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PREFACE

This thesis is a contribution to CLIN-NIRce, a subproject of the FIELD NIRce project,

concentrating on clinical applications. The research in FIELD NIRce is focused on de-

veloping portable, self-contained solutions for near-infrared spectroscopy in the field, as

opposed to a laboratory environment. The research in FIELD NIRce is funded by the

European Union (EU) via the Botnia-Atlantica programme and several public funders in

Finland and Sweden.

The purpose of this thesis is to explore and implement new features for a particular med-

ical imaging system, built upon a neurosurgical operating microscope at Töölö Hospital,

Helsinki. The collaborative efforts on this topic were initiated in August 2008 by the

automation research group working at the Department of Electrical Engineering and En-

ergy Technology in University of Vaasa and a group of neurosurgeons at the Department

of Neurosurgery of Helsinki University Central Hospital (HUCS).

The work included in this thesis was done between April 2010 and March 2011. The

majority of the work was done at the University of Vaasa and at home in Vaasa and

Raasepori. The project also included several meetings at Töölö Hospital for gathering

feedback from the surgeons about the implemented features and to get ideas for new

ones. This work was funded by the FIELD NIRce project.

I would like to thank my supervisor Professor Jarmo Alander and my instructor M.Sc.

Petri Välisuo for the invaluable guidance and support during the project. I would also

like to thank the neurosurgeons M.D. Ph.D. Martin Lehečka and M.D. Ph.D. Aki Laakso

for the smooth and productive collaboration. A special thanks for making this work pos-

sible goes to Professor Paul Geladi, the head of the FIELD NIRce project, and the head of

the Töölö Hospital neurosurgical team, Professor Juha Hernesniemi.

Vaasa, 30 March 2011

Kari Koivuporras
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VAASAN YLIOPISTO
Teknillinen tiedekunta
Tekijä: Kari Koivuporras
Tutkielman nimi: Neurokirurgisen kuvantamisjärjestelmän parantami-

nen PC-pohjaisella videonkäsittelyratkaisulla

Valvojan nimi: Jarmo Alander
Ohjaajan nimi: Petri Välisuo
Tutkinto: Diplomi-insinööri
Yksikkö: Sähkö- ja energiatekniikan yksikkö
Koulutusohjelma: Sähkö- ja energiatekniikan koulutusohjelma
Suunta: Automaatiotekniikka
Opintojen aloitusvuosi: 2003
Tutkielman valmistumisvuosi: 2011 Sivumäärä: 92

TIIVISTELMÄ:
Tässä työssä esitellään PC-pohjaisen videonkäsittelysovelluksen prototyyppi, joka on
suunniteltu toimimaan tietyn neurokirurgisen kuvantamislaitteen, OPMI® Pentero™
leikkausmikroskoopin, yhteydessä Helsingin keskussairaalan Töölön yksikössä. Työn
aihetta motivoi usean kliinisesti tärkeän ominaisuuden puuttuminen alkuperäisestä
leikkausmikroskoopin tarjoamasta kuvantamisjärjestelmästä.

Kuvantamisjärjestelmän rooli on tukea tosiaikaista diagnostiikkaa leikkauksen
aikana. Leikkausmikroskoopissa on kaksi sisäistä videokameraa: toinen tavalliseen
videokuvaukseen ja toinen lähi-infrapuna-alueen angiografiaan, jossa kuva saadaan
fluoresenssikuvantamisella käyttäen indosyaniinivihreää loisteaineena. Mikroskoopin
kulloisenkin aktiivisen kameran kuva luetaan PC:lle komposiittisignaalina laitteen taka-
paneelista. Mikroskooppiin on lisäksi liitetty korkean resoluution värivideokamera,
jonka kuva luetaan sen käyttämästä videokeskittimestä niin ikään komposiittisignaalina.

PC valittiin videonkäsittelyalustaksi, koska se tarjoaa hyvät mahdollisuudet sekä
kokeelliseen ohjelmistokehitykseen että tehokkaaseen videokäsittelyyn. Työssä tehtiin
perusteellinen katsaus PC alustan ominaisuuksiin ja tehokkaan videonkäsittelyn
menetelmiin, ja näitä tuloksia käytettiin kuvantamisaseman suunnittelun pohjana. Pro-
jektin aikana käyttökelpoisiksi osoittautuneet ominaisuudet yhdistettiin GNU/Linux-
jakelu Ubuntulla suoritettavaan sovellukseen. Ominaisuuksien kliininen hyödyllisyys
varmistettiin keskusteluissa kuvantamisjärjestelmää käyttävien aivokirurgien kanssa.

Alkuperäisen järjestelmän suurimmat puutteet korjattiin työn aikana. Kehitetyn
sovelluksen tärkeimmät toiminnot ovat: videovirran toisto, samanaikainen toisto ja tal-
lennus sekä tallenteiden toisto käyttäen korkeintaan kahta videovirtaa. Ohjelman toisto-
moodi tarjoaa kattavat ohjaimet mediantoiston hallintaan, hienojakoisen ruutu-ruudulta
kelauksen ja intuitiivisen, nopeasti reagoivan, käyttöliittymän. Ohjelma tarjoaa videovir-
roille vertailu- ja yksittäistoistomoodit. Näistä jälkimmäinen tarjoaa paremman erot-
telukyvyn yhdelle videolle ja ensimmäinen mahdollistaa esimerkiksi anatomisen ja an-
giografisen materiaalin sekä yksittäisen videon ennen–jälkeen-tyyppisen vertailun.

AVAINSANAT: videonkäsittely, PC, neurokirurgia, operaatiomikroskooppi
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ABSTRACT:
This work presents a PC-based prototype video processing application developed to be
used with a specific neurosurgical imaging device, the OPMI® Pentero™ operating mi-
croscope, in the Department of Neurosurgery of Helsinki University Central Hospital at
Töölö, Helsinki. The motivation for implementing the software was the lack of some
clinically important features in the imaging system provided by the microscope.

The imaging system is used as an online diagnostic aid during surgery. The micro-
scope has two internal video cameras; one for regular white light imaging and one for
near-infrared fluorescence imaging, used for indocyanine green videoangiography. The
footage of the microscope’s current imaging mode is accessed via the composite auxil-
iary output of the device. The microscope also has an external high resolution white light
video camera, accessed via a composite output of a separate video hub.

The PC was chosen as the video processing platform for its unparalleled combination
of prototyping and high-throughput video processing capabilities. A thorough analysis
of the platform and efficient video processing methods was conducted in the thesis and
the results were used in the design of the imaging station. The features found feasible
during the project were incorporated into a video processing application running on a
GNU/Linux distribution Ubuntu. The clinical usefulness of the implemented features
was ensured beforehand by consulting the neurosurgeons using the original system.

The most significant shortcomings of the original imaging system were mended in
this work. The key features of the developed application include: live streaming, simul-
taneous streaming and recording, and playing back of upto two video streams. The play-
back mode provides full media player controls, with a frame-by-frame precision rewind-
ing, in an intuitive and responsive interface. A single view and a side-by-side comparison
mode are provided for the streams. The former gives more detail, while the latter can be
used, for example, for before-after and anatomic-angiographic comparisons.

KEYWORDS: video processing, PC, neurosurgery, operating microscope
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1. INTRODUCTION

Neurosurgical operating microscopes are devices designed to provide better visualiza-

tion of the operated area. By employing good lighting, magnification and other optical

effects, microsurgical operations can be performed with more precision by the operating

surgeon, who looks at the scene through oculars. Many modern operating microscopes

are also often equipped with integrated video cameras, allowing the utilization of digital

video processing. (Uluç, Kujoth & Başkaya 2009; Yaşargil 1984: 209–213.)

The operating microscope (OPMI® Pentero™, Carl Zeiss Co, Oberkochen, Germany)

used in the target operating room has two integrated video cameras offering a 720×576

output resolution. One of the cameras is used for imaging in visible and the other

in Near-Infrared (NIR) wavelengths. The white light camera is intended for captur-

ing anatomical footage, while the NIR band is reserved for a fluorescence-based blood

vessel imaging (angiography) scheme, tailored for the Indocyanine Green (ICG) fluores-

cent dye. This particular method of intraoperative angiography, marketed by Carl Zeiss

Meditec as INFRARED 800™, is called Indocyanine Green Videoangiography (ICG-VA).

(Dashti, Laakso, Niemelä, Porras & Hernesniemi 2009; Carl Zeiss Meditec 2009; Carl

Zeiss Meditec 2008.) In addition to the internal cameras, the imaging system includes a

High Definition (HD) color video camera, which uses the optics of the microscope and

images at 1920×1080 precision.

Although advanced, the current imaging system lacks several functionalities considered

clinically important by the operating neurosurgeons. The goal of this thesis is to pro-

vide implementations for these missing features. At the moment the capabilities of the

system are live display of the HD and either the white light or ICG footage, plus record-

ing from the microscope-integrated cameras. Based on the interviews of the operating

neurosurgeons, the limitations of the current system include: no online pause or rewind

possibility for the ICG video, no way to compare angiographic imagery before and af-

ter surgical operations, no way to simultaneously visualize anatomic and angiographic

material, and no video post-processing.

The added features will be incorporated into a PC-based video processing application

used in the operating room as a supplementary tool during surgery. As the application is

an extension to an online imaging system, a reactive and smooth operation is important.
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This makes efficient video processing a key design goal. On the other hand the design

needs to support fast prototyping and deploying of new features.

1.1. Technical background and project guidelines

Video processing is a demanding application area, where dedicated hardware solutions,

like Field Programmable Gate Arrays (FPGA), Digital Signal Processors (DSP), media

processors and System-on-Chips (SoC), are commonly used and in some cases required to

achieve acceptable performance levels. These platforms typically use a time-consuming,

low-level software development model, which is ideal for pushing the last bit of perfor-

mance out of the hardware but not quick prototyping. (Ge 2008; Nair 2008 ; van der Wolf

& Henriksson 2008; Kuroda & Nishitani 2002.)

One advantage of the PC platform is a faster software development cycle compared to

dedicated hardware solutions. This is due to the advanced programming environment

and use of high-level languages and application programming libraries used in PCs (Ke-

htarnavaz & Gamadia 2006: 33). The PC platform also offers extensive support for build-

ing complex Graphical User Interfaces (GUI), an essential feature for implementing mod-

ern interactive application. The weak point of PCs in efficient video processing has tra-

ditionally been the lack of parallel processing power.

In the past, many demanding PC video processing applications have had to rely on ex-

pansion cards utilizing dedicated hardware technologies in order to achieve sufficient

performance (Kuroda & Nishitani 2002). Today, the increase of media processing capa-

bilities and core count of the Central Processing Units (CPU) as well as the rapid develop-

ment of the consumer-level Graphics Processing Units (GPU) have made many computa-

tionally demanding applications possible, even on standard PC hardware (Kehtarnavaz

& Gamadia 2006: 39–41). Accelerating various video processing tasks in modern GPUs

has also been made much easier by programmability enhancements and addition of ded-

icated video processing engines (Owens, Luebke, Govindaraju, Harris, Kruger, Lefohn &

Purcell 2007; Pieters, Van Rijsselbergen, De Neve & Van de Walle 2007).

This work will thoroughly review the key methods for efficient video processing and the

potential provided by the hardware and software platform of the PC. This is necessary

to be able to make informed choices when building the hardware configuration for the
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imaging station PC and choosing the necessary software frameworks for the application.

The feasibility of each proposed features will be tested before freezing the final feature set,

and thus hardware requirements, of the application. This way the potential performance

issues can be addressed in time by reviewing the hardware or software architecture. Most

of the development work will be done using alternative live stream sources like webcams

and recorded video material from the operating microscope, as the actual hardware is

rarely available for on-site testing.

On the software side, this project will rely on open-source components whenever possi-

ble. The main reasons for this are the ability to freely adjust existing software to the needs

of the project, freedom of licensing fees and better control of the whole software stack.

For these reasons a Linux-based operating system is an obvious choice. Ubuntu will be

the Linux distribution used in the project because it is a well-documented, popular and

is based on solely free and open source1 software (Canonical 2010).

1.2. Related work

As ICG-VA is a relatively new method, there is still a lot of engineering work to be done

to fully harness its potential (Alander, Pätilä, Spillmann, Laakso, Kaartinen, Huotari &

Tuchin 2011). Only a few operating microscope manufacturers provide integrated ICG

imaging capability and the feature set of these systems is often limited to viewing live

footage and recording for post-operation viewing (Carl Zeiss Meditec 2008; Leica mi-

crosystems 2008).

Even though the feature set of microscope-integrated imaging systems is quite limited

for the time being, the situation might change in the future, given that these systems are

still quite young. Carl Zeiss, for one, recently introduced a separately sold blood flow

dynamics visualization software, FLOW® 8002, for the INFRARED 800. FLOW 800 is an

example of extracting additional information from the ICG angiograms. It uses the video

sequences produced by INFRARED 800 to generate visual presentations of the temporal

changes in blood flow. FLOW 800 also allows intraoperative side-by-side comparison of

fluorescence imaging sequences to visualize blood flow changes – a feature highly usable

for before and after imagery. (Carl Zeiss Meditec 2010.)
1Some restricted video codecs and proprietary display drivers may still be used in the project
2FLOW 800 is not currently purchased for the unit at HUCS
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In the literature there are a number of publications concerning the clinical feasibility and

practicality of the ICG-VA method (Dashti, Laakso, Niemelä, Porras, Celik, Navratil, Ro-

mani & Hernesniemi 2010; Fischer, Stadie & Oertel 2010; Dashti et al. 2009; de Oliveira,

Beck, Seifert, Teixeira & Raabe 2008; Imizu, Kato, Sangli, Oguri & Sano 2008; Takagi,

Kikuta, Nozaki, Sawamura & Hashimoto 2007). On the other hand, publications han-

dling post-processing of ICG angiograms are scarce and concentrated on applications

for ophthalmology (Rosen, Hathaway, Rogers, Pedro, Garcia, Dobre & Podoleanu 2009;

Kohno, Miki, Shiraki, Kano, Matsushita, Hayashi & De Laey 1999). Most post-processing

methods also deal with still images instead of live videos.

The literature on PC-based video processing systems is quite extensive. A few inter-

esting categories on CPU-based processing systems include: various real-time PC video

processing systems (Lee & Chang 2008 ;He & Zhang 2006; Di Stefano, Marchionni &

Mattoccia 2004) and optimizing CPU-based processing with instruction set extensions

(Taylor 2007; Landré & Truchetet 2007; Ranganathan, Adve & Jouppi 1999). The main

interest in recent years, indicated by a large number of publications, has been utiliz-

ing the GPU for video processing tasks. Some of the most popular categories include:

GPU-implementations for common processing algorithms (NVIDIA 2010b; Gómez-Luna,

González-Linares, Benavides & Guil 2009; Allusse, Horain, Agarwal & Saipriyadarshan

2008; Babenko & Shah 2008), performance benefits for using the GPU over the main CPU

(Bui & Brockman 2009; Gong, Langille & Gong 2005; Sugita, Naemura & Harashima

2003), architecture overviews (Owens, Houston, Luebke, Green, Stone & Phillips 2008;

Owens et al. 2007) and evaluations of GPU processing frameworks (Luebke, Harris,

Krüger, Purcell, Govindaraju, Buck, Woolley & Lefohn 2004; Owens et al. 2007; Yang,

Zhu & Pu 2008).

1.3. Thesis structure

This thesis will begin by presenting the background of the working environment and the

relevant medical methodology in Chapter 2. This includes an introduction to the ICG

contrast agent, a description of the operating room and the work flow in it, as well as

a closer look at the ICG-VA method. Chapter 3 introduces the reader to the basics of

digital video, lays out some general concepts for achieving efficient video processing,

and evaluates the PC as a video processing platform. Chapter 4 describes the hardware
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and software platforms chosen for the imaging station and in the next the results of the

project are presented. In Chapter 5, the results of the project are given, including the

description of the features of the imaging application and how they were implemented

as well as the documentation of other prototyping work done during the project. Finally,

the conclusions chapter summarizes the whole project in a concise format , assesses how

well the goals were met, and contemplates with future perspectives.
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2. BACKGROUND AND WORKING ENVIRONMENT

Neurosurgery is a specialized field of medicine with a unique instrumentation and work-

flow. Neurosurgeons perform microsurgical operations in a delicate environment, often

from a small hole made to the base of the skull. Therefore special attention needs to

be paid to achieve good visibility of the operated area and a relaxed, yet firm, working

position of the surgeon. To accommodate these needs a variety of special instrumentation

has been developed – the neurosurgical operating microscope perhaps being the most

important. (Yaşargil 1984: 210–214.)

This chapter presents the essential background on neurosurgical instrumentation and

work-flow as well as the ICG-VA method in order to create a solid understanding of

what is being developed in this work and why. The chapter will begin by giving an

overview of the instrumentation and working set in the HUCS neurosurgical operating

room. The next section introduces the properties of ICG contrast agent and the technical

implementation of angiography based on it.

2.1. Operating room environment

The aim of this section is to shortly describe the relevant instrumentation and staff in

intracranial surgical operation. Since this work is only concerned by operating micro-

scope integrated imaging solutions, other instrumentation like surgical tools are left out

here. While the description is mostly kept on a general level, the equipment specific to

the target operating room are explained when necessary. Literature references are given

whenever possible; the rest of the descriptions and remarks, for example, on hardware

capabilities and operating room organization are based on interviews of the Töölö Hos-

pital surgeons.

2.1.1. Surgery staff

The staff of a typical neurosurgery consists of an operating and assisting surgeons, anes-

thesiologist and his assistant, and the scrub nurse and a few circulating nurses. All of

these people must have basic knowledge of the the work-flow and equipment in the op-

erating room so that valuable time is not lost during surgery. ( Yaşargil 1984: 213–214.)

The roles and number of representatives of each group may differ between surgical

teams, but the operating surgeon is usually the one who uses the operating microscope
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and does all the neurosurgical operations (Yaşargil 1984: 213–214). It is also important

to note that according to HUCS neurosurgeon Aki Laakso, there is always at least one

member of staff who has the opportunity to use supplementary software during surgery.

2.1.2. Neurosurgical operating microscopes

The operating microscope is primarily a visualization aid for the operating surgeon, who

looks at the operated area through the microscope’s optics. The main purpose of the op-

erating microscope is to provide the best possible viewing conditions. Important features

in pursuing this include good scene illumination, stereoscopic vision and magnification.

(Yaşargil 1984: 209–213.)

Ideally, the operating surgeon never needs to use his hands for any other purpose than

the surgical operations or remove his eyes from the eyepieces. An ideal operating mi-

croscope also maintains an optimal illumination of the field, has a suitably narrow inter-

pupillary distance in order to see into narrow gaps, and incorporates auto-focus with an

automatic determination of the desired focal plane. Since the introduction of operating

microscopes to neurosurgery in the late 50’s, the mechanical and optical development

has tried to meet these requirements with partial success. (Uluç et al. 2009.)

Recent operating microscopes use counter-weighted arms to allow smooth adjustment

of the imaging unit with very little force. Another improvement, first implemented by

M.G. Yaşargil in the early 70’s, was the use of microscope joint attached electromagnetic

brakes, controlled by a mouth-piece on the imaging unit. The mouth-piece is attached

so that it can be used while looking at the operated area through the oculars. In recent

microscopes the mouth-piece allows all movements of the imaging unit to be controlled

by the surgeon’s head. (Yaşargil 1984: 209–213; Uluç et al. 2009.)

Latest operating microscopes also incorporate several accessories including specialized

integrated imaging systems like fluorescence imaging and the possibility to insert addi-

tional imagery, for instance, from Computed Tomography (CT) or Magnetic Resonance

Imaging (MRI), to the eyepieces. These operating microscopes often incorporate digital

video cameras and a video processing system, allowing recording and post-processing of

the produced material. (Uluç et al. 2009.)
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2.1.3. Instrumentation in the target operating room

OPMI Pentero, launched in 2004, is a fairly new operating microscope optimized for neu-

rosurgery. Its standard imaging capabilities include autofocus and color video capture at

720×576 pixel Standard Definition Television (SDTV) quality. The captured video can be

shown live and recorded for later analysis. The microscope can also be equipped with

two optional intraoperative fluorescence imaging modes, BLUE 400 and INFRARED 800,

of which the latter is used in the target device for ICG angiography. Later a blood flow

analysis software, which uses the ICG angiograms produced by the INFRARED 800, be-

came available as another optional feature. (Wiederspahn 2004; Carl Zeiss Meditec 2009.)

OPMI Pentero consists of a stance on wheels, a computerized main unit with a touch-

screen interface, and a Six Degrees of Freedom (6DoF) arm. The main unit drives a

GUI in the touch-screen and houses an internal Hard Disk Drive (HDD) for white light

(anatomic), BLUE 400, and INFRARED 800 recordings (Wiederspahn 2004; Carl Zeiss

Meditec 2009). The imaging unit of the HUCS OPMI Pentero is also equipped with a

High Definition (HD) color video camera (Image 1 HD H3-M, Carl Storz GmbH & Co,

Tuttingen, Germany) providing Full HD video at 1920×1080 resolution. The hardware

setup is visualized in Figure 1.

OPMI Pentero offers a single video output channel in multiple formats for attaching to

external displays. These outlets always provide the video stream of the currently active

imaging mode of the microscope, eliminating the possibility to access white light and IN-

FRARED 800 video simultaneously. However, internally OPMI Pentero is able to record

both channels to the built-in HDD.

The cameras for INFRARED 800 and white light appear to use different optical paths;

one is taken from the left and the other from the right eye tube. The HD camera attaches

to the right eye tube via the side optics slot on the imaging unit. Unfortunately, the HD

camera slot remains stationary when the imaging unit is rotated. This incurs a rotational

misalignment to the output images of the HD camera and the internal cameras, when the

imaging unit is removed from the default position. The field of view and aspect ratio of

the HD camera are also different to those of the internal cameras.

In addition to the operating microscope, the operating room contains several displays

with varying sizes. All displays and the outputs of the operating microscope can be
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Figure 1. The OPMI Pentero operating microscope being presented by surgeon Martin
Lehečka at Töölö Hospital, HUCS 22.2.2010. The larger image visualizes the main parts
of the microscope and smaller is a close-up of the imaging unit (images courtesy of
Jarmo Alander, 2010).

connected to the audio and video bus of the operating room. Thus, the video from the

microscope can be output to any number of displays in the room and also to a big screen

in the hall of the neurosurgical department. A separate videohub (Image 1 HUB™ HD,

Karl Storz GmbH & Co, Tuttingen, Germany) is used by the HD camera. The hub pro-

vides multiple output channels in both SDTV and HDTV quality. At the moment the hub

is used to show the HD camera image in a large LCD TV monitor.
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2.2. Introduction to indocyanine green angiography

ICG belongs to the family of cyanine dyes and it was originally developed for NIR imag-

ing by Kodak Research Laboratories in 1955 (Björnsson, Murphy & Chadwick 1982). Use

of ICG in clinical applications was approved in 1956 and the first applications for angiog-

raphy appeared about ten years later (Kogure & Choromokos 1969).

2.2.1. Instrumentation and principle of angiography

Indocyanine Green Angiography (ICGA) is essentially a Fluorescence Imaging (FI)

method. In FI, the fluorescing substance is exposed to a light source known to contain

excitation wavelengths. This triggers a near immediate emission at slightly longer wave-

lengths, captured by a camera or some other imaging device (Reichman 2000: 2–7). The

excitation and emission curves for a typical fluorescent dye are depicted in Figure 2. For

high image quality, the excitation and emission wavelengths are usually separated into

two non-overlapping bands with optical filters (Frangioni 2003).
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Figure 2. Typical excitation and emission curves for a fluorescent dye. Due to energy
loss in fluorescence, the emission band shifts towards the longer wavelengths
(Reichman 2000: 4).

In ICGA, a bolus of contrast agent is injected into the patients blood stream and the

desired area is illuminated with excitation wavelengths, while simultaneously capturing

the emission with a NIR sensitive camera (Raabe, Beck, Gerlach, Zimmermann & Seifert

2003). A clarifying schematic of the procedure is provided in Figure 3.
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Figure 3. The principle of fluorescence imaging and indocyanine green angiography.
The optical filter Fs only allows the excitation wavelengths (blue) to reach the vein
(object), while Fc prevents everything outside the emission wavelengths (red) from
entering the camera (image courtesy of Jarmo Alander, 2009).

Two optical bandpass filters marked Fs and Fc in Figure 3 can be used to adjust the spec-

tral distribution of light reaching the imaged area and the camera respectively. Fc is used

to ensure that only the light on the emission band enters the camera. This raises the image

quality and enables NIR imaging under regular room lighting. Concurrent visible light

imaging is also possible in this kind of setup. Fs, in turn, is used to shape the excitation

wavelength distribution to match the purpose. This is often desired because the qualities

of existing light sources are seldom satisfying from the start. Filtering also allows a wider

range of light sources to be used.

The emission peak of ICG lies around 800 nm, which is in the NIR region, well beyond

the visible range of human vision. However, regular silicon sensor based cameras – in-

cluding those using Charge Coupled Device (CCD) and Complementary Metal Oxide

Semiconductor (CMOS) sensors – can be used for ICGA, as their sensitivity stretches

deep enough into the NIR region. This requires, though, that any NIR blocking filters,

commonly found in normal color cameras, are removed. In addition to this, excitation

and emission filters might be needed for a complete imaging solution. Still, a minimum

technical implementation of ICGA is both inexpensive and simple, requiring only a few

optical filters and a regular video camera. (Alander et al. 2011: 26.)
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2.2.2. Clinical properties and usability

The fluorescence emission spectra of ICG is somewhat dependent on the physical and

chemical environment like dye concentration, ambient temperature and the chemical

properties of the solution. During its use, ICG has been proven to have some important

clinical features including:

v non-toxicity,

v non-ionizing,

v short lifetime in blood circulation allowing fast re-injection,

v binding to lipoproteins in blood isolating the dye in circulation,

v operates within reach of common silicon sensors (cheap imaging devices),

v tissue has low NIR autofluorescence giving a low noise background. (Kulyabina &
Kochubey 2006; Björnsson et al. 1982; Cherrick, Stein, Leevy & Davidson 1960.)

The surgical applications of ICG have emerged quite recently, despite its long history in

clinical applications. Traditionally, ICG has been used for determining cardiac output,

liver blood flow and hepatic function, and chroroidal angiography (Cherrick et al. 1960;

Desmettre, Devoisselle & Mordon 2000). In recent years, there has been an increase in

new applications using ICG, mainly related to surgery. Thus, there is still a lot of en-

gineering and research challenges related to the use of ICG in these new fields. Some

challenging points related to use of ICG include:

v invisibility to the naked eye (need of a NIR imaging device),

v need for auxiliary devices like illumination control,

v few chemical derivatives exist for more specific imaging setups,

v injection solution contains some sodium iodide (risk of allergic reaction),

v instability in solution when exposed to light,

v non-linear fluorescence quantum yield vs. concentration. ( Kulyabina & Kochubey
2006; Landsman, Kwant, Mook & Zijlstra 1976.)
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2.3. Microscope-integrated indocyanine green videoangiography

The first noteworthy application of ICG imaging in neurosurgery was the technique of

microscope-integrated ICG-VA first described in a journal article by Raabe and colleagues

in 2003 (Raabe et al. 2003). In ICG-VA a video camera as well as a filter and excitation il-

lumination setups are integrated into a neurosurgical operating microscope. Several fea-

sibility studies after the first experiments have shown considerable benefits from adding

ICG-VA into routine imaging methods (Raabe, Beck & Seifert 2005a; Raabe, Nakaji, Beck,

Kim, Hsu, Kamerman, Seifert & Spetzler 2005b; Takagi et al. 2007; Kumar & Friedman

2009). The neurosurgical team of HUCS have used ICG-VA since 2005 in assessment of

cerebrovascular blood flow during aneurysm surgery and reported increases in the qual-

ity of treatment as a result of using this method (Dashti et al. 2009; Dashti et al. 2010).

When compared to other popular angiography methods that can be used during surgery

like intraoperative Digital Subtraction Angiography (DSA), microvascular Doppler and

fluoresceine imaging, ICG-VA has certain unparalleled benefits. An ICG-VA study takes

only a few minutes to perform and requires minimal preparations. Due to the rapid

extraction of ICG from the body, multiple ICG-VA studies can be done during the same

surgery. From patient’s point of view the procedure is minimally invasive. There is also

no need for large imaging apparatus which take time to position and require the patient

immobility for good quality images. Side effects from ICG are rare and mild. Also the

daily dosage is of less concern than with radiology-based imaging methods. All these

make ICG-VA a safe, quick and simple method for assessment of blood flow immediately

after corrective surgical operations. (Dashti et al. 2010; Fischer et al. 2010; Dashti et al.

2009; Takagi et al. 2007; Frangioni 2003.) A still frame in Figure 4, captured from an ICG-

VA study conducted with the OPMI Pentero unit at Töölö Hospital, exemplifies the high

contrast attainable with the ICG-VA method when using proper instrumentation.

Aneurysm surgery1, which is a common operation in Töölö Hospital, is a good example

of a procedure, where ICG-VA has been successful used. In the surgery, the blood flow

into an aneurysm sack is occluded with a metallic clip. In these operations ICG-VA helps

by allowing immediate assessment of blood circulation after clip setting. This is con-

sidered especially important, since corrective operations resulting from an unsuccessful

1Aneurysms are dilatations in arteries having an increasing risk of rupture over time (Nienstedt 2006: 31)
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Figure 4. A still frame captured from an ICG videoangiogram. The video was recorded
during an operation using the OPMI Pentero unit at Töölö Hospital (image courtesy of
Martin Lehečka, 2009).

aneurysm clipping are often too late, when discovered in post-operative imaging (Dashti

et al. 2009). Possible filling of the dilatation, as well as unintended occlusion of surround-

ing blood vessels, are usually clearly visible in the videoangiogram within a few minutes

from corrective measures.
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3. EFFICIENT VIDEO PROCESSING ON PERSONAL COMPUTERS

Video processing, be it post-processing or tasks related to playback and storage, requires

a lot of computation and memory resources. Because these tasks typically suit well for

parallelization, they are more efficiently handled by dedicated processing engines than

general-purpose processors. Thorough insight on efficient video processing is vital in

order to implement a responsive video processing application, especially with today’s

high resolution videos. This chapter focuses on the hardware and software architectures

that may aid in delivering fluent playback and post-processing on the PC platform.

The first section is dedicated to establishing the basics, that is, how computers store image

and video data and how that data is transformed and transported between systems. The

next section reviews the most common methods for raising video processing throughput

on a general level. The last section in this chapter is dedicated to reviewing the strong

and weak points of the PC platform in efficient video processing.

3.1. Presentation of digital image and video data

Digital images consist of a two-dimensional array of pixels and can be presented in three

different forms: symbolic image description, raster image and compressed image. Raster

images store each pixel’s color directly. The other two need additional processing to

produce a raster image, which is the only suitable form for most displays. (Poynton 2003:

31–42.)

There are four commonly used raster image formats based on color coding: bilevel,

grayscale, truecolor and indexed color. Bilevel images only have black and white col-

ors and thus take one bit per pixel. In grayscale (monochrome) images, pixels are usually

coded with 8 bits or more and can only present different shades of grays as the name im-

plies. To present photographic-quality color images, the truecolor format is a minimum

requirement. Truecolor images use 8 bits per each primary color channel – Red, Green,

and Blue (RGB) – resulting in about 16.7 million distinct colors. Indexed color images use

a subset of the truecolor color set using less bits per channel and typically 8 bits per pixel.

(Poynton 2003: 31–42.)

In modern 32-bit computer architectures, the graphics hardware often uses 32 bits per

pixel in truecolor mode because of the speed advantage of aligning memory according to
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the word length of the architecture. In such formats the color coding itself is identical to

the truecolor specification, but the use of the extra 8-bit channel varies. In modern PCs

the extra channel is often used in image composition to convey translucency information.

The channel is commonly called the alpha1 channel and the format RGBA. (Wikipedia

contributors 2010c.)

Videos are essentially a sequence of images and thus share the same color coding and pre-

sentation principles. The illusion of motion in videos is created simply by displaying a

sequence of still images with a sufficiently high rate. Usually 24 frames per second (fps) is

enough, although the properties of the environment and the vision of the spectator have a

small impact. To save bandwidth, a color coding technique called chroma subsampling is

more commonly used in video encoding than that of still images. In chroma subsampling

the color information (chroma) is coded with less precision than luminance (luma) with-

out a significant hit in the perceived color accuracy. This is possible because the human

visual system has a lower acuity for color differences than luminance. In practical imple-

mentations, chroma subsampling is implemented as a set of luma-chroma color spaces,

where the amount of color information degradation and compression varies. (Poynton

2003: 51–64.)

3.1.1. Video and image compression

Directly storing or transmitting digital video requires a large data capacity – for exam-

ple, playing back an uncompressed 1920×1080 Full HD video at 24 fps and in the RGB

space, requires transferring roughly 150 megabytes per second. This is why compression

is required for economical use of video data (Poynton 2003: 51–64). This section intro-

duces the principles of compression and some of the most common image and video

compression schemes, like Joint Photography Experts Group (JPEG), Motion Picture Ex-

perts Group (MPEG) and Motion JPEG (M–JPEG).

Generally, compression means reducing the number of bits required to store or convey

data. This can be done in either lossy or lossless manner. In lossless compression, the

data is exactly recoverable by a decompression algorithm, whereas in lossy compression,

some data is sacrificed for a higher compression ratio. Compression, in general, exploits

1Alpha refers to alpha blending, which is a method for producing partially transparent images (Porter &
Duff 1984).
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the statistical properties of data. Additional compression is often possible by utilizing

the perceptual properties of the human vision, allowing particular parts of data to be

discarded without a significant perceptible difference. (Poynton 2003: 117–126.)

Many compression methods for grayscale and truecolor images include lossless Discrete

Cosine Transform (DCT) and lossy methods based on perceptually important informa-

tion. One of the most common lossy still image compression methods is JPEG. Com-

pressing color images with JPEG usually involves using DCT and a transformation from

the RGB colorspace to a chroma subsampled one. (Poynton 2003: 117–126.)

Motion-JPEG (M-JPEG) uses JPEG algorithm to compress motion video. The compres-

sion is done by simply applying JPEG compression on each frame individually. This

means that temporal coherence of frames is not exploited in compression, which low-

ers the compression ratio. On the other hand this compression method enables M-JPEG

video sequences to be easily edited, because each frame can be processed separately.

(Poynton 2003: 117–126.)

Further compression is usually possible by taking advantage of the fact that successive

frames in a video are highly correlated; if this was not the case spectators would have a

hard time following the events in videos. The MPEG codec family for example uses this

scheme of compression. Compared to M-JPEG, the compression ratio can be increased

by a factor of 5 to 10 by exploiting the temporal redundancy.

MPEG uses a limited number of self-contained key frames and only stores pixel differ-

ences between successive key frames. Motion estimation algorithms are also used to

minimize differences between successive frames. The encoder divides the frame into

blocks, calculates motion vectors for each block, and uses these vectors to calculate the

differences. The decoder is able to reconstruct the frames based on the differences and

the motion vectors. This is only the principle of how MPEG coding works (including

MPEG–1 and MPEG–2). Yet, it is easy to see why processing MPEG streams is more com-

plicated than that of M-JPEG streams. Before any image processing can be applied to the

frames in MPEG streams, they need to be reconstructed by a complex algorithm. Hence,

the encoding and decoding latency is often significant with MPEG and other methods

using temporal coding, which may limit applicability in real-time applications. (Poynton

2003: 117–126.)
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3.1.2. Video formats, containers and codecs

A video format describes the presentation of the contained data. It defines the color

model, a progressive or interlaced scanning mode, and the possible compression scheme.

Common video formats are usually internationally agreed standards, laid out by organi-

zations like the Telecommunication Standardization Sector of the International Telecom-

munication Union (ITU-T), International Electrotechnical Commission (IEC), Interna-

tional Organization for Standardization (ISO) and Institute of Electrical and Electronics

Engineers (IEEE).

A codec is a software or hardware implementation of the encoding and decoding algo-

rithms for a particular format. Codecs are implemented by many parties, some of them

proprietary, some free or open source. (Fallon, de Lattre, Bilien, Daoud, Gautier & Stenac

2002–2004: 3.) Currently, one of the most commonly used video codec standards is the

ITU-T H.264/MPEG–4, which is technically identical to ISO/IEC MPEG–4 Advanced

Video Coding (AVC).

When a video stream is stored into a file, a container layer is added. Most containers

support multiple formats of Audio and Visual (AV) streams, described in the header

and stored in the payload section of the file. The header section provides information

about the payload section like the stream count, bitrates and format details. (Fallon et al.

2002–2004: 3.) Some popular containers and the video codec standards they support are

presented in Table 1.

Table 1. Some AV containers and the video codec standards they support (Wikipedia
contributors 2010a).

Container RealVideo Theora AVC/MPEG–4 H.264/MPEG–4 VC–1/WMV

QuickTime ? 3 3 3 3

AVI 7 3 3 Partial 3

Matroska 3 3 3 3 3

MP4 7 7 3 3 3

MXF 7 ? 3 3 3
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3.2. Essential features for high-throughput video processing systems

Processing of digital video requires both a significant amount of computation and mem-

ory resources. Both of these requirements relate to the high amount of data digital images

involve. To face these challenges any system needs a hardware architecture that exploits

parallel processing blocks. Secondly a timely processing of the data is useless if one can-

not move the operands and results fast enough to and from the processing unit; therefore

a fast memory link is needed. (Kehtarnavaz & Gamadia 2006: 34–35.)

In addition to the work of post-processing algorithms altering the content of videos, sig-

nificant computational work is needed by the processing related to video presentation

transformations. When compression, decompression, color space transformations and

the like are taken into account, the gravity of the computational requirements of the

whole process is exposed. In order to cope with these challenges, any processing sys-

tem needs a substantially parallel hardware architecture combined with software frame-

works that are able to effectively utilize the capabilities of that hardware (Kehtarnavaz &

Gamadia 2006: 1–3, 55).

3.2.1. Parallel processing

The principal operation of all processors is similar; they are controlled via programs con-

sisting of a sequence of processor-dependent instructions. All instructions form an in-

struction set that gives a palette of simple tasks a processor can perform. There are two

fundamentally different processor architectures based on their instruction characteris-

tics: Reduced Instruction Set Computers (RISC) and Complex Instruction Set Computers

(CISC). The RISC approach favors a small set of simple and fixed-length instructions

whereas CISC does the opposite having a larger set of dedicated instructions for more

complex tasks. The instruction set also has a big impact in how parallelization strategies

can be utilized. (Granlund 2004: 139.)

Computationally, parallelism can be divided into two categories: Data Level Parallelism

(DLP) and Instruction Level Parallelism (ILP). These two concepts can be considered

complementary in a way that by increasing DLP, the ratio of operands is increased in

the instruction stream, while increases in ILP contribute to a higher ratio of instructions.

In practice increasing DLP often means applying the same instruction to a large data set
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at the same time. Increasing ILP in turn means executing more instructions simultane-

ously. (Kehtarnavaz & Gamadia 2006: 1–5.)

On a general level, image and video processing operations can be categorized into low,

intermediate, and high level operations. In this division, low level operations process

image data pixel by pixel or within a pixel neighborhood and produce modified images

as output. Intermediate level operations extract features from pixel data to produce a

reduced data set like segmentation or contour information. The output of intermediate

level processing is then exploited by high level processing, which interprets the abstract

data. While DLP is crucial in low level video and image processing operations, its im-

portance decreases as the amount of data is reduced towards higher processing levels,

where ILP in turn can be exploited. (Kehtarnavaz & Gamadia 2006: 1–5.)

3.2.1.1. Increasing instruction level parallelism

Processors consist of specialized blocks called functional units each doing their own task,

instructed by a control unit. The processing of an instruction takes several smaller steps

or stages like fetching the instruction, doing arithmetics and storing the results. Many

traditional processors fetch and execute instructions sequentially one after another. This

is not very efficient, however, because the majority of functional units are idle most of

the time. An effective and widely used solution to better utilize the hardware is to use

instruction pipelining. Instead of waiting for the whole instruction to be finished execut-

ing, a new instruction is loaded as soon as the previous finishes the first pipeline stage.

If the pipeline works ideally, one instruction reaches the execution stage on every clock

cycle. This leads to an ILP gain proportional to pipeline depth. Unfortunately interrupts,

branching, varying micro-operation execution times and other complications cause delay

and thus decrease the performance gain. (Lapsley, Bier, Lee & Shoham 1996: 99–109.)

The chosen instruction set type also effects how pipelining can be implemented. Tra-

ditionally, RISC instructions have been more suitable for pipelining, as they are fixed-

length and have less variance in execution time. CISC instructions are often more diffi-

cult for pipelining, because of their complexity. Nonetheless, pipelining has been applied

to CISC processors as well; for example, in some CPU architectures used in PCs, CISC

instructions are first decoded into RISC-like micro-operations and then scheduled for a

pipeline (Stallings 2009: 506–539, 600). In general, designing a high-throughput pipeline
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is a complicated task for any architecture and trade-off situations are common (Lapsley

et al. 1996: 99–109).

Instruction parallelism can be further increased by taking multiple independent pipelines

into use. This is implemented in the superscalar architecture. In superscalar pipelining,

dependencies between instructions, intended to be executed in parallel, are resolved dy-

namically during execution. The difficulty with superscalar pipelining is to determine

what instruction should be fetched into what pipeline next to achieve the best overall

throughput. (Stallings 2009: 506–539.)

Another technology for increasing ILP is the Very Long Instruction Word (VLIW) archi-

tecture, where multiple instructions and operands are packed into a single instruction

word. In contrast to superscalar architecture, VLIW resolves instruction dependencies

and performs the scheduling statically during compile time. This approach transfers the

complexity of producing an optimal scheduling from silicon to compiler design. (Talla,

John, Lapinskii & Evans 2000; Granlund 2004: 150–151.)

3.2.1.2. Increasing data level parallelism

Single Instruction Multiple Data (SIMD) is one of the most important solutions in in-

creasing DLP. It embodies simultaneous execution of the same instruction on many data

operands. A form of SIMD is packed data processing, also known as subword paral-

lelism, which is available in many processor architectures including the CPUs used in

desktop PCs, DSPs, and media processors (Kehtarnavaz & Gamadia 2006: 34). In packed

data processing a single instruction can load an array of operands into specific SIMD

register regions and execute arithmetic operations on them (Talla et al. 2000). This kind

of vector-arithmetics is especially useful in low-level video and image processing opera-

tions (Kehtarnavaz & Gamadia 2006: 34).

One of the biggest challenges in using SIMD computation is the difficulty of implement-

ing automatic data vectorization, which means producing suitably aligned data ahead of

time, for loading the SIMD registers. Thus, the performance increase for using the SIMD

calculation hardware can be considerably lower than the theoretical maximum. (Talla

et al. 2000; Talla, John & Burger 2003.)
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3.2.2. Memory subsystem

Most computer systems use a hierarchical memory subsystem consisting of different

kinds of memory chips having varying latency, capacity, and cost. The memories are con-

nected by internal and external buses. Although some common principles apply across

platforms, the organization of the memory hierarchy varies greatly between systems:

DSPs and other embedded solutions, for example, use different memory types and bus

layouts than desktop computers.

The fastest memory types, like registers and caches, can usually be found on the pro-

cessor die. These are referred to as on-chip memory. Although there is a performance

incentive to make these memories large, they must be kept reasonably sized because of

die size and power consumption issues. The second fastest level is usually called the

main or internal memory, which on the PC is often Dynamic Random Access Memory

(DRAM). The two aforementioned memory levels are directly connected to the memory

bus of the processor. The slowest and cheapest memory types, classifiable as external

memory or secondary storage, are usually accessible through an external bus and pos-

sess the greatest capacity. Hard-drives and optical medias are examples of such memory.

(Stallings 2009: 69–81, 96–103.)

The slowest link between different levels of the memory hierarchy determines the max-

imum performance when a data stream is transferred through the system. In PCs, the

performance of the main memory is critical, because it serves as an I/O interface for the

data: the input stream is copied and stored in main memory, then processed and finally

rendered on screen or output elsewhere. (Hennessy, Patterson, Goldberg & Asanovic

2003: 428.)

3.2.2.1. Main memory architectures

Main memory architectures can be divided into two groups based on the number of par-

allel memory buses. In the von Neumann architecture, a single set of control, address,

and data buses is used to access memory, whereas the Harvard architecture includes two

or more sets of buses. Obviously, the latter provides higher performance, because mul-

tiple memory accesses can be made simultaneously, when only one per clock cycle is

possible in von Neumann designs. Harvard architecture is common in high-power em-
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bedded processors and DSPs, while von Neumann is used for example in desktop CPUs.

(Lapsley et al. 1996: 49–55.)

A common method for increasing memory throughput is to use caching between the

processor and the main memory. A cache is a small and fast block of memory, usually

residing on the processor die, that holds copies of recently used instructions and data for

quicker access by the processor. When the processors needs to access memory, the cache

is first checked, and only in case of a cache miss, the data is actually fetched from the

slower memory and copied into the cache. Caches also take advantage of the locality of

memory accesses. It has been shown, that memory locations near the previously fetched

are very likely to be referenced soon, because of the sequential nature of program code

over short periods of time. So to further improve performance, cashes copy a block of

memory, called a cache line, instead of just the desired data. The simplest cache imple-

mentations use a single cache level, but more can be added. (Stallings 2009: 103–121.)

Optimizing cache designs is an on-going and complex research problem. One fundamen-

tal difficulty in cache design is choosing an optimal cache line width, which is affected

by the proportions of sequential, conditional, and branching instructions. Another dif-

ficulty, related to multi-level caches, is coherence between cache levels and main mem-

ory in shared memory multi-processor architectures. The problem is that processors or

cores see different versions of the data at the same time, due to intermediate memory

hierarchies causing delay in the propagation of changes. When caches are used, it is

difficult to give guarantees for memory access times, because the occurrence of cache

misses cannot be accurately predicted (Stallings 2009: 103–121). This is also one of the

reasons, why multilevel caching may not be desirable in hard real-time systems. Caches

also require a relatively large die area and have a high power consumption (Puaut &

Pais 2007; Avissar, Barua & Stewart 2001). Instead of regular cashes, some embedded

solutions favor scratchpad memories, which are basically software controlled single-

level caches. Scratchpad memories are usually on-chip Static Random Access Memory

(SRAM), mapped at a predefined address range in the processor’s address space (Puaut

& Pais 2007; Avissar et al. 2001).



36

3.2.2.2. Buses and I/O

Buses are used to provide a shared access to the resources and devices on the system.

Buses with different protocols and speed ratings can be connected with bridges. The la-

tency inflicted by busses and bridges is often significant and poses additional bottlenecks

into the system. (Stallings 2009: 67–88; AMD 2002.)

Methods for managing data transfers between different parts of a computer system de-

pend on the communicating parties and nature of data. For example, software driven

I/O (polling) and interrupt driven I/O are the two principal methods used to keep the

CPU up to date with the status of an I/O device. In polling the CPU synchronously in-

quires a device about its status. A more efficient solution is to set up the I/O devices to

raise interrupts to notify the processor of an event. (Williams 2006: 46–48; Thompson &

Thompson 2003: 21.)

For bidirectional data exchange between the processor and an I/O device there are two

methods called Memory-Mapped (MMIO) and Port-Mapped I/O (PMIO). In memory-

mapping the private address space of a device replaces an area of the main address space

of the processor. This allows the processor to use the I/O memory as any main memory

area. In PMIO the address space of the device is kept private and the processor needs

to use special instructions to access the device. (Williams 2006: 46–48; Thompson &

Thompson 2003: 21; Murdocca & Heuring 2000: 319–326.)

Furthermore, the data transfer between main memory and I/O devices can be handled

using a dedicated circuitry, called Direct Memory Access (DMA). DMA enables devices

to exchange data with memory or with each other without processor’s active involve-

ment. The transfer is conducted by a DMA controller and the processor only initiates

the transfer and possibly gets notification of its completion. The benefit of this is that the

main processing unit is free to do other work while data is being transfered. (Williams

2006: 46–48; Thompson & Thompson 2003: 21; Lapsley et al. 1996: 64–65.)

3.2.3. Software design for performance

A high performance hardware is useless without software solutions utilizing the poten-

tial of the hardware. In other words, software design determines to what degree the per-

formance of the hardware is actually realized. Principles in this section apply to all parts
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of the software stack and are meant as general guidelines for handling video data and

implementing video processing algorithms. Designing software for performance is not

a simple task though. Successful software design involves areas like identifying and ex-

ploiting parallelism in the processing algorithms, intelligent memory management and

utilizing software optimization methods. Thorough knowledge about the underlying

hardware is also vital in order to effectively utilize the capabilities of each platform. (Ke-

htarnavaz & Gamadia 2006: 55–79.)

The first step in a software project is choosing a programming language that best fills

the performance, portability and development time requirements of the application. As

a rule of thumb, more performance can be extracted from a processor, if a low-level lan-

guage rather than a high-level is used. Although modern compilers are able to produce

fairly optimized code, they usually cannot match an experienced programmer’s insight.

In low-level languages, like variants of assembly languages, the programmer has bet-

ter control over the hardware; therefore higher performance is usually achievable, albeit

with the cost of a longer development time (Hyde 1996). On the other hand, portability

is often a key issue, making completely non-portable assembly applications unattractive.

For these reasons, an ideal solution for a video processing application that demands good

performance, would be a language that provides:

v enough high-level characteristics to allow good programming productivity,

v enough low-level characteristics to allow good optimization possibilities and con-
trol,

v and portability between platforms.

The languages which best meet these requirements are often considered to be C and C++.

This notion is supported by the fact that many operating systems and other software with

high-performance requirements are often implemented in C and C++.

3.2.3.1. Memory management

Memory management relates to how the image data is stored and transferred between

various memories and processors. Optimizing this is especially important in image and

video processing, due to the vast amounts of information being transferred. Many pro-

cessing platforms, including PCs, are also memory-limited instead of compute-limited.
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Memory management can be improved for example by reducing cache-miss rates, us-

ing image partitioning schemes, and utilizing DMA whenever possible. (Kehtarnavaz &

Gamadia 2006: 61–64.)

Ideally, entire images could be read into the fast on-chip memories along with other vital

data. However, this is often not possible, which has led to the development of various

partitioning schemes. Partitioning means fetching and operating on fixed-sized portions

of frames at a time. For example in the row-stripe partitioning, a few lines or rows of an

image are prefetched into an on-chip buffer for faster processing. Critical instructions can

also be prefetched and kept in the faster internal memory. However this level of internal

memory customization is not supported by all hardware architectures. (Kehtarnavaz &

Gamadia 2006: 61–64.)
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Phase 1:
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Transfer/DMA

Processing/CPU Transfer/DMA
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Figure 5. An example of a four-buffer (B1-B4) multibuffering scheme utilizing DMA. In
the scheme the CPU processes data using two buffers in fast memory, while DMA is
used to load new data from and write out results to slower memory. At the end of each
phase the buffer roles are swapped.

If the system includes a DMA controller, multibuffering strategies can be used for concur-

rent movement and processing of data. These strategies employ a few buffers, allocated

within the on-chip memory whenever possible, and a swapping logic. As an example, a

four-buffer (B1-B4) swapping logic is depicted in Figure 5. In the first phase, buffer B1

is being filled with new data by a DMA transfer and the data in B2 is being processed

with the results written into B3. Simultaneously, the data in B4, which contains the re-
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sults from the previous cycle, is being written out by another DMA transfer. Then buffer

roles are shifted to the left as shown in the lower row of Figure 5. This essentially results

in a system where data transfer and processing have been parallelized. Multibuffering

schemes can further be optimized by using data alignment that matches the width of the

data bus. (Kehtarnavaz & Gamadia 2006: 61–64.)

In addition to optimizing the efficiency of data transfer to and from external memory into

on-chip memory or main memory, one can also take measures to minimize the transferred

data. One way to do this is to take the spatial and temporal locality of pixels into account.

This can be done, for example, by using pixel-based instead of image-based processing.

In image-based processing each operation is applied separately to the whole image. This

means that a slow load and store of the whole image between the processor and the

main memory is done upon every processing operation. In pixel-based processing, a

set of pixels is loaded into the faster on-chip memory once and all the operations are

applied before storing the result in a slower memory, saving a lot of memory bandwidth.

(Kehtarnavaz & Gamadia 2006: 61–64.)

3.2.3.2. Software optimization

Code optimization is knowing and using the design patterns that lead to performance

increases as well as voiding those that undermine it. For example excessive branching

and conditionals incur a performance penalty. Sometimes subtle changes, like using a

different instruction, altering execution order or the registers used, may cut processing

time significantly. Loops are usually good places to start optimization, because the exe-

cution time reduction achieved inside a loop is multiplied by the loop cycle time. This

is especially important in image and video processing where nested loops are common.

(Kehtarnavaz & Gamadia 2006: 66–71;Chang, Mahlke & Hwu 1991.)

Because each hardware platform and instruction set is different, the location of bottle-

necks may vary even with the same source code. The process of finding those portions of

code posing bottlenecks is called software profiling. Profiling can be done by timing dif-

ferent portions of code or individual functions to see which of them takes the most CPU

time. Many existing profiling tools can be help in this task. Once the critical sections

have been identified the code is refactored until the result is within acceptable limits.

(Kehtarnavaz & Gamadia 2006: 66–71; Chang et al. 1991.)
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When using High-Level Languages (HLL), the machine code created by the compiler

cannot be dictated to the smallest detail in source code. Luckily modern compilers are

equipped with automatic optimizers that can be configured to emphasize different at-

tributes like speed or size. If the performance is still not acceptable, the next step is to

replace the most critical parts by inline assembly or use processor specific intrinsics. In-

trinsics are special HLL functions that the compiler translates into specific assembly sec-

tions giving the programmer similar benefits to writing assembly by hand. (Kehtarnavaz

& Gamadia 2006: 66–71; Wieber Jr & Zopetti 2008.)

Pushing the last bit of performance out of the hardware with software optimization can

take a lot of time. Therefore, it is worthwhile to use the existing optimized libraries,

which are available on many platforms. A few examples of such libraries include the

Intel® Integrated Performance Primitives (IPP) for Intel desktop processors and DSPlib

and Imglib for Texas Instruments’ DSPs. (Kehtarnavaz & Gamadia 2006: 66–71.)

3.3. PC as a video processing platform

Unlike many systems, PC was not designed to do any specific task with a maximum ef-

ficiency; on the contrary, it was designed to host all kinds of expansion hardware and

run a lot of productivity software concurrently. Hence, the maximization of the over-

all throughout is a priority on the PC platform in general. This is clearly visible in the

evolution of both PC hardware and operating systems.

However, in recent years new application areas, like high definition video playback and

real-time 3D games, have started to drive the capabilities of the PC platform into a new

direction. Due to some inherent disadvantages, the PC platform is still not considered

well-suited for hard real-time applications with strict latency deadlines, but many de-

velopments in both hardware and software have enabled new possibilities for efficient

online video processing.

3.3.1. Hardware platform

For a time, the hardware side of the PC platform did not see significant architectural

re-designs, but in recent years the situation has changed. The architecture on system

level, that is, how the discrete chips make a system, is changing into a leaner and more
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integrated environment. This section presents the most important features and trends of

the modern PC assembly, related to using it for efficient video processing.

3.3.1.1. System architecture

All the separate hardware units in a PC such as the CPU, DRAM banks and mass storage

devices are attached to a single Printed Circuit Board (PCB) called the motherboard. On

logical level, hardware units attach to different buses which in turn are connected by the

chipset. The chipset is a set of Integrated Circuits (IC) for interfacing different busses

that also incorporate special hardware features like DMA controllers and Plug-and-Play

(PnP). In a traditional design the chipset is separated into north- and southbridges so that

bandwidth-hungry devices such as the processor, main memory and graphics hardware

were connected to the northbridge while the rest, including mainly I/O devices, attached

to the southbridge. (Mathivanan 2003.) A generic example of a classic northbridge-

southbridge motherboard layout is shown in Figure 6.

Online video processing is a memory intensive task where a stream is usually read from

an I/O device, transfered to the main memory, processed by the CPU, written back to

the main memory and transfered to the framebuffer memory in the GPU for rendering

(Revel, Cowan, McNamee, Pu & Walpole 1997). This causes a lot of traffic on the sys-

tem bus, also know as the Front Side Bus (FSB), which quickly poses a bottleneck when

images become larger. Another issue is that the DRAM technology has not been able

to keep up with the increases in CPU performance. The disparity between the speeds

of these two components has only become worse with time, albeit the resulting perfor-

mance hit is alleviated to some degree by caching. On the other hand, the use of multi-

level caches results in unpredictable memory access latencies, which make development

of hard real-time applications difficult. (Peng, Peir, Prakash, Staelin, Chen & Koppelman

2008; Burger, Goodman & Kägi 1996).

These shortcomings are being addressed in newer architectures with improvements like

new and faster buses, multiple parallel DRAM channels, and better overall system or-

ganization. There is a clear trend of increasing the level of integration for better per-

formance and energy efficiency. In modern designs, the whole functionality of the old

northbridge including the memory controller, the graphics card interface, and the system

bus is integrated into the CPU die (Wikström 2010). Intel’s 32nm Westmere microarchi-
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tecture (see Figure 7) launched in early 2010 was the first design, where a graphics chip

was integrated inside the CPU package, although on a separate die. All of these changes

reduce power consumption and latency due to shorter distances and reduced interface

logic. (Williams 2010; Kayi, El-Ghazawi & Newby 2009)

North-
bridge

RAM

Audio codec

SATA

USB ports

PCI slots

Fast Graphics
Card Interface

CPU

South-
bridge

FSB

memory
busAGP or

PCIe

Ethernet

BIOS

SPI or
LPC

IDE

internal
bus

Chipset

Super I/O
(serial port, PS/2, 
floppy drive etc.)

Figure 6. A traditional PC system built around a motherboard-integrated northbridge.
In this kind of design the bottleneck is often the system bus (FSB) (Wikipedia
contributors 2010b).

Traditionally all high-end PC systems having good graphics performance, have had to

rely on separate graphics cards attached to an external bus. Although this architecture

does not show signs of passing away, there has been significant progress in the efforts

to combine the potential of CPU’s serial and the GPU’s parallel computation powers

into a single unit. For example, the upcoming Sandy Bridge microarchitecture from Intel

features a basic GPU with a dedicated media processing engine integrated onto the CPU

die (Shimpi 2010). AMD is also shortly releasing its first Fusion™ family Accelerated

Processing Units (APU), which aim to provide fully featured CPU die integrated graphics

supporting the latest GPU innovations. In the long run these architectures are expected

to provide better performance and lower power consumption, compared to yesterday’s

designs based on separate chips (Brookwood 2010).
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Figure 7. The layout of a modern high-end PC system based on Intel Westmere
microarchitecture featuring the northbridge chips integrated onto the CPU die (Williams
2010).

3.3.1.2. Computational capabilities

As stated before, any real-time video processing platform needs a considerable amount

of parallel computation power and a fast memory subsystem. PCs have traditionally not

been very good in either one of these areas. The lack of parallel computation capacity

started getting more and more attention in the industry in the early 1990’s when multi-

media and interactive 3D gaming grew in importance. Tasks like fluent video playback

and rendering graphics scenes in real-time required more processing power and mem-

ory bandwidth what PCs at the time could offer. Increasing effort has been seen in this

area from mid-1990’s when the first SIMD Instruction Set Architecture (ISA) extensions

for CPUs and early versions of special-purpose 3D graphics hardware started to emerge

(Kehtarnavaz & Gamadia 2006: 10–11, 39–41.).

The CPUs based on x86-64 architecture, which dominate the PC processor market to-

day, are general-purpose superscalar Chip Multiprocessors (CMP)2 with a good perfor-

mance in control intensive code, due to various innovations raising their ILP throughput.

The X86 processor family has later been patched with an array of ISA extensions which

2CMP denotes multiple processor cores with dedicated and shared cache levels on a single silicon die
(Peng et al. 2008).
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provide a moderate SIMD calculation capability. The extensions include for example

MMX, 3DNow!, Streaming SIMD Extensions (SSE) family, and Advanced Vector Exten-

sions (AVX). Despite the improved vector calculation capabilities, the desktop CPU is

still not sufficient for the most demanding video and graphics processing work. Many of

these tasks have been offloaded to a dedicated graphics processor, the GPU, in modern

PCs. The evolution of GPUs has been rapid in recent years and their transistor count, for

instance, has exceeded that of the CPUs. (Stallings 2009: 505–517; Hyde 2001: 229–235,

262–263.)

Traditionally GPUs implemented deep graphics pipelines consisting of a chain of mostly

fixed massively parallel hardware blocks. However, this approach turned out to have

serious load balancing issues and was eventually replaced with the unified shader ar-

chitecture. This architecture uses an array of parallel streaming multiprocessors, which

can perform any type of operation in the pipeline. This allows parallelization and better

load balancing of pipeline phases like geometry, vertex and raster operations, which all

use the same instruction set unlike in previous architectures. Modern GPUs may include

hundreds of parallel cores. Each core is usually hardware multi-threaded and contains

several Arithmetic Logic Units (ALU) for floating-point arithmetics, plus optional SIMD

units. This results in a very high data parallelism. (Owens et al. 2008; Do Dinh 2008;

Luebke & Humphreys 2007.)

Besides better performance, the unified architecture brought the possibility of trans-

parent execution of general-purpose calculations alongside the 3D rendering pipeline.

This feature has many applications in video processing, scientific calculations, and other

compute- intensive fields. The term General-Purpose GPU (GPGPU) is often used to refer

to devices allowing this kind of computation. Another advantage of the unified shader

architecture is better programmability of some pipeline phases, which is a result of using

a unified instruction set. (Owens et al. 2007; McCool 2007; Luebke et al. 2004.)

3.3.2. Software platform

The software stack of the PC is complex, involving several layers of abstraction on top

of another. This hierarchical nature of software helps application developers by hiding

some of the underlying complexity, but on the other hand abstraction makes it harder

to comprehend, how the system works as a whole. The overview of the PC software
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stack given here, touches only the most important layers for evaluating its performance

in online video processing. The software sub-systems and tasks whose performance is

vital considering online video processing include at least:

v OS kernel-level process control,

v video encoding and decoding libraries,

v video post-processing libraries,

v control code handling the video streams, and

v the rendering sub-system used to present the results in a display.

3.3.2.1. Operating systems

Multitasking systems, which PC OSs usually provide, can be categorized based on how

deterministic they are in terms response and execution times of various kernel operations

like handling interrupts, context switches, memory allocations and task scheduling. In

Real-Time Operating Systems (RTOS) the execution time is predictable in order to guar-

antee latency deadlines. However, for most of the tens or hundreds of processes running

in a PCs, the predictable execution time is not that important. Thus, PC OSs usually

implement a time-sharing design where fine-grained timing control and deterministic la-

tency is sacrificed for better overall throughput and smoother multitasking (Stankovic &

Rajkumar 2004; Bovet, Cesati & Oram 2000: 258–262.).

PC OSs usually employ elaborate priority based scheduling schemes, where priorities are

automatically adjusted based on, for instance, what kind activities a process is engaged

in or how much CPU time it has received recently. On some systems process priorities

can also be permanently elevated, which ensures a privileged state for that process, but

does not necessarily guarantee real-time performance (Bovet et al. 2000: 258–262). If even

higher Quality of Service (QoS) is required from the video processing chain, often one of

the RTOSs like Windows CE or real-time variants of regular PC OS kernels – mostly Unix

and Linux based – should be considered (Stankovic & Rajkumar 2004).

3.3.2.2. Video processing software

Video processing can be classified into playback and post-processing related operations.

In this definition playback operations account for video format conversions, like color
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space transformations, deinterlacing, encoding, and decoding. The aim in these oper-

ations is to maintain the content and quality of the original video unchanged. Post-

processing operations, in turn, alter the content to produce new information. Both of

these categories involve computationally demanding algorithms.

A seemingly trivial task like playing back a video file in a GUI window is a fairly com-

plex process, requiring a significant amount of control code to orchestrate the processing

stages. A third category of software related to video processing can thus be called pro-

cessing pipeline controllers. The purpose of the control code is to ensure that the pro-

cessing runs smoothly, which may involve for instance: reservation of temporary storage

buffers, synchronization and timing control, negotiation of stream formats, and invoca-

tion of the right processing algorithms in codecs (Taymans, Baker, Wingo, Bultje & Kost

2011.).

A controller is implemented in every video playback and processing application inter-

nally. Unfortunately, most of these applications are monolithic making their code not

easily re-usable or extensible. Some exceptions do exist though. libVLC is example of a

media pipeline controller Application Programming Interface (API), providing the play-

back functionality of the VLC media player for free use. GStreamer, in turn, is an ex-

ample of completely generic media pipeline controller API. Unlike libVLC, GStreamer is

not limited to building playback pipelines; it also supports plugging in additional post-

processing algorithms (Taymans et al. 2011).

The video processing algorithms invoked by pipeline controllers are usually contained

in multiple software libraries shared by the system. For example in Linux systems the

open-source library libavcodec, part of the FFMPEG project, contains a wide collection

of highly optimized audio and video codecs, used by nearly all the media processing

applications on the platform. As the routines in libavcodec, the majority of all video

processing code is still run on the main CPU (Wikipedia contributors 2011a).

For purely CPU-based video post-processing, there are few notable libraries which may

help in writing custom algorithms. Open Computer Vision (OpenCV) is probably one

of the most comprehensive collections of CPU-run image processing routines geared to-

wards computer vision applications. OpenCV is open-source and able to use the opti-

mized multimedia and data processing functions in Intel IPP as a backend. IPP functions,
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which use the SIMD and other special capabilities of modern CPUs, may also be directly

called from application code (Bradski & Kaehler 2008: 1; Landré & Truchetet 2007.).

In the era of high definition video content, even playback of a 1080p compressed video

can be too much for a low-end CPU. Hence, more attention has been put into making the

GPU do the heavy work. The two main ways for using the GPU for accelerating video

processing operations are utilizing the dedicated 2D video decoding engines included in

many modern GPUs and implementing custom algorithms with the GPGPU or graphics

APIs. While all video processing operations do not benefit significantly from offloading

to the GPU, some may experience speedups of several orders of magnitude. (Pieters et al.

2007; Shen, Gao, Li, Shum & Zhang 2005.)

Table 2. A comparison of some GPU accelerated video processing APIs listing their
supported operations and formats. On the hardware level these APIs can use either the
dedicated video engines or the graphics pipeline as a whole (Wikipedia contributors
2011b; Pieters et al. 2007).

Library Platforms Formats Accelerated ops

VA API Linux/Unix

MPEG–2, MPEG-4
ASP/H.263, MPEG–4

AVC/H.264,
VC-1/WMV3

Variable-Length Decoding
(VLD), inverse Discrete Cosine

Transform (iDCT), Motion
Compensation (MC) and

Deblocking

XvMC Linux/Unix MPEG–2 MC

DxVA Windows H.263, H.261, MPEG–1,
MPEG–2, MPEG–4 ASP

MC, iDCT, Huffman coding,
color space and framerate
conversion, up and down

scaling, alpha blending, and
deinterlacing

VDPAU Linux/Unix

MPEG–1, MPEG–2,
MPEG–4

AVC/H.264/ASP, VC–1,
WMV3/WMV9

MC, iDCT, VLD and deblocking

Xv Linux/Unix raw RGB and YUV color space transformations and
scaling

The dedicated 2D video decoding engines support offloading some or all of the decode

stages of the most common video formats in use today. Some engines also support com-

mon video quality related post-processing operations. How these features can be lever-

aged is system and GPU vendor specific. For example, accessing the NVIDIA’s PureV-
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ideo engine under Linux requires the use of a proprietary device driver and the Video

Decode and Presentation API for Unix (VDPAU). On Windows, only the device driver

is needed (NVIDIA 2010a). The most feature rich and GPU vendor independent video

acceleration API for Unix-based OSs is the Video Acceleration API (VA API). It is a work

in progress, but the aim is to accelerate an extensive set of video related tasks including

encoding, decoding, blending and rendering, by using multiple backends such as VD-

PAU for NVIDIA and X-video Bitstream Acceleration (XvBA) for AMD GPUs (Wikipedia

contributors 2011b). A collection of video acceleration APIs with a list of supported op-

erations and formats is given in Table 2.

Table 3. A collection of frameworks that can be used for executing image processing
code on the GPU. (McCool 2007; Nickolls & Dally 2010)

Developer GPGPU API Graphics API Shader Language

Khronos
Group

Open Computing
Language (OpenCL)

Open Graphics
Library (OpenGL)

OpenGL Shading
Language (GLSL)

NVIDIA
Compute Unified

Device Architecture
(CUDA)

- C for Graphics (Cg)

AMD Stream SDK - -

Microsoft DirectCompute Direct3D High Level Shading
Language (HLSL)

The GPGPU APIs simplify writing of all kinds of accelerated video processing algo-

rithms. In the literature there are many examples where the GPGPU APIs are used for

implementing custom decoding, computer vision algorithms and others on the GPU. The

main advantage of these APIs is that the programming concepts are much closer to CPU

coding than the earlier solutions, the 3D graphics APIs and shader languages, where all

computations had to be masqueraded as graphical operations. (Colic, Kalva & Furht

2010; Bui & Brockman 2009; Allusse et al. 2008; Owens et al. 2007.) For implementing

GPU-run algorithms from scratch, the frameworks in Table 3 may be useful.

There are also a few libraries that provide a collection of image and video post-processing

algorithms running on the GPU. These include NVIDIA’s Performance Primitives (NPP),

GpuCV and MinGPU. The idea of GpuCV is to provide the function palette of OpenCV,

but run the operations on the GPU by using either the OpenGL graphics API and the

related shader language GLSL or alternatively the NVIDIA’s GPGPU API CUDA, when-



49

ever feasible (Allusse et al. 2008). NPP in turn provides basic image and video processing

operations implemented with the CUDA framework (NVIDIA 2010b). MinGPU provides

fast implementations for popular computer vision algorithms using Cg and OpenGL as

backends (Babenko & Shah 2008).

3.3.2.3. Rendering models

A framebuffer is a memory area in the video memory of the graphics processing unit,

consisting of multiple off-screen buffers and a write-out buffer, which contains the final

outcome of the graphics pipeline, the output image. This image is continuously updated

by a complex system of drawing routines run partially by the CPU and the GPU (Möller,

Akenine-Möller, Haines & Hoffman 2008: 11–25). Although the organization of drawing

models differ in different systems the principles are similar.

The CPU maintains a model of the scene to be drawn in the main memory. The model

may consist of both geometrical primitives like lines, triangles, circles etc. and raster

images, also referred to as bitmaps. The model is then used to feed the GPU via interme-

diate drawing APIs and device drivers which translate the model into GPU instructions.

After that, the model is processed by the graphics hardware by various operations that

turn the 2D or 3D model into a single raster image. (Owens et al. 2008; Möller et al. 2008:

11–27.)

PC video applications mostly run in graphical desktop environments which usually con-

sist of 2D objects built from a mix of graphics primitives and bitmaps. The drawing

infrastructure of each windowing systems is different, but traditionally 2D rendering has

been implemented by graphics APIs that only support a sub-set of the capabilities of

modern graphic hardware. These APIs handle drawing of 2D primitives like lines and

rectangles but also bitmaps and fonts needed for a GUI (Foley, Van Dam, Feiner, Hughes

& Phillips 1994). The graphics hardware is controlled by a command stream sent by the

rendering library through kernel drivers. For many Unix and Linux based operating

systems this work is done by the Xlib library in the X window system, by the Graphics

Device Interface (GDI) in older Windows systems and by the QuickDraw library in older

Macintoshes. (Wallossek 2010; Thompson 2006: 15–20; Paul 2000.)

However, with the rapid increase of the capabilities of the GPU and their affordable price,

desktop operating systems have taken new hardware accelerated rendering models into
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use. Most major desktop operating systems, including Windows 7, OSX and many Linux

distributions, now have composited desktops which apply hardware acceleration to 2D

rendering (Compiz community 2010; Thompson 2006: 27–33; Wallossek 2010). In com-

posited windowing systems windows are rendered unclipped off-screen and then com-

posited together with Porter-Duff composition, also known as alpha blending, for the

effect of translucency (Ritger 2006) Most new rendering architectures utilize the graphics

hardware better by utilizing 3D rendering APIs like OpenGL or Direct3D. This allows

full control over the graphics hardware and thus use of the advanced hardware features

not accessible with old 2D rendering APIs (Thompson 2006: 27–33).
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4. ARCHITECTURE OF THE IMAGING STATION

In design of a performance-critical imaging application, especially on the PC, the selec-

tion of hardware and software platforms as well as successful application design are

crucial. Understanding hardware technology is important for choosing a PC assembly

that best fulfills the performance requirements of the application. The other key area is

to ensure good utilization of the hardware by doing research on available software and

following good software engineering practices. This chapter presents the hardware and

software solutions used for building the imaging station.

4.1. Hardware configuration

The internal cameras of the operating microscope can be accessed directly from a com-

posite output found on the back panel of the device. The HD camera stream is instead

routed via a separate videohub (Image 1 HUB™ HD, Karl Storz GmbH & Co, Tuttingen,

Germany), which transforms and down-scales the Full HD stream to SDTV composite

format. The HD camera can then be accessed from the composite output of the video-

hub. The complete hardware setup of the imaging system is shown in Figure 8, where

the red line represents the connection between the PC and the composite out of the op-

erating microscope and the blue, the path from the HD camera to the PC via the video

hub.

A dedicated PC will be used for hosting the imaging application. The acquisition of the

PC is the responsibility of Töölö Hospital. To help this task, a reference PC assembly as

a list of recommended hardware specifications, shown in Table 4, was delivered to the

Töölö Hospital officials. The software installations and customization will be done later

and are not a part of this project.

Factors in the selection of the reference PC components, ordered by descending prior-

ity, were: sufficient, but not excessive, performance, small form factor, updatability and

prize. The reference PC has a powerful CPU with an integrated basic GPU on-chip. A

dual channel memory controller and a PCI Express (PCIe) interface are also integrated

in the CPU die. The system uses the latest DDR3 main memory and has a relatively fast

traditional hard disk. The system supports updating with a dedicated GPU and a faster

processor and main memory, if there is need for it.
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Figure 8. The connections between the PC imaging station and operating microscope
imaging system. The red line represents the connection of the microscope-integrated
cameras, while the connection of the HD camera is colored blue. The video hub is
responsible for transcoding the HD camera stream to composite format.

In addition to the standard PC components, two framegrabbers are needed for capturing

the HD and operating microscope camera streams. The University of Vaasa purchased

two composite framegrabbers (mvDELTA, MATRIX VISION GmbH, Oppenweiler, Ger-

many) using the standard PCI interface for this purpose. The cards were used for testing

the application during development and after this project they are borrowed to Töölö

Hospital for on-site testing.

4.2. Software platform

The imaging station application named iStation was implemented on a GNU/Linux dis-

tribution called Ubuntu. The main motivation behind choosing this platform was the

desire to make the system open and extensible. Ubuntu is entirely based on Free and

Open Source Software (FOSS) by default (Canonical 2010). The main components of the

platform are the Linux kernel, the GNU operating system tools including the X win-
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Table 4. A reference hardware specification delivered to Töölö Hospital officials to help
in the purchase of the imaging station PC.

Component Details

Case COMPUCASE 7KJC, µATX

Motherboard ASRock™ S1156, H55 chipset, µATX, 1×PCIe, 2×PCI

Processors Intel® Core™ i5-661 @ 3.33GHz, Intel® HD graphics

Memory 4 GB, dual channel, DDR3 @ 1333MHz

HDD Western Digital® Caviar 640GB, 6Gb/s, 7200rpm, 64MB cache

dow system and the GNOME desktop environment. How these layers build a complete

system and what kind of environment they provide for efficient video processing is de-

scribed in this section.

4.2.1. GNU/Linux

The GNU1 project started by Richard Stallman in 1984 is an attempt to implement a

mostly Unix-compatible operating system of completely free and open source code. The

basic components of GNU include the GNU Compiler Collection (GCC), the GNU Bi-

nary Utilities (binutils), the bash shell, the GNU C library (glibc), and GNU Core Utili-

ties (coreutils). The majority of GNU installations eventually ended up using the Linux

kernel, instead of the official GNU kernel, the Hurd. Hence the name GNU/Linux is

preferred to signify the use of a non-GNU kernel. (Stallman 1999.)

Linux is a monolithic kernel meaning that all kernel tasks like scheduling, memory man-

agement and device drivers are executed in the same process. The kernel tasks run in

a privileged kernel-mode, whereas all application processes are run in user-mode and

access hardware by requesting services from the kernel with system calls. Starting from

version 2.6 kernel all Linux processes, including the kernel itself, are preemptive, which

means they can be interrupted and switched for another process after any instruction. In

this respect, the support for responsive or even soft real-time applications is quite good.

(Bovet, Cesati & Oram 2006: 4,11–12.)

Linux processes are associated with two scheduling related characteristics: policy and

1The name GNU is a recursive acronym from the words "GNU is Not Unix" (Stallman 1999).
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priority. Linux provides three scheduling policies: a default time sharing policy

SCHED_OTHER and two real-time policies, round robin SCHED_RR and first-in-first-

out SCHED_FIFO. The default time sharing policy splits the CPU time in equal time

slices and periodically adjusts process priorities according to what they are doing; for

example, the priority of a process that has received a lot of CPU time is decreased.

Both of the real-time policies implement static priorities instead. Real-time processes

are always scheduled before SCHED_OTHER processes, when they become runnable.

SCHED_OTHER processes are also preempted in case a higher priority real-time process

becomes runnable. The main difference between SCHED_RR and SCHED_FIFO is that

the latter does not use time-slicing. The priorities of real-time tasks can be explicitly set

in the range 1–99, while the priorities of SCHED_OTHER tasks can be affected with the

nice() system call in the range -20–19. Lower values represent lower priorities. The real-

time policies offer a simple way to ensure more CPU time and better responsiveness for

performance critical applications. (Love 2010: 41–68.)

Memory management is another key factor considering efficient video processing. In

Linux this is handled by the Kernel Memory Allocator (KMA). The KMA is responsi-

ble for satisfying all memory requests throughout the system. Linux uses the virtual

memory system supported by the x86 architecture. Virtual memory is a layer of abstrac-

tion between the application memory requests and the hardware Memory Management

Unit (MMU). The virtual address space used by applications is translated into physical

memory locations by the kernel and the MMU in co-operation. Modern CPUs provide

hardware circuitry to automate this translation process. In this system, each address in

the virtual address space corresponds to a contiguous block of physical addresses, called

a page frame. The address space of a process is thus divided into page frames of 4 or 8

KB in size. The drawback of virtual memory is additional latency incurred by address

translations and further loss of predictability, because any data can be swapped to disk,

unless specifically denied. The main advantages of virtual memory include the ability to:

v run several concurrent processes,

v run processes which require more physical memory than is available (swapping to
disk),

v run a process that is only partially loaded in main memory,
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v share a single memory image of a library or program. (Bovet et al. 2000: 31-34.)

In the Linux file system, I/O devices are accessed via associated files in the /dev direc-

tory. Thus the first video device attached to an arbitrary port is accessed, by default, via

/dev/video0. The kernel needs a device driver in order to communicate with the device.

In Linux device drivers are dynamically loadable kernel modules. The device drivers for

video input and output are accessed through a uniform kernel interface called Video for

Linux (V4L), or V4L2, which is the current major version. By using V4L2 the application

developer can communicate with a wide set of devices with the same API. V4L2 also pro-

vides a way to get device capabilities and set parameters from the application code. The

API also supports setting up advanced device features like DMA and memory mapping.

(Schimek, Dirks, Verkuil & Rubli 2008; Bovet et al. 2000: 34–35.)

4.2.2. X window system

The X window system (X11) is a network transparent graphical user interface solution.

It provides a basic framework, or primitives, for building GUI environments including

drawing and moving windows on the screen and interacting with a mouse and keyboard.

X relies on a client-server model depicted in Figure 9 where the X server provides I/O

services to local and remote clients (applications). The server receives X protocol, or

OpenGL, command streams from client applications and controls the display. The other

half of the servers function is to route user input to the client applications. Network

transparency ensures that the client application does not need to run on the same machine

with the server. The X server does not include window management functionalities. This

work is instead done by separate client application processes called window managers.

(Welsh 2006: 571–573.)

X was developed in the era of simple 2D graphics. To support the 3D rendering features

of modern GPUs, a new accelerated rendering model was necessary. The natural graphics

API to be supported in X implementations is OpenGL. While there are several OpenGL

implementations for Linux, the most prominent one is Mesa.

Because OpenGL is platform independent, an extension that glues OpenGL to the win-

dowing system of X is needed. This extension, called GLX, allows OpenGL command

streams to be sent over the X socket to the server. The GLX rendering model is known
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[Remote client]
Xterm

[Local client]
Web browser

Display

[Local client]
Video application

Keyboard Mouse

X server

Figure 9. The server-client model used by the X window system. The applications
(clients) request services, like drawing to a display, from the X server, which also relays
the data from input devices, like mouse and keyboard, back to the correct application
(Welsh 2006: 571–573).

as indirect rendering. Another, much faster, option is to bypass the X server and send

OpenGL more directly to hardware. This rendering model, called direct rendering, is im-

plemented by the Direct Rendering Interface (DRI) in the X.org version of X11, used in

most Linux systems. When using DRI, the drawing is managed in the kernel by the Direct

Rendering Manager (DRM). (Welsh 2006: 586–587.)

While the indirect rendering model is slower than direct, it is often sufficient for accel-

erating 2D rendering. The GLX model provides the advantages of better performance

and access to advanced GPU-features via OpenGL, which the standard X drawing proto-

cols and primitives do not. Indirect rendering also preserves network transparency of X,

while direct rendering can only be used on the local machine. In all accelerated drawing

a suitable driver needs to be loaded. Typically only the hardware vendor’s proprietary

drivers allow hardware acceleration – with the exception of Intel’s integrated graphics

drivers of which there are only open source versions. (Welsh 2006: 587–589.)

Because X does not provide window management, many different window managers

have been implemented, some them utilizing the hardware acceleration methods pro-

vided by X more extensively than others. Compiz fusion is one of the fully accelerated

compositing window managers for X. It is based on the Composite and GLX extensions
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provided by X11 (Compiz community 2010). Compositing window managers handle

windows as off-screen memory buffers. This allows windows to be composited with

alpha transparency and other advanced effects in the graphics hardware (Ritger 2006).

X also does not provide an implementation of the window interiors. This work is done

by the widget toolkit. A widget toolkit for X essentially contains a library of geometrical

primitives and bitmaps which are used to build the user interface elements, often called

widgets, like progress bars, check boxes, toolbars, panels and windows. Implementing

a graphical application usually takes place in the way described in Figure 10. The client

application does not talk to X server directly, it only uses a widget toolkit to create the

user interface. The toolkit then uses Xlib to translate the higher level commands into X

protocol ones. (Krause 2007: 1–13.)

 Xlib/XCB

GTK+WxWidgetsQt

X server

[Client]
Video application

Xaw Motif

Xt

Figure 10. The hierarchy of software libraries used in the traditional, non-accelerated
GUI programming for the X window system. The second layer from the top consists of
widget toolkits, which use a common X protocol translator layer to communicate with
the server (Krause 2007: 1–13).

4.2.3. GNOME desktop environment

The GNU Network Object Model Environment (GNOME) provides a graphical desktop

environment built on top of the X window system, thus allowing it to be used with var-

ious Unix-like operating systems. GNOME consists of a large set of sub-projects which

provide the look-and-feel, commonly needed productivity applications, utilities, and

daemons as well as an application development environment. A few central sub-projects

of GNOME include:

GIMP Toolkit (GTK+) - a cross-platform widget toolkit for creating GUIs,



58

Gconf - a framework for storing application settings,

GNOME Virtual File System (GVFS) - a virtual file system for transparent file access,

GNOME keyring - a way of storing encryption keys and security information. (Welsh
2006: 88–94.)

The most influential entity for the graphical desktop environment of GNOME is GTK+.

It was first developed for the GNU Image Manipulation Program (GIMP) in 1997, but

evolved into a generic toolkit for graphical programming over the years. From the sec-

ond major version onwards, the portions of GTK+ that are unrelated to graphics are

separated into the Glib library. Glib provides utilities like the object (GObject) and type

system (GType), threading, timers, and various advanced data structures. Other impor-

tant libraries related to GTK+ and graphics include the font-rendering engine Pango, the

2D vector graphics library Cairo and the main 2D graphics library GIMP Drawing Kit

(GDK). (Krause 2007: 1–13.)

4.2.4. Application development libraries

The most critical and tedious task of this project was finding a suitable video processing

framework. For the other components equally good alternatives are easier to find. The

main software components used in this project include GTK+ for GUI programming and

GStreamer for handling video streams. Several GNU utility libraries are also used in the

application.

The application developed here only supports the specific hardware and software plat-

form selected for the project, because it is not aimed for use by a broader public for the

time being. All the components selected are cross-platform though, making sure that the

application or parts of it can more easily be ported at a later time if necessary.

4.2.4.1. GTK+

GTK+ was chosen because it is the standard widget toolkit for the GNOME desktop en-

vironment, it is cross-platform, and provides an object-oriented programming model for

high productivity – even though implemented with the standard procedural C (Krause

2007: 1–13). GTK+ also works well together with GStreamer since they both use the data

type and object system provided by Glib.
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4.2.4.2. GStreamer

GStreamer is a cross-platform media streaming framework for building arbitrary media

handling applications. GStreamer was chosen for its flexible and powerful media pro-

cessing model, its design for performance, and its support for a wide range of different

audio and video formats. With GStreamer implementing different kinds of pipelines is

simple thanks to the clear, modular pipeline concept. In GStreamer the pipelines consists

of different types of elements, which can be categorized for example in source, sink, filter

and flow control elements. Each element has its unique capabilities, that is, the formats it

can handle and properties, which are the values of its internal variables. (Taymans et al.

2011.)

On the OS level, GStreamer consists of a small set of core libraries and everything beyond

that is provided by plugins. Plugins are actually dynamically loadable shared object files

coding the functionality of one or many elements. This makes extending GStreamer par-

ticularly easy, as one only needs to write a new plugin with the desired functionality,

compile it, and make it available in the GStreamer search path. All plugins need to im-

plement a specific interface, which is provided as a template code by the community.

(Taymans et al. 2011.)

According the documentation, high performance is one of the fundamental design goals

in GStreamer. The techniques used by GStreamer to enhance performance include:

v dedicated streaming threads, leaving scheduling to the kernel,

v extremely light-weight link between plugins resulting in minimal pipeline over-
head,

v providing mechanisms to work directly with target memory minimizing copying
of memory,

v loading plugins only when they are needed. (Taymans et al. 2011.)

The selection of GStreamer for this project is also supported by the fact that is provides

an opportunity to switch to an OpenGL-based processing model in case the performance

of some desired operation is not acceptable with the CPU-powered plugins, used by de-

fault (Taymans et al. 2011). The bridge to OpenGL on GStreamer is the gstopengl plugin,

which provides the basic elements for content transfer between the GPU and CPU worlds
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and some readily usable processing elements. These elements can be used for implement-

ing, for example, video scaling and colorspace transformations on the GPU. The use of

these plugins requires installation of the OpenGL software packages, plus a suitable GPU

hardware and display driver that supports the OpenGL features used by the elements.
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5. RESULTS

This chapter presents the contributions of this project. The main outcome of this work is

the iStation application, which provides several new features to aid in online diagnostics.

Before explaining the details of how iStation was implemented, the principles of selecting

its features is briefly discussed. The other half of the results are the findings from a set

of feasibility studies, carried out to select suitable video post-processing operations to

be included in iStation. Although none of the post-processing features were eventually

incorporated into the final application, these studies provided useful information about

the clinical usefulness of the operations and their performance on the PC platform, and

are therefore presented in a separate section.

5.1. Selection of features

The functionality chosen for implementation into iStation is mainly based on the fea-

ture requests by neurosurgeons M.D. Ph.D. Martin Lehecka and M.D. Ph.D. Aki Laakso.

The most suitable operations for implementation considering factors like implementation

time, hardware restrictions and technical difficulty were discussed and chosen during

meetings and on the phone. The transcripts of these conversations are provided in Ap-

pendices 1–5. Due to the limited scale of this work a lot of the ideas that came up in the

discussions were left out in favor of concentrating on the few most important features.

The most important feature standing out in the conversations was the ability to replay

ICG-VA studies during surgery. This is important because the ICG fluorescence lifetime

is relatively short and vital details could easily be missed during live viewing. Thus a

dedicated ICG video recorder and player was decided to be implemented.

The second most important feature was considered to be the ability to compare the

anatomic color video and the grayscale ICG-VA video side-by-side or combine their in-

formation in some way. Both of these methods would make it easier for the surgeons to

map the veins in the ICG angiogram to the anatomic image. Both of these methods were

also tried, but only the side-by-side version was found technically feasible at the end.

Additionally, pseudo coloring of the grayscale ICG videos was tested using a few dif-

ferent color palettes. This was supposed to enhance the contrast of the veins, based on
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the fact that the human eye discerns more colors than gray levels. However, the clinical

usefulness of this operation was not clear and thus it was left out at this point.

5.2. Implementation of the video processing application

The source code of iStation was entirely written with the C programing language and

compiled with GCC 4.4.5. Although all of the software components are available for the

three major PC platforms, Windows, GNU/Linux and Mac OSX, the source code will

only compile in a Linux system in its present form. At the release time, iStation could

handle two input streams; one intended for the stream from the HD camera and one for

the stream from the internal cameras of the operating microscope.

5.2.1. User interface and features

The user interface was build with a graphical designer called Glade. The two most impor-

tant design principles were simplicity and clarity. This is important for easy adaptation

and avoiding confusion that could lead to unnecessary time loss during surgery. The

coloring of the interface was also given special attention to provide pleasant viewing

conditions and highlight important information. Because background of the ICG illumi-

nated veins is dark, the user interface was also made dark. If the user interface was bright

the eye would adjust to it, making it harder to distinguish details in the mostly dark ICG

video.

The operation logic of iStation is built around three states: streaming, recording, and

playback. The transitions between different states are triggered by pressing dedicated

buttons on the toolbar. Below the toolbar is a tabbed view which is used to display the

video outputs. The release version of iStation contains two tabs named Single view

and Dual view, where one or two input video streams can be viewed respectively. This

structure was selected to allow views to be easily removed and added without a major

redesign of the operation logic. Standard playback controls were deliberately omitted

from the interface for simplicity. Instead, sliders underneath every video output show the

stream duration and allow rewinding. Streams are toggled between paused or playing

states by left mouse clicks on video outputs. A screen shot of the GUI is shown in Figure

11.
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Figure 11. The user interface of iStation showing the playback mode in side-by-side
view. The GUI consists of a toolbar (top), a tabbed viewing area (middle), and a status
bar (bottom). Application state changes are triggered by pressing the buttons in the
toolbar. The viewing mode is changed by clicking the tabs.

iStation dual view is intended for making comparisons between two video streams and

the single view for giving a better level of detail on one stream. The minimum size of the

video windows is constrained, but scales upwards as much as the screen space allows.

Either one of the view modes can be activated at any time and they are available for both

live and recorded streams.

At the moment, up to two video inputs are automatically detected and chosen during

startup and on certain state changes. The configuration of the properties of these video

inputs is made available by an external application, called v4l2ucp (V4L2 Universal Con-

trol Panel), launched from the menu (Edit > Preferences). The settings made in v4l2ucp

are stored in device specific configuration files (video<n>.cfg), from where they are also

loaded upon iStation startup.

The default state of iStation is streaming. When the streaming mode is activated, a sub-

routine is run to detect all suitable video devices, of which, two first discovered are used

by the application. After the device check, the available live streams are displayed in the
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video windows. The recording state also starts with a device check before recording to

detect possible changes since last update.

While recording, the stream or streams are also shown in the active video outputs. The re-

sulting files are named using a prefix icg or hd and postfix formed by a unique time stamp

for easy recognition and maintainability. Recording is ended by pressing the Record but-

ton again. After that the recorded study is played back the same way as in playback

state. The other way to initiate the playback state is to press the Load button on the tool-

bar, which will pop up a file chooser dialog. The dialog prompts to select one or two files,

which will then be played back. If only one is chosen, it will be played back in the dual

view mode to allow comparison of the video at different positions. If more than two files

are chosen, the first two selected will be played back.

When the playback state is entered and there are two files to play, the playback synchro-

nization checkbox is activated in the dual view mode. This checkbox allows the user to

select whether the two files are kept in synchronization in respect to each other, even if

either of them is paused or rewinded. If playback or rewinding results in an end of file

from either file, that video will be reset to the beginning and the checkbox is unchecked.

If the stream positions are different when the checkbox is checked, the right hand side

video is rewinded to the same position as the other video. This feature was included to

make it easier to compare corresponding time instances in streams that were simultane-

ously recorded.

5.2.2. Video processing pipelines

GStreamer was used to implement all six video processing pipelines used in iStation. A

GStreamer pipeline is managed simply by chaining a set of elements, setting up their

properties and controlling the state of the resulting pipeline object. Setting the stream

properties, like specifically requesting for some video format or framerate, is imple-

mented by adding special elements called capability filters to suitable places. If possible,

the capability filters override the default stream properties. Before the pipeline is started,

a process called capability negotiating is performed. In the negotiation phase, the formats

between different elements are chosen so that a complete pipeline can be built. (Taymans

et al. 2011.) A summary of the pipelines used in the design includes:



65

v two pipelines for displaying notification video loops for unavailable inputs,

v two pipelines for recording and simultaneously displaying the available live input
streams,

v and two pipelines for displaying the available live input streams and playing back
video files.

Diagrams clarifying the playback, recording, and notification pipelines are shown in Fig-

ures 12, 14, and 13 respectively.

The playback pipeline uses the playbin2 element (dashed element in Figure 12), which is

a standalone media player element capable of playing back a variety of sources presented

to it as an URI. The playbin2 actually consists of a set of dynamically assembled elements

linked upon creation, which is signified by the element with a question mark in Figure 12.

The sink element of playbin2 must still be implicitly set. playbin2 was chosen, because

it automatically detects the video format and settings for the given source. Thus, iStation

readily supports a wide variety of file formats if the format of the recorded studies, for

instance, should change in the future.

src

vl42src

sink

xvimagesink

?sink src

playbin2

Figure 12. A data flow diagram of the two pipelines used for playing back the live
streams and video files in iStation.

The live input streams in iStation are always accessed with the v4l2src element. This ele-

ment essentially integrates the video device handling capabilities of the V4L2 framework

to the rest of GStreamer. The element also provides the ability to get a list of suitable de-

vices present in the system through the GstPropertyProbe interface. The probe interface

is used in iStation to update the device list every time the state changes to streaming or

recording.

The output video streams are drawn on the display areas by the xvimagesink, which uses

the X video extension (Xv). Xv is a video output method for the X window system that
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supports off-loading scaling and color space transformations to the graphics hardware

(Wikipedia contributors 2011c). iStation also uses the GstXOverlay interface, which in

this case enables correct timing when assigning the output X window ID for the related

xvimagesink. When changing from the single view to dual or vice versa, the xvimagesink

of the affected pipeline is simply remapped to a different output window ID.

src

videotestsrc

sink src

textoverlay

sink

xvimagesink

* video/x-raw-yuv
* framerate 10/1
* width 720
* height 576

* halign center
* valign center
* text "No video"
* shaded-background true 

sink src

capsfilter

hiphei 

Figure 13. A data flow diagram of the notification pipelines used to relay messages to
the user as video overlays in iStation.

The recording pipeline forks a single v4l2src into two sinks, a filesink and an

xvimagesink. The branches are synchronized and buffered by using two queue elements

at the beginning of each branch. Buffering a live source is important, because it prevents

momentary gaps in the source stream from causing lost frames in the recorded branch.

The file formats of the output files are statically set to use the Audio Video Interleave

(AVI) container with the stream encoded as M-JPEG. The M-JPEG codec was chosen to

minimize the encoding and decoding latency for smooth rewinding, and still maintaining

a reasonable file size for the recordings.

src

v4l2src

sink src

videorate

sink

xvimagesink

* video/x-raw-yuv
* framerate 25/1

sink

filesink

sink src

queue

sink src

queue

sink

src0
capsfilter

src1

sink src

jpegenc

sink src

avimux

* location "study.avi"

thread 1

thread 2

thread 3

Figure 14. A data flow diagram of the recording pipelines used for simultaneously
storing studies and displaying the live stream in the GUI of iStation.
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5.2.3. Performance

iStation showed good performance from the start, which was considered a result of the

relatively light processing operations and a successful selection of the software stack. The

results reported here were acquired with a reasonably powerful previous generation Intel

assembly (see PC1 in Table 5 for details). Some basic tests were conducted to ensure the

quality of the self-written application code. Runs with the Valgrind profiler did not show

any memory leaks or other problems, which could cause performance degradation and

crashes over longer periods of continued use.

When testing with two 720×576 streams, the percentage of CPU time taken by iStation

was around 12% during live steaming, 20% during video playback, and 50% when simul-

taneously streaming and recording. In fast back and forth rewinding, both CPU cores

were loaded close to 100%, but there was no perceptible jerkiness in video playback. No

dropped frames were reported in the recording tests. These results gave no incentive for

further optimization of the software or switching to a GPU-based processing model.

The second most important performance indicator, when no video processing related

ones were discovered, was the user experience. The state transitions of iStation were

considered relatively fast with the test machine giving good user experience. The play-

back was also found smooth even with two 720×576 videos playing concurrently. The

overall responsiveness of the application was found sufficient, although there was a great

deal of unnecessary software running on the system concurrently and the nice value of

iStation was left untouched.

5.3. Image post-processing experiments

During the course of the project a few image post-processing operations were studied

with the aim of using them in iStation. OpenCV was used for most of the image pro-

cessing experiments, because of its extensive set of image processing routines. None of

these experiments led to inclusion in iStation though. This was due to either imaging

system constraints or questionable clinical usefulness. This section introduces the post-

processing operations tried during the study.
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5.3.1. Blending angiograms with anatomic images

The clinically most prominent post-processing operation tried during the study was com-

bining the ICG and anatomical videos. Inclusion was not possible due to two properties

of the operating microscope. Firstly the two internal cameras cannot be accessed simul-

taneously. Secondly the ICG and anatomical cameras are not aligned to the same optical

axis, resulting in misaligned video streams, which are not well suited for blending pur-

poses.

The first issue, which prohibits online blending with the current imaging setup, was

known from the beginning. A small feasibility study was still decided to be done, be-

cause the idea of blending was endorsed by the surgeons and the results could later be

used with suitable next generation hardware. The second point was discovered only after

testing the idea of blending with the actual concurrently recorded video material copied

from the internal HDD of the operating microscope.

A simple method of blending, called Porter-Duff blending or alpha blending1, was used

in the tests. The operations itself is a simple pixelwise linear combination of two col-

ors (Porter & Duff 1984). For example, the resultant color of two overlapping, partially

transparent, pixels in an RGBA color space can be calculated according to Equation 1:

Cres = αC1 +βC2 |α,β ∈ [0,1] (1)

In the equation, α and β represent the transparency of C1 and C2, the original colors of

the two pixels, and Cres the resulting color. Alpha blending was a natural choice for

prototyping, because of its simplicity and the fact that there are many implementations,

including hardware accelerated ones, already available. This is because alpha blending

is routinely used in PCs.

5.3.1.1. Performance tests

Alpha blending was tested with two different processing frameworks. One used a

GStreamer pipeline, shown in Figure 15, with the videomixer element and the other a

small GCC 4.4.5 compiled C program using OpenCV routines. Information about the

1Alpha blending was originally introduced in 1984 in an article by Thomas Porter and Tom Duff (Porter
& Duff 1984).
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test environment is gathered in Table 5. In the GStreamer test, the gst-launch utility

was used to find out, how significantly decoding of a relatively complex format, MPEG–

2, affects the performance, compared to alpha blending of two raw streams. With the

OpenCV program, the aim was to study the clinical usefulness of the alpha blending

method and to analyze the performance of the alpha blending together with a simple

pseudo coloring scheme in CPU-based processing.

src

filesrc

sink src

decodebin

sink

xvimagesink

sink src

ffmpegcolorspace
sink0

src

videomixer

src

filesrc sink1

sink src

decodebin

* sink0::alpha=1.0
* sink1::alpha=0.6

Figure 15. The GStreamer pipeline used for alpha blending two video streams in the
feasibility studies. The blending takes place in the videomixer element.

The colorspace in all tests was a chroma subsampled planar YUV 4:2:0 (FOURCC=I420),

meaning that a transformation to an RGBA space was needed at some point before ren-

dering. In case of GStreamer, the blending took place in I420 format in the videomixer

element, while the conversion to RGB(A) was done in ffmpegcolorspace element us-

ing the highly optimized routines provided by the FFMPEG project. The GPU accel-

erated xvimagesink was also used for rendering. In the OpenCV implementation the

video frames were first transformed from the I420 to BGR24 format, then the red and

blue channels in the ICG frame were zeroed and the frames blended with the function

cvAddWeighted(). Although the routines in OpenCV are claimed to be fairly optimized,

one should still get a better performance by using the Intel IPP backend. On the test ma-

chine, the OpenCV program informed that it is using a software scaler for the colorspace

conversion, because an accelerated version was not found. Thus the results of OpenCV

tests hardly represent the best CPU processing performance achievable.

In the tests with the OpenCV program, an approximation of the wall clock time was mea-

sured for the processing functions (P), the read-process-display sequence (RPD), and the

whole processing loop including a wait state (RPDW). The results of these measurements

can be found in Table 6. The time was measured with the function gettimeofday() be-
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Table 5. The setup of the PC used for the feasibility tests on alpha blending.

ID CPU Memory Graphics Software

PC1 Intel® Core™2 Duo,
E8500 @ 3.16GHz

4 GB, dual
channel, DDR2 @

1066MHz

Intel®
GMA
X4500

Mesa DRI Intel®
20100330; Linux
2.6.35-22 x86-64;

GCC 4.4.5

longing to the Portable Operating System Interface for Unix (POSIX) specification. This

function provides supports a microsecond granularity, but the actual granularity also

depends on the timer hardware of the machine. The results here are all rounded to mil-

liseconds. Because OpenCV does not support interrupt based event handling, a static

wait state (W in Table 6) had to be used in the main loop to process user input. This

feature was used to limit the framerate in the test application. The CPU load is also given

for each test done with OpenCV. In the tests with GStreamer the relative CPU load was

measured first using the uncompressed videos and then with the MPEG–2 encoded ones.

The results of these tests are given in Table 7.

Table 6. The results of the alpha blending performance tests on the OpenCV application.
The execution time for various parts of the processing loop (W=wait state, P=processing
operations, R=read from file, D=display) was measured. The framerate was calculated
based on the elapset time for the whole loop. The CPU load is an average of several
runs.

Setup API ms/W ms/P ms/RPD ms/RPDW fps %/CPU time

PC1 OpenCV 2.1.0-2 2 4 8 13 77 68

PC1 OpenCV 2.1.0-2 10 4 8 17 59 50

PC1 OpenCV 2.1.0-2 35 4 8 42 24 20

The results indicate that even a previous generation Intel PC running Ubuntu 10.10 and

using virtually no hardware acceleration in the processing, is more than sufficient for flu-

ent playback and light post-processing in 720×576 resolutions. When using the OpenCV

library without any hardware accelerated backends, the processing time per frame in-

cluding the color space conversion and rendering routines was found to be close to 8 ms.

This corresponds to a framerate of 125 fps. The pseudo coloring and alpha blending op-
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Table 7. The results of the alpha blending performance tests on GStreamer, using the
gst-launch utility. In this test, the average percentage of CPU time taken by the
implemented alpha blending pipeline (see Figure 15) process was measured.

Setup API Container/Codec Resolution fps %/CPU time

PC1 GStreamer AVI/Uncompressed 720×576 25 7
0.10.30 planar YUV 4:2:0

PC1 GStreamer MPEG/MPEG–2 720×576 25 15
0.10.30 planar YUV 4:2:0

erations took on average only 4 ms per frame on the test machine, giving a comfortable

sustained rate of 250 fps.

The tests with GStreamer showed much lower CPU utilization than the OpenCV ones

with similar framerate. This may be for a number of reasons. For one, the GStreamer

version does not include the pseudo coloring phase. GStreamer might also have better

hardware acceleration features, especially in color space transformations, and its pipeline

implementation might be more efficient, because it is designed for media streaming un-

like OpenCV. Either way, the study with GStreamer showed that it can also quite easily be

used for alpha blending and that adding the complexity of decoding an MPEG–2 stream

is not really an issue for a relatively modern CPU with these levels of video resolution.

5.3.1.2. Clinical usefulness

The clinical feasibility could be better tested with the OpenCV program, because the

alpha values of the frames were tied together and controlled by a slider in the GUI shown

in Figure 16. The white light and NIR frames were given a complementary alpha value

in the application. Thus, an alpha value of 0.2 for the ICG frame, means 0.8 for the other.

Zeroing the red and blue channels was done to give a distinct color for the ICG. The

value of the slider control in the user interface is the alpha as a percentage used for the

NIR video. The text overlay showing the framerate of the resulting video was used in the

performance measurements.

The usefulness of the method was confirmed by the test application, although it was

acknowledged that it still needs some refinements. Unfortunately this potentially useful

method had to be left out of iStation because of the two properties of the operating micro-

scope mentioned earlier. The issue with the stereoscopic camera setup of the operating
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Figure 16. A screen shot of the OpenCV demo application used in the feasibility studies
on alpha blending. The application blends two videos having a complementary alpha.
The value of alpha can be adjusted with the provided slider control.

microscope produces the lateral shift between the ICG and white light frames, visible in

the still image of Figure 16 and even clearer in live video.

5.3.2. Pseudo coloring angiograms

A pseudo coloring scheme was tested in the early phases of this project. This method had

theoretical potential to enhance the contrast and visibility of subtle changes in intensity

in ICG angiograms. Several different palettes were tried with a medical image analysis

software Amide. Some of these are shown in Figures 17 and 18. Although the experiment

showed some initial promise, it was not well received by the surgeons as such. The

feature was eventually dismissed from iStation to focus on more useful features.

A decent performance study was never conducted on a pseudo coloring implementa-

tion. A prototype Java program implementing a "rainbow" palette for a live SD quality

stream was implemented, but not properly benchmarked. The image processing in the

application was done with the routines in the ImageJ image processing library. In fact,

benchmarking was not even necessary, as the application was clearly short of meeting
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Figure 17. A pseudo coloring example using the "hot metal" palette from Amide. The
original ICG angiogram (left) and the pseudo colored image (right).

Figure 18. A pseudo coloring example using the "inverse red" palette from Amide. The
original ICG angiogram (left) and the pseudo colored image (right).

fluent playback requirements, with the sustained framerate being approximately 10–15

frames per second on a slightly outdated Pentium® D test machine. As this was a study

on the clinical usefulness of the rainbow pseudo coloring method, also reflected by the

choice of programming language, there was very little effort to optimize the performance

of the application. Hence, these trials are not considered representative for assessing the

computational feasibility of the pseudo coloring method.
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6. CONCLUSIONS

This study was about finding and implementing new clinically useful features for an

operating microscope integrated imaging system at Töölö Hospital. For successful com-

pletion of these tasks, both the medical expertise of the operating neurosurgeons and

the technical know-how acquired by thorough background work was invaluable. The

implemented features were incorporated into a single PC video processing application,

which uses the live streams of the operating microscope. The PC platform was chosen

to host the application because of its unparalleled prototyping features and sufficiently

high video processing power for the expected processing tasks.

During the project, the priorities of the objectives cleared up and providing implemen-

tations for the most basic usability related features took preference. These included the

possibility to pause, rewind and compare the videos produced by the two modes of the

operating microscope, the ICG-VA and the white light mode. Finding beneficial video

post-processing operations and testing their feasibility, to see if they could be included in

the application, formed the secondary goal.

The main achievement of this project was the custom medical imaging application iSta-

tion. The key features of this software include the ability to simultaneously view and

record upto two live video streams and play back the recordings in either a single, bigger

screen or side-by-side comparison mode. The playback modes provide full media player

controls, enhanced with a frame-by-frame precision rewind, in an intuitive and respon-

sive interface. Even though iStation is specifically designed to aid in video based medical

diagnostics at Töölö Hospital, it could be used anywhere, where a transient phenomenon

needs to be carefully evaluated or two simultaneously recorded sources compared. The

feature set of iStation can also easily be modified because of the GUI design and a clean

separation of the video streaming code from that of the rest of the application.

The other half of the project’s results was the information provided by the feasibility

studies on image post-processing. This knowledge could later be used to enhance this

or other imaging systems with similar aspirations. Experiments with alpha blending re-

vealed that the operation is not possible with the current version of the operating micro-

scope, but the clinical usefulness and computational feasibility on the PC platform were

encouraging. The performance of the OpenCV based alpha blending demo application
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easily satisfied the requirements of fluent playback with two SD quality videos, although

run completely on the main CPU with standard optimizations. The tests with pseudo

coloring schemes for the grayscale ICG angiograms were not equally encouraging, as

the results were not considered to improve diagnostic accuracy expectedly. The feasibil-

ity studies also revealed that even a previous generation PC hardware has quite good

prerequisites for implementing useful online video processing operations, even without

resorting to hardware acceleration.

A great portion of the project’s duration was spent on familiarizing with the hardware

and software architectures for efficient video processing and finding the right software

frameworks to implement the imaging station application on the PC platform. Even-

tually, many of the high-throughput methods, like utilizing the GPU, were not used in

iStation, as its performance was already found satisfactory. The good performance of the

application was not completely unexpected considering the processing power of mod-

ern PCs, the relatively light processing operations, and moderate-quality 720×576 videos

used. Even though the chosen video processing architecture allows utilizing hardware

acceleration, which may be required for higher resolution videos or more demanding

operations, this potential was not tested during this project.

At the end, most of the goals of this project were achieved. The biggest disappointment

being the exclusion of the alpha blending feature from iStation. Some areas could still

benefit from further study. It would be interesting to test the performance difference of

using a GPU-based processing model as opposed to a CPU-based one and see how easily

the GPU code can be integrated into the processing pipeline in practice. As the priority

in this project was the implementation of the basic playback and recording functionality,

more time could be used for finding feasible post-processing operations and incorpo-

rating them into the application in the future. No direct follow-ups for this project are

currently planned though.
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APPENDICES

APPENDIX 1. Transcript of a meeting at Töölö Hospital, 12.1.2009

Present: M.Sc. student Kari Koivuporras, Professor Jarmo Alander, neurosurgeon Martin

Lehečka

Evaluation of the current situation:

v ICGA is an online tool for the surgeons and thus the focus should be in video pro-
cessing that can be done online.

v The application needs to be simple, easy to use and fast, because everything in
the operating room needs to work fluently. Any settings tweaking should happen
before surgery.

v The biggest challenge today is the momentariness of (ICG) video. There is a need
for a software that provides a sort of backup memory for the surgeons. Instead of
memorizing all the details in the ICG video, there should be functionality to freely
pause, rewind, and process the video, or maybe compare images of before and
after ICG injections side by side. This would be especially important in aneurysm
surgery.

v The pseudo coloring of ICG video could have potential. It may improve contrast
and aid in diagnosis, but more important at the moment is to begin research to
find the best solutions for implementing the prototype imaging station. It is also
important to find more suitable image processing operations, which would help in
diagnostic work.

A few ideas on what could be developed, formulated into a prioritized list by Martin

Lehečka:

Ê Combination of the information in the ICG and anatomical images. (Alander sug-
gested alpha blending for this task)

Ë Analyzing the behavior of ICG over time: Lehečka liked the features of Amide (an
open source medical imaging data examiner), where activities in specific regions in
video image can be tracked in time. A blood flow analysis tool that would visualize
the temporal changes of flow of blood and provide other useful information like
direction of flow would be ideal.

Ì Detecting the thickness of vein walls based on intensity of fluorescence: a bright
spot in the image suggests a thin wall. It was however acknowledged right away
that it could be difficult to exclude other factors that affect intensity captured by
camera.

Í Finding the most suitable way of presenting ICG-images: pseudo coloring, subtrac-
tion to exclude background etc.
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Î Implementing a tool for measuring tissue oxidation using ICGA. Maybe it would
be possible to measure the intensity of fluorescence before and after a brain bypass
surgery and conclude how much tissue oxidation was improved. Again the same
challenges as with the previous point.
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APPENDIX 2. Transcript of a meeting at Töölö Hospital, 22.2.2010

Present: M.Sc. student Marianna Kontulainen, M.Sc. student Kari Koivuporras, Profes-

sor Jarmo Alander, neurosurgeons Martin Lehečka and Aki Laakso

Evaluation of the current situation:

v General discussion about ICGA.

v Discussed about the optional blood flow dynamics tool (FLOW 800) for OPMI Pen-
tero. The surgeons would be interested in something similar. At the moment the
60.000€ price for FLOW 800 was considered too high.

v The high-resolution camera attached to the co-observation tube is shown in a big
screen HDTV. The zoom and field of view are different from the internal cameras
though. Moreover, rotating the microscopes imaging head makes the high-res cam-
era image rotate as well, because the camera does not rotate with the optics.

v 3D imaging also available for OPMI Pentero for something close to 100.000€.

v Useful tasks listed by the surgeons:

Ù Recording ICGA, with a possibility to rewind back and forth

Ù Combining the ICG and anatomic images (alpha blending)

Ù Tissue oxidation measurements (nowadays they use special sensors)

Ù Determining blood filling direction from ICG video (blood flow analysis)

v The microscope does record both the ICG and anatomic video on the internal HDD.

v Discussions about the possibility of including Computed Tomography (CT) view-
ing software into the imaging station. That way someone in the operating room
could compare findings of ICG and CT, for example.
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APPENDIX 3. Transcript of a meeting at Töölö Hospital, 12.5.2010

Present: M.Sc. student Kari Koivuporras, Professor Jarmo Alander, neurosurgeon Aki

Laakso

Evaluation of the current situation:

v Early GUI mock-up presented by Kari Koivuporras

v Image processing demo with harpia by Kari Koivuporras - not done due to harpia
problems.

v More information on how the operating microscope actually behaves: The output
of the operating microscope is always on. Normally the visible light video is out-
putted. Surgeons trigger the ICG mode from a button in the scope handle causing
ICG to be switced to the output.

v Hardware: The idea of buying two cameras and an optical divider attached to the
extra camera slot of the operating microscope was brought up again as the only
thinkable option to implement real alpha blending of visible and ICG channels.

v Project guidelines: Hardware purchasing was agreed to be decided at a later time. It
was agreed to start with a scheme where a frame grabbed from visible light stream
will be used as a background image for alpha blending with ICG video.

v Software design: The base design presented was approved. No criticism was
brought up so we will continue with the idea of two-part GUI logic, where the ap-
plication is statically in a configuration/preview mode and automatically switches
to a playback mode when ICG stream is detected in input. Image processing meth-
ods can be changed also on-the-fly in playback mode and the video can be paused
and rewinded both ways.

v Feature requests: Possibility to display ICG video and the still visible light image
side-by-side in playback mode.
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APPENDIX 4. Transcript of a meeting at Töölö Hospital, 6.9.2010

Present: M.Sc. student Kari Koivuporras, Professor Jarmo Alander, neurosurgeon Aki

Laakso

Evaluation of the current situation:

v New GUI design presented by Koivuporras. iStation now consists of a single view
where different modes are selectable with an exclusive checkbox group on top.

v The logic of the design is accepted, no suggestions about look’n’feel.

Feature requests:

v Alpha blending: not feasible with current hardware. 1) Still frame to video found
unhelpful and 2) HD camera rotation in relation to other cameras destroys possibil-
ity for HD-to-SD blending.

v Pseudo-coloring: a nice feature, but not a vital one at this point.

v Recording a patient archive: SD recording already exists in two forms; DV record-
ing from operating room’s video bus and internal HDD of the microscope. There is
no need for further at the moment.

v Feature request: Synchronized rewind possibility to dual-view.

v Feature request: Dual-view with HD anatomic and SD ICG video.

Future plans:

v Laakso wanted the final release platform to be a laptop. It was assumed though
that finding a composite frame grabber for laptops would be difficult and fitting
two of them into a laptop even more so.

v Tasks for Aki Laakso: see what outputs there are in the Storz’s video hub and oper-
ating microscope.

v Tasks for Kari: 1) see what hardware is needed to interface the inputs 2) make the
adjustments to the application 3) get the hardware.
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APPENDIX 5. Transcript of a meeting at Töölö Hospital, 15.2.2011

Present: M.Sc. student Kari Koivuporras, Professor Jarmo Alander, neurosurgeons Mar-

tin Lehečka and Aki Laakso

Evaluation of the current situation:

v Reiteration of the GUI design presented by Koivuporras. iStation now has a full
menu and toolbar. Three states for live streaming, recording and playback. There
are two view modes accessible in any state: one for viewing one video and another
for side-by-side viewing. No video post-processing yet.

v The logic of the design is accepted, no suggestions about look’n’feel.

Feature requests:

v Slow down of video playback, low priority.

v Sync for different length videos, high priority.

v Fine-grained rewind (with arrow keys), medium priority.

v Tooltips and other instruction improvements, medium priority.

Future plans:

v The PC hardware will be purchased by the Hospital, Koivuporras will send pre-
ferred specs to Laakso.

v iStation will still go through an iteration of new features and testing with the actual
frame grabbers.

v University of Vaasa will lend the frame grabbers for testing the feasibility of the
application.


