135 research outputs found

    Reference Model for Interoperability of Autonomous Systems

    Get PDF
    This thesis proposes a reference model to describe the components of an Un-manned Air, Ground, Surface, or Underwater System (UxS), and the use of a single Interoperability Building Block to command, control, and get feedback from such vehicles. The importance and advantages of such a reference model, with a standard nomenclature and taxonomy, is shown. We overview the concepts of interoperability and some efforts to achieve common refer-ence models in other areas. We then present an overview of existing un-manned systems, their history, characteristics, classification, and missions. The concept of Interoperability Building Blocks (IBB) is introduced to describe standards, protocols, data models, and frameworks, and a large set of these are analyzed. A new and powerful reference model for UxS, named RAMP, is proposed, that describes the various components that a UxS may have. It is a hierarchical model with four levels, that describes the vehicle components, the datalink, and the ground segment. The reference model is validated by showing how it can be applied in various projects the author worked on. An example is given on how a single standard was capable of controlling a set of heterogeneous UAVs, USVs, and UGVs

    Architecting integrated internet of things systems

    Get PDF
    IoT (Internet of Things) enables anytime and anyplace connectivity for anything by linking the objects of the real world with the virtual world. In the near future, it is predicted that more than 50 billion of things will be connected to the internet. This will lead to many different IoT- based systems that will have a huge impact on the society. Often, these IoT systems will not be standalone but will be composed with other different systems to create additional value. Hence, with the heterogeneity and the integration of IoT-based systems with other IoT-based or non-IoT-based systems has become an important challenge. In this thesis, the main objective is to analyze, design and integrate IoT-based systems and to answer the following research questions: RQ1. What are the characteristic features of IoT systems? RQ2. How to design the architecture for an IoT-based system? RQ3. What are the identified obstacles of the data distribution (DDS) middleware? RQ4. What are the solution directions for the identified obstacles of DDS? RQ5. What are the approaches for integrating multiple IoT-based systems? RQ6. How to design a DDS-based IoT system? RQ7. How to derive feasible deployment alternatives for DDS-based systems? In order to answer these research questions, three different research methodologies were used: Systematic Literature Review, Design Science Research, and Case Study Research. In chapter 2, we have applied a feature driven domain analysis of IoT systems. We have presented the reference architecture for IoT and discussed the corresponding layers. Among these layers, we have focused on the session layer of the IoT. The protocols in this layer are related with the communication sessions of the IoT systems and hence determine the communication characteristics of the IoT systems. We have presented the common and variant features of the most commonly used session layer protocols, namely AMQP, CoAP, DDS, MQTT, and XMPP which are used for communication between M2M (machine-to- machine), M2S (machine-to-server), and S2S (server-to-server). Further, we have provided an evaluation framework to compare session layer communication protocols. Among these protocols, we focused on the DDS that is mainly used for M2M communication in Industrial Internet of Things (IIoT). In chapter 3, we have described an architecture design method for architecting IoT systems for the Farm Management Information Systems (FMIS) domain. Hereby, we have also developed a family feature diagram to represent the common and variant features of IoT- based FMIS. In order to illustrate our approach, we have performed a systematic case study approach including the IoT-based wheat and tomato production with IoT-based FMIS. The case study research showed that the approach was both effective and practical. In chapter 4, we have presented the method for designing integrated IoT systems. We showed that integration of IoT-based systems can be at different layers including session layer, cloud layer and application layer. Further we have shown that the integration is typically carried out based on well-defined patterns, that is, generic solutions structures for recurring problems. We have systematically compiled and structured the 15 different integration patterns which can be used in different combinations and likewise supporting the composition of different IoT systems. We have illustrated the use of example patterns in a smart city case study and have shown that the systematic structuring of the integration patterns is useful for integrating IoT systems. A systematic research methodology has been applied in chapter 5 to identify the current obstacles to adopt DDS and their solution directions. We have selected 34 primary studies among the 468 identified papers since the introduction of DDS in 2003. We identified 11 basic categories of problems including complexity of DDS configuration, performance prediction, measurement and optimization, implementing DDS, DDS integration over WAN, DDS using wireless networks and mobile computing, interoperability among DDS vendor implementations, data consistency in DDS, reliability in DDS, scalability in DDS, security, and integration with event-based systems. We have adopted feature diagrams to summarize and provide an overview of the identified problem and their solutions defined in the primary studies. DDS based architecture design for IoT systems is presented in chapter 6. DDS is considered to be a potential middleware for IoT because of its focus on event-driven communication in which quality of service is also explicitly defined. We provide a systematic approach to model the architecture for DDS-based IoT in which we adopted architecture viewpoints for modeling DDS, IoT and DDS-based IoT systems. We have integrated and represented the architecture models that can be used to model DDS-based IoT systems for various application domains. When designing DDS-based systems typically multiple different alternatives can be derived. Chapter 7 presents an approach for deriving feasible DDS configuration alternatives. For this we have provided a systematic approach for extending the DDS UML profile and developed an extensible tool framework Deploy-DDS to derive feasible deployment alternatives given the application model, the physical resources, and the execution configurations. The tool framework Deploy-DDS implements a set of predefined algorithms and can be easily extended with new algorithms to support the system architect. We have evaluated the approach and the tool framework for a relevant IoT case study on smart city engineering. Chapter 8 concludes the thesis by summarizing the contributions.</p

    EVALUATING ARTIFICIAL INTELLIGENCE METHODS FOR USE IN KILL CHAIN FUNCTIONS

    Get PDF
    Current naval operations require sailors to make time-critical and high-stakes decisions based on uncertain situational knowledge in dynamic operational environments. Recent tragic events have resulted in unnecessary casualties, and they represent the decision complexity involved in naval operations and specifically highlight challenges within the OODA loop (Observe, Orient, Decide, and Assess). Kill chain decisions involving the use of weapon systems are a particularly stressing category within the OODA loop—with unexpected threats that are difficult to identify with certainty, shortened decision reaction times, and lethal consequences. An effective kill chain requires the proper setup and employment of shipboard sensors; the identification and classification of unknown contacts; the analysis of contact intentions based on kinematics and intelligence; an awareness of the environment; and decision analysis and resource selection. This project explored the use of automation and artificial intelligence (AI) to improve naval kill chain decisions. The team studied naval kill chain functions and developed specific evaluation criteria for each function for determining the efficacy of specific AI methods. The team identified and studied AI methods and applied the evaluation criteria to map specific AI methods to specific kill chain functions.Civilian, Department of the NavyCivilian, Department of the NavyCivilian, Department of the NavyCaptain, United States Marine CorpsCivilian, Department of the NavyCivilian, Department of the NavyApproved for public release. Distribution is unlimited

    Internet of Things Applications - From Research and Innovation to Market Deployment

    Get PDF
    The book aims to provide a broad overview of various topics of Internet of Things from the research, innovation and development priorities to enabling technologies, nanoelectronics, cyber physical systems, architecture, interoperability and industrial applications. It is intended to be a standalone book in a series that covers the Internet of Things activities of the IERC – Internet of Things European Research Cluster from technology to international cooperation and the global "state of play".The book builds on the ideas put forward by the European research Cluster on the Internet of Things Strategic Research Agenda and presents global views and state of the art results on the challenges facing the research, development and deployment of IoT at the global level. Internet of Things is creating a revolutionary new paradigm, with opportunities in every industry from Health Care, Pharmaceuticals, Food and Beverage, Agriculture, Computer, Electronics Telecommunications, Automotive, Aeronautics, Transportation Energy and Retail to apply the massive potential of the IoT to achieving real-world solutions. The beneficiaries will include as well semiconductor companies, device and product companies, infrastructure software companies, application software companies, consulting companies, telecommunication and cloud service providers. IoT will create new revenues annually for these stakeholders, and potentially create substantial market share shakeups due to increased technology competition. The IoT will fuel technology innovation by creating the means for machines to communicate many different types of information with one another while contributing in the increased value of information created by the number of interconnections among things and the transformation of the processed information into knowledge shared into the Internet of Everything. The success of IoT depends strongly on enabling technology development, market acceptance and standardization, which provides interoperability, compatibility, reliability, and effective operations on a global scale. The connected devices are part of ecosystems connecting people, processes, data, and things which are communicating in the cloud using the increased storage and computing power and pushing for standardization of communication and metadata. In this context security, privacy, safety, trust have to be address by the product manufacturers through the life cycle of their products from design to the support processes. The IoT developments address the whole IoT spectrum - from devices at the edge to cloud and datacentres on the backend and everything in between, through ecosystems are created by industry, research and application stakeholders that enable real-world use cases to accelerate the Internet of Things and establish open interoperability standards and common architectures for IoT solutions. Enabling technologies such as nanoelectronics, sensors/actuators, cyber-physical systems, intelligent device management, smart gateways, telematics, smart network infrastructure, cloud computing and software technologies will create new products, new services, new interfaces by creating smart environments and smart spaces with applications ranging from Smart Cities, smart transport, buildings, energy, grid, to smart health and life. Technical topics discussed in the book include: • Introduction• Internet of Things Strategic Research and Innovation Agenda• Internet of Things in the industrial context: Time for deployment.• Integration of heterogeneous smart objects, applications and services• Evolution from device to semantic and business interoperability• Software define and virtualization of network resources• Innovation through interoperability and standardisation when everything is connected anytime at anyplace• Dynamic context-aware scalable and trust-based IoT Security, Privacy framework• Federated Cloud service management and the Internet of Things• Internet of Things Application

    Compilation of thesis abstracts, June 2007

    Get PDF
    NPS Class of June 2007This quarter’s Compilation of Abstracts summarizes cutting-edge, security-related research conducted by NPS students and presented as theses, dissertations, and capstone reports. Each expands knowledge in its field.http://archive.org/details/compilationofsis109452750

    Enabling technologies and cyber-physical systems for mission-critical scenarios

    Get PDF
    Programa Oficial de Doutoramento en Tecnoloxías da Información e Comunicacións en Redes Móbiles . 5029P01[Abstract] Reliable transport systems, defense, public safety and quality assurance in the Industry 4.0 are essential in a modern society. In a mission-critical scenario, a mission failure would jeopardize human lives and put at risk some other assets whose impairment or loss would significantly harm society or business results. Even small degradations of the communications supporting the mission could have large and possibly dire consequences. On the one hand, mission-critical organizations wish to utilize the most modern, disruptive and innovative communication systems and technologies, and yet, on the other hand, need to comply with strict requirements, which are very different to those of non critical scenarios. The aim of this thesis is to assess the feasibility of applying emerging technologies like Internet of Things (IoT), Cyber-Physical Systems (CPS) and 4G broadband communications in mission-critical scenarios along three key critical infrastructure sectors: transportation, defense and public safety, and shipbuilding. Regarding the transport sector, this thesis provides an understanding of the progress of communications technologies used for railways since the implantation of Global System for Mobile communications-Railways (GSM-R). The aim of this work is to envision the potential contribution of Long Term Evolution (LTE) to provide additional features that GSM-R would never support. Furthermore, the ability of Industrial IoT for revolutionizing the railway industry and confront today's challenges is presented. Moreover, a detailed review of the most common flaws found in Radio Frequency IDentification (RFID) based IoT systems is presented, including the latest attacks described in the literature. As a result, a novel methodology for auditing security and reverse engineering RFID communications in transport applications is introduced. The second sector selected is driven by new operational needs and the challenges that arise from modern military deployments. The strategic advantages of 4G broadband technologies massively deployed in civil scenarios are examined. Furthermore, this thesis analyzes the great potential for applying IoT technologies to revolutionize modern warfare and provide benefits similar to those in industry. It identifies scenarios where defense and public safety could leverage better commercial IoT capabilities to deliver greater survivability to the warfighter or first responders, while reducing costs and increasing operation efficiency and effectiveness. The last part is devoted to the shipbuilding industry. After defining the novel concept of Shipyard 4.0, how a shipyard pipe workshop works and what are the requirements for building a smart pipe system are described in detail. Furthermore, the foundations for enabling an affordable CPS for Shipyards 4.0 are presented. The CPS proposed consists of a network of beacons that continuously collect information about the location of the pipes. Its design allows shipyards to obtain more information on the pipes and to make better use of it. Moreover, it is indicated how to build a positioning system from scratch in an environment as harsh in terms of communications as a shipyard, showing an example of its architecture and implementation.[Resumen] En la sociedad moderna, los sistemas de transporte fiables, la defensa, la seguridad pública y el control de la calidad en la Industria 4.0 son esenciales. En un escenario de misión crítica, el fracaso de una misión pone en peligro vidas humanas y en riesgo otros activos cuyo deterioro o pérdida perjudicaría significativamente a la sociedad o a los resultados de una empresa. Incluso pequeñas degradaciones en las comunicaciones que apoyan la misión podrían tener importantes y posiblemente terribles consecuencias. Por un lado, las organizaciones de misión crítica desean utilizar los sistemas y tecnologías de comunicación más modernos, disruptivos e innovadores y, sin embargo, deben cumplir requisitos estrictos que son muy diferentes a los relativos a escenarios no críticos. El objetivo principal de esta tesis es evaluar la viabilidad de aplicar tecnologías emergentes como Internet of Things (IoT), Cyber-Physical Systems (CPS) y comunicaciones de banda ancha 4G en escenarios de misión crítica en tres sectores clave de infraestructura crítica: transporte, defensa y seguridad pública, y construcción naval. Respecto al sector del transporte, esta tesis permite comprender el progreso de las tecnologías de comunicación en el ámbito ferroviario desde la implantación de Global System for Mobile communications-Railway (GSM-R). El objetivo de este trabajo es analizar la contribución potencial de Long Term Evolution (LTE) para proporcionar características adicionales que GSM-R nunca podría soportar. Además, se presenta la capacidad de la IoT industrial para revolucionar la industria ferroviaria y afrontar los retos actuales. Asimismo, se estudian con detalle las vulnerabilidades más comunes de los sistemas IoT basados en Radio Frequency IDentification (RFID), incluyendo los últimos ataques descritos en la literatura. Como resultado, se presenta una metodología innovadora para realizar auditorías de seguridad e ingeniería inversa de las comunicaciones RFID en aplicaciones de transporte. El segundo sector elegido viene impulsado por las nuevas necesidades operacionales y los desafíos que surgen de los despliegues militares modernos. Para afrontarlos, se analizan las ventajas estratégicas de las tecnologías de banda ancha 4G masivamente desplegadas en escenarios civiles. Asimismo, esta tesis analiza el gran potencial de aplicación de las tecnologías IoT para revolucionar la guerra moderna y proporcionar beneficios similares a los alcanzados por la industria. Se identifican escenarios en los que la defensa y la seguridad pública podrían aprovechar mejor las capacidades comerciales de IoT para ofrecer una mayor capacidad de supervivencia al combatiente o a los servicios de emergencias, a la vez que reduce los costes y aumenta la eficiencia y efectividad de las operaciones. La última parte se dedica a la industria de construcción naval. Después de definir el novedoso concepto de Astillero 4.0, se describe en detalle cómo funciona el taller de tubería de astillero y cuáles son los requisitos para construir un sistema de tuberías inteligentes. Además, se presentan los fundamentos para posibilitar un CPS asequible para Astilleros 4.0. El CPS propuesto consiste en una red de balizas que continuamente recogen información sobre la ubicación de las tuberías. Su diseño permite a los astilleros obtener más información sobre las tuberías y hacer un mejor uso de las mismas. Asimismo, se indica cómo construir un sistema de posicionamiento desde cero en un entorno tan hostil en términos de comunicaciones, mostrando un ejemplo de su arquitectura e implementación

    Deep Learning for the Industrial Internet of Things (IIoT): A Comprehensive Survey of Techniques, Implementation Frameworks, Potential Applications, and Future Directions

    Get PDF
    The Industrial Internet of Things (IIoT) refers to the use of smart sensors, actuators, fast communication protocols, and efficient cybersecurity mechanisms to improve industrial processes and applications. In large industrial networks, smart devices generate large amounts of data, and thus IIoT frameworks require intelligent, robust techniques for big data analysis. Artificial intelligence (AI) and deep learning (DL) techniques produce promising results in IIoT networks due to their intelligent learning and processing capabilities. This survey article assesses the potential of DL in IIoT applications and presents a brief architecture of IIoT with key enabling technologies. Several well-known DL algorithms are then discussed along with their theoretical backgrounds and several software and hardware frameworks for DL implementations. Potential deployments of DL techniques in IIoT applications are briefly discussed. Finally, this survey highlights significant challenges and future directions for future research endeavors

    Australia and Cyberwarfare

    Get PDF
    This book explores Australia’s prospective cyber-warfare requirements and challenges. It describes the current state of planning and thinking within the Australian Defence Force with respect to Network Centric Warfare, and discusses the vulnerabilities that accompany the use by Defence of the National Information Infrastructure (NII), as well as Defence’s responsibility for the protection of the NII. It notes the multitude of agencies concerned in various ways with information security, and argues that mechanisms are required to enhance coordination between them. It also argues that Australia has been laggard with respect to the development of offensive cyber-warfare plans and capabilities. Finally, it proposes the establishment of an Australian Cyber-warfare Centre responsible for the planning and conduct of both the defensive and offensive dimensions of cyber-warfare, for developing doctrine and operational concepts, and for identifying new capability requirements. It argues that the matter is urgent in order to ensure that Australia will have the necessary capabilities for conducting technically and strategically sophisticated cyber-warfare activities by the 2020s. The Foreword has been contributed by Professor Kim C. Beazley, former Minister for Defence (1984–90), who describes it as ‘a timely book which transcends old debates on priorities for the defence of Australia or forward commitments, [and] debates about globalism and regionalism’, and as ‘an invaluable compendium’ to the current process of refining the strategic guidance for Australia’s future defence policies and capabilities

    Air Traffic Management Abbreviation Compendium

    Get PDF
    As in all fields of work, an unmanageable number of abbreviations are used today in aviation for terms, definitions, commands, standards and technical descriptions. This applies in general to the areas of aeronautical communication, navigation and surveillance, cockpit and air traffic control working positions, passenger and cargo transport, and all other areas of flight planning, organization and guidance. In addition, many abbreviations are used more than once or have different meanings in different languages. In order to obtain an overview of the most common abbreviations used in air traffic management, organizations like EUROCONTROL, FAA, DWD and DLR have published lists of abbreviations in the past, which have also been enclosed in this document. In addition, abbreviations from some larger international projects related to aviation have been included to provide users with a directory as complete as possible. This means that the second edition of the Air Traffic Management Abbreviation Compendium includes now around 16,500 abbreviations and acronyms from the field of aviation
    • …
    corecore