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1.1 BACKGROUND 

The internet is the interconnected networks to connect billions of computers and other 

devices. The origin of the Internet dates back to Advanced Research Projects Agency Network 

(ARPANET) that led to the development of protocols for interconnection of networks into a 

single network. Initially computers of the University of California Los Angeles and the Stanford 

Research Institute were interconnected after which many other universities and institutes 

became part of the ARPANET. The development of TCP/IP in 1970s and its implementation in 

ARPANET further paved the way and adoption for the ARPANET which was later renamed as 

the “Internet” in 1984. 

The internet usage was dominated by e-mail and file transfer between 1970s and 1980s. With 

the invention of World Wide Web (WWW) in 1989 by Tim Berners Lee who wrote the first web 

browser, internet gained further momentum. The number of internet users increased rapidly 

from thousands to billions in 2000s. In 2018, more than 50% of the world population is now 

using the internet and this number will increase in the near future. The internet was a 

disruptive technology and had a dramatic impact on the global culture and social life.  

Until recent time, the internet was primarily used for interconnecting computers any time and 

any place but this required human interaction and monitoring. The internet of things (IoT) is 

a new paradigm that adds a new dimension to the current information and communications 

technologies (ICTs), whereby the dimension "Anything communication" is added to the 

communication capabilities as shown in Figure 1-1. The IoT enables anytime, anyplace 

connectivity for anything, by linking the objects of the real world with the virtual world. In the 

IoT world physical things and virtual things, all interact with each other in the same space and 

time. 

Anytime
connection/communication

On the move

Daytime

INTERNETINTERNET

INTERNET OF THINGSINTERNET OF THINGS

Night

Indoor

Outdoor

At the computer

Any Place
connection/communication

Any Thing
connection/communication

Interconnection

Between computers

Human-to-Human 
not using computers

Human-to-Thing
using generic equipment

Thing-to-Thing 

 

Figure 1-1: Dimensions of Communication – IoT adds the “Any Thing” dimension 

It is predicted that the number of devices connected to internet will be more than 50 billion 

(Evans, 2011). This means, that most of the internet traffic will not be among human beings 
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but be between devices and all things connected to the internet resulting in more complicated 

and much wider Internet of Things.  

The rise of the IoT is mainly dependent on three factors (Daniel Kellmereit, 2013):  

(1) Miniaturization, electronic devices are getting more powerful and energy efficient  

(2) Affordability, costs of electronic components and networks are consistently going down 

(3) De-wireization, more and more things are becoming wireless. 

Since the IoT is the result of technological progress in many fields such as wireless sensor 

networks, machine-to-machine communication, mobile computing, ubiquitous computing, 

and embedded systems, the IoT might express different meanings to different people. The 

term Internet of Things was first used by Kevin Ashton in 1999 who was one of the co-founders 

of Auto-ID that aimed to investigate and understand what came next after the barcode. The 

Auto-ID has investigated RFID and realized that all physical objects can be traced via the 

internet by tagged them with RFID transponders. The IoT is defined by the International 

Telecommunication Union (ITU) as “The IoT is the network of physical objects or "things" 

embedded with electronics, software, sensors, and network connectivity, which enables these 

objects to collect and exchange data. Here “thing” is defined as: an object of the physical world 

(physical things) or the information world (virtual things), which is capable of being identified 

and integrated into communication networks (ITU, 2005). McEwen and Cassimally (McEwen 

& Cassimally, 2014) formulate the IoT with a simple equation as: “Physical Object + Controller, 

Sensor, and Actuators + Internet = IoT”.  

Although the IoT system integrates many different entities it still deals with the design of a 

single system. Very often it is required though to integrate multiple IoT-based systems with 

other systems (Figure 1-2). 

IoT System

IoT System IoT System

IoT System

IoT System

How 
to integrate?

IoT System

IoT SystemIoT System

 

Figure 1-2: Integration of different IoT systems 

An IoT system can typically realize a distributed system in which heterogeneous devices are 

connected over the internet. A distributed system consists of multiple software components 

that are located on networked computers, but act and run as a single system. The computers 

that are in a distributed system can be connected by a local network and be physically close 

to each other, or they can be connected in a wide area network and geographically distant. 



  19 

Distributed systems offer many benefits over centralized systems, including scalability, 

concurrency and redundancy. 

To reduce the effort for developing distributed systems, common middleware architectures 

have been introduced. The middleware provides common services such as name and directory 

services, discovery, data exchange, synchronization, and transaction services (Myerson, 2002). 

The publish/subscribe middleware adopts an event-driven approach based on 

publish/subscribe communication pattern. The publish/subscribe pattern has gained broad 

attention in the development of loosely coupled, scalable large-scale applications. One of the 

important and popular publish-subscribe middleware is the Data Distribution Service for Real-

Time Systems (DDS) that has been defined by the Object Management Group (OMG) to 

provide a standard data-centric publish-subscribe specification for distributed systems. It 

appears that DDS has been applied to different domains including development of high 

performance distributed systems such as in the defense, finance, automotive, and simulation 

domains.  

1.2 OBJECTIVES AND RESEARCH QUESTIONS 

Despite of the overall vision of the IoT, the integration of multiple heterogeneous devices over 

the internet remains an important challenge. Hence, the main objective of this thesis is to 

analyze and design integrated IoT systems. In this context we have defined the following 

research questions:  

RQ1. What are the characteristic features of IoT systems? 

Before tackling the integration of IoT devices it is important to identify the current state of the 

IoT and likewise identify and describe the common and variant IoT features. 

RQ2. How to design the architecture for an IoT-based system? 

Our focus in this thesis will be at the design level. The architectural design of an IoT system is 

one of the early key artefacts that has a huge impact on the subsequent artefacts in the overall 

lifecycle. However, designing the IoT architecture is not trivial. For this we will investigate the 

current architecture approaches for IoT and propose an approach to guide the architect in 

designing feasible IoT architectures.  

RQ3. What are the identified obstacles in the DDS domain? 

For connecting the devices in an IoT system we will explicitly consider the adoption of 

middleware and hereby in particular DDS middleware. In the literature both the concepts of 

IoT and DDS have developed in parallel ways. For investigating the adoption of DDS for IoT it 

is important to identify and describe the features of IoT and herewith the current obstacles.  

RQ4. What are the solution directions for the identified obstacles of DDS? 

After addressing the obstacles of DDS, we will identify and describe the proposed solution 

directions. In particular, we will focus on obstacles and solution directions related to the 

adoption of DDS for IoT.  
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RQ5. What are the approaches for integrating multiple IoT-based systems? 

IoT-based systems are often not standalone systems and require the integration with other 

systems. For investigating the integration of IoT-based systems several integration approaches 

can be used. We focus on most common integration patterns to investigate the integration of 

IoT-based systems.  

RQ6. How to design a DDS-based IoT system?  

DDS middleware targets the high-performance computing hence it is an important 

communication protocol for the IoT-based systems. We will provide an approach for designing 

the architecture of DDS-based IoT systems. 

RQ7. How to derive feasible deployment alternatives for DDS-based systems?  

A DDS-based system usually consists of multiple participant applications each of which has 

different responsibilities in the system. These participants can be allocated in different ways 

to the available resources, which leads to different configuration alternatives. We will provide 

a systematic approach for deriving feasible deployment alternatives based on the application 

design and the available physical resources. 

1.3 CASE STUDIES 

In order to illustrate our approaches for the research questions we have defined and used two 

different case studies, namely Farm Management Information Systems (FMIS) and Smart 

Traffic System (STS) in the context of Smart City Engineering. 

1.3.1 Farm Management Information Systems 

Precision farming adopts advanced technology to increase the amount of production and 

economic returns, often also with the goal to reduce the impact on the environment.  One of 

the key elements of precision farming is the Farm Management Information Systems (FMIS) 

that supports the automation of data acquisition and processing, monitoring, planning, 

decision making, documenting, and managing the farm operations. An increased number of 

FMISs now adopts Internet of Things (IoT) technology to further optimize the targeted 

business goals.  

Nowadays, FMIS adopt IoT technologies to further optimize the precision farming goals. IoT-

based FMIS have different functional and quality requirements than traditional FMIS such as 

communication protocols, the amount of the data size to be processed, the security level, 

safety level, and time performance. In order to develop an IoT-based FMIS, one should design 

the proper architecture that meets the corresponding requirements.  

The FMIS case study will be explored using two different industrial case studies on precision 

farming including smart wheat production FMIS, and greenhouse FMIS. 

1.3.2 Smart Traffic System 

For the near future, it is expected that a large part of the world population will live in urban 

areas. This will have a huge impact on future personal lives and mobility. A smart city uses 

information and communication technology (ICT) to enhance the quality and performance of 
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urban services, to reduce costs and resource consumption, and to engage more effectively 

and actively with its citizens. Sectors that have been developing smart city technology include 

government services, transport and traffic management, water and waste, health care, and 

energy. Smart city applications are developed with the goal to improve the management of 

urban flows and allowing for real time responses to challenges. One of the important 

applications in smart city engineering includes the development of smart traffic system (STS). 

Traffic is already a large problem in many cities and this problem will be even bigger in the 

future. Many people spend a considerable amount of time in traffic, which leads to 

unnecessary waste of human resource, time and increase of CO2 emissions. STS provides 

different capabilities such as traffic light management, congestion detection, traffic 

regulation, shared parking platform, etc. For example, shared parking platform optimizes the 

search for finding a suitable parking slot by guiding the drivers to the available nearest parking 

spots in real-time. 

STS consists primarily of sensors and vehicles. Sensors are the devices that monitor the 

environment and provide the corresponding data. Vehicles use the sensor data and publish 

their position and other relevant information to the STS. In order to manage vehicle and sensor 

data several IoT technologies might be used. In essence, STS is a data-intensive system and 

hence OMG’s DDS Middleware is very suitable to realize STS.  

1.4 RESEARCH METHODOLOGY 

In order to provide answers to the defined research questions we have applied a set of 

research methodologies including: 

• Systematic literature review (SLR) 

• Design science research, and  

• Case study research  

The details of the applied research methodologies will be given in the next subsections. Table 

1-1 shows the research methodologies for the identified research questions as adopted in the 

different chapters. 

Table 1-1: Applied Research Methodologies for the identified research questions 

Research Methodology Ch-1 Ch-2 Ch-3 Ch-4 Ch-5 Ch-6 Ch-7 

Systematic Literature Review  
RQ1 
RQ2 

  
RQ3 
RQ4 

  

Design Science Research   RQ2 RQ5  RQ6 RQ7 

Case Study Research   RQ2    RQ7 

 

Figure 1-3 shows the workflow depicting the adopted research methodologies used in the 

thesis together with the contributions of each step. Firstly, we have applied two literature 

reviews in parallel. In chapter 2 we have applied a domain analysis for the IoT and our 
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contribution in this chapter is the domain model for the IoT. In chapter 5 we have applied 

systematic literature review methodology for deriving the obstacles and solution directions 

for the Data Distribution Service middleware.  

 

Figure 1-3: Research methodologies used in the thesis and contributions 

Subsequently we have applied four parallel design science research activities. In chapter 3, we 

performed design science research for architecting an IoT-based FMIS. In chapter 4 we defined 

the pattern-based integration approach. In chapter 6 we designed the DDS based IoT 

architecture. Finally, we used design science research in chapter 7 in which we defined an 

approach for generating feasible DDS deployment alternatives. 

The case study research has been applied in chapter 3 and chapter 7. In chapter 3 we applied 

case study research for evaluating the proposed architecture design approach. In chapter 7 

we applied case study research for evaluating the DDS deployment configuration approach 

using also the developed Deploy-DDS tool.   

Systematic Literature Review
Data Distribution Service (Chapter 5)

Design Science Research
IoT based FMIS

(Chapter 3)

Domain Analysis IoT 
(Chapter 2)

Design Science Research
Pattern-based Integration IoT 

Systems (Chapter 4)

Design Science Research
DDS-based IoT (Chapter 6)

Design Science Research
Deriving DDS Configuration 

Alternatives (Chapter 7)

Case Study Research
IoT based FMIS (Chapter 3)

Case Study Research
DDS Configuration 

Smart Traffic System (Chapter 7)

Discussion (Chapter 8)

Domain Model IoT
Features, Obstacles

and Solution Directions DDS

IoT Based
FMIS Approach

IoT Integration Patterns DDS-based IoT
Reference Architecture

DDS Deployment  
Configuration Approach

Results IoT Based 
FMIS Approach

Deploy-DDS Tool

Report DDS Configuration
Smart Traffic System



  23 

1.4.1 Systematic Literature Review 

For answering research questions RQ1, RQ2, RQ3, and RQ4 we have applied an SLR. A 

systematic literature review or systematic review for short is a well-defined and rigorous 

method to identify, evaluate and interpret all relevant studies regarding a particular research 

question, topic area or phenomenon of interest. The goal of an SLR is to give a fair, credible 

and unbiased evaluation of a research topic using a trustworthy, rigorous and auditable 

method. The inception of systematic reviews is based on the evidence-based concept which 

is devised in the field of medicine. The success of evidence-based medicine has triggered many 

other disciplines to adopt a similar SLR approach, including for example psychiatry, nursing, 

social policy, and education. Similarly, the concept of evidence-based software engineering 

(EBSE) (Dybå, Kitchenham, & Jorgensen, 2005) has been introduced together with guidelines 

for performing systematic literature reviews in software engineering (Kitchenham & Charters, 

2007). There are several reasons for undertaking a systematic literature review including 

summarizing the existing evidence concerning a treatment or technology, identifying any gaps 

in current research in order to suggest areas for further investigation, providing a 

framework/background in order to appropriately position new research activities, examining 

the extent to which empirical evidence supports/contradicts theoretical hypotheses, or 

assisting in the generation of new hypotheses.  The goal of EBSE is to improve the quality of 

software-intensive systems and provide insight to stakeholder groups whether practitioners 

are using best practice or not. In our study, we aimed at identifying the obstacles regarding 

the DDS concepts. Different approaches have been presented in the literature for conducting 

SLRs in different domains. We followed the guidelines for performing SLRs as proposed by 

Kitchenham and Charters (Kitchenham & Charters, 2007). The SLR has been applied in chapter 

2 and chapter 5. In chapter 2 we have applied a literature review to identify the features of 

IoT. In chapter 5 we have applied the complete protocol to identify the features and obstacles 

of DDS middleware. 

1.4.2 Design Science Research 

For answering the research questions RQ2, RQ5, RQ6, and RQ7 we have applied design science 

research.  

In this thesis we apply the design science methodology according to Hevner (Hevner, 2007). 

Design science research follows three iterative cycles: relevance cycle, design cycle and rigor 

cycle. The relevance cycle motivates the desired improvement that should be brought about 

to an environment. It also leads to a list of requirements and associated criteria for evaluating 

the research results. The design cycle turns the requirements into new design artefacts using 

an existing body of design knowledge. The rigor cycle contributes to the body of design 

knowledge. We applied case study methodology for the relevance cycle. We applied feature 

modeling and architecture modeling techniques in the design cycle. We applied case study 

methodology, demonstration and review of related work for the rigor cycle (Hevner, 2007). 

1.4.3 Case Study Research 

For answering the research questions RQ2 and RQ7 we have case study research in chapter 3 

and chapter 7, respectively.  
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Our primary objective is to evaluate the impact of the developed architecture design method 

for IoT-based FMIS. To evaluate the above research questions, we have applied the case study 

research protocol as defined by Runeson and Höst (Runeson & Höst, 2008). Based on this we 

have followed the five steps: (1) case study design (2) preparation for data collection (3) 

execution with data collection on the studied case (4) analysis of collected data (5) reporting. 

We explain the execution and details of each step in the corresponding chapters.  

1.5 CONTRIBUTIONS 

This thesis provides the following contributions:  

1. Identification of the current features of the IoT systems  

To identify the features of IoT systems we have applied a feature-based domain analysis 

approach. Hereby feature diagrams have been used to model the common and variant 

features of IoT-based systems. The feature diagram has been organized based on reference 

architecture for IoT that includes multiple different layers. We have in particular focused on 

session layer that which is responsible for setting up and taking down of the association 

between the IoT connection points. For supporting the communication among the different 

IoT entities many different communication protocols are now available in practice. Based on 

the resulting feature diagram we can explicitly characterize the existing session layer 

communication protocols for a given IoT system. Further we have defined the criteria for 

selecting the identified communication protocols for the different conditions.  

2. Software architecture design of IoT-based FMIS  

We provide a systematic approach for guiding the architect in designing IoT-based FMIS. To 

this end, we adopt a feature-driven domain analysis approach to model the various different 

precision farming requirements. Further, based on FMIS and IoT reference architectures we 

describe the steps and the modeling approaches for designing the IoT-based FMIS 

architecture. 

3. Architecting and designing integrated IoT-based systems 

One of the key challenges in IoT is coping with the heterogeneous set of systems and the 

integration of these systems in the same communication network. Several studies have 

focused on this integration aspect and addressed this at different levels of abstraction. 

Unfortunately, the different approaches are scattered and fragmented over the different 

studies and it is not clear how to cope with the integration concern within a single IoT system 

but also across multiple IoT systems that need to be integrated. To this end this we provide a 

comprehensive and systematic approach for identifying the key integration concerns in the 

IoT system architecture and describe the currently provided solutions. For this we adopt a 

pattern-based approach in which generic architecture solution structures are provided to 

these recurring integration concerns. We illustrate our approach for addressing the 

integration of IoT-based systems within the context of smart city engineering. 
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4. Identification of obstacles of DDS middleware and corresponding solution directions 

Data Distribution Service (DDS) is a standard data-centric publish-subscribe programming 

model and specification for distributed systems that can be used for integrating IoT systems. 

DDS has been applied for the development of high performance distributed systems such as 

in the defense, finance, automotive, and simulation domains. Various papers have been 

written on the application of DDS, however, there has been no attempt to systematically 

review and categorize the identified obstacles. We present the results of a systematic 

literature review (SLR) that has been conducted by a multiphase study selection process using 

the published literature since the introduction of DDS in 2003.  We reviewed 468 papers that 

are discovered using a well-planned review protocol, and 34 of them were assessed as primary 

studies related to our research questions. Based on the SLR we have identified 11 basic 

categories of obstacles and the corresponding research challenges in DDS. 

5. Architecture design of a DDS-based IoT system 

Focusing on the architecture design of DDS-based IoT systems firstly, we describe the 

requirements for IoT systems and present the IoT reference architecture. Then we provide a 

DDS-based architecture for IoT systems based on the Views and Beyond Approach. We have 

performed a systematic approach in which we adopted architecture viewpoints for modeling 

DDS, IoT and finally DDS-based IoT systems. Since both the DDS and IoT are often represented 

as layered structures we have applied the layered viewpoint to represent the DDS-based IoT. 

Further we have also defined the deployment view for DDS-IoT. We can state that we 

succeeded to integrate and represent the architecture models that can be used to model DDS-

based IoT systems for various application domains.  

6. Systematic approach for deriving feasible deployment alternatives for DDS-based systems 

We have provided a systematic approach by extending the DDS UML Profile, and an extensible 

tool framework to figure out the important design concern in DDS-based applications: the 

selection of the feasible deployment alternative given the application model, the physical 

resources, and the execution configurations. So far, this problem has not been explicitly 

addressed in the DDS literature. In general, the deployment configuration is selected manually 

based on expert knowledge. We provide a systematic approach for deriving feasible 

deployment alternatives based on the system design and the available physical resources. The 

approach showed to be useful in the modeling, the design and the evaluation of the DDS 

deployment alternatives. Furthermore, we have evaluated the approach for a relevant IoT 

case study on smart city engineering.  

7. Tool support for designing DDS deployment alternatives 

To support the method for finding feasible deployment alternatives in DDS-based systems we 

developed the Deploy-DDS tool. The tool supports the selection and generation of deployment 

architectures of DDS based systems with given system design and physical resources. The tool 

can be used to perform an evaluation during the design phase and generate the selected 

feasible configurations. The adoption of different algorithms and the ability to add new 

algorithms support the system architect also in the experimentation of different algorithms. 



26  

1.6 THESIS OUTLINE 

Figure 1-4 shows the organization of the thesis. After this introduction section, chapter 2 

presents the feature-driven domain analysis of Internet of Things. Hereby the common and 

variant features of IoT systems are explicitly defined and characterized. Chapter 3 describes 

an approach for architecting IoT systems for the farm management information system 

domain. Chapter 4 elaborates on the design process and considers the design of the 

integration of multiple IoT systems. Chapter 5 provides the results of a systematic literature 

review for identifying the current obstacles and solution directions when adopting DDS. This 

is in particular important for integrating multiple IoT systems. Based on the results of the 

earlier chapters, chapter 6 presents the DDS based architecture design for IoT systems. 

Chapter 7 presents an approach for deriving the feasible DDS configuration alternatives. 

Finally, chapter 8 provides the general discussion and reflects on the contributions of the 

thesis. 

C1. Introduction

C2. Feature-Driven Domain Analysis 
of Internet of Things

C5. Obstacles in 
Data Distribution Service

C3. Architecting Internet of Things 
based Farm Management 

Information Systems

C7. Deriving DDS Configuration 
Alternatives

C6. Data Distribution Service based 
Reference Architecture Design for 

Internet of Things Systems

C8. General Discussion

C4. Integrating Multiple IoT Systems

 

Figure 1-4: Thesis outline 
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FEATURE DRIVEN DOMAIN ANALYSIS OF 

THE INTERNET OF THINGS1   

                                                       

1 This chapter is based on the following published paper: 

• Ö. Köksal and B. Tekinerdogan, “Feature-driven domain analysis of session layer protocols of internet of 

things,” in Proceedings - 2017 IEEE 2nd International Congress on Internet of Things, ICIOT 2017, 2017, 

pp. 105–112. 
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Abstract 

The Internet of Things (IoT) architecture is defined as a layered structure in which each layer 

represents a coherent set of services. For supporting the communication among the different 

IoT entities many different communication protocols are now available in practice. For 

practitioners, it is often not clear which communication protocol is suitable for the various 

conditions in which the IoT systems need to be operated. In this chapter, we focus on the 

session layer which is responsible for setting up and taking down of the association between 

the IoT connection points.  We adopt a feature-driven domain analysis whereby we define the 

common and variant features that are related to communication protocols in the session 

layer. Based on the resulting feature diagram we explicitly characterize the existing session 

layer communication protocols. Further we define the criteria for selecting the identified 

communication protocols for the different conditions. 

Keywords: Internet of Things, Session Layer Protocols, Message Queuing Telemetry Protocol, 

Extensible Messaging and Presence Protocol, Data Distribution Service, Advanced Message 

Queuing Protocol and Constrained Application Platform. 

2.1 INTRODUCTION 

Internet of Things (IoT) can be described as connecting all devices to the internet. The word 

“thing” can be defined as any physical device except computers since we have already 

connected computers to the internet. Mobile phones, tablets, medical devices, sensors, 

actuators are typical devices used in internet of things concept.  

IoT connects billions of different devices with different data and connection characteristics. 

So, several network technologies and communication protocols are required to connect these 

devices to the internet.  

In order to accomplish connection requirements, internet of things phenomenon consists of 

several layers including device/data link layer, network layer, session layer, and application 

layer as well as security and management layers. Each of these layers might use different 

protocols for the same purpose. From this perspective IoT can be defined as concourse of 

devices connected by communication software using different communication protocols. 

Every layer of the IoT architecture includes its own set of possible communication protocols.  

Currently there are dozens of communication protocols that are defined by various different 

organizations and vendors. For practitioners, it is often not clear which communication 

protocol is suitable for the various conditions in which the IoT systems need to be operated. 

In this chapter, we focus on the session layer which is responsible for setting up and taking 

down of the association between the IoT connection points. The session layer provides 

services related issues of the session such as initiation, maintenance, and disconnection. As 

such, frequency and duration of various types of sessions are related with the session layer. 

Also, session information might enforce encryption and other security measures. 
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Selection of the session layer protocol depends on many factors such as data size, number of 

devices to be connected, latency, etc. Depending on the application requirements different 

session layer protocols might be used in session layer of the IoT application. 

We adopt a feature-driven domain analysis whereby we have identified the important 

knowledge sources and extracted and modeled the important features of the session layer 

communication protocols. The result of the domain analysis process, as such, is a feature 

model that defines the common and variant properties of the session layer communication 

protocols. Based on the resulting feature diagram we explicitly characterize the existing 

session layer communication protocols. Further we define the criteria for selecting the proper 

session layer communication protocol for different conditions. 

The remainder of the chapter is organized as follows: Section 2.2 provides a short background 

on IoT architecture.  Section 2.3 describes the feature model of IoT session layer protocols. 

Section 2.4 presents a survey for the current session layer protocols and provides selection 

criteria. Section 2.5 presents the related work and finally section 2.6 concludes this chapter. 

2.2 THE IOT ARCHITECTURE 

Various reference architectures have been provided for the IoT. In general, IoT architecture is 

represented as a layered architecture with various set of layers. Hereby, a layer simply 

represents a grouping of modules that offers a cohesive set of services. Based on the literature 

(Al-Fuqaha, Guizani, Mohammadi, Aledhari, & Ayyash, 2015; Gazis et al., 2015; Gilchrist, 2016; 

Karagiannis, Chatzimisios, Vazquez-Gallego, & Alonso-Zarate, 2015; McEwen & Cassimally, 

2014; Palattella et al., 2013; Pandya & Champaneria, 2015; Schneider, 2016; Sheng et al., 

2013; Vermesan & Friess, 2014) we provide the reference architecture as shown in Figure 2-1. 
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Figure 2-1: The IoT Reference Architecture 

The reference architecture consists of four layers including device/datalink layer, network 

layer, session layer, and application layer. The device layer includes the capabilities for the 

things in the network. The network layer provides functionality for networking connectivity 

and transport capabilities. The IoT layered architecture consists of functionality for generic 

support capabilities (such as data processing or data storage), and specific support capabilities 

for the particular applications. The application layer contains the IoT application.  
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The Security layer is a side-car layer relating to the other four layers and provides the security 

functionality. Finally, the management layer supports capabilities such as device 

management, local network topology management, and traffic and congestion management. 

2.3 FEATURE DRIVEN DOMAIN ANALYSIS 

In this section, we provide a feature-driven overview of IoT “Session Layer” protocols. For this 

purpose, we have carried out a thorough domain analysis process in which we selected and 

studied relevant set of studies that explicitly deal with IoT Communication Protocols. The 

domain analysis steps that we have adopted are shown in Figure 2-2.  

Select/Identify Concerns

Select Knowledge Sources

Collect the relevant 
information from the domains

Commonality and Variability 
Analysis 

Provide Feature Model

Evaluate Feature Model

Domain Scoping Domain Modeling

 

Figure 2-2: Domain Analysis Process 

The process consists of two basic activities including domain scoping and domain modeling. In 

the scoping process, we define the scope of the domain analysis process and select the set of 

knowledge sources. In the domain modeling process the feature diagram is provided. A 

feature diagram is a tree with the root representing a concept (e.g., a software system), and 

its descendent nodes are features. Feature diagrams show both the mandatory and the 

variant features. Variant features are usually represented as optional or alternative features. 

A feature configuration is a set of features which describes a member of a communication 
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protocol. A feature constraint further restricts the possible selections of features to define 

configurations.  In our overview the root node represents the problem category, while the 

features represent the sub-problems, and optionally the sub-sub-features define the possible 

solutions, if these were described. The overall legend (abstract syntax) for the problem feature 

diagrams is given in Figure 2-3. 

Feature

Feature group with 

cardinality i-j
Mandatory Feature

Optional Feature

[i-j]

 

Figure 2-3: Legend for the feature diagrams 

During the domain scoping process, we have looked at not only scientific papers but also 

considered websites and white papers of the important vendors and stakeholders in the IoT 

domain. It appears that there is a plethora of communication protocols that can be used in 

the different layers. In this paper, we focus on the communication protocols of the session 

layer. The selected list of important sources that we have considered is shown in Table 2-1.We 

do not claim that the set of sources is comprehensive but an analysis of these selected studies 

shows a convergence and agreement on the current set of protocols. 

Table 2-1: Selected set of primary studies discussing the IoT protocols 

ID Primary Study 
1 IoT – From Research and Innovation to Market Deployment (Vermesan & Friess, 2014) 
2 Standardized Protocol Stack for the IoT (Palattella et al., 2013) 
3 A Survey on the IETF Protocol Suite for the IoT (Sheng et al., 2013) 
4 A Survey of Technologies for the IoT (Gazis et al., 2015) 
5 IoT: Survey and Case Studies (Pandya & Champaneria, 2015) 
6 IoT: A Survey on Enabling Technologies, Protocols and Applications (Al-Fuqaha, Guizani, et al., 2015) 
7 Industry 4.0 - The Industrial IoT (Gilchrist, 2016) 
8 RTI Whitepaper (Schneider, 2016) 
9 Designing the Internet of Things (McEwen & Cassimally, 2014) 
10 A survey on the Application Layer Protocols for the IoT (Karagiannis et al., 2015) 

 

During the domain modeling process, we extracted the relevant data from the knowledge 

sources, compared the identified protocols as discussed in the different studies, derived the 

common and variant properties and mapped these to the feature diagram. The final step was 

the evaluation of the feature diagram which resulted in several iterations until we could 

consolidate the feature diagram. 

2.4 FEATURE MODEL OF THE IOT SESSION LAYER PROTOCOLS 

Figure 2-4 shows the top-level feature diagram that we could derive from the primary studies. 

In essence, communication protocols are distinguished for the four layers of the IoT 

architecture. 
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Figure 2-4: Top level feature diagram of the IoT 

Based on the feature diagram as defined in the previous section we will characterize the 

existing session layer communication protocols provided in the literature. Figure 2-5 shows 

the feature diagram that we derived from the domain analysis to the IoT communication 

protocols.  
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Figure 2-5: Feature diagram of session layer communication protocols of the IoT 

The top-level mandatory features in the feature diagram are protocol type, source-target, 

transport type and architecture. The protocol type feature defines the protocols that we 

identify from the selected primary studies. These identified protocols are the following: 

• Message Queuing Telemetry Transport (MQTT): One of the most popular protocols to 
collect device data and communicate with servers (Schneider, 2016).  

• Extensible Messaging and Presence Protocol (XMPP): is based on exchanges of XML 
messages in real time that is defined to connect devices to servers (IETF, 2011).  

• Advanced Message Queuing Protocol (AMQP): A queuing system designed to connect 
servers to each other (OASIS, 2011). 

• Data Distribution Service (DDS): A fast data bus for integrating devices and systems (OMG, 
n.d.-a). 

• The Constrained Application Protocol (CoAP): A specialized web-based protocol to be used 
in constrained nodes and constrained networks (Shelby, Hartke, & Bormann, 2004). 

Please note that, although in some references Representational State Transfer (REST) is given 

an example of the communication protocol, it is not a real standard but a framework like SOAP 

(Gilchrist, 2016). So, it is not given here as a session layer protocol.  

As given in Figure 2-5, there are three types of source-target relations available in session layer 

protocols: Device-to-Device (D2D), Device-to-Server (D2S), and Server-to-Server (S2S).  In 

some references these features are also named Machine-to-Machine (M2M), Machine-to-

Cloud (M2C), and Cloud-to-Cloud (C2C) respectively.  
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Session layer protocols are closely related with the transport layer. For all communication 

protocols, transport layer could be either UDP or TCP. Some protocols like DDS support both 

UDP and TCP. Addressing scheme (unicast, broadcast, or multicast) might be important 

depending on the application requirements. 

The selection of transport layer protocol is important since using TCP and/or UDP changes the 

characteristics of the communication from performance and security perspectives. If low 

power devices and networks will be used, TCP is generally not available. So, the protocol that 

will be used must support UDP. On the other hand, not using TCP might introduce some 

security drawbacks. Because, security tools of TCP (SSL/TLS) are not available in UDP. 

2.5 PUBLISH-SUBSCRIBE COMMUNICATION PATTERN  

All of the session layer protocols given in this chapter support publish-subscribe 

communication pattern as given in Figure 2-6. A typical Publish-Subscribe system defines a 

Publish-Subscribe Domain which consists of a group of Participants which are deployed on a 

number of Application Nodes. Each Participant defines a number of Publisher and Subscribers 

that reads/writes Data Objects/Events. Data Objects/Events are elements of data exchange 

model of the publish-subscribe system.  
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...

publish
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subscribe

 

Figure 2-6: Publish-Subscribe Communication Pattern 

Three different types of decoupling can be identified between the subscribers and publisher 

(Eugster, Felber, Guerraoui, & Kermarrec, 2003). Time decoupling refers to the fact that 

interacting components do not need to be actively participating in the interaction at the same 

time. Publishers might publish events independent of the subscribers, and subscribers might 

get notified about the occurrence of events even if the original publisher of the event is 

disconnected. Space decoupling refers to the fact that publishers and subscribers might not 

know each other and do not hold any reference to each other. Finally, synchronization 

decoupling refers to the fact that publishers and subscribers are not blocked during their 

actions. The Architecture Model of a middleware can be either centralized or decentralized 

denoting whether the data flows through a central unit or not. Further, the architecture model 
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can include a broker that manages the data flow. The architecture can be unbrokered, i.e. 

there is no broker defined, or multi-brokered, whereby multiple brokers manage the data 

flow.  

2.6 SELECTING COMMUNICATION PROTOCOL  

As we can observe from the domain analysis we can distinguish different protocols and 

different criteria for selecting these protocols. In this section, we will provide an evaluation 

framework for characterizing communication protocols and describe the identified 

communication protocols using the evaluation framework.  

2.6.1 Evaluation Framework 

In our domain analysis process, we have also extracted the criteria that have been mentioned 

when describing the communication protocols. We have summarized these criteria in the 

evaluation framework as shown in Table 2-2.  

Table 2-2: Criteria for selecting communication protocols 

Criteria Description 
Standard organization What is the standardization organization?  
Source-Target What are the possible source-target relations? 
Real-Time Does the architecture allow real-time communication? 
Brokered/Bus based Is the architecture brokered or bus-based (unbrokered)? 
Communication pattern Is the adopted communication pattern including Pub/Sub or Request/Reply? 
Message/Data centric Is the protocol message or data centric? 
Transport What is the transport protocol (TCP/UDP)? 
Interoperable What is the level of interoperability? 
QoS Are the quality of service parameters defined? 
Mobile support Does the system provide mobile support? 
Web/Application based Is the protocol web-based or application-based? 
Security What is the adopted security protocol? 
License What is the license level of the communication protocol? 

 

2.6.2 Session Layer Communication Protocol Types 

Using the evaluation framework, we will characterize the five identified communication 

protocols in more detail.  

1) MQTT 

Message Queuing Telemetry Transport MQTT (OASIS, 2014) is a light-weight messaging 

protocol introduced by IBM in 1999. It is an open source protocol which is standardized by 

OASIS (OASIS, 2010) in 2013.  It is designed for limited bandwidth networks and small code 

footprints. The main purpose of this protocol is remote monitoring. Data from devices is to be 

controlled and monitored within servers/cloud. It is especially suitable for large networks of 

small devices. Thousands of sensors in a single location can be connected for analysis.  

MQTT mainly collects data from devices and transport to servers. So mainly it uses Device-to-

Server (D2S) communication although Device-to-Device (D2D) communication is possible. 
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MQTT does not need to be fast, its real time is measured in seconds.  MQTT uses broker based 

publish-subscribe architecture as given in Figure 2-7.  
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Figure 2-7: MQTT communication architecture 

The architecture of MQTT consists of three main components namely publishers, subscribers 

and the broker. Publishers are generally the light weight sensors. They send their data to the 

broker and immediately sleep (if possible).  Brokers classify sensor data coming from 

publishers into specified topics. Subscribers connect to the broker to get new/updated data. 

Subscribers are the applications that are interested in certain data. This architecture enables 

easier one to many messaging and low coupling between publishers and subscribers on 

contrary to tight coupling between client and servers in hypertext transfer protocol (HTTP).  

MQTT supports hierarchical topics structures (like subject, sub-subject, sub-sub-subject) 

(Vermesan & Friess, 2014). Although MQTT supports asynchronous communication, it 

supports interoperability partially since the data is not negotiated between publishers and 

subscribers. Message formats must be known by clients. Also, it does not support labeling 

messages with types or metadata.  MQTT use TCP for transport since device data shall not be 

lost. On the other hand, TCP might cause decreasing network efficiency as the number of 

nodes increase.  Also, MQTT does not support dynamic discovery of nodes. 

MQTT-S protocol is an extension of MQTT protocol that is suitable for constrained networks 

on which TCP is not available. This protocol allows MQTT to be used for sensor networks such 

as ZigBee (McEwen & Cassimally, 2014).  Since MQTT protocol is simple, it might suffer from 

hacking (Vermesan & Friess, 2014). So, there are some secured versions of MQTT to introduce 

data encryption. For example, SMQTT is the secured version of MQTT protocol that is 

purposed to enhance security. This protocol uses encryption broadcasting in which one 

message is encrypted and delivered to multiple nodes. Although this type of encryption is 

widely used in IoT applications key generation and encryption algorithms are not standardized 

(Singh, Rajan, Shivraj, & Balamuralidhar, 2015).  
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2) XMPP 

XMPP is a widely used session layer protocol based on XML. XMPP was standardized by 

Internet Engineering Task Force (IETF) (IETF, 2017).  The use of XML makes this protocol 

extensible. It is a widely-used protocol for consumer IoT applications as well as for Software 

Defined Networks (SDN). On the other hand, the use of XML messages causes extra overhead 

and increase power consumption. Because of the high-power consumption and the 

complexity of the standard makes the protocol not suitable for embedded sensors with limited 

resources as well as sensor networks.  

XMPP was initially called Jabber and designed for message exchange / instant messaging (IM) 

applications, i.e. people to people communication by text messaging. As the above definition 

implies XMPP uses Device-to-Server (D2S) communication. In order to address a device, it uses 

a simple and powerful addressing scheme in name@domain.com format. But it is not suitable 

for Device-to-Device communications (Schneider, 2016). It is near real-time and scalable to 

thousands of nodes. Its real time is measured in seconds. Since it is designed for near-real time 

applications it supports low-latency small messages. XMPP uses broker-less architecture. It 

supports publish/subscribe pattern as well as request response architecture. XMPP does not 

provide Quality of Services (QoS). XMPP uses TCP for the transport.  

In XMPP, before transmitting data, its’ data must be encoded. Hence, it is useful for devices 

with large communication traffic where extra security is required. As it was stated in the above 

paragraphs, XMPP was designed for instant message exchange and adopted to IoT later. New 

extensions for XMPP are still being offered to enhance the protocol application to the IoT. For 

example, in order to add service discovery XEP-0030, to add concentrators for connecting 

legacy sensors and devices XEP-0035 and to transport over HTTM, XP-0124 standards were 

added.  

3) AMQP 

AMQP is another session layer protocol especially designed for finance industry. AMQP is 

standardized by OASIS (OASIS, 2011). The main purpose of AMQP protocol is to handle 

thousands of queued transactions. It is mostly suitable for server-based analysis functions. It 

tracks messages and guarantee the delivery of the messages. Messages are delivered in three 

ways (1) At most once (once or never) (2) At least once (multiple delivery might exist) (3) 

Exactly once. AMQP sends transactional messages between servers (Schneider, 2016). So, it is 

a Server-to-server (S2S) protocol.  The main features of AMQP architecture is message 

orientation, queuing and routing, reliability and security (Vermesan & Friess, 2014). AMQP is 

a message centric brokered protocol that supports publish-subscribe communication pattern 

similar to MQTT Figure 2-8. Unlike MQTT, the broker in AMQP consists of two main 

components: exchange and queues (Salman & Jain, 2017). Exchange receives messages from 

publishers and distributes them to the queues with respect to predefined rules. When data is 

available subscribers get the data in the subscribed to queues that are basically topics (OASIS, 

2011). In addition, AMQP supports point-to-point communication and discovery of nodes 

which is managed by the broker. 
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Figure 2-8: AMQP communication architecture 

AMQP also provides strictly reliable point-point connection. Endpoints acknowledge the 

acceptance of messages. AMQP requires implementations from different vendors must be 

interoperable. AMQP is a wire-protocol that means any application that conform data format 

of AMQP can work with any other compatible application from a different vendor being 

language independent. In order, not to lose transactions, AMQP is designed to run over TCP. 

Using TCP as the transport might cause poor performance with increasing number of nodes. 

One of the key features of the AMQP is the security. It uses authentication and/or encryption 

based on SASL and/or TLS (Vermesan & Friess, 2014).   

4) DDS 

DDS is standardized by Object Management Group (OMG) (OMG, n.d.-b) in 2004 and the latest 

release is submitted in 2015 (OMG, 2015b). DDS is a data centric, scalable, real-time 

middleware for high performance machine-to-machine communications. DDS might get/send 

enormous data from many simultaneous publishers/subscribers. On the other hand, DDS, 

from the IoT perspective, has some obstacles in wide area network communication, wireless 

communication and mobile computing domains (Köksal & Tekinerdogan, 2017b).  

Unlike MQTT and XMPP, DDS provides M2M communication. DDS is a real-time standard 

whereby real-time is measured in milliseconds or microseconds (Schneider, 2016). DDS uses 

bus-based communication architecture as given in Figure 2-9.  

DDS support publish-subscribe pattern as many other session layer protocols providing 

operating system and programming language independency. DLRL layer might be used to 

convert data in application objects to the data-centric format of DCPS layer. DDS provides 

automatic discovery of nodes as well as supporting Quality of Service (QoS). DDS provides 

more than 20 QoS (depending on the vendor) in all open source and commercial 

implementations which simplifies complex network programming. QoS are also useful for 

several quality factors such as reliability, durability and scalability. DDS provides decoupled 

communication between participants. DDS has an interoperability standard (DDSI) to 

guarantee interoperability (OMG, 2014) between different vendors. 
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Figure 2-9: Typical bus-based communication architecture 

As explained in above sections, most of the session layer protocols just support TCP in the 

transport layer. But DDS also supports UDP and multicast UDP. In fact, one of the powerful 

features of the DDS is supporting multicast UDP that enables high performance M2M 

communication. On the other hand, since multicast and UDP transports are not supported by 

many Wide Area Networks (WAN), some additional concepts like Interconnection Services or 

Routers shall be used in DDS systems to assure end-to-end QoS in WANs (Köksal & 

Tekinerdogan, 2017b).   

DDS has both open source and commercial implementations. Lightweight versions are also 

available to run with limited or high-performance computing resources in embedded devices.  

DDS was initially designed for LAN. But, as the interest in working with DDS in WAN increase, 

security issues gained more importance in DDS based systems. Security specification of DDS is 

just released (OMG, 2016) after a long-term beta version. DDS uses AES for data encryption 

and HMAC-SHA for message authentication. 

5) CoAP 

CoAP is a specialized document transfer protocol similar to HTTP which is standardized by IETF 

(IETF, 2017). It includes key Web concepts like URIs and internet media types. 

Representational State Transfer (REST) is the standard interface between client and servers of 

HTTP. But, REST requires high power consumption with respect to low power devices. CoAP is 

designed to provide RESTful interface for low power devices. Similar to MQTT-S, the main use 

of CoAP is in constrained nodes and constrained networks which do not support TCP. It is 

designed to interface with HTTP. It is a simple protocol with low overhead supporting multicast 

communication (Xi Chen, 2014).  

Like DDS, CoAP is used in machine-to-machine (M2M) communications. CoAP uses a request-

reply architecture providing automatic discovery of services and resources. It supports 

asynchronous communication and one-to-one communication between client and server.  

CoAP use four different types of messaging depending on the application requirements. 

Confirmable and non-confirmable messages are for reliable and unreliable messaging 

respectively. For direct communication between client and server piggyback messages 

(acknowledgement) are used. Finally, separate messaging is used for server messages other 
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than acknowledgement (Xi Chen, 2014). CoAP supports content negotiation since it is 

designed to be interoperable. Although, TCP is commonly used in HTTP, in low power devices 

and microcontrollers UDP is easier to implement. Since CoAP is designed to work on 

constrained networks, it uses UDP in the transport layer supporting both broadcast and 

multicast addressing. CoAP does not support TCP.  

Although supporting UDP is important in constrained networks, not using TCP brings security 

issues since security tools of TCP (SSL/TLS) are not available in UDP. CoAP uses Datagram 

Transport Layer Security (DLTS) over UDP for secure communication. DLTS is similar to the TLS 

over TCP that provides authentication, automatic key generation and cryptography. Please 

note that DLTS has some drawbacks. First of all, it does not support multicast which is one of 

the major advantages of CoAP. Also, using DLTS causes packet increase in network traffic 

causing increased power consumption (Karagiannis et al., 2015). 

2.6.3 Overall summary  

In the previous sub-sections, we have described the session layer communication protocols 

using the evaluation framework in Table 2-2. In Table 2-3 we summarize the overall results. 

The table can be used to select the communication protocol for different situations.  

Table 2-3: Adopted criteria for selecting communication protocols 

Characteristics AMQP CoAP DDS MQTT XMPP 
Standard OASIS IETF OMG OASIS IETF 
Source-Target S2S D2D D2D D2S D2S 
Real-Time No No Yes No Near RT 
Broker/Bus based Broker-based Broker-based Bus-based Broker-based Bus-based 
Com. pattern Pub/Sub Request-Reply Pub/Sub Pub/Sub Pub/Sub 
Message/Data centric Message Data  Data Message Data 
Transport TCP UDP TCP/UDP TCP TCP 
Interoperable Yes Yes Yes Partial Yes 
QoS Yes Yes Yes Yes Yes 
Mobile support Yes Yes Yes Yes Yes 
Web/App. based App. based Web based App. based App. based App. based 
Security TLS/SSL DTLS AES/HMAC-SHA TLS/SSL TLS/SSL 
License Open source & 

Commercial 
Open source & 
Commercial 

Open source & 
Commercial 

Open source & 
Commercial 

Open source 
& Commercial 

 

Given the requirements for different source-target communication it appears that different 

protocols are needed. For example: if the application will provide device-to-server 

communication MQTT and XMPP might be used. Regarding real-time constraints, only XMPP 

and DDS seem to be feasible. These protocols also require bus-based architecture. The other 

protocols do not provide real-time performance and mainly broker-based.  

All the session layer protocols, except CoAP use publish-subscribe communication pattern. 

CoAP uses request-reply. Interoperability is an important concern for all the communication 

patterns. The TCP protocol is the most frequent used transport layer protocol, while the UDP 

protocol is only used in DDS and CoAP.  
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All the protocols provide QoS parameters. Further, both open source and commercial versions 

are available for all the protocols, and mobile support is provided. 

Security is an important issue for all the protocols and this handled in different ways. The 

TLS/SSL protocol is an important protocol for data encryption.  

The communication protocols are either message centric or data centric. All the protocols are 

application based, except CoAP which is web-based. 

All the above criteria can be used to select the proper communication protocol given the 

contextual requirements. Based on the analysis practitioners might select the feasible 

protocol. In case more than one protocol is feasible additional functional and non-functional 

requirements might be considered.  

2.7 CONCLUSION  

For supporting the communication among the different IoT entities many different 

communication protocols are now available in practice. In this chapter, we have provided the 

results of the analysis to the IoT session layer protocols. For this we have adopted a systematic 

domain analysis process in which we first selected the important key knowledge sources that 

describe IoT session layer protocols. We have adopted feature modeling to model the 

common and variant features of the server layer communication protocols. It appeared that 

all the protocols adopt publish-subscribe architecture except CoAP. CoAP uses Request-Reply. 

To characterize the communication protocols in more detail we have provided an evaluation 

framework that includes the important criteria which we derived from the literature as well. 

The evaluation framework in the end appeared to be very useful not only for characterizing a 

single communication protocol but also for comparing the different communication protocols. 

The feature model of the communication protocols can be used by practitioners to select 

feasible communication protocols for their situational requirements. Researchers can use the 

results of this study to elaborate on further research on session layer protocols.  
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3  
 

 

ARCHITECTING INTERNET OF THINGS 

BASED FARM MANAGEMENT 

INFORMATION SYSTEMS1  

                                                       

1 This chapter is based on the following submitted paper:  

• Ö. Köksal and B. Tekinerdogan, “Architecture Design Approach for Internet of Things Based Farm 

Management Information Systems”, Precision Agriculture Journal, 2018. 
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Abstract 

Precision farming adopts advanced technology and the corresponding principles to increase 

the amount of production and economic returns, often also with the goal to reduce the impact 

on the environment.  One of the key elements of precision farming is the Farm Management 

Information Systems (FMIS) that supports the automation of data acquisition and processing, 

monitoring, planning, decision making, documenting, and managing the farm operations. An 

increased number of FMISs now adopts Internet of Things (IoT) technology to further optimize 

the targeted business goals. Obviously IoT systems in agriculture typically have different 

functional and quality requirements such as choice of communication protocols, the amount 

of the data size to be processed, the security level, safety level, and time performance. For 

developing an IoT-based FMIS, it is important to design the proper architecture that meets 

the corresponding requirements.  For guiding the architect in designing the IoT-based farm 

management information system that meets the business objectives a systematic approach is 

provided. To this end a design-driven research approach is adopted in which feature-driven 

domain analysis is used to model the various different precision farming requirements. 

Further, based on a FMIS and IoT reference architectures the steps and the modeling 

approaches for designing IoT-based FMIS architectures are described. The approach is 

illustrated using two different relevant industrial case studies on precision farming in Turkey, 

one for smart wheat production in Konya, and the other for smart green houses in Antalya. 

Keywords: Precision Farming, Farm Management Information System, Internet of Things, 

Architecture Design 

3.1 INTRODUCTION 

Precision farming adopts advanced technology and the corresponding principles to increase 

the amount of production and economic returns, often also with the goal to reduce the impact 

on the environment. Similar related terms are used for the same purpose such as precision 

agriculture, site-specific farming, site-specific crop management, prescription farming, and 

satellite farming (Adamchuk, Hummel, Morgan, & Upadhyaya, 2004; Rains & Thomas, 2009; 

N. Zhang, Wang, & Wang, 2002). Precision farming builds on advanced technology such as 

cloud computing, remote sensing, data-driven farming, big data analytics, and IoT. Several 

important benefits of precision farming have been provided in the literature including 

optimizing production efficiency, optimizing quality of the crop, minimizing environmental 

impact, minimizing risk, Conservation of resources, reducing cost, increasing profit, and better 

management decisions (Rains & Thomas, 2009; Sørensen et al., 2010; Sørensen, Pesonen, 

Bochtis, Vougioukas, & Suomi, 2011; N. Zhang et al., 2002).  

One of the key elements of the precision farming is the FMIS. Although FMIS started as a 

simple record keeping system, modern FMISs  are sophisticated systems with advanced 

modules to supporting  comprehensive set of farming operations (Fountas et al., 2015). With 

the introduction of IoT FMIS and precision farming in general have gained a new momentum. 

IoT helps in smart and automated information gathering and fusing as well as monitoring 

sensor data coming from different machines, animals, plants, other farms and greenhouses 
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and other systems such as unmanned air and land vehicles. In this way, the decision making 

and planning in the agricultural domain can be further supported which can lead to even more 

effective and efficient farming. With the help of IoT, farming practices such as yield 

monitoring, cultivar selection, pest management, irrigation, etc. can be applied more 

precisely. Crop yield can be monitored and precise crop maps which show high and low 

production areas can be obtained readily (Rains & Thomas, 2009).  

For developing an IoT-based FMIS it is important to design the proper IoT architecture which 

represents the overall gross level structure of the system. IoT-based farm management 

information systems typically have different functional requirements such as the type of crop, 

the feasible type of sensors and communication protocols, and the amount of the data size to 

be processed. Besides of functional requirements also quality requirements such as security 

level, safety level, time performance, and overall cost of development and operation are also 

different for different applications.  

The different requirements typically require a different IoT architecture. In the literature, 

several reference architectures for FMIS and IoT have been proposed that can be reused to 

derive the IoT application architecture. Deriving the proper architecture however is far from 

trivial and this can impede the success of the IoT system. 

The objective of this study is to contribute to the current state-of-art of FMIS by enhancing 

the current architecture design approaches for IoT-based FMIS. In particular, the study 

provides an answer to the following research question: What is a suitable architecture design 

approach for designing IoT-based FMIS? The presented approach adopts a feature-driven 

domain analysis approach to model the various different precision farming requirements. 

Further, based on FMIS and IoT reference architectures the steps and the modeling 

approaches for designing the IoT-based FMIS architecture are described.  The approach is 

illustrated using two different relevant industrial case studies on precision farming in Turkey, 

one for developing IoT-based FMIS for smart wheat production in Konya, and the other for 

smart tomato production in greenhouses in Antalya.  

The remainder of the chapter is organized as follows. In section 3.2 we provide the background 

on IoT, precision farming and architecture design. In section 3.3, we describe two case studies 

and the problem statement. In section 3.4 we present the approach for deriving concrete 

application architectures. Section 3.5 presents the feature model for FMIS and IoT, which will 

be used to support the design of the IoT-based FMIS. Section 3.6 presents the reference 

architecture for FMIS. Section 3.7 illustrates how our approach is applied to the case studies 

of Section 3.3. Section 3.8 presents the discussion. Section 3.9 presents the related work and 

finally section 3.10 concludes the chapter. 

3.2 BACKGROUND 

3.2.1 Internet of Things 

Until recent time, the internet was primarily used for interconnecting computers any time and 

any place, but this required human interaction and monitoring. The IoT is a new paradigm that 

adds a new dimension to the current information and communications technologies (ICTs), 
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whereby the dimension "Anything communication" is added to the communication 

capabilities. The IoT enables anytime, anyplace connectivity for anything, by linking the 

objects of the real world with the virtual world. In the IoT world physical things and virtual 

things, all interact with each other in the same space and time. 

The IoT is the result of technological progress in many parallel and often overlapping fields, 

including those of embedded systems, ubiquitous and pervasive computing, mobile 

telephony, telemetry and machine-to-machine communication, wireless sensor networks, 

mobile computing, and computer networking. In essence, IoT combines the concepts 

“Internet” and “Thing” and the provided definitions can be interpreted how these have 

addressed these two concepts. What is important is that IoT adds a new dimension to the 

current ICTs, which already provide "any time" and "any place" communication. Many 

definitions of IoT can be found in the literature. A feasible definition of IoT for the context of 

this chapter is the following (ITU, 2005): The Internet of Things (IoT) is the network of physical 

objects or "things" embedded with electronics, software, sensors, and network connectivity, 

which enables these objects to collect and exchange data. 

Various reference architectures have been provided for the IoT. In general, IoT architecture is 

represented as a layered architecture with various set of layers. Hereby, a layer simply 

represents a grouping of modules that offers a cohesive set of services. Based on the literature 

(Al-Fuqaha, Guizani, et al., 2015; Gazis et al., 2015; Palattella et al., 2013; Pandya & 

Champaneria, 2015; Sheng et al., 2013) we provide the reference architecture as shown in 

Figure 3-1. 
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Figure 3-1: IoT reference architecture 

The reference architecture includes the following layers: device layer, network layer, session 

layer, application layer, and business layer, management layer, and security layer. The device 

layer consists of sensors and physical devices. This layer identifies and collects data and 

specific information generated by sensors and physical devices. The data gathered is passed 

to the network layer. In essence the device layer bridges thus, the gap between the physical 

world and the digital world. The network layer provides functionality for networking 

connectivity and transport capabilities. This layer is also called transport layer.  This layer 

securely transmits data gathered from sensors to the session layer. Transmission medium can 

be wired or wireless. The session layer is responsible for service management and consists of 

functionality for setting up and taking down of the association between the IoT connection 
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points. Several session layer standards and protocols are offered by different organizations. 

Although most of these standards and protocols use TCP or UDP for transport, they have 

different architectures and characteristics that are suitable for different purposes. The 

application layer contains the IoT application and manages the application using the data from 

the session layer. The implemented IoT application can be, for example, smart farming, smart 

city, and smart home. The business layer defines business logic and workflows. This layer is 

responsible from the management of all IoT systems, services and applications within the 

domain. The business models are defined in this layer based on the data gathered from the 

application layer. The data is analyzed to build the required business models and define the 

strategies.  The security layer is a side-car layer relating to the other five layers and provides 

the security functionality. Similarly, the management layer is a side-car layer supporting 

capabilities such as device management, local network topology management, and traffic and 

congestion management (Khan, Khan, Zaheer, & Khan, 2012; Köksal & Tekinerdogan, 2017a).   

3.2.2 Architecture Design 

Software architecture for a program or computing system consists of the structure or 

structures of that system, which comprise elements, the externally visible properties of those 

elements, and the relationships among them (Bass, Clements, & Kazman, 2003; Clements et 

al., 2011; Tekinerdogan, 2014). Software architecture forms one of the key artifacts in the 

entire software development life cycle since it embodies the earliest design decisions and 

includes the gross-level components that directly impact the subsequent analysis, design and 

implementation (Apel, Batory, Kästner, & Saake, 2013). It is generally accepted that software 

architecture design plays a fundamental role in coping with the inherent difficulties of the 

development of large-scale and complex software. Research on architecture design in the last 

two decades has resulted in different useful techniques and approaches. 

Architectural drivers define the concerns of the stakeholders which shape the architecture. A 

stakeholder is defined as an individual, team, or organization with interests in, or concerns 

relative to, a system (Bass et al., 2003). Each of the stakeholders’ concerns impacts the early 

design decisions that the architect makes. A common practice is to model different 

architectural views for describing the architecture according to the stakeholders’ concerns 

(Clements et al., 2011; Demirli & Tekinerdogan, 2011; Tekinerdogan, 2014). An architectural 

view is a representation of a set of system elements and relations associated with them to 

support a particular concern (Clements et al., 2011). Having multiple views helps to separate 

the concerns and as such support the modeling, understanding, communication and analysis 

of the software architecture for different stakeholders. Architectural views conform to 

viewpoints that represent the conventions for constructing and using a view. An architectural 

framework organizes and structures the proposed architectural viewpoints. 

A recent software architecture framework approach is the so-called Views and Beyond 

approach (V&B) (Clements et al., 2011). The approach distinguishes three different categories 

of viewpoints or styles including Module, component-and-connector, and allocation styles.  

Module view category is used for documenting a system’s principal units of implementation 

and Component and Connector category is used for documenting the system’s units of 
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execution. Deployment View category that is used to document the relationships between a 

system’s software and its development and execution environments.  

A software architecture that addresses the concerns of specific stakeholders is here referred 

to as concrete architecture. A concrete architecture defines the boundaries and constraints 

for the implementation and is used to analyze risks, balance trade-offs, plan the 

implementation project and allocate tasks (Tekinerdogan, 2014). Concrete architectures can 

be viewed as instances of reference architectures, which are generic designs. In turn, a 

reference architecture is derived from the knowledge and experiences accumulated in 

designing concrete architectures in the past (Angelov, Grefen, & Greefhorst, 2012; Cloutier et 

al., 2010). The concrete architectures differ from one case to the next depending on the 

requirements of the stakeholders involved. Reference architectures can be used descriptively 

to “capture the essence of existing architectures” or prescriptively to guide the development 

of new ones (Cloutier et al., 2010). 

3.3 CASE STUDIES AND PROBLEM STATEMENT 

In this section, we describe the problem statement that we illustrate using two important 

industrial case studies of precision farming in Turkey. The case studies have been selected 

based on their relevance and their difference with respect to the functional and quality 

requirements. The case studies include the development of IoT-based FMIS for wheat 

production and tomato production in Turkey (Figure 3-2). We first describe the details of each 

case study and then follow up with the problem statement. 

 

Figure 3-2: Location of Konya and Antalya cities [Bing Imagery] 

3.3.1 Case Study: Wheat Production 

Turkey has 23.9 million hectares of cultivated farms. Hereby, grain production takes 49% of 

this area. Wheat production constitutes 67% of the total grain production (Turkish Land Crop 

Office, 2017). Turkey’s wheat production is about 20 million tons yearly (Turkish Ministry of 

Agriculture, 2018). As such, wheat production is one of the most relevant agriculture 

businesses in Turkey.  
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One of the key regions of wheat production in Turkey is the region of Konya which is far from 

costal area and located on a big plane near to middle of part of Turkey (Figure 3-2). Konya has 

a primarily terrestrial climate, and large plateaus and big arable farms of the city make Konya 

a suitable place for wheat production. Konya is the greatest wheat producer city of Turkey and 

has 3 million tons of wheat production yearly. 

3.3.2 Case Study: Tomato Production in Greenhouses 

The second case study includes the tomato production in greenhouses in Antalya. Tomato 

production in the world is 170 million tons yearly and almost 12 million tons of this production 

is produced in Turkey. Turkey exports tomato to many countries, and the total export is about 

600000 tons. Tomato is produced both in farms and greenhouses. 51% of greenhouse 

production is tomato in Turkey.  

Antalya is located in the south of Turkey just above the Mediterranean Cost as shown in Figure 

3-2. The typical Mediterranean climate of the city is suitable for vegetable and fruit 

production. Currently, especially greenhouse farming is very common in Antalya. 80% of glass 

greenhouses and 50% of plastic greenhouses of Turkey exists in Antalya 

3.3.3 Problem Description 

Generally, wheat and tomato are produced with traditional farming in these regions. A general 

observation from governmental reports is that a small part of the farmers uses traditional 

FMIS (Turkish Land Crop Office, 2017; Turkish Ministry of Agriculture, 2018). Despite the use 

of FMIS, several problems in the agricultural sector could still be identified.  

• Inefficient crop production 

To meet the growing population in Turkey, it is important to increase the crop production. 

Over the last years, the percentage of the crop that is needed to feed the population tends to 

get lower. Hence, it is required that the production is increased, which requires a more 

effective and efficient crop production.  According to the Turkish Statistical Institute (TSI), 

Turkey is one of the top 10 wheat producers in the world (Figure 3-3). But this production is 

not sufficient for Turkey’s growing internal demand.  

 

Figure 3-3: Percentages of top 10 wheat producer in the world in 2016-17 
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In order to compensate the need, Turkey imports more than 4 million tons of wheat each year 

from other countries. From the efficiency point (tons/hectare) of view also improvements are 

required and possible. Turkey’s wheat production efficiency is about 2.68 tons/hectare (Figure 

3-4). 

 

Figure 3-4: Efficiency in wheat production [tons/hectare] in 2016-17 

• Inefficient usage of soil 

Turkey has 2.2 million farmers and 148 million decares arable farms but, 17% of arable farms 

are fallow lands (Turkish Ministry of Agriculture, 2018). One of the reasons for this is due to 

lack of insight and support regarding decision making on crop production, soil fertilization, and 

pesticide management.   

• Increase in cost of farming inputs 

In the last years, the cost of fertilizers, fuel-oil and chemicals of pest prescriptions have 

dramatically increased. On the other hand, the usage of these resources has not been 

effectively used and monitored. This has inversely affected farming and greenhouse 

production profit. As a result of this, the number of farmers in these domains have decreased 

and herewith the overall production has lowered. To solve these problems, it is required to 

better monitor and manage the input resources, and likewise decrease the overall costs.  

These problems can be to some extent tackled by focusing on an improved business and 

logistics process, by applying total quality and precision farming principles, and appropriate 

sensing and effector technologies. Yet, these solutions remain limited compared to the 

adoption of IoT that provides a further substantial optimization by enabling the integration of 

various technologies such as (wireless) sensor networks, mobile computing, cloud network, 

data analytics, and decision support systems. 

To cope with these problems a strategic decision is to focus on IoT (Dlodlo & Kalezhi, 2015; 

Ma, Zhou, Li, & Li, 2011). IoT enables the usage of sensors to measure the required parameters 

(e.g. soil quality), support the decision-making process using services such as data analytics, 

and use actuators to execute the proper action at the right time and right place. This is for 

example the case for the wheat and tomato production that has been described in the 
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previous sections. With the introduction of IoT for both cases several benefits are envisioned. 

Firstly, determining the variability in yield potential might allow optimizing production at each 

site. With the help of precision farming practices such as nutrient management and soil 

management quality of the soil can be improved. Also, pest management allows mapping pest 

populations and obtaining better prescriptions reducing pesticide usage and causing minimal 

environmental impact. Managing farming practices and obtaining profit maps help reducing 

the risk in agriculture. Better irrigation, fertilization practices, and pest management 

strategies save resources to be used.  Crop production problems can be solved precisely and 

in less time with precision farming. Further, long term data can be collected and analyzed over 

time, providing better strategic management decisions. Saving input materials and resources 

enables reducing the work needed and cost. Finally, reducing cost and improving quality will 

increase profits obtained. So far with the existing FMIS these goals could not be fully realized 

or are only achieved to a limited extent. Although it is envisioned that IoT will be worthwhile 

to realize the above goals it is not easy to develop an IoT-based FMIS system.  

In the literature, various different reference architectures have been proposed for both IoT 

and FMIS. Recently, the two concepts are further integrated leading to an IoT-based FMIS 

architecture. Unfortunately, deriving a concrete application architecture for the specific 

farming situation is far from trivial. This is because the existing architectures are usually 

represented as reference architectures that are too abstract and do not consider further 

details that are required to derive the application architecture. For deriving the concrete 

architectures for a particular context, the different features of FMIS and IoT should be 

selected. This includes for example the different management functionality, the security 

protocols, the device communication protocols, and the cloud services. For each of these 

many different selections can be made and the combination of these leads to a broad design 

space.  

Obviously, given a description for the precision farming system we can identify many different 

architecture design alternatives. Since the architecture has a direct systemic impact on the 

overall IoT-based precision farming it is important to derive the proper architecture to meet 

the overall precision farming requirements of the various stakeholders. For guiding the 

architect in deriving the customized concrete architecture a systematic approach is necessary 

3.4 FMIS DEVELOPMENT METHOD 

In Figure 3-5, we show the proposed development approach for deriving an IoT-based FMIS 

application architecture. The approach consists of two basic activities including Domain 

Engineering and FMIS Development. In essence, the approach is based on the product line 

engineering process as described in the literature (Apel et al., 2013; Capilla, Bosch, Trinidad, 

Ruiz-Cortés, & Hinchey, 2014; Tüzün, Tekinerdogan, Kalender, & Bilgen, 2015).  

The Domain Engineering activity focuses on developing and preparing the artefacts for 

developing application FMIS. Hereby, the first step includes the development of an IoT FMIS 

family feature model that defines the common and variant features of the different FMISs.  

The subsequent step focuses on developing the reference architecture for IoT-based FMIS. 
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The final step in the domain engineering activity aims to develop the reusable components 

that will be necessary to develop the FMIS based on the reference architecture. The following 

sections elaborate on the development of the family feature model and present the 

corresponding reference architecture.    

The FMIS development activity focuses on developing a particular IoT-based FMIS. Hereby, 

the FMIS will be developed based on reuse of the artefacts in the domain engineering activity. 

The first step in the application engineering includes the selection of the features of the 

application. Further, the features will include both features for IoT and FMIS. These will be 

usually different for different FMISs in different contexts. Based on the selected features the 

specific FMIS application architecture will be developed using the reference architecture of 

the domain engineering activity. The final step includes the implementation of the FMIS. 

Hereby, the earlier developed components in the domain engineering activity will be reused.  

Very often an FMIS simulation system can be developed to validate the system before deciding 

on the large-scale investment. In the following sections we will elaborate on the activities of 

Figure 3-5. 
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Figure 3-5: FMIS development approach 

3.5 FAMILY FEATURE MODEL 

The first step of the domain engineering activity of the proposed approach in Figure 3-5 is the 

development of a family feature diagram for IoT-based FMIS. A feature diagram is a tree that 

is in particular used to model the commonality and variability of a specific domain or system. 

The feature diagram includes a root node representing the domain or system that includes 

features representing the essential characteristics or externally visible properties of the 

system (Tekinerdogan, Sozer, & Aksit, 2012). Features may have sub-features which can lead 
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to a hierarchical tree. Features can be mandatory or variant. Variant features are usually 

represented as optional or alternative features. Optional features can be selected or not, 

whereby alternative features require the selection of one of the defined features.  

A feature configuration is a set of features which describes a member of a communication 

protocol. A feature constraint further restricts the possible selections of features to define 

configurations. The overall legend (abstract syntax) for the problem feature diagrams is given 

in Figure 2-3. 

For deriving the feature models, we have carried out a domain analysis process in which we 

selected and studied relevant set of studies that explicitly deal with IoT, Precision Farming and 

Farm Management Information Systems, respectively.  

The domain analysis consists of two basic activities including domain scoping and domain 

modeling. In the scoping process, we define the scope of the domain analysis process and 

select the set of knowledge sources. In the domain modeling process the feature diagram is 

provided.  

During the domain scoping process, we have looked at not only scientific papers but also 

considered websites and white papers of the important vendors and stakeholders in the IoT 

and precision farming domains. The selected list of important sources that we have considered 

for IoT are shown in Appendix C, the list of sources for precision farming are shown in 

Appendix D. We do not claim that the set of sources is comprehensive but an analysis of these 

selected studies shows a convergence and agreement on the concepts. In the following we 

first describe the feature diagram for IoT in section 3.5.1 and then the feature diagram for 

precision farming in section 3.5.2. 

3.5.1 Feature Model for IoT 

Based on the primary studies given in Appendix C – Primary Studies for Deriving Characteristics 

of IoT, we have obtained the top-level feature diagram of IoT as given in Figure 3-6.  
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Figure 3-6: Top-level feature diagram of the IoT 

In essence, the top-level figure diagram presents the design features and as such includes the 

mandatory features for the layers of the earlier defined IoT reference architecture in Figure 

3-1. The feature diagram states that all the layers are mandatory for setting up an IoT system. 

For each of the layers we can derive a detailed feature diagram that represents the 

commonality and variability for the corresponding layer. Among these IoT layers it appears 
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that the decisive layer is the session layer that includes the protocols for initiating the 

connection and the further communication session. Figure 2-5 shows the feature diagram that 

we derived from the domain analysis to the IoT session layer communication protocols. 

The top-level mandatory features in the feature diagram are protocol type, source-target, 

transport type and architecture. The protocol type feature defines the protocols that we could 

identify from the selected primary studies. These identified protocols are the following: 

• Message Queuing Telemetry Transport (MQTT): One of the most popular protocols to 
collect device data and communicate with servers (OASIS, 2014). 

• Extensible Messaging and Presence Protocol (XMPP): is based on exchanges of XML 
messages in real time that is defined to connect devices to servers (IETF, 2011).  

• Advanced Message Queuing Protocol (AMQP): A queuing system designed to connect 
servers to each other (OASIS, 2011). 

• Data Distribution Service (DDS): A fast data bus for integrating devices and systems (OMG, 
2015b). 

• The Constrained Application Protocol (CoAP): A specialized web-based protocol to be used 
in constrained nodes and constrained networks (IETF, 2013). 

As given in Figure 2-5, there are three types of source-target relations available in session layer 

protocols: Device-to-Device (D2D), Device-to-Server (D2S), and Server-to-Server (S2S).  In 

some studies, these features are also called Machine-to-Machine (M2M), Machine-to-Cloud 

(M2C), and Cloud-to-Cloud (C2C) respectively.  

Session layer protocols are closely related to the transport layer. For all communication 

protocols, transport layer could be either UDP or TCP. Some protocols like DDS support both 

UDP and TCP. Addressing scheme (unicast, broadcast, or multicast) might be important 

depending on the application requirements. The selection of transport layer protocol is 

important since using TCP and/or UDP changes the characteristics of the communication from 

performance and security perspectives. If low power devices and networks will be used, TCP 

is generally less feasible, and likewise the UDP protocol is used instead. On the other hand, 

TCP is required for supporting security and the common security protocols of (SSL/TLS) are 

not available using UDP.  

The architecture of the session layer protocols can be either publish-subscribe or request-

reply. In publish-subscribe architecture, participants send data to a topic on which several 

subscribers that are registered to this topic might read data. In this architecture publishers 

and subscribers do not need to know each other, and do not need to be alive at the same 

time, i.e. this communication type provides time and space uncoupling. This type of 

communication is well suited for the same data that must flow from one producer to many 

consumers. On the other hand, request-reply architecture, senders and receivers do need to 

know each other. Hereby, the requester sends a request message and waits for the response. 

When the replier receives the request, it responds with a reply message. The session layer 

protocols of IoT generally use publish-subscribe architecture except in the case of CoAP. CoAP 

uses a request-reply architecture. There are many criteria to select the right IoT session layer 

protocol depending on the application requirement. Table 2-3 summarizes the selection of 
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proper IoT session layer protocol.  Further information on this issue is provided in  (Köksal & 

Tekinerdogan, 2017a). 

Given the requirements for different source-target communication it appears that different 

protocols are needed. For example, if the application will provide device-to-server 

communication, MQTT and XMPP might be used. Regarding real-time constraints, only XMPP 

and DDS seem to be feasible. These protocols also require bus-based architecture. The other 

protocols do not provide real-time performance and are mainly broker-based. 

All the session layer protocols, except CoAP use publish-subscribe communication pattern. 

CoAP uses request-reply. Interoperability is an important concern for all the communication 

patterns. The TCP protocol is the most frequent used transport layer protocol, while the UDP 

protocol is only used in DDS and CoAP.  

All the protocols provide QoS parameters. Further, both open source and commercial versions 

are available for all the protocols, and mobile support is provided. 

Security is an important issue for all the protocols and this is handled in different ways. The 

TLS/SSL protocol is an important protocol for data encryption.  

The communication protocols are either message centric or data centric. All the protocols are 

application based, except CoAP which is web-based. 

All the above criteria can be used to select the proper communication protocol given the 

contextual requirements. Based on the analysis practitioners can select the feasible protocol. 

In case more than one protocol is feasible, additional functional and non-functional 

requirements might be considered. 

3.5.2 Feature Model for Precision Farming 

The previous sub-section has presented the feature diagram for IoT systems. For IoT-based 

precision farming the other important domain is of course the domain of precision farming 

itself. Similar to the IoT domain again we have applied a domain analysis process in which we 

searched for relevant primary studies on precision farming and based on these selected 

studies we derived a feature diagram to represent the common and variant features. The 

selected primary studies are listed in Appendix D – Primary Studies for Deriving Characteristics 

of FMIS. Based on the literature we could identify the following sub-domains for precision 

farming: 

• Global Positioning Systems (GPS), 

• Geographical Information Systems (GIS), 

• Sensors, 

• Variable Rate Technology (VRT), 

• Yield Monitoring (YM), 

• Yield Mapping (YMAP), and 

• Farm Management Information Systems (FMIS). 

Based on the above sub-domains, Figure 3-7 shows the top-level feature diagram for the 

precision farming. In the following subsections, we describe each feature in more detail. 
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Figure 3-7: Top-level feature diagram of precision farming 

3.5.2.1 Global Positioning System 

Global Position System (GPS) is a satellite system that provides location and time information 

to GPS receivers in real time. Location information consists of latitude, longitude, and, 

elevation values. In essence, these values are the input of GIS software.  

As a tool of precision agriculture, GPS enables receivers to calculate their geo-location. This 

precise location information supports mapping and analyzing important farming data such as 

amount of crop and water usage. Further, GPS enables farmers to work during low visibility 

conditions such as rain, fog, and darkness.  

3.5.2.2 Geographic Information System 

Geographic Information System (GIS) software is used to input, store, analyze, and display 

geographical information of the field.  GIS enables detailed analysis of farming data in several 

map like forms: yield maps, soil maps, light maps, etc. Further, GIS is used in many farming 

applications such as farm planning, tractor guidance, and variable rate applications (Rains & 

Thomas, 2009). 

3.5.2.3 Sensor Technology 

In precision farming, different types of sensors are used mainly to measure crop, soil, and 

weather properties. Sensors can be used by fixing them into the field or they can be used to 

make measurements while in motion which are called on-the-go measurements. Typical on-

the-go measurements are performed to measure yield and soil properties.  

In order to communicate with sensors, several standards were defined. ISOBUS is the common 

specification of the manufacturers on the uniform application of the International standard 

ISO 11783 Serial control and communications data network. This standard defines an open 

communication protocol at physical and application layer level and is based on Controller Area 

Network (CAN) protocol ISO 11898-1. AgroXML (Schmitz, Martini, Kunisch, & Mösinger, 2009) 

is a popular standardized language for exchanging data in precision farming. AgroXML is based 

on the eXtensible Markup Language (XML) and is used in communication between FMIS and 

external systems. 
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3.5.2.4 Variable Rate Technology 

Variable Rate Technology (VRT) consists of variable rate control systems. VRT applications, 

typically use GPS and GIS software. Differential GPS (DGPS) might also be used in VRT 

applications as mounted on tractors or other vehicles to provide precise location information 

of the vehicle. VRT is used to obtain site-specific information in seeding, fertilizer, lime, and 

pest management applications (Rains & Thomas, 2009).  

3.5.2.5 Yield Monitoring 

Yield Monitoring is the most direct method to assess the field production and how it should 

be better managed. A yield monitor measures the crop as it is harvested. Yield monitoring 

usually measures crop weight, impact forces, and the time an array of light beams are broken. 

If used, images of the plants can be acquired using unmanned land and air vehicles as well as 

satellites and direct cameras. This information is important in predicting planting places and 

times and harvesting times (Rains & Thomas, 2009). 

3.5.2.6 Yield Mapping 

As the yield is measured, data are stored on a computer along with the GPS coordinates at the 

point where the yield was measured. Mapping software can then create a yield map. The yield 

map can show yield variability as well as yield production. Yield variability is illustrated on a 

map by a change in color, where each color represents a range in. To maintain some level of 

convention, red is suggested to represent low yields and green high yields. The map legend 

will tell you how to read what each color indicates. Lack of yield variability would mean that 

the map shows mostly one color.  Yield production can be found by calculating the yield for 

the entire field (Rains & Thomas, 2009). 

3.5.3 Farm Management Information System 

Farm Management Information System (FMIS) software is a core part of the precision farming. 

FMIS is used to collect and process data to manage all farming operations. The top-level 

feature diagram for FMIS is given in Figure 3-8. The right part of the feature diagram has been 

derived from the FMIS functions as defined by the survey results in (Fountas et al., 2015). The 

left part focus on IoT related functionality of FMIS including Collection of Data, Processing 

Data, Visualization of Data, Communication with External Systems, and System Management. 

In this chapter we will further focus on the IoT FMIS aspects. 

The data acquisition feature defines the gathering of data from sensors and other systems 

used in precision farming such as tractors, agribots and unmanned vehicles. The data 

processing feature represent functions for processing the gathered data whereby useful 

information is extracted using data mining, machine learning, and image processing. The data 

visualization feature includes displaying processed data in different forms. Apart from classical 

tables, reports, and monitoring tools, dedicated visualization maps are essential for precision 

farming applications. Hereby, several maps such as yield maps, soil maps, lighting maps, and 

profit maps. are displayed for different purposes. The system management feature defines 

the management of data acquisition, processing, visualization, and external system 

communication features of FMIS. The quality related functions such as reliability, scalability, 
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extensibility, and security are considered in this feature. Finally, communication with external 

systems feature defines the communication with external systems such as, a weather forecast 

system. Each of these features are shown in a different color in the figure to refer these in 

later sections. 
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Figure 3-8: Top-level feature diagram of FMIS 

3.5.4 Feature Model for IoT-based FMIS 

In principle, IoT and FMIS are independent concepts and as such these have been modeled 

separately in the previous sub-sections. For the selection of the application features we could 

in principle select the features from the IoT feature diagram as defined in section 3.5.1 and 

the features from the FMIS feature diagram as explained in section 3.5.1. Alternatively, the 

notion of IoT-based FMIS can be considered as the integration of both concepts that needs to 

be separately considered. To this end, Figure 3-9 shows the integrated family feature diagram 

that we have derived from the feature models for IoT and FMIS. Hereby we focused on FMIS 

as the dominant decomposition and the integrated IoT features in the separate leaves of the 

FMIS feature tree. The colors define the features of the feature model in Figure 3-8. The 

detailed feature diagram given in Figure 3-9 can in principle be further extended with respect 

to particular project requirements. For the context of this chapter though, the provided 

feature models are sufficient to illustrate our approach. 

In IoT-based FMIS, data acquisition consists of IoT data acquisition feature and conventional 

data acquisition to support legacy systems. IoT data acquisition contains 5 alternative IoT 

session layer protocols as discussed in section 3.5.1 namely MQTT, XMPP, AMQP, DDS, and 

CoAP. Depending on the application one or more protocols for IoT communication can be 

selected for the application FMIS. In section 3.5.1 we have described the criteria for this. 

Traditional data acquisition feature consists of ISOBUS and Controller Area Network (CAN) 
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protocols. As we have stated before, other (legacy or non-IoT) protocols can be added to the 

feature diagram.  
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Figure 3-9: Family feature diagram of FMIS 

Data processing features mainly depend on the application type and include Image/Video 

processing, data mining, data logging, and decision-support features. One or more features 

might be used at the same time. Depending on the application requirements these features 

can be extended to use different processing features.  



 61 

Data visualization consists of monitoring and mapping functions. Monitoring consists of 

environment monitoring and yield monitoring functions. Mapping includes yield, soil-type, 

and light mapping features.  

System management includes sensor control, actuator control, and system control features. 

Sensor control consists of several sub-features such as soil sensing, light sensing, weather 

sensing, and water sensing. Also, system control includes vehicle control and UAV/Drone 

control features.  

Finally, external services feature contains externally communicated systems such as weather 

forecast, finance services, and other external systems. 

3.6 REFERENCE ARCHITECTURE FOR FMIS 

Once we have developed the family feature models for IoT-based FMIS systems, the next step 

is the development of the reference architecture for the potential systems. In fact, in the 

literature several reference architectures have already been proposed for FMIS systems (Beck, 

2001; Fountas, Wulfsohn, Blackmore, Jacobsen, & Pedersen, 2006; Nikkilä, Seilonen, & 

Koskinen, 2010; Sørensen et al., 2010, 2011). However, in general these reference 

architectures are either at a conceptual level and/or do not consider IoT aspects explicitly. 

Hence, in this section, we will introduce the reference architecture for IoT-based FMIS. For 

this we will use selected viewpoints of the “Views and Beyond” architecture framework 

(Clements et al., 2011) including the decomposition viewpoint, Layered Viewpoint and 

Deployment Viewpoint. 

3.6.1 Decomposition View 

The Decomposition view is used to show how system responsibilities are partitioned across 

modules and how these modules are decomposed into sub-modules. Usually, the features in 

the feature diagram are realized by one or more modules in the decomposition view. The 

decomposition view of the architecture depicts the overall structure of the architecture which 

is reasonably decomposed into modular implementation units. It is regarded as a fundamental 

view of the architecture since it serves as an input for other views (e.g. work allocation view) 

and helps to communicate and define the structure of the software. The proposed reference 

decomposition view for the IoT-based FMIS system is given in Figure 3-10.  

The modules in the decomposition view are colored to make the link with the earlier defined 

features in the feature diagrams of FMIS. In essence, the decomposition view includes the 

modules for data acquisition, data processing, data visualization, system management, and 

modules for communication with external services. The decomposition view includes all the 

possible modules for the various IoT-based FMIS applications. Note that, in this case, for each 

feature in the earlier diagram one module has been defined in the decomposition view. 

Further we have not depicted the lower level functionalities such as node discovery and 

directory and name services.  In section 3.3.7, we will explain the configuration of a specific 

decomposition view from this reference decomposition view. 
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Figure 3-10: IoT-based FMIS – decomposition view 

3.6.2 Layered View 

The Layered view is similar to decomposition view since it reflects the division of software into 

units. The difference is that in a layered view, modules are structured into layers, which 

interact based on a strict ordering relation. This means that if layer A is allowed to use layer 

B, layer A’s implementation can use any public facilities of Layer B. However, layer B cannot 

use any facilities of layer A.  

Figure 3-11 shows the layered view for the IoT-based FMIS system. Here the dominant 

decomposition is taken from the IoT layered view as it was given in Figure 3-1, and likewise it 

includes the same layers of the IoT reference architecture. The specific details are primarily in 

the higher-level layers including the business layer, the application layer and the data 

acquisition layer. The FMIS business layer includes all required farm management operations 

logic and workflows such as Fertility Management, Nutrient Management, Pest Management, 

Weed Management, and Irrigation Management. The FMIS application layer realizes the 

functionalities for FMIS Data Processing, Data Visualization, System Management, and 

Communication with External Systems. The FMIS Data Acquisition Layer is for data adaptation 

between IoT session layer and FMIS, i.e. this layer provides the connection with the session 

layer protocols of the IoT. This layer includes IoT session layer interfaces such as MQTT 

interface, XMPP interface, and CoAP interface. To support non-IoT systems, the module 

conventional interface also takes place in this layer. 
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Figure 3-11: IoT-based FMIS – layered view 

3.6.3 Deployment View 

The earlier defined views (decomposition and layered) focus on modeling the software 

modules of the IoT-based FMIS. The deployment view elaborates on these views and is used 

to show the allocation of the identified software modules to the hardware of a computing 

platform. The deployment view of IoT-based FMIS is given in Figure 3-12. Hereby, data 

processing module is deployed on the Central Cloud Server and Client (Farmer) nodes. The 

other nodes are dedicated to sensors, actuators, and cameras. The main sensors in the 

UAV/Drone and Satellite are cameras. Vehicles can have their own sensors, actuators, and 

cameras.  Hence, these items can be assigned to different nodes. 
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Figure 3-12: IoT-based FMIS – deployment view 
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3.7 CASE STUDY EVALUATION 

3.7.1 Case Study Protocol 

Our primary objective is to evaluate the impact of the developed architecture design method 

for IoT-based FMIS. To evaluate the defined research questions, we have applied the case 

study research protocol as defined by Runeson and Höst (Runeson & Höst, 2008). Based on 

this we have followed the five steps: (1) case study design (2) preparation for data collection 

(3) execution with data collection on the studied case (4) analysis of collected data (5) 

reporting.  

Table 3-1 shows the case study design elements. We have applied the case study research 

both for a retrospective case and prospective case. The retrospective case included a system 

which was developed before and for which there was already an existing architecture and the 

required design documents. The prospective case includes the system that is planned to be 

developed.  

Table 3-1: Case study design 

Case Study 
Design Activity 

Retrospective Case Study 
(Wheat Production) 

Prospective Case Study 
(Tomato Production) 

Goal Comparing and assessing the method 
feasibility and recommended application 
architecture 
 

Assessing the effectiveness of the 
method 
Assessing the practicality of the method 
 

Research 
Questions 

RQ1. To which extent is the derived 
application architecture in alignment 
with the decision of the case study? 

RQ1. To which extent does the method 
support the architecture design of the 
IoT-based FMIS? 
 
RQ2. How practical is the method for 
deriving the IoT-based FMIS application 
architecture? 
 

Background and 
Source 

- Official requirements documents 
- Official architecture design documents  
- Project Manager and System architects 
 

- Official requirements documents  
- Project Managers and System 
architects 

Data Collection Indirect data collection based on 
document analysis (the design 
documents and technical reports) 
 

Indirect data collection and direct data 
collection through semi-structured 
interviews  
(mix of open and closed questions) 
 

Data Analysis Qualitative Data Analysis using Radar 
Charts 

Qualitative Data Analysis using Radar 
Charts 

 

The goal for the retrospective study was to compare the earlier results with the results that 

are produced by the proposed method. In this way, it was aimed to evaluate the effectiveness 

of the method. For the prospective case study, we aimed to evaluate both the effectiveness 

and the practicality of the approach. The research questions were defined accordingly as it is 

shown in the Table 3-2.  
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Table 3-2: Questionnaire for the interview 

Questions 
Q1 With information at hand, are you planning to increase the adoption of IoT in the future? 
Q2 Do you think that this reuse-based architecture design method is more effective than the 

architecture design method that you adopted so far? 
Q3 Do you think that the provided recommended application architecture is of high quality? 
Q4 Do you think that the reference architecture is of high quality? 
Q5 Is the method and the reference architecture sufficient to derive the application architecture? 
Q6 Do you think that the method is practical? 
Q7 Will you use the method again? 
Q8 Do you think that the application of the method can provide a competitive advantage to the 

organization? 
Q9 Has the usage of the method enhanced your knowledge on IoT-based FMIS? 
Q10 Do you have any suggestions for improving the method? 
Q11 Do you have any suggestions for improving the family feature models? 
Q12 Do you have any suggestions for improving the reference architecture? 

 

For the adopted background and sources in the case study research we have used official 

design documents and interviewed project managers and system architects. For the 

retrospective case study, the requirements and design documents were available, whereas 

for the prospective case study only the requirements document was available. For both case 

studies we had contact with and interviewed the project managers and system architects. The 

project manager had more than 20 years of experience in farm management system. The two 

system architects had more than 15 years experienced in designing farm management 

systems.  

For both case studies we use a qualitative data analysis approach using radar charts. For the 

retrospective case study, we used indirect data analysis by analyzing the requirements 

documents, applying the method and comparing the results of the method with the existing 

architecture. For the prospective case study, we used a direct and indirect data analysis 

approach. For the direct data analysis, we conducted semi-structured interviews, in which a 

list of predefined set of questions was asked to the project manager and software architects. 

The predefined questions are listed in Table 3-2. The questions included a 5-point Likert scale 

(strongly disagree to strongly agree) for the possible answers. Besides of this a further 

explanation was asked for each question. 

The interview was organized as follows:  

1. First a meeting was scheduled with the project manager and system architects for the 
initial interview. The goal of this interview was to capture the initial thoughts and 
experience on IoT adoption. 

2. In the second step we gave a short presentation about the goal of the developed method. 
Also, we shortly explained the operation of the method as well as the final outcome.  

3. In the third step we applied the method both for the retrospective case (section 3.7.2.1) 
and prospective case (section 3.7.2.2). 

4. In the fourth step, the researchers analyzed the architecture design that resulted from the 
application of the method to the retrospective case and the prospective case.  
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5. In the fifth step, the researchers held a post interview with the subjects with the purpose 
of identifying the impact of the method and its practicality.  

6. In the sixth step, the researchers collectively assessed data from the initial interview, 
report delivered by the method, and the post interview. The assessment was carried out 
separately and later was discussed together to derive the lessons learned. 

 

In the following subsection 3.7.2 we first discuss the results of the above process after the first 

two steps. Subsequently in section 3.8 we discuss the evaluation in step 4, 5 and 6. 

3.7.2 FMIS Architecture Design 

In this section we describe the application of the approach to the retrospective cases study 

(section 3.7.2.1) and prospective case study (section 3.7.2.2). As stated before, the application 

architecture is derived from the family feature model and the reference architecture. As 

described in section 3.4 and the approach in Figure 3-5 the FMIS development method 

includes the development of the application feature model and the application architecture. 

3.7.2.1 Retrospective Case Study: IoT-based Wheat Production 

Figure 3-13 shows the feature model for smart wheat production that is derived after the 

analysis of the existing case study. 

This application feature model is obtained by reusing the feature model for FMIS given in 

Figure 3-9 and selecting the features that are needed for this case study. As shown in the 

figure, for this case study, MQTT session layer protocol of IoT is chosen. The main reason for 

this was because open source implementations of MQTT could be used and MQTT supports 

TCP and D2S communications which were considered necessary in the given context. Likewise, 

MQTT feature of the IoT Data Acquisition will be used. Also, in order to support conventional 

data acquisition with tractors used in wheat production ISOBUS and CAN communications 

shall be supported.  Almost all data processing and data visualization features are required for 

smart wheat production. For this retrospective case study, we will integrate our FMIS with the 

external weather forecast system only. 
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Figure 3-13: Application feature diagram of FMIS for IoT-based smart wheat production – 
Retrospective case study 

Decomposition View 

Based on the selected features as defined in Figure 3-13, the application architecture can now 

be derived. As we have discussed before, the architecture of a system is usually described 

using multiple different architecture views. For each of the required architectural view it is 

indeed necessary to develop the application architecture view. Figure 3-14 shows the 

decomposition view of the Smart Wheat Production that is obtained using the reference 

decomposition view given in Figure 3-10. As explained above, MQTT, ISOBUS, and CAN data 

acquisition modules will be used to support IoT communications. All the sub-features of the 

system management feature of the family feature model will be used except light sensing. 
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Light sensing feature is used to obtain light maps in the greenhouses. Yield monitoring, yield 

mapping, and soil type mapping modules will be used to implement data visualization 

features. All data processing modules namely image/video processing, data mining, decision 

support, and data logging modules will be implemented. Finally, a single external 

communication interface: external weather forecast interface module will be implemented. 
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Figure 3-14: IoT-based FMIS – Decomposition view for IoT-based smart wheat production – 
Retrospective case study 

Layered View 

Figure 3-15 shows the layered view of smart wheat production. Similar to the other views, this 

view is also customized from the reference layered view diagram given in Figure 3-11. Here 

the modules of the decomposition view are distributed over the layers in the layered view. 

The modules MQTT Interface and Conventional Interface are allocated to the FMIS-Data 

Acquisition Layer. The FMIS-Application layer includes the modules Data Processing, Data 

Visualization, System Management and Communication with External System. The FMIS-

Business Layer includes Fertility Management, Nutrient Management, Pest Management, 

Weed Management, and Irrigation Management. We assume that the other layers and the 

modules in these layers are similar as defined in the reference architecture. 
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Figure 3-15: IoT-based FMIS – Layered view for IoT-based smart wheat production – Retrospective 
case study 

Deployment View 

The deployment view of the smart wheat production case study is given in Figure 3-16.  
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Figure 3-16: IoT-based FMIS – Deployment view of IoT-based smart wheat production – 

Retrospective case study 
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The required software modules given in the decomposition view are deployed to a central 

cloud server and client (farmer). Since there is no satellite to be used it is omitted for this case.  

A subset of the features from the ground sensors actuators, and cameras, on-the-go sensors, 

actuators will be used. These will be deployed on vehicle, tractor or UAV/Drone nodes. 

3.7.2.2 Prospective Case Study: IoT-based Tomato Production in Greenhouses 

In this section, we will show the application of our approach to the prospective case study: 

IoT-based smart tomato production in greenhouses. 

Application Feature Model 

Figure 3-17 shows the feature model for IoT-based smart tomato production in greenhouses. 

This feature model is obtained again by reusing the feature model for FMIS given in Figure 3-9 

and selecting the features for smart tomato production in greenhouses.  
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Figure 3-17: Application feature diagram of FMIS for IoT-based smart tomato production in 
greenhouse – Retrospective case study 
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For this case study, CoAP session layer protocol of IoT is chosen and CoAP feature of the IoT 

Data Acquisition will be used. Since there will be no need to support conventional data 

acquisition, ISOBUS and CAN communications will not be supported. All data processing and 

data visualization features will be implemented for IoT-based smart tomato production in 

greenhouses. As in the previous case, we will integrate our FMIS with just the external weather 

forecast system only. 

Decomposition View 

Figure 3-18 shows the decomposition view of our second case study. This view is also obtained 

using the reference decomposition view given in Figure 3-10. Here, for data acquisition only 

CoAP is selected. System management functionalities except vehicle and UAV/drone control 

will be supported. All data processing and data visualization modules will be implemented. 

Similar to the first case study, a single external communication interface: external weather 

forecast interface module will be implemented as well. 
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Figure 3-18: IoT-based FMIS – Decomposition view for IoT-based smart tomato production in 
greenhouse – Prospective case study 

Layered View 

Figure 3-19 shows the layered view of IoT-based smart tomato production in greenhouses that 

is customized from the reference layered view diagram which is given in Figure 3-11. In this 

case, only CoAP interface exists in the Data Acquisition Layer of FMIS Application Layer. As in 

the first case study, all required precision farming applications are required in the Precision 

Farming Application Layer. 
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Figure 3-19: IoT-based FMIS – Layered view for IoT-based smart tomato production in greenhouse – 

Retrospective case study 

Deployment View 

Deployment view of the IoT-based smart tomato production in greenhouses is given in Figure 

3-20. The required software modules that are given in the decomposition view in Figure 3-18 

are deployed to central cloud server and client (farmer). Since there is no satellite, vehicle, 

and UAV/drone to be used in this case they are all excluded in the deployment view. Only 

fixed sensors, actuators, and cameras will be deployed in this case. 
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Figure 3-20: IoT-based FMIS – Deployment view of IoT-based smart tomato production in greenhouse 

– Retrospective case study 
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3.7.3 Result of the Evaluation for the Retrospective Case Study 

In the previous subsection, we have shown the application of the approach for both the 

retrospective and prospective case studies. As defined in the case study protocol we analyzed 

the effectiveness and practicality of the approach. The results of the interview are shown as a 

radar chart in Figure 3-21. In this section we discuss this and the overall evaluation of the 

retrospective case study. 

 

Figure 3-21: Results of the interview presented in radar chart – Retrospective study 

Effectiveness of the approach 

For assessing the effectiveness of the approach, we analyzed the resulting application 

architecture and carried out the post-interviews. For this retrospective study the application 

architecture was before described in different document formats including MS PowerPoint 

and MS Visio. Further we could access some design documents. It should be stated that the 

design as such was not as we had properly defined according to a well-known viewpoint 

approach and not properly designed. Nevertheless, we were able to analyze the existing 

application architecture and compare it with the application architecture that we derived 

using our own approach. For the comparison we identified three different relations (1) 

convergence (2) deviation (3) absence. The convergence relation implies that the similar 

architecture elements could be identified in both the architecture designs. Deviation implies 

that the resulting application architecture had additional elements that were not defined in 

the existing architecture. Finally, absence defines that the resulting application architecture 

had missing elements that were defined in the existing architecture.  

Overall, the result of our analysis showed that the resulting application architecture was quite 

similar to the existing architecture. In general, the convergence was very high (>90%). We 
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could identify though several deviation and absence relations. With respect to deviation in 

our resulting application architecture the modules UAV/Drone Control and External Weather 

Forecast Interface were not defined in the existing architecture. On the other hand, we could 

identify also some absence relations. For example, the resulting application architecture did 

not have the module Finance Interface Module, Farmer Data Module, and Simulation Module 

that were explicitly defined in the existing application architecture. This became also apparent 

in the post-interviews. In the interview, the questions 2, 3, 4 and 5 relate directly to the 

effectiveness of the approach. The architects provided a score of at least 4 for all these 

questions indicating that the approach for this case was considered is largely effective. The 

interview architects indicated “Although we could identify some deviations and absent 

architectural elements, the resulting architecture matched our existing architecture very 

closely. And this was done in a pretty short period of time. For us, this was quite convincing.” 

Practicality of the approach 

The practicality of the method was assessed though questions 6 to 9 of the questionnaire. The 

architects gave at least a score of 4 for all these questions indicating that they were quite 

satisfied with the practicality of the method. They added: “Usually designing the architecture 

requires lots of effort. In particular for IoT-based FMIS it is needed that all the concepts are 

well understood and the architectural decisions are made properly. With the reference 

architecture and the family feature models we could direct see the possible elements and could 

make the design decision quite quickly”.  

Another interesting statement that was made was “The method helped us to think explicitly 

about our design decision and to communicate this early on. For the retrospective case we 

observed that we could have adopted other design decision which would perhaps be better. 

For the prospective case we were already guided to make the proper decisions. The method 

turned out really to be practical and useful”.  

For the question “Will you use the method again?” the answers were positive again and both 

architects indicated that they would use this method for the subsequent project. The 

architects also had some suggestions for improvement. “The method adopts a family feature 

model and reference architecture. It would be helpful to indicate that specific delta modules 

are allowed when deriving the application architecture”.   

3.7.4 Result of the Evaluation for the Prospective Case Study 

The results of the evaluation for the prospective case study is shown in the radar chart of 

Figure 3-22. The answers to the provided questions were positive and got a score of 4 or 

higher. In the following we discuss again the effectiveness and practicality of the proposed 

approach for the prospective case study.  
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Figure 3-22: Results of the interview presented in radar chart – Prospective study 

Effectiveness of the approach 

For the retrospective case study, we compared the resulting architecture with the existing 

architecture to assess the effectiveness of the approach. Further we used the results of the 

interview as represented in the corresponding radar chart. For this prospective case study, we 

could not compare the results with an existing application architecture since only 

requirements document was provided and the application architecture had still to be 

designed. We used the requirements document to identify the required application feature 

diagram. Based on this, as discussed in section 3.2.2, we derived the application architecture. 

The effectiveness of the application architecture and the overall approach was based on the 

results of the interview.  

As shown in the radar chart in Figure 3-22 again the scores for the questions 2 to 5 related to 

effectiveness were at least 4. This indicated that the approach was effective for the given case. 

The architects noted “We could easily follow how the application architecture was derived 

based on our defined requirements. The resulting application architecture directly meets all 

our defined requirements. After this process we will develop the system and evaluate it also at 

the code level”.  

Practicality of the approach 

For assessing the practicality of the approach, we considered again the results of questions 6 

to 10. Again, it appeared that these were all score with at least 4. Similar to the retrospective 

case study the approach was found practical and easy to use. Similar statements as in the 

retrospective case study were made. Some of the interesting different statements were the 

following.  
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“For us designing the architecture usually takes lots of effort. The approach helped us to derive 

application architecture in a very short period”  

“The approach helped us not to derive the application architecture but also discuss the design 

decisions which we found very useful” 

“In the beginning we were quite skeptical about the approach and expected a more academic 

exercise. However, the learning curve for the approach after the two hours introduction was 

quite low. We will use the approach as well. We might add new modules to the reference 

architecture which are dedicated to our company’s domain”. 

3.8 DISCUSSION 

The introduction of IoT has led to the notion of IoT-based FMIS to support the precision 

farming goals. In this chapter, we aimed to integrate the IoT systems with the FMIS to align 

both systems and create additional value that cannot be achieved if these are considered 

separately. This integration effort leads to the enhancement of the current FMIS systems with 

new modules that support the precision farming operations based on IoT. In our approach 

these required new modules have been explicitly defined in addition to the traditional FMIS 

modules. The overall approach as such provides an integrated view of the overall system to 

better support the architecture design of IoT-based FMIS. 

The method that we have discussed can be adopted for deriving IoT-based FMIS architecture 

for multiple different systems. Hence, we focus on the whole product family of IoT-based FMIS 

systems rather than on a single system. The notion of product families or product line 

engineering and the corresponding systematic reuse is discussed in detail in the product line 

engineering community (Clements, 2006). Our method is inspired and customizes the product 

line engineering approach in which reference models are developed and applications are 

developed by reusing these reference models. The reference feature diagram that we have 

shown aims to target and integrate the domains of IoT and FMIS. The focus in this chapter was 

primarily to illustrate the overall method. The feature diagrams as well as the reference 

architecture design could be easily extended. We have discussed the architectures for IoT and 

FMIS separately and illustrated the integration of both for supporting IoT-based FMIS systems. 

The architecture can be extended in two ways. First of all, we could of course detail the 

different views to provide an even more comprehensive result. This would require for example 

to further detail the modules that are needed in the decomposition view. Secondly, we could 

extend the architecture representations with other architecture views. We have chosen three 

architecture views including decomposition view, layered view and deployment view. If 

needed other architecture views in the architecture documentation process could be used as 

well. Here again due to space limitations and the focus on the method rather than on the 

detailed output of the case studies we have chosen for the given scope. The complete versions 

of the feature diagrams as well the detailed implemented architecture designs have not been 

shown due to confidentiality issues. 

The reference architecture is designed in such a way that it is generic enough to derive 

different concrete architectures. Nevertheless, like it is the case for all reference models, the 
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reference architecture does not provide all the details. Likewise, a system which requires very 

dedicated features that were not anticipated before would not be covered by the reference 

architecture. Furthermore, our focus has been on illustrating the reference architecture and 

the approach for deriving a concrete architecture. This appeared to be useful and practical. 

However, we do not claim that the reference architecture is complete and further research 

can be used to refine and enhance the reference architecture. For example, the device layer 

and the related functionality have not been discussed in detail in this article. This could though 

be easily added without loss of generality and applicability of the proposed approach. 

Although, we have showed our approach for two important case studies in the smart agri-

food sector the method can be actually applied for the development of other FMISs. We have 

not focused on the implementation of these systems. The reason for this is because of 

confidentiality and the goal to prescribe the system-to-be in the prospective case study. For 

the prospective case study, it is decided to develop first a simulation system to evaluate the 

outcome of the method. We consider this as part of our future work.  

In this chapter we have provided both the reference architecture for IoT-based FMIS and the 

overall approach to derive a concrete architecture. The idea of systematic guidelines for 

deriving a concrete architecture could also be used for enhancing the use of existing IoT-based 

reference architectures. 

Although our method has illustrated the development of IoT-based FMIS systems we could 

even use the method for developing traditional FMIS systems. In that case we would omit the 

IoT architecture part and just focus on the development of reference models for FMIS.  

This chapter describes a domain-driven design approach to design IoT-based FMIS and support 

the architect in deriving a concrete IoT-based FMIS architecture. Several other important 

issues need of course to be taken into account to realize effective precision farming. Important 

aspects include the acceptability of the provided IoT technology by the relevant stakeholders 

including the end-users, development of cost-effective transition strategies, and farm 

management and agricultural economics. Detailed discussion on economics and profitability 

of IoT solutions in the agriculture domain have been addressed by multiple studies including 

(T. W. Griffin & Lowenberg-DeBoer, 2005; Terry W. Griffin et al., 2018; Kutter, Tiemann, 

Siebert, & Fountas, 2011; Lowenberg-DeBoer, Erickson, & Vogel, 2000; Schimmelpfennig, 

2016; S. Wolfert, Ge, Verdouw, & Bogaardt, 2017). 

Adopting IoT-based FMIS is not trivial and usually requires large economic investments. To 

justify these up-front investments the return-on-investment both with respect to cost and 

quality should be defined. Further, IoT-based FMIS requires changes to farm equipment or 

totally new farm equipment, that the farmers are not used to. Hence, it is important to analyze 

the acceptability and adoption scenarios, and provide clear transition strategies for the 

efficient introduction, usage and maintenance of precision farming. Due to the concrete scope 

of the thesis we have not further elaborated on these in this chapter. 

We have applied a systematic case study research to validate our approach. Each empirical 

study usually has to deal with a few potential threats to validity. In the following we discuss 

these for our case study research shortly and describe the mitigation strategy for each threat.  
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Construct validity refers to what extent the operational measures that are studied really 

represent what the researchers have in mind and what is investigated according to the 

research questions (Yin, 2009). Table 3-3 shows various identified threats to construction 

validity together with the counter measures.  

Table 3-3: Threats to validity and applied counter measures in case studies 

Threat Countermeasure 
Inappropriate analysis of existing 
requirements and architecture (for 
retrospective case study) 
 

To ensure that we have understood all the requirements we have 
organized a meeting. The missing artefacts were reverse 
engineering and discussed with the architects. 
 

Incorrect interpretation of the 
descriptions of the questions by the 
interviewed persons 

We have applied the principles described in Kitchenham and 
Pfleeger (Kitchenham & Pfleeger, 2002) for constructing the 
questions and answers. To ensure uniqueness of interpretations of 
the questions, we have provided detailed explanations. 
 

Incorrect interpretation of the 
description of the answers by the 
interviewed persons, and likewise the 
wrong selection of answers 
 

Same thing is also true for the answers of the questions. Especially 
for the Likert-scale questions. In most of the cases, it is difficult to 
differentiate for example between a “Strongly Agree” and “Agree”. 
This was also one of the comments we have gathered in the trial 
runs. To mitigate this per each Likert-scale question, we have tried 
to define each scale as much as possible to avoid confusion. 
 

Incorrect interpretation of the open 
questions by the interviewed persons 

To mitigate this threat, we have verified the interpretation of the 
questions with interviewed persons. 
 

Incorrect interpretation of the 
researchers to the provided answers 
of the interviewed persons 

To mitigate this threat both researchers were present in the 
interview to achieve observer triangulation. 

 

Internal Validity relates to a causal relationship between treatment and the outcome. In the 

case of retrospective case study, it has been relied on existing design documentation and 

related literature. There could be missing information in the cases that would affect the 

outcome. To mitigate this threat several iterations were applied to derive both the application 

feature model and the application architecture. In the prospective case, the lack of proper 

requirements documentation could have an impact on the derived decisions. To mitigate this 

threat, this has been discussed with the interviewed persons in detail and several iterations 

were adopted.  

External Validity concerns the ability to generalize the results of the study. In the case study 

evaluation both a retrospective and prospective case study were adopted which were also in 

different domains. This was done to support triangulation and likewise extend the external 

validity. The approach was considered effective for both case studies but due to the small 

number of participants a stronger statement could not be provided. In the future work a 

repetition of this study with multiple other case studies with an increased number of 

participants would further justify the claims of this chapter and also support the quantitative 

evaluation. 
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3.9 RELATED WORK 

There are several studies that discuss the adoption of internet technologies to support FMIS 

and cope with complexity (Fountas et al., 2015; Kaloxylos et al., 2012; Kruize et al., 2016; 

Murakami et al., 2007; Nikkilä et al., 2010; Sørensen et al., 2010; Steinberger, Rothmund, & 

Auernhammer, 2009; J. Wolfert, Verdouw, Verloop, & Beulens, 2010). These studies have 

focused on different issues including the adoption of service-oriented architectures for FMIS 

(Murakami et al., 2007; Steinberger et al., 2009; J. Wolfert et al., 2010), the development of 

data exchange standards for supporting interoperability over the internet (Schmitz et al., 

2009), the adoption and implementation of geographic information systems (GIS) (Seelan, 

Laguette, Casady, & Seielstad, 2003). Although the main focus of these studies is integration 

and operation of an FMIS over the internet the adoption of IoT is not explicitly considered. 

In (Murakami et al., 2007), a distributed service-oriented reference architecture is proposed 

for the development of information systems for precision agriculture. This web-based 

approach is focused on communication between software services on a service bus. In 

(Schmitz et al., 2009), the so-called AgroXML is proposed as a standardized language based on 

XML, to be used for data exchange in FMIS. In (Nikkilä et al., 2010), a web-based approach is 

defined to implement connectivity requirements arising from the internet and the 

management of GIS data.  In (Sørensen et al., 2010), a new model for FMIS is proposed to have 

better information handling focusing on internal data connection, external information 

collection, plan generation, and report generation in FMIS. In (Kaloxylos et al., 2012), an 

architecture is proposed to provide support and integration of different stakeholders and 

services, and interworking with the external services.  

There are some studies in the literature related to web-based architectures (Chaudhary, 

Sorathia, & Laliwala, 2004; Steinberger et al., 2009). These studies present architectures to 

enhance the effectiveness of web-based decision support system on which data can be 

requested for further use via a web portal and a web service interface.  

Instead of full FMIS most architecture academic research on FMIS is restricted to individual 

component of an FMIS such as predicting crop yield, implementing a special sensor, and the 

usability of an FMIS (Nikkilä et al., 2010). There are actually few studies that explicitly discuss 

FMIS architectures in a comprehensive manner, and only specific focus of the architecture is 

considered instead. For example, in (Linseisen, 2001) , FMIS architecture is discussed by 

focusing on an information system gathering and storing high accuracy GPS data. In (Beck, 

2001), an architecture, based on implementing object databases, CORBA middleware, and 

Java languages is proposed to provide easier development, maintenance, and easier 

integration of information systems.  

Advancements in the functionality of academic and commercial FMIS are presented in 

(Fountas et al., 2015). This study investigates commercial and academic FMIS packages and 

performs cluster analysis between them. The authors indicate that commercial packages tend 

to target daily farm office tasks such as budgeting, finance, recordkeeping, machinery 

management, and documentation. On the other hand, academic FMISs deal with compliance 

to standards, automated data capture, and interoperability issues.  
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There are also studies that discuss traditional on-site FMIS software. However, these studies 

mainly focus on the improvement of information integration of traditional FMIS and do not 

take IoT technologies into account. For example, in (Verdouw, Wolfert, & Tekinerdogan, 

2016), the authors propose an architecture to improve the standardization and integration of 

data, application, and process. A service-oriented architecture (SOA) based solution is 

proposed to improve the information integration implementing business process 

management (BMP) concepts.  

Related to IoT is the research on wireless sensor networks which is reviewed in (Aqeel-Ur-

Rehman, Abbasi, Islam, & Shaikh, 2014; Jawad, Nordin, Gharghan, Jawad, & Ismail, 2017). 

These studies primarily focused on comparing sensors and communication technologies such 

as ZigBee, Bluetooth, Wifi, Sigfox, Wibree, long range radio and GPRS. Although these 

protocols might increase the number of possibilities to communicate data in IoT, these 

researches do not directly offer architectural solution for FMIS.  

This chapter has focused on applying IoT for FMIS in particular. However, IoT has also been 

applied in different application domains. The application of IoT in agriculture has been 

reviewed in (Verdouw et al., 2016). This review showed that IoT concept got attention of 

scientific community in 2010 and since then number of researches are increased. Total 168 

papers and books were reviewed in this paper. Top topics of these studies are food supply 

chains, arable farming, general agriculture, greenhouse horticulture, and livestock farming, 

and open-air horticulture including orchards respectively with respect to number of papers 

published. On the other hand, it is stated that IoT applications mostly focus on basic 

functionalities, including tracking, tracing, monitoring, and event management. It is concluded 

that although IoT receives an increasing level of attention, it is still in its infancy in the 

agriculture and food domain suffering from lack seamless integration and advanced solutions. 

3.10 CONCLUSION 

FMISs are being more and more applied in many different farming systems. Several 

architectures for FMIS have been proposed in the literature but these are usually abstract, 

and it is not trivial to derive the application FMIS architecture for the corresponding context 

of the farm system. In this chapter we have provided an architecture design method for 

deriving application architectures for various different FMISs. For this we have adopted the 

reference architectures of internet of things (IoT) and FMIS and defined a novel IoT-based 

FMIS. We have provided the architecture design method for deriving the customized 

application FMIS architecture. To support the design of the application architecture we have 

adopted a domain driven approach whereby we defined a family feature diagram representing 

the common and variant features of IoT-based farm management information systems. We 

have illustrated our approach using a systematic case study approach. Hereby we have 

adopted both a retrospective and prospective case study including the IoT-based wheat 

production and IoT-based tomato FMIS, respectively. The case study research showed that 

the approach was both effective and practical. It appeared that both the reference 

architecture that we have provided as well as the corresponding method appeared to be very 

useful to derive the customized application FMIS architecture. Since in general developing IoT 
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systems is not trivial adopting a systematic approach appears to be useful in not only the final 

results but also the intermediate steps that support the communication between the 

stakeholders and the overall guidance of the design decisions. The contribution of this chapter 

can be useful for both researchers who do research on IoT-based FMIS as well as practitioners 

who aim to architect different FMIS systems. The future work will apply our approach for other 

farm management systems. Further focus will be on the architecture design and integration 

of multiple different FMISs.  
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PATTERN-BASED INTEGRATION OF  

INTERNET OF THINGS SYSTEMS1  

                                                       

1 This chapter is based on the following accepted paper to be published in Proceedings of the 2018 International 

Conference on Internet of Things:  

• B. Tekinerdogan and Ö. Köksal, “Pattern-Based Integration of Internet of Things Systems”, International 

Conference on Internet of Things (ICIOT), Seattle, USA, 2018. 
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Abstract 

The Internet of Things (IoT) is the network of physical devices embedded with sensors, 

actuators, and connectivity which enables these objects to connect and exchange data. Cleary 

the IoT has a pervasive impact on the society and an increasing number of systems are now 

based on IoT. One of the key challenges in IoT is coping with the heterogeneous set of systems 

and the integration of these systems in the same communication network. Several studies 

have focused on this integration aspect and addressed this at different levels of abstraction. 

Unfortunately, the different approaches are scattered and fragmented over the different 

studies and it is not clear how to cope with the integration concern within a single IoT system 

but also across multiple IoT systems that need to be integrated. To this end this chapter 

provides a comprehensive and systematic approach for identifying the key integration 

concerns in the IoT system architecture and describing the currently provided solutions. For 

this we adopt a pattern-based approach in which generic architecture solution structures are 

provided to these recurring integration concerns. We illustrate our approach for addressing 

the integration of IoT-based systems within the context of smart city engineering. 

Keywords: Internet of Things, Architecture Design Patterns, Smart City Engineering 

4.1 INTRODUCTION 

The Internet of Things (IoT) is the result of technological progress in many parallel and often 

overlapping fields, including those of embedded systems, ubiquitous and pervasive 

computing, mobile telephony, telemetry and machine-to-machine communication, wireless 

sensor networks, mobile computing, and computer net-working. In essence, IoT combines the 

concepts “Internet” and “Thing” and the provided definitions in the literature can be 

interpreted how these have addressed these two concepts. What is important is that IoT adds 

a new dimension “any-thing” to the current communication technologies (ICTs), which already 

provide "any time" and "any place" communication.  

To support the design of IoT systems, various reference architectures have been provided in 

the literature. In general, IoT architecture is represented as a layered architecture with various 

set of layers representing a grouping of modules that offer a cohesive set of services. Based 

on the literature (Al-Fuqaha, Guizani, et al., 2015; Gazis et al., 2015; Palattella et al., 2013; 

Pandya & Champaneria, 2015) we provide the reference architecture as shown in Figure 2-1. 

The reference architecture consists of seven layers including Device Layer, Network Layer, 

Session Layer, Cloud Layer, Application Layer, Management Layer, and Security Layer (Köksal 

& Tekinerdogan, 2017a). Usually these layers can be distributed in different ways over the 

different nodes in the IoT system. Using the IoT reference architecture various different IoT 

systems can be designed. Each such IoT system integrates the various devices within the same 

network. Yet, the scope of an IoT system is often within a particular scope and the integration 

with other IoT systems or non-IoT systems is not a trivial task.  

Cleary the IoT has a pervasive impact on the society and an increasing number of systems are 

now based on IoT. One of the key challenges in IoT is coping with the heterogeneous set of 

systems and the integration of these systems in the same communication network. Several 
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studies have focused on this integration aspect and addressed this at different levels of 

abstraction. Unfortunately, the different approaches are scattered and fragmented over the 

different studies and it is not clear how to cope with the integration concern within a single 

IoT system but also across multiple IoT systems that need to be integrated. To this end this 

chapter provides a comprehensive and systematic approach for identifying the key integration 

concerns in the IoT system architecture and describing the currently provided solutions. For 

this we adopt a pattern-based approach in which generic architecture solution structures are 

provided to these recurring integration concerns. We illustrate our approach for addressing 

the integration of IoT-based systems within the context of smart city engineering. 

4.2 CASE STUDY: SMART CITY ENGINEERING 

In this section, we define a case study that will be used to illustrate the problem statement 

and the approach in further sections. The case study that we consider is within the context of 

smart city engineering (Yoshikawa, Sato, Hirasawa, Takahashi, & Yamamoto, 2012). One of the 

important applications in smart city engineering includes the development of smart traffic 

system (STS). STS provides different capabilities such as traffic light management, congestion 

detection, traffic regulation, shared parking platform, etc. The high-level reference 

architecture of STS is depicted in Figure 4-1 (Tekinerdogan, Celik, & Köksal, 2018). 
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Figure 4-1: Conceptual Architecture for Smart Traffic System 

Although the above case integrates many different entities it still deals with the design of a 

single system, in this case an STS. Very often it is required though to integrate the STS with 

other systems in the smart city engineering context, such as city energy consumption system, 

the weather information system, the security system, the air quality control system, the smart 

lighting system etc. (Figure 4-2). 
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Figure 4-2: Integration of different IoT systems in the context of Smart City Engineering 

Integrating all these systems in a coherent manner is not trivial and requires careful 

consideration. We will elaborate on this in the next sections. 

4.3 INTEGRATION FRAMEWORK 

The integration of IoT systems can be considered at different abstraction levels. We will 

discuss the integration based on the four layers of the architecture as defined in Figure 2-1. 

To illustrate this need for integration at different levels Figure 4-3 shows the integration of 

different IoT systems. 

As shown in Figure 4-3 we distinguish the following types of integration in IoT systems (1) 

Session Layer Integration: (1a) Protocol Integration via IoT Gateway (1b) Protocol Integration 

via Middleware, (2) Cloud Layer Integration, and (3) Application Layer Integration. For 

describing the integration solutions, we will adopt a design pattern-based approach. A design 

pattern represents a generic solution to recurring problems. Design patterns play an 

important role in the engineering design process and can be applied at the different levels in 

the lifecycle including the architecture design, detailed design, and the code. In this chapter, 

we will mainly focus on architectural patterns which focus on the gross-level structure of the 

system and its interactions (Bushmann, Meunier, & Rohnert, 1996). In the following, for each 

level we will describe the possible architectural patterns that can be used in the integration of 

IoT systems. Hereby we will also shortly indicate the advantages and disadvantages of the 

adopted architecture design pattern.  
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Figure 4-3: System Integration of IoT-based systems in different layers 

4.3.1 Protocol Integration via IoT Gateway 

Multiple session layer protocols exist in the IoT domain to integrate the different things in the 

IoT as shown in Table 4-1 (Köksal & Tekinerdogan, 2017a). The issue of heterogeneous devices 

adopting different communication protocols impedes the integration of these de-vices in the 

same IoT systems. An IoT gateway acts as a portal between two elements of one or multiple 

IoT systems, allowing them to share information by communicating between the adopted IoT 

protocols. An IoT gateway, as such, bridges the gap between devices, cloud, and the computer 

or mobile device providing a communication link between the devices and cloud. 

Table 4-1: Selected characteristics of the session layer protocols 

Characteristics AMQP CoAP DDS MQTT XMPP 
Broker/Bus based Broker-based Broker-based Bus-based Broker-based Bus-based 
Com. pattern Pub/Sub Request-Reply Pub/Sub Pub/Sub Pub/Sub 
Message/Data centric Message Data  Data Message Data 
Real-Time No No Yes No Near RT 
Source-Target S2S D2D D2D D2S D2S 
Transport TCP UDP TCP/UDP TCP TCP 
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Figure 4-4 shows the different gateway patterns used for integration of IoT systems. In the 

classical protocol integration hardware/software gateways are used to format and translate 

data coming from one protocol type to a different protocol type as given in Figure 4-5a. This 

type of protocol integration is successful as long as the number of devices to be integrated is 

not excessive. However, for a large-scale set of devices it is not easy to handle all the 

heterogeneous protocols and technologies of the IoT and design a suitable gateway without 

causing anomalies such as timing and collusion problems. With the possible addition of even 

more protocols and technologies developed in IoT domain, this problem will become even less 

manageable (Olivieri & Rizzo, 2015). In order to solve the scalability problems and to provide 

more efficient gateways the following solutions are proposed in the literature.  
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d) Intelligent Gateway 

Figure 4-4: Different gateway patterns used for integration of IoT systems 

4.3.1.1 Distributed Multi-Gateway Approach 

In this approach multiple gateways are used to cope with the different set of protocols in the 

IoT system in Figure 4-5b (Olivieri & Rizzo, 2015). Hereby, the protocols are treated singularly 



90  

or as a subset of the selected protocols in each gateway. Each gateway translates its protocol 

to a common shared protocol. The gateways themselves can communicate using the common 

protocol. By combining gateways dedicated to different technologies multi-protocol scenarios 

can be generated. 

4.3.1.2 Web-Service Multi-Protocol 

Instead of having a gateway for each protocol it is also possible to provide a central gateway 

that is connected to a central conversion server.  This so-called web-service multi-protocol 

pattern is shown in Figure 4-5c (Olivieri & Rizzo, 2015). In this approach, gateways receive raw 

data from sensors which are translated to a shared format by connecting with a web-service. 

In contrast to the distributed multi-gateway there is only one gateway which does the 

translation among the protocols. 

4.3.1.3 Intelligent Gateways 

For translating to different protocols, the gateway can be provided the required translation 

functionality as shown in Figure 4-5d. In this case the gateway will not de-pend on a separate 

central server such as in the case of web-service multiprotocol gateway but include the 

functionality for translating the protocols. Hence, we can indicate this as an intelligent 

gateway solution. This solution is, for example adopted by M. Diaz-Cacho et al. (Diaz-Cacho, 

Delgado, Falcon, & Barreiro, 2015) and (Al-Fuqaha, Khreishah, Guizani, Rayes, & Mohammadi, 

2015). In these solutions intelligent gateways convert the incoming protocol data to a 

common shared protocol data which is in this case is extended MQTT. However, the intelligent 

gateway can in principle also provide different kind of functionality and mapping of the 

protocols. 

4.3.2 Integration via Middleware 

The alternative way of overcoming the protocol heterogeneity other than using a gateway is 

the use of a middleware to be used as an abstraction layer. This pattern is shown in Figure 4-5.  
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Figure 4-5: Integration of protocols using middleware 
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This goes beyond the intelligent gateway solution that includes only functionality for 

translation among the protocols. In case of a middleware solution also additional functionality 

such as naming and directory services, security aspects, reliability and other functional and 

quality services can be also provided. The primary aim of using middleware is to provide 

seamless integration of systems by hiding the communication and various low-level 

acquisition aspects (Calbimonte, Sarni, Eberle, & Aberer, 2014).  

There are studies offering the use of an IoT middleware to integrate IoT-based systems in the 

literature. A. Ngu et al. (Ngu, Gutierrez, Metsis, Nepal, & Sheng, 2017) provides a survey about 

IoT middleware integration. Lomotely et al. (Lomotey, Pry, Sriramoju, Kaku, & Deters, 2017) 

proposes a middleware to be used as an abstraction layer to address variation in device 

semantic and protocols that limit the interoperability of the systems. The proposed 

middleware uses enhanced environment features to match the appropriate communication 

protocol to aid pushing data from sensors to cloud infrastructure.   

4.3.3 Integration in the Cloud 

Another integral component of the IoT is cloud computing. In general, three types of cloud 

computing models are defined including Infrastructure as a Service (IaaS), Platform as a 

Service (PaaS) and Software as a Service (SaaS) (Öztürk & Tekinerdogan, 2011; Tekinerdogan 

& Öztürk, 2013; Tekinerdogan, Öztürk, & Doǧru, 2011). The IaaS model shares hardware 

resources among the users. Cloud providers typically bill IaaS services according to the 

utilization of hardware resources by the users. The PaaS model is the basis for the computing 

platform based upon hard-ware resources. It is typically an application engine similar to an 

operating system or a database engine, which binds the hardware resources (IaaS layer) to 

the soft-ware (SaaS layer).  The SaaS model is the software layer, which contains the business 

model. In the SaaS layer, clients are not allowed to modify the lower levels such as hardware 

resources and application platform. Clients of SaaS systems are typically the end-users that 

use the SaaS services on-demand basis. For adopting cloud-based integration the different 

clients are considered the individual systems in the overall System of Systems (SoS). The 

integration pattern based on the IaaS, PaaS, or SaaS in the cloud layer is shown in Figure 4-6a. 

An important benefit of IoT is the generation of data that can be further used to derive 

information to support the decision-making process. The data is typically stored in the cloud 

which can be used to support analytical and computational tasks on these data allowing 

centralized access to the generated IoT services (Botta, De Donato, Persico, & Pescape, 2014).   

Figure 4-6b shows the pattern for the data integration in the cloud. Hereby, the integration of 

the systems is primarily based on the integration of the data from the different IoT systems. 

Since each IoT system can use its own type of data platform and the corresponding data 

structures and formatting, the integration will need to support data interoperability. For this 

it is needed to adopt a common data format and platform that is adopted at a central cloud 

node. Incoming data from different nodes will be typically mapped to a shared data format. 

Subsequently a data fusion and/or data conversion process will be carried out to synthesize 

the data. The cloud node will typically include analytics modules for processing the data for 

descriptive, diagnostic, predictive or prescriptive analytics. 
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b) Data Integration in the Cloud 

Figure 4-6: Cloud-based integration of different IoT systems 

4.3.4 Integration in Application Layer 

Besides of integration at the gateway or middleware level we can also achieve the integration 

of IoT systems at the application layer level. Much has been written about application 

integration and likewise we will borrow from the earlier concepts to define the integration of 

IoT systems. In the literature dozens of architecture patterns have been published regarding 

application integration (Bass et al., 2003; Clements et al., 2010, 2011; Croes, 2015; David 

Garlan, 1994; Fielding, 2000). In the following we will consider only those patterns that can be 

directly used for supporting the integration of systems, and in the context of this chapter, in 

particular the integration of IoT systems. 

4.3.4.1 Peer-to-Peer 

In the peer-to-peer architectural pattern, peers (IoT Systems) connect to each other directly, 

and there is no intermediate component between the IoT systems. The conceptual model is 

shown in Figure 4-7a. The elements in the system are autonomous, equal peers that are both 

providers and consumers of data and processing power. Further, the primary content is 

provided by peers, are there are no central components providing content. In addition, peers 

can be added and removed from the system at any time. 

4.3.4.2 Client-Server 

The Client-Server architectural pattern is a very common and well-known pattern for network-

based applications. The conceptual model this pattern is shown in Figure 4-7b. Hereby some 

systems play the role of Clients, while other adopts the role of a Server. One or multiple Client 

components initiate a request to a Server, which then performs some computations and 

responds to the Clients. Only clients can initiate communication, while servers only respond 

to requests from clients. If needed server components can be clients to other servers. Clients 

cannot communicate to each other. As we will see in the later sections this is different from 
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the Event-Based and Streaming invocations since the Client decides itself when to initiate a 

request. 

4.3.4.3 Event-Based 

The conceptual diagram of the event-based software architectural pattern is given in Figure 

4-7c. This pattern is based on implicit invocations which are induced by events, i.e., when a 

certain event takes place it triggers the function calls. Event can be defined as a significant 

change in state. Typically, event-based systems are composed of event producers, event 

consumers and event channels. The events are sent to the listeners over the network even 

they are not on the same hardware. So, this pattern is well-suited for real-time applications, 

message-oriented middleware, and point-to-point communications. Further, the event-based 

pattern supports parallel execution of tasks and scalability. 

4.3.4.4 Publish-Subscribe 

This pattern is shown in Figure 4-7d. It consists of mainly three elements including Publishers, 

Subscribers, and Topics. Publishers write to Topics and Subscribers read from the Topics on 

which they are registered. One Publisher can write to many Topics and one Subscriber can 

read from many Topics. Unlike the event-based pattern described above, the subscribers in 

this pattern are all interested in a type of event happening without knowing the publisher of 

the event. The adopted communication pattern provides space decoupling, time decoupling 

and synchronization decoupling (Eugster et al., 2003). The decoupling of producer and 

consumer participants increases scalability by removing explicit independencies between 

communicating parties. Removing these dependencies together with the asynchronous 

communication feature of this infrastructure makes this pattern well-suited for even large 

scale IoT systems.    

4.3.4.5 Service-Oriented Architecture (SOA) 

The service-oriented architecture deals with composing applications by integrating 

distributed, separately maintained components aiming vendor and technology in-

dependence. This integration composed of three essential loosely coupled parts which are 

registry, service providers, and service requestors as shown in Figure 4-7e. In this integration 

type, service publishes its description to the service registry that keeps the list of all services 

with their locations and functionalities. When a service requester requires a service, it gets 

the required information from the registry and communicates with the requested service over 

a standardized communication. 

This type of decoupled integration is especially suitable for heterogeneous distributed systems 

supporting evolvability and interoperability. The disadvantage of this integration pattern is 

the complexity. 

4.3.4.6 Pipes and Filters 

This pattern is composed of two basic elements: pipes and filters as shown in Figure 4-7f. 

Filters are connected to each other by pipes. Filters transform the data received from another 

filter into a new form and output this transformed data to the following filter. Pipes are the 
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routes of data streams. Although filters are independent of each other and might execute 

parallel, they must use the data type agreed with pipe in order to communication takes place. 

This simple communication mechanism makes the pattern scalable and reusable supporting 

evolvability. On the other hand, this batch-type data processing cannot handle interactivity 

well and latency causes performance degradation. 
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Figure 4-7: Patterns for Integration at the Application Layer 

4.4 OVERALL APPROACH 

Table 4-2 shows the summary of the previously defined patterns that can be used to support 

integration of the concerns in the IoT system. Obviously, it is clear that for integrating multiple 

IoT systems many different issues need to be taken into account. To guide and support the 

integration of the IoT systems we propose the process as shown in Figure 4-8. 
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Figure 4-8: Patterns for Integration at the Application Layer 

The first step in the process is the identification of the individual IoT systems that need to be 

integrated. The second step in the process includes the identification of the concerns for the 

integration. This will require checking the needs and the overall purpose for the SoS. Hereby 

it is important to describe the added value that is created using the integration of these 

systems. In the third step we identify the patterns that can be used for the integration. These 

will include the patterns that we have described in the previous section. For this we will adopt 

the criteria and consider the constraints, the advantages and disadvantages of the 

corresponding patterns. Once the patterns have been identified we apply and compose the 

patterns. In principle, more than one pattern can be applied which will require design decision 

for the composition. In the final step we evaluate the overall architecture of the SoS with 

respect to the initial objective and the stakeholder concerns in the SoS. 
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Table 4-2: Identified List of Patterns that can be used in the integration process 

Layer Pattern Integration Approach 

Session 
Layer 

Traditional 
Gateway 

Provides translation of a given protocol to a predefined protocol 

Multi-Gateway Provides multiple gateways each of which can translate to a dedicated 
protocol 

Web-Service 
Multi-Protocol 

Provides a single gateway that can provide the translation of the 
protocols to a common protocol through a central web server  

Intelligent 
Gateway 

Provides a gateway that includes the required functionality for 
translating to different protocols.  

Middleware Connects devices within or across IoT systems and provides additional 
services (e.g. naming and directory, quality of service, etc.) 

Cloud 
Layer 

SaaS based Multiple IoT systems are tenants of the cloud and use the SaaS 

PaaS based Multiple IoT systems are tenants of the cloud and use the PaaS 

IaaS based Multiple IoT systems are tenants of the cloud and use IaaS 

Data 
Integration 

Multiple IoT systems use data fusion and analytics as cloud services 

Application 
Layer 

Peer-to-Peer Entities within an IoT system or across IoT systems communicate as 
peers, that is, autonomously as data providers and consumers 

Client Server One IoT system or another system is defined as a server which is used 
by multiple other IoT systems. 

Event-Based IoT elements listen to other IoT elements. In case of changes events are 
triggered to the coupled IoT elements (system or devices) 

Publish-
Subscribe 

Multiple IoT systems communicate as participants that are interested 
in defined topics. If topics change, the loosely coupled IoT systems are 
notified which can take further actions. 

SOA IoT service providers define and register their services to the IoT Service 
Registry. The IoT service requestor can request and use the registered 
IoT services.  

Pipes & Filters Every IoT system is considered as a black box component that gets as 
input data, which is then processed by the IoT system, and further 
provided to the output. IoT systems can use data from other IoT 
systems and/or provide data to other IoT systems. IoT systems can be 
configured in multiple different ways but there is no shared state. 

 

4.5 INTEGRATING THE SMART CITY ENGINEERING SYSTEMS 

In order to illustrate our approach, we will consider the smart city engineering case study as 

defined in Section 2. The provided solution is given in Figure 4-9. Here it is assumed that Air 

Quality System and Weather Monitoring System reside at the same location, which are 

integrated using a smart gateway that realizes the translation of the adopted different 

protocols in these systems. The Smart Building and Smart Office are also considered in the 

same location. Hereby, a multi-protocol gateway solution has been used in which multiple 

gateways for different protocol translations are adopted. The Smart Traffic System, Smart 

Lighting System, and City Energy Consumption system are considered to be connected over a 

local area network and communicate through a middleware platform. The middleware 

provides the translation services and additional network and communication services. All the 

systems are integrated in the City cloud in which all the cloud integration patterns including 



 97 

SaaS, PaaS, IaaS and data integration is used. This is one solution in which different patterns 

have been applied to meet the requirements. For different other requirements other patterns 

can be used to integrate the IoT systems. 

 

Weather 
Monitoring System

Air Quality System

City Energy 
Consumption

City Cloud (SaaS, PaaS, IaaS, and data integration) 

Smart Lighting 
System

Intelligent Gateway

Smart Office

Multi-Protocol Gateway

Smart Traffic 
System

Smart Building

Middleware

 

Figure 4-9: Example pattern-based integration of smart city engineering systems 

4.6 CONCLUSION 

One of the key challenges in IoT is coping with the heterogeneous set of systems and the 

integration of these systems in the same communication network. Based on a layered 

reference architecture for IoT we have indicated that the integration can be at different layers 

including session layer, cloud layer and application layer. Further we have shown that the 

integration is typically carried out based on well-defined patterns, that is, generic solutions 

structures for recurring problems. We have not provided any new integration solution but 

rather systematically compiled and structured the integration patterns as defined in the 

literature. Our study has resulted in 15 different patterns which can be used in different 

combinations. To guide the application of the patterns we have provided a general process 

represented using the BPMN. The process and the patterns have been successfully applied to 

a smart city case study. Hence, we have shown that the systematic structuring of the 

integration patterns is useful for developing IoT systems that need to integrate heterogeneous 

elements. Although we have identified and described the key patterns in the literature, this 

study could be further extended by considering other patterns. In our future work we will 

consider other type of IoT reference architectures and based on these, enhance the set of 

patterns that we have described in this chapter. Further, we will also consider IoT patterns 

beyond the integration concern such as security and safety patterns. 
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OBSTACLES IN DATA DISTRIBUTION 

SERVICE MIDDLEWARE1  

                                                       

1 This chapter is based on the following published papers:  

• Ö. Köksal and B. Tekinerdogan, “Obstacles in Data Distribution Service Middleware: A Systematic 

Review,” Future Generation Computer Systems, vol. 68, pp. 191–210, 2017. 

• Ö. Köksal and M. Akyuz, “Aspect Oriented Approach for Cross-Cutting Concerns in Data Distribution 

Service Based Systems,” Journal of Science and Engineering, vol. 19, no. 55, pp. 43–56, Jan. 2017. 
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Abstract 

Data Distribution Service (DDS) is a standard data-centric publish-subscribe programming 

model and specification for distributed systems. DDS has been applied for the development 

of high performance distributed systems such as in the defense, finance, automotive, and 

simulation domains. Various papers have been written on the application of DDS, however, 

there has been no attempt to systematically review and categorize the identified obstacles. 

The overall objective of this chapter is to identify the state of the art of DDS, and describe the 

main lessons learned and obstacles in applying DDS. In addition, we aim to identify the 

important open research issues. In this chapter, a systematic literature review (SLR) is 

conducted by a multiphase study selection process using the published literature since the 

introduction of DDS in 2003. We reviewed 468 papers that are discovered using a well-planned 

review protocol, and 34 of them were assessed as primary studies related to our research 

questions. We have identified 11 basic categories for describing the identified obstacles and 

the corresponding research challenges that can be used to depict the state-of-the-art in DDS 

and provide a vision for further research. 

Keywords: Data Distribution Service, Middleware, Systematic Literature Review 

5.1 INTRODUCTION 

Distributed systems realize the distributed execution of software systems over multiple 

resources to meet different requirements and quality factors such as performance, 

interoperation, multi user support. A distributed system consists of multiple software 

components that are located on networked computers, but act and run as a single system. 

The computers that are in a distributed system can be connected by a local network and be 

physically close to each other, or they can be connected in a wide area network and 

geographically distant. Distributed systems offer many benefits over centralized systems, 

including scalability, concurrency and redundancy. 

To reduce the effort for developing distributed systems, common middleware architectures 

have been introduced that provide common services such as name and directory services, 

discovery, data exchange, synchronization, transaction services, etc. Middleware can be 

classified in different ways including the integration type of middleware that defines the 

different approaches for integrating the components in the system environment. 

Based on the integration type middleware has been often classified as procedural middleware, 

transactional middleware, object-oriented middleware, and message-oriented middleware 

(Myerson, 2002). Procedure-oriented middleware uses a synchronous communication to 

integrate the components. Transactional middleware provides transaction capabilities to 

support the integration of systems. Object-oriented middleware is an object-oriented 

extension of procedural middleware including additional support for inheritance, object 

references and exceptions. Examples of object-oriented middleware are OMG Common 

Object Request Broker Architecture (CORBA), Java RMI and Microsoft COM (Pritchard, 1999). 

Finally, message-oriented middleware is a middleware that supports the integration of 

components using messages. Two different types of message-oriented middleware (MOM) 
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can be distinguished: Message Queuing and Message Publish/Subscribe. In the message 

queuing middleware, the communication among the components happens via a message 

queue. Hereby, messages are stored in a specific queue upon which the clients can retrieve 

messages from the queues they are interested in. The publish/subscribe middleware adopts 

an event-driven approach based on publish/subscribe communication pattern. The 

publish/subscribe pattern has gained broad attention in the development of loosely coupled, 

scalable large-scale applications. In distributed systems with the publish/subscribe interaction 

pattern, so-called subscribers express their interest in an event, or a pattern of events, and 

are subsequently asynchronously notified of events generated by publishers. An important 

and popular publish-subscribe middleware is the Data Distribution Service for Real-Time 

Systems (DDS) that has been defined by the Object Management Group (OMG) to provide a 

standard data-centric publish-subscribe specification for distributed systems (OMG, n.d.-a).  

It appears that DDS has been applied to different domains including development of high 

performance distributed systems such as in the defense, finance, automotive, and simulation 

domains. In addition, various different DDS implementation approaches have been proposed 

in the literature. In this context, various papers have been written on the application of DDS 

each one addressing particular problem. However, there has been no attempt to 

systematically review and categorize the obstacles with respect to the application of DDS. The 

overall objective of this chapter is to identify the state of the art of DDS, and describe the main 

lessons learned and obstacles in applying DDS. In addition, we aim to identify the important 

open research issues. In this context we have conducted a systematic literature review (SLR) 

(Kitchenham et al., 2009; Kitchenham & Charters, 2007) by a multiphase study selection 

process using the published literature since the introduction of DDS in 2003. We reviewed 468 

papers that are discovered using a well-planned review protocol, and 34 of them were 

assessed as primary studies related to our research questions. Our study shows that DDS can 

provide important benefits for realizing real-time distributed applications in various domains. 

We have identified 11 basic categories for describing the identified obstacles and the 

corresponding research challenges that can be used to depict the state-of-the-art in DDS and 

provide a vision for further research.   

The results of our study can be of benefit for both practitioners and researchers. Practitioners 

who are interested in applying DDS can use the result of the SLR as a roadmap for finding and 

analyzing the relevant approaches together with the lessons learned and decide about their 

applicability. For researchers the results of our study provide an overview of the reported DDS 

approaches together with the lessons learned, obstacles and research challenges in the DDS 

domain. As such, the information extraction scheme we used to characterize the study context 

and study findings can be used to guide the research activities of future studies in the DDS 

domain.  

The remainder of this chapter is organized as follows. Section 5.2 provides a short background 

on DDS middleware. Section 5.3 describes the adopted research method used in this study. 

Section 5.4 presents the results of the SLR. Section 5.5 presents the discussion and finally 

section 5.6 concludes this chapter. 
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5.2 DATA DISTRIBUTION SERVICE 

In this section we describe the background for understanding and supporting the approach 

that we present in this chapter. Detailed information on DDS can be found in (OMG, n.d.-a, 

n.d.-b, n.d.-c). Based on these Figure 5-1 shows the conceptual model for the DDS specification 

that is adapted from the DDS specification (OMG, n.d.-a).  

Entity

Domain Entity
Domain 

Participant

QoS Policy

TopicPublisher Subscriber

Data 
Writer

Data 
Reader

*.. 1
* .. *

* .. 1

* .. 11 .. *

*              qos

 

Figure 5-1: Reference architecture for DDS-based systems (adopted from (OMG, 2015b)) 

In the DDS specification Domain is a logical concept which represents the set of applications 

that can communicate with each other. Within the same DDS system multiple domains can be 

defined indicating different sets of applications that communicate with each other. Fig. 1 

shows the concepts related to a domain. A domain includes one or more Domain Participants 

which represent the local membership of the application in the corresponding domain. 

Domain Participant may participate in more than one domain at the same time. Each Domain 

Participant may include one Publisher and one Subscriber. Publisher represents the objects 

responsible for data production and updates. A publisher includes one or more Data Writers 

that publish data of different data types. Subscriber is responsible of receiving published data 

and making it available to the participant. A subscriber includes one or more Data Readers to 

access published data in a type-safe manner. The communication between data readers and 

data writers is established via Topics. A topic defines a unique name, data type and a set of 

Quality Services to the published/subscribed data. DDS provides the ability to attach Quality 

of Service (QoS) parameters to all these entities in order to specify the behavior of a service. 

Examples of these QoS parameters are the rate of publication, rate of subscription, how long 

the data is valid, etc. Applications communicate with each other based on topics. 

Communication between applications can only be realized only if the topic names and the 

defined QoS parameters match. 

The conceptual model of Figure 5-2 defines the so-called Data Centric Publish/Subscribe 

(DCPS) part of the DDS specification which is mandatory for DDS implementations. In addition 
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to DCPS the DDS specification also defines the Data Local Reconstruction Layer (DLRL) which 

is an optional layer that may be built on top of the DCPS layer. The purpose of the DLRL layer 

is to provide a seamless integration with object-oriented language constructs. Finally, an 

additional specification DDS Interoperability Wire Protocol is provided, which is needed for 

supporting the interoperability among different DDS implementations. For further details 

about these specifications we refer to OMG DDS Specifications (OMG, 2015a). 

Application

Data Local Reconstruction Layer (DLRL)

Data Centric Publish/Subscribe

DDS Interoperability Wire Protocol (DDSI)

UDP / IP

 

Figure 5-2: Layered architecture of the DDS with the DDS specifications ((OMG, 2015a)) 

5.3 RESEARCH METHOD 

The overall objective of this chapter is to identify the state of the art of DDS, and describe the 

main lessons learned and obstacles in applying DDS. For this we will apply a systematic 

literature review (SLR) or systematic review for short which is a well-defined and rigorous 

method to identify, evaluate and interpret all relevant studies regarding a particular research 

question, topic area or phenomenon of interest (Kitchenham et al., 2009; Kitchenham & 

Charters, 2007). The goal of an SLR is to give a fair, credible and unbiased evaluation of a 

research topic using a trustworthy, rigorous and auditable method. The inception of 

systematic reviews is based on the evidence-based concept which is devised in the field of 

medicine (Dybå et al., 2005). The success of evidence-based medicine has triggered many 

other disciplines to adopt a similar SLR approach, including for example psychiatry, nursing, 

social policy, and education. Similarly, the concept of evidence-based software engineering 

(EBSE) has been introduced together with guidelines for performing systematic literature 

reviews in software engineering. There are several reasons for undertaking a systematic 

literature review including summarizing the existing evidence concerning a treatment or 

technology, identifying any gaps in current research in order to suggest areas for further 

investigation, providing a framework/background in order to appropriately position new 

research activities, examining the extent to which empirical evidence supports/contradicts 

theoretical hypotheses, or assisting in the generation of new hypotheses.   

The goal of EBSE is to improve the quality of software-intensive systems and provide insight 

to stakeholder groups whether practitioners are using best practice or not. In our study we 

aimed at identifying the obstacles regarding the DDS concepts. Different approaches have 

been presented in the literature for conducting SLRs in different domains. We followed the 
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complete guidelines for performing SLRs as proposed by Kitchenham and Charters 

(Kitchenham & Charters, 2007). In the following subsections we discuss the applied research 

method that is based on an extensive review protocol. 

5.3.1 Review Protocol  

Before actually conducting the review we first defined the review protocol (Kitchenham et al., 

2009). A review protocol describes the methods that will be used to carry out a specific SLR. 

The basic activities of the adopted review protocol are shown in Figure 5-3. 

Specification of 
Research Questions

Definition of Search 
Strategy

Identification of Study 
Selection Criteria

Identification of Study 
Quality Assessment

Evaluation of Quality 
Assessment Scores

Development of Data 
Extraction Method

Definition of Search Data 
Synthesis Method

Definition of Presentation 
Strategy of Findings

 

Figure 5-3: Activities under the review protocol 

Firstly, we specified our research questions based on the objectives of this systematic review. 

After this step we defined the search scope and the search strategy. The search scope defines 

the time span and the venues that we looked at. In the search strategy we devised the search 

strings that were formed after performing deductive pilot searches. A good search string 

brings the appropriate search results that will come to a successful conclusion in terms of 

sensitivity and precision rates. Once the search strategy was defined, we specified the study 

selection criteria that are used to determine which studies are included in, or excluded from, 

the systematic review. The selection criteria were piloted on a number of primary studies. We 

screened the primary studies at all phases on the basis of inclusion and exclusion criteria. Also, 

peer reviews were performed by the authors throughout the study selection process. The 

process followed with quality assessment in which the primary studies that resulted from the 

search process were screened based on quality assessment checklists and procedures. Once 

the final set of preliminary studies was defined the data extraction strategy was developed 

which defines how the information required from each study is obtained. For this we 

developed a data extraction form that was defined after a pilot study. In the final step the data 

synthesis process takes place in which we present the extracted data and associated results. 
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5.3.2 Research Questions 

The most important part of any systematic review is to clearly and explicitly specify the 

research questions. Research questions drive the subsequent parts of the systematic review. 

Hence, asking the right question is crucial to derive the relevant findings properly. The more 

precise the research questions are, the more accurate the findings will be. In this context, 

research questions need to be meaningful and important to both practitioners and 

researchers. As was previously stated no systematic review has been carried out yet on DDS-

based systems. Our particular aim in this study is the identification of obstacles and lessons 

learned, and the future research directions in the domain of DDS. In accordance with these 

objectives our primary research question can be concretely formulated as follows:  

RQ 1. What are the identified obstacles in the DDS domain? 

RQ 2. What are the solution directions for the identified obstacles? 

5.3.3 Search Strategy 

To answer the research question as defined in the previous section we have conducted an 

extensive search of papers. In the following we describe the scope of the search, the applied 

research method and the search string. 

Our search scope included the papers that were published over the period of January 2003 

and December 2015. The main motivation for 2003 was that DDS was introduced by OMG in 

that year. We searched for papers in selected venues that publish high quality papers. We 

used the following search databases: IEEE Xplore, ACM Digital Library, Wiley Inter Science, 

Science Direct and Springer. These venues are listed in Table 5-1.  

Table 5-1: Searched publication sources  

Characteristics No. of Included Studies after 
applying search query 

No. of Included Studies after 
exclusion criterion 

IEEE Xplore 299 20 
ACM 78 5 
Wiley 2 0 
Science Direct 87 9 
Springer 2 0 

Total 468 34 

 

Our targeted search items were journal papers, conference papers, workshop papers, and 

white papers. To search the selected databases, we used both manual and automatic search. 

Automatic search is realized through entering search strings on the search engines of the 

electronic data source. Manual search is realized through manually browsing the conferences, 

journals or other important sources.  

In our case finding search strings appeared not to be difficult due to the unique concepts in 

DDS. The search string “DDS” resulted in many different studies that were not relevant to our 

study (such as digital data synthesizer). As such we chose not to use the acronym but the full 

name of the DDS standard. Hence, we used the search String “data distribution service” that 

we actually used for searching in all the listed venues. Since there are no synonyms for data 
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distribution service this search string appeared to be strong enough to identify all the relevant 

primary studies. In addition to these automated searches we also conducted manual searches 

both as a preliminary analysis and as a subsequent analysis after having observed the 

publication channels returned by the search string. The manual searches appeared to be quite 

useful since we retrieved some good-quality articles that an automatic search could not 

reveal. The result of the overall search process after applying the search queries and the 

manual search is shown in the second column of Table 5-1. As it can be seen from the table 

we could identify 468 papers at this stage of the search process. 

5.3.4 Study Selection Criteria 

In accordance with the SLR guidelines (Kitchenham & Charters, 2007) we further applied 

exclusion criteria on the large-sized sample of papers in the first stage. The overall exclusion 

criteria we used are as follows: 

• EC 1: Abstracts or titles that do not mainly discuss the provision of DDS 

• EC 2: Abstracts or titles that do not propose an approach to DDS 

• EC 3: Papers where the full text is not available 

• EC 4: Duplicate publications found in different search sources 

• EC 5: Papers written in different language than English 

• EC 6: Papers that do not explicitly relate to or discuss DSS 

• EC 7: Papers which are experience and survey papers 

• EC 8: Papers that discuss only the application of DDS and do not critically reflect on the 
DDS concepts 

The exclusion criteria were checked by a manual analysis. After applying the exclusion criteria 

34 papers of the 468 papers remained. 

5.3.5 Study Quality Assessment 

In addition to adopting general inclusion and exclusion criteria we also assessed the quality of 

the resulting primary studies. Study quality has no widely-accepted definition, and usually the 

quality evaluation approach consists of a set of questions for assessing the quality of the 

selected primary studies. In this context, we adopted the summary quality checklists that are 

proposed in (Kitchenham & Charters, 2007). We thoroughly reviewed the list of questions in 

the context of our review and selected the ones that are aligned with our research questions. 

The quality checklist is shown in Table 5-2. The quality items in the instrument are deployed 

on a numerical scale because we intended to rank and classify the studies with respect to an 

overall quality score. Therefore, we preferably employed a three-point scale (i.e. “yes” = 1, 

“somewhat” = 0.5, “no” = 0) during the assessment. We selected this approach in alignment 

with the review protocol of Kitchenham et al (Kitchenham et al., 2009) and similar SLRs.  The 

result of the assessment is provided in Appendix B – Assessment of Primary Studies. We used 

the outcomes of quality assessment stage in order to assist data analysis and synthesis. We 

examined whether quality differences are correlated with the results reported in different 

kinds of primary studies. 
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Table 5-2: Quality Checklist 

Questions 
Q1 Are the aims of study clearly defined? 
Q2 Are the scope, the context and the experimental design of the study clearly stated? 
Q3 Does the report have implications for research and/or practice? 
Q4 Are the variables used in the evaluation likely to be valid and reliable? 
Q5 Are the measures used in the study quite explicit & aligned with the research aims? 
Q6 Is the research process documented adequately? 
Q7 Are the main findings stated clearly in terms of validity and reliability? 
Q8 Is there an explicit statement of the limitations? 

 

5.3.6 Data Extraction 

In order to precisely extract and record the data retrieved from each of the 34 primary studies 

both authors read the full-texts of these studies. The information needed to address our 

research question and study quality criteria was collected by means of a data extraction form. 

Actually, when the study review protocol became definite, the data extraction form was 

composed in order to reduce the tendency to bias. Since we considered the quality 

assessment stage as part of the data analysis, the information collected for both the quality 

criteria and the review data was kept in the same form. The data extraction form was piloted 

by both of the two researchers in consensus meetings so as to be consistent in subsequent 

analysis. After independent data extraction, data from both researchers were compared and 

disagreements were resolved by consensus. Basically, the data extraction form first included 

standard information such as name of the reviewer, date of data extraction, study ID, title, 

authors, journal, publication details, a brief summary and space for additional notes. Later on, 

the form was extended to cover the data directly related to answering the research question 

and for supporting the search for obstacles of applying DDS. Some of the fields were: 

publication details, study aim, targeted domain, study settings, DDS solution used, research 

method used, assessment approach, findings, constraints/limitations, implications for future 

research and major conclusions.  We recorded the places where the extracted information 

existed within the primary studies in spread sheets. In order to support the process of 

synthesizing the extracted data, the form was developed in a progressive way so that the 

transition was performed seamlessly.  

5.3.7 Data Synthesis 

Data synthesis is the process of collating and summarizing the extracted data in a manner 

suitable for answering the questions that an SLR seeks to answer. At this stage, we performed 

a qualitative and quantitative analysis separately on the data extracted from the reviewed 

papers. We investigated whether the qualitative results can lead us to explain quantitative 

results. For example, a primary study involving an assessment of DDS technology could help 

interpret other solutions quantitatively. We made use of tabular representation of the data 

when feasible, and it enabled us to make comparisons across studies. Also, using the 

quantitative summaries of the results, we inferred the implications for future search, and 

consequently the existing research directions within the DDS domain. 
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5.4 RESULTS 

5.4.1 Overview of Selected Studies 

The list of primary studies that we have identified is listed in Appendix A – Primary Studies for 

Deriving Characteristics for DDS.  

An overview of the primary studies according to publication channel is shown in Table 5-3. The 

table shows the publication channels, the types of articles and the number of studies that fall 

into the channels accordingly. The majority of the papers have been published in conference 

papers. The journals, Journal of Systems and Software and Computer Standards and Interfaces 

appeared to be the journals with the highest number of papers. 

Table 5-3: Distribution of studies in terms of publication channel and occurrence 

No Publication channel Type 
No. of 
studies 

1 Journal of Systems and Software Journal 4 
2 Computer Standards and Interfaces Journal 3 
3 Int. Symposium on Computer and Communications Symposium 3 
4 Distributed Event Based Systems Conference 2 
5 IEEE Consumer Communications and Networking Conference Conference 2 
6 Intelligent Solutions in Embedded Systems Workshop 2 
7 Int. Conference on Big Data and Smart Computing Conference 2 
8 Int. Conference on Generative Programming & Component Engineering Conference 2 
9 Conference on Information Networking Conference 1 

10 Distributed Simulation and Real-Time Applications Conference 1 
11 EUROMICRO Conf. on Software Engineering & Advanced Applications Conference 1 
12 European Conference on Software Architecture Workshops Workshop 1 
13 IEEE Conference on Emerging Technologies and Factory Automation Conference 1 
14 IEEE Congress on Services Conference 1 
15 IEEE Int. Conference on Distributed Computing Systems Workshops Conference 1 
16 IEEE Int. Symposium on Parallel and Distributed Processing Symposium 1 
17 Int. Conference on Systems and Informatics Conference 1 
18 Int. Symposium on Dependable Computing Symposium 1 
19 Int. Workshop on Future Trends of Distributed Computing Systems Workshop 1 
20 Journal of Parallel and Distributed Computing Journal 1 
21 Space Mission Challenges for Information Technology Conference 1 
22 The Journal of China Universities of Posts and Telecommunications Journal 1 

In Figure 5-4 we present the year-wise distribution of the primary studies along with the 

venues that they were published in. 

 

Figure 5-4: Year-wise distribution of number of primary studies 
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5.4.2 Research Methods 

It is very important that the primary studies explicitly define the used research methodology. 

By analyzing and assessing the studies’ reported approaches, we can draw conclusions about 

the strength of evidence within them. Table 5-4 provides the list of research methods used in 

the selected 34 primary studies.  There are 6 types of research methods that we looked for in 

the review. The numbers in the table reveal that almost all of the primary studies are based 

on single case study except studies B and R. Study [B] performed a benchmark for 3 different 

DDS vendors including RTI, OpenSplice and OpenDDS, the authors only published the results 

of RTI DDS (Connext). Study [R] compares just OpenSplice and RTI DDS. 

Table 5-4: Studies by research methods 

Research Method Studies Number Percent (%) 
Not 
described/Descriptive 

- 0 0 

Single case A, C, D, E, F, G, H, I, J, K, L, M, N, O, P, Q, S, T, U, 
V, W, X, Y, Z, AA, AB, AC, AD, AE, AF, AG, AH 

32 94.1 

Multiple case - 0 0 
Survey - 0 0 
Experiment - 0 0 
Benchmarking B, R 2 5,9 

 

5.4.3 Methodological Quality 

It should be noted that a systematic literature review is a methodologically rigorous review of 

research results. For this purpose, using the quality checklist as defined in Table 5-2, we tried 

to address methodological quality in terms of rigor, credibility and relevance together with 

reporting quality. All in all, we dedicated the first two questions of the table for the quality of 

reporting, the third and fourth question for relevance, the fifth and sixth questions for rigor 

and the last two questions for assessing the credibility of evidence. Figure 5-5 shows the 

histogram of reporting quality results that has been defined based on the first four questions 

and the values in Appendix B – Assessment of Primary Studies. The figure indicates that most 

of the primary studies (88.2%) are good according to reporting quality.  

 

Figure 5-5: Reference Reporting quality of the primary studies 

Figure 5-6 shows the relevance quality scores that are based on the evaluation of the third 

and fourth questions focusing on the assessment of the relevance of our primary studies. 
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58.8% of the studies (20 studies) were found to be directly relevant to the field, and 23.5% (8 

studies) of them were considered relevant to some extent. 

 

Figure 5-6: Relevance quality of the primary studies 

We also assessed the rigor of studies and the trustworthiness of the findings. Figure 5-7 

denotes the rigor of the research methods employed on a scale from 0 to 2. Considering the 

scores 1.5 and 2 as first-rates, 28 of the primary studies (%82.4) established the validity of 

their findings in a proper form. Eight studies are of top quality in terms of rigor. 

 

Figure 5-7: Rigor quality of the primary studies 

Our last two criteria were intended for the credibility of evidence that is the extent to which 

the findings and the major conclusions of the primary studies are profoundly clear, valid and 

suggestive. Figure 5-8 shows the histogram of quality scores based on credibility of evidence. 

Five studies given in Figure 5-8 got the highest score in this rating scale, having reasonably 

valid and meaningful findings and corresponding conclusions. 

 

Figure 5-8: Credibility of evidence of the primary studies 
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Consequently, we can now finalize the overall methodological quality scores. Figure 5-9 shows 

the total of quality scores in terms of four criteria: reporting, relevance, rigor and credibility 

of evidence. 27 of the studies (79.4%) having scores equals or greater than 6 are relatively 

good, and two studies are at the head of this group being high quality. 7 studies having scores 

less than 6.0 are considered to be of poor quality. In conclusion, the histogram shows that the 

majority of the primary studies were assessed to be good to a large extent. 

 

Figure 5-9: Overall quality of the primary studies 

5.4.4 Systems Investigated 

This section outlines the results we extracted related to three main research questions. We 

present the data extracted from the primary studies in the form of findings, separately for 

each research question. 

1) RQ 1. What are the identified obstacles in the DDS domain?  

The names of the identified problems are given in Table 5-5. In the following Table 5-6 we 
discuss the problems and solutions that we derived from the selected primary studies. The 
overview of the identified 11 problems is given in. The first column presents the identified 
studies, the second column the date of publication of the primary study; the remaining 
columns refer to the identified problems (P1 to P11). The description of each problem is shown 
at the right of the Table 5-5. 

Table 5-5: Identified Problems  

Name of the Problems 
P1 Complexity of DDS configuration 
P2 Performance prediction, measurement & optimization 
P3 Implementing DDS 
P4 DDS integration over WAN 
P5 DDS using wireless networks & mobile computing 
P6 Interoperability among DDS vendor implementations 
P7 Data consistency in DDS 
P8 Reliability in DDS 
P9 Scalability in DDS 

P10 Security 
P11 Integration with Event Based Systems 
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Table 5-6: Primary studies with identified problems of DDS 

Study Year P1 P2 P3 P4 P5 P6 P7 P8 P9 P10 P11 
A 2006       X     
B 2008  X          
C 2008     X       
D 2009        X    
E 2009     X       
F 2009     X X      
G 2010        X X   
H 2011        X    
I 2011  X    X   X   
J 2011 X  X         
K 2011 X  X         
L 2012     X       
M 2012  X   X       
N 2012     X       
O 2012  X          
P 2013    X  X      
Q 2013       X     
R 2013  X          
S 2013 X X          
T 2013  X  X        
U 2013 X  X         
V 2014  X    X   X   
W 2014 X           
X 2014  X    X   X   
Y 2014    X        
Z 2014    X        

AA 2014    X        
AB 2014          X  
AC 2015  X          
AD 2015         X  X 
AE 2015  X    X   X   
AF 2015  X          
AG 2015     X       
AH 2015           X 

Total: 52 5 12 3 5 7 6 2 3 6 1 2 

 

To discuss each identified problem in detail we further adopt feature diagrams (Czarnecki, 

Kim, & Kalleberg, 2006) to provide an overview of the identified sub-problems and the 

addressed solutions for the given problem category. A feature diagram is a tree with the root 

representing a concept (e.g., a software system), and its descendent nodes are features. 

Feature diagrams show both the mandatory and the variant features and, in a sense, can be 

used to support ontological modeling of a domain. Variant features are usually represented 

as optional or alternative features. A feature configuration is a set of features which describes 

a member of an SPL. A feature constraint further restricts the possible selections of features 

to define configurations.  The most common feature constraints are “requires” and “mutex” 

relations. In our overview the root node represents the problem category, while the features 

represent the sub-problems, and optionally the sub-sub-features define the possible 

solutions, if these were described. The overall legend (abstract syntax) to be used for modeling 
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the problem categories together with their sub-problems and possible solution directions is 

given in Figure 2-3. In the following we discuss each problem separately. 

P1. Complexity of DDS configuration 

Although there exists an OMG’s specification to deploy and configure DDS based systems 

(OMG’s Deployment & Configuration Specification (OMG, 2006a)) several authors have 

indicated the difficulty of configuring DDS before it can be installed and used. The 

configuration is usually not trivial and requires lots of time and effort due to various reasons 

such as the many involved parameters, the complex interactions among the parameters and 

the need for writing glue code. In fact, it has been shown that about 80% of DDS-related code 

is associated with configuring the middleware. According to Otto et al. (Otte, Gokhale, 

Schmidt, & Willemsen, 2011) over half of the DDS API that the developers must learn is 

configuration related. Different solutions have been provided to cope with the complexity and 

support the configuration of DDS.  

In [J] the authors propose the automatic configuration of DDS middleware to reduce time and 

effort of the configuration. For this, they propose a component-based approach and separate 

concerns between configuration-based aspects of DDS application development and 

configuration aspects. In this way the configuration of the DDS is not limited to source code 

level configuration but can also be applied at deployment time.  To realize this, the authors 

provide an implementation of the OMG’s DDS4CCM (OMG, 2006b) which integrates 

component-based DDS application development with the OMG’s Lightweight CORBA 

Component Model (LwCCM) (OMG, 2012b). They use C++ templates to generate the 

configuration and the glue code. 

Study [S] proposes to adopt model-driven engineering and generative programming to reduce 

the manual effort in generating a large number of relevant QoS configurations that can be 

deployed and tested on a cloud platform. The study proposes a domain specific modeling 

language (DSML) that supports modeling a DDS application for emulation and testing its 

performance for various combinations of DDS QoS policies.  

Study [K] provides the so-called ServiceDDS a DDS-based framework that combines different 

standard technologies to allow real-time heterogeneous participants to interact dynamically 

in distributed peer-to-peer architectures. ServiceDDS uses DDS to support dynamic distributed 

interaction, XMPPP to provide Web access, and RTSJ as a real-time platform. The framework 

uses service-topics as an abstraction and refinement of the standard DDS entities model. 

Service-topics can interact with the DDS standard topics and because of the higher abstraction 

level the complexity is better managed and the configuration and development time can be 

reduced.  

Study [U] presents the integrated CCM (iCCM), a framework for integrating DDS into the 

CORBA Component Model (CCM), which is a standard-based programming model for 

implementing component-based DRE systems. The framework does not need any 

modifications to either the CCM or DDS specifications. Using the framework, the system 

developers adopt a component-based development and are able to abstract away the low-
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level implementation details of DDS. In this way reuse is promoted and the deployment and 

configuration complexities are managed.  

Study [W] provides the tool Deploy-DDS that supports the deployment configuration of DDS 

modules to the physical resources. The tool supports the selection and generation of 

deployment architectures of DDS based systems, and as such can be used to perform an 

evaluation during the design phase. 

To sum up, the corresponding solutions to the complexity of DDS configuration those are 

proposed in the identified primary studies include separation of configuration concerns from 

application concerns, abstraction of lower level source code to components or services, and 

the use of model-driven development approaches to automatically generate the parameter 

values and the code. 

Figure 5-10 shows the problem feature diagram for this configuration of DDS problem. 
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Figure 5-10: Feature diagram for P1 – Managing DDS configuration complexity 

P2. Performance prediction, measurement and optimization 

Performance is one of the important quality factors for DDS based systems that can be 

addressed at different levels including design, implementation and operation of the system. 

An important issue is to predict the performance of the DDS based system before its 

implementation. This is because after the DDS has been implemented it is very difficult or 

costly to adapt the system. After the implementation of the DDS measurement of the 

performance is considered important to meet the quality of service requirements.   

Study [S] focuses on the problem of performance prediction in the presence of diverse 

combinations of QoS configurations. The authors claim that existing design-time formal 

methods are limited in providing sufficient accuracy in prediction, tool support and the 

understandability of the adopted design formalisms. They propose an approach in which the 

system behavior is emulated and data on the QoS parameters is gathered by experimentation. 

They provide a model-based performance testing framework to generate a large number of 

QoS configurations that can be deployed and tested on a cloud platform.  

Study [I] offers a bloom filter (BF) algorithm as an alternative to the Simple Discovery Protocol 

(SDP) algorithm, which is the default DDS network discovery protocol for Real-Time Publish 
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Subscribe (DDS-RTPS). In the SDP each participant sends its endpoint data to every participant 

in the domain, and on its turn receives endpoint data from all the other participants. In case 

of a large network with thousands of endpoints, numerous discovery messages from all 

participants in the same domain will be required. However, not all date is needed, and the 

messages sent to uninterested endpoints would be wasted. Moreover, this process will also 

require a large amount of memory to store all of the data in such cases.  The adoption of the 

BF algorithm helps to optimize the network discovery process and likewise decreases the 

network and resource consumptions. 

An extension of the Study [I] is Study [X] which proposes the usage of the SDPBloom algorithm 

as an alternative to BF algorithm to further optimize the network discovery process. The 

SDPBloom algorithm eliminates the duplicate data in Bloom Filters and ensures that each data 

has only one representative key. The proposed algorithm provides better results than BF. 

Although both Study [X] and Study [I] optimize the network discovery process these can 

impede the interoperability since it deviates from the default implementation, that is, SDP of 

the RTPS. This issue is considered as further research.  

Study [AE] is another extension of Study [I]. This work uses another node discovery scheme 

based on Parallel Dynamic Bloom Filters, namely SDP-Parallel DBF for the same purpose. The 

proposed algorithm provides better delay time, number of messages and message size in 

network by reducing unnecessary delay time spent restructuring Bloom Filters. Furthermore, 

SDP-Parallel DBF offers computational speed-up through parallelization.  

Study [M] provides an evaluation of the performance of the DDS-based middleware in the 

wireless environment. For this several experiments have been carried out in the wired and 

wireless LAN. Based on the experimental results a new bandwidth-aware design scheme is 

proposed in which separate uplink and downlink communication model is used depending on 

the number of Pubs and Subs. In this way, the performance of the DDS communication in 

WLAN is enhanced. 

Study [B] presents an assessment of the strengths and weaknesses of four commercial DDS 

implementations deployed on an unmanaged setting as that in an enterprise setting that is 

often characterized by an inter-administrative geographic scale, shared network channels, and 

heterogeneous with unpredictable quality parameters such as end-to-end latency and load. 

The study shows that if the application manages a small number of homogeneous resources, 

this middleware performs timely and reliably. However, in a more general setting with 

fragmentation and heterogeneous resources, reliability and timeliness rapidly degenerate. 

The authors suggest self-adopting and self-configuration capability, efficient event routing 

primitives, and management of heterogeneous resources. 

Study [T] addresses the problem of assuring end-to-end quality-of-service (QoS) in Wide Area 

Network (WAN) based distributed real time (DRE) applications. This is hard because the end-

system QoS mechanisms must work across different access points, inter-domain links, and 

within network domains. Although DDS is widely used in the design of real time distributed 

systems because of its explicit consideration of QoS parameters it does not provide any 

mechanism for assuring end-to-end QoS of DRE systems. Moreover, it lacks mechanisms that 
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holistically schedule different resources to realize end-to-end QoS. To address these 

problems, the paper presents an approach to enhance the DDS by providing (1) an approach 

for analyzing DDS scheduling capabilities to deliver DDS samples on an end-system using a 

performance model, and (2) a policy-based framework called Velox to provide end-to-end QoS 

provisioning for DDS based applications by controlling network resources, such as a bandwidth 

and end-to-end delay.  

Study [O] analyses DDS from the schedulability point of view.  The authors focus on how DDS 

aims to guarantee the real time behavior through the mechanisms of the standard. For the 

analysis concepts defined in the Modeling and Analysis of Real-Time and Embedded systems 

(MARTE) standard (OMG, 2008) has been into DDS. The authors conclude that the DDS is 

suitable to perform the schedulability analysis but does not deal with issues to develop DRE 

systems such as thread scheduling, which are left to the implementation. Based on the analysis 

the authors propose extensions to DDS including the addition of an interface to select among 

different scheduling policies available in the system as well as the definition of new QoS 

parameters to allow the configuration of schedulable entities through the assignment of 

specific scheduling parameters. 

Study [R] provides a performance comparison of two different DDS implementations including 

OpenSplice and RTI. The study reports on the advantages and disadvantages of both 

implementations in terms of data delivery performance, CPU usage, and memory resource 

usage. Based on the experimental study the authors provide guidelines related to the 

performance issues in centralized, decentralized and federated DDS implementations. The 

centralized appears to have the simplest architecture but has to cope with the risk of single 

point of failure. Both OpenSplice and RTI use a distributed implementation, whereby 

OpenSplice uses a federated approach and RTI a decentralized approach. The study indicates 

that federated approaches perform better if the data size is small, but for larger data sizes the 

decentralized approach seems to have better results with respect to CPU and memory usage. 

Likewise, it is concluded that decentralized DDS approaches provide better scalability in case 

of increased data sizes.  

In Study [V] the authors focus on the standard “wire protocol” that allows DDS 

implementations from multiple vendors to interoperate. The authors claim that the adopted 

Simple Discovery Protocol (SDP) in the standard wire protocol (OMG, 2014) is resource 

consuming for large scale systems. As such they propose the so-called Content-based Filtering 

Discovery Protocol (CFDP) for which they also describe a prototype implementation. 

Furthermore, empirical studies are presented which show that, compared to SDP, the 

proposed CFDP is more efficient in large scale systems in terms of computing, CPU and 

network usage.  

Study [AC] provides a simulator for performance evaluation of large scale network systems 

using DDS. The DDS simulator enables developers to measure basic metrics such as discovery 

completion time, end-to-end message transfer delay, the number of data messages per 

Domain Participant, and user data processing time. The simulator supports the analysis of the 

strengths and weaknesses of DDS implementations from different vendors.    
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Study [AF] proposes “Rateless Code based Reliable Multicast (RCRM)” scheme instead of 

“Automatic Repeat reQuest (ARQ) based error control in DDS. The proposed RCRM scheme 

provides higher reliable multicast efficiency since ARQ based error control is effective if only 

channel condition is moderately good. Furthermore, RCRM enhances the rateless coding 

performance by using a heuristic algorithm to reduce the computational complexity. This 

heuristic algorithm encodes transmit packages of publishers with a rateless code improving 

throughout performance. When using rateless code, the subscribers send only one feedback 

instead of sending ACK for each encoded packet.  This approach is very efficient with respect 

to ARQ based error control in which simultaneous feedback consumes network resources 

quickly.  

 In sum, the identified primary studies indicate that it is difficult to predict and measure the 

performance of DDS-based systems due to the many different QoS parameters and related to 

this the large number of possible configurations. For performance prediction the studies 

propose to adopt emulation and experimentation to predict the QoS values for different 

configurations. For performance measurement the identified solutions include the adoption 

of explicit frameworks, benchmarking and tool support. Finally, for performance optimization 

the identified solutions include the adoption of new discovery protocol algorithms, explicit 

scheduling mechanisms, and new communication model.  

The problem feature diagram for this problem is shown in Figure 5-11. 
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Figure 5-11: Feature diagram for P2 – Performance prediction, measurement and optimization 

P3. Implementing DDS  

DDS is a specification that was introduced after CORBA. Similar to CORBA it deliberately does 

not provide an implementation, and likewise the implementation of the DDS is left to the 

vendors. The DDS specification includes different compliance profiles including minimum 

profile, content-subscription profile, persistence profile, ownership profile, and object model 

profile. The minimum profile contains just the mandatory features of the DCPS layer. The 

content-subscription profile, the persistence profile and the ownership profile include 

optional features for the DCPS layer. The object model profile includes feature for the Data 

Local Reconstruction Layer (DLRL).  

Different vendors have provided different profile implementations of the DDS. In addition, 

several studies have discussed the challenges and the approaches for providing the 
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implementations of DDS. Table 5-7 shows the DDS implementation profiles of selected DDS 

vendors. These vendors have been published on the OMG DDS portal site (OMG, n.d.-c). Four 

of these including OpenDDS of OCI, Vortex (Open Splice) of Prism Tech, Connext of RTI, and 

CoreDX of Twin Oaks are also referred to in the primary studies that we have identified. The 

table characterizes the vendors with respect to the features that are defined by different OMG 

DDS specifications. 

Table 5-7: Implemented Profiles with respect to the selected DDS VENDORS 

DDS Vendors DDS Product Type 
Compliance to DDS Specification 

DDS Profile DDSI Web Security X-Types 
Gallium  Intercom DDS Commercial Minimum Profile No No No No 
MilSOFT  MILSOFT DDS Commercial Full DCPS Yes No No No 
Ocera Orte  Ocera Commercial No Yes No No No 
OCI  OpenDDS Open Source Full DCPS Yes No No No 
PrismTech  Vortex Commercial Full DCPS + DLRL Yes Yes Yes Yes 
RTI Connext DDS Commercial Full DCPS Yes Yes Yes Yes 
Twin Oaks  CoreDX Commercial Minimum Profile & 

Ownership Profile 
Yes No No No 

 

In Study [J] the authors propose to apply a component-based implementation of DDS to 

increase the abstraction level of the implementation and for addressing the deployment and 

configuration requirements of modern distributed real-time and embedded systems (DRE). In 

this way the authors aim to reduce the need for implementing large amounts of boilerplate 

glue code that is necessary for the configuration of the DDS. They adopt the OMG’s DDS for 

Lightweight Common Component Model CCM (DDS4CCM) specification and describe the 

design and implementation of the so-called DDS4CIAO which addresses a number of inherent 

and accidental complexities in the DDS4CCM standard. To address the accidental complexities 

of the implementation of DDS4CCM they make use of several approaches including extensible 

interface patterns in the form of mixins, template-driven code generation techniques, and 

customization techniques.  

Study [U] presents the integrated CCM (iCCM), a framework for integrating DDS into the 

CORBA Component Model (CCM), which is a standard-based programming model for 

implementing component-based DRE systems. The framework does not need any 

modifications to either the CCM or DDS specifications. Using the framework, the system 

developers adopt a component-based development and are able to abstract away the low-

level implementation details of DDS. Likewise, reuse is promoted and developers can focus 

more on the business-logic of the application. 

As stated in P1, Study [K] provides ServiceDDS which supports the implementation of DDS 

services using so-called service-topics that provide an abstraction and refinement of the 

standard DDS entities model. The abstraction using service topics eases the implementation 

of the DDS and enables the additions of new features. In this context the authors claim that 

implemented service topics can interact with the DDS standard topics combining different 

standard technologies (such as web-access, scheduling support and real time performance. 
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To sum up, realizing the implementation of DDS is handled in both the identified primary 

studies and the proposed DDS specifications. The primary studies provide novel solutions 

which have not been (completely) addressed by the DDS specifications. These solutions apply 

service-oriented development, component-based development or the current general-

purpose programming languages. In addition to these, DDS profile implementations and 

additional specifications are provided. The feature diagram for this problem is shown in Figure 

5-12. 
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Figure 5-12: Feature diagram for P3 – DDS implementation 

P4. DDS integration over WAN 

DDS has been mainly designed for Local Area Networks (LAN). However, as more systems 

become geographically distributed and consist of multiple autonomous systems it has now 

become necessary for DDS to operate over Wide-Area Networks (WAN). Several studies have 

discussed the challenges for implementing DDS based systems over WAN.  

Study [P] describes the requirements for DDS data-spaces interconnection and presents an 

architecture that aims to realize these requirements. In particular, the study proposes a DDS 

interconnection service (DDS-IS) capable of bridging DDS domains as well as adapting between 

different data schemas. The approach is compliant with the latest OMG specifications and as 

such does not require any modifications to DDS applications. Experimental results gathered 

on a prototype implementation have shown that the impact of the service on the 

communications performance is within the acceptable limits for most real-world uses of DDS 

(latency overhead is of the order of hundreds of microseconds). Further, the provided service 

seems to interconnect remote data-spaces efficiently and reduce the network traffic almost 

N times, with N being the number of final data subscribers. 

Study [Y] indicates that most Wide Area Networks (WAN) do not support multicast and UDP 

transports, which may lead to difficulties when using DDS in WAN. This is because most ISPs 

in WAN do not allow multicast and UDP flows. The study proposes the use of DDS routers for 

preserving the semantics of the DDS in the context of WAN and providing an efficient data 

distribution over WAN. The authors claim that the use of the proposed DDS router 

outperforms the legacy unicast based communication in terms of scalability and robustness. 
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Study [K] provides the ServiceDDS a DDS-based framework for supporting the integration and 

dynamic interaction of real-time heterogeneous participants in distributed peer-to-peer 

architectures. ServiceDDS participants are able to participate in a global data space using 

different interactions mechanisms based on DDS or the Extensible Messaging and Presence 

Protocol XMP (IETF, 2011). DDS offers a data-centric publish/subscribe model for real-time 

distributed communications. XMPP is a communications protocol for message-oriented 

middleware based on XML. To meet the demands of real-time systems in the Java 

programming language RTSJ is adopted.  

As stated in problem P2 Study [T] describes the problems with respect to the development of 

distributed real time (DRE) applications over the Wide Area Network (WAN) using DDS. These 

DRE systems are becoming more dynamic, larger in topology scope and data volume, and 

more sensitive to end-to-end latencies, and security threats. Although DDS provides 

mechanisms for imposing QoS between publisher and subscribers, it does not provide a 

standard QoS enforcement in the context of WAN, and the required end-to-end QoS support. 

For DRE system that spans multiple different interconnected networks, assuring end-to-end 

quality-of-service (QoS) must be defined across different access points, inter-domain links, 

and within network domains. For the integration over WAN the authors provide the Velox 

framework to provide end-to-end QoS provisioning for DDS based applications. To support the 

integration over WAN, the Velox framework implements an end-to-end path abstraction using 

a Multi-Protocol Label Switching (MPLS) tunnel (Awduche, 1999). This tunnel enables 

aggregating and merging different autonomous systems from one network domain to another 

so that data crosses core domains more transparently. In case of large data rates/sizes the 

network capacity can be easily overwhelmed and applications will not achieve their desired 

QoS properties, despite the underlying QoS-related resource reservations. To cope with this 

the Velox framework provides a specific Signaling and Service Negotiation (SSN) capability. 

Study [Z] describes Proxy DDS that bridges multiple, isolated DDS domains over WANs and 

describes the NetQSIP framework that combines DDS, Session Initiation Protocol (SIP) and IP 

DiffServ to support end-to-end QoS over WANs.  The authors claim that, the Velox framework 

that is presented in their previous work (Study [T]) conducts QoS negotiation and resource 

reservation in WANs to meet scheduling requirements. However, the Velox framework cannot 

recover from failures dynamically and does not support dynamic QoS reconfigurations. As 

such they propose combining Proxy DDS and NetQSIP. Unlike Velox, this solution does not 

introduce new capabilities at the network layer but uses NetQSIP framework to provide 

dynamic QoS management and Proxy DDS that can communicate with other proxies without 

using any tunneling. The experimental results described in the study revealed significant 

improvement in dynamic resource reservation and effective end-to-end QoS management.  

Study [AA] addresses the problem of on-demand dynamic assignment of QoS parameters to 

DDS distribution services. This is important to avoid an over provisioned network which results 

in unnecessary network resource wastage. To this end the authors propose a communication 

architecture that combines DDS with Software Defined Networks (SDN).  
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SDNs separate the network control and forwarding functions, enabling the fine grained and 

on demand programming and reprogramming of network behavior. This also allows the 

abstraction of the underlying infrastructure from applications and network services.  

The feature diagram for this problem is shown in Figure 5-13. In sum, although DDS is designed 

to operate in LAN, one of the most popular DDS research topic is the DDS Integration in WAN. 

The standard DDS specification uses multicast UDP protocol which is not supported in a WAN. 

To solve these WAN related DDS problems two basic solution directions have been provided 

including integration approaches and solutions for quality related concerns. 
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Figure 5-13: Feature diagram of P4 – DDS integration over WAN 

P5. DDS using wireless networks and mobile computing 

As it is stated in P4, DDS has been mainly designed for Local Area Networks (LAN). On the 

other hand, similar to Wide Area Networks (WAN), there is a great trend to use DDS in both 

wireless networks and mobile computing. Several challenges are addressed for integrating and 

applying DDS in wireless networks and mobile computing.  

Study [L] provides an approach for implementing DDS in Wireless Sensor Networks (WSNs) 

based on the Sensor-Network Publish-Subscribe protocol. This is provided as an alternative to 

the conventional Real Time Publish-Subscribe protocol that is used in the mainstream 

implementations of DDS. SNPS seems to perform better compared to resource usage of RTPS 

implementations. SNPS has been implemented for several wireless and wired network 

protocols such as (ZigBee, 6LoWPAN, and Ethernet/UDP/IP) on diverse embedded sensor 

node and PC platforms. 

As described before, Study [M] proposes a new bandwidth-aware design scheme for the usage 

of DDS in Wireless Local Area Network (WLAN). Hereby, it is suggested to use separate uplink 

and downlink communication model depending on the number of Pubs and Subs. In this way, 

the performance of the DDS communication in WLAN is enhanced. 

Study [N] proposes a novel cloud monitoring and management architecture based on the DDS 

standard. The focus of the study is the integration of mobile devices in the cloud. These 

devices are characterized by limited resources and are typically focused on optimizing energy 

usage. Hence, applications that require large amounts of processing power and resources 

cannot be easily ported to and deployed on these mobile devices. By moving resource-

demanding tasks from the mobile device to the cloud computing infrastructure the problem 
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can be solved to some extent. However, this task-oriented scenario requires that mobile 

offloaded tasks require high resource usage for a relatively short amount of time. This is in 

contrast to the current typical service-oriented scenario of the cloud, which service instances 

over long-lasting processes. To overcome these problems, the study describes a proposal 

based on the DDS architecture to support the task-oriented and decentralized cloud 

management scenarios. 

Study [E] describes a lightweight and efficient DDS implementation, called TinyDDS, for WSNs.  

The study focuses on the inherent trade-offs among conflicting objectives such as data yield, 

data fidelity and power efficiency in the pub/sub scheme in WSNs. To address these issues 

TinyDDS adaptively performs event publication by balancing conflicting objectives according 

to dynamic network conditions such as noise level and dynamic node addition. TinyDDS uses 

its self-configuring event routing protocol and a multi-objective optimization mechanism to 

perform the adaptation of event publications according to the dynamic network conditions. 

Study [F], proposes an interoperable publish/subscribe communication in WSNs based on the 

TinyDDS that is presented in Study [E]. TinyDDS simplifies the development of 

publish/subscribe applications and provides an efficient implementation with respect to 

memory footprint and power consumption in WSNs.  

Similar to Study [E], Study [AG] proposes a customizable DDS implementation (sDDS) for WSNs 

and embedded systems with limited resources. In order to make DDS applicable to resource 

limited environments the authors used a model-driven software development (MDSD) 

process to tailor and minimize the middleware functionality for each sensor node, depending 

on the purpose of the node in the network, the resource capabilities of the hardware and the 

deployment structure. The authors claim that sDDS can be used for a wide range of target 

systems from 8 bit to 32 bit controllers. Furthermore, it is also ported to different embedded 

platforms such as RIOT-OS, FreeRTOS, Contiki and etc.  

Study [C] addresses the need to satisfy various constraints such as efficiency, memory 

footprint and power consumption in WSNs. This often leads to tightly coupled designs and 

likewise WSN applications lack reuse and are difficult to adapt the non-functional properties 

(e.g., data routing, concurrency, data aggregation and event filtering). The study presents the 

pluggable framework in TinyDDS which decouples various non-functional properties and 

enables the development of flexible and re-usable WSNs applications. TinyDDS adopts the 

Layer design pattern to separate and modularize the different functionalities into different 

layers.  

The feature diagram for this problem is shown in Figure 5-14. As explained above, DDS has 

been primarily designed to operate in LAN. Similar to adopting DDS in a WAN context, 

adopting DDS in wireless networks and mobile computing is a relevant research topic in DDS. 

We can identify the following solution directions: Sensor Network Pub-Sub Protocol (Study 

[L]), Cloud Management Architecture (Study [N]), Lightweight DDS Implementation (Study [E, 

F, AG]), Bandwidth Aware Networking (Study [M]), and Pluggable Framework (Study [C]). 
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Figure 5-14: Feature diagram for P5 – DDS wireless networks and mobile computing 

P6. Interoperability among DDS vendor implementations 

The OMG’s DDS standard provides both programming language interoperability and protocol 

interoperability (OMG, 2014). Programming language interoperability is the ability to 

interoperate applications written in different programming languages. Protocol 

interoperability is the ability to interoperate applications and access network applications with 

different network protocols. Different studies have focused on tackling interoperability 

challenges in DDS.  

Study [F] focuses on the integration of wireless sensor networks (WSNs) in which the 

interoperability has not yet been fully addressed. The authors propose an implementation of 

the DDS, called TinyDDS which customizes standard data types, data representation and 

session protocols to realize programming language interoperability and protocol 

interoperability. TinyDDS supports programming language interoperability by implementing a 

mapping of the OMG IDL (Interface Definition Language) to nesC and provides a set of DDS 

APIs in nesC. This allows different applications to use different languages with the same DDS 

APIs for event subscription and publication. TinyDDS also supports protocol interoperability 

by making publish/subscribe communication interoperable between WSNs and access 

networks.  

As stated before, Study [P] proposes a DDS interconnection service (DDS-IS) capable of 

bridging DDS domains as well as adapting between different data schemas. DDS-IS provides 

data model compatibility and confidentiality communication between data models with 

dissimilar data models (different topic names or data types). The study also addresses the 

need for establishing QoS requirements for bridged data-spaces. The study claims that the 

approach guarantees data delivery between different data spaces with the required QoS.  

The OMG’s DDS standard provides protocol interoperability among different DDS 

implementations by introducing the real-time publish/subscribe (RTPS) protocol. All vendors 

must implement at least the Simple Discovery Protocol (SDP) to support RTPS. SDP enables 

each participant to send its endpoint data to each participant and receive endpoint data from 

all other participant. In this context, Study [I], Study [X] and Study [V] propose to adopt 

alternative algorithms to the standard SDP in the RTPS protocol. Study [I] proposes the Bloom 

Filter algorithm instead of SDP. Study [X] extends this work and proposes the Modified 

Counted Bloom Filter Algorithm. Similarly, Study [AE] proposes Parallel Dynamic Bloom Filters 

(SDP-Parallel DBF). Study [V] proposes the Content-based Filtering Discovery Protocol. In all of 
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these studies, the authors claim that SDP is inefficient and according to their test results the 

newly proposed algorithms outbound SDP. 

Figure 5-15 shows the feature diagram with the identified obstacles for DDS Interoperability. 

Summarizing, although OMG’s RTPS (DDSI) specification provides interoperability between 

the implementations of different DDS vendors, there are still open challenges which need 

attention. The solution directions have focuses on programming language interoperability, 

protocol interoperability, and data schema interoperability. 
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Figure 5-15: Feature diagram for P6 – DDS interoperability 

P7. Data consistency in DDS 

In distributed computing, one of the important challenges is ensuring integrity and consistency 

of data under hard real time constraints. Several studies have discussed the challenges related 

to data consistency within DDS.  In principle we can identify data consistency approaches 

applied at (re)configuration time and during operation time.  

Study [A] provides an analysis of the DDS specification with respect to its support for the 

correctness preservation during reconfiguration of DDS-based systems. The analysis discusses 

three aspects of correctness including structural integrity, mutually consistent state and 

application state invariants. The study concludes that the DDS architecture and the QoS-

controlled behavior automatically ensure correctness preservation during reconfiguration.  

Study [Q] addresses the problem of data inconsistency at operation time in the context of 

distributed data consistency management. Hereby no center node is present that is 

responsible for forwarding data packets and maintaining the communication data. Instead a 

data exchange model is adopted whereby multiple nodes can write data to the same topic. 

When a new data reader joins the reader set it should include the data that is consistent with 

the other nodes in the reader set. However, in case of node failures the requested data might 

not be delivered and as such the data consistency cannot be ensured. To overcome this 

problem study [Q] implements a real-time service bus (RTSB) using the so-called Paxos 

algorithm to solve the data consistency problem in DDS.  
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Summarizing, the solution directions for the Data Consistency obstacle focus on correctness 

preservation during reconfiguration, and lack of center node as shown in feature diagram for 

this obstacle in Figure 5-16. 
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Figure 5-16: Feature diagram for P7 – Data consistency in DDS 

P8. Reliability in DDS 

Within DDS a reliability protocol is defined that can be tuned for optimum performance on a 

per data stream basis (OMG, n.d.-c). The reliability protocol needs to be configured and tuned 

using QoS policies including Reliability, History, Resource Limits, DataWriter Protocol, and 

DataReader Protocol. It is expected that the particular reliability requirements for this 

parameter need to be provided in the implementation of DDS based systems. In general, 

reliability is realized through fault prevention, fault detection, fault tolerance, and fault 

forecasting.  Several studies have discussed the challenges and proposed approaches to 

support reliability in DDS related to reliability.  

Study [D] proposes a DDS-compliant data dispatching infrastructure to reliably disseminate 

events and to balance data distribution load. The dispatch mechanism puts a routing substrate 

between publishers and subscribers to detect possible faults in other peers, and to 

dynamically recover and reconfigure the system when a peer crashes or a new peer arrives. 

Since the proposed solution for fault-tolerance is fully compliant with the DDS standard, it can 

be deployed over already installed DDS systems.  

Study [H] and Study [G] aim to evaluate the robustness of DDS middleware using robustness 

testing and fault injections in the implemented DDS. A tool JFIT (Java Fault Injection Tool) is 

provided that can automatically inject external faults to DDS API functions without altering 

the source code but modifying the system’s state. The tool has been proposed to accelerate 

tests execution and to analyze the tests outcomes.  

The feature diagram for this problem is shown in Figure 5-17. In sum, although DDS provides 

some reliability related QoS policies, these are not adequate to address all reliability related 

problems in DDS based systems. In this context, solutions can relate to fault prevention, fault 

detection, and fault tolerance issues in DDS. 



 127 

Reliability

DDS P2P 
Routing Substrate

[D]

Robustness Testing using 
Fault Injection 

[H][G]

Reliability Protocol
QoS Parameters

Fault Detection Fault Tolerance

Reliability History
Resource 

Limits
DataWriter

Protocol
DataReader

Protocol

Fault Prevention

[1..*]

[1..*]

 

Figure 5-17: Feature diagram for P8 – Reliability in DDS 

P9. Scalability in DDS 

Scalability defines in general how well a solution to some problem will work when the size of 

the problem increases. Within the context of distributed systems scalability of a distributed 

software system indicates whether it is still efficient in case the system load increases. Hereby, 

the system load can be considered as the number of participating nodes. If the solution is still 

suitable, efficient and practical after adding resources, the software system can be said as 

scalable. From this point of view scalability is closely engaged with fault tolerance and 

maintainability. There are several studies that discuss scalability issues in DDS.  

As stated above, several studies criticize the Simple Discovery Protocol (SDP) of the DDS wire 

protocol DDSI (OMG, 2014). In this context, study [I], introduces the use of Bloom Filter (BF) 

Algorithm to increase DDS scalability. SPD is used as the standard algorithm for node discovery 

in DDSI.  The authors claim that the SDP is not scalable in case the number of DDS end-points 

increases. They provide analytical and experimental studies to compare BF and SDP showing 

that BF is more scalable. Similarly, Study [X], Study [AE] and Study [V] propose the Modified 

Counted Bloom Filter, Parallel Dynamic Bloom Filter and Content-Based Filtering Discovery 

Protocol algorithms respectively, all of which appear to be more scalable than the SDP 

algorithm in DDSI. 

In Study [G] authors claim that design techniques for scalable DDS deployments, especially for 

mobile data intensive applications are still missing. So, they offer two solutions: P2P routing 

substrate and Relay-based DDS. As it is mentioned above in Study [D], P2P routing substrate 

provides fault-tolerance to the DDS based systems. Using the routing substrates within DDS 

domains and connecting these domains via DDS relay components provide scalability to the 

fault-tolerance issue even in Wide Area Networks (WAN).  

The feature diagram for this problem is shown in Figure 5-18. In sum, scalability is another 

software quality factor which has not been directly addressed by the OMG DDS specifications. 

We can identify two basic solution directions for scalability problems: scalability in node 

discovery and scalability in fault-tolerance. 
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Figure 5-18: Feature diagram for P9 – Scalability in DDS 

P10. Security 

The analysis of the selected primary studies showed the increasing interest in addressing 

security issues while integrating DDS on WAN, wireless networks and mobile devices. Security 

concerns appear to be a lesser concern for LAN but when exceeding the boundaries of the 

LAN new security threats can occur through WAN and mobile computing.  

As stated in P4, Study [T] and Study [Z] propose solutions to enforce realization of QoS when 

a DDS based system is running over WAN. The studies claim also that security policies are 

required to enhance information dissemination and hence their future work will be on 

developing security policies to allow authentication, authorization, access control and secure 

transport.  

Study [AB] has directly addressed security as an important issue and provides a solution 

approach. The study criticizes the fact that information partitioning in current DDS practices 

are not based on security classifications although this is vital for many systems. As such, they 

propose a transport mechanism called secured-transport that provides information 

partitioning enforcing multi-level security (MLS). Furthermore, the study also presents a novel 

secure discovery mechanism that enables using the secured-transport mechanism with 

existing DDS implementations.   

Besides of the primary studies we can also identify the recently published OMG specification 

about security (OMG, 2016). The specification defines the Security Model and Service Plugin 

Interface (SPI) architecture for compliant DDS implementations. The DDS Security Model is 

enforced by the invocation of these SPIs by the DDS implementation.  This specification 

defines five SPIs that when combined together provide Information Assurance to DDS 

systems: Authentication Service Plugin, Access Control Service Plugin, Cryptographic Service 

Plugin, Logging Service Plugin, and Data Tagging Service Plugin. Figure 5-19 shows the 

conceptual diagram indicating the place of the SPI.  

The feature diagram for this problem is shown in Figure 5-19. Several solutions have been 

proposed to cope with security problems in DDS. A security specification for DDS has been 

proposed by OMG. Further solutions have been provided for the transport mechanism (study 
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[AB]), and node discovery mechanism (study [AB]). Finally, new security policies have been 

prepared (study [T], [Z]) 
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Figure 5-19: Feature diagram for P10 – Security 

P11. Integration with Event Based Systems 

In traditional imperative programming, the program is modeled as a series of operations and 

statements are used the change the program’s state. This programming model is also referred 

as sequential or procedural programming.  In contrast, reactive programming languages 

provide dedicated abstraction for time changing values (signals or behaviors). Reactive 

Programming propagates changes and re-evaluates dependent variables as the 

signals/behaviors values are updated. One of the application domains of event-based 

programming is the processing of real-time sensor generated data (data stream) which must 

be processed in an event-based, distributed, and parallel manner.  

In order to build reactive and high-performance stream processing applications, study [AE] 

investigates the benefits of introducing DDS blending with reactive programming. Although 

DSS has powerful data delivery mechanisms it lacks of data processing APIs and abstractions 

to develop event-driven applications. In other words, DDS API is not designed for retrieving 

individual updates about an object but the state of an object. As such, study [AE] focuses on 

integrating DDS with event-based programming to unify the local and distributed stream 

processing aspects under a common dataflow programming model. The authors claim that 

this approach can be also used in industrial internet of things (IIoT) systems since IIOT can be 

expressed as a distributed asynchronous dataflow. 

Similarly, study [AG] discusses the use of DDS in event-based systems. As stated above the 

DDS standard does not directly address how to guarantee end-to-end response times to 

support the implementation of event-based systems. As such, this study investigates how to 

ensure real-time behavior by applying DDS to event-driven systems within the context of the 

OMG MARTE Standard (OMG, 2008). The provided solution of this study includes modeling 

the QoS entities to enable the usage of these DDS features in real-time applications. In order 

to facilitate the integration of DDS with model driven development processes the authors 

propose a set of transformations among the QoS settings and the end-to-end flow entities 
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defined by the MARTE modeling standard. From this point of view this study is the extension 

of Study [O]. 

The feature diagram for this problem is shown in Figure 5-20. Here, we can identify two basic 

approaches including reactive programming with DDS, and modeling QoS Entities with 

transformations to MARTE. 
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Reactive Programming with 
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transformations to MARTE [AH]

 

Figure 5-20: Feature Diagram for P11 – Integration with Event Based Systems 

2) RQ 2. What are solution directions for the identified obstacles?  

When addressing an obstacle of DDS, the primary studies usually also provide the 

corresponding solution directions. Table 5-8 provides a summary of the solution directions for 

each of the identified problem that were defined in Table 5-6 and discussed before. These 

solution directions are proposed by the authors of the selected primary studies.  As we can 

observe from the table, based on the identified obstacle the solution directions are diverse in 

nature. Solution directions include design heuristics and design abstractions, adoption of 

different paradigms, refinement of the DDS concepts, novel introduction and implementation 

of algorithms, integration with other paradigms, and solutions for realizing system-wide 

quality management. Although we can observe several obstacles in DDS, the following table 

shows also promising solution directions.  

 

 

 

 

 

 

 

 

 

 

 



 131 

Table 5-8: Solution Directions for the Identified Obstacles in DDS 

No Primary study Solution Direction Study 

P1 Complexity of DDS 
configuration 

• Separation of configuration concerns from application concerns 
• Abstraction of lower level source code to components or services 
• Use of model-driven development approaches to automatically 

generate the parameter values and the code  
• Component Based Development 

J 
K 
 
S 
U 

P2 Performance 
prediction, 
measurement & 
optimization 

• For performance prediction adopt emulation and 
experimentation to predict the QoS values for different 
configurations 

• For performance measurement adoption of explicit frameworks, 
benchmarking and tool support 

• For performance optimization the identified solutions include the 
adoption of new discovery protocol algorithms, explicit 
scheduling mechanisms, and new communication model  

S, M, AC 
 
 
B, R, S, T 
I, M, O, T,  
X, V, AE, 
AF 

P3 Implementing DDS • Component Based Development 
• Service Oriented Development 

J, U 
K 

P4 DDS integration 
over WAN 

• MPLS Tunneling 
• DDS Router 
• SDN Network 
• Bridging DDS domains 
• End-to-End QoS 
• Admission Control 
• Security 
• Dynamic QoS 

T 
Y, Z 
AA 
P 
T 
T 
T 
T 

P5 DDS using wireless 
networks and 
mobile computing 

• Sensor Network Pub-Sub Protocol 
• Cloud Management Architecture 
• Lightweight DDS implementation 
• Interoperable Lightweight DDS implementation 
• Band-width aware Networking 
• Pluggable Framework 
• Embedded DDS implementation 

L 
N 
E 
F 
M 
C 
AG 

P6 Interoperability 
among DDS 
vendor 
implementations 

• Programming Language Interoperability 
• Data Schema Interoperability 
• Protocol Interoperability: 

o Standard Discovery Protocol (SDP) 
o Bloom Filter Algorithm 
o Modified Counted Bloom Filter Algorithm 
o Parallel Dynamic Bloom Filter Algorithm 

F 
F 
 
I, V, X, AE 
I 
X 
AE 

P7 Data consistency 
in DDS 

• Correctness Preservation During Reconfiguration 
• Correctness Maintenance during operation time 

A 
Q 

P8 Reliability in DDS • Robustness Testing 
• P2P Routing Substrate 

G, H 
D 

P9 Scalability in DDS • DDS Relays 
• Scalability in Node Discovery: 

o Standard Discovery Protocol (SDP) 
o Bloom Filter Algorithm 
o Modified Counted Bloom Filter Algorithm 
o Parallel Dynamic Bloom Filter Algorithm 

G 
 
I, V, X, AE 
I 
X 
AE 

P10 Security • Secure Transport Mechanism 
• Secure Node Discovery 

AB 
AB 

P11 Integration with 
Event-based Sys. 

• Reactive Programming with DDS 
• Modeling QoS Entities with transformations to MARTE 

AD 
AH 
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5.5 DISCUSSION 

We have applied a meticulous systematic literature review based on the proven protocol of 

Kitchenham et al (Kitchenham et al., 2009). The SLR included 468 papers in from which we 

selected 34 as primary studies. We have carefully devised and applied our selection and 

elimination criteria in order not to miss any relevant primary study. The primary goal of SLR 

was to identify the relevant obstacles and the corresponding solution directions. Based on our 

thorough study we could identify 11 problem categories. It appears that different studies have 

focused on different problems and solutions and as such we could observe an uneven 

distribution. We consider this fact also as the result of our study since this highlights the 

important obstacles as well as the obstacles which have not yet been fully explored. On its 

turn this provides a broader vision on DDS and also paves the way for further research.  

Our research methodology however is a systematic literature review that focuses on the 

analysis of existing primary studies in the literature. Hence, we can only report on the 

problems that were identified in these primary studies. From our SLR we can observe that 

implementing a DDS is one of the obstacles (P3). The corresponding primary studies report on 

the obstacles of using component-based development and service-oriented development for 

implementing DDS. It should be noted that several other more detailed but unreported 

problems could exist that are directly related to implementation of DDS-based systems. The 

identification of these problems would require an in-depth study to the corresponding 

implementations of the DDSs. We consider this however out of scope of our study since these 

are not within the scope of an SLR study. 

We could identify 11 different problem categories. An important number of the problems 

relate to quality concerns such as reliability, scalability and security. We have described the 

problems related to specific quality concerns if these were also the topic and focus of the 

identified primary studies. Quality concerns which were not explicitly reported were not 

included as obstacles. Our study could on the one hand be used to highlight the relevance of 

the quality concerns in DDS based systems. On the other hand, our SLR shows also which 

quality concerns have not been explicitly discussed. This only implies that no in-depth research 

has been carried out for these quality concerns, and not necessarily that these quality 

concerns are not relevant for DDS. On its turn this observation can trigger further research on 

quality concerns in DDS.  

Our SLR has also resulted in a set of feature diagrams that summarize the reported obstacles 

and the solution directions. The feature models that we have developed can be also used pave 

the way and support the development of a DDS ontology. We consider this as a possible future 

work.  

From our SLR we could also observe that for some of the identified problem categories have 

been also considered in some of the proposed extensions to the OMG’s DDS specification. We 

have listed these extensions in Table 5-7. Also, we have referred to the OMG’s DDS 

specifications in the problem categories P1, P3, P4, P6, P7, and P10. While describing the 

problems and the corresponding solutions we could identify that some researchers claim that 

the offered solution in the primary study is better than the one used of the DDS specification 
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(such as using Bloom Filters instead of Standard Discovery Protocol in DDS RTPS (DDSI) 

specification). Further, other primary studies handle topics that are not (completely) covered 

by the provided DDS specification yet (such as reliability problems in Problem 7. Finally, it 

should be noted that some DDS specifications are still in beta version and have not been 

finalized yet. 

The main threats to validity (Dybå & Dingsøyr, 2008) of this review are publication and 

selection bias, and data extraction and classification.  

The publication bias indicates the case in which researchers are more likely to publish positive 

results and refrain from publishing studies that have negative results. To cope with this 

publication bias Kitchenham et al. (Kitchenham & Charters, 2007) recommend searching also 

company journals, grey literature, conference proceedings and the internet. We have applied 

this approach which indeed led us to new papers that we could not identify in our regular 

search. We performed the inclusion/exclusion procedures on a well-established screening of 

primary studies and included both qualitative and quantitative studies. The inclusion and 

exclusion criteria are selected by the researchers who performed the systematic literature 

review. A subjective approach towards defining the selection criteria and selecting the primary 

studies for further consideration, can introduce a threat to validity in this study. For reducing 

the bias with respect to the definition of the selection criteria we used the quasi-gold standard 

approach as defined by Zhang et al. (H. Zhang, Babar, & Tell, 2011). Hereby, we first picked a 

random set of 10 studies and each of the researchers defined the selection criteria. These 

criteria were validated together and the final set of exclusion/inclusion criteria was defined.  

For reducing the selection bias for selecting the primary studies, the evaluation and the 

selection of the primary studies were performed separately by the two researchers. Each 

researcher recorded also the reasons of acceptance or rejection for all the considered studies. 

Later on, the evaluated list of primary studies of each researcher was compared with that of 

the other researchers. In case of differences we discussed the paper in detail and came with 

the final decision. H. Zhang and A. Babar (H. Zhang et al., 2011) provide an enhancement to 

the SLR protocol of Kitchenham (Kitchenham et al., 2009). In their method the so-called d QGS-

based systematic search approach for devising and testing search strategies is applied. For our 

study we did not consider this directly but for devising the search strings we indeed first read 

a couple of relevant papers to define and justify our search strings. We have applied both 

automated searches and manual searches both as a preliminary analysis and as a subsequent 

analysis after having observed the publication channels returned by the relevant search 

strings. With our search strings we think that we have identified all the papers that are directly 

related to DDS.   

After the primary studies have been evaluated and selected the relevant data must be 

extracted for deriving the review results. Hereby defining the data extraction criteria and 

classification model is very important. To define the data extraction model, we first read a set 

of randomly selected primary study papers. Each of use defined an initial data model based 

on the research questions that we had defined. Later on, we compared the different data 

extraction models, discussed the differences and decided on the data extraction model. After 

that we applied the data extraction model to a set of primary studies and checked whether 
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we could derive the answers to the research questions with the adopted data extraction 

model. We applied this several times and after a number of iterations and discussions we 

decided on the final data extraction model. We can state that the problem categories that we 

have identified cover the main problems. However, some problems could be also seen as sub-

categories of these basic categories. To highlight these, we have adopted feature models.  

5.6 CONCLUSION 

In this chapter we have provided a systematic literature review to describe the state of the art 

of the Data Distribution Service (DDS) middleware and identify the obstacles in applying DDS. 

We have considered the published literature since the introduction of DDS in 2003, and among 

468 papers that were discovered we identified 34 of them as primary studies related to our 

research questions. First of all, we can state that the application of DDS has been increasingly 

popular and has been used in various application domains such as defense, finance, and 

medical domain. In addition to its basic application we can also identify the application and 

integration of DDS to solve problems in technical domains such as cloud computing, 

component-oriented development, mobile computing, and wide area network. Our study 

shows that DDS provides indeed important benefits for realizing real-time distributed 

applications. Our focus in this chapter was mainly about the obstacles that are encountered 

when applying DDS. Using the SLR we identified 11 basic categories of problems that were 

discussed in the identified primary studies. We have described each problem in detail by 

referring to the papers in which these were discussed. The identified problems included 

Complexity of DDS configuration, Performance prediction, measurement and optimization, 

Implementing DDS, DDS integration over WAN, DDS using wireless networks and mobile 

computing, Interoperability among DDS vendor implementations, Data consistency in DDS, 

Reliability in DDS, Scalability in DDS, Security, and Integration with Event Based Systems. We 

have adopted feature diagrams to summarize and provide an overview of the identified 

problem and its solutions as defined in the primary studies.  

Obviously, in addition to the benefits there are still many obstacles to be solved to further 

support the adoption of DDS. We believe that the results of this chapter pave the way for 

further research in DDS. The obstacles can be adopted to trigger new research questions. The 

proposed solutions can be used to further enhance the DDS specification and support the 

practitioners in their decision making while applying DDS. The description of the obstacles in 

this chapter provides an overall perspective that could help to synthesize the different 

solutions. In our future work we plan to address selected research topics based on the 

categories that we have defined. 
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DATA DISTRIBUTION SERVICE BASED 

ARCHITECTURE DESIGN FOR THE 

INTERNET OF THINGS SYSTEMS1   

                                                       

1 This chapter is based on the following published book chapter:  

• B. Tekinerdogan, Ö. Köksal, and T. Çelik, “Data Distribution Service-Based Architecture Design for the 

Internet of Things Systems,” in Connected Environments for the Internet of Things, Springer, Cham, 

2017, pp. 269–285. 
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Abstract 

The Internet of Things (IoT) is the internetworking of people and physical devices that enable 

the collection and exchange of data. The number of connections between people and things 

as well as the volume of data that is generated is dramatically increasing. Hereby, various kinds 

of data are generated by multiple kinds of devices, which are processed in different ways, and 

used by different applications. To realize the distributed execution of IoT systems over 

multiple resources different requirements and quality factors must be satisfied. Traditionally, 

to reduce the effort for developing distributed systems, middleware architectures have been 

introduced that provide common services such as name and directory services, discovery, data 

exchange, synchronization, transaction services, etc. To address the needs and integration of 

IoT systems the adoption of middleware seems to be a feasible solution. A middleware that is 

directly related to data-intensive systems in which quality of service is important is the Data 

Distribution Service (DDS). The DDS is a standard data-centric publish-subscribe programming 

model and specification for distributed systems that has been applied for the development of 

high performance distributed systems such as in the defense, finance, automotive, and 

simulation domains. In this chapter, we explore and propose the adoption of DDS as a 

middleware platform for IoT systems. For this, we first describe the requirements for IoT 

systems and present the IoT reference architecture. Subsequently we provide a DDS-based 

architecture for IoT systems based on the Views and Beyond Approach. We illustrate our 

approach for the architecture design of IoT-based smart city engineering. 

Keywords: Data Distribution Service, Internet of Things, Software Architecture 

6.1 INTRODUCTION 

The Internet of things is the internetworking of people and physical devices that enable the 

collection and exchange of data. The number of connections be-tween people and things as 

well as the volume of data that is generated is dramatically increasing. Hereby, various kinds 

of data are generated by multiple kinds of devices, which are processed in different ways, and 

used by different applications. To realize the distributed execution of IoT systems over 

multiple resources different requirements and quality factors must be satisfied.  

Traditionally, to reduce the effort for developing distributed systems, middle-ware 

architectures have been introduced that provide common services such as name and directory 

services, discovery, data exchange, synchronization, transaction services, etc. To address the 

needs and integration of IoT systems the adoption of middleware seems to be a feasible 

solution. A middleware that is directly related to data-intensive systems in which quality of 

service is important is the Data Distribution Service (DDS) (Angelo Corsaro, n.d.). The DDS is a 

standard data-centric publish-subscribe programming model and specification for distributed 

systems that has been applied for the development of high performance distributed systems 

such as in the defense, finance, automotive, and simulation domains.  

In this chapter, we explore and propose the adoption of DDS as a middleware platform for IoT 

systems. For this, we first describe the requirements for IoT systems and present the IoT 

reference architecture. Subsequently we provide a DDS-based architecture for IoT systems 
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based on the Views and Beyond Approach. We illustrate our approach for the architecture 

design of IoT-based smart city engineering.   

The remainder of the chapter is organized as follows. In section 6.2 we provide the background 

on software architecture modeling which is necessary for understanding the architecture 

views in subsequent sections. In section 6.3 we describe the IoT architecture using selected 

viewpoints. Section 6.4 presents the architecture models for DDS. Based on the architecture 

models from section 6.3 and section 6.4 we present the DDS-based IoT architecture in section 

6.5. Finally, section 6.6 concludes this chapter. 

6.2 SOFTWARE ARCHITECTURE MODELING 

Architectural drivers define the concerns of the stakeholders which shape the architecture. A 

stakeholder is defined as an individual, team, or organization with interests in, or concerns 

relative to, a system. Each of the stakeholders’ concerns impacts the early design decisions 

that the architect makes. A common practice is to model and document different architectural 

views for describing the architecture according to the stakeholders’ concerns. An architectural 

view is a representation of a set of system elements and relations associated with them to 

support a particular concern. Having multiple views helps to separate the concerns and as 

such support the modeling, understanding, communication and analysis of the software 

architecture for different stakeholders. Architectural views conform to viewpoints that 

represent the conventions for constructing and using a view. Obviously, the notion of 

viewpoint now plays an important role in modeling and documenting architectures. So far 

most architectural viewpoints seem to have been primarily used either to support the 

communication among stakeholders, or at the best to provide a blueprint for the detailed 

design. 

In this chapter, we will use the Views and Beyond framework in which predefined viewpoints 

are organized into three categories including module styles, component-and-connector styles 

and allocation styles. Module styles are used to show how the system is structured as a set of 

implementation units. Component and connector styles are used to show how the system is 

structures as a set of runtime elements. Allocation styles are used to show how the software 

elements are mapped to non-software elements in its environment. We will adopt three view-

points for our purposes including layered viewpoint and deployment viewpoint.  

The Layered viewpoint reflects the division of software modules called layers. In a layered 

architecture, the system is depicted as a set of layers which are stacked on top of each other. 

Hereby a layer can only access the next lower layer and call backs from lower layers to higher 

layers are not allowed. In the following sections, we will see that both IoT and DDS systems 

include a layered architecture.  

In addition to the layered viewpoint we will also apply the deployment view-point, which is 

used to show how the software elements are allocated to hardware of a computing platform. 

It is useful for analyzing and tuning certain quality at-tributes of the system such as 

performance, reliability and security. 
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6.3 INTERNET OF THINGS ARCHITECTURE  

6.3.1 Conceptual Model  

Figure 6-1 provides a conceptual model including the relations among the basic IoT concepts. 

The model has been adopted from the Alliance of IoT Innovation (AIOTI) Domain Model (AIOTI 

WG03 2015) (Alliance for IoT Innovation, 2015). The domain model represents the basic 

concepts and relationships in the domain at the highest level. In the model, User interacts with 

a physical entity of the physical world, a Thing. The User can be a human person or a software 

agent that has a goal, for the completion of which the interaction with the physical 

environment must be performed through the mediation of the IoT. A thing is a discrete, 

identifiable part of the physical environment that can be of interest to the User for the 

completion of his goal. Things can be any physical entity such as humans, cars, animals, or 

computers. 

(Physical)
Thing

IoT Device

Sensor Actuator

senses

acts on

Virtual Entity

*

IoT Service
associated

with

interacts 
with

interacts 
with

represents

Tag
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User
invokes

interacts 
with

 

Figure 6-1: Conceptual model for the IoT 

The interaction between a User and Thing is mediated by an IoT Service which is associated 

with a Virtual Entity, a digital representation of the physical entity. A Thing can be represented 

in the digital world by a Virtual Entity. Different kinds of digital representations of Things can 

be used such as objects, 3D models, avatars, objects or even a social network account. Some 

Virtual Entities can also interact with other Virtual Entities to fulfill their goal. 
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An important aspect in IoT is that changes in the properties of a Thing and its corresponding 

Virtual Entity needs to be synchronized. This is usually realized by an IoT Device that is 

embedding into, attached to or simply placed in close vicinity of the Thing.  In principle, we 

can identify three devices including Sensors, Tags and Actuators.  Sensors are used to measure 

the state of things they monitor. Essentially, sensors take a mechanical, optical, magnetic or 

thermal signal and convert this into voltage and current. This provided data can then be 

processed and used to define the required action. Tags are devices to support the 

identification process typically using specialized Sensors called readers. The identification 

process can be different including optical as in the case of barcodes and QR-code, or RF-based. 

Actuators are employed to change or affect the things. 

6.3.2 Feature Model  

In this section, we provide a feature-driven overview of IoT and its “Session Layer” protocols. 

A feature diagram is a tree with the root and descendent nodes. The root represents a concept 

and nodes are the features. Feature diagrams might show mandatory features as well as 

variant features which can be represented as optional or alternative features. A feature 

configuration is a set of features which describes a member of the represented concept. A 

feature constraint restricts the possible selections of features to define configurations. The 

legend (abstract syntax) used for the feature diagrams is given in Figure 2-3. 

The top-level feature diagram of the IoT is given in Figure 2-4. This diagram is similar to the 

layer diagram of the IoT given in the next section. 

Session layer is responsible for setting up and taking down of the association between the IoT 

connection points. The session layer provides services related is-sues of the session such as 

initiation, maintenance, and disconnection. As such, frequency and duration of various types 

of sessions are related with the session layer. Selection of the session layer protocol depends 

on many factors such as data size, number of devices to be connected, latency, etc. Depending 

on the application requirements different session layer protocols might be used in session 

layer of the IoT application. Focusing on the session protocols, we have derived the feature 

diagram given in Figure 2-5. 

The mandatory features in the feature diagram are protocol type, source-target, transport 

type and architecture. Please note that, although transport type belongs to the network layer, 

it is shown as a mandatory feature in Figure 2-5 since it is closely related with the protocol 

characteristics.  

Widely-used session layer protocol types are given below:   

• Message Queuing Telemetry Transport (MQTT): One of the most popular protocols to 
collect device data and communicate with servers (OASIS, 2014).  

• Extensible Messaging and Presence Protocol (XMPP): is based on ex-changes of XML 
messages in real time that is defined to connect devices to servers (IETF, 2011).  

• Advanced Message Queuing Protocol (AMQP): A queuing system de-signed to connect 
servers to each other (OASIS, 2011). 

• Data Distribution Service (DDS): A fast data bus for integrating devices and systems (OMG, 
2015b). 
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• The Constrained Application Protocol (CoAP): A specialized web-based protocol to be used 
in constrained nodes and constrained networks (IETF, 2013). 

The focus of this chapter is the application of the DDS protocol.  

There are three types of source-target relations available in session layer proto-cols: Device-

to-Device (D2D), Device-to-Server (D2S), and Server-to-Server (S2S) as given in Figure 2-5.  

Some references these features are also named Machine-to-Machine (M2M), Machine-to-

Cloud (M2C), and Cloud-to-Cloud (C2C) respectively. DDS and CoAP are used for M2M 

communication, whereas MQTT and XMPP are used for M2C and AMQP is used for S2S 

communication. 

Session layer protocols are closely related with the transport type. Session layer protocols use 

either UDP or TCP for the transport. DDS and CoAP support both UDP and TCP. 

6.3.3 Layered View  

Various reference architectures have been provided for the IoT which is usually represented 

as a layered architecture with various set of layers. Hereby, a layer simply represents a 

grouping of modules that offers a cohesive set of services. Based on the literature we provide 

the reference architecture as shown in Figure 2-1. 

The reference architecture consists of four layers including device/datalink layer, network 

layer, session layer, and application layer. The device layer includes the capabilities for the 

things in the network. The network layer provides functionality for networking connectivity 

and transport capabilities. The IoT layer consists of functionality for generic support 

capabilities (such as data processing or data storage), and specific support capabilities for the 

particular applications. The application layer contains the IoT application. 

The Security layer is a side-car layer relating to the other four layers, and pro-vides the security 

functionality. Finally, the management layer supports capabilities such as device 

management, local network topology management, and traffic and congestion management. 

6.3.4 Deployment View  

Figure 6-2 shows the deployment view of IoT-based systems. In essence we can identify two 

distinct nodes, the IoT node and the Product Cloud node. The IoT Node includes modules for 

sensors, actuators, smart UI and applications. Within the IoT network multiple IoT nodes can 

exist which is shown with the asterisk symbol (*). The cloud node includes functionality for 

data storage, application platform, the analytics engine and the cloud applications. Again, we 

could have more than one cloud node.   
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Figure 6-2: Deployment view of the IoT architecture 

6.4 DATA DISTRIBUTION SERVICE  

Data Distribution Service for Real Time System (DDS) is standardized by Object Management 

Group (OMG) (OMG, n.d.-b) in 2004 and the latest release is submitted in 2015 (OMG, 2015b). 

DDS is a data centric middleware for high performance ma-chine-to-machine 

communications. In this section, we describe the basic back-ground information for Data 

Distribution Service (DDS). Detailed information about DDS can be found in many references 

in the literature (OMG, n.d.-c, 2014, 2015b). 

6.4.1 Conceptual View  

Figure 5-1 shows the conceptual model for DDS middleware. In the figure, the concept Domain 

is a logical concept which represents the set of applications that can communicate with each 

other. Several domains can be defined within the same DDS system in order to indicate 

different set of applications communications with each other. One or more domain 

participants might exist in each do-main. Domain participants represent the local membership 

of the application to the assigned domain. Publishers are responsible from data production 

and up-dates. Publishers include one or more Data Writers that publish different type of data. 

Similarly, subscribers are responsible of receiving published data and making it available to 

the participant. A subscriber includes one or more Data Readers to access published data in a 

type-safe manner. Domain participants might include one publisher and one subscriber at 

most.  The communication between da-ta readers and data writers is established via Topics. 

A topic defines a unique name, data type and a set of Quality Services to the 

published/subscribed data. Publishers write the data to the topics and subscribers read the 

data in topics.  
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Communication between applications can only be realized only if the topic names and the 

defined Quality of Service (QoS) parameters match.  DDS pro-vides the ability to attach QoS 

parameters to all these entities in order to specify the behavior of a service such as rate of 

publication, rate of subscription, how long the data is valid, etc. QoS are also useful for several 

quality factors such as reliability, durability and scalability which simplify complex network 

programming. 

6.4.2 Feature Model  

Based on a thorough domain analysis to DDS middleware systems we have derived a feature 

model that is shown in Figure 6-3. The figure represents the feature model for Publish-

Subscribe Systems. The DDS concepts are shown in bold. In general, publish-subscribe 

middleware systems can be distinguished based on the type and the service model. Regarding 

the type, we can identify data-centric, message-centric or object-centric approaches. In the 

message-centric approach, the middleware is not aware of the content of the data; it is just 

responsible for transmitting the messages among participants. In data-centric approach, the 

middleware is aware of the content and can impose quality of service parameter values on 

the data. In object-centric approaches the middleware is responsible of transmitting objects 

among participants. As shown in the figure DDS is a data-centric approach.  

The service model of publish-subscribe middleware can be characterized based on (1) 

Communications Model, and (2) Architecture Model. Communication Model defines 

communication approach that is applied by the participants. The communication approach on 

its turn can be based on data distribution, shared data, queuing, and remote procedure call. 

The Architecture Model of a middle-ware can be either centralized or decentralized denoting 

whether the data flows through a central unit or not. Further, the architecture model can 

include a broker that manages the data flow. The architecture can be unbrokered, i.e. there is 

no broker defined, or multi-brokered, whereby multiple brokers manage the data flow. As 

shown in the figure, the architecture model for DDS is decentralized and unbrokered. 

 

Figure 6-3: Feature model of Publish-Subscribe systems (DDS components highlighted) 

Publish/Subscribe

Type

Data
Centric

Message
Centric

Object
Centric

Service Model

Communications
Model

Architecture
Model

Data 
Distribution

Shared
Data

RPC Queue

DecentralizedCentralized

DataFlow Broker Type

Brokered
Multi

Brokered
Unbrokered



144  

6.4.3 Layered View  

The DDS can be modeled as a three-layer structure as shown in Figure 5-2. Data Centric Publish 

Subscribe (DCPS) layer provides efficient delivery of the shared information to the related 

recipients. DCPS layer in the specification and it is mandatory for the DDS implementations.  

Optional Data Local Reconstruction Layer (DLRL) enables simple integration of the services 

defined in DCPS layer into the application layer. The aim of this is to provide a seamless 

integration with object-oriented language constructs.  

Finally, an additional specification DDS Interoperability Wire Protocol is pro-vided, which is 

needed for supporting the interoperability among different DDS implementations.  

The last layer shown in the Figure 5-2 is related to the transport. DDS might use both UDP and 

TCP in the transport layer. But DDS also supports UDP and multicast UDP. In fact, one of the 

powerful features of the DDS is supporting multicast UDP that enables high performance 

Machine-to-machine communication. On the other hand, since multicast and UDP transports 

are not supported by many Wide Area Networks (WAN), some additional concepts like 

Interconnection Services or Routers shall be used in DDS systems to assure end-to-end QoS in 

WANs (Köksal & Tekinerdogan, 2017b).  For further details about these specifications we refer 

to OMG DDS Specifications (OMG, 2015b). 

6.4.4 Deployment View  

A typical DDS based system is deployed on a number of Application Nodes. As stated before, 

publish-subscribe interaction pattern has been applied in several applications and 

infrastructures, which share similar structure and concepts. Figure 6-4 shows the result of a 

domain analysis to publish-subscribe systems and represents the deployment view of DDS 

based systems. Please refer to section “1.4.1 DDS conceptual model” for detailed information 

about DDS concepts (such as publishers, subscribers, topics, etc.). 
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reads

<0..1>
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Figure 6-4: Deployment view for DDS-based systems 
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Defining the deployment view of a DDS based system is a crucial step in de-sign. The 

deployment model defined determines the allocation of domain participant instances 

through-out the available physical resources such as available memory and computing power.  

Although many different deployment alternatives can be defined readily, designing the 

deployment extremely affects the performance of the overall system.  

Sometimes, it is possible to deploy all domain participants (publishers and sub-scribers) to the 

same node. But such a deployment design cancels the benefits of distributed computing 

causing single point of failure. On the other extreme, deploying domain participants has many 

side-effects such as increasing communication overhead and inefficient use of resources. So, 

it is always advised to analyze the domain participants’ communication structure through 

topics and designing the deployment model accordingly.   

6.5 DDS-BASED IOT ARCHITECTURE 

In this section, we will present the architecture for DDS-based IoT systems. For this, in section 

1.5.1 we will first present the conceptual model that shows the integration of the earlier 

conceptual models for DDS and IoT. Subsequently, we will present the layered view in section 

1.5.2 and deployment view in section 1.5.3. 

6.5.1 Conceptual model 

Figure 6-5 shows the conceptual model for the DDS-based IoT architecture. Similar to the IoT 

conceptual model as shown in Figure 6-1 the concept IoT Device can be a Sensor, Tag or 

Actuator which observe, identify or act on an IoT Thing. A thing has a virtual representation. 

The DDS concepts Publisher, Subscriber, DataWriter and DataReader are located in the Virtual 

Entity. Services, that is, Topics in DDS are thus associated with these elements. Domain 

Participants can include a number of Virtual Entities. Similar to DDS a DDS Entity can specify 

QoS parameters. 
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Figure 6-5: Conceptual model for Publish-Subscribe based IoT systems 

6.5.2 Layered View  

Figure 6-6 shows the layered view that combines the layered view of DDS with that of IoT. The 

dominant decomposition is taken from the IoT reference architecture as defined earlier in 

Figure 2-1. Hence the layers are similar to the IoT layers. What is specific is the Session Layer 

which now includes the concepts of DDS including DLRL, Data Centric Publish Subscribe, and 

DDSI (OMG, 2014). 
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Figure 6-6: Layered view for DDS-IoT systems 
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6.5.3 Deployment View  

Figure 6-7 shows the layered view for the DDS-IoT system. In essence, it defines two different 

nodes, that is, the IoT Node and the Product Cloud Node. The IoT Node will now communicate 

using the DDS. Hence it includes an Application module that realizes the DDS concepts. That 

it, it includes the domain participants and herewith the subscribers and publishers. The 

Product Cloud Nodes is similar to the IoT deployment model. 
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Figure 6-7: Deployment view for DDS-IoT systems 

6.6 CONCLUSION 

The IoT has now become an important paradigm that is invasive in different application 

domains. One of the important issues for the IoT is the management of communication and 

distribution aspects. To support the communication among the different DDS nodes it is 

important to adopt a feasible middleware. In this context, the DDS is considered as a potential 

middleware for IoT because of its focus on event-driven communication in which quality of 

service is also explicitly defined. Research on both paradigms, that is IoT and DDS, have so far 

been carried almost independently. In recent years, we now observe a growing interest in the 

application of DDS for IoT.  
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The results of our study can be considered from this perspective. Our main focus in this 

chapter was on the architecture design of DDS-based IoT systems. So far, no systematic 

approach has been provided yet to model the architecture for DDS-based IoT. We have 

performed a systematic approach in which we adopted architecture viewpoints for modeling 

DDS, IoT and finally DDS-based IoT systems. Since both the DDS and IoT are often represented 

as layered structures we have applied the layered viewpoint to represent the DDS-based IoT. 

Further we have also defined the deployment view for DDS-IoT. We can state that we 

succeeded to integrate and represent the architecture models that can be used to model DDS-

based IoT systems for various application domains. In our future work, we will enhance our 

study for adopting other architecture viewpoints. In addition, we will adopt the viewpoints for 

real world industrial IoT projects in which DDS is applied.  
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DERIVING DATA DISTRIBUTION SERVICE 

BASED FEASIBLE CONFIGURATION 

ALTERNATIVES1   

                                                       

1 This chapter is based on the following published papers:  

• B. Tekinerdogan, T. Çelik, and Ö. Köksal, “Generation of feasible deployment configuration alternatives 

for Data Distribution Service based systems,” Computer Standards and Interfaces, vol. 58, pp. 126–145, 

May 2018. 

• T. Celik, Ö. Köksal, and B. Tekinerdogan, “Deploy-DDS: Tool Framework for Supporting Deployment 

Architecture of Data Distribution Service based Systems” in Proceedings of the 2014 European 

Conference on Software Architecture Workshops - ECSAW ’14, 2014, pp. 1–5. 
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Abstract 

Data Distribution Service (DDS) has been defined by the OMG to provide a standard data-

centric publish-subscribe programming model and specification for distributed systems. DDS 

has been applied for the development of high performance distributed systems such as in the 

defense, finance, automotive, and simulation domains. To support the analysis and design of 

a DDS-based distributed system, the OMG has proposed the DDS UML Profile. A DDS-based 

system usually consists of multiple participant applications each of which has different 

responsibilities in the system. These participants can be allocated in different ways to the 

available resources, which leads to different configuration alternatives. Usually, each 

configuration alternative will perform differently with respect to the execution and 

communication cost of the overall system. In general, the deployment configuration is 

selected manually based on expert knowledge. This approach is suitable for small to medium 

scale applications but for larger applications this is not tractable. In this chapter, we provide a 

systematic approach for deriving feasible deployment alternatives based on the application 

design and the available physical resources. The application design includes the design for DDS 

topics, publishers and subscribers. For supporting the application design, we propose a DDS 

UML profile. Based on the application design and the physical resources, the feasible 

deployment alternatives can be algorithmically derived and automatically generated using the 

developed tools. We illustrate the approach for deriving feasible deployment alternatives of 

smart city parking system. 

Keywords: Data Distribution Service (DDS), Software Architecture Analysis, Design 

Optimization, Model-Driven Development, Feasible Deployment, Middleware, Research Tool. 

7.1 INTRODUCTION 

Distributed systems realize the distributed execution of software systems over multiple 

resources to meet different requirements and quality factors such as performance, 

interoperation, and multi user support. To reduce the effort for developing distributed 

systems, common architectures have been introduced including OMG Common Object 

Request Broker Architecture (CORBA) (OMG, 2012a), Java Message Service (JMS) (Juneau, 

2013), and OMG Data Distribution Service (DDS) (OMG, 2015b). These middleware 

architectures provide common services such as name and directory services, discovery, data 

exchange, synchronization, and transaction services.  

Data Distribution Service (DDS) has been defined by the OMG to provide a standard data-

centric publish-subscribe programming model and specification for distributed systems. DDS 

has been applied for the development of high performance distributed systems such as in the 

defense, finance, automotive, and simulation domains. A DDS-based system usually consists 

of several applications having different responsibilities in the system. These participants can 

be allocated in different ways to the available resources, which leads to different configuration 

alternatives. Usually, each configuration alternative will perform differently with respect to 

the execution and communication cost of the overall system. In general, deployment 

configuration is selected manually which is suitable for small to medium scale applications but 
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for larger applications this is not tractable. The OMG DDS specification does not provide an 

explicit approach to guide the distribution and allocation of the participants to optimize the 

deployment configuration with respect to performance. Deployment configuration is usually 

selected manually which is suitable for small to medium scale applications but gets intractable 

when larger applications are considered.  

In this chapter, we provide a systematic approach for deriving feasible deployment 

alternatives based on the application design, the available physical resources and the 

execution configuration parameters. The application design includes the identified topics, the 

number and type of DDS publishers and subscribers. In the approach, first the application 

design including DDS topics, publishers and subscribers as well as the available physical 

resources are designed. The application design of these elements is supported by the DDS 

UML profile that we have extended to support the generation of feasible deployment 

alternatives.  

The resulting design is used to define alternative execution configurations that refine the 

number and parameters of the corresponding design elements. Based on the application 

design, available physical resources and the execution configuration, feasible deployment 

alternatives can be algorithmically derived. The presented approach is supported by 

corresponding tools that support the application design, the execution configuration 

definition and the automatic generation of feasible deployment alternatives using model-

driven development techniques. We illustrate the approach for deriving feasible deployment 

alternatives of a smart city parking system. 

The remainder of the chapter is organized as follows. In section 7.2, we provide the 

background on architecture of DDS and designing DDS based systems. Section 7.3 defines the 

DDS UML profile. Section 7.4 defines the problem statement. Section 7.5 presents the 

approach for evaluating alternative design options with the adopted models and algorithmic 

solutions for the approach. Section 7.6 presents the tools that support the approach. Section 

7.7 provides the evaluation of the outputs of our approach.  Section 7.8 provides discussion. 

Section 7.9 describes the related work and finally we conclude this chapter in section 7.10. 

7.2 BACKGROUND AND CONTENT 

In this section, we describe the background for understanding and supporting the approach 

that we present in this chapter. In section 7.2.1 we present the deployment view for DDS-

based systems, followed by a discussion in section 7.3 on the proposed DDS UML profile. 

7.2.1 Deployment View for DDS-based Systems 

Based on DDS specification (OMG, 2015b), we could derive the deployment view for DDS 

based systems, as shown in Figure 6-4. A DDS system consisting of several DDS applications is 

called a Domain. A typical DDS based system is deployed on a number of Application Nodes. 

Each Application Node includes one or more Domain Participants, which are applications that 

together form the system execution. Each Domain Participant may include one Publisher that 

represents the objects responsible for data production and updates. A publisher includes one 

or more Data Writers that publish data of different data types. Domain Participant may also 
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include one Subscriber that is responsible for receiving published data and making it available 

to the participant. A subscriber includes one or more Data Readers to access published data 

in a type-safe manner. Interaction between data reader and data writers is established via 

Topics. A topic defines a unique name, data type and a set of Quality Services to the 

published/subscribed data (OMG, 2015b). Note that Domain is a logical concept and a Domain 

Participant may participate in more than one domain at the same time. 

The DDS specification defines two layers: (1) A lower level layer, which provides efficient 

delivery of the shared information to the related recipients. This layer is named Data Centric 

Publish Subscribe (DCPS) in the specification and it is mandatory for the DDS implementations. 

(2) A higher layer that enables simple integration of the services defined in DCPS layer into the 

application layer. This layer is named Data Local Reconstruction Layer (DLRL) in the 

specification and it is optional to be provided by the DDS implementations. 

DDS provides the ability to specify various parameters like the rate of publication, rate of 

subscription, how long the data is valid, and many others. These Quality of Service (QoS) 

parameters allow system designers to construct distributed applications based on the 

requirements for, and availability of, each specific piece of data. Selected QoS parameters 

affect the performance of the overall system drastically, and therefore finding the feasible 

values for the QoS parameters for a system is important for successful development of the 

target system. 

7.3 DDS UML PROFILE 

To support the analysis and design of object-oriented systems using DDS technology, the OMG 

has specified the UML Profile for Data Distribution Specification (OMG, 2010). The profile 

enables definition of all DDS artifacts defined in the view given in Figure 6-4. This profile also 

enables the definition of DDS data types which topics will be built on.  The profile separates 

DDS artifacts in three packages including DCPS, DLRL, and DDS Common. The DCPS defines the 

mandatory part of the DDS specification used to provide the functionality required for an 

application to publish and subscribe to the values of data objects. The DLRL is the optional 

portion of the DDS specification used to provide the functionality required for an application 

for direct access to data exchanged at the DCPS layer. The DDS Common package defines the 

distributed data communications specification that allows Quality of Service policies to be 

specified for data timeliness and reliability.   The dependencies between the packages are 

shown in Figure 7-1. The figure indicates that the DCPS and DLRL packages depend on DDS 

Common. Several tools that implement the draft specification of the above UML Profile for 

Data Distribution Specification are already available and ready to be used such as Enterprise 

Architect (Sparx Systems, n.d.). 
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Common

DCPS DLRL

 

Figure 7-1: Top-Level DDS package structure of the proposed OMG UML Profile 

In this section, we define a case study that will be used to illustrate the problem statement 

and the approach in further sections. The case study that we consider is within the context of 

smart city engineering (Yoshikawa et al., 2012). For the near future, it is expected that a big 

part of the world population will live in urban areas. This will have a huge impact on future 

personal lives and mobility. A smart city uses information and communication technology (ICT) 

to enhance the quality and performance of urban services, to reduce costs and resource 

consumption, and to engage more effectively and actively with its citizens (Iijima, 2012; 

Yoshikawa et al., 2012). Sectors that have been developing smart city technology include 

government services, transport and traffic management, water and waste, health care, and 

energy. Smart city applications are developed with the goal to improve the management of 

urban flows and allowing for real time responses to challenges. One of the important 

applications in smart city engineering includes the development of smart traffic system (STS). 

Traffic is already a large problem in many cities and this problem will be even bigger in the 

future. Many people spend a considerable amount of time in traffic, which leads to 

unnecessary waste of human resource, time and increase of CO2 emissions. STS provides 

different capabilities such as traffic light management, congestion detection, traffic 

regulation, shared parking platform, etc. For example, shared parking platform optimizes the 

search for finding a suitable parking slot by guiding the drivers to the available nearest parking 

spots in real-time.   

The high-level reference architecture of STS is depicted in Figure 7-2. STS consists primarily of 

sensors and vehicles. Sensors are the devices that monitor the environment and provide the 

corresponding data. Vehicles use the sensor data and publish their position and other relevant 

information to the STS. Within the case study we distinguish between the following sensor 

types: Traffic Light, Incident Detector, Congestion Detector, Speed Camera, Parking Detection 

Sensor, Bicycle Station, Parking Lot, and Weather Sensor. Vehicles can be of the following 

types: Car, Truck, Ambulance, Taxi, Bicycle, and Bus.  The sensors and control units are thin 

clients which do not contain any business logic. In this case, all the STS elements can 

communicate with the STS. 
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Figure 7-2: High Level Reference Architecture of the Smart City case study 

STS is in essence a data-intensive system with stringent demands for QoS parameters. As 

stated before, the OMG’s DDS Middleware explicitly considers QoS properties and as such is 

very suitable to realize the STS system. In order to implement STS using DDS we need to map 

the application domain (smart city) concepts to the DDS concepts, that is, domain, the domain 

participants, the publishers, the subscribers, and the topics in the STS case study. The DDS 

concept domain is here the Smart City Traffic Domain. Domain participants might be grouped 

as vehicles, sensors and managers. Managers define the domain participants that include the 

communication and business logic necessary for executing the required services. As stated 

before each domain participant can have zero or one publisher and zero or one subscriber. 

The subscribers and publishers for each domain participant are given in Table 7-1.  
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Table 7-1: Corresponding DDS Names for Application Domain Participants for STS 

Application Domain 
Name 

DDS Name Publisher Subscriber 

Ambulance 
Bicycle 
Bus 
Car 
Taxi 
Truck 

dpAmbulance 
dpBicycle 
dpBus 
dpCar 
dpTaxi 
dpTruck 

dpAmbulancePub 
dpBicyclePub 
dpBusPub 
dpCarPub 
dpTaxiPub 
dpTruckPub 

dpAmbulanceSub 
dpBicycleSub 
dpBusSub 
dpCarSub 
dpTaxiSub 
dpTruckSub 

Bicycle Station  
Congestion Sensor 
Incident Sensor  
Parking Lot 
Speed Camera 
Traffic Light 
Weather Sensor 

dpBicycleStation 
dpCongestionSensor 
dpIncidentSensor  
dpParkingLot 
dpSpeedCamera 
dpTrafficLight 
dpWeatherSensor 

dpBicycleStationPub 
dpCongestionSensorPub 
dpIncidentSensorPub 
dpParkingLotPub 
dpSpeedCameraPub 
dpTrafficLightPub 
dpWeatherSensorPub 

- 
- 
- 
- 
- 
- 
- 

Incident Manager 
Logger Manager 
Parking Manager 
Ticket Manager 
Traffic Manager 
Vehicle Manager 
Weather Manager 

dpIncidentManager 
dpLoggerManager 
dpParkingManager 
dpTicketManager 
dpTrafficManager 
dpVehicleManager 
dpWeatherManager 

dpIncidentManagerPub 
- 
dpParkingManagerPub 
dpTicketManagerPub 
dpTrafficManagerPub 
dpVehicleManagerPub 
dpWeatherManagerPub 

dpIncidentManagerSub 
dpLoggerManagerSub 
dpParkingManagerSub 
dpTicketManagerSub 
dpTrafficManagerSub 
dpVehicleManagerSub 
dpWeatherManagerSub 

 

For example, the entity Car has a corresponding domain participant dpCar, which as a 

publisher dpCarPub and a subscriber dpCarSub. In a similar sense the subscribers for each 

domain participant are defined. Finally, we have defined eight different topics for the case 

study (Table 7-2). In this table we can, for example, see that publisher SpeedCameraPub 

publishes data in the topic Ticket Info Topic with publish frequency rate 5Hz. Similarly, the two 

subscribers TicketManSub and VehicleManSub read the published data. Table 7-3 shows an 

example scenario for STS including the defined number of instances per domain participant. 
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Table 7-2: Topics of Sample Scenario for Smart Parking System (STS) 

Topic Name Publisher Publisher Rate [Hz] Subscriber 

Vehicle Info Topic dpCarPub 
dpBusPub 
dpTruckPub 
dpAmbulancePub 
dpTaxiPub 
dpBicyclePub 

5 
5 
5 
5 
5 
5 

VehicleManSub 

Global Info Topic VehicleManPub 20 dpCarSub 
dpBusSub 
dpTruckSub 
dpAmbulanceSub 
dpTaxiSub 
dpBicycleSub 

Traffic Info Topic TraficLightPub 
CongestionSensorPub 

10 
10 

TrafficManSub 
VehicleManSub 

Ticket Info Topic SpeedCameraPub 
 

10 TicketManSub 
VehicleManSub 

Weather Info Topic WeatherSensorPub 10 WeatherManSub 
TrafficManSub 
VehicleManSub 

Parking Info Topic BicycleStationPub 
ParkingLotPub 

10 ParkingManSub 
VehicleManSub 

Incident Info Topic IncidentSensorPub 10 IncidentManSub 
VehicleManSub 

Logger Topic TrafficManPub 
TicketManPub 
WeatherManPub 
ParkingManPub 
IncidentManPub 

20 
20 
20 
20 
20 

LoggerManSub 

7.4 PROBLEM STATEMENT 

An important step of designing a DDS-based application is to define the deployment model of 

the system. The deployment model defines the allocation of domain participant instances (e.g. 

scenario of Table 7-3) to the available physical resources, and largely influences the 

performance of the overall system.  

In principle many different deployment alternatives can be defined. For example, a 

deployment alternative of the STS can be defined with three nodes in which all vehicle 

instances are deployed on the first node, sensor instances are on the second node and 

manager instances are deployed on the third node as given in Figure 7-3.  

 

 

 

 

 



158  

Table 7-3: Example scenario for STS with defined no. of instances per domain participant 

Domain Participant Name Number of Instances 

Ambulance 
Bicycle 
Bus 
Car 
Taxi 
Truck 

17 
184 
46 

1435 
124 
28 

Bicycle Station  
Congestion Sensor 
Incident Sensor  
Parking Lot 
Speed Camera 
Traffic Light 
Weather Sensor 

23 
62 
29 
33 
48 

125 
16 

Incident Manager 
Logger Manager 
Parking Manager 
Ticket Manager 
Traffic Manager 
Vehicle Manager 
Weather Manager 

15 
15 
15 
15 
15 
15 
15 

TOTAL 2275 

 

Node 1

- ambulance
- bicycle
- bus
- car
- taxi 
- truck

Node 2

- bicycle station
- congestion sensor
- incident sensor
- parking lot
- speed camera 
- traffic light
- weather sensor

Node 3

- incident manager
- logger manager
- parking manager
- ticket manager
- traffic manager 
- vehicle manager
- weather manager  

Figure 7-3: Deployment by grouping domain participants 

Actually, this alternative follows the conceptual separation of concerns in which a separate 

node is logically defined almost for each participant type. Further, the communication 

overhead among the same participant types such as the communication between Vehicle 

Manager and Traffic Manager are minimized because of being deployed on the same node. 
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Although this alternative is easy to understand because of the logical separation of 

participants, it does not always have good time performance because separately deployed 

participants such as parking sensors and vehicles need to interact very frequently with each 

other. 

A second deployment alternative example is shown in Figure 7-4. Hereby, the 20 participants 

have been distributed equally over the existing 10 nodes. That is, each node has been 

allocated two types of participants. This deployment alternative is simple but might not be 

feasible to minimize the network communication in case participants need to communicate 

with participants in other nodes. 

Network

Node 1

- dpiAmbulance
- dpiBicycle

Node 2

- dpiBus
- dpiCar

Node 3

- dpiTaxi
- dpiTruck

Node 4

- dpiBicycleStation
- dpiCongestionSensor

Node 5

- dpiIncidentSensor
- dpiParkingLot

Node 6

- dpiSpeedCamera
- dpiTrafficLight

Node 7

- dpiWeatherSensor
- dpiIncidentManager

Node 8

- dpiLoggerManager
- dpiParkingManager

Node 9

- dpiTicketManager
- dpiTrafficManager

Node 10

- dpiVehicleManager
- dpiWhetherManager

 

Figure 7-4: Deployment by distributing domain participants over nodes. 

We can derive many more different deployment alternatives that may differ with respect to 

the number of deployment nodes and the mapping of participants to the nodes. Apparently, 

the number of deployment alternatives is very large and each deployment alternative will 

perform differently with respect to different quality considerations such as logical separation 

for understandability, optimizing communication overhead, enhancing utilization of physical 

resources, etc. Obviously, a more systematic and formal approach is required to guide the 

search for the feasible deployment alternatives. The OMG DDS specification does not provide 

an explicit approach to guide the distribution and allocation of the participants to optimize 

the deployment model with respect to performance in the design phase. Moreover, currently 

there is no adequate approach and tool support yet to enable the selection of deployment 

alternatives in the literature. In the following sections, we will provide an approach and tool 

framework for designing the DDS-based application and deriving feasible deployment 

alternatives. 

7.5 APPROACH FOR GENERATING DDS DEPLOYMENT CONFIGURATION ALTERNATIVES 

In this section, we provide a systematic process for defining and evaluating feasible 

deployment alternatives of a DDS-based distributed system. The presented approach will be 

used in the design phase of the DDS-based system where the development of the system is 

not started yet, and the system code is not available. The approach is represented as an 

activity diagram as shown in Figure 7-5. The approach consists of the two basic phases 

“Architecture Design” and “Feasible Deployment Generation”. 
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FEASIBLE DEPLOYMENT GENERATIONARCHITECTURE DESIGN

Define DDS Application

Design Physical

Resources

[feasible alternative not found  and 

change of simulation configuration not suitable]

[Generated deployment models are not satisfactory 

and change of simulation configuration not suitable]

Define DDS Types

Define DDS Topics

Define Domain 

Participants

Define Requirements

Define

Pub/Sub Relations

Design Execution 

Configuration

Generate Input 

Parameters for 

Allocation Algorithm

Find Feasible 

Deployment(s)

 

Generate Deployment 

Model(s)

[feasible alternative(s)

found]

[a feasible alternative 

not found]

Analyze Tool Feedback

Evaluate Generated 

Deployment Model(s)

 

[Generated 

deployment models 

are satisfactory]

[Generated 

deployment models 

are not satisfactory]

 

Figure 7-5: Activity flow of alternative design evaluation and deriving feasible deployment 

Typically, the architecture design phase follows the requirements analysis process. We 

assume that the requirements analysis phase is performed using the approaches as defined in 

the literature (e.g. see Rational Unified Process (Kruchten, 2000)) and provides the input for 

the DDS-based system architecture. 

The architecture of the DDS application is designed using the DDS UML Profile that has been 

defined in section 2.2. This includes the definition of the DDS Types, the DDS Topics, the 

Domain Participants and the Publish/Subscribe Relations. The DDS application will be 

deployed on the target environment, which consists of physical resources on which the DDS 

domain participants will execute. The design of the physical resources is defined in parallel to 

the DDS application design.  

After the architectural system design phase is completed, the feasible deployment model 

generation phase starts with the definition of the execution configuration. The execution 

configuration defines the number of each DDS domain participant and update rate for each 

publication by using the artifacts defined in architecture design phase. From an abstract point 

of view, the feasible deployment models of a system with several sub-components can be 

derived by using task assignment algorithms defined in the literature (Aleti, Grunske, 
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Meedeniya, & Moser, 2009; Malek, Medvidovic, & Mikic-Rakic, 2012). For using the task 

assignment algorithms, the required input parameters need first to be defined. These input 

parameters are extracted from the design including available resources, execution cost of 

each task, and communication cost among tasks. After the necessary input parameters are 

extracted, the feasible deployment models are defined and the deployment models are 

generated. Subsequently, the feasibility of the generated deployment models is evaluated in 

the following step. If the generated deployment models are not satisfactory, an iteration step 

will be required to analyze the system design and refine it according to the provided feedback 

by the corresponding tool. Here a satisfactory alternative defines a deployment alternative 

that meets the expected improvement rate of the costs (e.g. communication and execution 

costs) for the deployment model.  Finding feasible deployment models may require several 

iterations of the process steps. The initial deployment model is realized and verified in 

development and integration/test activities, and the results are fed back to the designer until 

a satisfactory alternative is derived.  

In the following subsections we will explain the concrete activities that we have defined to 

realize our approach.  Each section also defines the metamodels that are used for modeling 

the related artifacts of the corresponding step. 

7.5.1 Define DDS Application 

OMG’s UML Profile for Data Distribution Specification already defines necessary metamodel 

for defining a DDS application, so we did not define a new metamodel for DDS Application 

definition. The approach defined in this chapter extends and realizes the OMG UML Profile for 

Data Distribution Specification (OMG, 2010). Our modeling tool realizes necessary parts of 

UML Profile for Data Distribution Specification to define the DDS types, the DDS topics, the 

Domain Participants, and the Publish/Subscribe Relations. For example, the relationship 

among Domain, Domain Participant, Publisher, Subscriber, Data Reader, and Data Writer 

artifacts are shown in Figure 7-6.  

The model implies that a DDS application may consist of one or more Domains, a Domain 

Participant can be member of one or more Domains, a Domain Participant may contain zero 

or one Publisher/Subscriber, and so on. The attributes of metamodel classes are not shown 

for the sake of simplicity and can be inspected from the specification (OMG, 2010). 

 



162  

 

Figure 7-6: Metamodel for DDS UML Profile/DCPS/DCPS Package 

7.5.2 Design Physical Resources 

Parallel to the activity Define DDS Application, the activity Design Physical Resources defines 

the available nodes together with their processing power and memory capacity, as well as the 

network connections among the nodes. For example, one may decide to adopt 25 nodes on 

which the participants need to be deployed. As an example configuration, it could be decided 

that each node has a memory capacity of 12280 MB and contains two processing units with 

four cores at the frequency of 2.3 MHz. Equally, the nodes could also have different memory 

capacity and computation power.  

The physical resource metamodel has not been defined in the UML Profile for Data 

Distribution Specification. As such, we have developed the metamodel in Figure 7-7 to support 

the process in Figure 7-5. The Physical Resource Metamodel given in Figure 7-7 can be used 

to represent the artifacts for modeling the available physical resources. 

PhysicalResourceModel is the root class of the metamodel that defines a physical resource 

model. There can be one or more Nodes in a physical resource model, which represents 

computation resources. Each node has a name attribute that identifies the node. The 

powerFactor attribute defines the computation power of the node relative to other nodes. A 

node can have one or more processors, one or more custom node properties, and memory 

capacity. Processor defines properties of a processing unit using the attributes name, 

frequency and coreCount.  The attribute name is the symbolic name of the processor like “Intel 

Core I7”. The attribute coreCount defines the number of cores that the processor has. The 

attribute frequency defines the frequency of the processor in Mhz. MemoryCapacity has a 

value attribute that represents the memory capacity of the node in terms of megabytes. 
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CustomNodeProperty can be used to define additional properties for the node. The properties 

are defined as name-value pairs. For example, one may decide to include a specific property 

diskCapacity with value 340 Gb. 

 

Figure 7-7: Physical Resource Metamodel 

There can be one or more networks in a physical resource model. The Network class is the 

abstract base class for LocalAreaNetwork (LAN) and WideAreaNetwork (WAN) classes. The 

name attribute of the Network class is the symbolic name of the network. WideAreaNetwork 

class has speedFactor attribute that defines the speed of the network in comparison with a 

LAN. LANConnection represents the connection of a node to a LAN. Router represents routers 

for connecting networks with each other. The name attribute of the Router class is the 

symbolic name of the router. LANRouterConnection class represents connection of a LAN to a 

router while the RouterNetworkConnection class represents connection of a router to a 

network. 

7.5.3 Design Execution Configuration 

The Execution Configuration Metamodel is used to define the artifacts to model the execution 

configuration shown in Figure 7-8. ExecutionConfiguration class defines an execution 

configuration which contains elements of Metadata and DomainParticipantInstance. 

Metadata defines name, creation date, creator, and version of the execution configuration.  

DomainParticipantInstance represents an instance of a Domain Participant that is defined in 

the DDS Application Definition Metamodel.  

Each Domain Participant instance can have a different execution cost for different nodes. For 

this, DomainParticipantInstance contains a list of ExecutionCost that define estimated 

execution cost for each node which the Domain Participant instance can execute. Note that 

the execution cost is dependent on the selected execution configuration. For example, the 

execution cost of a Mobile Client Subscriber model changes according to existing Parking 
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Detection Sensors in the execution configuration. The execution cost is a scaled value that 

shows the execution cost of a Domain Participant Instance in comparison with other Domain 

Participant Instances in the execution configuration. For example, the execution cost for each 

Parking Detection Sensor domain participant is defined using scaled value and defined as 7 

over 20 for one node, 14 over 20 for another node, etc. The execution costs of modules are 

influenced by the processor’s powerFactor and memoryCapacity attributes. In a similar sense, 

the communication costs among modules are influenced by the networks speedFactor 

attribute. Since the execution and communication costs of domain participants can only be 

exactly measured after the system is developed, during design time their values can only be 

estimated. This estimation can be conducted by using, for example, design phase complexity 

calculation methods such as proposed by (Prismtech, n.d.-b) or prototyping.  

 

Figure 7-8: Execution Configuration Metamodel 

The attribute requiredMemory of DomainParticipantInstance represents the estimated 

memory amount that the domain participant will require during execution. Similar to the 

execution cost, this parameter can be estimated in the design phase. The attribute 

instanceCount defines the number of Domain Participant Instances in the execution 

configuration. This attribute is added because there may be multiple instances of the same 

Domain Participant in an execution configuration. For example, in a large Smart Parking 

System scenario, there can be hundreds of Parking Detection Sensors and it is not feasible to 

add one domain participant for each of them to the execution configuration separately. 

The relation relatedDomainParticipant associates a DomainParticipantInstance with a 

DomainParticipoant that is defined in the activity Define DDS Application. 

DomainParticipantInstance can have zero or more Publications that represent the update rate 
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and the related element from DDS Topic definition. Each publication is associated with an 

TopicDescription defined in “Define DDS Application” step. 

The updateRate attribute shows how many times a Domain Participant instance will update a 

Topic in a second. For example, we could decide to have 2000 Parking Detection Sensor 

domain participants where each of them publishes a Sensor object with update rate of 2 times 

per minute. 

7.5.4 Generate Input Parameters for Allocation Algorithm 

Once the parameters for the physical resources and execution configurations have been 

defined we can start the search for the feasible deployment alternatives. In principle, this can 

be carried out in different ways in which multiple different approaches and algorithms can be 

identified. The allocation could be, for example, based on one of the following heuristics: 

1. minimizing the number of the nodes to which the tasks are allocated  
2. uniform distribution of tasks over the nodes  
3. random allocation of tasks over the nodes  
4. minimizing the overall communication costs  

The presented approach is generic and does not hardwire a particular heuristic approach. If 

needed, in addition to the above heuristics we could also identify other heuristics. In the next 

section, we will discuss each of these approaches in the implementation of the tool and the 

overall evaluation.  

Besides the heuristics, we could also adopt a more formal and systematic algorithm for the 

deployment process. In this chapter, we will adopt the so-called Multi-Processor Task 

Assignment (MPTA) problem (Malek et al., 2012; Ucar, Aykanat, Kaya, & Ikinci, 2006). For this 

problem, the following parameters can be defined: 

• T, set of m tasks = {t1, t2, ..., tm} 

• P, set of n processors {p1, p2, ..., pn} 

• Mp, memory capacity of processor p 

• mi, amount of memory needed for task i 

• Xiq, cost of executing ti task on pq processor. 

• E, set of communication between tasks, whereby each communicating task combination 
(i, j) has a communication cost cij if tasks ti and tj are assigned to different processors. 
Communication cost is negligible if two tasks are assigned to same processor. 

The objective in our problem is to minimize the sum of total execution cost and total 

communication cost (among domain participants) while not exceeding the memory capacity 

of each node. Based on the above definitions we can formulate our objective as follows (Malek 

et al., 2012; Ucar et al., 2006):  
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Assign tasks to processors to minimize the sum 

      
Subject to 

      
 (aip = 1, if task i is assigned to processor p, 0 otherwise) 

In fact, the required parameters of the MTPA problem can be extracted from the system 

design that has been defined in the previous activities. In Table 7-4 we explain for each 

parameter how it is extracted from the design. 

Table 7-4: Extracting MPTA parameters from the design 

MPTA 
Parameter 

Extraction from Design 

T Each domain participant instance will be mapped to a Task, so T is list of domain participant 
instances defined in Execution Configuration Design activity. 
 

P Each node defined in Physical Resource Design activity 
 

Mp memoryCapacity attribute of node defined in Physical Resource Design activity. 
 

mi requiredMemory attribute of DomainParticipantInstance defined in Execution Configuration 
Development activity 
 

Xiq nodeExecutionCostTable attribute of DomainParticipantInstance defined in Execution 
Configuration Development activity 
 

Cij Calculated by using: 
- Publications defined in Execution Configuration Design activity,  
- Subscriptions defined in Publish/Subscribe Relations of Domain Participants Design activity,  
- Data Types and Topics defined in DDS Application Design activity 

 

7.5.5 Find Feasible Deployment Configuration 

The activity Find Feasible Deployment takes as input the parameter values of the previous 

activity and executes an algorithm that computes a feasible deployment alternative, if one is 

available.  Different algorithms in the literature can be used to solve the MPTA problem. Please 

note that we do not focus on a particular algorithm but recommend using a practical one for 

the corresponding case. In our case, we could for example use the MPTA algorithm as defined 

by Mehrabi et al. (Mehrabi, Mehrabi, & Mehrabi, 2009) because it adopts the parameters of 

execution cost, communication cost and memory requirements. If a feasible deployment is 

found, the output of this activity is a table that represents the mapping of tasks (domain 

participants) to processors (nodes). If the algorithm was not successful in finding a feasible 

solution the process returns to the activity Design Execution Configuration. This can be 

repeated several times until a feasible deployment is found. If it appears that a feasible 
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deployment cannot be found by changing just the execution configuration, then the designer 

can decide to return to the beginning of step 3 to refine/update the design. 

7.5.6 Generate Deployment Configuration 

The Deployment Metamodel is used to describe the deployment model in the “Generate 

Deployment Model(s)” activity shown in Figure 7-9.  The deployment metamodel contains 

Members and Nodes.  Each Member is deployed on one of the Nodes defined in Physical 

Resource Model. One or more Domain Participant Instances can be deployed on a Member. 

 

Figure 7-9: Deployment Configuration Metamodel 

7.6 TOOLS AND APPLYING THE APPROACH TO THE CASE STUDY 

In this section, we present the tool Deploy-DDS that provides an integrated development 

environment for supporting the activities of the approach described in the previous section. 

Deploy-DDS is built on the Eclipse platform and is implemented as a set of plug-ins. The 

developed plug-ins are built on other Eclipse frameworks including Eclipse Modeling 

Framework (EMF) (Steinberg, 2009), and Graphical Modeling Framework (GMF) (Voelter, Kolb, 

Efftinge, & Haase, 2006). EMF is a modeling framework and code generation facility that we 

use to develop the metamodels. GMF is a generative component and runtime infrastructure 

that we use for developing graphical editors for the developed metamodels. Further, we use 

Emfatic (Daly, 2004), which provides a text editor and a language for editing EMF models. In 

addition, we use EuGENia GMF tool (Kolovos et al., 2010) that provides mechanisms for 

abstracting away the complexity of GMF and for easier development of GMF editors. EuGENia 

tool is a part of Epsilon project (Kolovos, Paige, & Polack, 2006). 

In the following subsections, we describe the top-level tool architecture in section 7.6.1. In 

section 7.6.2 we show the application of Deploy-DDS for designing the DDS Application, 

Physical Resources, and Execution Configuration for the case study. 
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7.6.1 Tool Architecture 

The Deploy-DDS tool provides an integrated environment for modeling DDS based 

applications, generating and analyzing deployment models. Deploy-DDS tool is built on the 

Eclipse platform and is implemented as a set of plug-ins. The developed plug-ins are built on 

other Eclipse framework plug-ins including Eclipse Modeling Framework (EMF) (Budinsky, 

Steinberg, Merks, Ellersick, & Grose, 2003), Graphical Editing Framework (GEF) (Moore, Dean, 

Gerber, Wagenknecht, & Vanderheyden, 2004), and Graphical Modeling Framework (GMF) 

(Voelter et al., 2006). EMF is a modeling framework and code generation facility that we use 

to develop the metamodels.  

GEF is a framework that is used for generating rich graphical editors and views. GMF is a 

generative component and runtime infrastructure that we use for developing graphical 

editors for the developed metamodels. Further, we use Emfatic (Daly, 2004), which provides 

a text editor and a language for editing EMF models. In addition, we use EuGENia (Kolovos et 

al., 2010) GMF tool that provides mechanisms for abstracting away the complexity of GMF 

and for easier development of GMF editors. EuGENia tool is a part of Epsilon project (Kolovos 

et al., 2006). The layered tool architecture of the Deploy-DDS is given in Figure 7-10. Deploy-

DDS consists of five different tools. 

Physical Resources

Design Tool
DDS Types Design Tool

DDS Application Design 

Tool

Execution Configuration 

Design Tool

Deployment Model 

Generation Tool

Eclipse Platform

EMF GEF

GMF
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Figure 7-10: Layered Architecture of S-IDE environment 

The common perspective of Deploy-DDS is given in Figure 7-11. The left pane includes the 

Model Explorer View that shows the available models and their elements. The Editing pane in 

the middle provides the main drawing area for the DDS based application design. The 

Properties Editor View at the bottom provides an editing area for the attributes of the design 

model elements that are selected from the Editing Pane or the Model Explorer. 
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Model Navigator Model Editing Pane Item Palette

Properties View
 

Figure 7-11: General Perspective of Deploy-DDS tool 

Deploy-DDS supports different activities in the approach; the dependencies between these 

activities are shown in Figure 7-12. The meaning of the adopted symbols in the diagram are 

shown in the legend below the diagram. The activities result in artifacts which are denoted 

using the stereotype <<Artifact>>. The circles with numbers denote the control flow among 

the activities.  

The DDS Type Repository Definition results in the DDS Type Repository, which is provided as 

an input to the DDS Topics & Participants Definition activity, and Execution Configuration 

Definition activity. The DDS Topics & Participants Definition activity is used to produce the DDS 

Topics, Domain Participants, and Pub/Sub Definitions which is also an input to the Execution 

Configuration Definition activity. The Physical Resources Design activity is used to define the 

Physical Resource Model, which is an input to Execution Configuration Definition activity and 

the Deployment Model Generation activity. The Execution Configuration Definition activity is 

used to define the Execution Configuration, which is provided as an input to the Deployment 

Model Generation activity that on its turn generates the Deployment Model. In the following 

subsections, we describe each activity in more detail using the Smart Parking System (STS) 

case study defined in Section 3. 
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Figure 7-12: Dependency Graph of Activities 

7.6.2 Using Deploy-DDS to design DDS Application Models for the Case Study 

As stated before, using the tool the activities DDS Application Design, Type Repository 

Definition, Physical Resources Design and Execution Configuration Design define the 

corresponding modeling tools. Figure 7-13 shows a part of the DDS Type Repository of the 

case that has been developed using the DDS Type Repository Definition activity. As stated 

before, publishers and subscribers communicate via topics. Hereby, publishers write data 

fields in the topic and subscribers read data fields in the topic. Type Definitions of the topics 

are given in Figure 7-13. For example, in this diagram we defined a topic VehicleInfo. In this 

topic we have four data fields. The vehicleID field shows the unique ID of the related vehicle. 

The speed field shows the speed of the vehicle. Finally, latitude and longitude fields show the 

geographic position of the vehicle. 
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Figure 7-13: Type Definition Model of the case study 

 

 

Figure 7-14: Application Definition Model of the case study 
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Figure 7-14 shows the application definition model of the case study. The domain participants 

in this figure are all in the “Smart City Traffic” (STS) domain. In this diagram, we can classify 

domain participants mainly in three categories: Vehicles, Sensors and Managers. Sensors just 

have data publishers to publish related sensor information. This information is read by related 

managers and vehicles via the defined topics. Vehicles have both publishers and subscribers. 

They publish their id, speed and position information basically. This information is read by 

managers. Similar to vehicles, managers have publishers and subscribers except Logger 

Manager which has nothing to publish in the STS domain and just a subscriber. Managers 

combine this information with information coming from sensors. Managers might 

communicate with other software modules such as database and cloud modules (for simplicity 

this part was excluded in the model).  Resulting information combined in managers are 

published into vehicles again and drivers might have broad information about the details of 

the city traffic such as accident information and congestion information so that they can use 

less dense roads or they can arrive at proper parking places with less travel. 

 

Figure 7-15: Physical Resource Model for Case Study with Ten Nodes 

Figure 7-15 shows the Physical Resource Model Diagram of the case study.  In this case, we 

have 10 nodes (computers) with different number of processors and different memory 

capacities. The processor capacity ranges from 3.0 GHz to 3.8 GHz, while the memory 

capacities range from 16.000 MB to 80.000 MB (less readable in the figure). This heterogeneity 

makes obtaining a feasible solution more difficult. Figure 7-16 shows the execution 

configuration model of vehicle participants of the case study.  

Hereby, as an example, Vehicle publishers publish data at 5 Hz, with different execution costs 

for different nodes. For this chapter, we assume that the proper execution costs are provided. 

These could be typically obtained experimentally or based on expert knowledge. The more 

precise the values of the execution costs the more effective the tool will be to derive the 

feasible deployment alternatives. 
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Figure 7-16: Partial view of the Execution Configuration Diagram for the Case Study 

7.7 EVALUATION 

In the previous sub-sections, we have described the development of the physical configuration 

model, the type definition model, the application definition model and the execution 

configuration model. Given these models we can now generate the possible deployment 

alternatives. The corresponding snapshot of the tool is shown in Figure 7-17. As it can be seen 

in the figure the execution configuration, and the physical resource model can be provided as 

an input to the tool. The field Container, defines the folder in which the results are stored.  In 

principle, the deployment generation can be realized using multiple different alternative 

algorithms. The user can select one of the implemented deployment model generators.  

 

Figure 7-17: Algorithms used to find deployment alternatives in DeployDDS tool 
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In DeployDDS tool, we have selected five different deployment model generators (DMG) to 

obtain the deployment models including DMG_TopicBasedAllocation, 

DMG_GeneticAlgorithm, DMG_SequentialAllocation, and DMG_MinimumNodeAllocation. 

Each of these algorithms has been implemented in the tool and provides a solution for the 

MPTA problem as discussed in section 5.4. In the following, we shortly describe the algorithms 

that we have implemented: 

DMG_TopicBasedAllocation aims to find feasible deployment models with minimum 

communication cost. This logic is implemented by a Greedy Algorithm which allocates the 

publishers and subscribers of the same topic into the same node. If the node does not have 

adequate memory for the publishers and the subscribers, only appropriate number of 

publishers and subscribers will be allocated to that node. The number of nodes that cannot 

be allocated to the same node because of the lack of memory will be allocated to the next 

nodes. As stated above, the publishers and the subscribers that cannot be allocated to the 

same node will cause communication cost. So, if there is enough memory to allocate all 

communicating publishers and the subscribers into the same node, this DMG will result in zero 

communication cost.  

DMG_GeneticAlgorithms uses a genetic algorithm-based solver to find feasible deployment 

models. 

DMG_SequentialAllocation, allocates domain participant instances into the available nodes. It 

starts with the first domain participant and allocates sufficient number of domain participants 

into the first node. It will allocate sufficient number of participants to the first available nodes 

and then switches to the second node. Note that, if the memory available in the first node is 

sufficient to allocate all participants, then this DMG will result in the same deployment model 

with DMG_MinimumNodeAllocations.  

DMG_MinimumNodeAllocation aims to find feasible deployment models using the minimum 

number of nodes. If possible, this DMG allocates all tasks to the same node which will result 

in zero communication cost. In order to allocate all participants to the same node, this DMG 

starts from the node that has maximum memory available. If the memory required to allocate 

all tasks to the same node is not available in a single node, then more nodes will be allocated. 

The resulting deployment model will be using the minimum number of nodes. At the end, 

many nodes might become unused.  

By selecting one of these generators the feasible deployment alternative can be automatically 

generated using the selected deployment generator. If necessary, the user of the tool can 

implement another algorithm and deploy it in the tool. In principle, each newly defined 

algorithm will follow the steps of the common pseudo-code as shown in Figure 7-18.  As shown 

in line 1, the algorithm GENERATE_FEASIBLE_DEPLOYMENT takes two input parameters: a 

physical resource model and an execution configuration as defined, for example, in Figure 

7-15 and Figure 7-16, respectively. Line 2 extracts processors from the physical resource 

model by calling EXTRACT_PROCESSORS in which a processor is created for each node in the 

physical resource model. In Line 3, tasks are extracted from the execution configuration by 

calling EXTRACT_TASKS in which a task is created for each domain participant and execution 
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cost among tasks is calculated. In Line 4, the actual MPTA algorithm is executed by calling 

EXECUTE_MPTA. The result of this is stored in assignment_table that includes the assignment 

of tasks to the processors. Likewise, assignment_table defines an abstract specification of the 

feasible deployment alternative. In Line 5, the deployment is actually generated by calling 

CREATE_DEPLOYMENT_MODEL with the parameter assignment_table. 

1. GENERATE_FEASIBLE_DEPLOYMENT (phy_resources, exec_config) 
2.   processors  EXTRACT_PROCESSORS (phy_resources) 
3.   tasks  EXTRACT_TASKS (exec_config) 
4.   assignment_table  EXECUTE_MPTA (tasks, processors) 
5.   CREATE_DEPLOYMENT_MODEL (assignment_table) 

Figure 7-18: Pseudo-code for generating feasible deployment alternative 

Figure 7-19 shows the generated deployment alternatives for the case study using the 

DMG_TopicBasedAllocation (Mehrabi et al., 2009).  

 

 

Figure 7-19: Generated Feasible Deployment Alternative including 2275 Tasks with 
DMG_TopicBasedAllocation 

The generation algorithm is implemented in Java and executed on a quad-core Intel I-5 2.70 

GHz 64-Bit computer with 4 GB of RAM. The figure is not mentioned to be completely 

readable. What we can state is that the resulting deployment model includes 10 nodes as 

given before in the physical resource definition model in Figure 7-15. Further, the execution 

configuration model as partially defined in Figure 7-16 has been deployed to the physical 



176  

nodes to optimize the values for the metrics execution cost, communication cost and memory 

requirements. A close analysis of the generated alternative of Figure 7-19 shows that the total 

memory requirements of domain participant instances that are deployed on each node do not 

exceed the memory capacity of the corresponding nodes. Further, based on the adopted 

genetic algorithm, it appears that domain participant instances that interact frequently and 

which have high communication costs, are as much as possible co-located on the same node. 

The domain participant instances that are remaining and which would exceed the memory 

capacity of Node-1 are deployed to other nodes in a similar manner. Overall, the feasibility of 

the generated deployment alternative is based on the MPTA algorithm that we have used, and 

which has been validated in earlier studies (Mehrabi et al., 2009). 

The generated deployment diagram can soon become too large to view in a single diagram. 

For this we can also show the results in Table 7-5. The results for the selection on the other 

deployment generator algorithms are shown in Table 7-6 (DMG_GeneticAlgorithm), Table 7-

7 (DMG_SequentialAlgorithm) and Table 7-8 (DMG_MinimumNodeAllocation). 

Table 7-5: Deployment results for DMG_TopicBasedAllocation 

Instance Name N1 N2 N3 N4 N5 N6 N7 N8 N9 N10 TOTAL 
dpiAmbulance         15 2 17 
dpiBicycle          184 184 
dpiBus          46 46 
dpiCar     320 67 426 426  196 1435 
dpiTaxi      124     124 
dpiTruck      28     28 
dpiBicycleStation         23  23 
dpiCongestionSensor         62  62 
dpiIncidentSensor         29  29 
dpiParkingLot         33  33 
dpiSpeedCamera         48  48 
dpiTrafficLight         47 78 125 
dpiWeatherSensor         15 1 16 
dpiIncidentMan         15  15 
dpiLoggerMan         15  15 
dpiTicketMan         15  15 
dpiTrafficMan         15  15 
dpiParkingMan         15  15 
dpiVehivleMan         15  15 
dpiWeatherMan         15  15 

TOTAL 0 0 0 0 320 219 426 426 377 507 2275 
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Table 7-6: Deployment results for DMG_GeneticAlgorithm 

Instance Name N1 N2 N3 N4 N5 N6 N7 N8 N9 N10 TOTAL 
dpiAmbulance 2   2 7 1 2 1 2  17 
dpiBicycle 24 19 14 19 23 21 16 17 14 17 184 
dpiBus 6 3 8 3 4 3 4 4 4 7 46 
dpiCar 74 83 155 136 162 155 186 173 148 163 1435 
dpiTaxi   9 9 39 10 14 14 19 10 124 
dpiTruck    5 5 4 3 4 4 3 28 
dpiBicycleStation    2 5 3 1 1 8 3 23 
dpiCongestionSensor     16 8 10 10 9 9 62 
dpiIncidentSensor     11 4 4 5 2 3 29 
dpiParkingLot     8 6 4 6 4 5 33 
dpiSpeedCamera     9 6 7 14 4 8 48 
dpiTrafficLight  1 13  4 36 17 13 19 22 125 
dpiWeatherSensor   1  2 1 1 6 1 4 16 
dpiIncidentMan   2  4  5 1 2 1 15 
dpiLoggerMan   3    1 4 4 3 15 
dpiTicketMan    6  1 1 3 2 2 15 
dpiTrafficMan    2   5 2 1 5 15 
dpiParkingMan    1   8 2 2 2 15 
dpiVehivleMan    5   2 2 4 2 15 
dpiWeatherMan    1   6 4 1 3 15 

TOTAL 106 106 205 191 299 259 297 286 254 272 2275 

 

Table 7-7: Deployment results for DMG_SequentialAllocation 

Instance Name N1 N2 N3 N4 N5 N6 N7 N8 N9 N10 TOTAL 
dpiAmbulance 2 2 2 2 2 2 2 1 1 1 17 
dpiBicycle 19 18 18 18 18 18 18 19 19 19 184 
dpiBus 4 5 5 5 5 5 5 4 4 4 46 
dpiCar 81 81 188 188 179 143 143 144 144 144 1435 
dpiTaxi     63 13 12 12 12 12 124 
dpiTruck     14 2 3 3 3 3 28 
dpiBicycleStation     11 3 3 2 2 2 23 
dpiCongestionSensor     18 18 6 7 7 6 62 
dpiIncidentSensor      18 3 3 2 3 29 
dpiParkingLot      19 3 3 4 4 33 
dpiSpeedCamera      29 5 5 5 4 48 
dpiTrafficLight      15 73 12 12 13 125 
dpiWeatherSensor       10 2 2 2 16 
dpiIncidentMan       12 1 1 1 15 
dpiLoggerMan       9 2 2 2 15 
dpiTicketMan       12 1 1 1 15 
dpiTrafficMan       9 2 2 2 15 
dpiParkingMan       12 1 1 1 15 
dpiVehivleMan       9 2 2 2 15 
dpiWeatherMan        13 1 1 15 

TOTAL 106 106 213 213 310 285 349 239 227 227 2275 
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Table 7-8: Deployment results for DMG_MinimumNodeAllocation 

Instance Name N1 N2 N3 N4 N5 N6 N7 N8 N9 N10 TOTAL 
dpiAmbulance         1 16 17 
dpiBicycle          184 184 
dpiBus          46 46 
dpiCar     320 67 426 426  196 1435 
dpiTaxi      124     124 
dpiTruck      28     28 
dpiBicycleStation         23  23 
dpiCongestionSensor         62  62 
dpiIncidentSensor         29  29 
dpiParkingLot         33  33 
dpiSpeedCamera         48  48 
dpiTrafficLight         73 52 125 
dpiWeatherSensor          16 16 
dpiIncidentMan         15  15 
dpiLoggerMan         15  15 
dpiTicketMan         15  15 
dpiTrafficMan         15  15 
dpiParkingMan         15  15 
dpiVehivleMan         15  15 
dpiWeatherMan         15  15 

TOTAL 0 0 0 0 320 219 426 426 374 510 2275 

 

Each of these deployment generators will perform differently. To validate each algorithm, we 

adopt the Communication Cost and Execution Cost metrics. Communication Cost defines the 

overall communication costs of the required communication tasks in the generated 

deployment alternative. The execution cost metric defines the overall cost of the required 

tasks on the required number of processors. We have calculated the communication costs and 

execution costs for the selected deployment generators applied to the case study. The results 

are shown in Table 7-9. The unit of the communication costs is Mbytes/s; execution cost is a 

relative unit. 

Table 7-9: The communication and execution costs values for the deployment generators 

Deployment Generator Communication Cost [Mbytes/s] Execution Cost 
DMG_TopicBasedAllocation 4.05 22773 
DMG_GeneticAlgorithm 5.00 31381 
DMG_MinimumNodeAllocation 4.02 27730 
DMG_SequentialAllocation 4.76 31763 

 

As we can observe in Table 7-9, for both metrics the deployment generator 

DMG_MinimumNodeAllocation performs the best, while DMG_GeneticAlgorithm has the 

lowest performance. These values are also shown by the tool and as such provide useful 

insight for deciding on the proper deployment allocation. 

Each of the selected algorithms provides feasible deployment alternatives and can in principle 

directly be used to implement the system. In order to further analyze the validity of the 

generated deployment models we use two approaches.  
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The first approach is intuitive and based on the visual inspection of the generated deployment 

model alternatives by an expert. Therefore, this approach relies on the expert’s experience to 

provide logical reasoning about the feasibility of the deployment alternative. In addition, the 

generation of the alternative is done automatically and not performed by the expert.  An 

example reasoning of an expert could be based on the deployment alternative given in Figure 

7-19. A close analysis of this generated deployment alternative shows that the total memory 

requirements of DDS based software system (i.e., STS) does not exceed the capacity of the 

corresponding nodes. Further, based on the adopted genetic algorithm, it appears that 

software domain participants that interact frequently and which have high communication 

costs, are as much as possible co-located on the same node. Apparently, the publishers and 

subscribers in the system have frequent interactions in publish-subscribe communication via 

ParkingLot topic and in the deployment model (Figure 7-19). The adopted algorithm has co-

located instances of these modules as much as possible to keep the communication cost 

minimum. The remaining instances, which would exceed the capacity of Node-1, are deployed 

to other nodes in a similar manner.  

The second, more formal approach for evaluating the generated deployment alternative is to 

compare the generated alternative with another deployment alternative. As shown in Figure 

7-20, the DeployDDS tool enables the comparison of two deployment models that were 

defined before, either generated and/or manually defined. To compare two models, the 

execution configuration and the physical resource model is provided. Once the Compare 

button is pressed the output is written to the corresponding result folders. 

 

 

Figure 7-20: Deployment Model Evaluator of DeployDDS tool 

The comparison process provided in the DeployDDS is generic and can be applied in a similar 

way for the alternatives generated with all the defined deployment generators. We show the 

evaluation of the generated deployment model with a manually generated deployment model 

that is based on a deployment model that is generated by an expert. We have manually 
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defined the deployment model for the expert judgment deployment alternative in DeployDDS 

environment. The results of the expert allocation are shown in Table 7-10. 

Table 7-10: Deployment results for expert distribution 

Instance Name N1 N2 N3 N4 N5 N6 N7 N8 N9 N10 TOTAL 
dpiAmbulance         17  17 
dpiBicycle         184  184 
dpiBus        16 30  46 
dpiCar 17 17 123 123 230 231 338 322 17 17 1435 
dpiTaxi 12 13 13 13 13 12 12 12 12 12 124 
dpiTruck 3 2 2 3 3 3 3 3 3 3 28 
dpiBicycleStation          23 23 
dpiCongestionSensor          62 62 
dpiIncidentSensor          29 29 
dpiParkingLot          33 33 
dpiSpeedCamera         6 42 48 
dpiTrafficLight         125  125 
dpiWeatherSensor         16  16 
dpiIncidentMan          15 15 
dpiLoggerMan          15 15 
dpiTicketMan          15 15 
dpiTrafficMan          15 15 
dpiParkingMan          15 15 
dpiVehivleMan          15 15 
dpiWeatherMan          15 15 

TOTAL 32 32 138 139 246 246 353 353 410 326 2275 

 

The expert deployment allocates an equal number of domain participant instances to each 

node. The expert checks the available memory of the nodes and if the memory is not sufficient 

for the required number of tasks, he/she tries to allocate the remaining tasks to the other 

available nodes. The results for this expert deployment allocation are shown in Table 7-10. 

Figure 7-21 shows the results of the expert deployment for three nodes.  
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Figure 7-21: Expert Deployment Model for first three nodes 

The numbers in each cell defines the number of instances of the participants. For example, 

dpiBicycleStation (x23) means that 23 instances of BicycleStation is deployed into the node 

and dpiAmbulance means a single instance of Ambulance is deployed into the corresponding 

node. The communication and execution costs values for this export deployment are given in 

Table 7-11. 

Table 7-11: The communication and execution costs values for the expert deployment 

Deployment Generator Communication Cost [Mbytes/s] Execution Cost 
Expert Deployment 4.37 29483 
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If we compare the expert-based deployment with that of the earlier defined 

DMG_TopicBasedAllocation in Figure 7-19 we can conclude that both the communication 

costs and execution costs metric values are slightly better for the DMG_TopicBasedAllocation. 

DMG_TopicBasedAllocation tries to define the deployment such that the participants and the 

subscribers of the same topic are located into the same node. This strategy minimizes the 

communication cost in the deployment model. For example, the participant BicycleStation 

publishes the data which is subscribed by ParkingManager. As such, these two participants are 

located into the same node. Similarly, ParkingLot and ParkingManager are located into the 

second node and ConcestionSensor and the TrafficMan participants are deployed into the 

third node.  

Similar to the comparison with DMG_TopicBasedAllocation we can compare the expert 

deployment also with the results of the other deployment generators. The comparison results 

are shown in Table 7-12. Here we have set the communication cost and execution cost of the 

expert deployment to 100%. The other percentages define the percentage in relation to the 

expert’s results. From this table, we can conclude that the defined deployment generators 

perform in general better than the expert deployment. When execution costs are compared 

the DMG_MinimumNodeAllocation seems to perform the best. Based on these results a given 

deployment generator could be selected. Note that the results of the algorithms can be 

different for different execution configuration models and the physical resource models. The 

approach and the tool can be used to assist in selecting the most feasible deployment model. 

As stated before, if needed, new deployment generators can be easily defined to optimize the 

results even further. 

Table 7-12: Comparison of Expert Deployment models with respect to Deployment Model Generators 

Deployment Generator Communication Cost [%] Execution Cost [%] 
DMG_TopicBasedAllocation 92.8 94.1 
DMG_GeneticAlgorithm 114.4 106.4 
DMG_MinimumNodeAllocation 92.1 94.1 
DMG_SequesntialAllocation 108.9 107.7 
Expert Deployment Model 100 100 

 

7.8 DISCUSSION 

The Data Distribution Service (DDS) is now a popular and recognized data-centric publish-

subscribe programming model and specification for distributed systems. It has been applied 

in many different application domains which have resulted in several lessons learned. One of 

the important issues is the support for modeling and design abstractions in DDS based 

systems. OMG has provided the DDS UML Profile to support the analysis and design of a DDS-

based distributed system. The focus of this chapter has been mainly on deriving configuration 

alternatives. This is an important and relevant problem for many DDS-based systems which 

consist usually of multiple participant applications each of which has different responsibilities 

in the system. The potential configuration space is in general too large and not tractable for 

the human system engineer and a systematic approach with automated support is necessary. 
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We have provided both a systematic approach with the related toolset that can be used for a 

broad range of DDS-based systems to derive feasible configuration alternatives to meet the 

functional and quality concerns given the available resources. The approach has also been 

illustrated for a relevant case study on smart city engineering which has been used to illustrate 

both the problem and the approach.  

The approach adopted the UML profile to complement the existing work. The UML profile 

appeared to be very useful in preparing and supporting the analysis and design of the DDS 

system for deriving design alternatives. It should be noted that the OMG’s DDS UML Profile is 

a specification and no realization of it was present yet. As such, one of the supporting 

contributions in this chapter is also the realization of this profile in the Eclipse Modeling 

Framework (EMF). To support the systematic approach for generating the design alternatives 

we had to enhance the profile further (e.g. physical resource modeling, and execution 

configuration model). 

Based on the modeled system design and physical resources using the realized DDS’s UML 

Profile, the feasible deployment alternatives could be algorithmically derived and 

automatically generated using the developed tools. In the toolset, we have implemented 

different algorithms for deriving feasible deployment alternatives. Yet the approach does not 

mandate the usage of a particular algorithm but provides the required input values for these 

algorithms. The focus of the chapter is not the design of algorithms but the overall system 

engineering approach for selecting a feasible alternative in a large configuration space. The 

algorithms that we used were justified in the literature for solving the MPTA problem as 

discussed in section 7.5. The correctness of these algorithms has been discussed in the 

corresponding papers and based on this we can assume that a feasible solution is derived. In 

addition, depending on the state of the system different MPTA algorithm implementations 

may be used to optimize the values for the metrics. For comparison of the algorithms, we refer 

to, for example, (Ucar et al., 2006). 

Both the approach and the tools assist the designer to derive a feasible deployment model. 

We do not maintain a claim that the tool is a replacement for the human expert. In fact, the 

tool can be a complementary and supporting alternative for the human expert who can 

design, generate and evaluate the derived alternatives. After deriving the deployment 

alternative, if necessary, expert judgment can be further used to refine the deployment 

alternative.  

One of the important benefits of the approach is also the early analysis of the system and the 

generation of the feasible deployment model at design time. Deferring the definition of the 

deployment to the development phase might in practice easily lead to non-feasible 

implementations which will require iterating the design and the related project lifecycle 

artifacts such as detailed design, implementation, test artifacts, documentation, etc.  

The identified deployment model may be refined and optimized if more accurate information 

is available in subsequent phases of the project lifecycle. The approach itself can actually be 

used at any time during the project life cycle and, if possible, even after the system has been 

developed. In the latter case, the measured run-time parameter values can be used, instead 
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of estimated values, to define the optimal deployment model. The runtime parameter values 

can be collected by using tools that collect activities (e.g. topic updates) of domain 

participants. 

7.9 RELATED WORK 

The allocation of software units on computing systems has applications in different computing 

domains such as embedded systems, local/wide area distributed systems, parallel and 

distributed simulations, etc. In our earlier work, we have carried out a systematic review to 

identify the obstacles of DDS based systems (Köksal & Tekinerdogan, 2017b). One of the 

identified key obstacles that we derived from the systematic review was indeed the task 

allocation problem. In this chapter, we have provided a systematic approach with the 

corresponding toolset to tackle this task allocation problem.  

In the literature, we can observe that some of the studies propose concrete approaches for 

specific domains (such as Parallel and Distributed Systems or DDS) while others provide more 

generic approaches that can be configured to use in different domains. In this work, we have 

focused on the allocation problem that is directly focused on the DDS domain. In our early 

work, we have provided an approach for deriving feasible deployment alternatives for parallel 

and distributed simulation systems in (Celik, Tekinerdogan, & İmre, 2013) and tool support for 

the approach in (Celik & Tekinerdogan, 2013). From a generic perspective, the solved 

allocation problem is characterized as the Multi-Processor Task Assignment (MPTA) problem 

(Stone, 1977) which is a general problem that can be applied to different domains. Each MPTA 

problem however requires a specific approach and dedicated steps to solve the allocation 

problem. In this study, it is clear that the domain of DDS is specific and different and provides 

additional challenges including modeling the DDS system, the individual steps of the overall 

approach and the corresponding toolset. Our work could be further specialized by considering 

specific QoS parameters (such as reliability) to derive feasible alternatives. We consider this 

as a further complementary research. 

Several generic approaches can be identified in the literature to provide a solution for the 

allocation problem. For example, in (Koziolek & Reussner, 2011), the authors introduced a 

generic quality optimization framework that can be used for different component based 

models. Similarly, in (Malek et al., 2012) the authors propose an extensible framework that 

supports formal modeling of distributed software systems. The study provides a set of 

tailorable algorithms for finding optimized deployment architectures with respect to multiple, 

possibly conflicting QoS (Quality of Service) dimensions. The study also provides a visual 

deployment architecture modeling and analysis environment for the framework. Similar to 

our work, the authors evaluated the framework with simulated distributed system scenarios. 

In (Svogor & Carlson, 2016), the authors use heuristics and Analytic Hierarchy Process (AHP) 

(Saaty, 1988) for weighted multi-objective design space exploration. The main objective of the 

study is to support systems architects in complex allocation decisions in the early design 

phases. In (Aleti, Grunske, et al., 2009) the authors use constructive algorithms for deployment 

optimization of embedded systems. Hereby, an Ant Colony Optimization (ACO) is used as a 
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constructive multi-objective optimization strategy which is compared with a Genetic 

Algorithm (GA) based iterative approach. The authors conclude that they observed that 

constructive and iterative approaches performed similarly in their experiments. 

In (Kruchten, 2000), the authors define an approach to optimize the task placement and the 

signal to message mapping in hard-real time distributed systems domain. Authors use a mixed 

integer linear optimization framework to automate the assignment of priorities to tasks and 

messages. The optimization process aims to meet end-to-end deadline constraints and 

minimize latencies by leveraging worst case response time analysis. Authors validate the 

developed approach by applying it to an automotive system case study. 

In (Islam, Lindstrom, & Suri, 2006), authors focused on reducing error propagation while 

allocating software components to distributed embedded hardware nodes. The study 

presents a systematic resource allocation approach for the consolidated mapping of safety 

critical and non-safety critical applications onto a distributed platform with consideration of 

dependability and real-time requirements as primary drivers. The approach focuses on finding 

a feasible solution satisfying multiple concurrent constraints such as ensuring criticality 

partitioning, avoiding error propagation and reducing interactions across components. The 

authors applied the approach to an actual automotive case study to prove its feasibility.  

In (Martens, Koziolek, Becker, & Reussner, 2010), an approach is defined for automatically 

improving software architecture models for performance, reliability, and cost using 

evolutionary algorithms. Starting with a given initial architectural model, the approach 

iteratively modifies and evaluates architectural models by using a multi-criteria genetic 

algorithm based on Palladio Component Model (Becker, Koziolek, & Reussner, 2009). The 

approach supports quantitative performance, reliability, and cost prediction of software 

architectures. The approach is validated by automatically investigating more than 1200 

alternative design candidates for a component-based business information system and 

analyzing quality criteria trade-offs. 

The detailed literature study showed us that the task allocation is a well-known and still widely 

studied research area with a large application domain spreading from embedded systems to 

wide area distributed systems. Our approach is complementary to these approaches and is 

specific since it provides and integrates the necessary modeling abstractions using the 

extended DDS UML profile, the systematic approach, and the tool environment which can be 

extended for different additional functionality including different algorithms.  

It should be noted that besides the academic papers we can also identify several interesting 

tools on the task allocation problem, which have been provided by several vendors or which 

have been presented in various papers. In (Aleti, Björnander, Grunske, & Meedeniya, 2009), 

the authors define an extensible tool for Architecture Optimization of AADL (Architecture 

Analysis and Description Language) Models (Feiler, Gluch, & Hudak, 2006) with name of 

ArcheOpterix. The study provides a framework to identify optimal and near optimal 

deployment architectures with respect to multiple quality objectives and design constraints.  

The existing DDS design tools focus in general on designing the DDS application and code 

generation. Prismtech (Prismtech, n.d.-a), a well-known DDS infrastructure vendor, provides 
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Vortex OpenSplice Modeler (Prismtech, n.d.-b) that is a domain specific model driven 

development tool. Vortex OpenSplice Modeler enables definition of topics (information 

modeling), DDS entities such as publishers/writers and subscribers/readers (application 

design). These capabilities are similar to our tool framework, but Vortex OpenSplice Modeler 

enables Java/C++ code generation which our tool does not provide. On the other hand, our 

tool framework provides an automated deployment design optimization approach which is 

not provided by Vortex OpenSplice Modeler. Another major DDS vendor is RTI (RTI, n.d.), 

which provides UML based modeling environment for DDS. Sparx Systems also provide a UML 

based DDS modeling environment (OMG, 2010) as a plug-in for Enterprise Architect 

application. Another DDS vendor, MilSOFT, also provides a modeling & code generation tool 

for DDS (Milsoft, n.d.). All these tools provide modeling support and to some extent code 

generation for DDS topics and applications, but they do not provide explicit support for the 

deployment optimization which is the main contribution of our research. In principle, our 

systematic approach could be also integrated with the existing tools. 

7.10 CONCLUSION 

An increasing number of systems are data-intensive and rely on the publish-subscribe 

programming model to realize the distribution aspects. The Data Distribution Service (DDS) 

provides a standard data-centric publish-subscribe programming model and specification for 

distributed systems. In addition, the OMG has provided the DDS UML Profile to support the 

modeling of the DDS applications. These are important developments but they do not consider 

the design aspects explicitly. An important design concern is of course the selection of the 

feasible deployment alternative given the application model, the physical resources, and the 

execution configurations. So far, this problem has not been explicitly addressed in the DDS 

literature. We have provided a systematic approach by extending the DDS UML profile and an 

extensible tool framework.  

We have developed a tool framework, Deploy-DDS that provides an integrated development 

environment for deriving a feasible deployment alternative. The tool framework consists of 

several tools for modeling, generating and analyzing of the deployment alternatives. 

Furthermore, we have evaluated the approach for a relevant IoT case study on smart city 

engineering. The approach showed to be useful in the modeling, the design and the evaluation 

of the DDS deployment alternatives. The adoption of different algorithms and the ability to 

add new algorithms can support the system architect also in the experimentation of the 

different algorithms. Since in practice the task allocation problem and the selection of the 

feasible design alternatives are not tractable we believe that the approach and the toolset 

that we have provided is necessary.  

In our future work, we will do research on further extension and specialization of the 

approach. In this context, we will consider the adoption of specific quality criteria such as 

reliability and further focus on the trade-off analysis using multiple quality criteria. Further, 

we will also consider the analysis and comparison of various algorithm implementations to 

further optimize the approach. 
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8.1 INTRODUCTION 

In this thesis, our main objective was to analyze and design integrated IoT systems. To this 

end, we have started with first defining the characteristic features of IoT systems. We have 

described a layered reference architecture for deriving IoT system architectures. Further, we 

have presented the common and variant features of the most commonly used session layer 

protocols. Subsequently, we have provided a systematic approach to architect the design of 

IoT-based FMISs whereby we have adopted a feature-driven domain analysis approach. 

Further, we have provided several design patterns to integrate IoT-based systems at different 

layers of the IoT reference architecture. Among the session layer protocols of the IoT 

reference architecture, we have focused on the DDS middleware that is mainly used for 

machine-to-machine communication in IIoT. We have used a systematic review approach to 

identify the obstacles of DDS middleware and to provide the corresponding solution 

directions. Using the IoT reference architecture and the DDS architecture we have designed 

the architecture for DDS-based IoT systems. Finally, we have provided a systematic approach 

to find feasible deployment alternatives for DDS-based systems by extending the DDS UML 

profile and developing the Deploy-DDS research tool.  In the next sections, we will provide the 

details on how we have addressed the defined research questions and the corresponding 

contributions in the thesis.  

8.2 ADDRESSING RESEARCH QUESTIONS 

As stated above, the main objective of this thesis is to analyze and design integrated IoT 

systems. In this context, we defined the following research questions: 

RQ1. What are the characteristic features of the IoT systems? 

RQ2. How to design the architecture for an IoT-based system? 

RQ3. What are the identified obstacles of the DDS middleware? 

RQ4. What are the solution directions for the identified obstacles of DDS? 

RQ5. What are the approaches for integrating multiple IoT-based systems? 

RQ6. How to design a DDS-based IoT system?  

RQ7. How to derive feasible deployment alternatives for DDS-based systems?  

In order to answer these research questions, three different research methodologies were 

used: Systematic Literature Review, Design Science Research, and Case Study Research. 

8.2.1 RQ1-What are the characteristics features of the IoT systems? 

Before dealing with the integration of IoT devices it is important to identify the current state 

of the IoT and identify the IoT features. We have applied a feature-based domain analysis 

approach and identified the common and variant features of the IoT systems. We have 

developed feature diagrams to model the IoT-based systems. Further, we developed a 

reference architecture including multiple different layers for the IoT systems. Among these 

layers, we have particularly focused on session layer that which is responsible for setting up 
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and taking down of the association between the IoT connection points. Further we have 

defined the criteria for selecting the identified communication protocols for the different 

conditions. Adopting a feature-driven domain modeling approach appeared to be useful in 

identifying the key features of IoT systems. Hereby, we have not adopted a heavy systematic 

literature review approach but selected relevant primary studies from which we could derive 

the IoT features. We believe that the feature model includes the necessary features of IoT 

system and it appeared to be very useful for the subsequent activities in our overall study.  

8.2.2 RQ2-How to design the architecture for an IoT-based system?  

In order to design the architecture for an IoT-based system we have presented a systematic 

approach to guide the architect. Again, we have adopted a feature-driven domain analysis 

approach to model the common and variant precision farming features. Further, based on 

FMIS and IoT reference architectures we have described the steps and the modeling 

approaches for designing the IoT-based FMIS architecture.  

The method that we have discussed can be adopted for deriving IoT-based FMIS architecture 

for multiple different systems. Hence, we focus on the whole product family of IoT-based FMIS 

systems rather than on a single system. The notion of product families or product line 

engineering and the corresponding systematic reuse is discussed in detail in the product line 

engineering community (Clements, 2006). Our method is inspired and customizes the product 

line engineering approach in which reference models are developed and applications are 

developed by reusing these reference models. The reference feature diagram that we have 

shown aims to target and integrate the domains of IoT and FMIS illustrating the overall 

method. The feature diagrams as well as the reference architecture design could be easily 

extended. We have discussed the architectures for IoT and FMIS separately and illustrated the 

integration of both for supporting IoT-based FMIS systems. The architecture can be extended 

in two ways. First of all, we could of course detail the different views to provide an even more 

comprehensive result. This would require for example to further detail the modules that are 

needed in the decomposition view. Secondly, we could extend the architecture 

representations with other architecture views. We have chosen three architecture views 

including decomposition view, layered view and deployment view. If needed other 

architecture views in the architecture documentation process could be used as well. Although, 

we have showed our approach for two important case studies in the smart agri-food sector 

the method can be actually applied for the development of other FMISs.  

8.2.3 RQ3- What are the identified obstacles of the DDS middleware? 

One of the session layer protocols of the IoT is the DDS which is a standard data-centric 

publish-subscribe programming model. We have shown that DDS can be used for integrating 

IoT systems. We have applied a meticulous systematic literature review based on the proven 

protocol of Kitchenham et al (Kitchenham et al., 2009). The SLR included 468 papers in from 

which we selected 34 as primary studies. We have carefully devised and applied our selection 

and elimination criteria in order not to miss any relevant primary study. The primary goal of 

SLR was to identify the relevant obstacles and the corresponding solution directions. Based on 

our thorough study we could identify 11 problem categories. It appears that different studies 

have focused on different problems and solutions and as such we could observe an uneven 
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distribution. We consider this fact also as the result of our study since this highlights the 

important obstacles as well as the obstacles which have not yet been fully explored. On its 

turn this provides a broader vision on DDS and also paves the way for further research.  

We could identify 11 different problem categories. An important number of the problems 

relate to quality concerns such as reliability, scalability and security. We have described the 

problems related to specific quality concerns if these were also the topic and focus of the 

identified primary studies. Quality concerns which were not explicitly reported were not 

included as obstacles. Our study could on the one hand be used to highlight the relevance of 

the quality concerns in DDS based systems. On the other hand, our SLR shows also which 

quality concerns have not been explicitly discussed. This only implies that no in-depth research 

has been carried out for these quality concerns, and not necessarily that these quality 

concerns are not relevant for DDS. On its turn this observation can trigger further research on 

quality concerns in DDS.  

Our research methodology however is a systematic literature review that focuses on the 

analysis of existing primary studies in the literature. Hence, we can only report on the 

problems that were identified in these primary studies. From our SLR we can observe that 

implementing a DDS is one of the obstacles. This is an important observation when adopting 

DDS for integrating IoT systems. In this thesis we have tackled this problem by showing the 

DDS-based IoT architecture which was discussed in chapter 6. It should be noted that several 

other more detailed but unreported problems could exist that are directly related to 

implementation of DDS-based systems. The identification of these problems would require an 

in-depth study to the corresponding implementations of the DDSs. The identification of DDS 

obstacles is also important beyond the context of IoT. Further research could be carried out 

in this context.  

8.2.4 RQ4-What are the solution directions for the identified obstacles of DDS? 

As stated above, based on the SLR we have identified 11 basic categories of obstacles for the 

DDS middleware. Our SLR has resulted in a set of feature diagrams that summarize the 

reported obstacles as well as the solution directions. The feature models that we have 

developed can be also used to pave the way and support the development of a DDS ontology. 

These solution directions are proposed by the authors of the selected primary studies.  For 

each identified obstacle the solution directions appeared to be diverse in nature. Solution 

directions include design heuristics and design abstractions, adoption of different paradigms, 

refinement of the DDS concepts, novel introduction and implementation of algorithms, 

integration with other paradigms, and solutions for realizing system-wide quality 

management.  

From our SLR we could also observe that for some of the identified problem categories have 

been also considered in some of the proposed extensions to the OMG’s DDS specification. 

While describing the problems and the corresponding solutions we could identify that some 

researchers claim that the offered solution in the primary study is better than the one used of 

the DDS specification. Further, other primary studies handle topics that are not (completely) 
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covered by the provided DDS specification yet. Finally, it should be noted that some DDS 

specifications are still in beta version and have not been finalized yet.  

8.2.5 RQ5-What are the approaches for integrating multiple IoT-based systems? 

One of the key challenges in IoT is coping with the heterogeneous set of systems and the 

integration of these systems in the same communication network. Based on a layered 

reference architecture for IoT we have indicated that the integration can be at different layers 

including session layer, cloud layer and application layer. Further we have shown that the 

integration is typically carried out based on well-defined patterns, that is, generic solutions 

structures for recurring problems. We have not provided any new integration solution but 

rather systematically compiled and structured the integration patterns as defined in the 

literature. Our study has resulted in 15 different patterns which can be used in different 

combinations. To guide the application of the patterns we have provided a general process 

represented using the BPMN. The process and the patterns have been successfully applied to 

a smart city case study. Hence, we have shown that the systematic structuring of the 

integration patterns is useful for developing IoT systems that need to integrate heterogeneous 

elements.  

8.2.6 RQ6-How to design a DDS-based IoT system? 

Based on the IoT reference architecture and the DDS reference architecture that we have 

developed, we have provided a DDS-based architecture for IoT systems. We have adopted 

architecture viewpoints for modeling DDS, IoT and finally DDS-based IoT systems using a 

systematic approach. Further, we have applied the layered viewpoint to represent the DDS-

based IoT since both the DDS and IoT are often represented as layered structures. We have 

also defined the deployment view for DDS-IoT. We can state that we succeeded to integrate 

and represent the architecture models that can be used to model DDS-based IoT systems for 

various application domains. 

8.2.7 RQ7-How to derive feasible deployment alternatives for DDS-based systems? 

We have provided both a systematic approach and a research toolset that can be used for a 

broad range of DDS-based systems to derive feasible configuration alternatives to meet the 

functional and quality concerns given the available resources. The approach has also been 

illustrated for a relevant case study on smart city engineering which has been used to illustrate 

both the problem and the approach.  

The approach adopted the UML profile to complement the existing work. The UML profile 

appeared to be very useful in preparing and supporting the analysis and design of the DDS 

system for deriving design alternatives. It should be noted that the OMG’s DDS UML Profile is 

a specification and no realization of it was present yet. As such, one of the supporting 

contributions is the realization of this profile in the Eclipse Modeling Framework (EMF). To 

support the systematic approach for generating the design alternatives we had to enhance 

the profile further (e.g. physical resource modeling, and execution configuration model).  

Based on the modeled system design and physical resources using the realized DDS’s UML 

Profile, the feasible deployment alternatives could be using the developed Deploy-DDS tool. 

In this toolset, we have implemented different algorithms for deriving feasible deployment 
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alternatives. Our focus here is not the design of algorithms but the overall system engineering 

approach for selecting a feasible alternative in a large configuration space. Both the approach 

and the tools assist the designer to derive a feasible deployment model. One of the important 

benefits of the approach is also the early analysis of the system and the generation of the 

feasible deployment model at design time.  

8.3 FUTURE RESEARCH 

In this thesis we have presented several novel approaches to analyze and design integrated 

IoT systems.  

First, we have defined a layered reference architecture for IoT systems and modeled the 

common and variant features of the most commonly used session layer protocols. 

Researchers can use the results of this study to elaborate on further research on session layer 

protocols. Also, our future work for this part is to focus on the performance evaluations of 

these session layer protocols under different environments (LAN, WAN, etc.) and work 

conditions (high-performance computing, constrained environments, etc.).  

Second, we have presented a systematic approach to guide the architect in designing IoT-

based FMIS. Based on FMIS and IoT reference architectures we have described the steps and 

the modeling approaches for designing the IoT-based FMIS architecture. We have used 

prospective and retrospective case studies to illustrate our approach. Although, we have 

showed our approach for two important case studies in the smart agri-food sector the method 

can be actually applied for the development of other FMISs. We have not focused on the 

implementation of these systems. For the prospective case study, it is decided to develop first 

a simulation system to evaluate the outcome of the method. We consider this as part of our 

future work. Although our method has illustrated the development of IoT-based FMIS systems 

we could even use the method for developing traditional FMIS systems. In that case we would 

omit the IoT architecture part and just focus on the development of reference models for 

FMIS. This part was also considered as another future work.  

Third, we provide several integration patterns that can be used to integrate IoT-based systems 

via different layers of the IoT reference architecture as stated above. This study could be 

further extended by considering other patterns. Hereby, other type of IoT reference 

architectures could be considered and based on these the set of patterns that we have 

described in this chapter could perhaps be enhanced. Further, IoT patterns beyond the 

integration concern such as security and safety patterns could be identified in the future work. 

Fourth, among the session layer protocols of the IoT, we focused on the DDS which is mainly 

used for machine-to-machine communication in IIoT. We have also shown that DDS can be 

used for integrating IoT systems. Based on the SLR we have performed we have identified 11 

problem categories for DDS. An important number of the problems relate to quality concerns 

such as reliability, scalability and security. On its turn this observation can trigger further 

research on quality concerns in DDS. Also, the identification of DDS obstacles is also important 

beyond the context of IoT. Further research could be carried out in this context. Apart from 

these, our SLR has resulted in a set of feature diagrams that summarize the reported obstacles 
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as well as the solution directions. The feature models that we have developed can be used to 

pave the way and support the development of a DDS ontology. We consider this as another 

possible future work. 

Fifth, we have defined a DDS-based architecture for IoT systems. We have adopted 

architecture viewpoints for modeling DDS, IoT and finally DDS-based IoT systems using a 

systematic approach. Further, we have applied the layered viewpoint to represent the DDS-

based IoT since both the DDS and IoT are often represented as layered structures. As a future 

work, other architecture viewpoints could be used. In addition, we will adopt the viewpoints 

for real world industrial IoT projects in which DDS is applied. 

Sixth, we have provided a systematic approach to find feasible deployment alternatives for 

DDS-based systems by extending the DDS UML profile and developing the Deploy-DDS 

research tool.  In our future work, we will do research on further extension and specialization 

of the approach. In this context, we will consider the adoption of specific quality criteria such 

as reliability and further focus on the trade-off analysis using multiple quality criteria. Further, 

we will also consider the analysis and comparison of various algorithm implementations to 

further optimize the approach. Further, as the future work of our research tool, we will add 

different algorithms to the Deploy-DDS tool to find feasible deployment alternatives for the 

DDS-based systems and evaluate and compare the solutions with respect to the existing 

algorithms.  
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APPENDIX B – ASSESSMENT OF PRIMARY STUDIES FOR DDS 

 

Table 10-1: Definition of Assessment Questions 

Criteria Q Definition 

Reporting  
Q1 Are the aims of study clearly defined? 
Q2 Are the scope, the context and the experimental design of the study clearly stated? 

Relevance 
Q3 Does the report have implications for research and/or practice? 
Q4 Are the variables used in the evaluation likely to be valid and reliable? 

Rigor 
Q5 Are the measures used in the study quite explicit & aligned with the research aims? 
Q6 Is the research process documented adequately? 

Credibility 
Q7 Are the main findings stated clearly in terms of validity and reliability? 
Q8 Is there an explicit statement of the limitations? 

 

Table 10-2: Assessment of Primary Studies 

 Reporting Relevance Rigor Credibility  
Primary Study Q1 Q2 Q3 Q4 Q5 Q6 Q7 Q8 Total 

A 1.0 0.5 0.5 0.5 0.5 1.0 0.5 0.5 5.0 
B 1.0 1.0 0.5 0.5 1.0 0.5 1.0 1.0 6.5 
C 1.0 1.0 0.5 0.5 0.5 1.0 0.5 0.0 5.0 
D 1.0 1.0 0.5 1.0 1.0 0.5 1.0 0.5 6.5 
E 1.0 1.0 0.5 0.5 1.0 0.5 0.5 0.0 5.0 
F 1.0 1.0 0.5 0.5 1.0 0.5 0.5 0.0 5.0 
G 1.0 1.0 1.0 1.0 1.0 1.0 0.5 0.5 7.0 
H 1.0 1.0 0.5 1.0 1.0 0.5 1.0 0.5 6.5 
I 1.0 1.0 1.0 1.0 1.0 0.5 1.0 0.5 7.0 
J 1.0 1.0 1.0 1.0 1.0 1.0 1.0 0.5 7.5 
K 1.0 1.0 1.0 1.0 1.0 0.5 1.0 0.5 7.0 
L 1.0 1.0 0.5 0.5 0.0 1.0 0.5 0.5 5.0 
M 1.0 1.0 1.0 0.5 0.5 0.5 1.0 1.0 6.5 
N 1.0 1.0 1.0 0.5 0.5 1.0 0.5 0.5 6.0 
O 1.0 1.0 1.0 1.0 1.0 1.0 1.0 0.5 7.5 
P 1.0 1.0 1.0 1.0 1.0 1.0 0.5 1.0 7.5 
Q 0.5 0.5 1.0 1.0 1.0 0.5 0.5 0.5 5.5 
R 1.0 1.0 1.0 1.0 1.0 0.5 1.0 0.5 7.0 
S 1.0 1.0 1.0 1.0 1.0 0.5 1.0 0.5 7.0 
T 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 8.0 
U 1.0 1.0 1.0 1.0 0.5 0.5 0.5 0.5 6.0 
V 1.0 1.0 1.0 0.5 0.5 0.5 1.0 0.5 6.0 
W 1.0 1.0 1.0 1.0 0.5 1.0 1.0 0.5 7.0 
X 1.0 1.0 1.0 1.0 0.5 1.0 1.0 1.0 7.5 
Y 1.0 1.0 1.0 0.5 1.0 0.5 1.0 0.5 6.5 
Z 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 8.0 

AA 1.0 0.5 1.0 0.5 0.5 1.0 1.0 0.5 6.0 
AB 1.0 1.0 1.0 1.0 1.0 0.5 1.0 0.5 7.0 
AC 1.0 0.5 0.5 1.0 0.5 0.5 1.0 0.0 5.0 
AD 1.0 1.0 1.0 1.0 1.0 1.0 1.0 0.5 7.5 
AE 1.0 1.0 1.0 1.0 0.5 0.5 1.0 0.5 6.5 
AF 1.0 1.0 1.0 1.0 0.5 1.0 1.0 0.5 7.0 
AG 1.0 1.0 1.0 1.0 0.5 1.0 1.0 0.5 7.0 
AH 1.0 1.0 1.0 1.0 1.0 1.0 1.0 0.5 7.5 
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SUMMARY 
 

IoT (Internet of Things) enables anytime and anyplace connectivity for anything by linking the 

objects of the real world with the virtual world. In the near future, it is predicted that more 

than 50 billion of things will be connected to the internet. This will lead to many different IoT-

based systems that will have a huge impact on the society. Often, these IoT systems will not 

be standalone but will be composed with other different systems to create additional value. 

Hence, with the heterogeneity and the integration of IoT-based systems with other IoT-based 

or non-IoT-based systems has become an important challenge.  

In this thesis, the main objective is to analyze, design and integrate IoT-based systems and to 

answer the following research questions: 

RQ1. What are the characteristic features of IoT systems? 

RQ2. How to design the architecture for an IoT-based system? 

RQ3. What are the identified obstacles of the data distribution (DDS) middleware? 

RQ4. What are the solution directions for the identified obstacles of DDS? 

RQ5. What are the approaches for integrating multiple IoT-based systems? 

RQ6. How to design a DDS-based IoT system?  

RQ7. How to derive feasible deployment alternatives for DDS-based systems?  

In order to answer these research questions, three different research methodologies were 

used: Systematic Literature Review, Design Science Research, and Case Study Research. 

In chapter 2, we have applied a feature driven domain analysis of IoT systems. We have 

presented the reference architecture for IoT and discussed the corresponding layers. Among 

these layers, we have focused on the session layer of the IoT. The protocols in this layer are 

related with the communication sessions of the IoT systems and hence determine the 

communication characteristics of the IoT systems. We have presented the common and 

variant features of the most commonly used session layer protocols, namely AMQP, CoAP, 

DDS, MQTT, and XMPP which are used for communication between M2M (machine-to-

machine), M2S (machine-to-server), and S2S (server-to-server). Further, we have provided an 

evaluation framework to compare session layer communication protocols. Among these 

protocols, we focused on the DDS that is mainly used for M2M communication in Industrial 

Internet of Things (IIoT). 

In chapter 3, we have described an architecture design method for architecting IoT systems 

for the Farm Management Information Systems (FMIS) domain. Hereby, we have also 

developed a family feature diagram to represent the common and variant features of IoT-

based FMIS. In order to illustrate our approach, we have performed a systematic case study 

approach including the IoT-based wheat and tomato production with IoT-based FMIS. The 

case study research showed that the approach was both effective and practical.  



212  

In chapter 4, we have presented the method for designing integrated IoT systems. We showed 

that integration of IoT-based systems can be at different layers including session layer, cloud 

layer and application layer. Further we have shown that the integration is typically carried out 

based on well-defined patterns, that is, generic solutions structures for recurring problems. 

We have systematically compiled and structured the 15 different integration patterns which 

can be used in different combinations and likewise supporting the composition of different 

IoT systems. We have illustrated the use of example patterns in a smart city case study and 

have shown that the systematic structuring of the integration patterns is useful for integrating 

IoT systems.  

A systematic research methodology has been applied in chapter 5 to identify the current 

obstacles to adopt DDS and their solution directions. We have selected 34 primary studies 

among the 468 identified papers since the introduction of DDS in 2003. We identified 11 basic 

categories of problems including complexity of DDS configuration, performance prediction, 

measurement and optimization, implementing DDS, DDS integration over WAN, DDS using 

wireless networks and mobile computing, interoperability among DDS vendor 

implementations, data consistency in DDS, reliability in DDS, scalability in DDS, security, and 

integration with event-based systems. We have adopted feature diagrams to summarize and 

provide an overview of the identified problem and their solutions defined in the primary 

studies.  

DDS based architecture design for IoT systems is presented in chapter 6. DDS is considered to 

be a potential middleware for IoT because of its focus on event-driven communication in 

which quality of service is also explicitly defined. We provide a systematic approach to model 

the architecture for DDS-based IoT in which we adopted architecture viewpoints for modeling 

DDS, IoT and DDS-based IoT systems. We have integrated and represented the architecture 

models that can be used to model DDS-based IoT systems for various application domains.  

When designing DDS-based systems typically multiple different alternatives can be derived. 

Chapter 7 presents an approach for deriving feasible DDS configuration alternatives. For this 

we have provided a systematic approach for extending the DDS UML profile and developed 

an extensible tool framework Deploy-DDS to derive feasible deployment alternatives given 

the application model, the physical resources, and the execution configurations. The tool 

framework Deploy-DDS implements a set of predefined algorithms and can be easily extended 

with new algorithms to support the system architect. We have evaluated the approach and 

the tool framework for a relevant IoT case study on smart city engineering.  

Chapter 8 concludes the thesis by summarizing the contributions. 
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SAMENVATTING 

 

IoT (Internet of Things) maakt altijd en overal connectiviteit mogelijk van allerdaagse 

voorwerpen die kunnen communiceren met personen en met andere objecten, en die op 

grond hiervan autonome beslissingen kunnen nemen. In de nabije toekomst wordt voorspeld 

dat meer dan 50 miljard entiteiten met internet verbonden zullen zijn. Dit zal leiden tot veel 

verschillende op IoT gebaseerde systemen die zodoende een grote impact op de samenleving 

zullen hebben. Vaak zullen deze IoT-systemen niet op zichzelf staan, maar zullen 

gecombineerd worden met andere verschillende systemen om zodoende additionele waarde 

te creëren. Bijgevolg is de heterogeniteit en de integratie van IoT systemen met andere IoT 

systemen een belangrijke uitdaging geworden. 

In dit proefschrift is het hoofddoel het analyseren, ontwerpen en integreren van IoT-

gebaseerde systemen en hiermee het beantwoorden van de volgende onderzoeksvragen: 

1. Wat zijn de karakteristieke kenmerken van IoT-systemen? 

2. Hoe ontwerp je de architectuur voor een op IoT gebaseerd systeem? 

3. Wat zijn de geïdentificeerde obstakels in het DDS-domein? 

4. Wat zijn de oplossingsrichtingen voor de geïdentificeerde obstakels van DDS? 

5. Wat zijn de benaderingen voor het integreren van meerdere IoT-gebaseerde systemen? 

6. Hoe een DDS-gebaseerd IoT-systeem te ontwerpen? 

7. Hoe haalbare haalbaarheidsalternatieven voor DDS-gebaseerde systemen kunnen worden 

afgeleid? 

Om deze onderzoeksvragen te beantwoorden, werden drie verschillende 

onderzoeksmethoden gebruikt: Systematisch literatuur onderzoek, design science research en 

case study research. 

In hoofdstuk 2 hebben we een feature-driven domeinanalyse van de IoT-systemen toegepast. 

We hebben de architectuur en de softwarelagen van de IoT-referentiearchitectuur 

gepresenteerd. Hierbij hebben we ons vooral gericht op de sessielaag van het IoT. De 

protocollen in deze laag zijn gerelateerd aan de communicatiesessies van de IoT-systemen en 

bepalen daarom de communicatiekenmerken van de IoT-systemen. We hebben de algemene 

en variantkenmerken gepresenteerd van de meest gebruikte sessielaagprotocollen, namelijk 

AMQP, CoAP, DDS, MQTT en XMPP die worden gebruikt voor communicatie tussen M2M 

(machine-to-machine), M2S (machine-naar-server) ) en S2S (server-naar-server). Verder 

hebben we een evaluatiekader geboden om communicatieprotocollen voor sessielagen te 

vergelijken. Vervolgens hebben we ons gericht op de DDS die hoofdzakelijk wordt gebruikt 

voor M2M-communicatie in Industrial Internet of Things (IIoT). 

In hoofdstuk 3 hebben we een nieuwe aanpak beschreven voor het ontwerpen van IoT-

systemen voor Farm Management Information Systemen (FMIS). Verder hebben we een 
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domein gebaseerde aanpak gebruikt en een feature diagram ontwikkeld met de 

gemeenschappelijke en variabele eigenschappen van een op IoT-gebaseerde FMIS. Om onze 

aanpak te illustreren, hebben we een systematische case study-aanpak uitgevoerd, 

waaronder de op IoT gebaseerde tarwe- en tomatenproductie met IoT-gebaseerde FMIS. Uit 

het case study-onderzoek bleek dat de aanpak zowel effectief als praktisch was. 

Hoofdstuk 4 presenteert het ontwerp van geïntegreerde IoT-systemen. We hebben 

aangegeven dat integratie van op IoT gebaseerde systemen zich op verschillende niveaus kan 

bevinden, waaronder sessielaag, cloudlaag en applicatielaag. Verder hebben we laten zien dat 

de integratie meestal wordt uitgevoerd op basis van goed gedefinieerde patronen, dat wil 

zeggen generieke oplossingsstructuren voor terugkerende problemen. We hebben 

systematisch de 15 verschillende integratiepatronen gecompileerd en gestructureerd die in 

verschillende combinaties kunnen worden gebruikt. We hebben het gebruik van patronen in 

een Smart City-casestudy geïllustreerd en hebben aangetoond dat de systematische 

structurering van de integratiepatronen nuttig is voor het ontwikkelen van IoT-systemen. 

In hoofdstuk 5 is een systematische onderzoeksmethode toegepast om de huidige obstakels 

voor het adopteren van DDS en hun oplossingsrichtingen te identificeren. We hebben 34 

primaire onderzoeken geselecteerd uit de 468 geïdentificeerde artikelen sinds de introductie 

van DDS in 2003. We identificeerden 11 basiscategorieën van problemen, waaronder de 

complexiteit van DDS, prestatievoorspelling, meting en optimalisatie, implementatie van DDS, 

DDS-integratie via WAN, DDS met behulp van draadloos netwerken en mobiel 

computergebruik, interoperabiliteit tussen implementaties van DDS-leveranciers, 

gegevensconsistentie in DDS, betrouwbaarheid in DDS, schaalbaarheid in DDS, beveiliging en 

integratie met op events gebaseerde systemen. We hebben de feature diagrammen gebruikt 

om een overzicht te geven van de geïdentificeerde problemen en hun oplossingen. 

In hoofdstuk 6 wordt een op DDS gebaseerd architectuurontwerp voor IOT-systemen 

gepresenteerd. DDS wordt beschouwd als een potentiële middleware voor IOT vanwege de 

focus op event-based communicatie. We bieden een systematische aanpak om de 

architectuur van DDS-gebaseerde IoT-systemen te modelleren. We hebben DDA-gebaseerde 

IoT-systemen geïntegreerd voor verschillende toepassingsdomeinen. 

Bij het ontwerpen van op DDS gebaseerde systemen kunnen typisch meerdere verschillende 

alternatieven worden afgeleid. Hoofdstuk 7 presenteert een aanpak voor het afleiden van 

haalbare DDS-configuratie-alternatieven. Het DDS UML-profiel is een uitbreidbaar 

hulpmiddelraamwerk dat de implementatie van DDS mogelijk maakt. Het 

hulpmiddelraamwerk Deploy-DDS implementeert een set vooraf gedefinieerde algoritmen en 

kan eenvoudig worden uitgebreid naar nieuwe systemen. We hebben de aanpak en het tool-

framework geëvalueerd voor een relevante case study over smart city engineering. 

Hoofdstuk 8 sluit het proefschrift af door de bijdragen samen te vatten. 
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