cho 23.24 25.75 28.60 32.08 36.57 42.57
DCT LBT 23.65 26.32 29.52 32.65 36.86 42.72

Cafe Hou et al. 18.21 19.61 21.50 24.49 28.66 34.30
JPEG2000 19.05 20.76 23.13 26.81 32.03 39.07
Song and Cho 18.73 20.46 22.83 25.87 30.50 37.21
DCT LBT 19.74 21.52 23.91 27.43 31.12 37.58

In Table 5.7, DCT LBT(4× 4) shows (0.3-1.28) dB PSNR improvement over Hou

et al., PSNR loss of (0.04-0.8) dB with respect to JPEG 2000 and a gain of (0.03-0.50)

dB with respect to Song and Cho in Pepper image. Similarly, when compared with

Hou et al., the proposed algorithm shows a coding gain of (0.03-1.97) dB, (0.08-0.41)

dB, (0.15-0.55) dB and (0.19-0.53) dB respectively on Lena, Barbara, Mandrill and

Boat images over (0.0.0625-2.0) bit rates. It can be calculated from Table 5.7 that

the proposed techniques show an average reduction of 0.004 dB with [44] and 0.2 dB

with JPEG 2000 over the five set of considered images. It is also worth mentioning

that DCT LBT coder shows a significant improvement of PSNR values at lower bit

rates than most of the DCT based embedded coders reported in [39],[40],[41],[42],[43].

144

Chapter 5

Listless Block-Tree Set Partitioning Algorithm for Very Low Bit Rate Embedded Image

Compression

Table 5.7: Comparison of PSNR(dB) values between Hou et al., JPEG 2000, Song and Cho
and DCT LBT(4×4) algorithms on 512×512 size images(All the results are with arithmetic
coding)

Images Algorithm Bit rate (bpp)
0.0625 0.125 0.25 0.5 1.0 2.0

Peppers Hou et al. 26.31 29.16 31.89 34.52 37.28 41.84
JPEG2000 26.93 30.48 33.37 35.84 38.32 43.07
Song and Cho 26.67 27.47 32.09 34.67 37.61 42.49
DCT LBT 26.61 30.44 32.57 35.17 37.67 42.52

Boat Hou et al. 25.17 27.47 30.08 33.70 38.40 44.26
JPEG2000 25.45 27.81 30.92 34.50 39.21 44.69
Song and Cho 25.54 27.71 30.47 34.09 38.60 44.51
DCT LBT 25.52 27.66 30.52 34.12 38.93 44.66

Mandrill Hou et al. 20.40 21.25 22.99 25.03 28.48 34.03
JPEG2000 20.60 21.60 23.12 25.53 29.00 34.73
Song and Cho 20.59 21.66 23.11 25.56 28.97 34.78
DCT LBT 20.55 21.56 23.21 25.43 28.66 34.58

Lena Hou et al. - 29.42 32.88 36.37 39.68 -
JPEG2000 27.80 30.79 33.97 37.24 40.34 -
Song and Cho 27.57 30.28 33.36 36.64 39.93 -
DCT LBT 27.49 30.17 33.41 36.72 40.08 44.82

Barbara Hou et al. - 25.43 28.54 32.29 37.05 -
JPEG2000 23.17 25.25 28.30 32.17 37.12 -
Song and Cho 24.06 26.43 29.27 32.82 37.52 -
DCT LBT 23.52 25.84 28.62 32.39 37.41 43.81

5.6.3 Coding Efficiency of HLBT DTT Embedded Coder

The performance of HLBT DTT algorithm is evaluated on two sets of standard

monochrome images having bit depth 8 bpp. The first set includes Lena, Barbara

and Mandrill images of size 512 × 512. The second set includes higher resolution

images from JPEG 2000 test set which are Bike and Woman of size 2048× 2560.

Table 5.8 compares the cumulative number of bits generated on top seven bit plane

passes of Lena image using HLBT DTT coder. It can be verified that HLBT DTT(2×
2) saves 2.57%-81.7% and HLBT DTT(4×4) algorithm saves 2.6%-89.6% of bits with

respect to DTT NLS for the considered range of bit plane passes. This give rise to

a PSNR gain of ((-0.05) to 2.42)dB in HLBT DTT(4× 4) over DCT NLS and (0.14-

4.19)dB in HLBT DTT(4 × 4) over DTT NLS on Lena image. However, the PSNR

performance of DCT NLS and DTT NLS are very close to each other.

Table 5.9 shows the same kind of comparison as that in Table 5.8 for Ruler image.

It is observed that the PSNR improvement of HLBT DTT(4 × 4) is about 0.01-5.42

dB improvement up to a bit rate of 264530
(512×512)

≃ 1.0 bpp. The number 264530 is

the encoding bit length up to 5th sorting pass in HLBT DTT(4 × 4). On the other

145

Chapter 5

Listless Block-Tree Set Partitioning Algorithm for Very Low Bit Rate Embedded Image

Compression

Table 5.8: Comparison of encoded string length between DCT NLS, DTT NLS and
HLBT DTT for Lena image on top seven cumulative bit plane passes

No. of DCT NLS DTT NLS HLBT DTT(2× 2) HLBT DTT(4× 4) PSNR(dB) PSNR(dB)
sorting encoding string- encoding string- encoding string- encoding difference improvement
passes length(no. of length(no. of length(no. of string HLBT DTT(4× 4) HLBT DTT(4× 4)

significant coeff) significant coeff) significant coeff) length -DCT NLS vs.DTT NLS

1 458(6) 454(2) 83(2) 47(2) 2.42 3.01
2 925(25) 926(21) 269(21) 201(21) 2.20 4.19
3 1473(76) 1498(82) 659(82) 570(82) 1.35 1.71
4 2799(243) 2782(260) 1900(260) 1799(260) 0.67 0.98
5 6544(761) 6565(804) 5711(804) 5621(804) 0.48 0.55
6 15082(1963) 14938(1956) 14105(1956) 14018(1956) 0.03 0.22
7 31696(4403) 32060(4506) 31236(4506) 31152(4506) -0.05 0.14

Table 5.9: Comparison of encoded string length between DCT NLS, DTT NLS and
HLBT DTT for Ruler image on top five cumulative bit plane passes

No. of DCT NLS DTT NLS HLBT DTT(2× 2) HLBT DTT(4× 4) PSNR(dB) PSNR(dB)
sorting encoding string- encoding string- encoding string- encoding string- difference improvement
passes length(no. of length(no. of length(no. of length(no. of HLBT DTT(4× 4) HLBT DTT(4× 4)

significant coeff) significant coeff) significant coeff) signif. coeff) -DCT NLS vs.DTT NLS

1 706(20) 1119(39) 920(39) 925(39) 0.010 0.013
2 53268(12280) 41886(9080) 41584(9080) 41597(9080) 3.67 0.001
3 131048(22049) 84524(13906) 84196(13906) 84216(13906) 5.42 0.02
4 213970(29137) 149149(19780) 148960(19780) 148983(19780) 3.05 0.007
5 307756(37353) 264658(47394) 264507(47394) 264530(47394) 1.05 0.018

hand, the PSNR improvement is very small i.e. 0.001-0.02 in HLBT DTT(4×4) with

respect to DTT NLS. It is interesting to note that HLBT DTT(4 × 4) has slightly

more encoded bit length compared to HLBT DTT(2×2). The reason is that in Ruler

image the probability for a coefficient being significant is large at earlier passes in

contrast to natural images such as Lena, Barbara, etc. Therefore, a block tree having

larger root block size needs to be quad split each time until it becomes a tree having a

single root. It is evident from the proposed algorithm that the number of symbols to

be inserted into the encoded bit string (i.e. number of ones) are equal to the number

of times a block tree is being significant. This could be the possible reason for increase

in encoded bit length in block trees of larger root blocks. Table 6.10 compares the

PSNR performances of DCT NLS, DCT LBT of 2× 2 and 4× 4 root block sizes with

the proposed method i.e. HLBT DTT(4× 4) on Lena, Barbara, Mandrill and Ruler

images. It is observed that a smooth image such as Lena shows (0.03-0.24) dB of

PSNR loss, textured images such as Barbara shows (0.018-0.548) dB and Mandrill

shows (0.027-0.201) dB of PSNR loss. However Ruler image shows significant coding

gain (i.e. 9.16 dB) which occurs at 2.0 bpp in the proposed coding technique. While

comparing HLBT DTT with different root block sizes, it is observed that HLBT DTT

with higher root block sizes has higher PSNR performance than lower root block sizes

at lower rates. However, the coding gain increases slightly with increase in bit rate.

Figure 5.9 (a)-(f) shows the decoded cropped portions of Woman image when coded

using DCT SPIHT, DCT NLS, DCT LBT(2×2), DCT LBT(4×4), HLBT DTT (2×

146

Chapter 5

Listless Block-Tree Set Partitioning Algorithm for Very Low Bit Rate Embedded Image

Compression

(a) (b)

(c) (d)

(e) (f)

Figure 5.9: Decoded Woman images compressed at 0.05 bpp using (a)DCT SPIHT
(PSNR=30.646 dB, MSSIM=0.8095), (b)DCT NLS (PSNR=31.325 dB, MSSIM=0.8197),
(c)DCT LBT(2 × 2) (PSNR=31.591 dB, MSSIM=0.8369), (d)DCT LBT(4 × 4)
(PSNR=31.610 dB, MSSIM=0.8379) (e) HLBT DTT(2 × 2) (PSNR=31.561 dB,
MSSIM=0.8360) (f) HLBT DTT(4× 4) (PSNR=31.573, MSSIM=0.8365).

147

Chapter 5

Listless Block-Tree Set Partitioning Algorithm for Very Low Bit Rate Embedded Image

Compression

(a) (b)

(c) (d)

(e) (f)

Figure 5.10: Decoded Lena images compressed at 0.1 bpp using (a)DCT SPIHT
(PSNR=28.32 dB, MSSIM=0.8437), (b)DCT NLS (PSNR=28.44 dB, MSSIM=0.8507),
(c)DCT LBT(2×2) (PSNR=28.57 dB, MSSIM=0.8529), (d)DCT LBT(4×4) (PSNR=28.58
dB, MSSIM=0.8530) (e)HLBT DTT(2 × 2) (PSNR=28.45 dB, MSSIM=0.8511)
(f)HLBT DTT(4× 4) (PSNR=28.46, MSSIM=0.8512).

148

Chapter 5

Listless Block-Tree Set Partitioning Algorithm for Very Low Bit Rate Embedded Image

Compression

(a) (b)

(c) (d)

Figure 5.11: Decoded ruler images compressed at 0.5 bpp using (a)DCT SPIHT
(PSNR=21.90 dB, MSSIM=0.9532), (b)DCT NLS (PSNR=23.36 dB, MSSIM=0.9700),
(c)DCT LBT(4 × 4) (PSNR=23.38 dB, MSSIM=0.9701) (d)HLBT DTT(4 × 4)
(PSNR=26.56, MSSIM=0.9872).

149

Chapter 5

Listless Block-Tree Set Partitioning Algorithm for Very Low Bit Rate Embedded Image

Compression

Table 5.10: Comparison of PSNR(dB) values between DTT NLS, DCT LBT(2 × 2),
DCT LBT(4× 4) and HLBT DTT(4× 4) algorithms on 512× 512 size images.

Images Algorithm Bit rate (bpp)
0.0156 0.0313 0.0625 0.125 0.25 0.5 1.0 2.0

Lena DCT NLS 21.63 23.98 26.52 29.45 32.75 36.09 39.42 43.86
DCT LBT(2× 2) 22.28 24.26 26.68 29.53 32.80 36.11 39.43 43.87
DCT LBT(4× 4) 22.31 24.27 26.69 29.54 32.81 36.11 39.43 43.87
HLBT DTT(4× 4) 22.25 24.24 26.59 29.30 32.57 36.01 39.33 43.65

Barbara DCT NLS 20.23 21.38 22.98 25.09 27.81 31.62 36.83 42.97
DCT LBT(2× 2) 20.71 21.74 23.00 25.12 27.84 31.64 36.85 42.99
DCT LBT(4× 4) 20.77 21.76 23.01 25.13 27.85 31.65 36.85 42.99
HLBT DTT(4× 4) 20.71 21.87 22.93 24.95 27.68 31.40 36.66 42.82

Mandrill DCT NLS 19.00 19.59 20.17 21.19 22.62 24.80 28.24 33.63
DCT LBT(2× 2) 19.18 19.68 20.24 21.24 22.66 24.82 28.26 33.66
DCT LBT(4× 4) 19.20 19.69 20.25 21.24 22.66 24.82 28.26 33.66
HLBT DTT(4× 4) 19.21 19.72 20.27 21.24 22.52 24.74 28.17 33.56

Ruler DCT NLS 10.44 10.93 11.82 13.58 16.98 23.37 30.21 34.09
DCT LBT(2× 2) 10.48 10.96 11.85 13.60 16.98 23.38 30.23 34.09
DCT LBT(4× 4) 10.48 10.97 11.86 13.61 16.99 23.38 30.22 34.09
HLBT DTT(4× 4) 10.56 11.31 13.07 16.33 21.50 26.56 31.35 43.25

2) and HLBT DTT (4× 4) at 0.05 bpp. It is observed that the decoded images using

HLBT DTT coding scheme have nearly similar visual performance over DCT LBT

coding scheme. Similar kind of performance is also noticed for Lena image in Figure

5.10 (a)-(f). For example, the shoulder portion and hat edges of Lena image in (c)

and (d) show better visual impression than that of (a) and (b). In Figure 5.10,

HLBT DTT based coding techniques e.g., (e) and (f) show similar performance like

DCT LBT in (c) and (d).

The performance of HLBT DTT algorithm can be well judged in Ruler image

which is shown in Figure 5.11. It is observed that HLBT DTT decoded ruler im-

age has better PSNR/MSSIM values than the other three coding schemes such as

DCT SPIHT, DCT NLS and DCT LBT. For example, the PSNR gain of HLBT DTT

is 3.18 dB higher compared DCT LBT, 3.20 dB higher as compared to DCT NLS and

4.66 dB higher as compared to DCT SPIHT at 0.5 bpp. Similar perceptual enhance-

ment (subjective quality) also verifies the coding efficiency of HLBT DTT algorithm.

Table 5.10 compares the PSNR performances of DCT NLS, DCT LBT(2 × 2),

DCT LBT(4×4) root block sizes with HLBT DTT(4×4) on Lena, Barbara, Mandrill

and Ruler images. It is observed that smooth image such as Lena shows (0.03-0.24) dB

of PSNR loss; textured images such as Barbara and Mandrill shows (0.018-0.548)dB

and (0.027-0.201)dB of PSNR loss respectively with respect to DCT LBT(4 × 4).

However, Ruler image shows significant PSNR gain (i.e. 9.16 dB) which occurs at 2.0

bpp in HLBT DTT(4× 4).

Table 5.11 compares the R-D performances of proposed algorithm with other state-

of-the-art DCT coders presented by Hou et al., Song and DCT LBT. Comparison is

150

Chapter 5

Listless Block-Tree Set Partitioning Algorithm for Very Low Bit Rate Embedded Image

Compression

also carried out with wavelet based WBTC and JPEG 2000, 2048× 2560 size images

(Bike and Woman) and 512× 512 size test images (Lena and Barbara). These binary

coded version [109] results are taken directly from [44].

It is clear that the proposed algorithm HLBT DTT shows PSNR loss up to 0.31

dB compared to DCT LBT algorithm for the considered set of images. The algorithm

proposed by Song performs best in texture images than JPEG 2000. For example, it

outperforms by 0.40-0.97 dB in Barbara image.

HLBT DTT exhibits comparable result with Song and Cho in Lena image. While

considering smooth image such as Woman, HLBT DTT shows a PSNR gain of (0.09-

1.16) dB below 0.5 bpp and a PSNR loss of 0.48-0.90 dB on 1.0-2.0 bpp. One possible

reason is that the block-tree algorithm encodes fewer symbols than images of lower

dimensions for some early passes because of large cluster of zero blocks in higher

dimension images. This improves the PSNR at lower rates. As more coefficients

becomes significant at later passes (lower thresholds), more and more bits are required

to represent significance of block trees during partitioning. The bits required to

represent block-trees do not have any contribution to PSNR. This could be the reason

for overall decrease of PSNR at higher rates. Similar kind of performance improvement

has been observed in Bike image. When compared with JPEG 2000, the proposed

technique shows an overall PSNR decrement on most of the images. This decrement

is compensated by the simplicity of the proposed algorithm compared to JPEG 2000.

While comparing with wavelet based WBTC algorithm, HLBT DTT outperforms for

Barbara, Woman and Bike images at lower rates. A slight PSNR reduction is observed

in case of Lena image.

Improvement at lower rates is a desirable feature for browsing images over wireless

lines where a significant amount of information is required at the earlier stages of

transmission. It is worth mentioning that HLBT DTT coder shows a significant

improvement of PSNR values in lower bit rates than most of the DCT based embedded

coders except DCT LBT.

5.6.4 Computational Complexity

The execution time determines the complexity of an algorithm. It is observed from the

Table 5.12 that execution times of list based coders, e.g. SPIHT, increases exponen-

tially with respect to coders without lists such as NLS and LBTC. During encoding,

SPIHT shows 1.3-7.8 times faster below 0.5 bpp and 2-9 times slower above 0.5 bpp

in Lena image. Similar kind of performance is also observed during decoding. In

other words, the average encoding time in SPIHT is 29.36 sec and decoding time is

12.29 sec whereas, it is 10.26 sec and 9.18 sec respectively in NLS over the consid-

151

Chapter 5

Listless Block-Tree Set Partitioning Algorithm for Very Low Bit Rate Embedded Image

Compression

Table 5.11: Comparison of PSNR(dB) values between Hou et al., JPEG 2000, Song and
Cho, WBTC, DCT LBT and HLBT DTT algorithms on 2560× 2056 size images (Bike and
Woman) and 512× 512 size images (Lena and Barbara).

Images Algorithm Bit rate (bpp)

0.0625 0.125 0.25 0.5 1.0 2.0

Bike Hou et al. 22.18 24.47 27.35 30.73 34.77 39.91
JPEG2000 23.80 26.36 29.62 33.51 38.10 43.98
Song and Cho 23.24 25.75 28.60 32.08 36.57 42.57
WBTC 23.14 25.48 28.76 32.51 37.12 43.13
DCT LBT(4× 4) 23.65 26.32 29.52 32.65 36.86 42.72
HLBT DTT(4× 4) 23.43 26.12 29.33 32.47 36.75 42.59

Woman Hou et al. 24.90 26.69 28.63 31.70 35.98 41.34
JPEG2000 25.59 27.35 29.99 33.62 38.42 43.99
Song and Cho 25.60 27.29 29.84 33.38 37.89 43.77
WBTC 25.67 27.34 30.05 33.73 38.30 44.10
DCT LBT(4× 4) 26.85 28.62 30.87 33.68 37.52 43.01
HLBT DTT(4× 4) 26.76 28.43 30.46 33.47 37.41 42.87

Lena Hou et al. - 29.42 32.88 36.37 39.68 -
JPEG2000 27.80 30.79 33.97 37.24 40.34 -
Song and Cho 27.57 30.28 33.36 36.64 39.93 -
WBTC 28.52 31.27 34.17 37.28 40.43 45.07
DCT LBT(4× 4) 27.49 30.17 33.41 36.72 40.08 44.82
HLBT DTT(4× 4) 27.35 30.00 33.27 36.51 39.85 44.52

Barbara Hou et al. - 25.43 28.54 32.29 37.05 -
JPEG2000 23.17 25.25 28.30 32.17 37.12 -
Song and Cho 24.06 26.43 29.27 32.82 37.52 -
WBTC 23.47 24.87 27.67 31.49 36.45 43.01
DCT LBT(4× 4) 23.52 25.84 28.62 32.39 37.41 43.81
HLBT DTT(4× 4) 23.43 25.75 28.48 32.20 37.26 43.52

All the results are with arithmetic Coding a ‘-’ indicates results are not available.

ered bit rates. The proposed LBTC algorithm is slight more complex than NLS. The

reason is additional block partitioning steps where a significant block tree is recur-

sively quad partitioned to find significant coefficients for each pass. A slight increase

of encoding time and a slight decrease of decoding time is observed for larger root

block sizes. The reason is that larger blocks consumes more time during encoding

whereas, reconstructing a pixel from a larger set is a less time consuming operation

because of efficient skipping of predictable insignificance sets/blocks. Similar kind of

performance is noticed in other standard images.

152

Chapter 5

Listless Block-Tree Set Partitioning Algorithm for Very Low Bit Rate Embedded Image

Compression

Table 5.12: Comparison of encoding and decoding time (sec) for Lena image (Wavelet
transform and DCT are not included).

Algorithm Bit rate (bpp)
0.0625 0.125 0.25 0.5 1.0 2.0

Encoding Time
SPIHT 0.67 1.26 2.76 7.27 25.14 139.07
NLS 5.26 6.30 8.06 9.69 11.82 14.89
LBTC(2× 2) 7.02 8.23 10.13 11.83 14.13 17.33
LBTC(4× 4) 7.19 8.43 10.40 12.18 14.55 17.63
LBTC(8× 8) 7.47 8.50 10.49 12.36 14.71 17.94

Decoding Time
SPIHT 0.15 0.45 1.47 5.74 21.55 44.35
NLS 4.97 5.75 7.20 8.19 9.39 11.22
LBTC(2× 2) 6.71 7.73 9.25 10.43 11.79 13.67
LBTC(4× 4) 6.54 7.46 8.98 10.07 11.44 13.29
LBTC(8× 8) 6.30 7.06 8.49 9.56 10.87 12.80

5.7 Conclusions

In this chapter, a listless block tree coder (LBTC) which is a no list variant of WBTC

algorithm is proposed. WBTC uses two dimensional block trees whereas, LBTC uses

one dimensional block tree structures to exploit inter and intra scale correlation. This,

enhance the low bit rate performance of most of the wavelet (i.e., NLS) and block

based (i.e., DCT/DTT) embedded coders. The memory requirement of the proposed

coder is fixed which is almost 22.3% more than the image alone. The proposed coders

(LBTC, DCT LBT, HLBT DTT) manifest performance degradation at higher bit

rates, typically ≥ 1.0 bpp. The reconstruction quality may not be seriously affected,

as at higher rates, the subjective quality of an image remains indistinguishable to slight

reduction of PSNR values. It is noted that the proposed coders are little complex than

NLS, but much lesser than JPEG 2000 and embedded DCT coder proposed by Song

because both use context adaptive arithmetic coding.

Therefore, the proposed coders are suitable for low memory hand held devices (e.g.

digital camera, PDAs, mobile phones etc.) in particular and image communication

in general, where a significant amount of information is to be transmitted within the

available bandwidth.

153

Chapter 6

A Low Complexity and Efficient
Sparse 8× 8 Orthogonal Transform
Matrix for Image Compression

Preview

This chapter presents an efficient orthogonal sparse 8× 8 transform matrix for color

image compression particularly at lower bit rate applications. The transform matrix

implemented in Xilinx XC2VP30 FPGA device indicates that there is a significant sav-

ing in computation and hardware resources compared to DCT, Signed DCT (SDCT),

approximate DCT and matrix proposed by Bouguezel et al. By using various natural

test images, it is demonstrated that the subjective and objective qualities of the pro-

posed matrix are comparable with the above transforms at lower bit rates. Further,

it outperforms SDCT by a large margin almost at all bit rates for most of the images.

6.1 Introduction

For complexity constrained encoding situations, where even a fast fixed-complexity

DCT algorithm is too complex, one can resort to approximate the computation of

DCT at the cost of some degradation in the image quality. These applications can be

multimedia, mobile communications, PDAs, digital cameras, etc where a lot of image

transmission and processing are required.

Even though a number of algorithms for fast computation of DCT are available

in the literature, there has been a lot of interest towards finding out the approximate

integer versions of floating point DCT [66]-[71]. Two 8× 8 versions of transformation

matrices, one for the coarsest and another for the finest approximation levels (repre-

sented as D̂1 and D̂5 respectively) of exact DCT has been proposed by Lengwehasatit

and Ortega [68]. Using these two matrices, a trade off between speed versus accu-

154

Chapter 6

A Low Complexity and Efficient Sparse 8× 8 Orthogonal Transform Matrix for Image

Compression

racy in various bit ranges can be achieved. The performance shows 73 % complexity

reduction with only 0.2 dB PSNR degradation. A family of 8× 8 biorthogonal trans-

forms called binDCT, which are all approximates of popular 8 × 8 DCT has been

proposed in [69]. A new kind of transform called signed DCT (SDCT) by applying

signum function to DCT has been proposed in [70]. However, SDCT and its inverse

are not orthogonal and it needs 24 additions for transformation. A 8 × 8 transform

matrix is presented in [71] by appropriately inserting 20 zeros into the elements of D̂1

[68]. A reduction of 25 % in computation is achieved over SDCT and this matrix is

orthogonal. Unlike the matrices proposed [72]-[74], the transform order need not be

a specific integer or a power of 2.

Wavelet coding algorithms have several advantages over DCT based methods at

the cost of computational complexity. These are state-of-the-art image compression

algorithms such as EZW [15], SPIHT [16], EBCOT [27] have 0.5-1.5 dB PSNR gain

over conventional DCT for a wide range of bit rates (0.1-1bpp), absence of blocking

artifacts, progressive transmission capabilities and precise rate control. The proposed

matrix is applicable to low power devices, where conventional DCT transform or

wavelet coding algorithms are not suitable.

To implement a transform kernel using conventional approach requires a number of

multipliers. Multipliers are the major source of power hungry elements in a hardware

device. Distributed arithmetic (DA) computation is adopted to eliminate multipliers

in the computations [75],[76]. This chapter presents a novel 8×8 orthogonal transform

matrix. The proposed matrix is sparse and has 24 zeros entries. The matrix has been

implemented in a Xilinx XC2VP30 FPGA device. Its resource utilization has been

summarised. The application of the matrix to color image compression has been

discussed. It has been shown that the proposed matrix provides 7 % reduction in

computation over the matrix by Bouguezel et al. [71] and 45 % over SDCT [70].

6.2 Signed Discrete Cosine Transform

The two dimensional DCT of order N ×N is defined as:

TDCT (u, v) = αuv

N−1
∑

i=0

N−1
∑

j=0

cos
π(2i+ 1)u

2N
cos

π(2j + 1)v

2N

where,

αuv =

{

1√
N
, for u,v = 0

2√
N
, otherwise.

(6.1)

155

Chapter 6

A Low Complexity and Efficient Sparse 8× 8 Orthogonal Transform Matrix for Image

Compression

The signed discrete cosine transform (SDCT) is obtained by applying the signum

function operator to the elements of DCT. Therefore, it is given as:

TSDCT (u, v) =
1√
N
sign[TDCT (u, v)] (6.2)

where, sign(.) is the signum function. It is defined as:

sign(.) =











+1, if x > 0

0, if x = 0

−1, if x < 0.

(6.3)

Several advantages of SDCT are apparent form Eqnuations 6.1, 6.2 and 6.3. These

are:

• All the elements are ±1.

• No multiplication operation or transcendental expressions are required.

• Unlike WHT [72], RSWT [73] and SDFT [74], the transform order need not be

a specific integer or a power of 2.

• SDCT maintains the periodicity and spectral structure of the original DCT and

maintains good de-correlation and energy compaction characteristics.

It has been verified that only 10 percent spectral components of SDCT contains 80

percent of the total signal power compared to 87 percent signal power in DCT [70].

The 8× 8 SDCT transform matrix is given by:

TSDCT =
1√
8

































+1 +1 +1 +1 +1 +1 +1 +1

+1 +1 +1 +1 −1 −1 −1 −1

+1 +1 −1 −1 −1 −1 +1 +1

+1 −1 −1 −1 +1 +1 +1 −1

+1 −1 −1 +1 +1 −1 −1 +1

+1 −1 +1 +1 −1 −1 +1 −1

+1 −1 +1 −1 −1 +1 −1 +1

+1 −1 +1 −1 +1 −1 +1 −1

































(6.4)

It is worth mentioning that the forward transform of TSDCT (u, v) is almost orthog-

onal. But, its inverse transform is not orthogonal. Hence, this matrix is only used for

some applications like adaptive filtering where forward transform is employed. For

156

Chapter 6

A Low Complexity and Efficient Sparse 8× 8 Orthogonal Transform Matrix for Image

Compression

applications like image compression, another reverse transform matrix called T r
SDCT

[66] has been presented where all elements are ±1, ±2, or 0. Like TSDCT , it does not

need any multiplication operation for reverse transformation except shift and sign bit

changes. Moreover, 25% of the elements are zeros. Unfortunately, this special feature

of the matrix is not valid for all orders of N.

6.3 Proposed 8× 8 Transform Matrix

The proposed 8×8 transform matrix can be obtained by appropriately inserting some

0s and 0.5s into the SDCT matrix in Eqn. 6.4. The proposed matrix contains 24 zeros

in comparison with 20 zeros with the matrix by Bouguezel et al. [71]. Multiplication

of input pixel with 0.5 is just a shift and addition operation. So, multipliers are not

needed during transform stage, which makes the transformation faster. The proposed

matrix is shown in Eqn. 6.5. Where D is a diagonal matrix. It is expressed as

D=diag(1,
√

2, 2
√

2
5
, 2, 1,

√
2, 2
√

2
5
, 2).

T =
D

2
√

2

































1 1 1 1 1 1 1 1

1 1 0 0 0 0 1 1

1 0.5 −0.5 −1 −1 −0.5 0.5 1

0 0 −1 0 0 1 0 0

1 −1 −1 1 1 −1 −1 1

1 −1 0 0 0 0 1 −1

0.5 0 0 −0.5 −0.5 0 0 0.5

0 0 0 −1 1 0 0 0

































(6.5)

The above transform matrix can be represented in Eqn. 6.6 as:

T = D̂ × T̂ (6.6)

where, D̂ = D
2
√

2
and

T̂ =

































+1 +1 +1 +1 +1 +1 +1 +1

+1 +1 0 0 0 0 −1 −1

+1 +0.5 −0.5 −1 −1 −0.5 +0.5 +1

0 0 −1 0 0 +1 0 0

+1 −1 −1 +1 +1 −1 −1 +1

+1 −1 0 0 0 0 +1 −1

+0.5 0 0 −0.5 −0.5 0 0 +0.5

0 0 0 −1 +1 0 0 0

































(6.7)

157

Chapter 6

A Low Complexity and Efficient Sparse 8× 8 Orthogonal Transform Matrix for Image

Compression

It can be seen that the matrix T̂ satisfies the property of orthogonality, i.e, T−1 =

T t where t denotes the transpose operation. Therefore, the same matrix can be used

for image encoding and image decoding. Let, X be an 8× 8 block of image data and

Y be its corresponding matrix in transformed domain. Then, the forward transform

operation is:

Y = TXT t (6.8)

Since T is orthogonal, the image can be reconstructed using inverse transform given

as:

X = T tY T = T̂ t(D̂tY D̂)T̂ (6.9)

The proposed matrix in Eqn. 6.5 has been used in R, G and B color planes to

achieve compression of color images.

6.4 Distributed Arithmetic based Algorithm for Fast Com-
putation

The distributed arithmetic equation is expressed as:

Y =
K
∑

k=0

Akxk (6.10)

where Ak are the fixed coefficients and xk are the input data words. If xk is a 2’s

complement binary number scaled such that | xk | ≤ 1, then each xk can be expressed

as:

xk = −bk0 +
N−1
∑

n=1

bkn2−n (6.11)

where bkn are binary digits, bk0 is the sign bit and bk(N−1) is the least significant bit

(LSB). Combining Eqn. 6.10 and Eqn. 6.11, Y can be expressed in terms of bits of

xk as:

Y =
K
∑

k=1

Ak[−bk0 +
N−1
∑

n=1

bkn2−n] (6.12)

Taking transformation of the proposed integer matrix of Eqn. 6.7, the following eight

equations can be obtained.

158

Chapter 6

A Low Complexity and Efficient Sparse 8× 8 Orthogonal Transform Matrix for Image

Compression

Y (0) = [x(0) + x(7)] + [x(1) + x(6)] + [x(2) + x(5)] + [x(3) + x(4)],

Y (1) = [x(0)− x(7)] + [x(1)− x(6)],

Y (2) = [x(0) + x(7)] + (0.5)[x(1) + x(6)] + (−0.5)[x(2) + x(5)] + (−1)[x(3) + x(4)],

Y (3) = [x(5)− x(2)],

Y (4) = [x(0) + x(7)] + (−1)[x(1) + x(6)] + (−1)[x(2) + x(5)] + [x(3) + x(4)],

Y (5) = [x(0)− x(7)] + (−1)[x(1)− x(6)],

Y (6) = (0.5)[x(0) + x(7)] + (−0.5)[x(3) + x(4)],

Y (7) = [x(4)− x(3)].

(6.13)

The distributed algorithm in Eqn. 6.12 can be used to compute the above eight

equations. Taking Y (2) as an example of Eqn. 6.13 to discuss the application of

distributed arithmetic.

Y (2) =
[

−21 20 2−1
]







0 0 1 1

1 0 1 1

0 1 1 0



















x(0) + x(7)

x(1) + x(6)

x(2) + x(5)

x(3) + x(4)













(6.14)

Assigning,







0 0 1 1

1 0 1 1

0 1 1 0






×













x(0) + x(7)

x(1) + x(6)

x(2) + x(5)

x(3) + x(4)













=







Y −1(2)

Y 0(2)

Y 1(2)






(6.15)

Y (2) = [-21 × Y 1(2)]+[20 × Y 0(2)]+[2−1 × Y −1(2)] (6.16)

Therefore, to compute the value of Y (2), values of Y 1(2), Y −1(2) need to be shifted

and added with Y 0(2). Meanwhile, Y (0), Y (1), Y (3), Y (4), Y (5), Y (6) and Y (7)

values can be computed in a similar manner. The shift operation is implemented by

wirings, which has negligible delay and hardware resources.

Table 6.1 is the explanation the algorithm of the proposed transform matrix. For

instance, ALU1, ALU2, ALU3, and ALU4 performs addition operation when Y (0) is

calculated. The signal flow graph of 1D 8-point transform matrix is shown in Figure

6.1. According to Figure 6.1, many adders and subtracters which can be implemented

by a simple ALU can be shared. Therefore, the requirement of hardware resources can

be further reduced. The values of Y 1(0) and Y −1(0) are zero. Y 0(0) can be obtained

from the signal R0.

159

Chapter 6

A Low Complexity and Efficient Sparse 8× 8 Orthogonal Transform Matrix for Image

Compression

Table 6.1: Explanation of the Hardware structure of Figure 6.1. (symbols ‘+’ means positive,
‘-’ means negative and ‘No’ means no operation)

H/W Y(0) Y(1) Y(2) Y(3) Y(4) Y(5) Y(6) Y(7)

ALU1 + - + No + - + No
ALU2 + - + No + - No No
ALU3 + No + - + No No No
ALU4 + No + No + No + -
Y1 0 0 R2 0 R4 R6 R7 0
Y0 R0 R1 R3 R5 R0 R1 R7 R7
Y−1 0 0 R4 0 0 0 R8 0

+/-

+/-

+/-

+/-

+

+

+

+

+

+

x(0)

x(7)

x(1)

x(6)

x(5)

x(2)

x(4)

x(3)

ALU1

ALU2

ALU3

ALU4

R6

R3

R0

R1

R4

R7

R8

R5

R2

`

Figure 6.1: Hardware structure of the proposed matrix

6.5 Application to JPEG Color Image Compression

The proposed transform matrix is applied in a standard JPEG baseline encoder as

shown in Figure 6.2. Since the quantization operation is applied after transformation

using proposed matrix, the diagonal term of the matrix of Eqn. 6.5 can be merged into

the quantizer. This is perform so that T̂ in Eqn. 6.7 is the only source of computation

in the transformation stage.

6.5.1 Chroma Subsampling and Color Space Conversion

It is a well-known fact that there is a high correlation between RGB color plane of

an original image. The color conversion is done so as to ensure complete decorre-

lation among the color planes in order to achieve high compression. YCbCr color

space has good decorrelation properties. After the color space conversion, most of

the spatial information of the image is contained in the luma (Y) component. The

160

Chapter 6

A Low Complexity and Efficient Sparse 8× 8 Orthogonal Transform Matrix for Image

Compression

RGB to YCbCr

color

conversion

Proposed

8x8 transform

matrix

Merge and

quantize

Coefficient

ordering

Entropy

Encoding

Huffman Table

specifications

RGB planes(4:2:0 chroma subsampling)

......

8x8 blocks of image data

Compressed output

binary data

1000100010111110...

R

G

Figure 6.2: Block diagram of proposed transform matrix on the 8× 8 blocks of image data.

chroma components (Cb and Cr) contain mostly redundant color information and

little information is being lost by subsampling these components both horizontally

and/or vertically. In the proposed system both Chroma planes are down sampled by

a factor of 2, both horizontally and vertically with respect to Luma plane. This kind

of subsampling called 4:2:0 chroma subsampling. Each color component is divided

into 8 × 8 non overlapping blocks and by selecting one or more data blocks from

each of the color components, a minimum coded unit (MCU) is constituted. MCU

defines the arrangement of the data blocks in interleaved scanning order of the color

components. In interleaved order, data blocks from all the color components appear

in each MCU. There can be a provision for a non-interleaved scan where each color

components are stored and processed separately. In 4:2:0 format, each MCU consists

of a 2× 2 units of four data blocks form the Y component and one from each of the

Cb as well as Cr components.

6.5.2 Merge and Quantize

The fractional term of Eqn. 6.5, i.e. D
2
√

2
is merged with the quantization matrix so

as to ensure fast compression and decompression. The new quantization matrix of

luminance component is shown in Table 6.2. In a similar manner, quantization matrix

for the chrominance components can be obtained. The matrices of both luminance

and chrominance components are also being used for de-quantization operation during

decoding stage.

6.6 FPGA Synthesis Results of the Proposed Transform Ma-
trix

The proposed transform matrix has been implemented on Xilinx XC2VP30 FPGA

device. Table 6.3 and 6.4 shows the hardware utilization summery of the transform

161

Chapter 6

A Low Complexity and Efficient Sparse 8× 8 Orthogonal Transform Matrix for Image

Compression

Table 6.2: Proposed Luminance 8× 8 Quantization Matrix

6 4 4 6 8 14 18 22
6 6 7 10 13 29 30 20
6 6 7 11 18 25 31 25
10 12 16 21 36 62 57 44
6 8 13 20 24 39 36 27
12 18 28 32 41 52 57 46
22 29 35 39 46 54 54 45
51 65 67 69 79 71 73 70

matrix of Equ. 6.7. It is clearly evident that by using the matrix of Equ. 6.7, a lot of

FPGA resources can be saved. For instance, the hardware utilization (No. of Slices

and 4 input LUTs) of 1D 8 × 8 transform matrix T̂ of Equ. 6.7 is 3.9 % lesser than

1D 8 × 8 transform matrix T of Equ. 6.5. The basis of the proposed transform is

integer powers of 2. Therefore, the hardware utilization indicated in Table 6.3 and

6.4 without diagonal term D

2
√

(2)
are far less than using diagonal term D

2
√

(2)
.

Table 6.5 shows the adder cost saving of the proposed transform matrix over DCT,

NEDA [77], Chungan et al.[76], Approx. DCT [68], SDCT and Matrix by Bouguezel

et al.. It is clearly evident that the proposed transform matrix shows 97 % saving

of ALU and adders compared to direct DCT. Further, the adder bit-width is 333,

which is lowest among the other transforms. The adder bit-width is calculated by

taking into account the total number of signal lines required to generate outputs

Y (0), Y (1), Y (2), ...Y (7) from inputs x(0), x(1), ...x(7).

Table 6.3: H/W Utilization of 1-D transform of proposed matrix in XC2VP30.

without using D
2
√

2
with using D

2
√

2

Resources Available Utilise % Utilisation Utilize % Utilisation

No. of slices 13696 164 1.1 613 4
Flip Flops 27392 0 0 0 0
4 input LUTs 27392 299 1.1 1099 4
Bonded IOBs 556 168 30 152 27

Table 6.4: H/W Utilization of 2-D transform of proposed matrix in XC2VP30.

without using D
2
√

2
with using D

2
√

2

Resources Available Utilise % Utilisation Utilize % Utilisation

No. of slices 13696 295 2 1582 11
Flip Flops 27392 190 0.7 664 2
4 input LUTs 27392 496 1.8 2749 10
Bonded IOBs 556 147 26 115 20

162

Chapter 6

A Low Complexity and Efficient Sparse 8× 8 Orthogonal Transform Matrix for Image

Compression

Table 6.5: Comparison of Adder Cost Savings

Scheme Adder matrix Adder bit-width % saving

Direct DCT 308 2496 -
NEDA 35 1800 88
Chungan et al. 9 ALUs+6 adders 850 95
Approx. DCT 4 ALUs+16 adders 533 94
Bouguezel et al. 4 ALUs+8 adders 426 95
SDCT 4 ALUs+7 adders 554 96
Proposed 4 ALUs+6 adders 333 97

6.7 Matlab Simulation Results and Discussion

The superiority of the proposed technique is demonstrated through computer simula-

tion running on Microsoft Window XP, Intel Core2 Duo CPU, 3 GHz Platform. PSNR

and MSSIM are used for comparison. Experiments are conducted on 3 monochrome

images, i.e., Cameraman, Lena, Goldhill and 2 color images, i.e., pepper and f16. All

the images are of 512× 512.

While comparing between the proposed transform matrix and Approx. DCT, it is

observed from Figures 6.3 (a),(c) and (e) that there is a PSNR reduction of approx.

0.2-1.0 dB for Cameraman image, approx. 0.15-0.8 dB for Lena image and approx.

0.2-0.8 dB for Goldhill image. The MSSIM performance of the proposed matrix

closely follows that of Approx. DCT and Matrix by Bouguezel et al. for all images.

Figure 6.4(b)-6.4(f) shows the reconstructed images of Cameraman at a scale factor

of 5 among all the five transforms. It is observed that the MSSIM performance of

Approx. DCT is only 0.34% higher than the proposed transform matrix, whereas

DCT outperforms by approx. 5% than the proposed matrix in most of the images.

However, the proposed transform matrix shows improvement in PSNR by a wide

margin (about 2.0 dB) and MSSIM performance by 5-10% than SDCT. The PSNR

vs. bit rate and MSSIM vs. bit rate plots of Pepper image are shown in Figures

6.5 (a) and (b)respectively. Similarly, PSNR vs. bit rate and MSSIM vs. bit rate

plots of f16 image is shown in Figure 6.5 (c) and (d) respectively. These figures

illustrates a comparison between proposed 8× 8 transform matrix, DCT, Transform

Matrix by Bouguezel et al., approx. DCT, and SDCT. It can be seen from these

figures that PSNR of proposed transform is almost 1.5-2.5 dB higher than SDCT

for the considered set of bit rates. It follows closely with the transform matrix by

Bouguezel et al.. When compared with Approx. DCT, the proposed transform shows

a maximum of 0.01-0.4 MSSIM reduction between 0.1 to 0.8 bit rates on Pepper

image. Although DCT outperforms all the transforms both in terms of PSNR and

163

Chapter 6

A Low Complexity and Efficient Sparse 8× 8 Orthogonal Transform Matrix for Image

Compression

0.2 0.3 0.4 0.5 0.6 0.7 0.8
22

23

24

25

26

27

28

29

30

31

Bit rate

P
S

N
R

(d
B

)

dct
proposed matrix
sdct
bouguezel DCT
approx dct

(a)

0.2 0.3 0.4 0.5 0.6 0.7 0.8

0.7

0.75

0.8

0.85

0.9

Bit rate

S
S

IM

dct
proposed matrix
sdct
bouguezel DCT
approx dct

(b)

0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

23

24

25

26

27

28

29

30

31

32

Bit rate

P
S

N
R

(d
B

)

dct
proposed matrix
sdct
bouguezel DCT
approx dct

(c)

0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

0.65

0.7

0.75

0.8

0.85

0.9

Bit rate

S
S

IM

dct
proposed matrix
sdct
bouguezel DCT
approx dct

(d)

0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

23

24

25

26

27

28

29

30

Bit rate

P
S

N
R

(d
B

)

dct
proposed matrix
sdct
bouguezel DCT
approx dct

(e)

0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

0.55

0.6

0.65

0.7

0.75

0.8

0.85

Bit rate

S
S

IM

dct
proposed matrix
sdct
bouguezel DCT
approx dct

(f)

Figure 6.3: Rate-distortion plots of (a) Cameraman, (c) Lena, (d) Goldhill images. MSSIM
vs. bit rate plots of (b) Cameraman, (d) Lena, (f) Goldhill images.

164

Chapter 6

A Low Complexity and Efficient Sparse 8× 8 Orthogonal Transform Matrix for Image

Compression

MSSIM, it is computationally expensive than other transforms. In Figure 6.5(c) of

f16 image, there is a sudden decrease of PSNR value at bit rates between 0.3-0.45

bpp. Below 0.3 and above 0.45 bpp, it is around (1-1.5) dB lower than approx. DCT.

It is interesting to note that same trend does not appear in its MSSIM performance

which is shown in Figure 6.5(d).

Figure 6.6 shows the reconstructed images of f16 using DCT, Matrix proposed by

Bouguezel et al., approx. DCT, SDCT and the proposed transform matrix at a scale

factor of 5. The scale factor is an integer variable term which is multiplied with the

quantization matrices during encoding/decoding in order to control bit rates. It is

clear that the reconstructed images of SDCT algorithm in Figure 6.6(e) has MSSIM

values of 0.7971, which is lowest among all algorithms. Reconstructed images using

proposed transform matrix T of Eqn. 6.7 has MSSIM value 0.8283. This is almost

same as of Figure 6.6(d). MSSIM values of Approx. DCT values are little higher

(∼ 1%) than the proposed transform matrix. This indicates that the quality of the

decoded images are visually indistinguishable.

6.8 Conclusion

An orthogonal sparse transform matrix for image compression application has been

proposed in this chapter. A fast algorithm for computation using DA is developed and

its FPGA implementations are performed. The proposed 8×8 transform matrix needs

4 ALUs+6 addition operations compared to 4 ALUs+7 adders by SDCT, 4 ALUs+8

adders by Bouguezel et al., 4 ALUs+16 adders by Approx. DCT. The basis of the

proposed sparse matrix is depends on integer powers of 2. By merging the diagonal

matrixD with quantization process, the forward and reverse transformations are made

faster than other transforms. FPGA synthesis result shows that the proposed matrix

needs less number of hardware resources. Therefore, it is suitable for low power and

complexity constrained hardware platforms.

165

C
h
a
p
t
e
r

6

A
L
o
w

C
o
m

p
lex

ity
a
n
d

E
ffi

cien
t

S
p
a
rse

8×
8

O
rth

o
g
o
n
a
l
T
ra

n
sfo

rm
M

a
trix

fo
r

Im
a
g
e

C
o
m

p
ressio

n

(a) (b) (c)

(d) (e) (f)

Figure 6.4: (a) Original Cameraman image reconstructed at a scale factor of 5 using (b)DCT [MSSIM=0.7961, CR=30.86] (c) Approx.
DCT [MSSIM=0.7825, CR=31.68] (d) Bouguezel et al. [MSSIM=0.7795, CR=30.48] (e) SDCT [MSSIM=0.7370, CR=30.98] (f) Proposed
matrix [MSSIM=0.7791, CR=30.48]

166

C
h
a
p
t
e
r

6

A
L
o
w

C
o
m

p
lex

ity
a
n
d

E
ffi

cien
t

S
p
a
rse

8×
8

O
rth

o
g
o
n
a
l
T
ra

n
sfo

rm
M

a
trix

fo
r

Im
a
g
e

C
o
m

p
ressio

n

0.3 0.4 0.5 0.6 0.7 0.8

27

28

29

30

31

32

33

34

35

36

37

Bit rate

P
S

N
R

dct
proposed matrix
sdct
bouguezel DCT
approx dct

(a)

0.3 0.4 0.5 0.6 0.7 0.8

0.65

0.7

0.75

0.8

0.85

0.9

Bit rate

S
S

IM

dct
proposed matrix
sdct
bouguezel DCT
approx dct

(b)

0.3 0.4 0.5 0.6 0.7 0.8

28

29

30

31

32

33

34

35

36

Bit rate

P
S

N
R

dct
proposed matrix
sdct
bouguezel DCT
approx dct

(c)

0.3 0.4 0.5 0.6 0.7 0.8

0.74

0.76

0.78

0.8

0.82

0.84

0.86

0.88

0.9

0.92

Bit rate

S
S

IM

dct
proposed matrix
sdct
bouguezel DCT
approx dct

(d)

Figure 6.5: Rate-distortion and MSSIM vs. bit rate plots of (a) and (b) Pepper, (c) and (d) f16 images respectively.

167

C
h
a
p
t
e
r

6

A
L
o
w

C
o
m

p
lex

ity
a
n
d

E
ffi

cien
t

S
p
a
rse

8×
8

O
rth

o
g
o
n
a
l
T
ra

n
sfo

rm
M

a
trix

fo
r

Im
a
g
e

C
o
m

p
ressio

n

(a) (b) (c)

(d) (e) (f)

Figure 6.6: (a) Original f16 images reconstructed at a scale factor of 5 using (b)DCT [MSSIM=0.8398, CR=74.67] (c) Approx. DCT
[MSSIM=0.8391, CR=75.63] (d) Bouguezel et al. [MSSIM=0.8284, CR=73.37] (e) SDCT [MSSIM=0.7971, CR=74.36] (f) Proposed matrix
[MSSIM=0.8283, CR=73.35]

168

Chapter 7

Conclusions

In this chapter, the overall conclusions are presented and contributions are summa-

rized. Further research directions in the same or related topics are outlined. The al-

gorithms in this thesis have been developed with a goal to improve the rate-distortion

performance particularly at lower bit rates, while reducing the memory requirements.

A good trade-off between the above parameters has been achieved.

7.1 Summary of Work Done

A thorough experimental analysis of DTT is presented on JPEG and embedded

codecs. A distributed arithmetic based fast zigzag pruning DTT algorithm has been

developed, which can be integrated on a conventional JPEG baseline codec using mi-

nor modifications. The image reconstruction qualities are also compared with similar

number of pruned DCT coefficients. The comparisons show satisfactory PSNR results

with respect to DCT pruned coefficients. In the embedded encoder, DTT is reapplied

to the coarsest subband coefficients in order to improve the rate-distortion perfor-

mance at lower rates. Different perceptual weights are applied to different subband

coefficients in the DTT SPIHT embedded coder to improve the MSSIM performance.

A Hierarchical listless DTT (HLDTT) algorithm has been developed which is based

on the recursive block partitioning procedure similar to SPECK, SBHP and LSK.

The difference of these algorithms with respect to HLDTT is that it further exploits

the fundamental principle of coefficient decaying spectrum of transformed images to

encode less number of symbols to many hierarchical subbands. This improves the

low bit rate performance compared to DCT based embedded coders. The dynamic

memory requirement is also reduced by a significant amount for earlier five to six bit

plane passes compared to LSK and SPIHT in most of the monochrome images. The

proposed coder can be best suited for browsing better quality images in a narrow

bandwidth channel, downloading or reconstructing images in a system with limited

169

Chapter 7 Conclusions

memory buffers. It also has been shown that the region of interest feature can be

incorporated in a decoded image using HLDTT. This can be useful for medical image

compression where the desired part can be encoded with higher fidelity compared to

the rest of the image.

The image quality at the earlier stages of image communication can be improved

without sacrificing much on the bandwidth using wavelet transform. Further, the

proposed LEBP algorithm shows improved progressive transmission and scalabil-

ity efficiency over SPIHT, and on par with LSK. Random access decodability with

progressive-in-resolution feature has also been incorporated which is not present in

LSK. This is particularly useful for interactive multimedia applications, manipulation

of certain areas of an image such as cropping, flipping, rotation, translation, scaling,

feature extraction, etc. Another novel algorithm has been developed for color images

(i.e., Color listless embedded block partitioning (CLEBP)), which extends the concept

of LEBP for compression of color images. The algorithm is highly dependant upon the

image sizes. For example, it exhibit excellent performance in case of equal dimension

images. For unequal dimension images, appropriate padding is used before compres-

sion. From simulation, it is verified that symmetrical padding across the border gives

rise to better PSNR performance than other kind of paddings. While comparing rate-

distortion performance, CLEBP shows a significant improvement of rate-distortion

performance with respect to state-of-the-art CSPIHT and other algorithms on wide

range of bit rates.

Most of the above algorithms explicitly perform breadth first search. Another low

complexity, yet efficient algorithm i.e., Listless block tree coding (LBTC) has been

proposed, which performs explicitly depth first search to exploit both inter and intra

subband correlation. It exploit clusters of zero-trees without using list arrays to im-

prove the low bit rates performance in contrast to WBTC. LBTC exhibits similar rate

distortion performance as that of WBTC, but with 88-89% memory saving compared

to WBTC and SPIHT. Two novel listless algorithms are proposed e.g., DCT LBTC

and HLBT DTT, which combine block based transforms such as DCT/DTT with

LBTC. By compromising the trade off betwen complexity and image quality, any one

of the algorithms can be selected. While the comparison is made between DCT LBTC

and HLBT DTT, the former outperforms the later in most of the bit rates for natural

images. For unnatural images such as computer graphics or adjcent video frames hav-

ing higher intensity gradation (inter frame compression), HLBT DTT is more suitable

than DCT LBT.

Finally, a low complexity orthogonal transform matrix is developed which is partic-

ularly useful for applications like digital camera and camcorders. In such applications,

170

Chapter 7 Conclusions

the images always need to have a fixed pre-defined image quality. The extra effort

required for quality scalability is wasted. It is possible to encode specific number of

bit-planes at a time instead of bit-plane by bit-plane in all the proposed algorithms

without compromising image quality. A sparse orthogonal transform matrix which

can be best suited for the considered applications has been proposed. The proposed

matrix shows 97% saving in adder cost compared to direct DCT implementation.

Therefore, the proposed matrix exihibit a significant saving in hardware complexity

with a marginal loss of image quality at lower rates.

7.2 Contributions

The contributions in this thesis are summarized as follows:

• A fast zigzag pruned multiplier less DTT algorithm has been proposed. The

proposed algorithm can be integrated into a standard JPEG image/video codec

to speed up the processing. The 3 × 3 zigzag pruned DTT coefficients provide

lower complexity and better PSNR than 3× 3 block pruned DTT coefficients.

• A novel Hierarchical listless DTT (HLDTT) algorithm has been proposed, which

further exploits the fundamental principle of coefficient decaying spectrum us-

ing breadth first embedded scanning techniques. Reapplying DTT to the DTT

transformed coefficients in the coarsest subband, a further improved low bit rate

performance in HLDTT is achieved compared to DCT based embedded coders.

Since, DTT polynomials have certain properties that matches with Human vi-

sual systems (HVS), an improved MSSIM performance of the HLDTT decoded

images has also been obtained over all the bit rates.

• The idea of HLDTT is extended to wavelet. Two reduced memory wavelet

based compression algorithms, i.e., LEBP and CLEBP have been introduced.

LEBP generates a feature rich bit stream, which has some additional desirable

attributes like random access decodability with progressive-in-resolution scal-

ability. CLEBP improves a significant low bit rate performance compared to

CSPIHT and other embedded coders dealing with color images. The PSNR of

CLEBP has been improved by a reasonable amount in higher bit rates.

• A listless block-tree partitioning (LBTC) algorithm has been introduced. The

proposed algorithm uses similar idea used for WBTC, i.e., coding a cluster of

zero-trees with few symbols, but the implementation uses flag maps (markers)

in contrast to list data structures in WBTC. This substantially reduces memory

171

Chapter 7 Conclusions

requirements almost by 88-89% and speeds up encoding as well as decoding

times by a wide margin.

• An orthogonal sparse transform matrix has been proposed. The proposed matrix

reduces hardware complexity by 97% compared to DCT with a marginal loss of

image quality at lower bit rates. This is especially applicable for complexity

constrained hardware platforms, e.g., digital camera, camcorders etc.

7.3 Future Work

The research work in this thesis can be further extended in the following ways:

• By suitably selecting a proper quantization matrix and adaptive scan pattern,

the performance of DTT on a JPEG baseline coder can be improved for a wide

variety of images.

• Many fast algorithms for 8×8 DCT have been reported in the literature. There-

fore, it is required to develop fast 8 × 8 algorithms for DTT for real time im-

age/video applications in order to compete with DCT.

• Using adaptive HVS and modified SPIHT, the performance of DTT SPIHT can

be improved by a large margin. Further, sophisticated post processing can be

used to enhance the subjective quality of the images.

• The performance of HLDTT can be improved further by the use of context

modeling at a cost of complexity. The feasibility of hardware implementation

can be investigated to work with HD images/video.

• The concept of LEBP/CLEBP can be extended for 3D (volumetric) images and

video coding applications. Error resilient capability and security aspect features

can be incorporated to meet the high end multimedia applications.

• LBTC algorithm can be extended for color image/video coding by exploiting the

inter subband correlations among different color planes. A rich set of features

can be incorporated into the algorithm to compete with JPEG2000 standard in

certain applications.

• An experimental analysis of non-embedded LEBP, CLEBP and LBTC algo-

rithms can be made on JPEG2000 Verification Model(VM) in order to better

meet the portable multimedia applications (e.g. Digital camera, Camcorders,

etc). An attempt towards efficient VLSI implementation can also be made.

172

Bibliography

[1] R. C. Gonzalez and R. E. Woods, Digital Image Processing, 3rd Ed. Pearson Prentice Hall,

2008.

[2] S. Saha, “Image compression - from DCT to wavelets : A review.” ACM Crossroads, vol. 6,

no. 3, 2000. [Online]. Available: http://dblp.uni-trier.de/db/journals/crossroads/crossroads6.

html#Saha00

[3] Z. Wang, A. C. Bovik, H. R. Sheikh, and E. P. Simoncelli, “Image quality assessment: From

error visibility to structural similarity,” IEEE Trans. on Image Processing, vol. 13, no. 4, pp.

600–612, 2004.

[4] W. B. Pennebakr and J. L. Mitchell, JPEG Still Image Compression Standard. Chapman

Hall, New York, 1993.

[5] N. Ahmed, T. Natarajan, and K. R. Rao, “Discrete cosine transfom,” IEEE Trans. Computers,

vol. 23, no. 1, pp. 90–93, Jan. 1974.

[6] T. Acharya and P.-S. Tsai, JPEG2000 standard for image compression: concepts, algorithms

and VLSI architectures. John Wiley and Sons, 2005.

[7] Information Technology–Digital Compression and Coding of Continuous-Tone Still Images,

ISO/IEC 10918 (JPEG) Std.

[8] L. Lohscheller, “A subjectively adapted image communication system,” IEEE Trans. on Com-

munications, vol. 32, no. 12, pp. 1316–1322, Dec. 1984.

[9] S. G. Mallat, “A theory for multiresolution signal decomposition: The wavelet representation,”

IEEE Trans. Pattern Anal. and Mach. Intelligence, vol. 11, no. 7, pp. 674–693, Jul. 1989.

[Online]. Available: http://dx.doi.org/10.1109/34.192463

[10] I. Daubechies and W. Sweldens, “Factoring wavelet transforms into lifting steps,” J. Fourier

Anal. Appl, vol. 4, no. 3, pp. 247–269, 1998.

[11] I. Daubechies, “The wavelet transfom, time-frequency localization and signal analysis,” IEEE

Trans. on Information Theory, vol. 36, no. 5, pp. 961–1005, Sept. 1990.

[12] W. Sweldens, “The lifting scheme: A custom-design construction of biorthogonal wavelets,”

Applied and Computational Harmonics Analysis, vol. 3, no. 15, pp. 186–200, 1996.

173

References

[13] R. A. DeVore, B. Jawerth, and B. J. Lucier, “Image compression through wavelet transfom

coding,” IEEE Trans. on Image Processing, vol. 38, no. 2, pp. 719–746, Mar. 1992.

[14] A. S. Lewis and G. Knowles, “Image compression using 2D wavelet transfom,” IEEE Trans.

on Image Processing, vol. 1, no. 2, pp. 244–250, April 1992.

[15] J. M. Shapiro, “Embedded image coding using zerotrees of wavelet coefficients,” IEEE Trans.

on Signal Processing, vol. 41, no. 12, pp. 3445–3462, Dec 1993.

[16] A. Said and W. A. Pearlman, “A new fast and efficient image codec based on set partitioning

in hiererchical trees,” IEEE Trans. on Cir. and Syst. for Vid. Technology, vol. 6, no. 3, pp.

243–250, Jun. 1996.

[17] ——, “An image multiresolution representation for lossless and lossy compression,” IEEE

Trans. on Image Processing, vol. 5, no. 9, pp. 1303–1310, Sept. 1996.

[18] A. N. Skodras, C. A. Christopoulos, and T. Ebrahimi, “JPEG 2000: The upcoming still image

compression standard,” in Proc. of the 11th Portuguese Conf. on Pattern Recognition, Porto,

Portugal, May 11-12 2000, pp. 359–366.

[19] D. Santa-Cruz and T. Ebrahimi, “An analytical study of JPEG2000 functionalities,” in Proc.

of Int. Conf. in Image Proc., vol. 2, Vancouver, Canada, Sept. 10-13 2000, pp. 49–52.

[20] Information Technology–JPEG2000 Image Coding System– Part 1: Core Coding System,

ISO/IEC 15444-1 Std., 2000.

[21] Final Committee Draft, ”Information Technology–JPEG2000 Image Coding System–Part 2:

Extension, ISO/IEC 15444-2 Std., 2000.

[22] Information Technology–JPEG2000 Image Coding System– Part 3: Motion JPEG2000,

ISO/IEC 15444-3 Std., 2002.

[23] Information Technology–JPEG2000 Image Coding System–Part 4: Conformance Testing,

ISO/IEC 15444-4 Std., 2002.

[24] Information Technology–JPEG2000 Image Coding System–Part 5: Reference Software,

ISO/IEC 15444-5 Std., 2003.

[25] Final Committee Draft, ”Information Technology–JPEG2000 Image Coding System–Part 6:

Compound Image File Format, ISO/IEC 15444-6 Std., 2001.

[26] W. A. Pearlman, A. Islam, N. Nagaraj, and A. Said, “Efficient, low-complexity image cod-

ing with a set-partitioning embedded block coder,” IEEE Trans. on Cir. and Syst. for Vid.

Technology, vol. 14, no. 11, pp. 1219–1235, Nov. 2004.

[27] D. Taubman, “High performance scalable image compression with EBCOT,” IEEE Trans. on

Image Processing, vol. 9, no. 7, pp. 1158–1170, July. 2000.

[28] H. T. Hsiang and J. W. Woods, “Embedded image coding using zeroblock of subband/wavelet

coefficients and context modeling,” in Proc. IEEE Data Compression Conference, Mar. 2001,

pp. 83–92.

174

References

[29] C. Chrysafis, A. Said, A. Drukarev, A. Islam, and W. A. Pearlman, “SBHP - a low complexity

wavelet coder,” in IEEE Int. Conf. Acoust., Speech and Sig. Proc. (ICASSP2000), 2000, pp.

2035–2038.

[30] H. Danyali and A. Mertins, “Fully spatial and SNR scalable SPIHT- based image coding

for fransmission over heterogeous networks,” Journal of Telecommunications and Information

Technology, vol. 2, pp. 92–98, 2003.

[31] G. Xie and H. Shen, “Highly scalable, low-complexity image coding using zeroblocks of

wavelet coefficients,” IEEE Trans. Cir. and Sys. for Video Technology, vol. 15, no. 6, pp.

762–770, Jun. 2005. [Online]. Available: http://dx.doi.org/10.1109/TCSVT.2005.848311

[32] Y. Cho and W. A. Pearlman, “Quantifying the coding performance of zerotree of wavelet

coefficients: Degree k-zerotree,” IEEE Trans. on Signal Processing, vol. 55, no. 6, pp. 2525–

2531, Jun 2007.

[33] A. A. Moinuddin, E. Khan, and M. Ghanbari, “Efficient algorithm for very low bit rate em-

bedded image coding,” IET image processing, vol. 2, no. 2, pp. 59–71, Apr 2008.

[34] A. Moinuddin, E. Khan, and M. Ghanbari, “Low complexity, efficient and embedded color

image coding technique,” IEEE Trans. on Consum. Electronics, vol. 54, no. 2, pp. 787–794,

May 2008. [Online]. Available: http://dx.doi.org/10.1109/TCE.2008.4560161

[35] F. Wheeler and W. A. Pearlman, “SPIHT image compression without lists,” in IEEE Int.

Conf. on Acoustics, Speech, and Signal Processing (ICASSP), vol. 4, 05 - 09 June 2000, pp.

2047–2050.

[36] M. Latte, N. Ayachit, and D. Deshpande, “Reduced memory listless SPECK image compres-

sion,” Digital Signal Processing, Elsevier, vol. 16, no. 6, pp. 817–824, Nov. 2006.

[37] I. E. Richardson, H.264 and MPEG-4 Video Compression. John Wiley and Sons, 2003.

[38] D. Le Gall, “MPEG: a video compression standard for multimedia applications,” Commun.

ACM, vol. 34, no. 4, pp. 46–58, Apr. 1991.

[39] Z. Xiong, O. Guleryuz, and M. Orchad, “A DCT based embedded image coder,” IEEE Signal

Processing Lett., vol. 3, no. 11, pp. 289–290, Nov 1996.

[40] G. M. Davis and S. Chawla, “Image coding using optimised significance tree quantization,” in

IEEE Data Compression Conference, Snowbird, UT, USA, Mar 1997, pp. 387–396.

[41] D. M. Monoro and G. J. Dickson, “Zerotree coding of DCT coefficients,” in Proc. IEEE Int.

conf. Image processing, vol. 2, 1997, pp. 625–628.

[42] L. Junqiang and X. Zhuang, “Embedded image compression using DCT based subband decom-

position and SLCCA data organisation,” in IEEE Workshop Multimedia Signal Processing, St.

Thomsons, US Virgin Island, 2002, pp. 81–84.

[43] X. Hou, G. Liu, and Y. Zou, “Embedded quadtree-based image compression in DCT domain.”

in Proc. IEEE Int. Conf. Acoustics, Speech and Signal Processing, vol. 3, Hong Kong, Apr

2003, pp. 277–280.

175

References

[44] H. S. Song and N. L. Cho, “DCT-based embedded image compression with a new coefficient

sorting method,” IEEE Signal Processing Lett., vol. 16, no. 5, pp. 410–413, May 2009.

[45] R. Mukundan, “Image analysis by tchebichef moments,” IEEE Trans. on Image processing,

vol. 10, no. 9, pp. 1357–1364, 2001.

[46] ——, “Some computational aspects of discrete orthonormal moments,” IEEE Trans.

on Image Processing, vol. 13, no. 8, pp. 1055–1059, Aug. 2004. [Online]. Available:

http://dx.doi.org/10.1109/TIP.2004.828430

[47] ——, “Radial Tchebichef invariants for pattern recognition,” in IEEE TENCON, Melbourne,

Qld., Nov. 21-24 2005, pp. 1–6.

[48] R. Mukundan and O. Hunt, “A comparison of discrete orthogonal basis functions for image

compression,” in Image and Vision Computing, New Zealand, IVCNZ, 2004, pp. 53–58.

[49] W. S. Lang, N. Z. Abu, and H. Rahmalan, “Fast 4x4 Tchebichef moment image compression,”

in Int. Conf. on Soft Computing and Pattren Recognition, 2009, pp. 295–300.

[50] N. A. Abu, N. Suryana, and R. Mukundan, “Perfect image reconstruction using discrete or-

thogonal moments,” in Proc. of the 4th IASTED Int. Conf. on Visualization, Imaging and

Image Processing, Marbela, Spain, 6-8 Sep 2004, pp. 903–907.

[51] K. Nakagaki and R. Mukundan, “A fast 4x4 forward discrete Tchebichef transform algorithm,”

IEEE Signal Processing Lett., vol. 14, no. 10, pp. 684–687, Oct. 2007.

[52] S. Ishwar, P. Meher, and M. Swamy, “Discrete tchebichef transform-a fast 4x4 algorithm and

its application in image/video compression,” in Int. Symp. on Circuits and Systems, Seattle,

WA, May 18-21 2008, pp. 260–263.

[53] S. Abdelwahab, “Image compression using fast and efficient discrete Tchebichef transform

algorithm,” in Proc. of the 6th International Conference on Informatics and System, Cairo,

Egypt, March 27-29 2008, pp. 49–55.

[54] Z. Wang, “Pruning the fast discrete cosine transforms,” IEEE Trans. on Communications,

vol. 39, no. 5, pp. 640–643, May 1991.

[55] R. Stasinski, “On pruning the discrete cosine and sine transforms,” in IEEE MELECON, vol. 1,

May 12-15 2004, pp. 269–271.

[56] M. El-Sharkawy, “A fast recursive pruned DCT for image compression applications,” in Proc.

of the 37th Midwest Symposium on Circuits and Systems, 1994., vol. 2. Lafayette, LA: IEEE,

Aug 3-5 1994, pp. 887– 891.

[57] A. Skodras, “Fast discrete cosine transform pruning,” IEEE Trans. on Signal Processing,

vol. 42, no. 7, pp. 1833–1837, Jul. 1994. [Online]. Available: http://dx.doi.org/10.1109/78.

298293

[58] Y.-M. Huang, J. ling Wu, and C.-L. Chang, “A generalized output pruning algorithm for

matrix-vector multiplication and its application to compute pruning discrete cosine transform,”

IEEE Trans. Signal Processing, vol. 48, no. 2, pp. 561–563, 2000.

176

References

[59] S. Peng, “Complexity scalable video coding via IDCT data pruning,” in Int. Conf. on Con-

sumer Electronics, Jun19-21 2001, pp. 74–75.

[60] N. P. Walmsley, A. N. Skodras, and K. M. Curtis, “A fast picture compression technique,”

IEEE Trans. on Consum. Electron., vol. 40, no. 1, pp. 11–19, Feb. 1994. [Online]. Available:

http://dx.doi.org/10.1109/30.273656

[61] C. A. Christopoulos and A. N. Skodras, “Pruning the 2-D fast cosine transform,” in Proc.

of VII European Signal Processing Conference (EUSIPCO), Edinburgh, Scotland, UK, Sept.

13-16 1994, pp. 596–599.

[62] S. Antonio and N. Antonio, “Fast 8x8 DCT pruning algorithm,” in IEEE Int. Conf. on Image

Processing, vol. 2, 2005, pp. 317–320.

[63] R. Mukundan, “Transform coding using discrete Tchebichef polynomials,” in Sixth IASTED

Int. Conf. of Visualization Imaging and Image Processing. Computer science and software

engineering, University of Canterbury, 2006.

[64] A. Balvias, “Visual analysis in unspecialized receptive fields as an orthogonal series expansion,”

Neurophysiology, Springer, vol. 6, no. 2, pp. 168–173, 1974.

[65] C. Bokariya and J. Dong, “Performance study of discrete Tchebichef transform based MPEG

video codec,” in IPCV’08. Las Vegas: IEEE, 2008, pp. 64–68.

[66] W. K. Cham, “Development of integer cosine transforms by the principle of dyadic symmetry,”

IEE Proc. Comm. Speech and Vision, vol. 136, no. 4, pp. 276–282, Aug 1989.

[67] V. Dimitrov, K. Wahid, and G. Jullien, “Multiplication-free 8x8 2D DCT architecture using

algebraic integer encoding,” IET Electronic Lett., vol. 40, no. 20, pp. 1310–1311, Sep. 30 2004.

[68] K. Lengwehasatit and A. Ortega, “Scalable variable complexity approximate forward DCT,”

IEEE Trans. Cir. and Sys. for Video Technology, vol. 14, no. 11, pp. 1236–1248, Nov. 2004.

[69] T. D. Tran, “The BinDCT: Fast multiplierless approximation of the DCT,” IEEE Signal

Processing Lett., vol. 7, no. 6, pp. 141–144, 1999.

[70] T. I. Haweel, “A new square wave transform based on the DCT,” Signal Processing, vol. 81,

no. 11, pp. 2309–2319, Nov. 2001.

[71] S. Bouguezel, M. O. Ahmad, and M. N. S. Swamy, “Low-complexity 8x8 transform for image

compression,” IET Electronic Lett., vol. 44, no. 21, pp. 1949–1950, Oct. 2008.

[72] K. Beauchamp, Application of Walsh and related functions. New York: Academic Press, 1984.

[73] J. Pender and D. Covey, “New square wave transform for digital signal processing,” IEEE

Trans. Signal Processing, vol. 40, no. 8, pp. 2095–2097, Aug. 1992.

[74] T. I. Haweel and A. M. Alhasan, A simplified square wave transform for signal processing, ser.

Contemporary Math. American Math. Society, Jan. 3-9 1994, vol. 190.

177

References

[75] A. Amira, “An FPGA based transform for discrete Hartly transform,” in Int. Conf. on Visual

Information Engineering, July 7-9 2003, pp. 137–140.

[76] P. Chungan, C. Xixin, Y. Dunshan, and Z. Xing, “A 250 MHz optimised distributed architec-

ture of 2D 8x8 DCT,” in Int. Conf. on ASIC, ser. 7, no. 189-192, Guilin, China, Oct. 22-25

2007.

[77] A. M. Shams, A. Chidanandan, W. Pan, and M. A. Bayoumi, “NEDA: a low-power high-

performance DCT architecture,” IEEE Trans. on Signal Processing, vol. 54, no. 6, pp. 955–964,

2006.

[78] H. Pan, W.-C. Siu, and N.-F. Law, “A fast and low memory image coding algorithm based on

lifting wavelet transform and modified SPIHT,” Signal Processing: Image Commun, Elsevier,

vol. 23, no. 3, pp. 146–161, Mar. 2008.

[79] S. Servetto, K. Ramchandran, and M. T. Orchand, “Image coding based on morphological

representation of wavelet data,” IEEE Trans. on Image processing, vol. 8, no. 9, pp. 1161–

1174, Sep. 1999.

[80] B. B. Chai, J. Vass, and X. Zhuang, “Significance-linked connected component analysis for

wavelet image coding,” IEEE Trans. on Image processing, vol. 8, no. 6, pp. 774–784, Jun.

1999.

[81] R. K. Senapati, U. C. Pati, and K. K. Mahapatra, “A fast zigzag-pruned 4x4 DTT algorithm

for image compression,” WSEAS Trans. on Signal Processing, vol. 7, no. 1, pp. 34–43, Jan.

2011.

[82] M. G. Ramos, S. S. Hemami, and M. A. Tamburro, “Psychovisually-based multiresolution

image segmentation,” in Proc. of the 1997 Int. Conf. on Image Processing (ICIP ’97), vol. 3,

Santa Barbara, CA, Oct. 26-29 1997, pp. 66–69.

[83] X. Wu and A. Gersho, “Rate-constrained picture adaptive quantization for JPEG baseline

coders.” in Proc. IEEE ICASSP, vol. 5, Apr 1993, pp. 389–392.

[84] P. Duhamel and C. Guillemot, “Polynomial transform computation of 2D DCT,” in Proc.

ICASSP, 1990, pp. 1515–1518.

[85] E. Feig and S. Winograd, “Fast algorithms for the discrete cosine transform,” IEEE Trans. on

Signal Processing, vol. 40, no. 9, pp. 2174–2193, 1992.

[86] M. Vetterli, “Fast 2-D discrete cosine transform,” in Proc. IEEE ICASSP, vol. 10, Apr. 1985,

pp. 1538–1541.

[87] H. I. Saleh, “A fast block-pruned 4x4 DTT algorithm for image compression,” Int. J. of

Computer Theory and Engineering, vol. 1, no. 3, pp. 1793–8201, Aug. 2009.

[88] L. Kotoulas and I. Andreadis, “Fast computation of Chebyshev moments,” IEEE Trans. Cir.

and Sys. for Video Technolgy, vol. 16, no. 7, pp. 884–888, Jul. 2006.

178

References

[89] L.-B. Zhang and M.-Q. Zhou, “Embedded reversible medical image compression using integer

wavelet transform,” in Proceedings of the 2006 Int. Conf. on Intelligent Computing: Part II,

ser. ICIC’06. Berlin, Heidelberg: Springer-Verlag, 2006, pp. 620–624. [Online]. Available:

http://dl.acm.org/citation.cfm?id=1882540.1882621

[90] M. Antonini, M. M. Barlaud, P. Mathieu, and I. Daubechies, “Image coding using wavelet

transform,” IEEE Trans. on Image processing, vol. 1, no. 2, pp. 205–220, April 1992.

[91] A. Calderbank, I. Daubechies, W. Sweldens, and B.-L. Yeo, “Lossless image compression using

integer to integer wavelet transforms,” in Proceedings of the 1997 International Conference on

Image Processing (ICIP ’97), ser. ICIP ’97, vol. 1, Washington, DC, USA, 1997, pp. 596–599.

[92] D. Santa-Cruz, R. Grosbois, and T. Ebrahimi, “JPEG 2000 performance evaluation and as-

sessment,” Signal Processing: Image Communication, vol. 17, no. 1, pp. 113–130, 2002.

[93] H. Everett, “Generalized lagrange multiplier method for solving problems of optimization

allocation of resources,” Operational Research, vol. 11, no. 3, pp. 399–417, 1963.

[94] N. Cho and S. Lee, “A fast 4x4 dct algorithm for the recursive 2-d dct,” IEEE

Trans. Signal Processing, vol. 40, no. 9, pp. 2166–2173, Sep. 1992. [Online]. Available:

http://dx.doi.org/10.1109/78.157217

[95] H. S. Malvar, A. Hallapuro, M. Karczewicz, and L. Kerofsky, “Low-complexity transform and

quantization in H.264/AVC,” IEEE Trans. Cir. and Sys. for Video Technology, vol. 13, no. 7,

pp. 598–603, Jul. 2003. [Online]. Available: http://dx.doi.org/10.1109/TCSVT.2003.814964

[96] N. Cho and S. Lee, “Fast algorithm and implementation of 2D discrete cosine transform,”

IEEE Trans. Signal Processing, vol. 38, no. 3, pp. 297–305, Mar. 1991.

[97] H. Shu, H. Zhang, B. Chen, P. Haigron, and L. Luo, “Fast computation of Tchebichef

moments for binary and grayscale images,” IEEE Trans. on Image Processing, vol. 19, no. 12,

pp. 3171–3180, Dec. 2010. [Online]. Available: http://dx.doi.org/10.1109/TIP.2010.2052276

[98] [Online]. Available: http://www.jpeg.org/jpeg2000/

[99] B.-J. Kim, Z. Xiong, and W. A. Pearlman, “Low bit-rate scalable video coding with 3-D

set partitioning in hierarchical trees (3-D SPIHT),” IEEE Trans. Cir. and Sys. for Video

Technology, vol. 10, no. 8, pp. 1374–1387, Dec. 2000.

[100] Y.-L. Jeang, H.-Y. Wang, and C.-C. Wong, “A scalable wavelet image coder based on zeroblock

and array,” in Proc. of the 2008 3rd Int. Conf. on Innovative Computing Information and

Control, ser. ICICIC ’08. Washington, DC, USA: IEEE Computer Society, 2008, pp. 184–187.

[101] Y. Cho, “Resolution scalable and random access decodable image coding with low time com-

plexity,” Ph.D. dissertation, Rensselaer Polytechnic Institute, 2005.

[102] W. Sweldens, “The lifting scheme: A new philosophy in biorthogonal wavelet constructions,”

in Wavelet Applications in Signal and Image Processing III, 1995, pp. 68–79.

179

References

[103] Y. Cho, S. Cho, and W. A. Pearlman, “Fast and constant time random access decoding with

log2n block seek time.” in Storage and Retrieval Methods and Applications for Multimedia, ser.

SPIE Proceedings, R. Lienhart, N. Babaguchi, and E. Y. Chang, Eds., vol. 5682. SPIE, 2005,

pp. 10–17.

[104] G. Liu, X. Zeng, F. Tian, K. Chaibou, and Z. Zheng, “A novel direction-adaptive wavelet

based image compression,” Int. J. of Electronic and Communications, Elsevier, vol. 64, no. 6,

pp. 531–539, Jun. 2010.

[105] M. Lanuzza, S. Perri, P. Corsonello, and G. Cocorullo, “An efficient wavelet image ender for

FPGA-based design,” in Proc. of IEEE Workshop on SIPS, 2005, pp. 652–656.

[106] J. Lian, K. Wang, and J. Yang, “Listless zerotree image comparison algorithm,” in Proc. of

8th Int. Conf. on Signal Processing, vol. 2, Beijing, 2006, pp. 1–4.

[107] Y. Li, J. Song, C. Wu, K. Liu, J. Lie, and K. Wang, FPGA Design of Listless SPIHT for

On-board Image Compression. Satellite Data Compression, Springer-Verlag, 2011, ch. 4, pp.

67–85.

[108] F. Douak, R. Benzid, and N. Benoudjit, “Color image compression algorithm based on DCT

transform combined to an adaptive block scanning,” Int. J. of Electronic and Communications,

Elsevier, vol. 65, no. 1, pp. 16–26, Jan. 2011.

[109] I. B. Witten, R. L. Neal, and J. G. Cleary, “Arithmetic coding for data compression,” Com-

munications of the ACM, vol. 30, no. 6, pp. 520–540, Jun. 1987.

180

Dissemination of Work

International Journals

1. Ranjan K Senapati, Umesh C. Pati, Kamala K. Mahapatra: “Listless block-tree set par-

titioning algorithm for very low bit rate embedded image compression” Int. Journal of

Electronics and Communication, Elsevier, vol. 66, issue 12, pp. 985-995, Dec. 2012.

2. Ranjan K Senapati, Umesh C. Pati, and Kamala Kanta Mahapatra: “Low bit rate image

compression using Hierarchical listless block-tree DTT algorithm” Int. Journal of Image and

Graphics, World scientific, vol. 13, no.1, pp. 1-22, Apr. 2013.

3. Ranjan K Senapati, Umesh C. Pati, Kamala Kanta Mahapatra: “A reduced memory, low

complexity embedded image coding algorithm using Hierarchical listless DTT” IET Image

Processing. (In Press)

4. Ranjan K Senapati, Umesh C. Pati, Kamala K. Mahapatra: “An efficient sparse 8 × 8

orthogonal transform matrix for color image compression” Int. Journal of Signal and Imaging

System Engineering (IJSISE), Inderscience publishers, vol. 6, no.1, pp. 16-23, Jan. 2013.

5. Ranjan K Senapati, Umesh C. Pati, Kamala K. Mahapatra: “A fast zigzag prune 4 × 4

DTT algorithm for image Compression” World Scientific Engineering Academy and Society

(WSEAS) Transactions on Signal Processing, vol. 7, issue 1, pp. 34-43, Jan. 2011.

6. Ranjan K Senapati, Umesh C. Pati, and Kamala Kanta Mahapatra: “Reduced memory

listless scalable embedded set partitioning algorithms for image compression” Int. Journal of

Visual Representation and Image Communications, Elsevier. (Under Review)

International Conferences

1. Ranjan K Senapati, Umesh C. Pati, and Kamala K. Mahapatra: “Image compression using

discrete Tchebichef transform algorithm” In Proc. of IEEE Int. Conf. on Communication

Network and Computing (CNC), Calicut, Kerala, India, pp. 104-108, Oct. 2010.

2. Ranjan K Senapati, Umesh C. Pati, and Kamala K. Mahapatra: “A novel zigzag prune

discrete Tchebichef moment based image compression algorithm” In Proc. of IEEE Int. Con-

ference on Computational Intelligence and Communication Network (CICN), Bhopal, India,

pp. 73-78, Nov. 2010.

181

3. Ranjan K Senapati, Umesh C. Pati, and Kamala K. Mahapatra: “A low complexity

orthogonal 8 × 8 transform matrix for fast image compression” In Proc. of IEEE Annual

India Int. Conf. (INDICON), Kolkata, India, pp. 1-4, Dec 2010.

4. Ranjan K Senapati, Umesh C. Pati, and Kamala K. Mahapatra: “An efficient sparse 8× 8

orthogonal transform matrix for color image compression” In Proc. of Int. Conference on

Electronics Systems (ICES), NIT Rourkela, India, 7-9th Jan. 2011.

5. Ranjan K Senapati, Umesh C. Pati, and Kamala K. Mahapatra: “A novel hybrid HVS

based embedded image coding algorithm using DTT and SPIHT” In Proc. of IEEE Int. Conf.

on Devices and Communication (ICDeCom), Mesra, Ranchi, pp.1-5, Feb. 2011.

6. Ranjan K Senapati, Umesh C. Pati, and Kamala K. Mahapatra: “A low complexity

embedded image coding algorithm using hierarchical listless DTT” In Proc. of 8th IEEE Int.

Conf. on Information, Communications and Sgnal Processing (ICICS), NTU, Singapore, pp.

1-5, Dec. 2011.

BIO-DATA

Ranjan Kumar Senapati

Date of Birth: 11th April, 1977

Correspondence:

PhD Scholar, Department of Electronics and Communication Engineering,

National Institute of Technology Rourkela, India – 769 008.

Ph: +91 94397 85897 (M)

e-mail: rksphd@gmail.com

Qualification

• Ph.D. (Continuing)

National Institute of Technology Rourkela, Odisha, India

• M.Tech. (Electronics and Instrumentation Engineering)

National Institute of Technology Warangal, Andhra Pradesh, India [First division]

• AMIETE

The Institution of Electronics & Telecommunication Engineers, New Delhi, India [First

class]

• +2 (Science)

Council of Higher Secondary Education, Odisha, India [Second division]

• 10th

Board of Secondary Education, Odisha, India [First division]

Professional Experience

• Asso. Prof. in the Dept. of ECE (Aug 2008-till today)

GMR Institute of Technology, Srikakulum (Dist.), 532127, Andhra Pradesh, India.

• Asst. Prof. in the Dept. of ECE (July 2006-July 2008)

GMR Institute of Technology, Srikakulum (Dist.), 532127, Andhra Pradesh, India.

• Asst. Prof. in the Dept. of ECE (July 2004-June 2006)

Vasavi College of Engineering, Hyderabad, 500031, Andhra Pradesh, India.

183

• Asst. Prof. in the Dept. of ECE (May 2003-July 2004)

Mahatma Gandhi Institute of Technology, Hyderabad, 500075, Andhra Pradesh, India.

Publications

• 5 Journal Articles

• 6 Conference Articles

Appendix A

To analyze the computational complexity of SPIHT, LSK and ILSK, the following analysis

is presented.

Case 1: The complexity required by SPIHT:

Let L be the number of decomposition levels. Assuming the number of coefficients hold by

LIP and LSP is equal to Nc. At the lowest bit plane Nc equals to number of pixels in the

original image. Total number of coefficients in a single tree, including type A and type B

descendants will be:

{(

40 ×
L
∑

n=1

4n

)

+

(

41 ×
L−1
∑

n=1

4n

)

+

(

42 ×
L−2
∑

n=1

4n

)

+ +

(

4L−1 ×
L−5
∑

n=1

4n

)}

(7.1)

The first term of Eqn. 7.1 is the total number of coefficients of the tree having root at

the coarsest subband. The second term is the total number of trees whose roots are the

offspring (type A descendants) of the coefficient located at coarsest level. The third term is

the total number of trees whose roots are the type B descendants of the coefficient located

at coarsest level. The other terms can be defined in a similar way. Therefore total number

of comparisons with the lowest threshold will be

Nc+

[{

3

4
×
(

1

4

)L

×Nc

}

×
{

40 ×
L
∑

n=1

4n + 41 ×
L−1
∑

n=1

4n + 42 ×
L−2
∑

n=1

4n + + 4L−1 ×
L−5
∑

n=1

4n

}]

(7.2)

where
{

3
4 ×

(

1
4

)L ×Nc

}

is the number of tree roots.
(

1
4

)L × Nc is the total number of

coefficients in the coarsest subband.

Eqn. 7.1 can be approximated to

L×
L
∑

n=1

4n (7.3)

Therefore, Eqn. 7.2 becomes:

Nc +

[{

3

4
×
(

1

4

)L

×Nc

}

×
{

L×
L
∑

n=1

4n

}]

(7.4)

Eqn. 7.4 is the total number of comparisons (worst case) required by SPIHT with the lowest

threshold.

Case 2. The complexity required by ILSK:

ILSK uses 3 state table markers.

MV [k] state table can address any coefficient in an image. This gives rise to total number

of comparisons equal to Nc. MF [k] state table compares the coefficients in a wavelet level.

Therefore, total number of comparisons in the lowest threshold will be:

3×
[

(

1

4

)L

×Nc

]

+ 3×
[

(

1

4

)L−1

×Nc

]

+

[(

3

4

)

×Nc

]

(7.5)

The multiplication term 3 in Eqn. 7.5 is due the fact that each level consists of three

subbands. In Eqn. 7.5,
(

1
4

)L×Nc is the number of coefficients at subband level L. Similarly,
(

1
4

)L−1 ×Nc is the total number coefficients at subband level L− 1.

M [k] state table compares coefficients across several levels. Total number of comparisons

by M [k] state table markers are:

3×
[

(

1
4

)L ×Nc +
(

1
4

)L−1 ×Nc +
(

1
4

)

×Nc

]

+

3×
[

(

1
4

)L−1 ×Nc +
(

1
4

)L−2 ×Nc +
(

1
4

)

×Nc

]

+3×
[

(

1
4

)2 ×Nc

] (7.6)

Therefore, total number of comparisons with lowest threshold by ILSK will be sum of the

comparisons due to MV [k], MF [k] and M [k] state table markers.

Nc + 3×
[

(

1
4

)L ×Nc +
(

1
4

)L−1 ×Nc +
(

1
4

)

×Nc

]

+

+3×
[

(

1
4

)L ×Nc

]

+ 3×
[

(

1
4

)L−1 ×Nc

]

+
[(

3
4

)

×Nc

]

+

3×
[

(

1
4

)L−1 ×Nc +
(

1
4

)L−2 ×Nc +
(

1
4

)

×Nc

]

+3×
[

(

1
4

)2 ×Nc

]

(7.7)

Eqn. 7.7 can be approximated to

Nc + 3× 3Nc

[

(

1

4

)L

+

(

1

4

)L−1

+
1

4

]

≈ Nc + 3× 3Nc ×
1

2
≈ 5.5Nc (7.8)

Case 3: Comparison required by LSK:

It is same as the comparisons required by MV [k] and MF [k] markers in ILSK. The com-

parison due to MF [k] state table markers are included because, LSK needs to test the

significance of each subband before partition the subbands to quad blocks by MV [k] state

table markers. Therefore, total number of comparisons in LSK ≈ 4.5Nc.

Comparing Eqn. 7.4 and Eqn. 7.8, the number of comparisons required by SPIHT

is larger than ILSK. For example, if L = 6 and Nc = 512 × 512, The total number of

computation by SPIHT is 1.3 times ILSK. It may be noted that the overhead incurred

because of movement of coefficients between the list arrays and the overhead to distinguish

between type A and type B descendants by the SPIHT during bit plane passes is not

included into the Eqn. 7.4. This is a memory management task. This is clearly evident from

Table 3.9 in Chapter-3 and Table 4.10 in chapter-4 that it accounts a more time consuming

operation. This give rise to a near exponential increase in time complexity, i.e. approximated

to O(NclogNc) operations using empirical methods. However, this mechanism is completely

absent in ILSK or LSK. But while comparing Eqn. 7.4 and Eqn. 7.8, the computational

complexity in SPIHT, ILSK and LSK is approximated to O(Nc) operations.

