

Architecting Integrated
Internet of Things Systems

Ömer Köksal

Thesis committee

Promotor
Prof. Dr B. Tekinerdogan
Professor of Information Technology
Wageningen University & Research

Other members
Prof. Dr M. Akşit, University of Twente, The Netherlands
Prof. Dr U. Aßmann, TU Dresden, Germany
Prof. Dr M. G. J. van den Brand, Eindhoven University, The Netherlands
Prof. Dr J. H. Trienekens, Wageningen University & Research

This research was conducted under the auspices of the Wageningen School of Social Sciences
(WASS)

Architecting Integrated
Internet of Things Systems

Ömer Köksal

Thesis
submitted in fulfillment of the requirements for the degree of doctor

at Wageningen University
by the authority of the Rector Magnificus,

Prof. Dr A.P.J. Mol,
in the presence of the

Thesis Committee appointed by the Academic Board
to be defended in public
on Friday 6th of July 2018
at 11:00 a.m. in the Aula.

Ö. Köksal
Architecting Integrated Internet of Things Systems
218 pages

PhD thesis, Wageningen University, Wageningen, NL (2018)
with references and summary in English

ISBN: 978-94-6343-854-4
DOI: https://doi.org/10.18174/446106

to my family

 vii

TABLE OF CONTENTS

List of Figures ... xi

List of Tables .. xiv

1 Introduction ... 15

1.1 Background .. 17

1.2 Objectives and Research Questions ... 19

1.3 Case Studies ... 20

1.3.1 Farm Management Information Systems ... 20

1.3.2 Smart Traffic System ... 20

1.4 Research Methodology .. 21

1.4.1 Systematic Literature Review .. 23

1.4.2 Design Science Research .. 23

1.4.3 Case Study Research .. 23

1.5 Contributions ... 24

1.6 Thesis Outline .. 26

2 Feature Driven Domain Analysis of the Internet of Things 27

2.1 Introduction ... 29

2.2 The IoT Architecture .. 30

2.3 Feature Driven Domain Analysis ... 31

2.4 Feature Model of the IoT Session Layer Protocols .. 32

2.5 Publish-Subscribe Communication Pattern ... 34

2.6 Selecting Communication Protocol.. 35

2.6.1 Evaluation Framework .. 35

2.6.2 Session Layer Communication Protocol Types .. 35

2.6.3 Overall summary ... 40

2.7 Conclusion .. 41

3 Architecting Internet of Things based Farm Management
Information Systems .. 43

3.1 Introduction ... 45

3.2 Background .. 46

3.2.1 Internet of Things .. 46

3.2.2 Architecture Design ... 48

3.3 Case Studies and Problem Statement ... 49

3.3.1 Case Study: Wheat Production .. 49

3.3.2 Case Study: Tomato Production in Greenhouses ... 50

3.3.3 Problem Description .. 50

3.4 FMIS Development Method ... 52

3.5 Family Feature Model .. 53

3.5.1 Feature Model for IoT .. 54

viii

3.5.2 Feature Model for Precision Farming .. 56

3.5.3 Farm Management Information System ... 58

3.5.4 Feature Model for IoT-based FMIS .. 59

3.6 Reference Architecture for FMIS .. 61

3.6.1 Decomposition View .. 61

3.6.2 Layered View ... 62

3.6.3 Deployment View .. 63

3.7 Case Study Evaluation ... 64

3.7.1 Case Study Protocol ... 64

3.7.2 FMIS Architecture Design .. 66

3.7.3 Result of the Evaluation for the Retrospective Case Study 73

3.7.4 Result of the Evaluation for the Prospective Case Study 74

3.8 Discussion .. 76

3.9 Related Work ... 79

3.10 Conclusion .. 80

4 Pattern-Based Integration of Internet of Things Systems 83

4.1 Introduction ... 85

4.2 Case Study: Smart City Engineering... 86

4.3 Integration Framework ... 87

4.3.1 Protocol Integration via IoT Gateway ... 88

4.3.2 Integration via Middleware ... 90

4.3.3 Integration in the Cloud ... 91

4.3.4 Integration in Application Layer .. 92

4.4 Overall Approach ... 94

4.5 Integrating the Smart City Engineering Systems ... 96

4.6 Conclusion .. 97

5 Obstacles in Data Distribution Service Middleware 99

5.1 Introduction ... 101

5.2 Data Distribution Service ... 103

5.3 Research Method ... 104

5.3.1 Review Protocol ... 105

5.3.2 Research Questions ... 106

5.3.3 Search Strategy .. 106

5.3.4 Study Selection Criteria .. 107

5.3.5 Study Quality Assessment ... 107

5.3.6 Data Extraction .. 108

5.3.7 Data Synthesis ... 108

5.4 Results ... 109

5.4.1 Overview of Selected Studies ... 109

5.4.2 Research Methods ... 110

5.4.3 Methodological Quality ... 110

5.4.4 Systems Investigated ... 112

5.5 Discussion .. 132

5.6 Conclusion .. 134

 ix

6 Data Distribution Service Based Architecture Design for the Internet
of Things Systems ... 135

6.1 Introduction ... 137

6.2 Software Architecture Modeling ... 138

6.3 Internet of Things Architecture ... 139

6.3.1 Conceptual Model .. 139

6.3.2 Feature Model ... 140

6.3.3 Layered View ... 141

6.3.4 Deployment View .. 141

6.4 Data Distribution Service ... 142

6.4.1 Conceptual View .. 142

6.4.2 Feature Model ... 143

6.4.3 Layered View ... 144

6.4.4 Deployment View .. 144

6.5 DDS-based IoT Architecture ... 145

6.5.1 Conceptual model .. 145

6.5.2 Layered View ... 146

6.5.3 Deployment View .. 147

6.6 Conclusion .. 147

7 Deriving Data Distribution Service Based Feasible Configuration
Alternatives ... 149

7.1 Introduction ... 151

7.2 Background and Content ... 152

7.2.1 Deployment View for DDS-based Systems .. 152

7.3 DDS UML Profile .. 153

7.4 Problem Statement .. 157

7.5 Approach For Generating DDS Deployment Configuration Alternatives 159

7.5.1 Define DDS Application .. 161

7.5.2 Design Physical Resources ... 162

7.5.3 Design Execution Configuration .. 163

7.5.4 Generate Input Parameters for Allocation Algorithm ... 165

7.5.5 Find Feasible Deployment Configuration .. 166

7.5.6 Generate Deployment Configuration .. 167

7.6 Tools and Applying the Approach to the Case Study ... 167

7.6.1 Tool Architecture ... 168

7.6.2 Using Deploy-DDS to design DDS Application Models for the Case Study 170

7.7 Evaluation .. 173

7.8 Discussion .. 182

7.9 Related Work ... 184

7.10 Conclusion .. 186

8 General Discussion ... 187

8.1 Introduction ... 189

8.2 Addressing Research Questions... 189

8.2.1 RQ1-What are the characteristics features of the IoT systems? 189

x

8.2.2 RQ2-How to design the architecture for an IoT-based system? 190

8.2.3 RQ3- What are the identified obstacles of the DDS middleware? 190

8.2.4 RQ4-What are the solution directions for the identified obstacles of DDS? 191

8.2.5 RQ5-What are the approaches for integrating multiple IoT-based systems? 192

8.2.6 RQ6-How to design a DDS-based IoT system? .. 192

8.2.7 RQ7-How to derive feasible deployment alternatives for DDS-based systems? . 192

8.3 Future Research ... 193

Appendices 195

Appendix A – Primary Studies for Deriving Characteristics of DDS 197

Appendix B – Assessment of Primary Studies for DDS ... 199

Appendix C – Primary Studies for Deriving Characteristics of IoT 200

Appendix D – Primary Studies for Deriving Characteristics of FMIS 201

References .. 203

Summary .. 211

Samenvatting .. 213

Acknowledgements ... 215

About the Author .. 217

 xi

LIST OF FIGURES
Figure 1-1: Dimensions of Communication – IoT adds the “Any Thing” dimension 17

Figure 1-2: Integration of different IoT systems ... 18

Figure 1-3: Research methodologies used in the thesis and contributions 22

Figure 1-4: Thesis outline ... 26

Figure 2-1: The IoT Reference Architecture .. 30

Figure 2-2: Domain Analysis Process .. 31

Figure 2-3: Legend for the feature diagrams ... 32

Figure 2-4: Top level feature diagram of the IoT .. 33

Figure 2-5: Feature diagram of session layer communication protocols of the IoT 33

Figure 2-6: Publish-Subscribe Communication Pattern .. 34

Figure 2-7: MQTT communication architecture ... 36

Figure 2-8: AMQP communication architecture... 38

Figure 2-9: Typical bus-based communication architecture .. 39

Figure 3-1: IoT reference architecture .. 47

Figure 3-2: Location of Konya and Antalya cities [Bing Imagery] .. 49

Figure 3-3: Percentages of top 10 wheat producer in the world in 2016-17 50

Figure 3-4: Efficiency in wheat production [tons/hectare] in 2016-17 51

Figure 3-5: FMIS development approach ... 53

Figure 3-6: Top-level feature diagram of the IoT ... 54

Figure 3-7: Top-level feature diagram of precision farming .. 57

Figure 3-8: Top-level feature diagram of FMIS .. 59

Figure 3-9: Family feature diagram of FMIS .. 60

Figure 3-10: IoT-based FMIS – decomposition view ... 62

Figure 3-11: IoT-based FMIS – layered view .. 63

Figure 3-12: IoT-based FMIS – deployment view ... 63

Figure 3-13: Application feature diagram of FMIS for IoT-based smart wheat production –

Retrospective case study .. 67

Figure 3-14: IoT-based FMIS – Decomposition view for IoT-based smart wheat production –

Retrospective case study .. 68

Figure 3-15: IoT-based FMIS – Layered view for IoT-based smart wheat production –

Retrospective case study .. 69

Figure 3-16: IoT-based FMIS – Deployment view of IoT-based smart wheat production –

Retrospective case study .. 69

Figure 3-17: Application feature diagram of FMIS for IoT-based smart tomato production in

greenhouse – Retrospective case study ... 70

Figure 3-18: IoT-based FMIS – Decomposition view for IoT-based smart tomato production in

greenhouse – Prospective case study .. 71

Figure 3-19: IoT-based FMIS – Layered view for IoT-based smart tomato production in

greenhouse – Retrospective case study ... 72

xii

Figure 3-20: IoT-based FMIS – Deployment view of IoT-based smart tomato production in

greenhouse – Retrospective case study ... 72

Figure 3-21: Results of the interview presented in radar chart – Retrospective study 73

Figure 3-22: Results of the interview presented in radar chart – Prospective study 75

Figure 4-1: Conceptual Architecture for Smart Traffic System ... 86

Figure 4-2: Integration of different IoT systems in the context of Smart City Engineering...... 87

Figure 4-3: System Integration of IoT-based systems in different layers 88

Figure 4-4: Different gateway patterns used for integration of IoT systems 89

Figure 4-5: Integration of protocols using middleware .. 90

Figure 4-6: Cloud-based integration of different IoT systems .. 92

Figure 4-7: Patterns for Integration at the Application Layer .. 94

Figure 4-8: Patterns for Integration at the Application Layer .. 95

Figure 4-9: Example pattern-based integration of smart city engineering systems 97

Figure 5-1: Reference architecture for DDS-based systems (adopted from (OMG, 2015b)) .. 103

Figure 5-2: Layered architecture of the DDS with the DDS specifications ((OMG, 2015a)) ... 104

Figure 5-3: Activities under the review protocol .. 105

Figure 5-4: Year-wise distribution of number of primary studies .. 109

Figure 5-5: Reference Reporting quality of the primary studies .. 110

Figure 5-6: Relevance quality of the primary studies ... 111

Figure 5-7: Rigor quality of the primary studies ... 111

Figure 5-8: Credibility of evidence of the primary studies .. 111

Figure 5-9: Overall quality of the primary studies .. 112

Figure 5-10: Feature diagram for P1 – Managing DDS configuration complexity 115

Figure 5-11: Feature diagram for P2 – Performance prediction, measurement and

optimization ... 118

Figure 5-12: Feature diagram for P3 – DDS implementation ... 120

Figure 5-13: Feature diagram of P4 – DDS integration over WAN .. 122

Figure 5-14: Feature diagram for P5 – DDS wireless networks and mobile computing 124

Figure 5-15: Feature diagram for P6 – DDS interoperability.. 125

Figure 5-16: Feature diagram for P7 – Data consistency in DDS ... 126

Figure 5-17: Feature diagram for P8 – Reliability in DDS ... 127

Figure 5-18: Feature diagram for P9 – Scalability in DDS .. 128

Figure 5-19: Feature diagram for P10 – Security ... 129

Figure 5-20: Feature Diagram for P11 – Integration with Event Based Systems 130

Figure 6-1: Conceptual model for the IoT ... 139

Figure 6-2: Deployment view of the IoT architecture ... 142

Figure 6-3: Feature model of Publish-Subscribe systems (DDS components highlighted) 143

Figure 6-4: Deployment view for DDS-based systems .. 144

Figure 6-5: Conceptual model for Publish-Subscribe based IoT systems 146

Figure 6-6: Layered view for DDS-IoT systems ... 146

Figure 6-7: Deployment view for DDS-IoT systems .. 147

Figure 7-1: Top-Level DDS package structure of the proposed OMG UML Profile 154

Figure 7-2: High Level Reference Architecture of the Smart City case study 155

 xiii

Figure 7-3: Deployment by grouping domain participants .. 158

Figure 7-4: Deployment by distributing domain participants over nodes. 159

Figure 7-5: Activity flow of alternative design evaluation and deriving feasible

deployment .. 160

Figure 7-6: Metamodel for DDS UML Profile/DCPS/DCPS Package 162

Figure 7-7: Physical Resource Metamodel ... 163

Figure 7-8: Execution Configuration Metamodel ... 164

Figure 7-9: Deployment Configuration Metamodel ... 167

Figure 7-10: Layered Architecture of S-IDE environment ... 168

Figure 7-11: General Perspective of Deploy-DDS tool .. 169

Figure 7-12: Dependency Graph of Activities ... 170

Figure 7-13: Type Definition Model of the case study .. 171

Figure 7-14: Application Definition Model of the case study ... 171

Figure 7-15: Physical Resource Model for Case Study with Ten Nodes 172

Figure 7-16: Partial view of the Execution Configuration Diagram for the Case Study 173

Figure 7-17: Algorithms used to find deployment alternatives in DeployDDS tool 173

Figure 7-18: Pseudo-code for generating feasible deployment alternative 175

Figure 7-19: Generated Feasible Deployment Alternative including 2275 Tasks with

DMG_TopicBasedAllocation .. 175

Figure 7-20: Deployment Model Evaluator of DeployDDS tool .. 179

Figure 7-21: Expert Deployment Model for first three nodes .. 181

xiv

LIST OF TABLES
Table 1-1: Applied Research Methodologies for the identified research questions 21

Table 2-1: Selected set of primary studies discussing the IoT protocols 32

Table 2-2: Criteria for selecting communication protocols .. 35

Table 2-3: Adopted criteria for selecting communication protocols .. 40

Table 3-1: Case study design .. 64

Table 3-2: Questionnaire for the interview .. 65

Table 3-3: Threats to validity and applied counter measures in case studies 78

Table 4-1: Selected characteristics of the session layer protocols ... 88

Table 4-2: Identified List of Patterns that can be used in the integration process 96

Table 5-1: Searched publication sources .. 106

Table 5-2: Quality Checklist .. 108

Table 5-3: Distribution of studies in terms of publication channel and occurrence 109

Table 5-4: Studies by research methods ... 110

Table 5-5: Identified Problems ... 112

Table 5-6: Primary studies with identified problems of DDS .. 113

Table 5-7: Implemented Profiles with respect to the selected DDS VENDORS 119

Table 5-8: Solution Directions for the Identified Obstacles in DDS .. 131

Table 7-1: Corresponding DDS Names for Application Domain Participants for STS 156

Table 7-2: Topics of Sample Scenario for Smart Parking System (STS) 157

Table 7-3: Example scenario for STS with defined no. of instances per domain participant . 158

Table 7-4: Extracting MPTA parameters from the design .. 166

Table 7-5: Deployment results for DMG_TopicBasedAllocation .. 176

Table 7-6: Deployment results for DMG_GeneticAlgorithm .. 177

Table 7-7: Deployment results for DMG_SequentialAllocation ... 177

Table 7-8: Deployment results for DMG_MinimumNodeAllocation 178

Table 7-9: The communication and execution costs values for the deployment generators 178

Table 7-10: Deployment results for expert distribution ... 180

Table 7-11: The communication and execution costs values for the expert deployment 181

Table 7-12: Comparison of Expert Deployment models with respect to Deployment Model

Generators ... 182

Table 10-1: Definition of Assessment Questions .. 199

Table 10-2: Assessment of Primary Studies .. 199

 15

1

INTRODUCTION

16

 17

1.1 BACKGROUND

The internet is the interconnected networks to connect billions of computers and other

devices. The origin of the Internet dates back to Advanced Research Projects Agency Network

(ARPANET) that led to the development of protocols for interconnection of networks into a

single network. Initially computers of the University of California Los Angeles and the Stanford

Research Institute were interconnected after which many other universities and institutes

became part of the ARPANET. The development of TCP/IP in 1970s and its implementation in

ARPANET further paved the way and adoption for the ARPANET which was later renamed as

the “Internet” in 1984.

The internet usage was dominated by e-mail and file transfer between 1970s and 1980s. With

the invention of World Wide Web (WWW) in 1989 by Tim Berners Lee who wrote the first web

browser, internet gained further momentum. The number of internet users increased rapidly

from thousands to billions in 2000s. In 2018, more than 50% of the world population is now

using the internet and this number will increase in the near future. The internet was a

disruptive technology and had a dramatic impact on the global culture and social life.

Until recent time, the internet was primarily used for interconnecting computers any time and

any place but this required human interaction and monitoring. The internet of things (IoT) is

a new paradigm that adds a new dimension to the current information and communications

technologies (ICTs), whereby the dimension "Anything communication" is added to the

communication capabilities as shown in Figure 1-1. The IoT enables anytime, anyplace

connectivity for anything, by linking the objects of the real world with the virtual world. In the

IoT world physical things and virtual things, all interact with each other in the same space and

time.

Anytime
connection/communication

On the move

Daytime

INTERNETINTERNET

INTERNET OF THINGSINTERNET OF THINGS

Night

Indoor

Outdoor

At the computer

Any Place
connection/communication

Any Thing
connection/communication

Interconnection

Between computers

Human-to-Human
not using computers

Human-to-Thing
using generic equipment

Thing-to-Thing

Figure 1-1: Dimensions of Communication – IoT adds the “Any Thing” dimension

It is predicted that the number of devices connected to internet will be more than 50 billion

(Evans, 2011). This means, that most of the internet traffic will not be among human beings

18

but be between devices and all things connected to the internet resulting in more complicated

and much wider Internet of Things.

The rise of the IoT is mainly dependent on three factors (Daniel Kellmereit, 2013):

(1) Miniaturization, electronic devices are getting more powerful and energy efficient

(2) Affordability, costs of electronic components and networks are consistently going down

(3) De-wireization, more and more things are becoming wireless.

Since the IoT is the result of technological progress in many fields such as wireless sensor

networks, machine-to-machine communication, mobile computing, ubiquitous computing,

and embedded systems, the IoT might express different meanings to different people. The

term Internet of Things was first used by Kevin Ashton in 1999 who was one of the co-founders

of Auto-ID that aimed to investigate and understand what came next after the barcode. The

Auto-ID has investigated RFID and realized that all physical objects can be traced via the

internet by tagged them with RFID transponders. The IoT is defined by the International

Telecommunication Union (ITU) as “The IoT is the network of physical objects or "things"

embedded with electronics, software, sensors, and network connectivity, which enables these

objects to collect and exchange data. Here “thing” is defined as: an object of the physical world

(physical things) or the information world (virtual things), which is capable of being identified

and integrated into communication networks (ITU, 2005). McEwen and Cassimally (McEwen

& Cassimally, 2014) formulate the IoT with a simple equation as: “Physical Object + Controller,

Sensor, and Actuators + Internet = IoT”.

Although the IoT system integrates many different entities it still deals with the design of a

single system. Very often it is required though to integrate multiple IoT-based systems with

other systems (Figure 1-2).

IoT System

IoT System IoT System

IoT System

IoT System

How
to integrate?

IoT System

IoT SystemIoT System

Figure 1-2: Integration of different IoT systems

An IoT system can typically realize a distributed system in which heterogeneous devices are

connected over the internet. A distributed system consists of multiple software components

that are located on networked computers, but act and run as a single system. The computers

that are in a distributed system can be connected by a local network and be physically close

to each other, or they can be connected in a wide area network and geographically distant.

 19

Distributed systems offer many benefits over centralized systems, including scalability,

concurrency and redundancy.

To reduce the effort for developing distributed systems, common middleware architectures

have been introduced. The middleware provides common services such as name and directory

services, discovery, data exchange, synchronization, and transaction services (Myerson, 2002).

The publish/subscribe middleware adopts an event-driven approach based on

publish/subscribe communication pattern. The publish/subscribe pattern has gained broad

attention in the development of loosely coupled, scalable large-scale applications. One of the

important and popular publish-subscribe middleware is the Data Distribution Service for Real-

Time Systems (DDS) that has been defined by the Object Management Group (OMG) to

provide a standard data-centric publish-subscribe specification for distributed systems. It

appears that DDS has been applied to different domains including development of high

performance distributed systems such as in the defense, finance, automotive, and simulation

domains.

1.2 OBJECTIVES AND RESEARCH QUESTIONS

Despite of the overall vision of the IoT, the integration of multiple heterogeneous devices over

the internet remains an important challenge. Hence, the main objective of this thesis is to

analyze and design integrated IoT systems. In this context we have defined the following

research questions:

RQ1. What are the characteristic features of IoT systems?

Before tackling the integration of IoT devices it is important to identify the current state of the

IoT and likewise identify and describe the common and variant IoT features.

RQ2. How to design the architecture for an IoT-based system?

Our focus in this thesis will be at the design level. The architectural design of an IoT system is

one of the early key artefacts that has a huge impact on the subsequent artefacts in the overall

lifecycle. However, designing the IoT architecture is not trivial. For this we will investigate the

current architecture approaches for IoT and propose an approach to guide the architect in

designing feasible IoT architectures.

RQ3. What are the identified obstacles in the DDS domain?

For connecting the devices in an IoT system we will explicitly consider the adoption of

middleware and hereby in particular DDS middleware. In the literature both the concepts of

IoT and DDS have developed in parallel ways. For investigating the adoption of DDS for IoT it

is important to identify and describe the features of IoT and herewith the current obstacles.

RQ4. What are the solution directions for the identified obstacles of DDS?

After addressing the obstacles of DDS, we will identify and describe the proposed solution

directions. In particular, we will focus on obstacles and solution directions related to the

adoption of DDS for IoT.

20

RQ5. What are the approaches for integrating multiple IoT-based systems?

IoT-based systems are often not standalone systems and require the integration with other

systems. For investigating the integration of IoT-based systems several integration approaches

can be used. We focus on most common integration patterns to investigate the integration of

IoT-based systems.

RQ6. How to design a DDS-based IoT system?

DDS middleware targets the high-performance computing hence it is an important

communication protocol for the IoT-based systems. We will provide an approach for designing

the architecture of DDS-based IoT systems.

RQ7. How to derive feasible deployment alternatives for DDS-based systems?

A DDS-based system usually consists of multiple participant applications each of which has

different responsibilities in the system. These participants can be allocated in different ways

to the available resources, which leads to different configuration alternatives. We will provide

a systematic approach for deriving feasible deployment alternatives based on the application

design and the available physical resources.

1.3 CASE STUDIES

In order to illustrate our approaches for the research questions we have defined and used two

different case studies, namely Farm Management Information Systems (FMIS) and Smart

Traffic System (STS) in the context of Smart City Engineering.

1.3.1 Farm Management Information Systems

Precision farming adopts advanced technology to increase the amount of production and

economic returns, often also with the goal to reduce the impact on the environment. One of

the key elements of precision farming is the Farm Management Information Systems (FMIS)

that supports the automation of data acquisition and processing, monitoring, planning,

decision making, documenting, and managing the farm operations. An increased number of

FMISs now adopts Internet of Things (IoT) technology to further optimize the targeted

business goals.

Nowadays, FMIS adopt IoT technologies to further optimize the precision farming goals. IoT-

based FMIS have different functional and quality requirements than traditional FMIS such as

communication protocols, the amount of the data size to be processed, the security level,

safety level, and time performance. In order to develop an IoT-based FMIS, one should design

the proper architecture that meets the corresponding requirements.

The FMIS case study will be explored using two different industrial case studies on precision

farming including smart wheat production FMIS, and greenhouse FMIS.

1.3.2 Smart Traffic System

For the near future, it is expected that a large part of the world population will live in urban

areas. This will have a huge impact on future personal lives and mobility. A smart city uses

information and communication technology (ICT) to enhance the quality and performance of

 21

urban services, to reduce costs and resource consumption, and to engage more effectively

and actively with its citizens. Sectors that have been developing smart city technology include

government services, transport and traffic management, water and waste, health care, and

energy. Smart city applications are developed with the goal to improve the management of

urban flows and allowing for real time responses to challenges. One of the important

applications in smart city engineering includes the development of smart traffic system (STS).

Traffic is already a large problem in many cities and this problem will be even bigger in the

future. Many people spend a considerable amount of time in traffic, which leads to

unnecessary waste of human resource, time and increase of CO2 emissions. STS provides

different capabilities such as traffic light management, congestion detection, traffic

regulation, shared parking platform, etc. For example, shared parking platform optimizes the

search for finding a suitable parking slot by guiding the drivers to the available nearest parking

spots in real-time.

STS consists primarily of sensors and vehicles. Sensors are the devices that monitor the

environment and provide the corresponding data. Vehicles use the sensor data and publish

their position and other relevant information to the STS. In order to manage vehicle and sensor

data several IoT technologies might be used. In essence, STS is a data-intensive system and

hence OMG’s DDS Middleware is very suitable to realize STS.

1.4 RESEARCH METHODOLOGY

In order to provide answers to the defined research questions we have applied a set of

research methodologies including:

• Systematic literature review (SLR)

• Design science research, and

• Case study research

The details of the applied research methodologies will be given in the next subsections. Table

1-1 shows the research methodologies for the identified research questions as adopted in the

different chapters.

Table 1-1: Applied Research Methodologies for the identified research questions

Research Methodology Ch-1 Ch-2 Ch-3 Ch-4 Ch-5 Ch-6 Ch-7

Systematic Literature Review
RQ1
RQ2

RQ3
RQ4

Design Science Research RQ2 RQ5 RQ6 RQ7

Case Study Research RQ2 RQ7

Figure 1-3 shows the workflow depicting the adopted research methodologies used in the

thesis together with the contributions of each step. Firstly, we have applied two literature

reviews in parallel. In chapter 2 we have applied a domain analysis for the IoT and our

22

contribution in this chapter is the domain model for the IoT. In chapter 5 we have applied

systematic literature review methodology for deriving the obstacles and solution directions

for the Data Distribution Service middleware.

Figure 1-3: Research methodologies used in the thesis and contributions

Subsequently we have applied four parallel design science research activities. In chapter 3, we

performed design science research for architecting an IoT-based FMIS. In chapter 4 we defined

the pattern-based integration approach. In chapter 6 we designed the DDS based IoT

architecture. Finally, we used design science research in chapter 7 in which we defined an

approach for generating feasible DDS deployment alternatives.

The case study research has been applied in chapter 3 and chapter 7. In chapter 3 we applied

case study research for evaluating the proposed architecture design approach. In chapter 7

we applied case study research for evaluating the DDS deployment configuration approach

using also the developed Deploy-DDS tool.

Systematic Literature Review
Data Distribution Service (Chapter 5)

Design Science Research
IoT based FMIS

(Chapter 3)

Domain Analysis IoT
(Chapter 2)

Design Science Research
Pattern-based Integration IoT

Systems (Chapter 4)

Design Science Research
DDS-based IoT (Chapter 6)

Design Science Research
Deriving DDS Configuration

Alternatives (Chapter 7)

Case Study Research
IoT based FMIS (Chapter 3)

Case Study Research
DDS Configuration

Smart Traffic System (Chapter 7)

Discussion (Chapter 8)

Domain Model IoT
Features, Obstacles

and Solution Directions DDS

IoT Based
FMIS Approach

IoT Integration Patterns DDS-based IoT
Reference Architecture

DDS Deployment
Configuration Approach

Results IoT Based
FMIS Approach

Deploy-DDS Tool

Report DDS Configuration
Smart Traffic System

 23

1.4.1 Systematic Literature Review

For answering research questions RQ1, RQ2, RQ3, and RQ4 we have applied an SLR. A

systematic literature review or systematic review for short is a well-defined and rigorous

method to identify, evaluate and interpret all relevant studies regarding a particular research

question, topic area or phenomenon of interest. The goal of an SLR is to give a fair, credible

and unbiased evaluation of a research topic using a trustworthy, rigorous and auditable

method. The inception of systematic reviews is based on the evidence-based concept which

is devised in the field of medicine. The success of evidence-based medicine has triggered many

other disciplines to adopt a similar SLR approach, including for example psychiatry, nursing,

social policy, and education. Similarly, the concept of evidence-based software engineering

(EBSE) (Dybå, Kitchenham, & Jorgensen, 2005) has been introduced together with guidelines

for performing systematic literature reviews in software engineering (Kitchenham & Charters,

2007). There are several reasons for undertaking a systematic literature review including

summarizing the existing evidence concerning a treatment or technology, identifying any gaps

in current research in order to suggest areas for further investigation, providing a

framework/background in order to appropriately position new research activities, examining

the extent to which empirical evidence supports/contradicts theoretical hypotheses, or

assisting in the generation of new hypotheses. The goal of EBSE is to improve the quality of

software-intensive systems and provide insight to stakeholder groups whether practitioners

are using best practice or not. In our study, we aimed at identifying the obstacles regarding

the DDS concepts. Different approaches have been presented in the literature for conducting

SLRs in different domains. We followed the guidelines for performing SLRs as proposed by

Kitchenham and Charters (Kitchenham & Charters, 2007). The SLR has been applied in chapter

2 and chapter 5. In chapter 2 we have applied a literature review to identify the features of

IoT. In chapter 5 we have applied the complete protocol to identify the features and obstacles

of DDS middleware.

1.4.2 Design Science Research

For answering the research questions RQ2, RQ5, RQ6, and RQ7 we have applied design science

research.

In this thesis we apply the design science methodology according to Hevner (Hevner, 2007).

Design science research follows three iterative cycles: relevance cycle, design cycle and rigor

cycle. The relevance cycle motivates the desired improvement that should be brought about

to an environment. It also leads to a list of requirements and associated criteria for evaluating

the research results. The design cycle turns the requirements into new design artefacts using

an existing body of design knowledge. The rigor cycle contributes to the body of design

knowledge. We applied case study methodology for the relevance cycle. We applied feature

modeling and architecture modeling techniques in the design cycle. We applied case study

methodology, demonstration and review of related work for the rigor cycle (Hevner, 2007).

1.4.3 Case Study Research

For answering the research questions RQ2 and RQ7 we have case study research in chapter 3

and chapter 7, respectively.

24

Our primary objective is to evaluate the impact of the developed architecture design method

for IoT-based FMIS. To evaluate the above research questions, we have applied the case study

research protocol as defined by Runeson and Höst (Runeson & Höst, 2008). Based on this we

have followed the five steps: (1) case study design (2) preparation for data collection (3)

execution with data collection on the studied case (4) analysis of collected data (5) reporting.

We explain the execution and details of each step in the corresponding chapters.

1.5 CONTRIBUTIONS

This thesis provides the following contributions:

1. Identification of the current features of the IoT systems

To identify the features of IoT systems we have applied a feature-based domain analysis

approach. Hereby feature diagrams have been used to model the common and variant

features of IoT-based systems. The feature diagram has been organized based on reference

architecture for IoT that includes multiple different layers. We have in particular focused on

session layer that which is responsible for setting up and taking down of the association

between the IoT connection points. For supporting the communication among the different

IoT entities many different communication protocols are now available in practice. Based on

the resulting feature diagram we can explicitly characterize the existing session layer

communication protocols for a given IoT system. Further we have defined the criteria for

selecting the identified communication protocols for the different conditions.

2. Software architecture design of IoT-based FMIS

We provide a systematic approach for guiding the architect in designing IoT-based FMIS. To

this end, we adopt a feature-driven domain analysis approach to model the various different

precision farming requirements. Further, based on FMIS and IoT reference architectures we

describe the steps and the modeling approaches for designing the IoT-based FMIS

architecture.

3. Architecting and designing integrated IoT-based systems

One of the key challenges in IoT is coping with the heterogeneous set of systems and the

integration of these systems in the same communication network. Several studies have

focused on this integration aspect and addressed this at different levels of abstraction.

Unfortunately, the different approaches are scattered and fragmented over the different

studies and it is not clear how to cope with the integration concern within a single IoT system

but also across multiple IoT systems that need to be integrated. To this end this we provide a

comprehensive and systematic approach for identifying the key integration concerns in the

IoT system architecture and describe the currently provided solutions. For this we adopt a

pattern-based approach in which generic architecture solution structures are provided to

these recurring integration concerns. We illustrate our approach for addressing the

integration of IoT-based systems within the context of smart city engineering.

 25

4. Identification of obstacles of DDS middleware and corresponding solution directions

Data Distribution Service (DDS) is a standard data-centric publish-subscribe programming

model and specification for distributed systems that can be used for integrating IoT systems.

DDS has been applied for the development of high performance distributed systems such as

in the defense, finance, automotive, and simulation domains. Various papers have been

written on the application of DDS, however, there has been no attempt to systematically

review and categorize the identified obstacles. We present the results of a systematic

literature review (SLR) that has been conducted by a multiphase study selection process using

the published literature since the introduction of DDS in 2003. We reviewed 468 papers that

are discovered using a well-planned review protocol, and 34 of them were assessed as primary

studies related to our research questions. Based on the SLR we have identified 11 basic

categories of obstacles and the corresponding research challenges in DDS.

5. Architecture design of a DDS-based IoT system

Focusing on the architecture design of DDS-based IoT systems firstly, we describe the

requirements for IoT systems and present the IoT reference architecture. Then we provide a

DDS-based architecture for IoT systems based on the Views and Beyond Approach. We have

performed a systematic approach in which we adopted architecture viewpoints for modeling

DDS, IoT and finally DDS-based IoT systems. Since both the DDS and IoT are often represented

as layered structures we have applied the layered viewpoint to represent the DDS-based IoT.

Further we have also defined the deployment view for DDS-IoT. We can state that we

succeeded to integrate and represent the architecture models that can be used to model DDS-

based IoT systems for various application domains.

6. Systematic approach for deriving feasible deployment alternatives for DDS-based systems

We have provided a systematic approach by extending the DDS UML Profile, and an extensible

tool framework to figure out the important design concern in DDS-based applications: the

selection of the feasible deployment alternative given the application model, the physical

resources, and the execution configurations. So far, this problem has not been explicitly

addressed in the DDS literature. In general, the deployment configuration is selected manually

based on expert knowledge. We provide a systematic approach for deriving feasible

deployment alternatives based on the system design and the available physical resources. The

approach showed to be useful in the modeling, the design and the evaluation of the DDS

deployment alternatives. Furthermore, we have evaluated the approach for a relevant IoT

case study on smart city engineering.

7. Tool support for designing DDS deployment alternatives

To support the method for finding feasible deployment alternatives in DDS-based systems we

developed the Deploy-DDS tool. The tool supports the selection and generation of deployment

architectures of DDS based systems with given system design and physical resources. The tool

can be used to perform an evaluation during the design phase and generate the selected

feasible configurations. The adoption of different algorithms and the ability to add new

algorithms support the system architect also in the experimentation of different algorithms.

26

1.6 THESIS OUTLINE

Figure 1-4 shows the organization of the thesis. After this introduction section, chapter 2

presents the feature-driven domain analysis of Internet of Things. Hereby the common and

variant features of IoT systems are explicitly defined and characterized. Chapter 3 describes

an approach for architecting IoT systems for the farm management information system

domain. Chapter 4 elaborates on the design process and considers the design of the

integration of multiple IoT systems. Chapter 5 provides the results of a systematic literature

review for identifying the current obstacles and solution directions when adopting DDS. This

is in particular important for integrating multiple IoT systems. Based on the results of the

earlier chapters, chapter 6 presents the DDS based architecture design for IoT systems.

Chapter 7 presents an approach for deriving the feasible DDS configuration alternatives.

Finally, chapter 8 provides the general discussion and reflects on the contributions of the

thesis.

C1. Introduction

C2. Feature-Driven Domain Analysis
of Internet of Things

C5. Obstacles in
Data Distribution Service

C3. Architecting Internet of Things
based Farm Management

Information Systems

C7. Deriving DDS Configuration
Alternatives

C6. Data Distribution Service based
Reference Architecture Design for

Internet of Things Systems

C8. General Discussion

C4. Integrating Multiple IoT Systems

Figure 1-4: Thesis outline

 27

2

FEATURE DRIVEN DOMAIN ANALYSIS OF

THE INTERNET OF THINGS1

1 This chapter is based on the following published paper:

• Ö. Köksal and B. Tekinerdogan, “Feature-driven domain analysis of session layer protocols of internet of

things,” in Proceedings - 2017 IEEE 2nd International Congress on Internet of Things, ICIOT 2017, 2017,

pp. 105–112.

28

 29

Abstract

The Internet of Things (IoT) architecture is defined as a layered structure in which each layer

represents a coherent set of services. For supporting the communication among the different

IoT entities many different communication protocols are now available in practice. For

practitioners, it is often not clear which communication protocol is suitable for the various

conditions in which the IoT systems need to be operated. In this chapter, we focus on the

session layer which is responsible for setting up and taking down of the association between

the IoT connection points. We adopt a feature-driven domain analysis whereby we define the

common and variant features that are related to communication protocols in the session

layer. Based on the resulting feature diagram we explicitly characterize the existing session

layer communication protocols. Further we define the criteria for selecting the identified

communication protocols for the different conditions.

Keywords: Internet of Things, Session Layer Protocols, Message Queuing Telemetry Protocol,

Extensible Messaging and Presence Protocol, Data Distribution Service, Advanced Message

Queuing Protocol and Constrained Application Platform.

2.1 INTRODUCTION

Internet of Things (IoT) can be described as connecting all devices to the internet. The word

“thing” can be defined as any physical device except computers since we have already

connected computers to the internet. Mobile phones, tablets, medical devices, sensors,

actuators are typical devices used in internet of things concept.

IoT connects billions of different devices with different data and connection characteristics.

So, several network technologies and communication protocols are required to connect these

devices to the internet.

In order to accomplish connection requirements, internet of things phenomenon consists of

several layers including device/data link layer, network layer, session layer, and application

layer as well as security and management layers. Each of these layers might use different

protocols for the same purpose. From this perspective IoT can be defined as concourse of

devices connected by communication software using different communication protocols.

Every layer of the IoT architecture includes its own set of possible communication protocols.

Currently there are dozens of communication protocols that are defined by various different

organizations and vendors. For practitioners, it is often not clear which communication

protocol is suitable for the various conditions in which the IoT systems need to be operated.

In this chapter, we focus on the session layer which is responsible for setting up and taking

down of the association between the IoT connection points. The session layer provides

services related issues of the session such as initiation, maintenance, and disconnection. As

such, frequency and duration of various types of sessions are related with the session layer.

Also, session information might enforce encryption and other security measures.

30

Selection of the session layer protocol depends on many factors such as data size, number of

devices to be connected, latency, etc. Depending on the application requirements different

session layer protocols might be used in session layer of the IoT application.

We adopt a feature-driven domain analysis whereby we have identified the important

knowledge sources and extracted and modeled the important features of the session layer

communication protocols. The result of the domain analysis process, as such, is a feature

model that defines the common and variant properties of the session layer communication

protocols. Based on the resulting feature diagram we explicitly characterize the existing

session layer communication protocols. Further we define the criteria for selecting the proper

session layer communication protocol for different conditions.

The remainder of the chapter is organized as follows: Section 2.2 provides a short background

on IoT architecture. Section 2.3 describes the feature model of IoT session layer protocols.

Section 2.4 presents a survey for the current session layer protocols and provides selection

criteria. Section 2.5 presents the related work and finally section 2.6 concludes this chapter.

2.2 THE IOT ARCHITECTURE

Various reference architectures have been provided for the IoT. In general, IoT architecture is

represented as a layered architecture with various set of layers. Hereby, a layer simply

represents a grouping of modules that offers a cohesive set of services. Based on the literature

(Al-Fuqaha, Guizani, Mohammadi, Aledhari, & Ayyash, 2015; Gazis et al., 2015; Gilchrist, 2016;

Karagiannis, Chatzimisios, Vazquez-Gallego, & Alonso-Zarate, 2015; McEwen & Cassimally,

2014; Palattella et al., 2013; Pandya & Champaneria, 2015; Schneider, 2016; Sheng et al.,

2013; Vermesan & Friess, 2014) we provide the reference architecture as shown in Figure 2-1.

Device Layer

Network Layer

Session Layer

Se
cu

ri
ty

 L
ay

er

M
an

ag
em

en
t

La
ye

r

Application Layer

Figure 2-1: The IoT Reference Architecture

The reference architecture consists of four layers including device/datalink layer, network

layer, session layer, and application layer. The device layer includes the capabilities for the

things in the network. The network layer provides functionality for networking connectivity

and transport capabilities. The IoT layered architecture consists of functionality for generic

support capabilities (such as data processing or data storage), and specific support capabilities

for the particular applications. The application layer contains the IoT application.

 31

The Security layer is a side-car layer relating to the other four layers and provides the security

functionality. Finally, the management layer supports capabilities such as device

management, local network topology management, and traffic and congestion management.

2.3 FEATURE DRIVEN DOMAIN ANALYSIS

In this section, we provide a feature-driven overview of IoT “Session Layer” protocols. For this

purpose, we have carried out a thorough domain analysis process in which we selected and

studied relevant set of studies that explicitly deal with IoT Communication Protocols. The

domain analysis steps that we have adopted are shown in Figure 2-2.

Select/Identify Concerns

Select Knowledge Sources

Collect the relevant
information from the domains

Commonality and Variability
Analysis

Provide Feature Model

Evaluate Feature Model

Domain Scoping Domain Modeling

Figure 2-2: Domain Analysis Process

The process consists of two basic activities including domain scoping and domain modeling. In

the scoping process, we define the scope of the domain analysis process and select the set of

knowledge sources. In the domain modeling process the feature diagram is provided. A

feature diagram is a tree with the root representing a concept (e.g., a software system), and

its descendent nodes are features. Feature diagrams show both the mandatory and the

variant features. Variant features are usually represented as optional or alternative features.

A feature configuration is a set of features which describes a member of a communication

32

protocol. A feature constraint further restricts the possible selections of features to define

configurations. In our overview the root node represents the problem category, while the

features represent the sub-problems, and optionally the sub-sub-features define the possible

solutions, if these were described. The overall legend (abstract syntax) for the problem feature

diagrams is given in Figure 2-3.

Feature

Feature group with

cardinality i-j
Mandatory Feature

Optional Feature

[i-j]

Figure 2-3: Legend for the feature diagrams

During the domain scoping process, we have looked at not only scientific papers but also

considered websites and white papers of the important vendors and stakeholders in the IoT

domain. It appears that there is a plethora of communication protocols that can be used in

the different layers. In this paper, we focus on the communication protocols of the session

layer. The selected list of important sources that we have considered is shown in Table 2-1.We

do not claim that the set of sources is comprehensive but an analysis of these selected studies

shows a convergence and agreement on the current set of protocols.

Table 2-1: Selected set of primary studies discussing the IoT protocols

ID Primary Study
1 IoT – From Research and Innovation to Market Deployment (Vermesan & Friess, 2014)
2 Standardized Protocol Stack for the IoT (Palattella et al., 2013)
3 A Survey on the IETF Protocol Suite for the IoT (Sheng et al., 2013)
4 A Survey of Technologies for the IoT (Gazis et al., 2015)
5 IoT: Survey and Case Studies (Pandya & Champaneria, 2015)
6 IoT: A Survey on Enabling Technologies, Protocols and Applications (Al-Fuqaha, Guizani, et al., 2015)
7 Industry 4.0 - The Industrial IoT (Gilchrist, 2016)
8 RTI Whitepaper (Schneider, 2016)
9 Designing the Internet of Things (McEwen & Cassimally, 2014)
10 A survey on the Application Layer Protocols for the IoT (Karagiannis et al., 2015)

During the domain modeling process, we extracted the relevant data from the knowledge

sources, compared the identified protocols as discussed in the different studies, derived the

common and variant properties and mapped these to the feature diagram. The final step was

the evaluation of the feature diagram which resulted in several iterations until we could

consolidate the feature diagram.

2.4 FEATURE MODEL OF THE IOT SESSION LAYER PROTOCOLS

Figure 2-4 shows the top-level feature diagram that we could derive from the primary studies.

In essence, communication protocols are distinguished for the four layers of the IoT

architecture.

 33

Layer

Management
Protocol

Application
Protocol

Session
Protocol

Network
Protocol

Datalink
Protocol

Security
Protocol

Figure 2-4: Top level feature diagram of the IoT

Based on the feature diagram as defined in the previous section we will characterize the

existing session layer communication protocols provided in the literature. Figure 2-5 shows

the feature diagram that we derived from the domain analysis to the IoT communication

protocols.

IoT Session Layer
Communication Protocol

Protocol Type

XMPP
AMQP

Source-Target

Decice-to-
Device

Device-to-
Server

Server-to-
Server

Transport Type

TCP UDP

Architecture

Publish-
Suscribe

Request-
Reply

MQTT
DDS

CoAP

Figure 2-5: Feature diagram of session layer communication protocols of the IoT

The top-level mandatory features in the feature diagram are protocol type, source-target,

transport type and architecture. The protocol type feature defines the protocols that we

identify from the selected primary studies. These identified protocols are the following:

• Message Queuing Telemetry Transport (MQTT): One of the most popular protocols to
collect device data and communicate with servers (Schneider, 2016).

• Extensible Messaging and Presence Protocol (XMPP): is based on exchanges of XML
messages in real time that is defined to connect devices to servers (IETF, 2011).

• Advanced Message Queuing Protocol (AMQP): A queuing system designed to connect
servers to each other (OASIS, 2011).

• Data Distribution Service (DDS): A fast data bus for integrating devices and systems (OMG,
n.d.-a).

• The Constrained Application Protocol (CoAP): A specialized web-based protocol to be used
in constrained nodes and constrained networks (Shelby, Hartke, & Bormann, 2004).

Please note that, although in some references Representational State Transfer (REST) is given

an example of the communication protocol, it is not a real standard but a framework like SOAP

(Gilchrist, 2016). So, it is not given here as a session layer protocol.

As given in Figure 2-5, there are three types of source-target relations available in session layer

protocols: Device-to-Device (D2D), Device-to-Server (D2S), and Server-to-Server (S2S). In

some references these features are also named Machine-to-Machine (M2M), Machine-to-

Cloud (M2C), and Cloud-to-Cloud (C2C) respectively.

34

Session layer protocols are closely related with the transport layer. For all communication

protocols, transport layer could be either UDP or TCP. Some protocols like DDS support both

UDP and TCP. Addressing scheme (unicast, broadcast, or multicast) might be important

depending on the application requirements.

The selection of transport layer protocol is important since using TCP and/or UDP changes the

characteristics of the communication from performance and security perspectives. If low

power devices and networks will be used, TCP is generally not available. So, the protocol that

will be used must support UDP. On the other hand, not using TCP might introduce some

security drawbacks. Because, security tools of TCP (SSL/TLS) are not available in UDP.

2.5 PUBLISH-SUBSCRIBE COMMUNICATION PATTERN

All of the session layer protocols given in this chapter support publish-subscribe

communication pattern as given in Figure 2-6. A typical Publish-Subscribe system defines a

Publish-Subscribe Domain which consists of a group of Participants which are deployed on a

number of Application Nodes. Each Participant defines a number of Publisher and Subscribers

that reads/writes Data Objects/Events. Data Objects/Events are elements of data exchange

model of the publish-subscribe system.

Publisher P1

Subscriber P2

Publisher P2

Application 1

Publisher 4

Subscriber 4

Application 3

publish Topic 1

Topic 2

Topic N

...

publish

publish

Application 2

publish

subscribe

Publisher P3

Application 4subscribe
Topic 3

publish

subscribe

Figure 2-6: Publish-Subscribe Communication Pattern

Three different types of decoupling can be identified between the subscribers and publisher

(Eugster, Felber, Guerraoui, & Kermarrec, 2003). Time decoupling refers to the fact that

interacting components do not need to be actively participating in the interaction at the same

time. Publishers might publish events independent of the subscribers, and subscribers might

get notified about the occurrence of events even if the original publisher of the event is

disconnected. Space decoupling refers to the fact that publishers and subscribers might not

know each other and do not hold any reference to each other. Finally, synchronization

decoupling refers to the fact that publishers and subscribers are not blocked during their

actions. The Architecture Model of a middleware can be either centralized or decentralized

denoting whether the data flows through a central unit or not. Further, the architecture model

 35

can include a broker that manages the data flow. The architecture can be unbrokered, i.e.

there is no broker defined, or multi-brokered, whereby multiple brokers manage the data

flow.

2.6 SELECTING COMMUNICATION PROTOCOL

As we can observe from the domain analysis we can distinguish different protocols and

different criteria for selecting these protocols. In this section, we will provide an evaluation

framework for characterizing communication protocols and describe the identified

communication protocols using the evaluation framework.

2.6.1 Evaluation Framework

In our domain analysis process, we have also extracted the criteria that have been mentioned

when describing the communication protocols. We have summarized these criteria in the

evaluation framework as shown in Table 2-2.

Table 2-2: Criteria for selecting communication protocols

Criteria Description
Standard organization What is the standardization organization?
Source-Target What are the possible source-target relations?
Real-Time Does the architecture allow real-time communication?
Brokered/Bus based Is the architecture brokered or bus-based (unbrokered)?
Communication pattern Is the adopted communication pattern including Pub/Sub or Request/Reply?
Message/Data centric Is the protocol message or data centric?
Transport What is the transport protocol (TCP/UDP)?
Interoperable What is the level of interoperability?
QoS Are the quality of service parameters defined?
Mobile support Does the system provide mobile support?
Web/Application based Is the protocol web-based or application-based?
Security What is the adopted security protocol?
License What is the license level of the communication protocol?

2.6.2 Session Layer Communication Protocol Types

Using the evaluation framework, we will characterize the five identified communication

protocols in more detail.

1) MQTT

Message Queuing Telemetry Transport MQTT (OASIS, 2014) is a light-weight messaging

protocol introduced by IBM in 1999. It is an open source protocol which is standardized by

OASIS (OASIS, 2010) in 2013. It is designed for limited bandwidth networks and small code

footprints. The main purpose of this protocol is remote monitoring. Data from devices is to be

controlled and monitored within servers/cloud. It is especially suitable for large networks of

small devices. Thousands of sensors in a single location can be connected for analysis.

MQTT mainly collects data from devices and transport to servers. So mainly it uses Device-to-

Server (D2S) communication although Device-to-Device (D2D) communication is possible.

36

MQTT does not need to be fast, its real time is measured in seconds. MQTT uses broker based

publish-subscribe architecture as given in Figure 2-7.

Application P1

BROKERApplication P2

Application P3

Publishers

Application S1

Application S2

Application S3

Subscribers

Figure 2-7: MQTT communication architecture

The architecture of MQTT consists of three main components namely publishers, subscribers

and the broker. Publishers are generally the light weight sensors. They send their data to the

broker and immediately sleep (if possible). Brokers classify sensor data coming from

publishers into specified topics. Subscribers connect to the broker to get new/updated data.

Subscribers are the applications that are interested in certain data. This architecture enables

easier one to many messaging and low coupling between publishers and subscribers on

contrary to tight coupling between client and servers in hypertext transfer protocol (HTTP).

MQTT supports hierarchical topics structures (like subject, sub-subject, sub-sub-subject)

(Vermesan & Friess, 2014). Although MQTT supports asynchronous communication, it

supports interoperability partially since the data is not negotiated between publishers and

subscribers. Message formats must be known by clients. Also, it does not support labeling

messages with types or metadata. MQTT use TCP for transport since device data shall not be

lost. On the other hand, TCP might cause decreasing network efficiency as the number of

nodes increase. Also, MQTT does not support dynamic discovery of nodes.

MQTT-S protocol is an extension of MQTT protocol that is suitable for constrained networks

on which TCP is not available. This protocol allows MQTT to be used for sensor networks such

as ZigBee (McEwen & Cassimally, 2014). Since MQTT protocol is simple, it might suffer from

hacking (Vermesan & Friess, 2014). So, there are some secured versions of MQTT to introduce

data encryption. For example, SMQTT is the secured version of MQTT protocol that is

purposed to enhance security. This protocol uses encryption broadcasting in which one

message is encrypted and delivered to multiple nodes. Although this type of encryption is

widely used in IoT applications key generation and encryption algorithms are not standardized

(Singh, Rajan, Shivraj, & Balamuralidhar, 2015).

 37

2) XMPP

XMPP is a widely used session layer protocol based on XML. XMPP was standardized by

Internet Engineering Task Force (IETF) (IETF, 2017). The use of XML makes this protocol

extensible. It is a widely-used protocol for consumer IoT applications as well as for Software

Defined Networks (SDN). On the other hand, the use of XML messages causes extra overhead

and increase power consumption. Because of the high-power consumption and the

complexity of the standard makes the protocol not suitable for embedded sensors with limited

resources as well as sensor networks.

XMPP was initially called Jabber and designed for message exchange / instant messaging (IM)

applications, i.e. people to people communication by text messaging. As the above definition

implies XMPP uses Device-to-Server (D2S) communication. In order to address a device, it uses

a simple and powerful addressing scheme in name@domain.com format. But it is not suitable

for Device-to-Device communications (Schneider, 2016). It is near real-time and scalable to

thousands of nodes. Its real time is measured in seconds. Since it is designed for near-real time

applications it supports low-latency small messages. XMPP uses broker-less architecture. It

supports publish/subscribe pattern as well as request response architecture. XMPP does not

provide Quality of Services (QoS). XMPP uses TCP for the transport.

In XMPP, before transmitting data, its’ data must be encoded. Hence, it is useful for devices

with large communication traffic where extra security is required. As it was stated in the above

paragraphs, XMPP was designed for instant message exchange and adopted to IoT later. New

extensions for XMPP are still being offered to enhance the protocol application to the IoT. For

example, in order to add service discovery XEP-0030, to add concentrators for connecting

legacy sensors and devices XEP-0035 and to transport over HTTM, XP-0124 standards were

added.

3) AMQP

AMQP is another session layer protocol especially designed for finance industry. AMQP is

standardized by OASIS (OASIS, 2011). The main purpose of AMQP protocol is to handle

thousands of queued transactions. It is mostly suitable for server-based analysis functions. It

tracks messages and guarantee the delivery of the messages. Messages are delivered in three

ways (1) At most once (once or never) (2) At least once (multiple delivery might exist) (3)

Exactly once. AMQP sends transactional messages between servers (Schneider, 2016). So, it is

a Server-to-server (S2S) protocol. The main features of AMQP architecture is message

orientation, queuing and routing, reliability and security (Vermesan & Friess, 2014). AMQP is

a message centric brokered protocol that supports publish-subscribe communication pattern

similar to MQTT Figure 2-8. Unlike MQTT, the broker in AMQP consists of two main

components: exchange and queues (Salman & Jain, 2017). Exchange receives messages from

publishers and distributes them to the queues with respect to predefined rules. When data is

available subscribers get the data in the subscribed to queues that are basically topics (OASIS,

2011). In addition, AMQP supports point-to-point communication and discovery of nodes

which is managed by the broker.

38

Application P1

Application P2

Application P3

Publishers

Application S1

Application S2

Application S3

Subscribers

Topic Queue A

Topic Queue B

Topic Queue c

ExchangeExchange

Figure 2-8: AMQP communication architecture

AMQP also provides strictly reliable point-point connection. Endpoints acknowledge the

acceptance of messages. AMQP requires implementations from different vendors must be

interoperable. AMQP is a wire-protocol that means any application that conform data format

of AMQP can work with any other compatible application from a different vendor being

language independent. In order, not to lose transactions, AMQP is designed to run over TCP.

Using TCP as the transport might cause poor performance with increasing number of nodes.

One of the key features of the AMQP is the security. It uses authentication and/or encryption

based on SASL and/or TLS (Vermesan & Friess, 2014).

4) DDS

DDS is standardized by Object Management Group (OMG) (OMG, n.d.-b) in 2004 and the latest

release is submitted in 2015 (OMG, 2015b). DDS is a data centric, scalable, real-time

middleware for high performance machine-to-machine communications. DDS might get/send

enormous data from many simultaneous publishers/subscribers. On the other hand, DDS,

from the IoT perspective, has some obstacles in wide area network communication, wireless

communication and mobile computing domains (Köksal & Tekinerdogan, 2017b).

Unlike MQTT and XMPP, DDS provides M2M communication. DDS is a real-time standard

whereby real-time is measured in milliseconds or microseconds (Schneider, 2016). DDS uses

bus-based communication architecture as given in Figure 2-9.

DDS support publish-subscribe pattern as many other session layer protocols providing

operating system and programming language independency. DLRL layer might be used to

convert data in application objects to the data-centric format of DCPS layer. DDS provides

automatic discovery of nodes as well as supporting Quality of Service (QoS). DDS provides

more than 20 QoS (depending on the vendor) in all open source and commercial

implementations which simplifies complex network programming. QoS are also useful for

several quality factors such as reliability, durability and scalability. DDS provides decoupled

communication between participants. DDS has an interoperability standard (DDSI) to

guarantee interoperability (OMG, 2014) between different vendors.

 39

Application A Application B

Application DApplication C

DATA BUS

Figure 2-9: Typical bus-based communication architecture

As explained in above sections, most of the session layer protocols just support TCP in the

transport layer. But DDS also supports UDP and multicast UDP. In fact, one of the powerful

features of the DDS is supporting multicast UDP that enables high performance M2M

communication. On the other hand, since multicast and UDP transports are not supported by

many Wide Area Networks (WAN), some additional concepts like Interconnection Services or

Routers shall be used in DDS systems to assure end-to-end QoS in WANs (Köksal &

Tekinerdogan, 2017b).

DDS has both open source and commercial implementations. Lightweight versions are also

available to run with limited or high-performance computing resources in embedded devices.

DDS was initially designed for LAN. But, as the interest in working with DDS in WAN increase,

security issues gained more importance in DDS based systems. Security specification of DDS is

just released (OMG, 2016) after a long-term beta version. DDS uses AES for data encryption

and HMAC-SHA for message authentication.

5) CoAP

CoAP is a specialized document transfer protocol similar to HTTP which is standardized by IETF

(IETF, 2017). It includes key Web concepts like URIs and internet media types.

Representational State Transfer (REST) is the standard interface between client and servers of

HTTP. But, REST requires high power consumption with respect to low power devices. CoAP is

designed to provide RESTful interface for low power devices. Similar to MQTT-S, the main use

of CoAP is in constrained nodes and constrained networks which do not support TCP. It is

designed to interface with HTTP. It is a simple protocol with low overhead supporting multicast

communication (Xi Chen, 2014).

Like DDS, CoAP is used in machine-to-machine (M2M) communications. CoAP uses a request-

reply architecture providing automatic discovery of services and resources. It supports

asynchronous communication and one-to-one communication between client and server.

CoAP use four different types of messaging depending on the application requirements.

Confirmable and non-confirmable messages are for reliable and unreliable messaging

respectively. For direct communication between client and server piggyback messages

(acknowledgement) are used. Finally, separate messaging is used for server messages other

40

than acknowledgement (Xi Chen, 2014). CoAP supports content negotiation since it is

designed to be interoperable. Although, TCP is commonly used in HTTP, in low power devices

and microcontrollers UDP is easier to implement. Since CoAP is designed to work on

constrained networks, it uses UDP in the transport layer supporting both broadcast and

multicast addressing. CoAP does not support TCP.

Although supporting UDP is important in constrained networks, not using TCP brings security

issues since security tools of TCP (SSL/TLS) are not available in UDP. CoAP uses Datagram

Transport Layer Security (DLTS) over UDP for secure communication. DLTS is similar to the TLS

over TCP that provides authentication, automatic key generation and cryptography. Please

note that DLTS has some drawbacks. First of all, it does not support multicast which is one of

the major advantages of CoAP. Also, using DLTS causes packet increase in network traffic

causing increased power consumption (Karagiannis et al., 2015).

2.6.3 Overall summary

In the previous sub-sections, we have described the session layer communication protocols

using the evaluation framework in Table 2-2. In Table 2-3 we summarize the overall results.

The table can be used to select the communication protocol for different situations.

Table 2-3: Adopted criteria for selecting communication protocols

Characteristics AMQP CoAP DDS MQTT XMPP
Standard OASIS IETF OMG OASIS IETF
Source-Target S2S D2D D2D D2S D2S
Real-Time No No Yes No Near RT
Broker/Bus based Broker-based Broker-based Bus-based Broker-based Bus-based
Com. pattern Pub/Sub Request-Reply Pub/Sub Pub/Sub Pub/Sub
Message/Data centric Message Data Data Message Data
Transport TCP UDP TCP/UDP TCP TCP
Interoperable Yes Yes Yes Partial Yes
QoS Yes Yes Yes Yes Yes
Mobile support Yes Yes Yes Yes Yes
Web/App. based App. based Web based App. based App. based App. based
Security TLS/SSL DTLS AES/HMAC-SHA TLS/SSL TLS/SSL
License Open source &

Commercial
Open source &
Commercial

Open source &
Commercial

Open source &
Commercial

Open source
& Commercial

Given the requirements for different source-target communication it appears that different

protocols are needed. For example: if the application will provide device-to-server

communication MQTT and XMPP might be used. Regarding real-time constraints, only XMPP

and DDS seem to be feasible. These protocols also require bus-based architecture. The other

protocols do not provide real-time performance and mainly broker-based.

All the session layer protocols, except CoAP use publish-subscribe communication pattern.

CoAP uses request-reply. Interoperability is an important concern for all the communication

patterns. The TCP protocol is the most frequent used transport layer protocol, while the UDP

protocol is only used in DDS and CoAP.

 41

All the protocols provide QoS parameters. Further, both open source and commercial versions

are available for all the protocols, and mobile support is provided.

Security is an important issue for all the protocols and this handled in different ways. The

TLS/SSL protocol is an important protocol for data encryption.

The communication protocols are either message centric or data centric. All the protocols are

application based, except CoAP which is web-based.

All the above criteria can be used to select the proper communication protocol given the

contextual requirements. Based on the analysis practitioners might select the feasible

protocol. In case more than one protocol is feasible additional functional and non-functional

requirements might be considered.

2.7 CONCLUSION

For supporting the communication among the different IoT entities many different

communication protocols are now available in practice. In this chapter, we have provided the

results of the analysis to the IoT session layer protocols. For this we have adopted a systematic

domain analysis process in which we first selected the important key knowledge sources that

describe IoT session layer protocols. We have adopted feature modeling to model the

common and variant features of the server layer communication protocols. It appeared that

all the protocols adopt publish-subscribe architecture except CoAP. CoAP uses Request-Reply.

To characterize the communication protocols in more detail we have provided an evaluation

framework that includes the important criteria which we derived from the literature as well.

The evaluation framework in the end appeared to be very useful not only for characterizing a

single communication protocol but also for comparing the different communication protocols.

The feature model of the communication protocols can be used by practitioners to select

feasible communication protocols for their situational requirements. Researchers can use the

results of this study to elaborate on further research on session layer protocols.

42

 43

3

ARCHITECTING INTERNET OF THINGS

BASED FARM MANAGEMENT

INFORMATION SYSTEMS1

1 This chapter is based on the following submitted paper:

• Ö. Köksal and B. Tekinerdogan, “Architecture Design Approach for Internet of Things Based Farm

Management Information Systems”, Precision Agriculture Journal, 2018.

44

 45

Abstract

Precision farming adopts advanced technology and the corresponding principles to increase

the amount of production and economic returns, often also with the goal to reduce the impact

on the environment. One of the key elements of precision farming is the Farm Management

Information Systems (FMIS) that supports the automation of data acquisition and processing,

monitoring, planning, decision making, documenting, and managing the farm operations. An

increased number of FMISs now adopts Internet of Things (IoT) technology to further optimize

the targeted business goals. Obviously IoT systems in agriculture typically have different

functional and quality requirements such as choice of communication protocols, the amount

of the data size to be processed, the security level, safety level, and time performance. For

developing an IoT-based FMIS, it is important to design the proper architecture that meets

the corresponding requirements. For guiding the architect in designing the IoT-based farm

management information system that meets the business objectives a systematic approach is

provided. To this end a design-driven research approach is adopted in which feature-driven

domain analysis is used to model the various different precision farming requirements.

Further, based on a FMIS and IoT reference architectures the steps and the modeling

approaches for designing IoT-based FMIS architectures are described. The approach is

illustrated using two different relevant industrial case studies on precision farming in Turkey,

one for smart wheat production in Konya, and the other for smart green houses in Antalya.

Keywords: Precision Farming, Farm Management Information System, Internet of Things,

Architecture Design

3.1 INTRODUCTION

Precision farming adopts advanced technology and the corresponding principles to increase

the amount of production and economic returns, often also with the goal to reduce the impact

on the environment. Similar related terms are used for the same purpose such as precision

agriculture, site-specific farming, site-specific crop management, prescription farming, and

satellite farming (Adamchuk, Hummel, Morgan, & Upadhyaya, 2004; Rains & Thomas, 2009;

N. Zhang, Wang, & Wang, 2002). Precision farming builds on advanced technology such as

cloud computing, remote sensing, data-driven farming, big data analytics, and IoT. Several

important benefits of precision farming have been provided in the literature including

optimizing production efficiency, optimizing quality of the crop, minimizing environmental

impact, minimizing risk, Conservation of resources, reducing cost, increasing profit, and better

management decisions (Rains & Thomas, 2009; Sørensen et al., 2010; Sørensen, Pesonen,

Bochtis, Vougioukas, & Suomi, 2011; N. Zhang et al., 2002).

One of the key elements of the precision farming is the FMIS. Although FMIS started as a

simple record keeping system, modern FMISs are sophisticated systems with advanced

modules to supporting comprehensive set of farming operations (Fountas et al., 2015). With

the introduction of IoT FMIS and precision farming in general have gained a new momentum.

IoT helps in smart and automated information gathering and fusing as well as monitoring

sensor data coming from different machines, animals, plants, other farms and greenhouses

46

and other systems such as unmanned air and land vehicles. In this way, the decision making

and planning in the agricultural domain can be further supported which can lead to even more

effective and efficient farming. With the help of IoT, farming practices such as yield

monitoring, cultivar selection, pest management, irrigation, etc. can be applied more

precisely. Crop yield can be monitored and precise crop maps which show high and low

production areas can be obtained readily (Rains & Thomas, 2009).

For developing an IoT-based FMIS it is important to design the proper IoT architecture which

represents the overall gross level structure of the system. IoT-based farm management

information systems typically have different functional requirements such as the type of crop,

the feasible type of sensors and communication protocols, and the amount of the data size to

be processed. Besides of functional requirements also quality requirements such as security

level, safety level, time performance, and overall cost of development and operation are also

different for different applications.

The different requirements typically require a different IoT architecture. In the literature,

several reference architectures for FMIS and IoT have been proposed that can be reused to

derive the IoT application architecture. Deriving the proper architecture however is far from

trivial and this can impede the success of the IoT system.

The objective of this study is to contribute to the current state-of-art of FMIS by enhancing

the current architecture design approaches for IoT-based FMIS. In particular, the study

provides an answer to the following research question: What is a suitable architecture design

approach for designing IoT-based FMIS? The presented approach adopts a feature-driven

domain analysis approach to model the various different precision farming requirements.

Further, based on FMIS and IoT reference architectures the steps and the modeling

approaches for designing the IoT-based FMIS architecture are described. The approach is

illustrated using two different relevant industrial case studies on precision farming in Turkey,

one for developing IoT-based FMIS for smart wheat production in Konya, and the other for

smart tomato production in greenhouses in Antalya.

The remainder of the chapter is organized as follows. In section 3.2 we provide the background

on IoT, precision farming and architecture design. In section 3.3, we describe two case studies

and the problem statement. In section 3.4 we present the approach for deriving concrete

application architectures. Section 3.5 presents the feature model for FMIS and IoT, which will

be used to support the design of the IoT-based FMIS. Section 3.6 presents the reference

architecture for FMIS. Section 3.7 illustrates how our approach is applied to the case studies

of Section 3.3. Section 3.8 presents the discussion. Section 3.9 presents the related work and

finally section 3.10 concludes the chapter.

3.2 BACKGROUND

3.2.1 Internet of Things

Until recent time, the internet was primarily used for interconnecting computers any time and

any place, but this required human interaction and monitoring. The IoT is a new paradigm that

adds a new dimension to the current information and communications technologies (ICTs),

 47

whereby the dimension "Anything communication" is added to the communication

capabilities. The IoT enables anytime, anyplace connectivity for anything, by linking the

objects of the real world with the virtual world. In the IoT world physical things and virtual

things, all interact with each other in the same space and time.

The IoT is the result of technological progress in many parallel and often overlapping fields,

including those of embedded systems, ubiquitous and pervasive computing, mobile

telephony, telemetry and machine-to-machine communication, wireless sensor networks,

mobile computing, and computer networking. In essence, IoT combines the concepts

“Internet” and “Thing” and the provided definitions can be interpreted how these have

addressed these two concepts. What is important is that IoT adds a new dimension to the

current ICTs, which already provide "any time" and "any place" communication. Many

definitions of IoT can be found in the literature. A feasible definition of IoT for the context of

this chapter is the following (ITU, 2005): The Internet of Things (IoT) is the network of physical

objects or "things" embedded with electronics, software, sensors, and network connectivity,

which enables these objects to collect and exchange data.

Various reference architectures have been provided for the IoT. In general, IoT architecture is

represented as a layered architecture with various set of layers. Hereby, a layer simply

represents a grouping of modules that offers a cohesive set of services. Based on the literature

(Al-Fuqaha, Guizani, et al., 2015; Gazis et al., 2015; Palattella et al., 2013; Pandya &

Champaneria, 2015; Sheng et al., 2013) we provide the reference architecture as shown in

Figure 3-1.

Device Layer

Network Layer

Session Layer

Se
cu

ri
ty

 L
ay

e
r

M
an

ag
e

m
e

n
t

La
ye

r

Application Layer

Business Layer

Figure 3-1: IoT reference architecture

The reference architecture includes the following layers: device layer, network layer, session

layer, application layer, and business layer, management layer, and security layer. The device

layer consists of sensors and physical devices. This layer identifies and collects data and

specific information generated by sensors and physical devices. The data gathered is passed

to the network layer. In essence the device layer bridges thus, the gap between the physical

world and the digital world. The network layer provides functionality for networking

connectivity and transport capabilities. This layer is also called transport layer. This layer

securely transmits data gathered from sensors to the session layer. Transmission medium can

be wired or wireless. The session layer is responsible for service management and consists of

functionality for setting up and taking down of the association between the IoT connection

48

points. Several session layer standards and protocols are offered by different organizations.

Although most of these standards and protocols use TCP or UDP for transport, they have

different architectures and characteristics that are suitable for different purposes. The

application layer contains the IoT application and manages the application using the data from

the session layer. The implemented IoT application can be, for example, smart farming, smart

city, and smart home. The business layer defines business logic and workflows. This layer is

responsible from the management of all IoT systems, services and applications within the

domain. The business models are defined in this layer based on the data gathered from the

application layer. The data is analyzed to build the required business models and define the

strategies. The security layer is a side-car layer relating to the other five layers and provides

the security functionality. Similarly, the management layer is a side-car layer supporting

capabilities such as device management, local network topology management, and traffic and

congestion management (Khan, Khan, Zaheer, & Khan, 2012; Köksal & Tekinerdogan, 2017a).

3.2.2 Architecture Design

Software architecture for a program or computing system consists of the structure or

structures of that system, which comprise elements, the externally visible properties of those

elements, and the relationships among them (Bass, Clements, & Kazman, 2003; Clements et

al., 2011; Tekinerdogan, 2014). Software architecture forms one of the key artifacts in the

entire software development life cycle since it embodies the earliest design decisions and

includes the gross-level components that directly impact the subsequent analysis, design and

implementation (Apel, Batory, Kästner, & Saake, 2013). It is generally accepted that software

architecture design plays a fundamental role in coping with the inherent difficulties of the

development of large-scale and complex software. Research on architecture design in the last

two decades has resulted in different useful techniques and approaches.

Architectural drivers define the concerns of the stakeholders which shape the architecture. A

stakeholder is defined as an individual, team, or organization with interests in, or concerns

relative to, a system (Bass et al., 2003). Each of the stakeholders’ concerns impacts the early

design decisions that the architect makes. A common practice is to model different

architectural views for describing the architecture according to the stakeholders’ concerns

(Clements et al., 2011; Demirli & Tekinerdogan, 2011; Tekinerdogan, 2014). An architectural

view is a representation of a set of system elements and relations associated with them to

support a particular concern (Clements et al., 2011). Having multiple views helps to separate

the concerns and as such support the modeling, understanding, communication and analysis

of the software architecture for different stakeholders. Architectural views conform to

viewpoints that represent the conventions for constructing and using a view. An architectural

framework organizes and structures the proposed architectural viewpoints.

A recent software architecture framework approach is the so-called Views and Beyond

approach (V&B) (Clements et al., 2011). The approach distinguishes three different categories

of viewpoints or styles including Module, component-and-connector, and allocation styles.

Module view category is used for documenting a system’s principal units of implementation

and Component and Connector category is used for documenting the system’s units of

 49

execution. Deployment View category that is used to document the relationships between a

system’s software and its development and execution environments.

A software architecture that addresses the concerns of specific stakeholders is here referred

to as concrete architecture. A concrete architecture defines the boundaries and constraints

for the implementation and is used to analyze risks, balance trade-offs, plan the

implementation project and allocate tasks (Tekinerdogan, 2014). Concrete architectures can

be viewed as instances of reference architectures, which are generic designs. In turn, a

reference architecture is derived from the knowledge and experiences accumulated in

designing concrete architectures in the past (Angelov, Grefen, & Greefhorst, 2012; Cloutier et

al., 2010). The concrete architectures differ from one case to the next depending on the

requirements of the stakeholders involved. Reference architectures can be used descriptively

to “capture the essence of existing architectures” or prescriptively to guide the development

of new ones (Cloutier et al., 2010).

3.3 CASE STUDIES AND PROBLEM STATEMENT

In this section, we describe the problem statement that we illustrate using two important

industrial case studies of precision farming in Turkey. The case studies have been selected

based on their relevance and their difference with respect to the functional and quality

requirements. The case studies include the development of IoT-based FMIS for wheat

production and tomato production in Turkey (Figure 3-2). We first describe the details of each

case study and then follow up with the problem statement.

Figure 3-2: Location of Konya and Antalya cities [Bing Imagery]

3.3.1 Case Study: Wheat Production

Turkey has 23.9 million hectares of cultivated farms. Hereby, grain production takes 49% of

this area. Wheat production constitutes 67% of the total grain production (Turkish Land Crop

Office, 2017). Turkey’s wheat production is about 20 million tons yearly (Turkish Ministry of

Agriculture, 2018). As such, wheat production is one of the most relevant agriculture

businesses in Turkey.

50

One of the key regions of wheat production in Turkey is the region of Konya which is far from

costal area and located on a big plane near to middle of part of Turkey (Figure 3-2). Konya has

a primarily terrestrial climate, and large plateaus and big arable farms of the city make Konya

a suitable place for wheat production. Konya is the greatest wheat producer city of Turkey and

has 3 million tons of wheat production yearly.

3.3.2 Case Study: Tomato Production in Greenhouses

The second case study includes the tomato production in greenhouses in Antalya. Tomato

production in the world is 170 million tons yearly and almost 12 million tons of this production

is produced in Turkey. Turkey exports tomato to many countries, and the total export is about

600000 tons. Tomato is produced both in farms and greenhouses. 51% of greenhouse

production is tomato in Turkey.

Antalya is located in the south of Turkey just above the Mediterranean Cost as shown in Figure

3-2. The typical Mediterranean climate of the city is suitable for vegetable and fruit

production. Currently, especially greenhouse farming is very common in Antalya. 80% of glass

greenhouses and 50% of plastic greenhouses of Turkey exists in Antalya

3.3.3 Problem Description

Generally, wheat and tomato are produced with traditional farming in these regions. A general

observation from governmental reports is that a small part of the farmers uses traditional

FMIS (Turkish Land Crop Office, 2017; Turkish Ministry of Agriculture, 2018). Despite the use

of FMIS, several problems in the agricultural sector could still be identified.

• Inefficient crop production

To meet the growing population in Turkey, it is important to increase the crop production.

Over the last years, the percentage of the crop that is needed to feed the population tends to

get lower. Hence, it is required that the production is increased, which requires a more

effective and efficient crop production. According to the Turkish Statistical Institute (TSI),

Turkey is one of the top 10 wheat producers in the world (Figure 3-3). But this production is

not sufficient for Turkey’s growing internal demand.

Figure 3-3: Percentages of top 10 wheat producer in the world in 2016-17

19

17

11

10

8

5

4

4

3

3

0 5 10 15 20

Europian Community

China

India

Russia

USA

Australia

Canada

Ukraine

Pakistan

Turkey

 51

In order to compensate the need, Turkey imports more than 4 million tons of wheat each year

from other countries. From the efficiency point (tons/hectare) of view also improvements are

required and possible. Turkey’s wheat production efficiency is about 2.68 tons/hectare (Figure

3-4).

Figure 3-4: Efficiency in wheat production [tons/hectare] in 2016-17

• Inefficient usage of soil

Turkey has 2.2 million farmers and 148 million decares arable farms but, 17% of arable farms

are fallow lands (Turkish Ministry of Agriculture, 2018). One of the reasons for this is due to

lack of insight and support regarding decision making on crop production, soil fertilization, and

pesticide management.

• Increase in cost of farming inputs

In the last years, the cost of fertilizers, fuel-oil and chemicals of pest prescriptions have

dramatically increased. On the other hand, the usage of these resources has not been

effectively used and monitored. This has inversely affected farming and greenhouse

production profit. As a result of this, the number of farmers in these domains have decreased

and herewith the overall production has lowered. To solve these problems, it is required to

better monitor and manage the input resources, and likewise decrease the overall costs.

These problems can be to some extent tackled by focusing on an improved business and

logistics process, by applying total quality and precision farming principles, and appropriate

sensing and effector technologies. Yet, these solutions remain limited compared to the

adoption of IoT that provides a further substantial optimization by enabling the integration of

various technologies such as (wireless) sensor networks, mobile computing, cloud network,

data analytics, and decision support systems.

To cope with these problems a strategic decision is to focus on IoT (Dlodlo & Kalezhi, 2015;

Ma, Zhou, Li, & Li, 2011). IoT enables the usage of sensors to measure the required parameters

(e.g. soil quality), support the decision-making process using services such as data analytics,

and use actuators to execute the proper action at the right time and right place. This is for

example the case for the wheat and tomato production that has been described in the

8.23

5.27

4.08

3.54

3.35

3.09

2.75

2.68

2.67

2.19

0 1 2 3 4 5 6 7 8 9

Europian Community

China

Ukraine

USA

Canada

India

Pakistan

Turkey

Russia

Australia

52

previous sections. With the introduction of IoT for both cases several benefits are envisioned.

Firstly, determining the variability in yield potential might allow optimizing production at each

site. With the help of precision farming practices such as nutrient management and soil

management quality of the soil can be improved. Also, pest management allows mapping pest

populations and obtaining better prescriptions reducing pesticide usage and causing minimal

environmental impact. Managing farming practices and obtaining profit maps help reducing

the risk in agriculture. Better irrigation, fertilization practices, and pest management

strategies save resources to be used. Crop production problems can be solved precisely and

in less time with precision farming. Further, long term data can be collected and analyzed over

time, providing better strategic management decisions. Saving input materials and resources

enables reducing the work needed and cost. Finally, reducing cost and improving quality will

increase profits obtained. So far with the existing FMIS these goals could not be fully realized

or are only achieved to a limited extent. Although it is envisioned that IoT will be worthwhile

to realize the above goals it is not easy to develop an IoT-based FMIS system.

In the literature, various different reference architectures have been proposed for both IoT

and FMIS. Recently, the two concepts are further integrated leading to an IoT-based FMIS

architecture. Unfortunately, deriving a concrete application architecture for the specific

farming situation is far from trivial. This is because the existing architectures are usually

represented as reference architectures that are too abstract and do not consider further

details that are required to derive the application architecture. For deriving the concrete

architectures for a particular context, the different features of FMIS and IoT should be

selected. This includes for example the different management functionality, the security

protocols, the device communication protocols, and the cloud services. For each of these

many different selections can be made and the combination of these leads to a broad design

space.

Obviously, given a description for the precision farming system we can identify many different

architecture design alternatives. Since the architecture has a direct systemic impact on the

overall IoT-based precision farming it is important to derive the proper architecture to meet

the overall precision farming requirements of the various stakeholders. For guiding the

architect in deriving the customized concrete architecture a systematic approach is necessary

3.4 FMIS DEVELOPMENT METHOD

In Figure 3-5, we show the proposed development approach for deriving an IoT-based FMIS

application architecture. The approach consists of two basic activities including Domain

Engineering and FMIS Development. In essence, the approach is based on the product line

engineering process as described in the literature (Apel et al., 2013; Capilla, Bosch, Trinidad,

Ruiz-Cortés, & Hinchey, 2014; Tüzün, Tekinerdogan, Kalender, & Bilgen, 2015).

The Domain Engineering activity focuses on developing and preparing the artefacts for

developing application FMIS. Hereby, the first step includes the development of an IoT FMIS

family feature model that defines the common and variant features of the different FMISs.

The subsequent step focuses on developing the reference architecture for IoT-based FMIS.

 53

The final step in the domain engineering activity aims to develop the reusable components

that will be necessary to develop the FMIS based on the reference architecture. The following

sections elaborate on the development of the family feature model and present the

corresponding reference architecture.

The FMIS development activity focuses on developing a particular IoT-based FMIS. Hereby,

the FMIS will be developed based on reuse of the artefacts in the domain engineering activity.

The first step in the application engineering includes the selection of the features of the

application. Further, the features will include both features for IoT and FMIS. These will be

usually different for different FMISs in different contexts. Based on the selected features the

specific FMIS application architecture will be developed using the reference architecture of

the domain engineering activity. The final step includes the implementation of the FMIS.

Hereby, the earlier developed components in the domain engineering activity will be reused.

Very often an FMIS simulation system can be developed to validate the system before deciding

on the large-scale investment. In the following sections we will elaborate on the activities of

Figure 3-5.

D
om

ai
n

 E
n

gi
ne

er
in

g
FM

IS
 A

p
pl

ic
at

io
n

 D
ev

el
op

m
en

t

Develop IoT FMIS
Family Feature Model

IoT FMIS
Family Feature Model

Develop IoT FMS
Reference Architecture

IoT FMIS
Reference Architecture

Develop IoT FMS
Components

IoT FMIS
Reusable Components

Develop IoT FMIS
Application Feature Model

Develop IoT FMS
Application Architecture

Develop IoT FMS
Application

IoT FMIS
Application Feature Model

IoT FMIS
Application Architecture Model

IoT FMIS
Application

Figure 3-5: FMIS development approach

3.5 FAMILY FEATURE MODEL

The first step of the domain engineering activity of the proposed approach in Figure 3-5 is the

development of a family feature diagram for IoT-based FMIS. A feature diagram is a tree that

is in particular used to model the commonality and variability of a specific domain or system.

The feature diagram includes a root node representing the domain or system that includes

features representing the essential characteristics or externally visible properties of the

system (Tekinerdogan, Sozer, & Aksit, 2012). Features may have sub-features which can lead

54

to a hierarchical tree. Features can be mandatory or variant. Variant features are usually

represented as optional or alternative features. Optional features can be selected or not,

whereby alternative features require the selection of one of the defined features.

A feature configuration is a set of features which describes a member of a communication

protocol. A feature constraint further restricts the possible selections of features to define

configurations. The overall legend (abstract syntax) for the problem feature diagrams is given

in Figure 2-3.

For deriving the feature models, we have carried out a domain analysis process in which we

selected and studied relevant set of studies that explicitly deal with IoT, Precision Farming and

Farm Management Information Systems, respectively.

The domain analysis consists of two basic activities including domain scoping and domain

modeling. In the scoping process, we define the scope of the domain analysis process and

select the set of knowledge sources. In the domain modeling process the feature diagram is

provided.

During the domain scoping process, we have looked at not only scientific papers but also

considered websites and white papers of the important vendors and stakeholders in the IoT

and precision farming domains. The selected list of important sources that we have considered

for IoT are shown in Appendix C, the list of sources for precision farming are shown in

Appendix D. We do not claim that the set of sources is comprehensive but an analysis of these

selected studies shows a convergence and agreement on the concepts. In the following we

first describe the feature diagram for IoT in section 3.5.1 and then the feature diagram for

precision farming in section 3.5.2.

3.5.1 Feature Model for IoT

Based on the primary studies given in Appendix C – Primary Studies for Deriving Characteristics

of IoT, we have obtained the top-level feature diagram of IoT as given in Figure 3-6.

IoT

Business
Layer

Application
Layer

Network
Layer

Device
Layer

Management
Layer

Session
Layer

Security
Layer

Figure 3-6: Top-level feature diagram of the IoT

In essence, the top-level figure diagram presents the design features and as such includes the

mandatory features for the layers of the earlier defined IoT reference architecture in Figure

3-1. The feature diagram states that all the layers are mandatory for setting up an IoT system.

For each of the layers we can derive a detailed feature diagram that represents the

commonality and variability for the corresponding layer. Among these IoT layers it appears

 55

that the decisive layer is the session layer that includes the protocols for initiating the

connection and the further communication session. Figure 2-5 shows the feature diagram that

we derived from the domain analysis to the IoT session layer communication protocols.

The top-level mandatory features in the feature diagram are protocol type, source-target,

transport type and architecture. The protocol type feature defines the protocols that we could

identify from the selected primary studies. These identified protocols are the following:

• Message Queuing Telemetry Transport (MQTT): One of the most popular protocols to
collect device data and communicate with servers (OASIS, 2014).

• Extensible Messaging and Presence Protocol (XMPP): is based on exchanges of XML
messages in real time that is defined to connect devices to servers (IETF, 2011).

• Advanced Message Queuing Protocol (AMQP): A queuing system designed to connect
servers to each other (OASIS, 2011).

• Data Distribution Service (DDS): A fast data bus for integrating devices and systems (OMG,
2015b).

• The Constrained Application Protocol (CoAP): A specialized web-based protocol to be used
in constrained nodes and constrained networks (IETF, 2013).

As given in Figure 2-5, there are three types of source-target relations available in session layer

protocols: Device-to-Device (D2D), Device-to-Server (D2S), and Server-to-Server (S2S). In

some studies, these features are also called Machine-to-Machine (M2M), Machine-to-Cloud

(M2C), and Cloud-to-Cloud (C2C) respectively.

Session layer protocols are closely related to the transport layer. For all communication

protocols, transport layer could be either UDP or TCP. Some protocols like DDS support both

UDP and TCP. Addressing scheme (unicast, broadcast, or multicast) might be important

depending on the application requirements. The selection of transport layer protocol is

important since using TCP and/or UDP changes the characteristics of the communication from

performance and security perspectives. If low power devices and networks will be used, TCP

is generally less feasible, and likewise the UDP protocol is used instead. On the other hand,

TCP is required for supporting security and the common security protocols of (SSL/TLS) are

not available using UDP.

The architecture of the session layer protocols can be either publish-subscribe or request-

reply. In publish-subscribe architecture, participants send data to a topic on which several

subscribers that are registered to this topic might read data. In this architecture publishers

and subscribers do not need to know each other, and do not need to be alive at the same

time, i.e. this communication type provides time and space uncoupling. This type of

communication is well suited for the same data that must flow from one producer to many

consumers. On the other hand, request-reply architecture, senders and receivers do need to

know each other. Hereby, the requester sends a request message and waits for the response.

When the replier receives the request, it responds with a reply message. The session layer

protocols of IoT generally use publish-subscribe architecture except in the case of CoAP. CoAP

uses a request-reply architecture. There are many criteria to select the right IoT session layer

protocol depending on the application requirement. Table 2-3 summarizes the selection of

56

proper IoT session layer protocol. Further information on this issue is provided in (Köksal &

Tekinerdogan, 2017a).

Given the requirements for different source-target communication it appears that different

protocols are needed. For example, if the application will provide device-to-server

communication, MQTT and XMPP might be used. Regarding real-time constraints, only XMPP

and DDS seem to be feasible. These protocols also require bus-based architecture. The other

protocols do not provide real-time performance and are mainly broker-based.

All the session layer protocols, except CoAP use publish-subscribe communication pattern.

CoAP uses request-reply. Interoperability is an important concern for all the communication

patterns. The TCP protocol is the most frequent used transport layer protocol, while the UDP

protocol is only used in DDS and CoAP.

All the protocols provide QoS parameters. Further, both open source and commercial versions

are available for all the protocols, and mobile support is provided.

Security is an important issue for all the protocols and this is handled in different ways. The

TLS/SSL protocol is an important protocol for data encryption.

The communication protocols are either message centric or data centric. All the protocols are

application based, except CoAP which is web-based.

All the above criteria can be used to select the proper communication protocol given the

contextual requirements. Based on the analysis practitioners can select the feasible protocol.

In case more than one protocol is feasible, additional functional and non-functional

requirements might be considered.

3.5.2 Feature Model for Precision Farming

The previous sub-section has presented the feature diagram for IoT systems. For IoT-based

precision farming the other important domain is of course the domain of precision farming

itself. Similar to the IoT domain again we have applied a domain analysis process in which we

searched for relevant primary studies on precision farming and based on these selected

studies we derived a feature diagram to represent the common and variant features. The

selected primary studies are listed in Appendix D – Primary Studies for Deriving Characteristics

of FMIS. Based on the literature we could identify the following sub-domains for precision

farming:

• Global Positioning Systems (GPS),

• Geographical Information Systems (GIS),

• Sensors,

• Variable Rate Technology (VRT),

• Yield Monitoring (YM),

• Yield Mapping (YMAP), and

• Farm Management Information Systems (FMIS).

Based on the above sub-domains, Figure 3-7 shows the top-level feature diagram for the

precision farming. In the following subsections, we describe each feature in more detail.

 57

Precision Farming

Geographic
Information

Systems Sensor
Technology

Yield
Monitoring

Yield
Mapping

Global Positioning
Systems

Farm Management
Information

Systems

Variable Rate
Technology

Figure 3-7: Top-level feature diagram of precision farming

3.5.2.1 Global Positioning System

Global Position System (GPS) is a satellite system that provides location and time information

to GPS receivers in real time. Location information consists of latitude, longitude, and,

elevation values. In essence, these values are the input of GIS software.

As a tool of precision agriculture, GPS enables receivers to calculate their geo-location. This

precise location information supports mapping and analyzing important farming data such as

amount of crop and water usage. Further, GPS enables farmers to work during low visibility

conditions such as rain, fog, and darkness.

3.5.2.2 Geographic Information System

Geographic Information System (GIS) software is used to input, store, analyze, and display

geographical information of the field. GIS enables detailed analysis of farming data in several

map like forms: yield maps, soil maps, light maps, etc. Further, GIS is used in many farming

applications such as farm planning, tractor guidance, and variable rate applications (Rains &

Thomas, 2009).

3.5.2.3 Sensor Technology

In precision farming, different types of sensors are used mainly to measure crop, soil, and

weather properties. Sensors can be used by fixing them into the field or they can be used to

make measurements while in motion which are called on-the-go measurements. Typical on-

the-go measurements are performed to measure yield and soil properties.

In order to communicate with sensors, several standards were defined. ISOBUS is the common

specification of the manufacturers on the uniform application of the International standard

ISO 11783 Serial control and communications data network. This standard defines an open

communication protocol at physical and application layer level and is based on Controller Area

Network (CAN) protocol ISO 11898-1. AgroXML (Schmitz, Martini, Kunisch, & Mösinger, 2009)

is a popular standardized language for exchanging data in precision farming. AgroXML is based

on the eXtensible Markup Language (XML) and is used in communication between FMIS and

external systems.

58

3.5.2.4 Variable Rate Technology

Variable Rate Technology (VRT) consists of variable rate control systems. VRT applications,

typically use GPS and GIS software. Differential GPS (DGPS) might also be used in VRT

applications as mounted on tractors or other vehicles to provide precise location information

of the vehicle. VRT is used to obtain site-specific information in seeding, fertilizer, lime, and

pest management applications (Rains & Thomas, 2009).

3.5.2.5 Yield Monitoring

Yield Monitoring is the most direct method to assess the field production and how it should

be better managed. A yield monitor measures the crop as it is harvested. Yield monitoring

usually measures crop weight, impact forces, and the time an array of light beams are broken.

If used, images of the plants can be acquired using unmanned land and air vehicles as well as

satellites and direct cameras. This information is important in predicting planting places and

times and harvesting times (Rains & Thomas, 2009).

3.5.2.6 Yield Mapping

As the yield is measured, data are stored on a computer along with the GPS coordinates at the

point where the yield was measured. Mapping software can then create a yield map. The yield

map can show yield variability as well as yield production. Yield variability is illustrated on a

map by a change in color, where each color represents a range in. To maintain some level of

convention, red is suggested to represent low yields and green high yields. The map legend

will tell you how to read what each color indicates. Lack of yield variability would mean that

the map shows mostly one color. Yield production can be found by calculating the yield for

the entire field (Rains & Thomas, 2009).

3.5.3 Farm Management Information System

Farm Management Information System (FMIS) software is a core part of the precision farming.

FMIS is used to collect and process data to manage all farming operations. The top-level

feature diagram for FMIS is given in Figure 3-8. The right part of the feature diagram has been

derived from the FMIS functions as defined by the survey results in (Fountas et al., 2015). The

left part focus on IoT related functionality of FMIS including Collection of Data, Processing

Data, Visualization of Data, Communication with External Systems, and System Management.

In this chapter we will further focus on the IoT FMIS aspects.

The data acquisition feature defines the gathering of data from sensors and other systems

used in precision farming such as tractors, agribots and unmanned vehicles. The data

processing feature represent functions for processing the gathered data whereby useful

information is extracted using data mining, machine learning, and image processing. The data

visualization feature includes displaying processed data in different forms. Apart from classical

tables, reports, and monitoring tools, dedicated visualization maps are essential for precision

farming applications. Hereby, several maps such as yield maps, soil maps, lighting maps, and

profit maps. are displayed for different purposes. The system management feature defines

the management of data acquisition, processing, visualization, and external system

communication features of FMIS. The quality related functions such as reliability, scalability,

 59

extensibility, and security are considered in this feature. Finally, communication with external

systems feature defines the communication with external systems such as, a weather forecast

system. Each of these features are shown in a different color in the figure to refer these in

later sections.

Farm Management
Information System (FMIS)

Data Acquisition

Data Processing
System

Management

Communication with
External Systems

Data Visualization

IoT FMIS Features Core FMIS Features

Field Operation
Management

Reporting

Finance

Site Specific

Inventory

Machinery
Management

Human Resource
Management

Traceability

Quality Assurance

Sales

Best Practice
Estimation

Figure 3-8: Top-level feature diagram of FMIS

3.5.4 Feature Model for IoT-based FMIS

In principle, IoT and FMIS are independent concepts and as such these have been modeled

separately in the previous sub-sections. For the selection of the application features we could

in principle select the features from the IoT feature diagram as defined in section 3.5.1 and

the features from the FMIS feature diagram as explained in section 3.5.1. Alternatively, the

notion of IoT-based FMIS can be considered as the integration of both concepts that needs to

be separately considered. To this end, Figure 3-9 shows the integrated family feature diagram

that we have derived from the feature models for IoT and FMIS. Hereby we focused on FMIS

as the dominant decomposition and the integrated IoT features in the separate leaves of the

FMIS feature tree. The colors define the features of the feature model in Figure 3-8. The

detailed feature diagram given in Figure 3-9 can in principle be further extended with respect

to particular project requirements. For the context of this chapter though, the provided

feature models are sufficient to illustrate our approach.

In IoT-based FMIS, data acquisition consists of IoT data acquisition feature and conventional

data acquisition to support legacy systems. IoT data acquisition contains 5 alternative IoT

session layer protocols as discussed in section 3.5.1 namely MQTT, XMPP, AMQP, DDS, and

CoAP. Depending on the application one or more protocols for IoT communication can be

selected for the application FMIS. In section 3.5.1 we have described the criteria for this.

Traditional data acquisition feature consists of ISOBUS and Controller Area Network (CAN)

60

protocols. As we have stated before, other (legacy or non-IoT) protocols can be added to the

feature diagram.

Data Acquisition

IoT Data
Acquisition

External Services

Conventional Data
Acquisition

XMPP

AMQP

MQTT

DDS
CoAP

ISOBUS

CAN

Data Processing

Data Visualization

System
Management

Image/Video
Processing

Data Mining

Decision Support

Data Logging

Sensor Control

Actuator Control

System Control

Soil
Sensing

Light
Sensing

Water
Sensing

Weather
Sensing

Vehicle
Control

UAV/Drone
Control

Monitoring

Mapping

Yield
Monitoring

Environment
Monitoring

Yield
Mapping

Soil Type
Mapping

Light
Mapping

Weather Forecast

Finance Services

Other Systems

IoT Based FMIS

Figure 3-9: Family feature diagram of FMIS

Data processing features mainly depend on the application type and include Image/Video

processing, data mining, data logging, and decision-support features. One or more features

might be used at the same time. Depending on the application requirements these features

can be extended to use different processing features.

 61

Data visualization consists of monitoring and mapping functions. Monitoring consists of

environment monitoring and yield monitoring functions. Mapping includes yield, soil-type,

and light mapping features.

System management includes sensor control, actuator control, and system control features.

Sensor control consists of several sub-features such as soil sensing, light sensing, weather

sensing, and water sensing. Also, system control includes vehicle control and UAV/Drone

control features.

Finally, external services feature contains externally communicated systems such as weather

forecast, finance services, and other external systems.

3.6 REFERENCE ARCHITECTURE FOR FMIS

Once we have developed the family feature models for IoT-based FMIS systems, the next step

is the development of the reference architecture for the potential systems. In fact, in the

literature several reference architectures have already been proposed for FMIS systems (Beck,

2001; Fountas, Wulfsohn, Blackmore, Jacobsen, & Pedersen, 2006; Nikkilä, Seilonen, &

Koskinen, 2010; Sørensen et al., 2010, 2011). However, in general these reference

architectures are either at a conceptual level and/or do not consider IoT aspects explicitly.

Hence, in this section, we will introduce the reference architecture for IoT-based FMIS. For

this we will use selected viewpoints of the “Views and Beyond” architecture framework

(Clements et al., 2011) including the decomposition viewpoint, Layered Viewpoint and

Deployment Viewpoint.

3.6.1 Decomposition View

The Decomposition view is used to show how system responsibilities are partitioned across

modules and how these modules are decomposed into sub-modules. Usually, the features in

the feature diagram are realized by one or more modules in the decomposition view. The

decomposition view of the architecture depicts the overall structure of the architecture which

is reasonably decomposed into modular implementation units. It is regarded as a fundamental

view of the architecture since it serves as an input for other views (e.g. work allocation view)

and helps to communicate and define the structure of the software. The proposed reference

decomposition view for the IoT-based FMIS system is given in Figure 3-10.

The modules in the decomposition view are colored to make the link with the earlier defined

features in the feature diagrams of FMIS. In essence, the decomposition view includes the

modules for data acquisition, data processing, data visualization, system management, and

modules for communication with external services. The decomposition view includes all the

possible modules for the various IoT-based FMIS applications. Note that, in this case, for each

feature in the earlier diagram one module has been defined in the decomposition view.

Further we have not depicted the lower level functionalities such as node discovery and

directory and name services. In section 3.3.7, we will explain the configuration of a specific

decomposition view from this reference decomposition view.

62

CoAP Data
Acuisition

ISOBUS Data
Acquisition

Interface with
other external

systems

Water Sensing

Environment
Monitoring

Image/Video
Processing

Soil Type Mapping

Data Mining

Actuator Control Yield Mapping

Data Logging
External Weather
Forecast Interface

MQTT Data
Acquisition

XMPP Data
Acquisition

AMQP Data
Acquisition

DDS Data
Acquisition

CAN Data
Acquisition

Soil Sensing Light Sensing Whether Sensing

Vehicle Control
UAV/Drone

Control

Decision Support

Light Mapping Yield Monitoring

Figure 3-10: IoT-based FMIS – decomposition view

3.6.2 Layered View

The Layered view is similar to decomposition view since it reflects the division of software into

units. The difference is that in a layered view, modules are structured into layers, which

interact based on a strict ordering relation. This means that if layer A is allowed to use layer

B, layer A’s implementation can use any public facilities of Layer B. However, layer B cannot

use any facilities of layer A.

Figure 3-11 shows the layered view for the IoT-based FMIS system. Here the dominant

decomposition is taken from the IoT layered view as it was given in Figure 3-1, and likewise it

includes the same layers of the IoT reference architecture. The specific details are primarily in

the higher-level layers including the business layer, the application layer and the data

acquisition layer. The FMIS business layer includes all required farm management operations

logic and workflows such as Fertility Management, Nutrient Management, Pest Management,

Weed Management, and Irrigation Management. The FMIS application layer realizes the

functionalities for FMIS Data Processing, Data Visualization, System Management, and

Communication with External Systems. The FMIS Data Acquisition Layer is for data adaptation

between IoT session layer and FMIS, i.e. this layer provides the connection with the session

layer protocols of the IoT. This layer includes IoT session layer interfaces such as MQTT

interface, XMPP interface, and CoAP interface. To support non-IoT systems, the module

conventional interface also takes place in this layer.

 63

Device Layer

Network Layer

Session Layer

Se
cu

ri
ty

 L
ay

er

M
an

ag
em

en
t

La
ye

r

FMIS – Data Acquisition Layer

MQTT
interface

XMPP
interface

AMQP
interface

DDS
interface

CoAP
interface

Conventional
interface

FMIS – Application Layer

Comm. with
External System

System
Management

Data VisualizationData Processing

FMIS – Business Layer

Fertility
Management

Nutrient
Management

Pest
Management

Weed
Management

Irrigation
Management . . .

Figure 3-11: IoT-based FMIS – layered view

3.6.3 Deployment View

The earlier defined views (decomposition and layered) focus on modeling the software

modules of the IoT-based FMIS. The deployment view elaborates on these views and is used

to show the allocation of the identified software modules to the hardware of a computing

platform. The deployment view of IoT-based FMIS is given in Figure 3-12. Hereby, data

processing module is deployed on the Central Cloud Server and Client (Farmer) nodes. The

other nodes are dedicated to sensors, actuators, and cameras. The main sensors in the

UAV/Drone and Satellite are cameras. Vehicles can have their own sensors, actuators, and

cameras. Hence, these items can be assigned to different nodes.

**

Client
(Farmer)

Client
(Farmer)

Central Cloud
Server

Central Cloud
Server

*

Vehicle
Sensor

Vehicle
Sensor

ActuatorActuator VehicleVehicle

*

Vehicle
Camera

Vehicle
Camera

Vehicle
Actuator

Vehicle
Actuator

 Sensor Sensor UAV/DroneUAV/DroneCameraCamera SatelliteSatellite

UAV/Drone
Camera

UAV/Drone
Camera

Satellite
Camera

Satellite
Camera

* * * *

* * * * *

* * *

Figure 3-12: IoT-based FMIS – deployment view

64

3.7 CASE STUDY EVALUATION

3.7.1 Case Study Protocol

Our primary objective is to evaluate the impact of the developed architecture design method

for IoT-based FMIS. To evaluate the defined research questions, we have applied the case

study research protocol as defined by Runeson and Höst (Runeson & Höst, 2008). Based on

this we have followed the five steps: (1) case study design (2) preparation for data collection

(3) execution with data collection on the studied case (4) analysis of collected data (5)

reporting.

Table 3-1 shows the case study design elements. We have applied the case study research

both for a retrospective case and prospective case. The retrospective case included a system

which was developed before and for which there was already an existing architecture and the

required design documents. The prospective case includes the system that is planned to be

developed.

Table 3-1: Case study design

Case Study
Design Activity

Retrospective Case Study
(Wheat Production)

Prospective Case Study
(Tomato Production)

Goal Comparing and assessing the method
feasibility and recommended application
architecture

Assessing the effectiveness of the
method
Assessing the practicality of the method

Research
Questions

RQ1. To which extent is the derived
application architecture in alignment
with the decision of the case study?

RQ1. To which extent does the method
support the architecture design of the
IoT-based FMIS?

RQ2. How practical is the method for
deriving the IoT-based FMIS application
architecture?

Background and
Source

- Official requirements documents
- Official architecture design documents
- Project Manager and System architects

- Official requirements documents
- Project Managers and System
architects

Data Collection Indirect data collection based on
document analysis (the design
documents and technical reports)

Indirect data collection and direct data
collection through semi-structured
interviews
(mix of open and closed questions)

Data Analysis Qualitative Data Analysis using Radar
Charts

Qualitative Data Analysis using Radar
Charts

The goal for the retrospective study was to compare the earlier results with the results that

are produced by the proposed method. In this way, it was aimed to evaluate the effectiveness

of the method. For the prospective case study, we aimed to evaluate both the effectiveness

and the practicality of the approach. The research questions were defined accordingly as it is

shown in the Table 3-2.

 65

Table 3-2: Questionnaire for the interview

Questions
Q1 With information at hand, are you planning to increase the adoption of IoT in the future?
Q2 Do you think that this reuse-based architecture design method is more effective than the

architecture design method that you adopted so far?
Q3 Do you think that the provided recommended application architecture is of high quality?
Q4 Do you think that the reference architecture is of high quality?
Q5 Is the method and the reference architecture sufficient to derive the application architecture?
Q6 Do you think that the method is practical?
Q7 Will you use the method again?
Q8 Do you think that the application of the method can provide a competitive advantage to the

organization?
Q9 Has the usage of the method enhanced your knowledge on IoT-based FMIS?
Q10 Do you have any suggestions for improving the method?
Q11 Do you have any suggestions for improving the family feature models?
Q12 Do you have any suggestions for improving the reference architecture?

For the adopted background and sources in the case study research we have used official

design documents and interviewed project managers and system architects. For the

retrospective case study, the requirements and design documents were available, whereas

for the prospective case study only the requirements document was available. For both case

studies we had contact with and interviewed the project managers and system architects. The

project manager had more than 20 years of experience in farm management system. The two

system architects had more than 15 years experienced in designing farm management

systems.

For both case studies we use a qualitative data analysis approach using radar charts. For the

retrospective case study, we used indirect data analysis by analyzing the requirements

documents, applying the method and comparing the results of the method with the existing

architecture. For the prospective case study, we used a direct and indirect data analysis

approach. For the direct data analysis, we conducted semi-structured interviews, in which a

list of predefined set of questions was asked to the project manager and software architects.

The predefined questions are listed in Table 3-2. The questions included a 5-point Likert scale

(strongly disagree to strongly agree) for the possible answers. Besides of this a further

explanation was asked for each question.

The interview was organized as follows:

1. First a meeting was scheduled with the project manager and system architects for the
initial interview. The goal of this interview was to capture the initial thoughts and
experience on IoT adoption.

2. In the second step we gave a short presentation about the goal of the developed method.
Also, we shortly explained the operation of the method as well as the final outcome.

3. In the third step we applied the method both for the retrospective case (section 3.7.2.1)
and prospective case (section 3.7.2.2).

4. In the fourth step, the researchers analyzed the architecture design that resulted from the
application of the method to the retrospective case and the prospective case.

66

5. In the fifth step, the researchers held a post interview with the subjects with the purpose
of identifying the impact of the method and its practicality.

6. In the sixth step, the researchers collectively assessed data from the initial interview,
report delivered by the method, and the post interview. The assessment was carried out
separately and later was discussed together to derive the lessons learned.

In the following subsection 3.7.2 we first discuss the results of the above process after the first

two steps. Subsequently in section 3.8 we discuss the evaluation in step 4, 5 and 6.

3.7.2 FMIS Architecture Design

In this section we describe the application of the approach to the retrospective cases study

(section 3.7.2.1) and prospective case study (section 3.7.2.2). As stated before, the application

architecture is derived from the family feature model and the reference architecture. As

described in section 3.4 and the approach in Figure 3-5 the FMIS development method

includes the development of the application feature model and the application architecture.

3.7.2.1 Retrospective Case Study: IoT-based Wheat Production

Figure 3-13 shows the feature model for smart wheat production that is derived after the

analysis of the existing case study.

This application feature model is obtained by reusing the feature model for FMIS given in

Figure 3-9 and selecting the features that are needed for this case study. As shown in the

figure, for this case study, MQTT session layer protocol of IoT is chosen. The main reason for

this was because open source implementations of MQTT could be used and MQTT supports

TCP and D2S communications which were considered necessary in the given context. Likewise,

MQTT feature of the IoT Data Acquisition will be used. Also, in order to support conventional

data acquisition with tractors used in wheat production ISOBUS and CAN communications

shall be supported. Almost all data processing and data visualization features are required for

smart wheat production. For this retrospective case study, we will integrate our FMIS with the

external weather forecast system only.

 67

Data Acquisition

IoT Data
Acquisition

External Services

Conventional Data
Acquisition

MQTT

ISOBUS

CAN

Data Processing

Data Visualization

System
Management

Image/Video
Processing

Data Mining

Decision Support

Data Logging

Sensor Control

Actuator Control

System Control

Soil
Sensing

Water
Sensing

Weather
Sensing

Vehicle
Control

UAV/Drone
Control

Monitoring

Mapping

Yield
Monitoring

Yield
Mapping

Soil Type
Mapping

Weather Forecast

IoT Based FMIS

Figure 3-13: Application feature diagram of FMIS for IoT-based smart wheat production –
Retrospective case study

Decomposition View

Based on the selected features as defined in Figure 3-13, the application architecture can now

be derived. As we have discussed before, the architecture of a system is usually described

using multiple different architecture views. For each of the required architectural view it is

indeed necessary to develop the application architecture view. Figure 3-14 shows the

decomposition view of the Smart Wheat Production that is obtained using the reference

decomposition view given in Figure 3-10. As explained above, MQTT, ISOBUS, and CAN data

acquisition modules will be used to support IoT communications. All the sub-features of the

system management feature of the family feature model will be used except light sensing.

68

Light sensing feature is used to obtain light maps in the greenhouses. Yield monitoring, yield

mapping, and soil type mapping modules will be used to implement data visualization

features. All data processing modules namely image/video processing, data mining, decision

support, and data logging modules will be implemented. Finally, a single external

communication interface: external weather forecast interface module will be implemented.

ISOBUS Data
Acquisition

Water Sensing

Image/Video
Processing

Soil Type Mapping

Data Mining

Actuator Control Yield Mapping

Data Logging
External Whether
Forcast Interface

MQTT Data
Acquisition

CAN Data
Acquisition

Soil Sensing Whether Sensing

Vehicle Control
UAV/Drone

Control

Decision Support

Yield Monitoring

ISOBUS Data
Acquisition

Water Sensing

Image/Video
Processing

Soil Type Mapping

Data Mining

Actuator Control Yield Mapping

Data Logging
External Weather
Forecast Interface

MQTT Data
Acquisition

CAN Data
Acquisition

Soil Sensing Whether Sensing

Vehicle Control
UAV/Drone

Control

Decision Support

Yield Monitoring

Figure 3-14: IoT-based FMIS – Decomposition view for IoT-based smart wheat production –
Retrospective case study

Layered View

Figure 3-15 shows the layered view of smart wheat production. Similar to the other views, this

view is also customized from the reference layered view diagram given in Figure 3-11. Here

the modules of the decomposition view are distributed over the layers in the layered view.

The modules MQTT Interface and Conventional Interface are allocated to the FMIS-Data

Acquisition Layer. The FMIS-Application layer includes the modules Data Processing, Data

Visualization, System Management and Communication with External System. The FMIS-

Business Layer includes Fertility Management, Nutrient Management, Pest Management,

Weed Management, and Irrigation Management. We assume that the other layers and the

modules in these layers are similar as defined in the reference architecture.

 69

Device Layer

Network Layer

Session Layer

Se
cu

ri
ty

 L
ay

er

M
an

ag
em

en
t

La
ye

r

FMIS – Data Acquisition Layer

MQTT
interface

Conventional
interface

FMIS – Application Layer

Comm. with
External System

System
Management

Data VisualizationData Processing

FMIS – Business Layer

Fertility
Management

Nutrient
Management

Pest
Management

Weed
Management

Irrigation
Management

Figure 3-15: IoT-based FMIS – Layered view for IoT-based smart wheat production – Retrospective
case study

Deployment View

The deployment view of the smart wheat production case study is given in Figure 3-16.

**

*

Vehicle
Sensor

Actuator Vehicle

*

Vehicle
Camera

Vehicle
Actuator

 Sensor UAV/DroneCamera

Hyper-
spectral
camera

* * *

* * * *

Central Cloud Server

ISOBUS Data
Acquisition

Water Sensing

Image/Video
Processing

Data Mining

Actuator
Control

Data Logging

External
Whether
Forcast

Interface

MQTT Data
Acquisition

CAN Data
Acquisition

Soil Sensing
Weather
Sensing

Client (Farmer)

Soil Type
Mapping

Yield MappingVehicle Control
UAV/Drone

Control

Decision
Support

Yield Monitoring

* *

Figure 3-16: IoT-based FMIS – Deployment view of IoT-based smart wheat production –

Retrospective case study

70

The required software modules given in the decomposition view are deployed to a central

cloud server and client (farmer). Since there is no satellite to be used it is omitted for this case.

A subset of the features from the ground sensors actuators, and cameras, on-the-go sensors,

actuators will be used. These will be deployed on vehicle, tractor or UAV/Drone nodes.

3.7.2.2 Prospective Case Study: IoT-based Tomato Production in Greenhouses

In this section, we will show the application of our approach to the prospective case study:

IoT-based smart tomato production in greenhouses.

Application Feature Model

Figure 3-17 shows the feature model for IoT-based smart tomato production in greenhouses.

This feature model is obtained again by reusing the feature model for FMIS given in Figure 3-9

and selecting the features for smart tomato production in greenhouses.

IoT Based FMIS

Data Acquisition
IoT Data

Acquisition

External Services

CoAP

Data Processing

Data Visualization

System
Management

Image/Video
Processing

Data Mining

Decision Support

Data Logging

Sensor Control

Actuator Control

Soil
Sensing

Light
Sensing

Water
Sensing

Weather
Sensing

Monitoring

Mapping

Yield
Monitoring

Environment
Monitoring

Yield
Mapping

Soil Type
Mapping

Light
Mapping

Weather Forecast

Figure 3-17: Application feature diagram of FMIS for IoT-based smart tomato production in
greenhouse – Retrospective case study

 71

For this case study, CoAP session layer protocol of IoT is chosen and CoAP feature of the IoT

Data Acquisition will be used. Since there will be no need to support conventional data

acquisition, ISOBUS and CAN communications will not be supported. All data processing and

data visualization features will be implemented for IoT-based smart tomato production in

greenhouses. As in the previous case, we will integrate our FMIS with just the external weather

forecast system only.

Decomposition View

Figure 3-18 shows the decomposition view of our second case study. This view is also obtained

using the reference decomposition view given in Figure 3-10. Here, for data acquisition only

CoAP is selected. System management functionalities except vehicle and UAV/drone control

will be supported. All data processing and data visualization modules will be implemented.

Similar to the first case study, a single external communication interface: external weather

forecast interface module will be implemented as well.

CoAP Data
Acuisition

Water Sensing

Environment
Monitoring

Image/Video
Processing

Soil Type Mapping

Data Mining

Actuator Control Yield Mapping

Data Logging
External Weather
Forecast Interface

Soil Sensing Light Sensing Whether Sensing

Decision Support

Light Mapping Yield Monitoring

Figure 3-18: IoT-based FMIS – Decomposition view for IoT-based smart tomato production in
greenhouse – Prospective case study

Layered View

Figure 3-19 shows the layered view of IoT-based smart tomato production in greenhouses that

is customized from the reference layered view diagram which is given in Figure 3-11. In this

case, only CoAP interface exists in the Data Acquisition Layer of FMIS Application Layer. As in

the first case study, all required precision farming applications are required in the Precision

Farming Application Layer.

72

Device Layer

Network Layer

Session Layer

Se
cu

ri
ty

 L
ay

er

M
an

ag
em

en
t

La
ye

r

FMIS – Data Acquisition Layer

MQTT
interface

CoAP
interface

FMIS – Application Layer

Comm. with
External System

System
Management

Data VisualizationData Processing

FMIS – Business Layer

Fertility
Management

Nutrient
Management

Pest
Management

Irrigation
Management

Figure 3-19: IoT-based FMIS – Layered view for IoT-based smart tomato production in greenhouse –

Retrospective case study

Deployment View

Deployment view of the IoT-based smart tomato production in greenhouses is given in Figure

3-20. The required software modules that are given in the decomposition view in Figure 3-18

are deployed to central cloud server and client (farmer). Since there is no satellite, vehicle,

and UAV/drone to be used in this case they are all excluded in the deployment view. Only

fixed sensors, actuators, and cameras will be deployed in this case.

**

*

Actuator

*

 Sensor Camera

*

Central Cloud Server Client (Farmer)

CoAP Data
Acuisition

Water Sensing

Environment
Monitoring

Image/Video
Processing

Data Mining

Actuator
Control

Data Logging

External
Whether
Forcast

Interface

Soil Sensing Light Sensing
Whether
Sensing

Yield
Monitoring

Soil Type
Mapping

Yield Mapping

Decision
Support

Light Mapping

Figure 3-20: IoT-based FMIS – Deployment view of IoT-based smart tomato production in greenhouse

– Retrospective case study

 73

3.7.3 Result of the Evaluation for the Retrospective Case Study

In the previous subsection, we have shown the application of the approach for both the

retrospective and prospective case studies. As defined in the case study protocol we analyzed

the effectiveness and practicality of the approach. The results of the interview are shown as a

radar chart in Figure 3-21. In this section we discuss this and the overall evaluation of the

retrospective case study.

Figure 3-21: Results of the interview presented in radar chart – Retrospective study

Effectiveness of the approach

For assessing the effectiveness of the approach, we analyzed the resulting application

architecture and carried out the post-interviews. For this retrospective study the application

architecture was before described in different document formats including MS PowerPoint

and MS Visio. Further we could access some design documents. It should be stated that the

design as such was not as we had properly defined according to a well-known viewpoint

approach and not properly designed. Nevertheless, we were able to analyze the existing

application architecture and compare it with the application architecture that we derived

using our own approach. For the comparison we identified three different relations (1)

convergence (2) deviation (3) absence. The convergence relation implies that the similar

architecture elements could be identified in both the architecture designs. Deviation implies

that the resulting application architecture had additional elements that were not defined in

the existing architecture. Finally, absence defines that the resulting application architecture

had missing elements that were defined in the existing architecture.

Overall, the result of our analysis showed that the resulting application architecture was quite

similar to the existing architecture. In general, the convergence was very high (>90%). We

0

1

2

3

4

5

1. With information at
hand, are you planning to
increase the adoption of

IoT in the future?

2. Do you think that this
reuse-based architecture
design method is more

effective than the…

3. Do you think that the
provided recommended

application architecture is
of high quality?

4. Do you think that the
reference architecture is

of high quality?

5. Is the method and the
reference architecture
sufficient to derive the

application architecture?

6. Do you think that the
method is practical?

7. Will you use the method
again?

8. Do you think that the
application of the method
can provide a competitive

advantage to the…

9. Has the usage of the
method enhanced your
knowledge on IoT based

FMIS?

74

could identify though several deviation and absence relations. With respect to deviation in

our resulting application architecture the modules UAV/Drone Control and External Weather

Forecast Interface were not defined in the existing architecture. On the other hand, we could

identify also some absence relations. For example, the resulting application architecture did

not have the module Finance Interface Module, Farmer Data Module, and Simulation Module

that were explicitly defined in the existing application architecture. This became also apparent

in the post-interviews. In the interview, the questions 2, 3, 4 and 5 relate directly to the

effectiveness of the approach. The architects provided a score of at least 4 for all these

questions indicating that the approach for this case was considered is largely effective. The

interview architects indicated “Although we could identify some deviations and absent

architectural elements, the resulting architecture matched our existing architecture very

closely. And this was done in a pretty short period of time. For us, this was quite convincing.”

Practicality of the approach

The practicality of the method was assessed though questions 6 to 9 of the questionnaire. The

architects gave at least a score of 4 for all these questions indicating that they were quite

satisfied with the practicality of the method. They added: “Usually designing the architecture

requires lots of effort. In particular for IoT-based FMIS it is needed that all the concepts are

well understood and the architectural decisions are made properly. With the reference

architecture and the family feature models we could direct see the possible elements and could

make the design decision quite quickly”.

Another interesting statement that was made was “The method helped us to think explicitly

about our design decision and to communicate this early on. For the retrospective case we

observed that we could have adopted other design decision which would perhaps be better.

For the prospective case we were already guided to make the proper decisions. The method

turned out really to be practical and useful”.

For the question “Will you use the method again?” the answers were positive again and both

architects indicated that they would use this method for the subsequent project. The

architects also had some suggestions for improvement. “The method adopts a family feature

model and reference architecture. It would be helpful to indicate that specific delta modules

are allowed when deriving the application architecture”.

3.7.4 Result of the Evaluation for the Prospective Case Study

The results of the evaluation for the prospective case study is shown in the radar chart of

Figure 3-22. The answers to the provided questions were positive and got a score of 4 or

higher. In the following we discuss again the effectiveness and practicality of the proposed

approach for the prospective case study.

 75

Figure 3-22: Results of the interview presented in radar chart – Prospective study

Effectiveness of the approach

For the retrospective case study, we compared the resulting architecture with the existing

architecture to assess the effectiveness of the approach. Further we used the results of the

interview as represented in the corresponding radar chart. For this prospective case study, we

could not compare the results with an existing application architecture since only

requirements document was provided and the application architecture had still to be

designed. We used the requirements document to identify the required application feature

diagram. Based on this, as discussed in section 3.2.2, we derived the application architecture.

The effectiveness of the application architecture and the overall approach was based on the

results of the interview.

As shown in the radar chart in Figure 3-22 again the scores for the questions 2 to 5 related to

effectiveness were at least 4. This indicated that the approach was effective for the given case.

The architects noted “We could easily follow how the application architecture was derived

based on our defined requirements. The resulting application architecture directly meets all

our defined requirements. After this process we will develop the system and evaluate it also at

the code level”.

Practicality of the approach

For assessing the practicality of the approach, we considered again the results of questions 6

to 10. Again, it appeared that these were all score with at least 4. Similar to the retrospective

case study the approach was found practical and easy to use. Similar statements as in the

retrospective case study were made. Some of the interesting different statements were the

following.

0

1

2

3

4

5

1. With information at hand,
are you planning to increase

the adoption of IoT in the
future?

2. Do you think that this
reuse-based architecture
design method is more

effective than the…

3. Do you think that the
provided recommended

application architecture is of
high quality?

4. Do you think that the
reference architecture is of

high quality?

5. Is the method and the
reference architecture
sufficient to derive the

application architecture?

6. Do you think that the
method is practical?

7. Will you use the method
again?

8. Do you think that the
application of the method
can provide a competitive

advantage to the…

9. Has the usage of the
method enhanced your
knowledge on IoT based

FMIS?

76

“For us designing the architecture usually takes lots of effort. The approach helped us to derive

application architecture in a very short period”

“The approach helped us not to derive the application architecture but also discuss the design

decisions which we found very useful”

“In the beginning we were quite skeptical about the approach and expected a more academic

exercise. However, the learning curve for the approach after the two hours introduction was

quite low. We will use the approach as well. We might add new modules to the reference

architecture which are dedicated to our company’s domain”.

3.8 DISCUSSION

The introduction of IoT has led to the notion of IoT-based FMIS to support the precision

farming goals. In this chapter, we aimed to integrate the IoT systems with the FMIS to align

both systems and create additional value that cannot be achieved if these are considered

separately. This integration effort leads to the enhancement of the current FMIS systems with

new modules that support the precision farming operations based on IoT. In our approach

these required new modules have been explicitly defined in addition to the traditional FMIS

modules. The overall approach as such provides an integrated view of the overall system to

better support the architecture design of IoT-based FMIS.

The method that we have discussed can be adopted for deriving IoT-based FMIS architecture

for multiple different systems. Hence, we focus on the whole product family of IoT-based FMIS

systems rather than on a single system. The notion of product families or product line

engineering and the corresponding systematic reuse is discussed in detail in the product line

engineering community (Clements, 2006). Our method is inspired and customizes the product

line engineering approach in which reference models are developed and applications are

developed by reusing these reference models. The reference feature diagram that we have

shown aims to target and integrate the domains of IoT and FMIS. The focus in this chapter was

primarily to illustrate the overall method. The feature diagrams as well as the reference

architecture design could be easily extended. We have discussed the architectures for IoT and

FMIS separately and illustrated the integration of both for supporting IoT-based FMIS systems.

The architecture can be extended in two ways. First of all, we could of course detail the

different views to provide an even more comprehensive result. This would require for example

to further detail the modules that are needed in the decomposition view. Secondly, we could

extend the architecture representations with other architecture views. We have chosen three

architecture views including decomposition view, layered view and deployment view. If

needed other architecture views in the architecture documentation process could be used as

well. Here again due to space limitations and the focus on the method rather than on the

detailed output of the case studies we have chosen for the given scope. The complete versions

of the feature diagrams as well the detailed implemented architecture designs have not been

shown due to confidentiality issues.

The reference architecture is designed in such a way that it is generic enough to derive

different concrete architectures. Nevertheless, like it is the case for all reference models, the

 77

reference architecture does not provide all the details. Likewise, a system which requires very

dedicated features that were not anticipated before would not be covered by the reference

architecture. Furthermore, our focus has been on illustrating the reference architecture and

the approach for deriving a concrete architecture. This appeared to be useful and practical.

However, we do not claim that the reference architecture is complete and further research

can be used to refine and enhance the reference architecture. For example, the device layer

and the related functionality have not been discussed in detail in this article. This could though

be easily added without loss of generality and applicability of the proposed approach.

Although, we have showed our approach for two important case studies in the smart agri-

food sector the method can be actually applied for the development of other FMISs. We have

not focused on the implementation of these systems. The reason for this is because of

confidentiality and the goal to prescribe the system-to-be in the prospective case study. For

the prospective case study, it is decided to develop first a simulation system to evaluate the

outcome of the method. We consider this as part of our future work.

In this chapter we have provided both the reference architecture for IoT-based FMIS and the

overall approach to derive a concrete architecture. The idea of systematic guidelines for

deriving a concrete architecture could also be used for enhancing the use of existing IoT-based

reference architectures.

Although our method has illustrated the development of IoT-based FMIS systems we could

even use the method for developing traditional FMIS systems. In that case we would omit the

IoT architecture part and just focus on the development of reference models for FMIS.

This chapter describes a domain-driven design approach to design IoT-based FMIS and support

the architect in deriving a concrete IoT-based FMIS architecture. Several other important

issues need of course to be taken into account to realize effective precision farming. Important

aspects include the acceptability of the provided IoT technology by the relevant stakeholders

including the end-users, development of cost-effective transition strategies, and farm

management and agricultural economics. Detailed discussion on economics and profitability

of IoT solutions in the agriculture domain have been addressed by multiple studies including

(T. W. Griffin & Lowenberg-DeBoer, 2005; Terry W. Griffin et al., 2018; Kutter, Tiemann,

Siebert, & Fountas, 2011; Lowenberg-DeBoer, Erickson, & Vogel, 2000; Schimmelpfennig,

2016; S. Wolfert, Ge, Verdouw, & Bogaardt, 2017).

Adopting IoT-based FMIS is not trivial and usually requires large economic investments. To

justify these up-front investments the return-on-investment both with respect to cost and

quality should be defined. Further, IoT-based FMIS requires changes to farm equipment or

totally new farm equipment, that the farmers are not used to. Hence, it is important to analyze

the acceptability and adoption scenarios, and provide clear transition strategies for the

efficient introduction, usage and maintenance of precision farming. Due to the concrete scope

of the thesis we have not further elaborated on these in this chapter.

We have applied a systematic case study research to validate our approach. Each empirical

study usually has to deal with a few potential threats to validity. In the following we discuss

these for our case study research shortly and describe the mitigation strategy for each threat.

78

Construct validity refers to what extent the operational measures that are studied really

represent what the researchers have in mind and what is investigated according to the

research questions (Yin, 2009). Table 3-3 shows various identified threats to construction

validity together with the counter measures.

Table 3-3: Threats to validity and applied counter measures in case studies

Threat Countermeasure
Inappropriate analysis of existing
requirements and architecture (for
retrospective case study)

To ensure that we have understood all the requirements we have
organized a meeting. The missing artefacts were reverse
engineering and discussed with the architects.

Incorrect interpretation of the
descriptions of the questions by the
interviewed persons

We have applied the principles described in Kitchenham and
Pfleeger (Kitchenham & Pfleeger, 2002) for constructing the
questions and answers. To ensure uniqueness of interpretations of
the questions, we have provided detailed explanations.

Incorrect interpretation of the
description of the answers by the
interviewed persons, and likewise the
wrong selection of answers

Same thing is also true for the answers of the questions. Especially
for the Likert-scale questions. In most of the cases, it is difficult to
differentiate for example between a “Strongly Agree” and “Agree”.
This was also one of the comments we have gathered in the trial
runs. To mitigate this per each Likert-scale question, we have tried
to define each scale as much as possible to avoid confusion.

Incorrect interpretation of the open
questions by the interviewed persons

To mitigate this threat, we have verified the interpretation of the
questions with interviewed persons.

Incorrect interpretation of the
researchers to the provided answers
of the interviewed persons

To mitigate this threat both researchers were present in the
interview to achieve observer triangulation.

Internal Validity relates to a causal relationship between treatment and the outcome. In the

case of retrospective case study, it has been relied on existing design documentation and

related literature. There could be missing information in the cases that would affect the

outcome. To mitigate this threat several iterations were applied to derive both the application

feature model and the application architecture. In the prospective case, the lack of proper

requirements documentation could have an impact on the derived decisions. To mitigate this

threat, this has been discussed with the interviewed persons in detail and several iterations

were adopted.

External Validity concerns the ability to generalize the results of the study. In the case study

evaluation both a retrospective and prospective case study were adopted which were also in

different domains. This was done to support triangulation and likewise extend the external

validity. The approach was considered effective for both case studies but due to the small

number of participants a stronger statement could not be provided. In the future work a

repetition of this study with multiple other case studies with an increased number of

participants would further justify the claims of this chapter and also support the quantitative

evaluation.

 79

3.9 RELATED WORK

There are several studies that discuss the adoption of internet technologies to support FMIS

and cope with complexity (Fountas et al., 2015; Kaloxylos et al., 2012; Kruize et al., 2016;

Murakami et al., 2007; Nikkilä et al., 2010; Sørensen et al., 2010; Steinberger, Rothmund, &

Auernhammer, 2009; J. Wolfert, Verdouw, Verloop, & Beulens, 2010). These studies have

focused on different issues including the adoption of service-oriented architectures for FMIS

(Murakami et al., 2007; Steinberger et al., 2009; J. Wolfert et al., 2010), the development of

data exchange standards for supporting interoperability over the internet (Schmitz et al.,

2009), the adoption and implementation of geographic information systems (GIS) (Seelan,

Laguette, Casady, & Seielstad, 2003). Although the main focus of these studies is integration

and operation of an FMIS over the internet the adoption of IoT is not explicitly considered.

In (Murakami et al., 2007), a distributed service-oriented reference architecture is proposed

for the development of information systems for precision agriculture. This web-based

approach is focused on communication between software services on a service bus. In

(Schmitz et al., 2009), the so-called AgroXML is proposed as a standardized language based on

XML, to be used for data exchange in FMIS. In (Nikkilä et al., 2010), a web-based approach is

defined to implement connectivity requirements arising from the internet and the

management of GIS data. In (Sørensen et al., 2010), a new model for FMIS is proposed to have

better information handling focusing on internal data connection, external information

collection, plan generation, and report generation in FMIS. In (Kaloxylos et al., 2012), an

architecture is proposed to provide support and integration of different stakeholders and

services, and interworking with the external services.

There are some studies in the literature related to web-based architectures (Chaudhary,

Sorathia, & Laliwala, 2004; Steinberger et al., 2009). These studies present architectures to

enhance the effectiveness of web-based decision support system on which data can be

requested for further use via a web portal and a web service interface.

Instead of full FMIS most architecture academic research on FMIS is restricted to individual

component of an FMIS such as predicting crop yield, implementing a special sensor, and the

usability of an FMIS (Nikkilä et al., 2010). There are actually few studies that explicitly discuss

FMIS architectures in a comprehensive manner, and only specific focus of the architecture is

considered instead. For example, in (Linseisen, 2001) , FMIS architecture is discussed by

focusing on an information system gathering and storing high accuracy GPS data. In (Beck,

2001), an architecture, based on implementing object databases, CORBA middleware, and

Java languages is proposed to provide easier development, maintenance, and easier

integration of information systems.

Advancements in the functionality of academic and commercial FMIS are presented in

(Fountas et al., 2015). This study investigates commercial and academic FMIS packages and

performs cluster analysis between them. The authors indicate that commercial packages tend

to target daily farm office tasks such as budgeting, finance, recordkeeping, machinery

management, and documentation. On the other hand, academic FMISs deal with compliance

to standards, automated data capture, and interoperability issues.

80

There are also studies that discuss traditional on-site FMIS software. However, these studies

mainly focus on the improvement of information integration of traditional FMIS and do not

take IoT technologies into account. For example, in (Verdouw, Wolfert, & Tekinerdogan,

2016), the authors propose an architecture to improve the standardization and integration of

data, application, and process. A service-oriented architecture (SOA) based solution is

proposed to improve the information integration implementing business process

management (BMP) concepts.

Related to IoT is the research on wireless sensor networks which is reviewed in (Aqeel-Ur-

Rehman, Abbasi, Islam, & Shaikh, 2014; Jawad, Nordin, Gharghan, Jawad, & Ismail, 2017).

These studies primarily focused on comparing sensors and communication technologies such

as ZigBee, Bluetooth, Wifi, Sigfox, Wibree, long range radio and GPRS. Although these

protocols might increase the number of possibilities to communicate data in IoT, these

researches do not directly offer architectural solution for FMIS.

This chapter has focused on applying IoT for FMIS in particular. However, IoT has also been

applied in different application domains. The application of IoT in agriculture has been

reviewed in (Verdouw et al., 2016). This review showed that IoT concept got attention of

scientific community in 2010 and since then number of researches are increased. Total 168

papers and books were reviewed in this paper. Top topics of these studies are food supply

chains, arable farming, general agriculture, greenhouse horticulture, and livestock farming,

and open-air horticulture including orchards respectively with respect to number of papers

published. On the other hand, it is stated that IoT applications mostly focus on basic

functionalities, including tracking, tracing, monitoring, and event management. It is concluded

that although IoT receives an increasing level of attention, it is still in its infancy in the

agriculture and food domain suffering from lack seamless integration and advanced solutions.

3.10 CONCLUSION

FMISs are being more and more applied in many different farming systems. Several

architectures for FMIS have been proposed in the literature but these are usually abstract,

and it is not trivial to derive the application FMIS architecture for the corresponding context

of the farm system. In this chapter we have provided an architecture design method for

deriving application architectures for various different FMISs. For this we have adopted the

reference architectures of internet of things (IoT) and FMIS and defined a novel IoT-based

FMIS. We have provided the architecture design method for deriving the customized

application FMIS architecture. To support the design of the application architecture we have

adopted a domain driven approach whereby we defined a family feature diagram representing

the common and variant features of IoT-based farm management information systems. We

have illustrated our approach using a systematic case study approach. Hereby we have

adopted both a retrospective and prospective case study including the IoT-based wheat

production and IoT-based tomato FMIS, respectively. The case study research showed that

the approach was both effective and practical. It appeared that both the reference

architecture that we have provided as well as the corresponding method appeared to be very

useful to derive the customized application FMIS architecture. Since in general developing IoT

 81

systems is not trivial adopting a systematic approach appears to be useful in not only the final

results but also the intermediate steps that support the communication between the

stakeholders and the overall guidance of the design decisions. The contribution of this chapter

can be useful for both researchers who do research on IoT-based FMIS as well as practitioners

who aim to architect different FMIS systems. The future work will apply our approach for other

farm management systems. Further focus will be on the architecture design and integration

of multiple different FMISs.

82

 83

4

PATTERN-BASED INTEGRATION OF

INTERNET OF THINGS SYSTEMS1

1 This chapter is based on the following accepted paper to be published in Proceedings of the 2018 International

Conference on Internet of Things:

• B. Tekinerdogan and Ö. Köksal, “Pattern-Based Integration of Internet of Things Systems”, International

Conference on Internet of Things (ICIOT), Seattle, USA, 2018.

84

 85

Abstract

The Internet of Things (IoT) is the network of physical devices embedded with sensors,

actuators, and connectivity which enables these objects to connect and exchange data. Cleary

the IoT has a pervasive impact on the society and an increasing number of systems are now

based on IoT. One of the key challenges in IoT is coping with the heterogeneous set of systems

and the integration of these systems in the same communication network. Several studies

have focused on this integration aspect and addressed this at different levels of abstraction.

Unfortunately, the different approaches are scattered and fragmented over the different

studies and it is not clear how to cope with the integration concern within a single IoT system

but also across multiple IoT systems that need to be integrated. To this end this chapter

provides a comprehensive and systematic approach for identifying the key integration

concerns in the IoT system architecture and describing the currently provided solutions. For

this we adopt a pattern-based approach in which generic architecture solution structures are

provided to these recurring integration concerns. We illustrate our approach for addressing

the integration of IoT-based systems within the context of smart city engineering.

Keywords: Internet of Things, Architecture Design Patterns, Smart City Engineering

4.1 INTRODUCTION

The Internet of Things (IoT) is the result of technological progress in many parallel and often

overlapping fields, including those of embedded systems, ubiquitous and pervasive

computing, mobile telephony, telemetry and machine-to-machine communication, wireless

sensor networks, mobile computing, and computer net-working. In essence, IoT combines the

concepts “Internet” and “Thing” and the provided definitions in the literature can be

interpreted how these have addressed these two concepts. What is important is that IoT adds

a new dimension “any-thing” to the current communication technologies (ICTs), which already

provide "any time" and "any place" communication.

To support the design of IoT systems, various reference architectures have been provided in

the literature. In general, IoT architecture is represented as a layered architecture with various

set of layers representing a grouping of modules that offer a cohesive set of services. Based

on the literature (Al-Fuqaha, Guizani, et al., 2015; Gazis et al., 2015; Palattella et al., 2013;

Pandya & Champaneria, 2015) we provide the reference architecture as shown in Figure 2-1.

The reference architecture consists of seven layers including Device Layer, Network Layer,

Session Layer, Cloud Layer, Application Layer, Management Layer, and Security Layer (Köksal

& Tekinerdogan, 2017a). Usually these layers can be distributed in different ways over the

different nodes in the IoT system. Using the IoT reference architecture various different IoT

systems can be designed. Each such IoT system integrates the various devices within the same

network. Yet, the scope of an IoT system is often within a particular scope and the integration

with other IoT systems or non-IoT systems is not a trivial task.

Cleary the IoT has a pervasive impact on the society and an increasing number of systems are

now based on IoT. One of the key challenges in IoT is coping with the heterogeneous set of

systems and the integration of these systems in the same communication network. Several

86

studies have focused on this integration aspect and addressed this at different levels of

abstraction. Unfortunately, the different approaches are scattered and fragmented over the

different studies and it is not clear how to cope with the integration concern within a single

IoT system but also across multiple IoT systems that need to be integrated. To this end this

chapter provides a comprehensive and systematic approach for identifying the key integration

concerns in the IoT system architecture and describing the currently provided solutions. For

this we adopt a pattern-based approach in which generic architecture solution structures are

provided to these recurring integration concerns. We illustrate our approach for addressing

the integration of IoT-based systems within the context of smart city engineering.

4.2 CASE STUDY: SMART CITY ENGINEERING

In this section, we define a case study that will be used to illustrate the problem statement

and the approach in further sections. The case study that we consider is within the context of

smart city engineering (Yoshikawa, Sato, Hirasawa, Takahashi, & Yamamoto, 2012). One of the

important applications in smart city engineering includes the development of smart traffic

system (STS). STS provides different capabilities such as traffic light management, congestion

detection, traffic regulation, shared parking platform, etc. The high-level reference

architecture of STS is depicted in Figure 4-1 (Tekinerdogan, Celik, & Köksal, 2018).

Weather
Sensor

Incident
Detector

Congestion
Detector

Speed
Camera

Traffic
Light

Car Truck Ambulance Taxi Bicycle

Network

Bicycle
Station

Parking
Lot

Bus

Figure 4-1: Conceptual Architecture for Smart Traffic System

Although the above case integrates many different entities it still deals with the design of a

single system, in this case an STS. Very often it is required though to integrate the STS with

other systems in the smart city engineering context, such as city energy consumption system,

the weather information system, the security system, the air quality control system, the smart

lighting system etc. (Figure 4-2).

 87

Smart Traffic
System

Weather
Monitoring System

Air Quality
System

Smart Office/
Building

City Energy
Consumption

How
to integrate?

City Security
System

Waste Management
System

Smart Lighting
System

Figure 4-2: Integration of different IoT systems in the context of Smart City Engineering

Integrating all these systems in a coherent manner is not trivial and requires careful

consideration. We will elaborate on this in the next sections.

4.3 INTEGRATION FRAMEWORK

The integration of IoT systems can be considered at different abstraction levels. We will

discuss the integration based on the four layers of the architecture as defined in Figure 2-1.

To illustrate this need for integration at different levels Figure 4-3 shows the integration of

different IoT systems.

As shown in Figure 4-3 we distinguish the following types of integration in IoT systems (1)

Session Layer Integration: (1a) Protocol Integration via IoT Gateway (1b) Protocol Integration

via Middleware, (2) Cloud Layer Integration, and (3) Application Layer Integration. For

describing the integration solutions, we will adopt a design pattern-based approach. A design

pattern represents a generic solution to recurring problems. Design patterns play an

important role in the engineering design process and can be applied at the different levels in

the lifecycle including the architecture design, detailed design, and the code. In this chapter,

we will mainly focus on architectural patterns which focus on the gross-level structure of the

system and its interactions (Bushmann, Meunier, & Rohnert, 1996). In the following, for each

level we will describe the possible architectural patterns that can be used in the integration of

IoT systems. Hereby we will also shortly indicate the advantages and disadvantages of the

adopted architecture design pattern.

88

IoT System

APPLICATION
INTEGRATION

DATA INTEGRATION
IN THE CLOUD

PROTOCOL
INTEGRATION

DEVICE LAYER

IoT Gateway /
Middleware

IoT
Application

IoT
Device

* * IoT
Cloud

* * * *

IoT System

APPLICATION
INTEGRATION

DATA INTEGRATION
IN THE CLOUD

PROTOCOL
INTEGRATIONDEVICE LAYER

IoT Gateway /
Middleware

IoT
Application

IoT
Device

* * IoT
Cloud

* * * *

IoT
System-of-System

Integration

IoT
Data Cloud
Integration

IoT Gateway/
Middleware
Integration

Figure 4-3: System Integration of IoT-based systems in different layers

4.3.1 Protocol Integration via IoT Gateway

Multiple session layer protocols exist in the IoT domain to integrate the different things in the

IoT as shown in Table 4-1 (Köksal & Tekinerdogan, 2017a). The issue of heterogeneous devices

adopting different communication protocols impedes the integration of these de-vices in the

same IoT systems. An IoT gateway acts as a portal between two elements of one or multiple

IoT systems, allowing them to share information by communicating between the adopted IoT

protocols. An IoT gateway, as such, bridges the gap between devices, cloud, and the computer

or mobile device providing a communication link between the devices and cloud.

Table 4-1: Selected characteristics of the session layer protocols

Characteristics AMQP CoAP DDS MQTT XMPP
Broker/Bus based Broker-based Broker-based Bus-based Broker-based Bus-based
Com. pattern Pub/Sub Request-Reply Pub/Sub Pub/Sub Pub/Sub
Message/Data centric Message Data Data Message Data
Real-Time No No Yes No Near RT
Source-Target S2S D2D D2D D2S D2S
Transport TCP UDP TCP/UDP TCP TCP

 89

Figure 4-4 shows the different gateway patterns used for integration of IoT systems. In the

classical protocol integration hardware/software gateways are used to format and translate

data coming from one protocol type to a different protocol type as given in Figure 4-5a. This

type of protocol integration is successful as long as the number of devices to be integrated is

not excessive. However, for a large-scale set of devices it is not easy to handle all the

heterogeneous protocols and technologies of the IoT and design a suitable gateway without

causing anomalies such as timing and collusion problems. With the possible addition of even

more protocols and technologies developed in IoT domain, this problem will become even less

manageable (Olivieri & Rizzo, 2015). In order to solve the scalability problems and to provide

more efficient gateways the following solutions are proposed in the literature.

Protocol 1
Gateway

Protocol 1 →Protocol 2
(fixed protocol translation)

Protocol 2

a) Traditional Gateway

PROTOCOL INTEGRATIONDEVICE LAYER

Protocol 1
IoT Device

Protocol 1 Gateway
Protocol1 →

Common Protocol

Protocol 2 Gateway
Protocol1 →

Common Protocol

Protocol n Gateway
Protocol1 →

Common Protocol

Protocol 2
IoT Device

Protocol n
IoT Device

*

*

*

1

1

1

b) Distributed Multi- Gateway

PROTOCOL INTEGRATIONDEVICE LAYER

Protocol 1
IoT Device

Gateway
Protocol 2
IoT Device

Protocol n
IoT Device

*

*

*

1

1

1

Central
Conversion

(Web Service)

Protocol 1→
Shared Protocol

Protocol 2→
Shared Protocol

Protocol n→

Shared Protocol

c) Web-Service Multi-Protocol Gateway

PROTOCOL INTEGRATIONDEVICE LAYER

Protocol 1
IoT Device

Protocol 2
IoT Device

Protocol n
IoT Device

*

*

*

1

1

1

Intelligent
Gateway

Protocol 1→
Shared Protocol

Protocol 2→
Shared Protocol

Protocol n→

Shared Protocol

d) Intelligent Gateway

Figure 4-4: Different gateway patterns used for integration of IoT systems

4.3.1.1 Distributed Multi-Gateway Approach

In this approach multiple gateways are used to cope with the different set of protocols in the

IoT system in Figure 4-5b (Olivieri & Rizzo, 2015). Hereby, the protocols are treated singularly

90

or as a subset of the selected protocols in each gateway. Each gateway translates its protocol

to a common shared protocol. The gateways themselves can communicate using the common

protocol. By combining gateways dedicated to different technologies multi-protocol scenarios

can be generated.

4.3.1.2 Web-Service Multi-Protocol

Instead of having a gateway for each protocol it is also possible to provide a central gateway

that is connected to a central conversion server. This so-called web-service multi-protocol

pattern is shown in Figure 4-5c (Olivieri & Rizzo, 2015). In this approach, gateways receive raw

data from sensors which are translated to a shared format by connecting with a web-service.

In contrast to the distributed multi-gateway there is only one gateway which does the

translation among the protocols.

4.3.1.3 Intelligent Gateways

For translating to different protocols, the gateway can be provided the required translation

functionality as shown in Figure 4-5d. In this case the gateway will not de-pend on a separate

central server such as in the case of web-service multiprotocol gateway but include the

functionality for translating the protocols. Hence, we can indicate this as an intelligent

gateway solution. This solution is, for example adopted by M. Diaz-Cacho et al. (Diaz-Cacho,

Delgado, Falcon, & Barreiro, 2015) and (Al-Fuqaha, Khreishah, Guizani, Rayes, & Mohammadi,

2015). In these solutions intelligent gateways convert the incoming protocol data to a

common shared protocol data which is in this case is extended MQTT. However, the intelligent

gateway can in principle also provide different kind of functionality and mapping of the

protocols.

4.3.2 Integration via Middleware

The alternative way of overcoming the protocol heterogeneity other than using a gateway is

the use of a middleware to be used as an abstraction layer. This pattern is shown in Figure 4-5.

PROTOCOL INTEGRATIONDEVICE LAYER

Protocol 1
IoT Device

Protocol 2
IoT Device

Protocol n
IoT Device

*

*

*

1

1

1

Middleware

Protocol 1→
Shared Protocol

Protocol 2→
Shared Protocol

Protocol n→

Shared Protocol
+

Additional
Functionalities

Figure 4-5: Integration of protocols using middleware

 91

This goes beyond the intelligent gateway solution that includes only functionality for

translation among the protocols. In case of a middleware solution also additional functionality

such as naming and directory services, security aspects, reliability and other functional and

quality services can be also provided. The primary aim of using middleware is to provide

seamless integration of systems by hiding the communication and various low-level

acquisition aspects (Calbimonte, Sarni, Eberle, & Aberer, 2014).

There are studies offering the use of an IoT middleware to integrate IoT-based systems in the

literature. A. Ngu et al. (Ngu, Gutierrez, Metsis, Nepal, & Sheng, 2017) provides a survey about

IoT middleware integration. Lomotely et al. (Lomotey, Pry, Sriramoju, Kaku, & Deters, 2017)

proposes a middleware to be used as an abstraction layer to address variation in device

semantic and protocols that limit the interoperability of the systems. The proposed

middleware uses enhanced environment features to match the appropriate communication

protocol to aid pushing data from sensors to cloud infrastructure.

4.3.3 Integration in the Cloud

Another integral component of the IoT is cloud computing. In general, three types of cloud

computing models are defined including Infrastructure as a Service (IaaS), Platform as a

Service (PaaS) and Software as a Service (SaaS) (Öztürk & Tekinerdogan, 2011; Tekinerdogan

& Öztürk, 2013; Tekinerdogan, Öztürk, & Doǧru, 2011). The IaaS model shares hardware

resources among the users. Cloud providers typically bill IaaS services according to the

utilization of hardware resources by the users. The PaaS model is the basis for the computing

platform based upon hard-ware resources. It is typically an application engine similar to an

operating system or a database engine, which binds the hardware resources (IaaS layer) to

the soft-ware (SaaS layer). The SaaS model is the software layer, which contains the business

model. In the SaaS layer, clients are not allowed to modify the lower levels such as hardware

resources and application platform. Clients of SaaS systems are typically the end-users that

use the SaaS services on-demand basis. For adopting cloud-based integration the different

clients are considered the individual systems in the overall System of Systems (SoS). The

integration pattern based on the IaaS, PaaS, or SaaS in the cloud layer is shown in Figure 4-6a.

An important benefit of IoT is the generation of data that can be further used to derive

information to support the decision-making process. The data is typically stored in the cloud

which can be used to support analytical and computational tasks on these data allowing

centralized access to the generated IoT services (Botta, De Donato, Persico, & Pescape, 2014).

Figure 4-6b shows the pattern for the data integration in the cloud. Hereby, the integration of

the systems is primarily based on the integration of the data from the different IoT systems.

Since each IoT system can use its own type of data platform and the corresponding data

structures and formatting, the integration will need to support data interoperability. For this

it is needed to adopt a common data format and platform that is adopted at a central cloud

node. Incoming data from different nodes will be typically mapped to a shared data format.

Subsequently a data fusion and/or data conversion process will be carried out to synthesize

the data. The cloud node will typically include analytics modules for processing the data for

descriptive, diagnostic, predictive or prescriptive analytics.

92

CLOUD INTEGRATIONAPPLICATION LAYER

Application 1

Application 2

Application n

*

*

*

1

1

1

Cloud

SaaS

PaaS

IaaS

a) Cloud integration based on

IaaS, PaaS or SaaS

CLOUD INTEGRATIONAPPLICATION LAYER

Application 1

Application 2

Application n

*

*

*

1

1

1

Cloud

Data 1→
Shared Data

Data 2→
Shared Data

Data n→

Shared Data
+

Data Fusion/
Analytics

b) Data Integration in the Cloud

Figure 4-6: Cloud-based integration of different IoT systems

4.3.4 Integration in Application Layer

Besides of integration at the gateway or middleware level we can also achieve the integration

of IoT systems at the application layer level. Much has been written about application

integration and likewise we will borrow from the earlier concepts to define the integration of

IoT systems. In the literature dozens of architecture patterns have been published regarding

application integration (Bass et al., 2003; Clements et al., 2010, 2011; Croes, 2015; David

Garlan, 1994; Fielding, 2000). In the following we will consider only those patterns that can be

directly used for supporting the integration of systems, and in the context of this chapter, in

particular the integration of IoT systems.

4.3.4.1 Peer-to-Peer

In the peer-to-peer architectural pattern, peers (IoT Systems) connect to each other directly,

and there is no intermediate component between the IoT systems. The conceptual model is

shown in Figure 4-7a. The elements in the system are autonomous, equal peers that are both

providers and consumers of data and processing power. Further, the primary content is

provided by peers, are there are no central components providing content. In addition, peers

can be added and removed from the system at any time.

4.3.4.2 Client-Server

The Client-Server architectural pattern is a very common and well-known pattern for network-

based applications. The conceptual model this pattern is shown in Figure 4-7b. Hereby some

systems play the role of Clients, while other adopts the role of a Server. One or multiple Client

components initiate a request to a Server, which then performs some computations and

responds to the Clients. Only clients can initiate communication, while servers only respond

to requests from clients. If needed server components can be clients to other servers. Clients

cannot communicate to each other. As we will see in the later sections this is different from

 93

the Event-Based and Streaming invocations since the Client decides itself when to initiate a

request.

4.3.4.3 Event-Based

The conceptual diagram of the event-based software architectural pattern is given in Figure

4-7c. This pattern is based on implicit invocations which are induced by events, i.e., when a

certain event takes place it triggers the function calls. Event can be defined as a significant

change in state. Typically, event-based systems are composed of event producers, event

consumers and event channels. The events are sent to the listeners over the network even

they are not on the same hardware. So, this pattern is well-suited for real-time applications,

message-oriented middleware, and point-to-point communications. Further, the event-based

pattern supports parallel execution of tasks and scalability.

4.3.4.4 Publish-Subscribe

This pattern is shown in Figure 4-7d. It consists of mainly three elements including Publishers,

Subscribers, and Topics. Publishers write to Topics and Subscribers read from the Topics on

which they are registered. One Publisher can write to many Topics and one Subscriber can

read from many Topics. Unlike the event-based pattern described above, the subscribers in

this pattern are all interested in a type of event happening without knowing the publisher of

the event. The adopted communication pattern provides space decoupling, time decoupling

and synchronization decoupling (Eugster et al., 2003). The decoupling of producer and

consumer participants increases scalability by removing explicit independencies between

communicating parties. Removing these dependencies together with the asynchronous

communication feature of this infrastructure makes this pattern well-suited for even large

scale IoT systems.

4.3.4.5 Service-Oriented Architecture (SOA)

The service-oriented architecture deals with composing applications by integrating

distributed, separately maintained components aiming vendor and technology in-

dependence. This integration composed of three essential loosely coupled parts which are

registry, service providers, and service requestors as shown in Figure 4-7e. In this integration

type, service publishes its description to the service registry that keeps the list of all services

with their locations and functionalities. When a service requester requires a service, it gets

the required information from the registry and communicates with the requested service over

a standardized communication.

This type of decoupled integration is especially suitable for heterogeneous distributed systems

supporting evolvability and interoperability. The disadvantage of this integration pattern is

the complexity.

4.3.4.6 Pipes and Filters

This pattern is composed of two basic elements: pipes and filters as shown in Figure 4-7f.

Filters are connected to each other by pipes. Filters transform the data received from another

filter into a new form and output this transformed data to the following filter. Pipes are the

94

routes of data streams. Although filters are independent of each other and might execute

parallel, they must use the data type agreed with pipe in order to communication takes place.

This simple communication mechanism makes the pattern scalable and reusable supporting

evolvability. On the other hand, this batch-type data processing cannot handle interactivity

well and latency causes performance degradation.

IoT System 1
Peer

IoT System 2
Peer

IoT System n
Peer

a) Peer-to-Peer

IoT
System 1

Client

IoT
System 2

Client

IoT
System n

Client
Server

b) Client-Server

IoT System

IoT System 1

IoT System 2

IoT System n

listen

listen

listen

c) Event-based

IoT System Node

1..*

 Domain Participant

Subscriber

Publisher

 DataReader

 DataWriter

 Topic

writes

reads

<0..1>

<0..1>

d) Publish-Subscribe

IoT Services
Registry

IoT Service
Requestor

IoT Service
Provider

request

publishlocate

response

e) SOA

IoT
System 1

IoT
System 2

IoT
System n

f) Pipes-and-Filters

Figure 4-7: Patterns for Integration at the Application Layer

4.4 OVERALL APPROACH

Table 4-2 shows the summary of the previously defined patterns that can be used to support

integration of the concerns in the IoT system. Obviously, it is clear that for integrating multiple

IoT systems many different issues need to be taken into account. To guide and support the

integration of the IoT systems we propose the process as shown in Figure 4-8.

 95

Identify and
model separate

IoT systems

Identify the key
concerns for the

integration

Identify the
architecture

design patterns

IoT System Designs

Apply the
architecture

design patterns

Evaluate the
integrated IoT

system

Architecture
Design Patterns

Integrated
IoT System

Figure 4-8: Patterns for Integration at the Application Layer

The first step in the process is the identification of the individual IoT systems that need to be

integrated. The second step in the process includes the identification of the concerns for the

integration. This will require checking the needs and the overall purpose for the SoS. Hereby

it is important to describe the added value that is created using the integration of these

systems. In the third step we identify the patterns that can be used for the integration. These

will include the patterns that we have described in the previous section. For this we will adopt

the criteria and consider the constraints, the advantages and disadvantages of the

corresponding patterns. Once the patterns have been identified we apply and compose the

patterns. In principle, more than one pattern can be applied which will require design decision

for the composition. In the final step we evaluate the overall architecture of the SoS with

respect to the initial objective and the stakeholder concerns in the SoS.

96

Table 4-2: Identified List of Patterns that can be used in the integration process

Layer Pattern Integration Approach

Session
Layer

Traditional
Gateway

Provides translation of a given protocol to a predefined protocol

Multi-Gateway Provides multiple gateways each of which can translate to a dedicated
protocol

Web-Service
Multi-Protocol

Provides a single gateway that can provide the translation of the
protocols to a common protocol through a central web server

Intelligent
Gateway

Provides a gateway that includes the required functionality for
translating to different protocols.

Middleware Connects devices within or across IoT systems and provides additional
services (e.g. naming and directory, quality of service, etc.)

Cloud
Layer

SaaS based Multiple IoT systems are tenants of the cloud and use the SaaS

PaaS based Multiple IoT systems are tenants of the cloud and use the PaaS

IaaS based Multiple IoT systems are tenants of the cloud and use IaaS

Data
Integration

Multiple IoT systems use data fusion and analytics as cloud services

Application
Layer

Peer-to-Peer Entities within an IoT system or across IoT systems communicate as
peers, that is, autonomously as data providers and consumers

Client Server One IoT system or another system is defined as a server which is used
by multiple other IoT systems.

Event-Based IoT elements listen to other IoT elements. In case of changes events are
triggered to the coupled IoT elements (system or devices)

Publish-
Subscribe

Multiple IoT systems communicate as participants that are interested
in defined topics. If topics change, the loosely coupled IoT systems are
notified which can take further actions.

SOA IoT service providers define and register their services to the IoT Service
Registry. The IoT service requestor can request and use the registered
IoT services.

Pipes & Filters Every IoT system is considered as a black box component that gets as
input data, which is then processed by the IoT system, and further
provided to the output. IoT systems can use data from other IoT
systems and/or provide data to other IoT systems. IoT systems can be
configured in multiple different ways but there is no shared state.

4.5 INTEGRATING THE SMART CITY ENGINEERING SYSTEMS

In order to illustrate our approach, we will consider the smart city engineering case study as

defined in Section 2. The provided solution is given in Figure 4-9. Here it is assumed that Air

Quality System and Weather Monitoring System reside at the same location, which are

integrated using a smart gateway that realizes the translation of the adopted different

protocols in these systems. The Smart Building and Smart Office are also considered in the

same location. Hereby, a multi-protocol gateway solution has been used in which multiple

gateways for different protocol translations are adopted. The Smart Traffic System, Smart

Lighting System, and City Energy Consumption system are considered to be connected over a

local area network and communicate through a middleware platform. The middleware

provides the translation services and additional network and communication services. All the

systems are integrated in the City cloud in which all the cloud integration patterns including

 97

SaaS, PaaS, IaaS and data integration is used. This is one solution in which different patterns

have been applied to meet the requirements. For different other requirements other patterns

can be used to integrate the IoT systems.

Weather
Monitoring System

Air Quality System

City Energy
Consumption

City Cloud (SaaS, PaaS, IaaS, and data integration)

Smart Lighting
System

Intelligent Gateway

Smart Office

Multi-Protocol Gateway

Smart Traffic
System

Smart Building

Middleware

Figure 4-9: Example pattern-based integration of smart city engineering systems

4.6 CONCLUSION

One of the key challenges in IoT is coping with the heterogeneous set of systems and the

integration of these systems in the same communication network. Based on a layered

reference architecture for IoT we have indicated that the integration can be at different layers

including session layer, cloud layer and application layer. Further we have shown that the

integration is typically carried out based on well-defined patterns, that is, generic solutions

structures for recurring problems. We have not provided any new integration solution but

rather systematically compiled and structured the integration patterns as defined in the

literature. Our study has resulted in 15 different patterns which can be used in different

combinations. To guide the application of the patterns we have provided a general process

represented using the BPMN. The process and the patterns have been successfully applied to

a smart city case study. Hence, we have shown that the systematic structuring of the

integration patterns is useful for developing IoT systems that need to integrate heterogeneous

elements. Although we have identified and described the key patterns in the literature, this

study could be further extended by considering other patterns. In our future work we will

consider other type of IoT reference architectures and based on these, enhance the set of

patterns that we have described in this chapter. Further, we will also consider IoT patterns

beyond the integration concern such as security and safety patterns.

98

 99

5

OBSTACLES IN DATA DISTRIBUTION

SERVICE MIDDLEWARE1

1 This chapter is based on the following published papers:

• Ö. Köksal and B. Tekinerdogan, “Obstacles in Data Distribution Service Middleware: A Systematic

Review,” Future Generation Computer Systems, vol. 68, pp. 191–210, 2017.

• Ö. Köksal and M. Akyuz, “Aspect Oriented Approach for Cross-Cutting Concerns in Data Distribution

Service Based Systems,” Journal of Science and Engineering, vol. 19, no. 55, pp. 43–56, Jan. 2017.

100

 101

Abstract

Data Distribution Service (DDS) is a standard data-centric publish-subscribe programming

model and specification for distributed systems. DDS has been applied for the development

of high performance distributed systems such as in the defense, finance, automotive, and

simulation domains. Various papers have been written on the application of DDS, however,

there has been no attempt to systematically review and categorize the identified obstacles.

The overall objective of this chapter is to identify the state of the art of DDS, and describe the

main lessons learned and obstacles in applying DDS. In addition, we aim to identify the

important open research issues. In this chapter, a systematic literature review (SLR) is

conducted by a multiphase study selection process using the published literature since the

introduction of DDS in 2003. We reviewed 468 papers that are discovered using a well-planned

review protocol, and 34 of them were assessed as primary studies related to our research

questions. We have identified 11 basic categories for describing the identified obstacles and

the corresponding research challenges that can be used to depict the state-of-the-art in DDS

and provide a vision for further research.

Keywords: Data Distribution Service, Middleware, Systematic Literature Review

5.1 INTRODUCTION

Distributed systems realize the distributed execution of software systems over multiple

resources to meet different requirements and quality factors such as performance,

interoperation, multi user support. A distributed system consists of multiple software

components that are located on networked computers, but act and run as a single system.

The computers that are in a distributed system can be connected by a local network and be

physically close to each other, or they can be connected in a wide area network and

geographically distant. Distributed systems offer many benefits over centralized systems,

including scalability, concurrency and redundancy.

To reduce the effort for developing distributed systems, common middleware architectures

have been introduced that provide common services such as name and directory services,

discovery, data exchange, synchronization, transaction services, etc. Middleware can be

classified in different ways including the integration type of middleware that defines the

different approaches for integrating the components in the system environment.

Based on the integration type middleware has been often classified as procedural middleware,

transactional middleware, object-oriented middleware, and message-oriented middleware

(Myerson, 2002). Procedure-oriented middleware uses a synchronous communication to

integrate the components. Transactional middleware provides transaction capabilities to

support the integration of systems. Object-oriented middleware is an object-oriented

extension of procedural middleware including additional support for inheritance, object

references and exceptions. Examples of object-oriented middleware are OMG Common

Object Request Broker Architecture (CORBA), Java RMI and Microsoft COM (Pritchard, 1999).

Finally, message-oriented middleware is a middleware that supports the integration of

components using messages. Two different types of message-oriented middleware (MOM)

102

can be distinguished: Message Queuing and Message Publish/Subscribe. In the message

queuing middleware, the communication among the components happens via a message

queue. Hereby, messages are stored in a specific queue upon which the clients can retrieve

messages from the queues they are interested in. The publish/subscribe middleware adopts

an event-driven approach based on publish/subscribe communication pattern. The

publish/subscribe pattern has gained broad attention in the development of loosely coupled,

scalable large-scale applications. In distributed systems with the publish/subscribe interaction

pattern, so-called subscribers express their interest in an event, or a pattern of events, and

are subsequently asynchronously notified of events generated by publishers. An important

and popular publish-subscribe middleware is the Data Distribution Service for Real-Time

Systems (DDS) that has been defined by the Object Management Group (OMG) to provide a

standard data-centric publish-subscribe specification for distributed systems (OMG, n.d.-a).

It appears that DDS has been applied to different domains including development of high

performance distributed systems such as in the defense, finance, automotive, and simulation

domains. In addition, various different DDS implementation approaches have been proposed

in the literature. In this context, various papers have been written on the application of DDS

each one addressing particular problem. However, there has been no attempt to

systematically review and categorize the obstacles with respect to the application of DDS. The

overall objective of this chapter is to identify the state of the art of DDS, and describe the main

lessons learned and obstacles in applying DDS. In addition, we aim to identify the important

open research issues. In this context we have conducted a systematic literature review (SLR)

(Kitchenham et al., 2009; Kitchenham & Charters, 2007) by a multiphase study selection

process using the published literature since the introduction of DDS in 2003. We reviewed 468

papers that are discovered using a well-planned review protocol, and 34 of them were

assessed as primary studies related to our research questions. Our study shows that DDS can

provide important benefits for realizing real-time distributed applications in various domains.

We have identified 11 basic categories for describing the identified obstacles and the

corresponding research challenges that can be used to depict the state-of-the-art in DDS and

provide a vision for further research.

The results of our study can be of benefit for both practitioners and researchers. Practitioners

who are interested in applying DDS can use the result of the SLR as a roadmap for finding and

analyzing the relevant approaches together with the lessons learned and decide about their

applicability. For researchers the results of our study provide an overview of the reported DDS

approaches together with the lessons learned, obstacles and research challenges in the DDS

domain. As such, the information extraction scheme we used to characterize the study context

and study findings can be used to guide the research activities of future studies in the DDS

domain.

The remainder of this chapter is organized as follows. Section 5.2 provides a short background

on DDS middleware. Section 5.3 describes the adopted research method used in this study.

Section 5.4 presents the results of the SLR. Section 5.5 presents the discussion and finally

section 5.6 concludes this chapter.

 103

5.2 DATA DISTRIBUTION SERVICE

In this section we describe the background for understanding and supporting the approach

that we present in this chapter. Detailed information on DDS can be found in (OMG, n.d.-a,

n.d.-b, n.d.-c). Based on these Figure 5-1 shows the conceptual model for the DDS specification

that is adapted from the DDS specification (OMG, n.d.-a).

Entity

Domain Entity
Domain

Participant

QoS Policy

TopicPublisher Subscriber

Data
Writer

Data
Reader

*.. 1
* .. *

* .. 1

* .. 11 .. *

* qos

Figure 5-1: Reference architecture for DDS-based systems (adopted from (OMG, 2015b))

In the DDS specification Domain is a logical concept which represents the set of applications

that can communicate with each other. Within the same DDS system multiple domains can be

defined indicating different sets of applications that communicate with each other. Fig. 1

shows the concepts related to a domain. A domain includes one or more Domain Participants

which represent the local membership of the application in the corresponding domain.

Domain Participant may participate in more than one domain at the same time. Each Domain

Participant may include one Publisher and one Subscriber. Publisher represents the objects

responsible for data production and updates. A publisher includes one or more Data Writers

that publish data of different data types. Subscriber is responsible of receiving published data

and making it available to the participant. A subscriber includes one or more Data Readers to

access published data in a type-safe manner. The communication between data readers and

data writers is established via Topics. A topic defines a unique name, data type and a set of

Quality Services to the published/subscribed data. DDS provides the ability to attach Quality

of Service (QoS) parameters to all these entities in order to specify the behavior of a service.

Examples of these QoS parameters are the rate of publication, rate of subscription, how long

the data is valid, etc. Applications communicate with each other based on topics.

Communication between applications can only be realized only if the topic names and the

defined QoS parameters match.

The conceptual model of Figure 5-2 defines the so-called Data Centric Publish/Subscribe

(DCPS) part of the DDS specification which is mandatory for DDS implementations. In addition

104

to DCPS the DDS specification also defines the Data Local Reconstruction Layer (DLRL) which

is an optional layer that may be built on top of the DCPS layer. The purpose of the DLRL layer

is to provide a seamless integration with object-oriented language constructs. Finally, an

additional specification DDS Interoperability Wire Protocol is provided, which is needed for

supporting the interoperability among different DDS implementations. For further details

about these specifications we refer to OMG DDS Specifications (OMG, 2015a).

Application

Data Local Reconstruction Layer (DLRL)

Data Centric Publish/Subscribe

DDS Interoperability Wire Protocol (DDSI)

UDP / IP

Figure 5-2: Layered architecture of the DDS with the DDS specifications ((OMG, 2015a))

5.3 RESEARCH METHOD

The overall objective of this chapter is to identify the state of the art of DDS, and describe the

main lessons learned and obstacles in applying DDS. For this we will apply a systematic

literature review (SLR) or systematic review for short which is a well-defined and rigorous

method to identify, evaluate and interpret all relevant studies regarding a particular research

question, topic area or phenomenon of interest (Kitchenham et al., 2009; Kitchenham &

Charters, 2007). The goal of an SLR is to give a fair, credible and unbiased evaluation of a

research topic using a trustworthy, rigorous and auditable method. The inception of

systematic reviews is based on the evidence-based concept which is devised in the field of

medicine (Dybå et al., 2005). The success of evidence-based medicine has triggered many

other disciplines to adopt a similar SLR approach, including for example psychiatry, nursing,

social policy, and education. Similarly, the concept of evidence-based software engineering

(EBSE) has been introduced together with guidelines for performing systematic literature

reviews in software engineering. There are several reasons for undertaking a systematic

literature review including summarizing the existing evidence concerning a treatment or

technology, identifying any gaps in current research in order to suggest areas for further

investigation, providing a framework/background in order to appropriately position new

research activities, examining the extent to which empirical evidence supports/contradicts

theoretical hypotheses, or assisting in the generation of new hypotheses.

The goal of EBSE is to improve the quality of software-intensive systems and provide insight

to stakeholder groups whether practitioners are using best practice or not. In our study we

aimed at identifying the obstacles regarding the DDS concepts. Different approaches have

been presented in the literature for conducting SLRs in different domains. We followed the

 105

complete guidelines for performing SLRs as proposed by Kitchenham and Charters

(Kitchenham & Charters, 2007). In the following subsections we discuss the applied research

method that is based on an extensive review protocol.

5.3.1 Review Protocol

Before actually conducting the review we first defined the review protocol (Kitchenham et al.,

2009). A review protocol describes the methods that will be used to carry out a specific SLR.

The basic activities of the adopted review protocol are shown in Figure 5-3.

Specification of
Research Questions

Definition of Search
Strategy

Identification of Study
Selection Criteria

Identification of Study
Quality Assessment

Evaluation of Quality
Assessment Scores

Development of Data
Extraction Method

Definition of Search Data
Synthesis Method

Definition of Presentation
Strategy of Findings

Figure 5-3: Activities under the review protocol

Firstly, we specified our research questions based on the objectives of this systematic review.

After this step we defined the search scope and the search strategy. The search scope defines

the time span and the venues that we looked at. In the search strategy we devised the search

strings that were formed after performing deductive pilot searches. A good search string

brings the appropriate search results that will come to a successful conclusion in terms of

sensitivity and precision rates. Once the search strategy was defined, we specified the study

selection criteria that are used to determine which studies are included in, or excluded from,

the systematic review. The selection criteria were piloted on a number of primary studies. We

screened the primary studies at all phases on the basis of inclusion and exclusion criteria. Also,

peer reviews were performed by the authors throughout the study selection process. The

process followed with quality assessment in which the primary studies that resulted from the

search process were screened based on quality assessment checklists and procedures. Once

the final set of preliminary studies was defined the data extraction strategy was developed

which defines how the information required from each study is obtained. For this we

developed a data extraction form that was defined after a pilot study. In the final step the data

synthesis process takes place in which we present the extracted data and associated results.

106

5.3.2 Research Questions

The most important part of any systematic review is to clearly and explicitly specify the

research questions. Research questions drive the subsequent parts of the systematic review.

Hence, asking the right question is crucial to derive the relevant findings properly. The more

precise the research questions are, the more accurate the findings will be. In this context,

research questions need to be meaningful and important to both practitioners and

researchers. As was previously stated no systematic review has been carried out yet on DDS-

based systems. Our particular aim in this study is the identification of obstacles and lessons

learned, and the future research directions in the domain of DDS. In accordance with these

objectives our primary research question can be concretely formulated as follows:

RQ 1. What are the identified obstacles in the DDS domain?

RQ 2. What are the solution directions for the identified obstacles?

5.3.3 Search Strategy

To answer the research question as defined in the previous section we have conducted an

extensive search of papers. In the following we describe the scope of the search, the applied

research method and the search string.

Our search scope included the papers that were published over the period of January 2003

and December 2015. The main motivation for 2003 was that DDS was introduced by OMG in

that year. We searched for papers in selected venues that publish high quality papers. We

used the following search databases: IEEE Xplore, ACM Digital Library, Wiley Inter Science,

Science Direct and Springer. These venues are listed in Table 5-1.

Table 5-1: Searched publication sources

Characteristics No. of Included Studies after
applying search query

No. of Included Studies after
exclusion criterion

IEEE Xplore 299 20
ACM 78 5
Wiley 2 0
Science Direct 87 9
Springer 2 0

Total 468 34

Our targeted search items were journal papers, conference papers, workshop papers, and

white papers. To search the selected databases, we used both manual and automatic search.

Automatic search is realized through entering search strings on the search engines of the

electronic data source. Manual search is realized through manually browsing the conferences,

journals or other important sources.

In our case finding search strings appeared not to be difficult due to the unique concepts in

DDS. The search string “DDS” resulted in many different studies that were not relevant to our

study (such as digital data synthesizer). As such we chose not to use the acronym but the full

name of the DDS standard. Hence, we used the search String “data distribution service” that

we actually used for searching in all the listed venues. Since there are no synonyms for data

 107

distribution service this search string appeared to be strong enough to identify all the relevant

primary studies. In addition to these automated searches we also conducted manual searches

both as a preliminary analysis and as a subsequent analysis after having observed the

publication channels returned by the search string. The manual searches appeared to be quite

useful since we retrieved some good-quality articles that an automatic search could not

reveal. The result of the overall search process after applying the search queries and the

manual search is shown in the second column of Table 5-1. As it can be seen from the table

we could identify 468 papers at this stage of the search process.

5.3.4 Study Selection Criteria

In accordance with the SLR guidelines (Kitchenham & Charters, 2007) we further applied

exclusion criteria on the large-sized sample of papers in the first stage. The overall exclusion

criteria we used are as follows:

• EC 1: Abstracts or titles that do not mainly discuss the provision of DDS

• EC 2: Abstracts or titles that do not propose an approach to DDS

• EC 3: Papers where the full text is not available

• EC 4: Duplicate publications found in different search sources

• EC 5: Papers written in different language than English

• EC 6: Papers that do not explicitly relate to or discuss DSS

• EC 7: Papers which are experience and survey papers

• EC 8: Papers that discuss only the application of DDS and do not critically reflect on the
DDS concepts

The exclusion criteria were checked by a manual analysis. After applying the exclusion criteria

34 papers of the 468 papers remained.

5.3.5 Study Quality Assessment

In addition to adopting general inclusion and exclusion criteria we also assessed the quality of

the resulting primary studies. Study quality has no widely-accepted definition, and usually the

quality evaluation approach consists of a set of questions for assessing the quality of the

selected primary studies. In this context, we adopted the summary quality checklists that are

proposed in (Kitchenham & Charters, 2007). We thoroughly reviewed the list of questions in

the context of our review and selected the ones that are aligned with our research questions.

The quality checklist is shown in Table 5-2. The quality items in the instrument are deployed

on a numerical scale because we intended to rank and classify the studies with respect to an

overall quality score. Therefore, we preferably employed a three-point scale (i.e. “yes” = 1,

“somewhat” = 0.5, “no” = 0) during the assessment. We selected this approach in alignment

with the review protocol of Kitchenham et al (Kitchenham et al., 2009) and similar SLRs. The

result of the assessment is provided in Appendix B – Assessment of Primary Studies. We used

the outcomes of quality assessment stage in order to assist data analysis and synthesis. We

examined whether quality differences are correlated with the results reported in different

kinds of primary studies.

108

Table 5-2: Quality Checklist

Questions
Q1 Are the aims of study clearly defined?
Q2 Are the scope, the context and the experimental design of the study clearly stated?
Q3 Does the report have implications for research and/or practice?
Q4 Are the variables used in the evaluation likely to be valid and reliable?
Q5 Are the measures used in the study quite explicit & aligned with the research aims?
Q6 Is the research process documented adequately?
Q7 Are the main findings stated clearly in terms of validity and reliability?
Q8 Is there an explicit statement of the limitations?

5.3.6 Data Extraction

In order to precisely extract and record the data retrieved from each of the 34 primary studies

both authors read the full-texts of these studies. The information needed to address our

research question and study quality criteria was collected by means of a data extraction form.

Actually, when the study review protocol became definite, the data extraction form was

composed in order to reduce the tendency to bias. Since we considered the quality

assessment stage as part of the data analysis, the information collected for both the quality

criteria and the review data was kept in the same form. The data extraction form was piloted

by both of the two researchers in consensus meetings so as to be consistent in subsequent

analysis. After independent data extraction, data from both researchers were compared and

disagreements were resolved by consensus. Basically, the data extraction form first included

standard information such as name of the reviewer, date of data extraction, study ID, title,

authors, journal, publication details, a brief summary and space for additional notes. Later on,

the form was extended to cover the data directly related to answering the research question

and for supporting the search for obstacles of applying DDS. Some of the fields were:

publication details, study aim, targeted domain, study settings, DDS solution used, research

method used, assessment approach, findings, constraints/limitations, implications for future

research and major conclusions. We recorded the places where the extracted information

existed within the primary studies in spread sheets. In order to support the process of

synthesizing the extracted data, the form was developed in a progressive way so that the

transition was performed seamlessly.

5.3.7 Data Synthesis

Data synthesis is the process of collating and summarizing the extracted data in a manner

suitable for answering the questions that an SLR seeks to answer. At this stage, we performed

a qualitative and quantitative analysis separately on the data extracted from the reviewed

papers. We investigated whether the qualitative results can lead us to explain quantitative

results. For example, a primary study involving an assessment of DDS technology could help

interpret other solutions quantitatively. We made use of tabular representation of the data

when feasible, and it enabled us to make comparisons across studies. Also, using the

quantitative summaries of the results, we inferred the implications for future search, and

consequently the existing research directions within the DDS domain.

 109

5.4 RESULTS

5.4.1 Overview of Selected Studies

The list of primary studies that we have identified is listed in Appendix A – Primary Studies for

Deriving Characteristics for DDS.

An overview of the primary studies according to publication channel is shown in Table 5-3. The

table shows the publication channels, the types of articles and the number of studies that fall

into the channels accordingly. The majority of the papers have been published in conference

papers. The journals, Journal of Systems and Software and Computer Standards and Interfaces

appeared to be the journals with the highest number of papers.

Table 5-3: Distribution of studies in terms of publication channel and occurrence

No Publication channel Type
No. of
studies

1 Journal of Systems and Software Journal 4
2 Computer Standards and Interfaces Journal 3
3 Int. Symposium on Computer and Communications Symposium 3
4 Distributed Event Based Systems Conference 2
5 IEEE Consumer Communications and Networking Conference Conference 2
6 Intelligent Solutions in Embedded Systems Workshop 2
7 Int. Conference on Big Data and Smart Computing Conference 2
8 Int. Conference on Generative Programming & Component Engineering Conference 2
9 Conference on Information Networking Conference 1

10 Distributed Simulation and Real-Time Applications Conference 1
11 EUROMICRO Conf. on Software Engineering & Advanced Applications Conference 1
12 European Conference on Software Architecture Workshops Workshop 1
13 IEEE Conference on Emerging Technologies and Factory Automation Conference 1
14 IEEE Congress on Services Conference 1
15 IEEE Int. Conference on Distributed Computing Systems Workshops Conference 1
16 IEEE Int. Symposium on Parallel and Distributed Processing Symposium 1
17 Int. Conference on Systems and Informatics Conference 1
18 Int. Symposium on Dependable Computing Symposium 1
19 Int. Workshop on Future Trends of Distributed Computing Systems Workshop 1
20 Journal of Parallel and Distributed Computing Journal 1
21 Space Mission Challenges for Information Technology Conference 1
22 The Journal of China Universities of Posts and Telecommunications Journal 1

In Figure 5-4 we present the year-wise distribution of the primary studies along with the

venues that they were published in.

Figure 5-4: Year-wise distribution of number of primary studies

0 0 0

1

0

2

3

1

4 4

6

7

6

0

1

2

3

4

5

6

7

8

2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015

110

5.4.2 Research Methods

It is very important that the primary studies explicitly define the used research methodology.

By analyzing and assessing the studies’ reported approaches, we can draw conclusions about

the strength of evidence within them. Table 5-4 provides the list of research methods used in

the selected 34 primary studies. There are 6 types of research methods that we looked for in

the review. The numbers in the table reveal that almost all of the primary studies are based

on single case study except studies B and R. Study [B] performed a benchmark for 3 different

DDS vendors including RTI, OpenSplice and OpenDDS, the authors only published the results

of RTI DDS (Connext). Study [R] compares just OpenSplice and RTI DDS.

Table 5-4: Studies by research methods

Research Method Studies Number Percent (%)
Not
described/Descriptive

- 0 0

Single case A, C, D, E, F, G, H, I, J, K, L, M, N, O, P, Q, S, T, U,
V, W, X, Y, Z, AA, AB, AC, AD, AE, AF, AG, AH

32 94.1

Multiple case - 0 0
Survey - 0 0
Experiment - 0 0
Benchmarking B, R 2 5,9

5.4.3 Methodological Quality

It should be noted that a systematic literature review is a methodologically rigorous review of

research results. For this purpose, using the quality checklist as defined in Table 5-2, we tried

to address methodological quality in terms of rigor, credibility and relevance together with

reporting quality. All in all, we dedicated the first two questions of the table for the quality of

reporting, the third and fourth question for relevance, the fifth and sixth questions for rigor

and the last two questions for assessing the credibility of evidence. Figure 5-5 shows the

histogram of reporting quality results that has been defined based on the first four questions

and the values in Appendix B – Assessment of Primary Studies. The figure indicates that most

of the primary studies (88.2%) are good according to reporting quality.

Figure 5-5: Reference Reporting quality of the primary studies

Figure 5-6 shows the relevance quality scores that are based on the evaluation of the third

and fourth questions focusing on the assessment of the relevance of our primary studies.

0 0 1
3

30

0

5

10

15

20

25

30

35

0 0.5 1 1.5 2

 111

58.8% of the studies (20 studies) were found to be directly relevant to the field, and 23.5% (8

studies) of them were considered relevant to some extent.

Figure 5-6: Relevance quality of the primary studies

We also assessed the rigor of studies and the trustworthiness of the findings. Figure 5-7

denotes the rigor of the research methods employed on a scale from 0 to 2. Considering the

scores 1.5 and 2 as first-rates, 28 of the primary studies (%82.4) established the validity of

their findings in a proper form. Eight studies are of top quality in terms of rigor.

Figure 5-7: Rigor quality of the primary studies

Our last two criteria were intended for the credibility of evidence that is the extent to which

the findings and the major conclusions of the primary studies are profoundly clear, valid and

suggestive. Figure 5-8 shows the histogram of quality scores based on credibility of evidence.

Five studies given in Figure 5-8 got the highest score in this rating scale, having reasonably

valid and meaningful findings and corresponding conclusions.

Figure 5-8: Credibility of evidence of the primary studies

0 0

6
8

20

0

5

10

15

20

25

0 0.5 1 1.5 2

0 0

6

20

8

0

5

10

15

20

25

0 0.5 1 1.5 2

0

3

7

19

5

0

5

10

15

20

0 0.5 1 1.5 2

112

Consequently, we can now finalize the overall methodological quality scores. Figure 5-9 shows

the total of quality scores in terms of four criteria: reporting, relevance, rigor and credibility

of evidence. 27 of the studies (79.4%) having scores equals or greater than 6 are relatively

good, and two studies are at the head of this group being high quality. 7 studies having scores

less than 6.0 are considered to be of poor quality. In conclusion, the histogram shows that the

majority of the primary studies were assessed to be good to a large extent.

Figure 5-9: Overall quality of the primary studies

5.4.4 Systems Investigated

This section outlines the results we extracted related to three main research questions. We

present the data extracted from the primary studies in the form of findings, separately for

each research question.

1) RQ 1. What are the identified obstacles in the DDS domain?

The names of the identified problems are given in Table 5-5. In the following Table 5-6 we
discuss the problems and solutions that we derived from the selected primary studies. The
overview of the identified 11 problems is given in. The first column presents the identified
studies, the second column the date of publication of the primary study; the remaining
columns refer to the identified problems (P1 to P11). The description of each problem is shown
at the right of the Table 5-5.

Table 5-5: Identified Problems

Name of the Problems
P1 Complexity of DDS configuration
P2 Performance prediction, measurement & optimization
P3 Implementing DDS
P4 DDS integration over WAN
P5 DDS using wireless networks & mobile computing
P6 Interoperability among DDS vendor implementations
P7 Data consistency in DDS
P8 Reliability in DDS
P9 Scalability in DDS

P10 Security
P11 Integration with Event Based Systems

0 0 0 0

6

1

4

6

9

6

2

0

2

4

6

8

10

3 3.5 4 4.5 5 5.5 6 6.5 7 7.5 8

 113

Table 5-6: Primary studies with identified problems of DDS

Study Year P1 P2 P3 P4 P5 P6 P7 P8 P9 P10 P11
A 2006 X
B 2008 X
C 2008 X
D 2009 X
E 2009 X
F 2009 X X
G 2010 X X
H 2011 X
I 2011 X X X
J 2011 X X
K 2011 X X
L 2012 X
M 2012 X X
N 2012 X
O 2012 X
P 2013 X X
Q 2013 X
R 2013 X
S 2013 X X
T 2013 X X
U 2013 X X
V 2014 X X X
W 2014 X
X 2014 X X X
Y 2014 X
Z 2014 X

AA 2014 X
AB 2014 X
AC 2015 X
AD 2015 X X
AE 2015 X X X
AF 2015 X
AG 2015 X
AH 2015 X

Total: 52 5 12 3 5 7 6 2 3 6 1 2

To discuss each identified problem in detail we further adopt feature diagrams (Czarnecki,

Kim, & Kalleberg, 2006) to provide an overview of the identified sub-problems and the

addressed solutions for the given problem category. A feature diagram is a tree with the root

representing a concept (e.g., a software system), and its descendent nodes are features.

Feature diagrams show both the mandatory and the variant features and, in a sense, can be

used to support ontological modeling of a domain. Variant features are usually represented

as optional or alternative features. A feature configuration is a set of features which describes

a member of an SPL. A feature constraint further restricts the possible selections of features

to define configurations. The most common feature constraints are “requires” and “mutex”

relations. In our overview the root node represents the problem category, while the features

represent the sub-problems, and optionally the sub-sub-features define the possible

solutions, if these were described. The overall legend (abstract syntax) to be used for modeling

114

the problem categories together with their sub-problems and possible solution directions is

given in Figure 2-3. In the following we discuss each problem separately.

P1. Complexity of DDS configuration

Although there exists an OMG’s specification to deploy and configure DDS based systems

(OMG’s Deployment & Configuration Specification (OMG, 2006a)) several authors have

indicated the difficulty of configuring DDS before it can be installed and used. The

configuration is usually not trivial and requires lots of time and effort due to various reasons

such as the many involved parameters, the complex interactions among the parameters and

the need for writing glue code. In fact, it has been shown that about 80% of DDS-related code

is associated with configuring the middleware. According to Otto et al. (Otte, Gokhale,

Schmidt, & Willemsen, 2011) over half of the DDS API that the developers must learn is

configuration related. Different solutions have been provided to cope with the complexity and

support the configuration of DDS.

In [J] the authors propose the automatic configuration of DDS middleware to reduce time and

effort of the configuration. For this, they propose a component-based approach and separate

concerns between configuration-based aspects of DDS application development and

configuration aspects. In this way the configuration of the DDS is not limited to source code

level configuration but can also be applied at deployment time. To realize this, the authors

provide an implementation of the OMG’s DDS4CCM (OMG, 2006b) which integrates

component-based DDS application development with the OMG’s Lightweight CORBA

Component Model (LwCCM) (OMG, 2012b). They use C++ templates to generate the

configuration and the glue code.

Study [S] proposes to adopt model-driven engineering and generative programming to reduce

the manual effort in generating a large number of relevant QoS configurations that can be

deployed and tested on a cloud platform. The study proposes a domain specific modeling

language (DSML) that supports modeling a DDS application for emulation and testing its

performance for various combinations of DDS QoS policies.

Study [K] provides the so-called ServiceDDS a DDS-based framework that combines different

standard technologies to allow real-time heterogeneous participants to interact dynamically

in distributed peer-to-peer architectures. ServiceDDS uses DDS to support dynamic distributed

interaction, XMPPP to provide Web access, and RTSJ as a real-time platform. The framework

uses service-topics as an abstraction and refinement of the standard DDS entities model.

Service-topics can interact with the DDS standard topics and because of the higher abstraction

level the complexity is better managed and the configuration and development time can be

reduced.

Study [U] presents the integrated CCM (iCCM), a framework for integrating DDS into the

CORBA Component Model (CCM), which is a standard-based programming model for

implementing component-based DRE systems. The framework does not need any

modifications to either the CCM or DDS specifications. Using the framework, the system

developers adopt a component-based development and are able to abstract away the low-

 115

level implementation details of DDS. In this way reuse is promoted and the deployment and

configuration complexities are managed.

Study [W] provides the tool Deploy-DDS that supports the deployment configuration of DDS

modules to the physical resources. The tool supports the selection and generation of

deployment architectures of DDS based systems, and as such can be used to perform an

evaluation during the design phase.

To sum up, the corresponding solutions to the complexity of DDS configuration those are

proposed in the identified primary studies include separation of configuration concerns from

application concerns, abstraction of lower level source code to components or services, and

the use of model-driven development approaches to automatically generate the parameter

values and the code.

Figure 5-10 shows the problem feature diagram for this configuration of DDS problem.

Managing DDS Configuration
Complexity

Services
[K]

Component-Based
[U]

Language/Paradigm
Approach

Tool Support
[J][S]

Model-Driven
Development

[S]

Design Principles

Separation of Configuration
concerns from application concerns

[J]

[1..*]

[1..*]

Figure 5-10: Feature diagram for P1 – Managing DDS configuration complexity

P2. Performance prediction, measurement and optimization

Performance is one of the important quality factors for DDS based systems that can be

addressed at different levels including design, implementation and operation of the system.

An important issue is to predict the performance of the DDS based system before its

implementation. This is because after the DDS has been implemented it is very difficult or

costly to adapt the system. After the implementation of the DDS measurement of the

performance is considered important to meet the quality of service requirements.

Study [S] focuses on the problem of performance prediction in the presence of diverse

combinations of QoS configurations. The authors claim that existing design-time formal

methods are limited in providing sufficient accuracy in prediction, tool support and the

understandability of the adopted design formalisms. They propose an approach in which the

system behavior is emulated and data on the QoS parameters is gathered by experimentation.

They provide a model-based performance testing framework to generate a large number of

QoS configurations that can be deployed and tested on a cloud platform.

Study [I] offers a bloom filter (BF) algorithm as an alternative to the Simple Discovery Protocol

(SDP) algorithm, which is the default DDS network discovery protocol for Real-Time Publish

116

Subscribe (DDS-RTPS). In the SDP each participant sends its endpoint data to every participant

in the domain, and on its turn receives endpoint data from all the other participants. In case

of a large network with thousands of endpoints, numerous discovery messages from all

participants in the same domain will be required. However, not all date is needed, and the

messages sent to uninterested endpoints would be wasted. Moreover, this process will also

require a large amount of memory to store all of the data in such cases. The adoption of the

BF algorithm helps to optimize the network discovery process and likewise decreases the

network and resource consumptions.

An extension of the Study [I] is Study [X] which proposes the usage of the SDPBloom algorithm

as an alternative to BF algorithm to further optimize the network discovery process. The

SDPBloom algorithm eliminates the duplicate data in Bloom Filters and ensures that each data

has only one representative key. The proposed algorithm provides better results than BF.

Although both Study [X] and Study [I] optimize the network discovery process these can

impede the interoperability since it deviates from the default implementation, that is, SDP of

the RTPS. This issue is considered as further research.

Study [AE] is another extension of Study [I]. This work uses another node discovery scheme

based on Parallel Dynamic Bloom Filters, namely SDP-Parallel DBF for the same purpose. The

proposed algorithm provides better delay time, number of messages and message size in

network by reducing unnecessary delay time spent restructuring Bloom Filters. Furthermore,

SDP-Parallel DBF offers computational speed-up through parallelization.

Study [M] provides an evaluation of the performance of the DDS-based middleware in the

wireless environment. For this several experiments have been carried out in the wired and

wireless LAN. Based on the experimental results a new bandwidth-aware design scheme is

proposed in which separate uplink and downlink communication model is used depending on

the number of Pubs and Subs. In this way, the performance of the DDS communication in

WLAN is enhanced.

Study [B] presents an assessment of the strengths and weaknesses of four commercial DDS

implementations deployed on an unmanaged setting as that in an enterprise setting that is

often characterized by an inter-administrative geographic scale, shared network channels, and

heterogeneous with unpredictable quality parameters such as end-to-end latency and load.

The study shows that if the application manages a small number of homogeneous resources,

this middleware performs timely and reliably. However, in a more general setting with

fragmentation and heterogeneous resources, reliability and timeliness rapidly degenerate.

The authors suggest self-adopting and self-configuration capability, efficient event routing

primitives, and management of heterogeneous resources.

Study [T] addresses the problem of assuring end-to-end quality-of-service (QoS) in Wide Area

Network (WAN) based distributed real time (DRE) applications. This is hard because the end-

system QoS mechanisms must work across different access points, inter-domain links, and

within network domains. Although DDS is widely used in the design of real time distributed

systems because of its explicit consideration of QoS parameters it does not provide any

mechanism for assuring end-to-end QoS of DRE systems. Moreover, it lacks mechanisms that

 117

holistically schedule different resources to realize end-to-end QoS. To address these

problems, the paper presents an approach to enhance the DDS by providing (1) an approach

for analyzing DDS scheduling capabilities to deliver DDS samples on an end-system using a

performance model, and (2) a policy-based framework called Velox to provide end-to-end QoS

provisioning for DDS based applications by controlling network resources, such as a bandwidth

and end-to-end delay.

Study [O] analyses DDS from the schedulability point of view. The authors focus on how DDS

aims to guarantee the real time behavior through the mechanisms of the standard. For the

analysis concepts defined in the Modeling and Analysis of Real-Time and Embedded systems

(MARTE) standard (OMG, 2008) has been into DDS. The authors conclude that the DDS is

suitable to perform the schedulability analysis but does not deal with issues to develop DRE

systems such as thread scheduling, which are left to the implementation. Based on the analysis

the authors propose extensions to DDS including the addition of an interface to select among

different scheduling policies available in the system as well as the definition of new QoS

parameters to allow the configuration of schedulable entities through the assignment of

specific scheduling parameters.

Study [R] provides a performance comparison of two different DDS implementations including

OpenSplice and RTI. The study reports on the advantages and disadvantages of both

implementations in terms of data delivery performance, CPU usage, and memory resource

usage. Based on the experimental study the authors provide guidelines related to the

performance issues in centralized, decentralized and federated DDS implementations. The

centralized appears to have the simplest architecture but has to cope with the risk of single

point of failure. Both OpenSplice and RTI use a distributed implementation, whereby

OpenSplice uses a federated approach and RTI a decentralized approach. The study indicates

that federated approaches perform better if the data size is small, but for larger data sizes the

decentralized approach seems to have better results with respect to CPU and memory usage.

Likewise, it is concluded that decentralized DDS approaches provide better scalability in case

of increased data sizes.

In Study [V] the authors focus on the standard “wire protocol” that allows DDS

implementations from multiple vendors to interoperate. The authors claim that the adopted

Simple Discovery Protocol (SDP) in the standard wire protocol (OMG, 2014) is resource

consuming for large scale systems. As such they propose the so-called Content-based Filtering

Discovery Protocol (CFDP) for which they also describe a prototype implementation.

Furthermore, empirical studies are presented which show that, compared to SDP, the

proposed CFDP is more efficient in large scale systems in terms of computing, CPU and

network usage.

Study [AC] provides a simulator for performance evaluation of large scale network systems

using DDS. The DDS simulator enables developers to measure basic metrics such as discovery

completion time, end-to-end message transfer delay, the number of data messages per

Domain Participant, and user data processing time. The simulator supports the analysis of the

strengths and weaknesses of DDS implementations from different vendors.

118

Study [AF] proposes “Rateless Code based Reliable Multicast (RCRM)” scheme instead of

“Automatic Repeat reQuest (ARQ) based error control in DDS. The proposed RCRM scheme

provides higher reliable multicast efficiency since ARQ based error control is effective if only

channel condition is moderately good. Furthermore, RCRM enhances the rateless coding

performance by using a heuristic algorithm to reduce the computational complexity. This

heuristic algorithm encodes transmit packages of publishers with a rateless code improving

throughout performance. When using rateless code, the subscribers send only one feedback

instead of sending ACK for each encoded packet. This approach is very efficient with respect

to ARQ based error control in which simultaneous feedback consumes network resources

quickly.

 In sum, the identified primary studies indicate that it is difficult to predict and measure the

performance of DDS-based systems due to the many different QoS parameters and related to

this the large number of possible configurations. For performance prediction the studies

propose to adopt emulation and experimentation to predict the QoS values for different

configurations. For performance measurement the identified solutions include the adoption

of explicit frameworks, benchmarking and tool support. Finally, for performance optimization

the identified solutions include the adoption of new discovery protocol algorithms, explicit

scheduling mechanisms, and new communication model.

The problem feature diagram for this problem is shown in Figure 5-11.

Performance Prediction and Management

Framework
[S][T]

Tool Support
[S]

Performance Measurement Performance Optimization

New Discovery
Protocol

[I][X][V][AE]

Explicit
Scheduler

[O][T]

Performance Prediction

Experimentation
[S][M]

Benchmarking
[B][R]

New Communication
Model [M]

Simulation
[S][AC]

New Multicast
Coding Scheme [AF]

[1..*] [1..*][1..*]

Figure 5-11: Feature diagram for P2 – Performance prediction, measurement and optimization

P3. Implementing DDS

DDS is a specification that was introduced after CORBA. Similar to CORBA it deliberately does

not provide an implementation, and likewise the implementation of the DDS is left to the

vendors. The DDS specification includes different compliance profiles including minimum

profile, content-subscription profile, persistence profile, ownership profile, and object model

profile. The minimum profile contains just the mandatory features of the DCPS layer. The

content-subscription profile, the persistence profile and the ownership profile include

optional features for the DCPS layer. The object model profile includes feature for the Data

Local Reconstruction Layer (DLRL).

Different vendors have provided different profile implementations of the DDS. In addition,

several studies have discussed the challenges and the approaches for providing the

 119

implementations of DDS. Table 5-7 shows the DDS implementation profiles of selected DDS

vendors. These vendors have been published on the OMG DDS portal site (OMG, n.d.-c). Four

of these including OpenDDS of OCI, Vortex (Open Splice) of Prism Tech, Connext of RTI, and

CoreDX of Twin Oaks are also referred to in the primary studies that we have identified. The

table characterizes the vendors with respect to the features that are defined by different OMG

DDS specifications.

Table 5-7: Implemented Profiles with respect to the selected DDS VENDORS

DDS Vendors DDS Product Type
Compliance to DDS Specification

DDS Profile DDSI Web Security X-Types
Gallium Intercom DDS Commercial Minimum Profile No No No No
MilSOFT MILSOFT DDS Commercial Full DCPS Yes No No No
Ocera Orte Ocera Commercial No Yes No No No
OCI OpenDDS Open Source Full DCPS Yes No No No
PrismTech Vortex Commercial Full DCPS + DLRL Yes Yes Yes Yes
RTI Connext DDS Commercial Full DCPS Yes Yes Yes Yes
Twin Oaks CoreDX Commercial Minimum Profile &

Ownership Profile
Yes No No No

In Study [J] the authors propose to apply a component-based implementation of DDS to

increase the abstraction level of the implementation and for addressing the deployment and

configuration requirements of modern distributed real-time and embedded systems (DRE). In

this way the authors aim to reduce the need for implementing large amounts of boilerplate

glue code that is necessary for the configuration of the DDS. They adopt the OMG’s DDS for

Lightweight Common Component Model CCM (DDS4CCM) specification and describe the

design and implementation of the so-called DDS4CIAO which addresses a number of inherent

and accidental complexities in the DDS4CCM standard. To address the accidental complexities

of the implementation of DDS4CCM they make use of several approaches including extensible

interface patterns in the form of mixins, template-driven code generation techniques, and

customization techniques.

Study [U] presents the integrated CCM (iCCM), a framework for integrating DDS into the

CORBA Component Model (CCM), which is a standard-based programming model for

implementing component-based DRE systems. The framework does not need any

modifications to either the CCM or DDS specifications. Using the framework, the system

developers adopt a component-based development and are able to abstract away the low-

level implementation details of DDS. Likewise, reuse is promoted and developers can focus

more on the business-logic of the application.

As stated in P1, Study [K] provides ServiceDDS which supports the implementation of DDS

services using so-called service-topics that provide an abstraction and refinement of the

standard DDS entities model. The abstraction using service topics eases the implementation

of the DDS and enables the additions of new features. In this context the authors claim that

implemented service topics can interact with the DDS standard topics combining different

standard technologies (such as web-access, scheduling support and real time performance.

120

To sum up, realizing the implementation of DDS is handled in both the identified primary

studies and the proposed DDS specifications. The primary studies provide novel solutions

which have not been (completely) addressed by the DDS specifications. These solutions apply

service-oriented development, component-based development or the current general-

purpose programming languages. In addition to these, DDS profile implementations and

additional specifications are provided. The feature diagram for this problem is shown in Figure

5-12.

DDS Implementation

Services
[K]

Component-
Based
[J][U]

Implementation
Approach/Language

Implemented
Profile

General Purpose
Programming

Language

Minimum
Profile

Content
Subscription

Profile

Ownership
Profile

Additional
DCPS

Features

DLRL
Feature

Additional
Specification

Web-Enabled Security X-Types

Persistence
Profile

[1..*]

Figure 5-12: Feature diagram for P3 – DDS implementation

P4. DDS integration over WAN

DDS has been mainly designed for Local Area Networks (LAN). However, as more systems

become geographically distributed and consist of multiple autonomous systems it has now

become necessary for DDS to operate over Wide-Area Networks (WAN). Several studies have

discussed the challenges for implementing DDS based systems over WAN.

Study [P] describes the requirements for DDS data-spaces interconnection and presents an

architecture that aims to realize these requirements. In particular, the study proposes a DDS

interconnection service (DDS-IS) capable of bridging DDS domains as well as adapting between

different data schemas. The approach is compliant with the latest OMG specifications and as

such does not require any modifications to DDS applications. Experimental results gathered

on a prototype implementation have shown that the impact of the service on the

communications performance is within the acceptable limits for most real-world uses of DDS

(latency overhead is of the order of hundreds of microseconds). Further, the provided service

seems to interconnect remote data-spaces efficiently and reduce the network traffic almost

N times, with N being the number of final data subscribers.

Study [Y] indicates that most Wide Area Networks (WAN) do not support multicast and UDP

transports, which may lead to difficulties when using DDS in WAN. This is because most ISPs

in WAN do not allow multicast and UDP flows. The study proposes the use of DDS routers for

preserving the semantics of the DDS in the context of WAN and providing an efficient data

distribution over WAN. The authors claim that the use of the proposed DDS router

outperforms the legacy unicast based communication in terms of scalability and robustness.

 121

Study [K] provides the ServiceDDS a DDS-based framework for supporting the integration and

dynamic interaction of real-time heterogeneous participants in distributed peer-to-peer

architectures. ServiceDDS participants are able to participate in a global data space using

different interactions mechanisms based on DDS or the Extensible Messaging and Presence

Protocol XMP (IETF, 2011). DDS offers a data-centric publish/subscribe model for real-time

distributed communications. XMPP is a communications protocol for message-oriented

middleware based on XML. To meet the demands of real-time systems in the Java

programming language RTSJ is adopted.

As stated in problem P2 Study [T] describes the problems with respect to the development of

distributed real time (DRE) applications over the Wide Area Network (WAN) using DDS. These

DRE systems are becoming more dynamic, larger in topology scope and data volume, and

more sensitive to end-to-end latencies, and security threats. Although DDS provides

mechanisms for imposing QoS between publisher and subscribers, it does not provide a

standard QoS enforcement in the context of WAN, and the required end-to-end QoS support.

For DRE system that spans multiple different interconnected networks, assuring end-to-end

quality-of-service (QoS) must be defined across different access points, inter-domain links,

and within network domains. For the integration over WAN the authors provide the Velox

framework to provide end-to-end QoS provisioning for DDS based applications. To support the

integration over WAN, the Velox framework implements an end-to-end path abstraction using

a Multi-Protocol Label Switching (MPLS) tunnel (Awduche, 1999). This tunnel enables

aggregating and merging different autonomous systems from one network domain to another

so that data crosses core domains more transparently. In case of large data rates/sizes the

network capacity can be easily overwhelmed and applications will not achieve their desired

QoS properties, despite the underlying QoS-related resource reservations. To cope with this

the Velox framework provides a specific Signaling and Service Negotiation (SSN) capability.

Study [Z] describes Proxy DDS that bridges multiple, isolated DDS domains over WANs and

describes the NetQSIP framework that combines DDS, Session Initiation Protocol (SIP) and IP

DiffServ to support end-to-end QoS over WANs. The authors claim that, the Velox framework

that is presented in their previous work (Study [T]) conducts QoS negotiation and resource

reservation in WANs to meet scheduling requirements. However, the Velox framework cannot

recover from failures dynamically and does not support dynamic QoS reconfigurations. As

such they propose combining Proxy DDS and NetQSIP. Unlike Velox, this solution does not

introduce new capabilities at the network layer but uses NetQSIP framework to provide

dynamic QoS management and Proxy DDS that can communicate with other proxies without

using any tunneling. The experimental results described in the study revealed significant

improvement in dynamic resource reservation and effective end-to-end QoS management.

Study [AA] addresses the problem of on-demand dynamic assignment of QoS parameters to

DDS distribution services. This is important to avoid an over provisioned network which results

in unnecessary network resource wastage. To this end the authors propose a communication

architecture that combines DDS with Software Defined Networks (SDN).

122

SDNs separate the network control and forwarding functions, enabling the fine grained and

on demand programming and reprogramming of network behavior. This also allows the

abstraction of the underlying infrastructure from applications and network services.

The feature diagram for this problem is shown in Figure 5-13. In sum, although DDS is designed

to operate in LAN, one of the most popular DDS research topic is the DDS Integration in WAN.

The standard DDS specification uses multicast UDP protocol which is not supported in a WAN.

To solve these WAN related DDS problems two basic solution directions have been provided

including integration approaches and solutions for quality related concerns.

DDS Integration
over WAN

MPLS
Tunneling

[T]

DDS
Router
[Y][Z]

Integration Approach
for DDS domains

End-to-End QoS
[T]

SDN
Network

[AA]

Admission Control
[T]

Security
[T]

Quality

Dynamic QoS
[AA]

DDS
Interconnection

Service [P]

[1..*]

Figure 5-13: Feature diagram of P4 – DDS integration over WAN

P5. DDS using wireless networks and mobile computing

As it is stated in P4, DDS has been mainly designed for Local Area Networks (LAN). On the

other hand, similar to Wide Area Networks (WAN), there is a great trend to use DDS in both

wireless networks and mobile computing. Several challenges are addressed for integrating and

applying DDS in wireless networks and mobile computing.

Study [L] provides an approach for implementing DDS in Wireless Sensor Networks (WSNs)

based on the Sensor-Network Publish-Subscribe protocol. This is provided as an alternative to

the conventional Real Time Publish-Subscribe protocol that is used in the mainstream

implementations of DDS. SNPS seems to perform better compared to resource usage of RTPS

implementations. SNPS has been implemented for several wireless and wired network

protocols such as (ZigBee, 6LoWPAN, and Ethernet/UDP/IP) on diverse embedded sensor

node and PC platforms.

As described before, Study [M] proposes a new bandwidth-aware design scheme for the usage

of DDS in Wireless Local Area Network (WLAN). Hereby, it is suggested to use separate uplink

and downlink communication model depending on the number of Pubs and Subs. In this way,

the performance of the DDS communication in WLAN is enhanced.

Study [N] proposes a novel cloud monitoring and management architecture based on the DDS

standard. The focus of the study is the integration of mobile devices in the cloud. These

devices are characterized by limited resources and are typically focused on optimizing energy

usage. Hence, applications that require large amounts of processing power and resources

cannot be easily ported to and deployed on these mobile devices. By moving resource-

demanding tasks from the mobile device to the cloud computing infrastructure the problem

 123

can be solved to some extent. However, this task-oriented scenario requires that mobile

offloaded tasks require high resource usage for a relatively short amount of time. This is in

contrast to the current typical service-oriented scenario of the cloud, which service instances

over long-lasting processes. To overcome these problems, the study describes a proposal

based on the DDS architecture to support the task-oriented and decentralized cloud

management scenarios.

Study [E] describes a lightweight and efficient DDS implementation, called TinyDDS, for WSNs.

The study focuses on the inherent trade-offs among conflicting objectives such as data yield,

data fidelity and power efficiency in the pub/sub scheme in WSNs. To address these issues

TinyDDS adaptively performs event publication by balancing conflicting objectives according

to dynamic network conditions such as noise level and dynamic node addition. TinyDDS uses

its self-configuring event routing protocol and a multi-objective optimization mechanism to

perform the adaptation of event publications according to the dynamic network conditions.

Study [F], proposes an interoperable publish/subscribe communication in WSNs based on the

TinyDDS that is presented in Study [E]. TinyDDS simplifies the development of

publish/subscribe applications and provides an efficient implementation with respect to

memory footprint and power consumption in WSNs.

Similar to Study [E], Study [AG] proposes a customizable DDS implementation (sDDS) for WSNs

and embedded systems with limited resources. In order to make DDS applicable to resource

limited environments the authors used a model-driven software development (MDSD)

process to tailor and minimize the middleware functionality for each sensor node, depending

on the purpose of the node in the network, the resource capabilities of the hardware and the

deployment structure. The authors claim that sDDS can be used for a wide range of target

systems from 8 bit to 32 bit controllers. Furthermore, it is also ported to different embedded

platforms such as RIOT-OS, FreeRTOS, Contiki and etc.

Study [C] addresses the need to satisfy various constraints such as efficiency, memory

footprint and power consumption in WSNs. This often leads to tightly coupled designs and

likewise WSN applications lack reuse and are difficult to adapt the non-functional properties

(e.g., data routing, concurrency, data aggregation and event filtering). The study presents the

pluggable framework in TinyDDS which decouples various non-functional properties and

enables the development of flexible and re-usable WSNs applications. TinyDDS adopts the

Layer design pattern to separate and modularize the different functionalities into different

layers.

The feature diagram for this problem is shown in Figure 5-14. As explained above, DDS has

been primarily designed to operate in LAN. Similar to adopting DDS in a WAN context,

adopting DDS in wireless networks and mobile computing is a relevant research topic in DDS.

We can identify the following solution directions: Sensor Network Pub-Sub Protocol (Study

[L]), Cloud Management Architecture (Study [N]), Lightweight DDS Implementation (Study [E,

F, AG]), Bandwidth Aware Networking (Study [M]), and Pluggable Framework (Study [C]).

124

DDS Integration with Wireless Networks
and Mobile Computing

Sensor Network Pub-
Sub Protocol

[L]

Cloud Management
Architecture

[N]

Bandwidth Aware
Networking

[M]

Lightweight DDS
Implementation

[E][F][AG]

Pluggable
Framework

[C]

Figure 5-14: Feature diagram for P5 – DDS wireless networks and mobile computing

P6. Interoperability among DDS vendor implementations

The OMG’s DDS standard provides both programming language interoperability and protocol

interoperability (OMG, 2014). Programming language interoperability is the ability to

interoperate applications written in different programming languages. Protocol

interoperability is the ability to interoperate applications and access network applications with

different network protocols. Different studies have focused on tackling interoperability

challenges in DDS.

Study [F] focuses on the integration of wireless sensor networks (WSNs) in which the

interoperability has not yet been fully addressed. The authors propose an implementation of

the DDS, called TinyDDS which customizes standard data types, data representation and

session protocols to realize programming language interoperability and protocol

interoperability. TinyDDS supports programming language interoperability by implementing a

mapping of the OMG IDL (Interface Definition Language) to nesC and provides a set of DDS

APIs in nesC. This allows different applications to use different languages with the same DDS

APIs for event subscription and publication. TinyDDS also supports protocol interoperability

by making publish/subscribe communication interoperable between WSNs and access

networks.

As stated before, Study [P] proposes a DDS interconnection service (DDS-IS) capable of

bridging DDS domains as well as adapting between different data schemas. DDS-IS provides

data model compatibility and confidentiality communication between data models with

dissimilar data models (different topic names or data types). The study also addresses the

need for establishing QoS requirements for bridged data-spaces. The study claims that the

approach guarantees data delivery between different data spaces with the required QoS.

The OMG’s DDS standard provides protocol interoperability among different DDS

implementations by introducing the real-time publish/subscribe (RTPS) protocol. All vendors

must implement at least the Simple Discovery Protocol (SDP) to support RTPS. SDP enables

each participant to send its endpoint data to each participant and receive endpoint data from

all other participant. In this context, Study [I], Study [X] and Study [V] propose to adopt

alternative algorithms to the standard SDP in the RTPS protocol. Study [I] proposes the Bloom

Filter algorithm instead of SDP. Study [X] extends this work and proposes the Modified

Counted Bloom Filter Algorithm. Similarly, Study [AE] proposes Parallel Dynamic Bloom Filters

(SDP-Parallel DBF). Study [V] proposes the Content-based Filtering Discovery Protocol. In all of

 125

these studies, the authors claim that SDP is inefficient and according to their test results the

newly proposed algorithms outbound SDP.

Figure 5-15 shows the feature diagram with the identified obstacles for DDS Interoperability.

Summarizing, although OMG’s RTPS (DDSI) specification provides interoperability between

the implementations of different DDS vendors, there are still open challenges which need

attention. The solution directions have focuses on programming language interoperability,

protocol interoperability, and data schema interoperability.

Interoperability

Programming Language
Interoperability

[F]

Data Schema
Interoperability

[F]

DDSI RTPS (SDP)
Bloom Filter

Algorithm
[I]

Modified Bloom
Filter Algorithm

[X]

Modified Counted Bloom
Filter Algorithm

[V]

Protocol Interoperability
[I] [X] [V][AE]

Figure 5-15: Feature diagram for P6 – DDS interoperability

P7. Data consistency in DDS

In distributed computing, one of the important challenges is ensuring integrity and consistency

of data under hard real time constraints. Several studies have discussed the challenges related

to data consistency within DDS. In principle we can identify data consistency approaches

applied at (re)configuration time and during operation time.

Study [A] provides an analysis of the DDS specification with respect to its support for the

correctness preservation during reconfiguration of DDS-based systems. The analysis discusses

three aspects of correctness including structural integrity, mutually consistent state and

application state invariants. The study concludes that the DDS architecture and the QoS-

controlled behavior automatically ensure correctness preservation during reconfiguration.

Study [Q] addresses the problem of data inconsistency at operation time in the context of

distributed data consistency management. Hereby no center node is present that is

responsible for forwarding data packets and maintaining the communication data. Instead a

data exchange model is adopted whereby multiple nodes can write data to the same topic.

When a new data reader joins the reader set it should include the data that is consistent with

the other nodes in the reader set. However, in case of node failures the requested data might

not be delivered and as such the data consistency cannot be ensured. To overcome this

problem study [Q] implements a real-time service bus (RTSB) using the so-called Paxos

algorithm to solve the data consistency problem in DDS.

126

Summarizing, the solution directions for the Data Consistency obstacle focus on correctness

preservation during reconfiguration, and lack of center node as shown in feature diagram for

this obstacle in Figure 5-16.

Data Consistency

Structural
Integrity

[A]

Mutually Consistent
State

[A]

Application State
Invariants

[A]

Correctness Preservation
During Reconfiguration

Real Time Service Bus
(Paxos Algorithm)

[Q]

[1..*]

[1..*]

Figure 5-16: Feature diagram for P7 – Data consistency in DDS

P8. Reliability in DDS

Within DDS a reliability protocol is defined that can be tuned for optimum performance on a

per data stream basis (OMG, n.d.-c). The reliability protocol needs to be configured and tuned

using QoS policies including Reliability, History, Resource Limits, DataWriter Protocol, and

DataReader Protocol. It is expected that the particular reliability requirements for this

parameter need to be provided in the implementation of DDS based systems. In general,

reliability is realized through fault prevention, fault detection, fault tolerance, and fault

forecasting. Several studies have discussed the challenges and proposed approaches to

support reliability in DDS related to reliability.

Study [D] proposes a DDS-compliant data dispatching infrastructure to reliably disseminate

events and to balance data distribution load. The dispatch mechanism puts a routing substrate

between publishers and subscribers to detect possible faults in other peers, and to

dynamically recover and reconfigure the system when a peer crashes or a new peer arrives.

Since the proposed solution for fault-tolerance is fully compliant with the DDS standard, it can

be deployed over already installed DDS systems.

Study [H] and Study [G] aim to evaluate the robustness of DDS middleware using robustness

testing and fault injections in the implemented DDS. A tool JFIT (Java Fault Injection Tool) is

provided that can automatically inject external faults to DDS API functions without altering

the source code but modifying the system’s state. The tool has been proposed to accelerate

tests execution and to analyze the tests outcomes.

The feature diagram for this problem is shown in Figure 5-17. In sum, although DDS provides

some reliability related QoS policies, these are not adequate to address all reliability related

problems in DDS based systems. In this context, solutions can relate to fault prevention, fault

detection, and fault tolerance issues in DDS.

 127

Reliability

DDS P2P
Routing Substrate

[D]

Robustness Testing using
Fault Injection

[H][G]

Reliability Protocol
QoS Parameters

Fault Detection Fault Tolerance

Reliability History
Resource

Limits
DataWriter

Protocol
DataReader

Protocol

Fault Prevention

[1..*]

[1..*]

Figure 5-17: Feature diagram for P8 – Reliability in DDS

P9. Scalability in DDS

Scalability defines in general how well a solution to some problem will work when the size of

the problem increases. Within the context of distributed systems scalability of a distributed

software system indicates whether it is still efficient in case the system load increases. Hereby,

the system load can be considered as the number of participating nodes. If the solution is still

suitable, efficient and practical after adding resources, the software system can be said as

scalable. From this point of view scalability is closely engaged with fault tolerance and

maintainability. There are several studies that discuss scalability issues in DDS.

As stated above, several studies criticize the Simple Discovery Protocol (SDP) of the DDS wire

protocol DDSI (OMG, 2014). In this context, study [I], introduces the use of Bloom Filter (BF)

Algorithm to increase DDS scalability. SPD is used as the standard algorithm for node discovery

in DDSI. The authors claim that the SDP is not scalable in case the number of DDS end-points

increases. They provide analytical and experimental studies to compare BF and SDP showing

that BF is more scalable. Similarly, Study [X], Study [AE] and Study [V] propose the Modified

Counted Bloom Filter, Parallel Dynamic Bloom Filter and Content-Based Filtering Discovery

Protocol algorithms respectively, all of which appear to be more scalable than the SDP

algorithm in DDSI.

In Study [G] authors claim that design techniques for scalable DDS deployments, especially for

mobile data intensive applications are still missing. So, they offer two solutions: P2P routing

substrate and Relay-based DDS. As it is mentioned above in Study [D], P2P routing substrate

provides fault-tolerance to the DDS based systems. Using the routing substrates within DDS

domains and connecting these domains via DDS relay components provide scalability to the

fault-tolerance issue even in Wide Area Networks (WAN).

The feature diagram for this problem is shown in Figure 5-18. In sum, scalability is another

software quality factor which has not been directly addressed by the OMG DDS specifications.

We can identify two basic solution directions for scalability problems: scalability in node

discovery and scalability in fault-tolerance.

128

Scalability

Scalability in
Fault-Tolerance

Scalability in
Node Discovery

Modified
Counted BF

[X]

Content Based
Filtering

[V]

Standard
Discovery Protocol

(SDP)

Bloom Filter
(BF)
[I]

DDS
Relays

[G]

Figure 5-18: Feature diagram for P9 – Scalability in DDS

P10. Security

The analysis of the selected primary studies showed the increasing interest in addressing

security issues while integrating DDS on WAN, wireless networks and mobile devices. Security

concerns appear to be a lesser concern for LAN but when exceeding the boundaries of the

LAN new security threats can occur through WAN and mobile computing.

As stated in P4, Study [T] and Study [Z] propose solutions to enforce realization of QoS when

a DDS based system is running over WAN. The studies claim also that security policies are

required to enhance information dissemination and hence their future work will be on

developing security policies to allow authentication, authorization, access control and secure

transport.

Study [AB] has directly addressed security as an important issue and provides a solution

approach. The study criticizes the fact that information partitioning in current DDS practices

are not based on security classifications although this is vital for many systems. As such, they

propose a transport mechanism called secured-transport that provides information

partitioning enforcing multi-level security (MLS). Furthermore, the study also presents a novel

secure discovery mechanism that enables using the secured-transport mechanism with

existing DDS implementations.

Besides of the primary studies we can also identify the recently published OMG specification

about security (OMG, 2016). The specification defines the Security Model and Service Plugin

Interface (SPI) architecture for compliant DDS implementations. The DDS Security Model is

enforced by the invocation of these SPIs by the DDS implementation. This specification

defines five SPIs that when combined together provide Information Assurance to DDS

systems: Authentication Service Plugin, Access Control Service Plugin, Cryptographic Service

Plugin, Logging Service Plugin, and Data Tagging Service Plugin. Figure 5-19 shows the

conceptual diagram indicating the place of the SPI.

The feature diagram for this problem is shown in Figure 5-19. Several solutions have been

proposed to cope with security problems in DDS. A security specification for DDS has been

proposed by OMG. Further solutions have been provided for the transport mechanism (study

 129

[AB]), and node discovery mechanism (study [AB]). Finally, new security policies have been

prepared (study [T], [Z])

Security

Secure Transport
Mechanism

[AB]

Secure Node
Discovery Mechanism

[AB]

Service Plugin
Interface

Authentication
SPI

Access Control
SPI

Cryptographic
SPI

Logging
SPI

Data Tagging
SPI

New Security
Policies
[T] [Z]

[1..*]

[1..*]

Figure 5-19: Feature diagram for P10 – Security

P11. Integration with Event Based Systems

In traditional imperative programming, the program is modeled as a series of operations and

statements are used the change the program’s state. This programming model is also referred

as sequential or procedural programming. In contrast, reactive programming languages

provide dedicated abstraction for time changing values (signals or behaviors). Reactive

Programming propagates changes and re-evaluates dependent variables as the

signals/behaviors values are updated. One of the application domains of event-based

programming is the processing of real-time sensor generated data (data stream) which must

be processed in an event-based, distributed, and parallel manner.

In order to build reactive and high-performance stream processing applications, study [AE]

investigates the benefits of introducing DDS blending with reactive programming. Although

DSS has powerful data delivery mechanisms it lacks of data processing APIs and abstractions

to develop event-driven applications. In other words, DDS API is not designed for retrieving

individual updates about an object but the state of an object. As such, study [AE] focuses on

integrating DDS with event-based programming to unify the local and distributed stream

processing aspects under a common dataflow programming model. The authors claim that

this approach can be also used in industrial internet of things (IIoT) systems since IIOT can be

expressed as a distributed asynchronous dataflow.

Similarly, study [AG] discusses the use of DDS in event-based systems. As stated above the

DDS standard does not directly address how to guarantee end-to-end response times to

support the implementation of event-based systems. As such, this study investigates how to

ensure real-time behavior by applying DDS to event-driven systems within the context of the

OMG MARTE Standard (OMG, 2008). The provided solution of this study includes modeling

the QoS entities to enable the usage of these DDS features in real-time applications. In order

to facilitate the integration of DDS with model driven development processes the authors

propose a set of transformations among the QoS settings and the end-to-end flow entities

130

defined by the MARTE modeling standard. From this point of view this study is the extension

of Study [O].

The feature diagram for this problem is shown in Figure 5-20. Here, we can identify two basic

approaches including reactive programming with DDS, and modeling QoS Entities with

transformations to MARTE.

Integration with Event Based Systems

Reactive Programming with
DDS [AD]

Modeling QoS Entities with
transformations to MARTE [AH]

Figure 5-20: Feature Diagram for P11 – Integration with Event Based Systems

2) RQ 2. What are solution directions for the identified obstacles?

When addressing an obstacle of DDS, the primary studies usually also provide the

corresponding solution directions. Table 5-8 provides a summary of the solution directions for

each of the identified problem that were defined in Table 5-6 and discussed before. These

solution directions are proposed by the authors of the selected primary studies. As we can

observe from the table, based on the identified obstacle the solution directions are diverse in

nature. Solution directions include design heuristics and design abstractions, adoption of

different paradigms, refinement of the DDS concepts, novel introduction and implementation

of algorithms, integration with other paradigms, and solutions for realizing system-wide

quality management. Although we can observe several obstacles in DDS, the following table

shows also promising solution directions.

 131

Table 5-8: Solution Directions for the Identified Obstacles in DDS

No Primary study Solution Direction Study

P1 Complexity of DDS
configuration

• Separation of configuration concerns from application concerns
• Abstraction of lower level source code to components or services
• Use of model-driven development approaches to automatically

generate the parameter values and the code
• Component Based Development

J
K

S
U

P2 Performance
prediction,
measurement &
optimization

• For performance prediction adopt emulation and
experimentation to predict the QoS values for different
configurations

• For performance measurement adoption of explicit frameworks,
benchmarking and tool support

• For performance optimization the identified solutions include the
adoption of new discovery protocol algorithms, explicit
scheduling mechanisms, and new communication model

S, M, AC

B, R, S, T
I, M, O, T,
X, V, AE,
AF

P3 Implementing DDS • Component Based Development
• Service Oriented Development

J, U
K

P4 DDS integration
over WAN

• MPLS Tunneling
• DDS Router
• SDN Network
• Bridging DDS domains
• End-to-End QoS
• Admission Control
• Security
• Dynamic QoS

T
Y, Z
AA
P
T
T
T
T

P5 DDS using wireless
networks and
mobile computing

• Sensor Network Pub-Sub Protocol
• Cloud Management Architecture
• Lightweight DDS implementation
• Interoperable Lightweight DDS implementation
• Band-width aware Networking
• Pluggable Framework
• Embedded DDS implementation

L
N
E
F
M
C
AG

P6 Interoperability
among DDS
vendor
implementations

• Programming Language Interoperability
• Data Schema Interoperability
• Protocol Interoperability:

o Standard Discovery Protocol (SDP)
o Bloom Filter Algorithm
o Modified Counted Bloom Filter Algorithm
o Parallel Dynamic Bloom Filter Algorithm

F
F

I, V, X, AE
I
X
AE

P7 Data consistency
in DDS

• Correctness Preservation During Reconfiguration
• Correctness Maintenance during operation time

A
Q

P8 Reliability in DDS • Robustness Testing
• P2P Routing Substrate

G, H
D

P9 Scalability in DDS • DDS Relays
• Scalability in Node Discovery:

o Standard Discovery Protocol (SDP)
o Bloom Filter Algorithm
o Modified Counted Bloom Filter Algorithm
o Parallel Dynamic Bloom Filter Algorithm

G

I, V, X, AE
I
X
AE

P10 Security • Secure Transport Mechanism
• Secure Node Discovery

AB
AB

P11 Integration with
Event-based Sys.

• Reactive Programming with DDS
• Modeling QoS Entities with transformations to MARTE

AD
AH

132

5.5 DISCUSSION

We have applied a meticulous systematic literature review based on the proven protocol of

Kitchenham et al (Kitchenham et al., 2009). The SLR included 468 papers in from which we

selected 34 as primary studies. We have carefully devised and applied our selection and

elimination criteria in order not to miss any relevant primary study. The primary goal of SLR

was to identify the relevant obstacles and the corresponding solution directions. Based on our

thorough study we could identify 11 problem categories. It appears that different studies have

focused on different problems and solutions and as such we could observe an uneven

distribution. We consider this fact also as the result of our study since this highlights the

important obstacles as well as the obstacles which have not yet been fully explored. On its

turn this provides a broader vision on DDS and also paves the way for further research.

Our research methodology however is a systematic literature review that focuses on the

analysis of existing primary studies in the literature. Hence, we can only report on the

problems that were identified in these primary studies. From our SLR we can observe that

implementing a DDS is one of the obstacles (P3). The corresponding primary studies report on

the obstacles of using component-based development and service-oriented development for

implementing DDS. It should be noted that several other more detailed but unreported

problems could exist that are directly related to implementation of DDS-based systems. The

identification of these problems would require an in-depth study to the corresponding

implementations of the DDSs. We consider this however out of scope of our study since these

are not within the scope of an SLR study.

We could identify 11 different problem categories. An important number of the problems

relate to quality concerns such as reliability, scalability and security. We have described the

problems related to specific quality concerns if these were also the topic and focus of the

identified primary studies. Quality concerns which were not explicitly reported were not

included as obstacles. Our study could on the one hand be used to highlight the relevance of

the quality concerns in DDS based systems. On the other hand, our SLR shows also which

quality concerns have not been explicitly discussed. This only implies that no in-depth research

has been carried out for these quality concerns, and not necessarily that these quality

concerns are not relevant for DDS. On its turn this observation can trigger further research on

quality concerns in DDS.

Our SLR has also resulted in a set of feature diagrams that summarize the reported obstacles

and the solution directions. The feature models that we have developed can be also used pave

the way and support the development of a DDS ontology. We consider this as a possible future

work.

From our SLR we could also observe that for some of the identified problem categories have

been also considered in some of the proposed extensions to the OMG’s DDS specification. We

have listed these extensions in Table 5-7. Also, we have referred to the OMG’s DDS

specifications in the problem categories P1, P3, P4, P6, P7, and P10. While describing the

problems and the corresponding solutions we could identify that some researchers claim that

the offered solution in the primary study is better than the one used of the DDS specification

 133

(such as using Bloom Filters instead of Standard Discovery Protocol in DDS RTPS (DDSI)

specification). Further, other primary studies handle topics that are not (completely) covered

by the provided DDS specification yet (such as reliability problems in Problem 7. Finally, it

should be noted that some DDS specifications are still in beta version and have not been

finalized yet.

The main threats to validity (Dybå & Dingsøyr, 2008) of this review are publication and

selection bias, and data extraction and classification.

The publication bias indicates the case in which researchers are more likely to publish positive

results and refrain from publishing studies that have negative results. To cope with this

publication bias Kitchenham et al. (Kitchenham & Charters, 2007) recommend searching also

company journals, grey literature, conference proceedings and the internet. We have applied

this approach which indeed led us to new papers that we could not identify in our regular

search. We performed the inclusion/exclusion procedures on a well-established screening of

primary studies and included both qualitative and quantitative studies. The inclusion and

exclusion criteria are selected by the researchers who performed the systematic literature

review. A subjective approach towards defining the selection criteria and selecting the primary

studies for further consideration, can introduce a threat to validity in this study. For reducing

the bias with respect to the definition of the selection criteria we used the quasi-gold standard

approach as defined by Zhang et al. (H. Zhang, Babar, & Tell, 2011). Hereby, we first picked a

random set of 10 studies and each of the researchers defined the selection criteria. These

criteria were validated together and the final set of exclusion/inclusion criteria was defined.

For reducing the selection bias for selecting the primary studies, the evaluation and the

selection of the primary studies were performed separately by the two researchers. Each

researcher recorded also the reasons of acceptance or rejection for all the considered studies.

Later on, the evaluated list of primary studies of each researcher was compared with that of

the other researchers. In case of differences we discussed the paper in detail and came with

the final decision. H. Zhang and A. Babar (H. Zhang et al., 2011) provide an enhancement to

the SLR protocol of Kitchenham (Kitchenham et al., 2009). In their method the so-called d QGS-

based systematic search approach for devising and testing search strategies is applied. For our

study we did not consider this directly but for devising the search strings we indeed first read

a couple of relevant papers to define and justify our search strings. We have applied both

automated searches and manual searches both as a preliminary analysis and as a subsequent

analysis after having observed the publication channels returned by the relevant search

strings. With our search strings we think that we have identified all the papers that are directly

related to DDS.

After the primary studies have been evaluated and selected the relevant data must be

extracted for deriving the review results. Hereby defining the data extraction criteria and

classification model is very important. To define the data extraction model, we first read a set

of randomly selected primary study papers. Each of use defined an initial data model based

on the research questions that we had defined. Later on, we compared the different data

extraction models, discussed the differences and decided on the data extraction model. After

that we applied the data extraction model to a set of primary studies and checked whether

134

we could derive the answers to the research questions with the adopted data extraction

model. We applied this several times and after a number of iterations and discussions we

decided on the final data extraction model. We can state that the problem categories that we

have identified cover the main problems. However, some problems could be also seen as sub-

categories of these basic categories. To highlight these, we have adopted feature models.

5.6 CONCLUSION

In this chapter we have provided a systematic literature review to describe the state of the art

of the Data Distribution Service (DDS) middleware and identify the obstacles in applying DDS.

We have considered the published literature since the introduction of DDS in 2003, and among

468 papers that were discovered we identified 34 of them as primary studies related to our

research questions. First of all, we can state that the application of DDS has been increasingly

popular and has been used in various application domains such as defense, finance, and

medical domain. In addition to its basic application we can also identify the application and

integration of DDS to solve problems in technical domains such as cloud computing,

component-oriented development, mobile computing, and wide area network. Our study

shows that DDS provides indeed important benefits for realizing real-time distributed

applications. Our focus in this chapter was mainly about the obstacles that are encountered

when applying DDS. Using the SLR we identified 11 basic categories of problems that were

discussed in the identified primary studies. We have described each problem in detail by

referring to the papers in which these were discussed. The identified problems included

Complexity of DDS configuration, Performance prediction, measurement and optimization,

Implementing DDS, DDS integration over WAN, DDS using wireless networks and mobile

computing, Interoperability among DDS vendor implementations, Data consistency in DDS,

Reliability in DDS, Scalability in DDS, Security, and Integration with Event Based Systems. We

have adopted feature diagrams to summarize and provide an overview of the identified

problem and its solutions as defined in the primary studies.

Obviously, in addition to the benefits there are still many obstacles to be solved to further

support the adoption of DDS. We believe that the results of this chapter pave the way for

further research in DDS. The obstacles can be adopted to trigger new research questions. The

proposed solutions can be used to further enhance the DDS specification and support the

practitioners in their decision making while applying DDS. The description of the obstacles in

this chapter provides an overall perspective that could help to synthesize the different

solutions. In our future work we plan to address selected research topics based on the

categories that we have defined.

 135

6

DATA DISTRIBUTION SERVICE BASED

ARCHITECTURE DESIGN FOR THE

INTERNET OF THINGS SYSTEMS1

1 This chapter is based on the following published book chapter:

• B. Tekinerdogan, Ö. Köksal, and T. Çelik, “Data Distribution Service-Based Architecture Design for the

Internet of Things Systems,” in Connected Environments for the Internet of Things, Springer, Cham,

2017, pp. 269–285.

136

 137

Abstract

The Internet of Things (IoT) is the internetworking of people and physical devices that enable

the collection and exchange of data. The number of connections between people and things

as well as the volume of data that is generated is dramatically increasing. Hereby, various kinds

of data are generated by multiple kinds of devices, which are processed in different ways, and

used by different applications. To realize the distributed execution of IoT systems over

multiple resources different requirements and quality factors must be satisfied. Traditionally,

to reduce the effort for developing distributed systems, middleware architectures have been

introduced that provide common services such as name and directory services, discovery, data

exchange, synchronization, transaction services, etc. To address the needs and integration of

IoT systems the adoption of middleware seems to be a feasible solution. A middleware that is

directly related to data-intensive systems in which quality of service is important is the Data

Distribution Service (DDS). The DDS is a standard data-centric publish-subscribe programming

model and specification for distributed systems that has been applied for the development of

high performance distributed systems such as in the defense, finance, automotive, and

simulation domains. In this chapter, we explore and propose the adoption of DDS as a

middleware platform for IoT systems. For this, we first describe the requirements for IoT

systems and present the IoT reference architecture. Subsequently we provide a DDS-based

architecture for IoT systems based on the Views and Beyond Approach. We illustrate our

approach for the architecture design of IoT-based smart city engineering.

Keywords: Data Distribution Service, Internet of Things, Software Architecture

6.1 INTRODUCTION

The Internet of things is the internetworking of people and physical devices that enable the

collection and exchange of data. The number of connections be-tween people and things as

well as the volume of data that is generated is dramatically increasing. Hereby, various kinds

of data are generated by multiple kinds of devices, which are processed in different ways, and

used by different applications. To realize the distributed execution of IoT systems over

multiple resources different requirements and quality factors must be satisfied.

Traditionally, to reduce the effort for developing distributed systems, middle-ware

architectures have been introduced that provide common services such as name and directory

services, discovery, data exchange, synchronization, transaction services, etc. To address the

needs and integration of IoT systems the adoption of middleware seems to be a feasible

solution. A middleware that is directly related to data-intensive systems in which quality of

service is important is the Data Distribution Service (DDS) (Angelo Corsaro, n.d.). The DDS is a

standard data-centric publish-subscribe programming model and specification for distributed

systems that has been applied for the development of high performance distributed systems

such as in the defense, finance, automotive, and simulation domains.

In this chapter, we explore and propose the adoption of DDS as a middleware platform for IoT

systems. For this, we first describe the requirements for IoT systems and present the IoT

reference architecture. Subsequently we provide a DDS-based architecture for IoT systems

138

based on the Views and Beyond Approach. We illustrate our approach for the architecture

design of IoT-based smart city engineering.

The remainder of the chapter is organized as follows. In section 6.2 we provide the background

on software architecture modeling which is necessary for understanding the architecture

views in subsequent sections. In section 6.3 we describe the IoT architecture using selected

viewpoints. Section 6.4 presents the architecture models for DDS. Based on the architecture

models from section 6.3 and section 6.4 we present the DDS-based IoT architecture in section

6.5. Finally, section 6.6 concludes this chapter.

6.2 SOFTWARE ARCHITECTURE MODELING

Architectural drivers define the concerns of the stakeholders which shape the architecture. A

stakeholder is defined as an individual, team, or organization with interests in, or concerns

relative to, a system. Each of the stakeholders’ concerns impacts the early design decisions

that the architect makes. A common practice is to model and document different architectural

views for describing the architecture according to the stakeholders’ concerns. An architectural

view is a representation of a set of system elements and relations associated with them to

support a particular concern. Having multiple views helps to separate the concerns and as

such support the modeling, understanding, communication and analysis of the software

architecture for different stakeholders. Architectural views conform to viewpoints that

represent the conventions for constructing and using a view. Obviously, the notion of

viewpoint now plays an important role in modeling and documenting architectures. So far

most architectural viewpoints seem to have been primarily used either to support the

communication among stakeholders, or at the best to provide a blueprint for the detailed

design.

In this chapter, we will use the Views and Beyond framework in which predefined viewpoints

are organized into three categories including module styles, component-and-connector styles

and allocation styles. Module styles are used to show how the system is structured as a set of

implementation units. Component and connector styles are used to show how the system is

structures as a set of runtime elements. Allocation styles are used to show how the software

elements are mapped to non-software elements in its environment. We will adopt three view-

points for our purposes including layered viewpoint and deployment viewpoint.

The Layered viewpoint reflects the division of software modules called layers. In a layered

architecture, the system is depicted as a set of layers which are stacked on top of each other.

Hereby a layer can only access the next lower layer and call backs from lower layers to higher

layers are not allowed. In the following sections, we will see that both IoT and DDS systems

include a layered architecture.

In addition to the layered viewpoint we will also apply the deployment view-point, which is

used to show how the software elements are allocated to hardware of a computing platform.

It is useful for analyzing and tuning certain quality at-tributes of the system such as

performance, reliability and security.

 139

6.3 INTERNET OF THINGS ARCHITECTURE

6.3.1 Conceptual Model

Figure 6-1 provides a conceptual model including the relations among the basic IoT concepts.

The model has been adopted from the Alliance of IoT Innovation (AIOTI) Domain Model (AIOTI

WG03 2015) (Alliance for IoT Innovation, 2015). The domain model represents the basic

concepts and relationships in the domain at the highest level. In the model, User interacts with

a physical entity of the physical world, a Thing. The User can be a human person or a software

agent that has a goal, for the completion of which the interaction with the physical

environment must be performed through the mediation of the IoT. A thing is a discrete,

identifiable part of the physical environment that can be of interest to the User for the

completion of his goal. Things can be any physical entity such as humans, cars, animals, or

computers.

(Physical)
Thing

IoT Device

Sensor Actuator

senses

acts on

Virtual Entity

*

IoT Service
associated

with

interacts
with

interacts
with

represents

Tag
senses

User
invokes

interacts
with

Figure 6-1: Conceptual model for the IoT

The interaction between a User and Thing is mediated by an IoT Service which is associated

with a Virtual Entity, a digital representation of the physical entity. A Thing can be represented

in the digital world by a Virtual Entity. Different kinds of digital representations of Things can

be used such as objects, 3D models, avatars, objects or even a social network account. Some

Virtual Entities can also interact with other Virtual Entities to fulfill their goal.

140

An important aspect in IoT is that changes in the properties of a Thing and its corresponding

Virtual Entity needs to be synchronized. This is usually realized by an IoT Device that is

embedding into, attached to or simply placed in close vicinity of the Thing. In principle, we

can identify three devices including Sensors, Tags and Actuators. Sensors are used to measure

the state of things they monitor. Essentially, sensors take a mechanical, optical, magnetic or

thermal signal and convert this into voltage and current. This provided data can then be

processed and used to define the required action. Tags are devices to support the

identification process typically using specialized Sensors called readers. The identification

process can be different including optical as in the case of barcodes and QR-code, or RF-based.

Actuators are employed to change or affect the things.

6.3.2 Feature Model

In this section, we provide a feature-driven overview of IoT and its “Session Layer” protocols.

A feature diagram is a tree with the root and descendent nodes. The root represents a concept

and nodes are the features. Feature diagrams might show mandatory features as well as

variant features which can be represented as optional or alternative features. A feature

configuration is a set of features which describes a member of the represented concept. A

feature constraint restricts the possible selections of features to define configurations. The

legend (abstract syntax) used for the feature diagrams is given in Figure 2-3.

The top-level feature diagram of the IoT is given in Figure 2-4. This diagram is similar to the

layer diagram of the IoT given in the next section.

Session layer is responsible for setting up and taking down of the association between the IoT

connection points. The session layer provides services related is-sues of the session such as

initiation, maintenance, and disconnection. As such, frequency and duration of various types

of sessions are related with the session layer. Selection of the session layer protocol depends

on many factors such as data size, number of devices to be connected, latency, etc. Depending

on the application requirements different session layer protocols might be used in session

layer of the IoT application. Focusing on the session protocols, we have derived the feature

diagram given in Figure 2-5.

The mandatory features in the feature diagram are protocol type, source-target, transport

type and architecture. Please note that, although transport type belongs to the network layer,

it is shown as a mandatory feature in Figure 2-5 since it is closely related with the protocol

characteristics.

Widely-used session layer protocol types are given below:

• Message Queuing Telemetry Transport (MQTT): One of the most popular protocols to
collect device data and communicate with servers (OASIS, 2014).

• Extensible Messaging and Presence Protocol (XMPP): is based on ex-changes of XML
messages in real time that is defined to connect devices to servers (IETF, 2011).

• Advanced Message Queuing Protocol (AMQP): A queuing system de-signed to connect
servers to each other (OASIS, 2011).

• Data Distribution Service (DDS): A fast data bus for integrating devices and systems (OMG,
2015b).

 141

• The Constrained Application Protocol (CoAP): A specialized web-based protocol to be used
in constrained nodes and constrained networks (IETF, 2013).

The focus of this chapter is the application of the DDS protocol.

There are three types of source-target relations available in session layer proto-cols: Device-

to-Device (D2D), Device-to-Server (D2S), and Server-to-Server (S2S) as given in Figure 2-5.

Some references these features are also named Machine-to-Machine (M2M), Machine-to-

Cloud (M2C), and Cloud-to-Cloud (C2C) respectively. DDS and CoAP are used for M2M

communication, whereas MQTT and XMPP are used for M2C and AMQP is used for S2S

communication.

Session layer protocols are closely related with the transport type. Session layer protocols use

either UDP or TCP for the transport. DDS and CoAP support both UDP and TCP.

6.3.3 Layered View

Various reference architectures have been provided for the IoT which is usually represented

as a layered architecture with various set of layers. Hereby, a layer simply represents a

grouping of modules that offers a cohesive set of services. Based on the literature we provide

the reference architecture as shown in Figure 2-1.

The reference architecture consists of four layers including device/datalink layer, network

layer, session layer, and application layer. The device layer includes the capabilities for the

things in the network. The network layer provides functionality for networking connectivity

and transport capabilities. The IoT layer consists of functionality for generic support

capabilities (such as data processing or data storage), and specific support capabilities for the

particular applications. The application layer contains the IoT application.

The Security layer is a side-car layer relating to the other four layers, and pro-vides the security

functionality. Finally, the management layer supports capabilities such as device

management, local network topology management, and traffic and congestion management.

6.3.4 Deployment View

Figure 6-2 shows the deployment view of IoT-based systems. In essence we can identify two

distinct nodes, the IoT node and the Product Cloud node. The IoT Node includes modules for

sensors, actuators, smart UI and applications. Within the IoT network multiple IoT nodes can

exist which is shown with the asterisk symbol (*). The cloud node includes functionality for

data storage, application platform, the analytics engine and the cloud applications. Again, we

could have more than one cloud node.

142

Product Cloud

*

*

Data Storage

Analytics Engine
Application

Platform

ApplicationsData Storage

Analytics Engine
Application

Platform

Applications

IoT Device

Smart UI

Sensors Actuators

Applications

IoT Device

Smart UI

Sensors Actuators

Applications

Figure 6-2: Deployment view of the IoT architecture

6.4 DATA DISTRIBUTION SERVICE

Data Distribution Service for Real Time System (DDS) is standardized by Object Management

Group (OMG) (OMG, n.d.-b) in 2004 and the latest release is submitted in 2015 (OMG, 2015b).

DDS is a data centric middleware for high performance ma-chine-to-machine

communications. In this section, we describe the basic back-ground information for Data

Distribution Service (DDS). Detailed information about DDS can be found in many references

in the literature (OMG, n.d.-c, 2014, 2015b).

6.4.1 Conceptual View

Figure 5-1 shows the conceptual model for DDS middleware. In the figure, the concept Domain

is a logical concept which represents the set of applications that can communicate with each

other. Several domains can be defined within the same DDS system in order to indicate

different set of applications communications with each other. One or more domain

participants might exist in each do-main. Domain participants represent the local membership

of the application to the assigned domain. Publishers are responsible from data production

and up-dates. Publishers include one or more Data Writers that publish different type of data.

Similarly, subscribers are responsible of receiving published data and making it available to

the participant. A subscriber includes one or more Data Readers to access published data in a

type-safe manner. Domain participants might include one publisher and one subscriber at

most. The communication between da-ta readers and data writers is established via Topics.

A topic defines a unique name, data type and a set of Quality Services to the

published/subscribed data. Publishers write the data to the topics and subscribers read the

data in topics.

 143

Communication between applications can only be realized only if the topic names and the

defined Quality of Service (QoS) parameters match. DDS pro-vides the ability to attach QoS

parameters to all these entities in order to specify the behavior of a service such as rate of

publication, rate of subscription, how long the data is valid, etc. QoS are also useful for several

quality factors such as reliability, durability and scalability which simplify complex network

programming.

6.4.2 Feature Model

Based on a thorough domain analysis to DDS middleware systems we have derived a feature

model that is shown in Figure 6-3. The figure represents the feature model for Publish-

Subscribe Systems. The DDS concepts are shown in bold. In general, publish-subscribe

middleware systems can be distinguished based on the type and the service model. Regarding

the type, we can identify data-centric, message-centric or object-centric approaches. In the

message-centric approach, the middleware is not aware of the content of the data; it is just

responsible for transmitting the messages among participants. In data-centric approach, the

middleware is aware of the content and can impose quality of service parameter values on

the data. In object-centric approaches the middleware is responsible of transmitting objects

among participants. As shown in the figure DDS is a data-centric approach.

The service model of publish-subscribe middleware can be characterized based on (1)

Communications Model, and (2) Architecture Model. Communication Model defines

communication approach that is applied by the participants. The communication approach on

its turn can be based on data distribution, shared data, queuing, and remote procedure call.

The Architecture Model of a middle-ware can be either centralized or decentralized denoting

whether the data flows through a central unit or not. Further, the architecture model can

include a broker that manages the data flow. The architecture can be unbrokered, i.e. there is

no broker defined, or multi-brokered, whereby multiple brokers manage the data flow. As

shown in the figure, the architecture model for DDS is decentralized and unbrokered.

Figure 6-3: Feature model of Publish-Subscribe systems (DDS components highlighted)

Publish/Subscribe

Type

Data
Centric

Message
Centric

Object
Centric

Service Model

Communications
Model

Architecture
Model

Data
Distribution

Shared
Data

RPC Queue

DecentralizedCentralized

DataFlow Broker Type

Brokered
Multi

Brokered
Unbrokered

144

6.4.3 Layered View

The DDS can be modeled as a three-layer structure as shown in Figure 5-2. Data Centric Publish

Subscribe (DCPS) layer provides efficient delivery of the shared information to the related

recipients. DCPS layer in the specification and it is mandatory for the DDS implementations.

Optional Data Local Reconstruction Layer (DLRL) enables simple integration of the services

defined in DCPS layer into the application layer. The aim of this is to provide a seamless

integration with object-oriented language constructs.

Finally, an additional specification DDS Interoperability Wire Protocol is pro-vided, which is

needed for supporting the interoperability among different DDS implementations.

The last layer shown in the Figure 5-2 is related to the transport. DDS might use both UDP and

TCP in the transport layer. But DDS also supports UDP and multicast UDP. In fact, one of the

powerful features of the DDS is supporting multicast UDP that enables high performance

Machine-to-machine communication. On the other hand, since multicast and UDP transports

are not supported by many Wide Area Networks (WAN), some additional concepts like

Interconnection Services or Routers shall be used in DDS systems to assure end-to-end QoS in

WANs (Köksal & Tekinerdogan, 2017b). For further details about these specifications we refer

to OMG DDS Specifications (OMG, 2015b).

6.4.4 Deployment View

A typical DDS based system is deployed on a number of Application Nodes. As stated before,

publish-subscribe interaction pattern has been applied in several applications and

infrastructures, which share similar structure and concepts. Figure 6-4 shows the result of a

domain analysis to publish-subscribe systems and represents the deployment view of DDS

based systems. Please refer to section “1.4.1 DDS conceptual model” for detailed information

about DDS concepts (such as publishers, subscribers, topics, etc.).

Domain

Application Node

1..*

 Domain Participant

Subscriber

Publisher

 DataReader

 DataWriter

 Topic

writes

reads

<0..1>

<0..1>

Figure 6-4: Deployment view for DDS-based systems

 145

Defining the deployment view of a DDS based system is a crucial step in de-sign. The

deployment model defined determines the allocation of domain participant instances

through-out the available physical resources such as available memory and computing power.

Although many different deployment alternatives can be defined readily, designing the

deployment extremely affects the performance of the overall system.

Sometimes, it is possible to deploy all domain participants (publishers and sub-scribers) to the

same node. But such a deployment design cancels the benefits of distributed computing

causing single point of failure. On the other extreme, deploying domain participants has many

side-effects such as increasing communication overhead and inefficient use of resources. So,

it is always advised to analyze the domain participants’ communication structure through

topics and designing the deployment model accordingly.

6.5 DDS-BASED IOT ARCHITECTURE

In this section, we will present the architecture for DDS-based IoT systems. For this, in section

1.5.1 we will first present the conceptual model that shows the integration of the earlier

conceptual models for DDS and IoT. Subsequently, we will present the layered view in section

1.5.2 and deployment view in section 1.5.3.

6.5.1 Conceptual model

Figure 6-5 shows the conceptual model for the DDS-based IoT architecture. Similar to the IoT

conceptual model as shown in Figure 6-1 the concept IoT Device can be a Sensor, Tag or

Actuator which observe, identify or act on an IoT Thing. A thing has a virtual representation.

The DDS concepts Publisher, Subscriber, DataWriter and DataReader are located in the Virtual

Entity. Services, that is, Topics in DDS are thus associated with these elements. Domain

Participants can include a number of Virtual Entities. Similar to DDS a DDS Entity can specify

QoS parameters.

146

Thing

Sensor

Actuator

*

*

represents

Service
(Topic)

Virtual Entity

Publisher Subscriber

Data Writer Data Reader

* *

*

Entity

Domain
Participant

QoS Policy

Tag
*

interacts
with

IoT Device

*

interacts
with

associated
with

Figure 6-5: Conceptual model for Publish-Subscribe based IoT systems

6.5.2 Layered View

Figure 6-6 shows the layered view that combines the layered view of DDS with that of IoT. The

dominant decomposition is taken from the IoT reference architecture as defined earlier in

Figure 2-1. Hence the layers are similar to the IoT layers. What is specific is the Session Layer

which now includes the concepts of DDS including DLRL, Data Centric Publish Subscribe, and

DDSI (OMG, 2014).

Session Layer

Device Layer

UDP/IP
(Network Layer)

Data Centric Publish/Subscribe
Management

Layer

Application Layer

DDS Interoperability
Wire Protocol (DDSI)

Data Local Reconstruction Layer (DLRL)

Security
Layer

Figure 6-6: Layered view for DDS-IoT systems

 147

6.5.3 Deployment View

Figure 6-7 shows the layered view for the DDS-IoT system. In essence, it defines two different

nodes, that is, the IoT Node and the Product Cloud Node. The IoT Node will now communicate

using the DDS. Hence it includes an Application module that realizes the DDS concepts. That

it, it includes the domain participants and herewith the subscribers and publishers. The

Product Cloud Nodes is similar to the IoT deployment model.

Product Cloud

*

*

Data Storage

Analytics Engine Application Platform

ApplicationsData Storage

Analytics Engine Application Platform

Applications

IoT Node

Smart UI

Sensors

Actuators

Application Node

 Domain Participant

Subscriber

 Domain Participant

Subscriber

Publisher

 DataReader

 DataWriter

 Topic
 Topic

writes

reads

<0..1>

<0..1>

Figure 6-7: Deployment view for DDS-IoT systems

6.6 CONCLUSION

The IoT has now become an important paradigm that is invasive in different application

domains. One of the important issues for the IoT is the management of communication and

distribution aspects. To support the communication among the different DDS nodes it is

important to adopt a feasible middleware. In this context, the DDS is considered as a potential

middleware for IoT because of its focus on event-driven communication in which quality of

service is also explicitly defined. Research on both paradigms, that is IoT and DDS, have so far

been carried almost independently. In recent years, we now observe a growing interest in the

application of DDS for IoT.

148

The results of our study can be considered from this perspective. Our main focus in this

chapter was on the architecture design of DDS-based IoT systems. So far, no systematic

approach has been provided yet to model the architecture for DDS-based IoT. We have

performed a systematic approach in which we adopted architecture viewpoints for modeling

DDS, IoT and finally DDS-based IoT systems. Since both the DDS and IoT are often represented

as layered structures we have applied the layered viewpoint to represent the DDS-based IoT.

Further we have also defined the deployment view for DDS-IoT. We can state that we

succeeded to integrate and represent the architecture models that can be used to model DDS-

based IoT systems for various application domains. In our future work, we will enhance our

study for adopting other architecture viewpoints. In addition, we will adopt the viewpoints for

real world industrial IoT projects in which DDS is applied.

 149

7

DERIVING DATA DISTRIBUTION SERVICE

BASED FEASIBLE CONFIGURATION

ALTERNATIVES1

1 This chapter is based on the following published papers:

• B. Tekinerdogan, T. Çelik, and Ö. Köksal, “Generation of feasible deployment configuration alternatives

for Data Distribution Service based systems,” Computer Standards and Interfaces, vol. 58, pp. 126–145,

May 2018.

• T. Celik, Ö. Köksal, and B. Tekinerdogan, “Deploy-DDS: Tool Framework for Supporting Deployment

Architecture of Data Distribution Service based Systems” in Proceedings of the 2014 European

Conference on Software Architecture Workshops - ECSAW ’14, 2014, pp. 1–5.

150

 151

Abstract

Data Distribution Service (DDS) has been defined by the OMG to provide a standard data-

centric publish-subscribe programming model and specification for distributed systems. DDS

has been applied for the development of high performance distributed systems such as in the

defense, finance, automotive, and simulation domains. To support the analysis and design of

a DDS-based distributed system, the OMG has proposed the DDS UML Profile. A DDS-based

system usually consists of multiple participant applications each of which has different

responsibilities in the system. These participants can be allocated in different ways to the

available resources, which leads to different configuration alternatives. Usually, each

configuration alternative will perform differently with respect to the execution and

communication cost of the overall system. In general, the deployment configuration is

selected manually based on expert knowledge. This approach is suitable for small to medium

scale applications but for larger applications this is not tractable. In this chapter, we provide a

systematic approach for deriving feasible deployment alternatives based on the application

design and the available physical resources. The application design includes the design for DDS

topics, publishers and subscribers. For supporting the application design, we propose a DDS

UML profile. Based on the application design and the physical resources, the feasible

deployment alternatives can be algorithmically derived and automatically generated using the

developed tools. We illustrate the approach for deriving feasible deployment alternatives of

smart city parking system.

Keywords: Data Distribution Service (DDS), Software Architecture Analysis, Design

Optimization, Model-Driven Development, Feasible Deployment, Middleware, Research Tool.

7.1 INTRODUCTION

Distributed systems realize the distributed execution of software systems over multiple

resources to meet different requirements and quality factors such as performance,

interoperation, and multi user support. To reduce the effort for developing distributed

systems, common architectures have been introduced including OMG Common Object

Request Broker Architecture (CORBA) (OMG, 2012a), Java Message Service (JMS) (Juneau,

2013), and OMG Data Distribution Service (DDS) (OMG, 2015b). These middleware

architectures provide common services such as name and directory services, discovery, data

exchange, synchronization, and transaction services.

Data Distribution Service (DDS) has been defined by the OMG to provide a standard data-

centric publish-subscribe programming model and specification for distributed systems. DDS

has been applied for the development of high performance distributed systems such as in the

defense, finance, automotive, and simulation domains. A DDS-based system usually consists

of several applications having different responsibilities in the system. These participants can

be allocated in different ways to the available resources, which leads to different configuration

alternatives. Usually, each configuration alternative will perform differently with respect to

the execution and communication cost of the overall system. In general, deployment

configuration is selected manually which is suitable for small to medium scale applications but

152

for larger applications this is not tractable. The OMG DDS specification does not provide an

explicit approach to guide the distribution and allocation of the participants to optimize the

deployment configuration with respect to performance. Deployment configuration is usually

selected manually which is suitable for small to medium scale applications but gets intractable

when larger applications are considered.

In this chapter, we provide a systematic approach for deriving feasible deployment

alternatives based on the application design, the available physical resources and the

execution configuration parameters. The application design includes the identified topics, the

number and type of DDS publishers and subscribers. In the approach, first the application

design including DDS topics, publishers and subscribers as well as the available physical

resources are designed. The application design of these elements is supported by the DDS

UML profile that we have extended to support the generation of feasible deployment

alternatives.

The resulting design is used to define alternative execution configurations that refine the

number and parameters of the corresponding design elements. Based on the application

design, available physical resources and the execution configuration, feasible deployment

alternatives can be algorithmically derived. The presented approach is supported by

corresponding tools that support the application design, the execution configuration

definition and the automatic generation of feasible deployment alternatives using model-

driven development techniques. We illustrate the approach for deriving feasible deployment

alternatives of a smart city parking system.

The remainder of the chapter is organized as follows. In section 7.2, we provide the

background on architecture of DDS and designing DDS based systems. Section 7.3 defines the

DDS UML profile. Section 7.4 defines the problem statement. Section 7.5 presents the

approach for evaluating alternative design options with the adopted models and algorithmic

solutions for the approach. Section 7.6 presents the tools that support the approach. Section

7.7 provides the evaluation of the outputs of our approach. Section 7.8 provides discussion.

Section 7.9 describes the related work and finally we conclude this chapter in section 7.10.

7.2 BACKGROUND AND CONTENT

In this section, we describe the background for understanding and supporting the approach

that we present in this chapter. In section 7.2.1 we present the deployment view for DDS-

based systems, followed by a discussion in section 7.3 on the proposed DDS UML profile.

7.2.1 Deployment View for DDS-based Systems

Based on DDS specification (OMG, 2015b), we could derive the deployment view for DDS

based systems, as shown in Figure 6-4. A DDS system consisting of several DDS applications is

called a Domain. A typical DDS based system is deployed on a number of Application Nodes.

Each Application Node includes one or more Domain Participants, which are applications that

together form the system execution. Each Domain Participant may include one Publisher that

represents the objects responsible for data production and updates. A publisher includes one

or more Data Writers that publish data of different data types. Domain Participant may also

 153

include one Subscriber that is responsible for receiving published data and making it available

to the participant. A subscriber includes one or more Data Readers to access published data

in a type-safe manner. Interaction between data reader and data writers is established via

Topics. A topic defines a unique name, data type and a set of Quality Services to the

published/subscribed data (OMG, 2015b). Note that Domain is a logical concept and a Domain

Participant may participate in more than one domain at the same time.

The DDS specification defines two layers: (1) A lower level layer, which provides efficient

delivery of the shared information to the related recipients. This layer is named Data Centric

Publish Subscribe (DCPS) in the specification and it is mandatory for the DDS implementations.

(2) A higher layer that enables simple integration of the services defined in DCPS layer into the

application layer. This layer is named Data Local Reconstruction Layer (DLRL) in the

specification and it is optional to be provided by the DDS implementations.

DDS provides the ability to specify various parameters like the rate of publication, rate of

subscription, how long the data is valid, and many others. These Quality of Service (QoS)

parameters allow system designers to construct distributed applications based on the

requirements for, and availability of, each specific piece of data. Selected QoS parameters

affect the performance of the overall system drastically, and therefore finding the feasible

values for the QoS parameters for a system is important for successful development of the

target system.

7.3 DDS UML PROFILE

To support the analysis and design of object-oriented systems using DDS technology, the OMG

has specified the UML Profile for Data Distribution Specification (OMG, 2010). The profile

enables definition of all DDS artifacts defined in the view given in Figure 6-4. This profile also

enables the definition of DDS data types which topics will be built on. The profile separates

DDS artifacts in three packages including DCPS, DLRL, and DDS Common. The DCPS defines the

mandatory part of the DDS specification used to provide the functionality required for an

application to publish and subscribe to the values of data objects. The DLRL is the optional

portion of the DDS specification used to provide the functionality required for an application

for direct access to data exchanged at the DCPS layer. The DDS Common package defines the

distributed data communications specification that allows Quality of Service policies to be

specified for data timeliness and reliability. The dependencies between the packages are

shown in Figure 7-1. The figure indicates that the DCPS and DLRL packages depend on DDS

Common. Several tools that implement the draft specification of the above UML Profile for

Data Distribution Specification are already available and ready to be used such as Enterprise

Architect (Sparx Systems, n.d.).

154

Common

DCPS DLRL

Figure 7-1: Top-Level DDS package structure of the proposed OMG UML Profile

In this section, we define a case study that will be used to illustrate the problem statement

and the approach in further sections. The case study that we consider is within the context of

smart city engineering (Yoshikawa et al., 2012). For the near future, it is expected that a big

part of the world population will live in urban areas. This will have a huge impact on future

personal lives and mobility. A smart city uses information and communication technology (ICT)

to enhance the quality and performance of urban services, to reduce costs and resource

consumption, and to engage more effectively and actively with its citizens (Iijima, 2012;

Yoshikawa et al., 2012). Sectors that have been developing smart city technology include

government services, transport and traffic management, water and waste, health care, and

energy. Smart city applications are developed with the goal to improve the management of

urban flows and allowing for real time responses to challenges. One of the important

applications in smart city engineering includes the development of smart traffic system (STS).

Traffic is already a large problem in many cities and this problem will be even bigger in the

future. Many people spend a considerable amount of time in traffic, which leads to

unnecessary waste of human resource, time and increase of CO2 emissions. STS provides

different capabilities such as traffic light management, congestion detection, traffic

regulation, shared parking platform, etc. For example, shared parking platform optimizes the

search for finding a suitable parking slot by guiding the drivers to the available nearest parking

spots in real-time.

The high-level reference architecture of STS is depicted in Figure 7-2. STS consists primarily of

sensors and vehicles. Sensors are the devices that monitor the environment and provide the

corresponding data. Vehicles use the sensor data and publish their position and other relevant

information to the STS. Within the case study we distinguish between the following sensor

types: Traffic Light, Incident Detector, Congestion Detector, Speed Camera, Parking Detection

Sensor, Bicycle Station, Parking Lot, and Weather Sensor. Vehicles can be of the following

types: Car, Truck, Ambulance, Taxi, Bicycle, and Bus. The sensors and control units are thin

clients which do not contain any business logic. In this case, all the STS elements can

communicate with the STS.

 155

Figure 7-2: High Level Reference Architecture of the Smart City case study

STS is in essence a data-intensive system with stringent demands for QoS parameters. As

stated before, the OMG’s DDS Middleware explicitly considers QoS properties and as such is

very suitable to realize the STS system. In order to implement STS using DDS we need to map

the application domain (smart city) concepts to the DDS concepts, that is, domain, the domain

participants, the publishers, the subscribers, and the topics in the STS case study. The DDS

concept domain is here the Smart City Traffic Domain. Domain participants might be grouped

as vehicles, sensors and managers. Managers define the domain participants that include the

communication and business logic necessary for executing the required services. As stated

before each domain participant can have zero or one publisher and zero or one subscriber.

The subscribers and publishers for each domain participant are given in Table 7-1.

156

Table 7-1: Corresponding DDS Names for Application Domain Participants for STS

Application Domain
Name

DDS Name Publisher Subscriber

Ambulance
Bicycle
Bus
Car
Taxi
Truck

dpAmbulance
dpBicycle
dpBus
dpCar
dpTaxi
dpTruck

dpAmbulancePub
dpBicyclePub
dpBusPub
dpCarPub
dpTaxiPub
dpTruckPub

dpAmbulanceSub
dpBicycleSub
dpBusSub
dpCarSub
dpTaxiSub
dpTruckSub

Bicycle Station
Congestion Sensor
Incident Sensor
Parking Lot
Speed Camera
Traffic Light
Weather Sensor

dpBicycleStation
dpCongestionSensor
dpIncidentSensor
dpParkingLot
dpSpeedCamera
dpTrafficLight
dpWeatherSensor

dpBicycleStationPub
dpCongestionSensorPub
dpIncidentSensorPub
dpParkingLotPub
dpSpeedCameraPub
dpTrafficLightPub
dpWeatherSensorPub

-
-
-
-
-
-
-

Incident Manager
Logger Manager
Parking Manager
Ticket Manager
Traffic Manager
Vehicle Manager
Weather Manager

dpIncidentManager
dpLoggerManager
dpParkingManager
dpTicketManager
dpTrafficManager
dpVehicleManager
dpWeatherManager

dpIncidentManagerPub
-
dpParkingManagerPub
dpTicketManagerPub
dpTrafficManagerPub
dpVehicleManagerPub
dpWeatherManagerPub

dpIncidentManagerSub
dpLoggerManagerSub
dpParkingManagerSub
dpTicketManagerSub
dpTrafficManagerSub
dpVehicleManagerSub
dpWeatherManagerSub

For example, the entity Car has a corresponding domain participant dpCar, which as a

publisher dpCarPub and a subscriber dpCarSub. In a similar sense the subscribers for each

domain participant are defined. Finally, we have defined eight different topics for the case

study (Table 7-2). In this table we can, for example, see that publisher SpeedCameraPub

publishes data in the topic Ticket Info Topic with publish frequency rate 5Hz. Similarly, the two

subscribers TicketManSub and VehicleManSub read the published data. Table 7-3 shows an

example scenario for STS including the defined number of instances per domain participant.

 157

Table 7-2: Topics of Sample Scenario for Smart Parking System (STS)

Topic Name Publisher Publisher Rate [Hz] Subscriber

Vehicle Info Topic dpCarPub
dpBusPub
dpTruckPub
dpAmbulancePub
dpTaxiPub
dpBicyclePub

5
5
5
5
5
5

VehicleManSub

Global Info Topic VehicleManPub 20 dpCarSub
dpBusSub
dpTruckSub
dpAmbulanceSub
dpTaxiSub
dpBicycleSub

Traffic Info Topic TraficLightPub
CongestionSensorPub

10
10

TrafficManSub
VehicleManSub

Ticket Info Topic SpeedCameraPub

10 TicketManSub
VehicleManSub

Weather Info Topic WeatherSensorPub 10 WeatherManSub
TrafficManSub
VehicleManSub

Parking Info Topic BicycleStationPub
ParkingLotPub

10 ParkingManSub
VehicleManSub

Incident Info Topic IncidentSensorPub 10 IncidentManSub
VehicleManSub

Logger Topic TrafficManPub
TicketManPub
WeatherManPub
ParkingManPub
IncidentManPub

20
20
20
20
20

LoggerManSub

7.4 PROBLEM STATEMENT

An important step of designing a DDS-based application is to define the deployment model of

the system. The deployment model defines the allocation of domain participant instances (e.g.

scenario of Table 7-3) to the available physical resources, and largely influences the

performance of the overall system.

In principle many different deployment alternatives can be defined. For example, a

deployment alternative of the STS can be defined with three nodes in which all vehicle

instances are deployed on the first node, sensor instances are on the second node and

manager instances are deployed on the third node as given in Figure 7-3.

158

Table 7-3: Example scenario for STS with defined no. of instances per domain participant

Domain Participant Name Number of Instances

Ambulance
Bicycle
Bus
Car
Taxi
Truck

17
184
46

1435
124
28

Bicycle Station
Congestion Sensor
Incident Sensor
Parking Lot
Speed Camera
Traffic Light
Weather Sensor

23
62
29
33
48

125
16

Incident Manager
Logger Manager
Parking Manager
Ticket Manager
Traffic Manager
Vehicle Manager
Weather Manager

15
15
15
15
15
15
15

TOTAL 2275

Node 1

- ambulance
- bicycle
- bus
- car
- taxi
- truck

Node 2

- bicycle station
- congestion sensor
- incident sensor
- parking lot
- speed camera
- traffic light
- weather sensor

Node 3

- incident manager
- logger manager
- parking manager
- ticket manager
- traffic manager
- vehicle manager
- weather manager

Figure 7-3: Deployment by grouping domain participants

Actually, this alternative follows the conceptual separation of concerns in which a separate

node is logically defined almost for each participant type. Further, the communication

overhead among the same participant types such as the communication between Vehicle

Manager and Traffic Manager are minimized because of being deployed on the same node.

 159

Although this alternative is easy to understand because of the logical separation of

participants, it does not always have good time performance because separately deployed

participants such as parking sensors and vehicles need to interact very frequently with each

other.

A second deployment alternative example is shown in Figure 7-4. Hereby, the 20 participants

have been distributed equally over the existing 10 nodes. That is, each node has been

allocated two types of participants. This deployment alternative is simple but might not be

feasible to minimize the network communication in case participants need to communicate

with participants in other nodes.

Network

Node 1

- dpiAmbulance
- dpiBicycle

Node 2

- dpiBus
- dpiCar

Node 3

- dpiTaxi
- dpiTruck

Node 4

- dpiBicycleStation
- dpiCongestionSensor

Node 5

- dpiIncidentSensor
- dpiParkingLot

Node 6

- dpiSpeedCamera
- dpiTrafficLight

Node 7

- dpiWeatherSensor
- dpiIncidentManager

Node 8

- dpiLoggerManager
- dpiParkingManager

Node 9

- dpiTicketManager
- dpiTrafficManager

Node 10

- dpiVehicleManager
- dpiWhetherManager

Figure 7-4: Deployment by distributing domain participants over nodes.

We can derive many more different deployment alternatives that may differ with respect to

the number of deployment nodes and the mapping of participants to the nodes. Apparently,

the number of deployment alternatives is very large and each deployment alternative will

perform differently with respect to different quality considerations such as logical separation

for understandability, optimizing communication overhead, enhancing utilization of physical

resources, etc. Obviously, a more systematic and formal approach is required to guide the

search for the feasible deployment alternatives. The OMG DDS specification does not provide

an explicit approach to guide the distribution and allocation of the participants to optimize

the deployment model with respect to performance in the design phase. Moreover, currently

there is no adequate approach and tool support yet to enable the selection of deployment

alternatives in the literature. In the following sections, we will provide an approach and tool

framework for designing the DDS-based application and deriving feasible deployment

alternatives.

7.5 APPROACH FOR GENERATING DDS DEPLOYMENT CONFIGURATION ALTERNATIVES

In this section, we provide a systematic process for defining and evaluating feasible

deployment alternatives of a DDS-based distributed system. The presented approach will be

used in the design phase of the DDS-based system where the development of the system is

not started yet, and the system code is not available. The approach is represented as an

activity diagram as shown in Figure 7-5. The approach consists of the two basic phases

“Architecture Design” and “Feasible Deployment Generation”.

160

FEASIBLE DEPLOYMENT GENERATIONARCHITECTURE DESIGN

Define DDS Application

Design Physical

Resources

[feasible alternative not found and

change of simulation configuration not suitable]

[Generated deployment models are not satisfactory

and change of simulation configuration not suitable]

Define DDS Types

Define DDS Topics

Define Domain

Participants

Define Requirements

Define

Pub/Sub Relations

Design Execution

Configuration

Generate Input

Parameters for

Allocation Algorithm

Find Feasible

Deployment(s)

Generate Deployment

Model(s)

[feasible alternative(s)

found]

[a feasible alternative

not found]

Analyze Tool Feedback

Evaluate Generated

Deployment Model(s)

[Generated

deployment models

are satisfactory]

[Generated

deployment models

are not satisfactory]

Figure 7-5: Activity flow of alternative design evaluation and deriving feasible deployment

Typically, the architecture design phase follows the requirements analysis process. We

assume that the requirements analysis phase is performed using the approaches as defined in

the literature (e.g. see Rational Unified Process (Kruchten, 2000)) and provides the input for

the DDS-based system architecture.

The architecture of the DDS application is designed using the DDS UML Profile that has been

defined in section 2.2. This includes the definition of the DDS Types, the DDS Topics, the

Domain Participants and the Publish/Subscribe Relations. The DDS application will be

deployed on the target environment, which consists of physical resources on which the DDS

domain participants will execute. The design of the physical resources is defined in parallel to

the DDS application design.

After the architectural system design phase is completed, the feasible deployment model

generation phase starts with the definition of the execution configuration. The execution

configuration defines the number of each DDS domain participant and update rate for each

publication by using the artifacts defined in architecture design phase. From an abstract point

of view, the feasible deployment models of a system with several sub-components can be

derived by using task assignment algorithms defined in the literature (Aleti, Grunske,

 161

Meedeniya, & Moser, 2009; Malek, Medvidovic, & Mikic-Rakic, 2012). For using the task

assignment algorithms, the required input parameters need first to be defined. These input

parameters are extracted from the design including available resources, execution cost of

each task, and communication cost among tasks. After the necessary input parameters are

extracted, the feasible deployment models are defined and the deployment models are

generated. Subsequently, the feasibility of the generated deployment models is evaluated in

the following step. If the generated deployment models are not satisfactory, an iteration step

will be required to analyze the system design and refine it according to the provided feedback

by the corresponding tool. Here a satisfactory alternative defines a deployment alternative

that meets the expected improvement rate of the costs (e.g. communication and execution

costs) for the deployment model. Finding feasible deployment models may require several

iterations of the process steps. The initial deployment model is realized and verified in

development and integration/test activities, and the results are fed back to the designer until

a satisfactory alternative is derived.

In the following subsections we will explain the concrete activities that we have defined to

realize our approach. Each section also defines the metamodels that are used for modeling

the related artifacts of the corresponding step.

7.5.1 Define DDS Application

OMG’s UML Profile for Data Distribution Specification already defines necessary metamodel

for defining a DDS application, so we did not define a new metamodel for DDS Application

definition. The approach defined in this chapter extends and realizes the OMG UML Profile for

Data Distribution Specification (OMG, 2010). Our modeling tool realizes necessary parts of

UML Profile for Data Distribution Specification to define the DDS types, the DDS topics, the

Domain Participants, and the Publish/Subscribe Relations. For example, the relationship

among Domain, Domain Participant, Publisher, Subscriber, Data Reader, and Data Writer

artifacts are shown in Figure 7-6.

The model implies that a DDS application may consist of one or more Domains, a Domain

Participant can be member of one or more Domains, a Domain Participant may contain zero

or one Publisher/Subscriber, and so on. The attributes of metamodel classes are not shown

for the sake of simplicity and can be inspected from the specification (OMG, 2010).

162

Figure 7-6: Metamodel for DDS UML Profile/DCPS/DCPS Package

7.5.2 Design Physical Resources

Parallel to the activity Define DDS Application, the activity Design Physical Resources defines

the available nodes together with their processing power and memory capacity, as well as the

network connections among the nodes. For example, one may decide to adopt 25 nodes on

which the participants need to be deployed. As an example configuration, it could be decided

that each node has a memory capacity of 12280 MB and contains two processing units with

four cores at the frequency of 2.3 MHz. Equally, the nodes could also have different memory

capacity and computation power.

The physical resource metamodel has not been defined in the UML Profile for Data

Distribution Specification. As such, we have developed the metamodel in Figure 7-7 to support

the process in Figure 7-5. The Physical Resource Metamodel given in Figure 7-7 can be used

to represent the artifacts for modeling the available physical resources.

PhysicalResourceModel is the root class of the metamodel that defines a physical resource

model. There can be one or more Nodes in a physical resource model, which represents

computation resources. Each node has a name attribute that identifies the node. The

powerFactor attribute defines the computation power of the node relative to other nodes. A

node can have one or more processors, one or more custom node properties, and memory

capacity. Processor defines properties of a processing unit using the attributes name,

frequency and coreCount. The attribute name is the symbolic name of the processor like “Intel

Core I7”. The attribute coreCount defines the number of cores that the processor has. The

attribute frequency defines the frequency of the processor in Mhz. MemoryCapacity has a

value attribute that represents the memory capacity of the node in terms of megabytes.

 163

CustomNodeProperty can be used to define additional properties for the node. The properties

are defined as name-value pairs. For example, one may decide to include a specific property

diskCapacity with value 340 Gb.

Figure 7-7: Physical Resource Metamodel

There can be one or more networks in a physical resource model. The Network class is the

abstract base class for LocalAreaNetwork (LAN) and WideAreaNetwork (WAN) classes. The

name attribute of the Network class is the symbolic name of the network. WideAreaNetwork

class has speedFactor attribute that defines the speed of the network in comparison with a

LAN. LANConnection represents the connection of a node to a LAN. Router represents routers

for connecting networks with each other. The name attribute of the Router class is the

symbolic name of the router. LANRouterConnection class represents connection of a LAN to a

router while the RouterNetworkConnection class represents connection of a router to a

network.

7.5.3 Design Execution Configuration

The Execution Configuration Metamodel is used to define the artifacts to model the execution

configuration shown in Figure 7-8. ExecutionConfiguration class defines an execution

configuration which contains elements of Metadata and DomainParticipantInstance.

Metadata defines name, creation date, creator, and version of the execution configuration.

DomainParticipantInstance represents an instance of a Domain Participant that is defined in

the DDS Application Definition Metamodel.

Each Domain Participant instance can have a different execution cost for different nodes. For

this, DomainParticipantInstance contains a list of ExecutionCost that define estimated

execution cost for each node which the Domain Participant instance can execute. Note that

the execution cost is dependent on the selected execution configuration. For example, the

execution cost of a Mobile Client Subscriber model changes according to existing Parking

164

Detection Sensors in the execution configuration. The execution cost is a scaled value that

shows the execution cost of a Domain Participant Instance in comparison with other Domain

Participant Instances in the execution configuration. For example, the execution cost for each

Parking Detection Sensor domain participant is defined using scaled value and defined as 7

over 20 for one node, 14 over 20 for another node, etc. The execution costs of modules are

influenced by the processor’s powerFactor and memoryCapacity attributes. In a similar sense,

the communication costs among modules are influenced by the networks speedFactor

attribute. Since the execution and communication costs of domain participants can only be

exactly measured after the system is developed, during design time their values can only be

estimated. This estimation can be conducted by using, for example, design phase complexity

calculation methods such as proposed by (Prismtech, n.d.-b) or prototyping.

Figure 7-8: Execution Configuration Metamodel

The attribute requiredMemory of DomainParticipantInstance represents the estimated

memory amount that the domain participant will require during execution. Similar to the

execution cost, this parameter can be estimated in the design phase. The attribute

instanceCount defines the number of Domain Participant Instances in the execution

configuration. This attribute is added because there may be multiple instances of the same

Domain Participant in an execution configuration. For example, in a large Smart Parking

System scenario, there can be hundreds of Parking Detection Sensors and it is not feasible to

add one domain participant for each of them to the execution configuration separately.

The relation relatedDomainParticipant associates a DomainParticipantInstance with a

DomainParticipoant that is defined in the activity Define DDS Application.

DomainParticipantInstance can have zero or more Publications that represent the update rate

 165

and the related element from DDS Topic definition. Each publication is associated with an

TopicDescription defined in “Define DDS Application” step.

The updateRate attribute shows how many times a Domain Participant instance will update a

Topic in a second. For example, we could decide to have 2000 Parking Detection Sensor

domain participants where each of them publishes a Sensor object with update rate of 2 times

per minute.

7.5.4 Generate Input Parameters for Allocation Algorithm

Once the parameters for the physical resources and execution configurations have been

defined we can start the search for the feasible deployment alternatives. In principle, this can

be carried out in different ways in which multiple different approaches and algorithms can be

identified. The allocation could be, for example, based on one of the following heuristics:

1. minimizing the number of the nodes to which the tasks are allocated
2. uniform distribution of tasks over the nodes
3. random allocation of tasks over the nodes
4. minimizing the overall communication costs

The presented approach is generic and does not hardwire a particular heuristic approach. If

needed, in addition to the above heuristics we could also identify other heuristics. In the next

section, we will discuss each of these approaches in the implementation of the tool and the

overall evaluation.

Besides the heuristics, we could also adopt a more formal and systematic algorithm for the

deployment process. In this chapter, we will adopt the so-called Multi-Processor Task

Assignment (MPTA) problem (Malek et al., 2012; Ucar, Aykanat, Kaya, & Ikinci, 2006). For this

problem, the following parameters can be defined:

• T, set of m tasks = {t1, t2, ..., tm}

• P, set of n processors {p1, p2, ..., pn}

• Mp, memory capacity of processor p

• mi, amount of memory needed for task i

• Xiq, cost of executing ti task on pq processor.

• E, set of communication between tasks, whereby each communicating task combination
(i, j) has a communication cost cij if tasks ti and tj are assigned to different processors.
Communication cost is negligible if two tasks are assigned to same processor.

The objective in our problem is to minimize the sum of total execution cost and total

communication cost (among domain participants) while not exceeding the memory capacity

of each node. Based on the above definitions we can formulate our objective as follows (Malek

et al., 2012; Ucar et al., 2006):

166

Assign tasks to processors to minimize the sum

Subject to

 (aip = 1, if task i is assigned to processor p, 0 otherwise)

In fact, the required parameters of the MTPA problem can be extracted from the system

design that has been defined in the previous activities. In Table 7-4 we explain for each

parameter how it is extracted from the design.

Table 7-4: Extracting MPTA parameters from the design

MPTA
Parameter

Extraction from Design

T Each domain participant instance will be mapped to a Task, so T is list of domain participant
instances defined in Execution Configuration Design activity.

P Each node defined in Physical Resource Design activity

Mp memoryCapacity attribute of node defined in Physical Resource Design activity.

mi requiredMemory attribute of DomainParticipantInstance defined in Execution Configuration
Development activity

Xiq nodeExecutionCostTable attribute of DomainParticipantInstance defined in Execution
Configuration Development activity

Cij Calculated by using:
- Publications defined in Execution Configuration Design activity,
- Subscriptions defined in Publish/Subscribe Relations of Domain Participants Design activity,
- Data Types and Topics defined in DDS Application Design activity

7.5.5 Find Feasible Deployment Configuration

The activity Find Feasible Deployment takes as input the parameter values of the previous

activity and executes an algorithm that computes a feasible deployment alternative, if one is

available. Different algorithms in the literature can be used to solve the MPTA problem. Please

note that we do not focus on a particular algorithm but recommend using a practical one for

the corresponding case. In our case, we could for example use the MPTA algorithm as defined

by Mehrabi et al. (Mehrabi, Mehrabi, & Mehrabi, 2009) because it adopts the parameters of

execution cost, communication cost and memory requirements. If a feasible deployment is

found, the output of this activity is a table that represents the mapping of tasks (domain

participants) to processors (nodes). If the algorithm was not successful in finding a feasible

solution the process returns to the activity Design Execution Configuration. This can be

repeated several times until a feasible deployment is found. If it appears that a feasible


===

−+
n

p

ijjpip

Eji

n

p

ipip

m

i

caaxa
1),(11

)1(

TiPpa

Mam

Tia

ip

p

i

ipi

n

p

ip

=



=




=

,},1,0{

,1
1

 167

deployment cannot be found by changing just the execution configuration, then the designer

can decide to return to the beginning of step 3 to refine/update the design.

7.5.6 Generate Deployment Configuration

The Deployment Metamodel is used to describe the deployment model in the “Generate

Deployment Model(s)” activity shown in Figure 7-9. The deployment metamodel contains

Members and Nodes. Each Member is deployed on one of the Nodes defined in Physical

Resource Model. One or more Domain Participant Instances can be deployed on a Member.

Figure 7-9: Deployment Configuration Metamodel

7.6 TOOLS AND APPLYING THE APPROACH TO THE CASE STUDY

In this section, we present the tool Deploy-DDS that provides an integrated development

environment for supporting the activities of the approach described in the previous section.

Deploy-DDS is built on the Eclipse platform and is implemented as a set of plug-ins. The

developed plug-ins are built on other Eclipse frameworks including Eclipse Modeling

Framework (EMF) (Steinberg, 2009), and Graphical Modeling Framework (GMF) (Voelter, Kolb,

Efftinge, & Haase, 2006). EMF is a modeling framework and code generation facility that we

use to develop the metamodels. GMF is a generative component and runtime infrastructure

that we use for developing graphical editors for the developed metamodels. Further, we use

Emfatic (Daly, 2004), which provides a text editor and a language for editing EMF models. In

addition, we use EuGENia GMF tool (Kolovos et al., 2010) that provides mechanisms for

abstracting away the complexity of GMF and for easier development of GMF editors. EuGENia

tool is a part of Epsilon project (Kolovos, Paige, & Polack, 2006).

In the following subsections, we describe the top-level tool architecture in section 7.6.1. In

section 7.6.2 we show the application of Deploy-DDS for designing the DDS Application,

Physical Resources, and Execution Configuration for the case study.

168

7.6.1 Tool Architecture

The Deploy-DDS tool provides an integrated environment for modeling DDS based

applications, generating and analyzing deployment models. Deploy-DDS tool is built on the

Eclipse platform and is implemented as a set of plug-ins. The developed plug-ins are built on

other Eclipse framework plug-ins including Eclipse Modeling Framework (EMF) (Budinsky,

Steinberg, Merks, Ellersick, & Grose, 2003), Graphical Editing Framework (GEF) (Moore, Dean,

Gerber, Wagenknecht, & Vanderheyden, 2004), and Graphical Modeling Framework (GMF)

(Voelter et al., 2006). EMF is a modeling framework and code generation facility that we use

to develop the metamodels.

GEF is a framework that is used for generating rich graphical editors and views. GMF is a

generative component and runtime infrastructure that we use for developing graphical

editors for the developed metamodels. Further, we use Emfatic (Daly, 2004), which provides

a text editor and a language for editing EMF models. In addition, we use EuGENia (Kolovos et

al., 2010) GMF tool that provides mechanisms for abstracting away the complexity of GMF

and for easier development of GMF editors. EuGENia tool is a part of Epsilon project (Kolovos

et al., 2006). The layered tool architecture of the Deploy-DDS is given in Figure 7-10. Deploy-

DDS consists of five different tools.

Physical Resources

Design Tool
DDS Types Design Tool

DDS Application Design

Tool

Execution Configuration

Design Tool

Deployment Model

Generation Tool

Eclipse Platform

EMF GEF

GMF

E
m

fa
ti
c

E
u
G

E
N

ia

Figure 7-10: Layered Architecture of S-IDE environment

The common perspective of Deploy-DDS is given in Figure 7-11. The left pane includes the

Model Explorer View that shows the available models and their elements. The Editing pane in

the middle provides the main drawing area for the DDS based application design. The

Properties Editor View at the bottom provides an editing area for the attributes of the design

model elements that are selected from the Editing Pane or the Model Explorer.

 169

Model Navigator Model Editing Pane Item Palette

Properties View

Figure 7-11: General Perspective of Deploy-DDS tool

Deploy-DDS supports different activities in the approach; the dependencies between these

activities are shown in Figure 7-12. The meaning of the adopted symbols in the diagram are

shown in the legend below the diagram. The activities result in artifacts which are denoted

using the stereotype <<Artifact>>. The circles with numbers denote the control flow among

the activities.

The DDS Type Repository Definition results in the DDS Type Repository, which is provided as

an input to the DDS Topics & Participants Definition activity, and Execution Configuration

Definition activity. The DDS Topics & Participants Definition activity is used to produce the DDS

Topics, Domain Participants, and Pub/Sub Definitions which is also an input to the Execution

Configuration Definition activity. The Physical Resources Design activity is used to define the

Physical Resource Model, which is an input to Execution Configuration Definition activity and

the Deployment Model Generation activity. The Execution Configuration Definition activity is

used to define the Execution Configuration, which is provided as an input to the Deployment

Model Generation activity that on its turn generates the Deployment Model. In the following

subsections, we describe each activity in more detail using the Smart Parking System (STS)

case study defined in Section 3.

170

DDS Type Repository
 Definition

DDS Topics & Participants Definition

<<Tool>>
Execution Configuration Definition

Tool

Physical Resources Design Tool

Deployment Model
Generation

<<Artifact>>
DDS Type Repository

<<Artifact>>
DDS Topics, Domain Participants

and Pub/Sub Definitions

<<Artifact>>
Physical Resource Model

<<Artifact>>
Execution Configuration

<<Artifact>>
Deployment Model

1

2

3
4

5

<<Artifact>> Artifact Activity

Input-to

Generates

5 Order of activity

Figure 7-12: Dependency Graph of Activities

7.6.2 Using Deploy-DDS to design DDS Application Models for the Case Study

As stated before, using the tool the activities DDS Application Design, Type Repository

Definition, Physical Resources Design and Execution Configuration Design define the

corresponding modeling tools. Figure 7-13 shows a part of the DDS Type Repository of the

case that has been developed using the DDS Type Repository Definition activity. As stated

before, publishers and subscribers communicate via topics. Hereby, publishers write data

fields in the topic and subscribers read data fields in the topic. Type Definitions of the topics

are given in Figure 7-13. For example, in this diagram we defined a topic VehicleInfo. In this

topic we have four data fields. The vehicleID field shows the unique ID of the related vehicle.

The speed field shows the speed of the vehicle. Finally, latitude and longitude fields show the

geographic position of the vehicle.

 171

Figure 7-13: Type Definition Model of the case study

Figure 7-14: Application Definition Model of the case study

172

Figure 7-14 shows the application definition model of the case study. The domain participants

in this figure are all in the “Smart City Traffic” (STS) domain. In this diagram, we can classify

domain participants mainly in three categories: Vehicles, Sensors and Managers. Sensors just

have data publishers to publish related sensor information. This information is read by related

managers and vehicles via the defined topics. Vehicles have both publishers and subscribers.

They publish their id, speed and position information basically. This information is read by

managers. Similar to vehicles, managers have publishers and subscribers except Logger

Manager which has nothing to publish in the STS domain and just a subscriber. Managers

combine this information with information coming from sensors. Managers might

communicate with other software modules such as database and cloud modules (for simplicity

this part was excluded in the model). Resulting information combined in managers are

published into vehicles again and drivers might have broad information about the details of

the city traffic such as accident information and congestion information so that they can use

less dense roads or they can arrive at proper parking places with less travel.

Figure 7-15: Physical Resource Model for Case Study with Ten Nodes

Figure 7-15 shows the Physical Resource Model Diagram of the case study. In this case, we

have 10 nodes (computers) with different number of processors and different memory

capacities. The processor capacity ranges from 3.0 GHz to 3.8 GHz, while the memory

capacities range from 16.000 MB to 80.000 MB (less readable in the figure). This heterogeneity

makes obtaining a feasible solution more difficult. Figure 7-16 shows the execution

configuration model of vehicle participants of the case study.

Hereby, as an example, Vehicle publishers publish data at 5 Hz, with different execution costs

for different nodes. For this chapter, we assume that the proper execution costs are provided.

These could be typically obtained experimentally or based on expert knowledge. The more

precise the values of the execution costs the more effective the tool will be to derive the

feasible deployment alternatives.

 173

Figure 7-16: Partial view of the Execution Configuration Diagram for the Case Study

7.7 EVALUATION

In the previous sub-sections, we have described the development of the physical configuration

model, the type definition model, the application definition model and the execution

configuration model. Given these models we can now generate the possible deployment

alternatives. The corresponding snapshot of the tool is shown in Figure 7-17. As it can be seen

in the figure the execution configuration, and the physical resource model can be provided as

an input to the tool. The field Container, defines the folder in which the results are stored. In

principle, the deployment generation can be realized using multiple different alternative

algorithms. The user can select one of the implemented deployment model generators.

Figure 7-17: Algorithms used to find deployment alternatives in DeployDDS tool

174

In DeployDDS tool, we have selected five different deployment model generators (DMG) to

obtain the deployment models including DMG_TopicBasedAllocation,

DMG_GeneticAlgorithm, DMG_SequentialAllocation, and DMG_MinimumNodeAllocation.

Each of these algorithms has been implemented in the tool and provides a solution for the

MPTA problem as discussed in section 5.4. In the following, we shortly describe the algorithms

that we have implemented:

DMG_TopicBasedAllocation aims to find feasible deployment models with minimum

communication cost. This logic is implemented by a Greedy Algorithm which allocates the

publishers and subscribers of the same topic into the same node. If the node does not have

adequate memory for the publishers and the subscribers, only appropriate number of

publishers and subscribers will be allocated to that node. The number of nodes that cannot

be allocated to the same node because of the lack of memory will be allocated to the next

nodes. As stated above, the publishers and the subscribers that cannot be allocated to the

same node will cause communication cost. So, if there is enough memory to allocate all

communicating publishers and the subscribers into the same node, this DMG will result in zero

communication cost.

DMG_GeneticAlgorithms uses a genetic algorithm-based solver to find feasible deployment

models.

DMG_SequentialAllocation, allocates domain participant instances into the available nodes. It

starts with the first domain participant and allocates sufficient number of domain participants

into the first node. It will allocate sufficient number of participants to the first available nodes

and then switches to the second node. Note that, if the memory available in the first node is

sufficient to allocate all participants, then this DMG will result in the same deployment model

with DMG_MinimumNodeAllocations.

DMG_MinimumNodeAllocation aims to find feasible deployment models using the minimum

number of nodes. If possible, this DMG allocates all tasks to the same node which will result

in zero communication cost. In order to allocate all participants to the same node, this DMG

starts from the node that has maximum memory available. If the memory required to allocate

all tasks to the same node is not available in a single node, then more nodes will be allocated.

The resulting deployment model will be using the minimum number of nodes. At the end,

many nodes might become unused.

By selecting one of these generators the feasible deployment alternative can be automatically

generated using the selected deployment generator. If necessary, the user of the tool can

implement another algorithm and deploy it in the tool. In principle, each newly defined

algorithm will follow the steps of the common pseudo-code as shown in Figure 7-18. As shown

in line 1, the algorithm GENERATE_FEASIBLE_DEPLOYMENT takes two input parameters: a

physical resource model and an execution configuration as defined, for example, in Figure

7-15 and Figure 7-16, respectively. Line 2 extracts processors from the physical resource

model by calling EXTRACT_PROCESSORS in which a processor is created for each node in the

physical resource model. In Line 3, tasks are extracted from the execution configuration by

calling EXTRACT_TASKS in which a task is created for each domain participant and execution

 175

cost among tasks is calculated. In Line 4, the actual MPTA algorithm is executed by calling

EXECUTE_MPTA. The result of this is stored in assignment_table that includes the assignment

of tasks to the processors. Likewise, assignment_table defines an abstract specification of the

feasible deployment alternative. In Line 5, the deployment is actually generated by calling

CREATE_DEPLOYMENT_MODEL with the parameter assignment_table.

1. GENERATE_FEASIBLE_DEPLOYMENT (phy_resources, exec_config)
2. processors  EXTRACT_PROCESSORS (phy_resources)
3. tasks  EXTRACT_TASKS (exec_config)
4. assignment_table  EXECUTE_MPTA (tasks, processors)
5. CREATE_DEPLOYMENT_MODEL (assignment_table)

Figure 7-18: Pseudo-code for generating feasible deployment alternative

Figure 7-19 shows the generated deployment alternatives for the case study using the

DMG_TopicBasedAllocation (Mehrabi et al., 2009).

Figure 7-19: Generated Feasible Deployment Alternative including 2275 Tasks with
DMG_TopicBasedAllocation

The generation algorithm is implemented in Java and executed on a quad-core Intel I-5 2.70

GHz 64-Bit computer with 4 GB of RAM. The figure is not mentioned to be completely

readable. What we can state is that the resulting deployment model includes 10 nodes as

given before in the physical resource definition model in Figure 7-15. Further, the execution

configuration model as partially defined in Figure 7-16 has been deployed to the physical

176

nodes to optimize the values for the metrics execution cost, communication cost and memory

requirements. A close analysis of the generated alternative of Figure 7-19 shows that the total

memory requirements of domain participant instances that are deployed on each node do not

exceed the memory capacity of the corresponding nodes. Further, based on the adopted

genetic algorithm, it appears that domain participant instances that interact frequently and

which have high communication costs, are as much as possible co-located on the same node.

The domain participant instances that are remaining and which would exceed the memory

capacity of Node-1 are deployed to other nodes in a similar manner. Overall, the feasibility of

the generated deployment alternative is based on the MPTA algorithm that we have used, and

which has been validated in earlier studies (Mehrabi et al., 2009).

The generated deployment diagram can soon become too large to view in a single diagram.

For this we can also show the results in Table 7-5. The results for the selection on the other

deployment generator algorithms are shown in Table 7-6 (DMG_GeneticAlgorithm), Table 7-

7 (DMG_SequentialAlgorithm) and Table 7-8 (DMG_MinimumNodeAllocation).

Table 7-5: Deployment results for DMG_TopicBasedAllocation

Instance Name N1 N2 N3 N4 N5 N6 N7 N8 N9 N10 TOTAL
dpiAmbulance 15 2 17
dpiBicycle 184 184
dpiBus 46 46
dpiCar 320 67 426 426 196 1435
dpiTaxi 124 124
dpiTruck 28 28
dpiBicycleStation 23 23
dpiCongestionSensor 62 62
dpiIncidentSensor 29 29
dpiParkingLot 33 33
dpiSpeedCamera 48 48
dpiTrafficLight 47 78 125
dpiWeatherSensor 15 1 16
dpiIncidentMan 15 15
dpiLoggerMan 15 15
dpiTicketMan 15 15
dpiTrafficMan 15 15
dpiParkingMan 15 15
dpiVehivleMan 15 15
dpiWeatherMan 15 15

TOTAL 0 0 0 0 320 219 426 426 377 507 2275

 177

Table 7-6: Deployment results for DMG_GeneticAlgorithm

Instance Name N1 N2 N3 N4 N5 N6 N7 N8 N9 N10 TOTAL
dpiAmbulance 2 2 7 1 2 1 2 17
dpiBicycle 24 19 14 19 23 21 16 17 14 17 184
dpiBus 6 3 8 3 4 3 4 4 4 7 46
dpiCar 74 83 155 136 162 155 186 173 148 163 1435
dpiTaxi 9 9 39 10 14 14 19 10 124
dpiTruck 5 5 4 3 4 4 3 28
dpiBicycleStation 2 5 3 1 1 8 3 23
dpiCongestionSensor 16 8 10 10 9 9 62
dpiIncidentSensor 11 4 4 5 2 3 29
dpiParkingLot 8 6 4 6 4 5 33
dpiSpeedCamera 9 6 7 14 4 8 48
dpiTrafficLight 1 13 4 36 17 13 19 22 125
dpiWeatherSensor 1 2 1 1 6 1 4 16
dpiIncidentMan 2 4 5 1 2 1 15
dpiLoggerMan 3 1 4 4 3 15
dpiTicketMan 6 1 1 3 2 2 15
dpiTrafficMan 2 5 2 1 5 15
dpiParkingMan 1 8 2 2 2 15
dpiVehivleMan 5 2 2 4 2 15
dpiWeatherMan 1 6 4 1 3 15

TOTAL 106 106 205 191 299 259 297 286 254 272 2275

Table 7-7: Deployment results for DMG_SequentialAllocation

Instance Name N1 N2 N3 N4 N5 N6 N7 N8 N9 N10 TOTAL
dpiAmbulance 2 2 2 2 2 2 2 1 1 1 17
dpiBicycle 19 18 18 18 18 18 18 19 19 19 184
dpiBus 4 5 5 5 5 5 5 4 4 4 46
dpiCar 81 81 188 188 179 143 143 144 144 144 1435
dpiTaxi 63 13 12 12 12 12 124
dpiTruck 14 2 3 3 3 3 28
dpiBicycleStation 11 3 3 2 2 2 23
dpiCongestionSensor 18 18 6 7 7 6 62
dpiIncidentSensor 18 3 3 2 3 29
dpiParkingLot 19 3 3 4 4 33
dpiSpeedCamera 29 5 5 5 4 48
dpiTrafficLight 15 73 12 12 13 125
dpiWeatherSensor 10 2 2 2 16
dpiIncidentMan 12 1 1 1 15
dpiLoggerMan 9 2 2 2 15
dpiTicketMan 12 1 1 1 15
dpiTrafficMan 9 2 2 2 15
dpiParkingMan 12 1 1 1 15
dpiVehivleMan 9 2 2 2 15
dpiWeatherMan 13 1 1 15

TOTAL 106 106 213 213 310 285 349 239 227 227 2275

178

Table 7-8: Deployment results for DMG_MinimumNodeAllocation

Instance Name N1 N2 N3 N4 N5 N6 N7 N8 N9 N10 TOTAL
dpiAmbulance 1 16 17
dpiBicycle 184 184
dpiBus 46 46
dpiCar 320 67 426 426 196 1435
dpiTaxi 124 124
dpiTruck 28 28
dpiBicycleStation 23 23
dpiCongestionSensor 62 62
dpiIncidentSensor 29 29
dpiParkingLot 33 33
dpiSpeedCamera 48 48
dpiTrafficLight 73 52 125
dpiWeatherSensor 16 16
dpiIncidentMan 15 15
dpiLoggerMan 15 15
dpiTicketMan 15 15
dpiTrafficMan 15 15
dpiParkingMan 15 15
dpiVehivleMan 15 15
dpiWeatherMan 15 15

TOTAL 0 0 0 0 320 219 426 426 374 510 2275

Each of these deployment generators will perform differently. To validate each algorithm, we

adopt the Communication Cost and Execution Cost metrics. Communication Cost defines the

overall communication costs of the required communication tasks in the generated

deployment alternative. The execution cost metric defines the overall cost of the required

tasks on the required number of processors. We have calculated the communication costs and

execution costs for the selected deployment generators applied to the case study. The results

are shown in Table 7-9. The unit of the communication costs is Mbytes/s; execution cost is a

relative unit.

Table 7-9: The communication and execution costs values for the deployment generators

Deployment Generator Communication Cost [Mbytes/s] Execution Cost
DMG_TopicBasedAllocation 4.05 22773
DMG_GeneticAlgorithm 5.00 31381
DMG_MinimumNodeAllocation 4.02 27730
DMG_SequentialAllocation 4.76 31763

As we can observe in Table 7-9, for both metrics the deployment generator

DMG_MinimumNodeAllocation performs the best, while DMG_GeneticAlgorithm has the

lowest performance. These values are also shown by the tool and as such provide useful

insight for deciding on the proper deployment allocation.

Each of the selected algorithms provides feasible deployment alternatives and can in principle

directly be used to implement the system. In order to further analyze the validity of the

generated deployment models we use two approaches.

 179

The first approach is intuitive and based on the visual inspection of the generated deployment

model alternatives by an expert. Therefore, this approach relies on the expert’s experience to

provide logical reasoning about the feasibility of the deployment alternative. In addition, the

generation of the alternative is done automatically and not performed by the expert. An

example reasoning of an expert could be based on the deployment alternative given in Figure

7-19. A close analysis of this generated deployment alternative shows that the total memory

requirements of DDS based software system (i.e., STS) does not exceed the capacity of the

corresponding nodes. Further, based on the adopted genetic algorithm, it appears that

software domain participants that interact frequently and which have high communication

costs, are as much as possible co-located on the same node. Apparently, the publishers and

subscribers in the system have frequent interactions in publish-subscribe communication via

ParkingLot topic and in the deployment model (Figure 7-19). The adopted algorithm has co-

located instances of these modules as much as possible to keep the communication cost

minimum. The remaining instances, which would exceed the capacity of Node-1, are deployed

to other nodes in a similar manner.

The second, more formal approach for evaluating the generated deployment alternative is to

compare the generated alternative with another deployment alternative. As shown in Figure

7-20, the DeployDDS tool enables the comparison of two deployment models that were

defined before, either generated and/or manually defined. To compare two models, the

execution configuration and the physical resource model is provided. Once the Compare

button is pressed the output is written to the corresponding result folders.

Figure 7-20: Deployment Model Evaluator of DeployDDS tool

The comparison process provided in the DeployDDS is generic and can be applied in a similar

way for the alternatives generated with all the defined deployment generators. We show the

evaluation of the generated deployment model with a manually generated deployment model

that is based on a deployment model that is generated by an expert. We have manually

180

defined the deployment model for the expert judgment deployment alternative in DeployDDS

environment. The results of the expert allocation are shown in Table 7-10.

Table 7-10: Deployment results for expert distribution

Instance Name N1 N2 N3 N4 N5 N6 N7 N8 N9 N10 TOTAL
dpiAmbulance 17 17
dpiBicycle 184 184
dpiBus 16 30 46
dpiCar 17 17 123 123 230 231 338 322 17 17 1435
dpiTaxi 12 13 13 13 13 12 12 12 12 12 124
dpiTruck 3 2 2 3 3 3 3 3 3 3 28
dpiBicycleStation 23 23
dpiCongestionSensor 62 62
dpiIncidentSensor 29 29
dpiParkingLot 33 33
dpiSpeedCamera 6 42 48
dpiTrafficLight 125 125
dpiWeatherSensor 16 16
dpiIncidentMan 15 15
dpiLoggerMan 15 15
dpiTicketMan 15 15
dpiTrafficMan 15 15
dpiParkingMan 15 15
dpiVehivleMan 15 15
dpiWeatherMan 15 15

TOTAL 32 32 138 139 246 246 353 353 410 326 2275

The expert deployment allocates an equal number of domain participant instances to each

node. The expert checks the available memory of the nodes and if the memory is not sufficient

for the required number of tasks, he/she tries to allocate the remaining tasks to the other

available nodes. The results for this expert deployment allocation are shown in Table 7-10.

Figure 7-21 shows the results of the expert deployment for three nodes.

 181

Figure 7-21: Expert Deployment Model for first three nodes

The numbers in each cell defines the number of instances of the participants. For example,

dpiBicycleStation (x23) means that 23 instances of BicycleStation is deployed into the node

and dpiAmbulance means a single instance of Ambulance is deployed into the corresponding

node. The communication and execution costs values for this export deployment are given in

Table 7-11.

Table 7-11: The communication and execution costs values for the expert deployment

Deployment Generator Communication Cost [Mbytes/s] Execution Cost
Expert Deployment 4.37 29483

182

If we compare the expert-based deployment with that of the earlier defined

DMG_TopicBasedAllocation in Figure 7-19 we can conclude that both the communication

costs and execution costs metric values are slightly better for the DMG_TopicBasedAllocation.

DMG_TopicBasedAllocation tries to define the deployment such that the participants and the

subscribers of the same topic are located into the same node. This strategy minimizes the

communication cost in the deployment model. For example, the participant BicycleStation

publishes the data which is subscribed by ParkingManager. As such, these two participants are

located into the same node. Similarly, ParkingLot and ParkingManager are located into the

second node and ConcestionSensor and the TrafficMan participants are deployed into the

third node.

Similar to the comparison with DMG_TopicBasedAllocation we can compare the expert

deployment also with the results of the other deployment generators. The comparison results

are shown in Table 7-12. Here we have set the communication cost and execution cost of the

expert deployment to 100%. The other percentages define the percentage in relation to the

expert’s results. From this table, we can conclude that the defined deployment generators

perform in general better than the expert deployment. When execution costs are compared

the DMG_MinimumNodeAllocation seems to perform the best. Based on these results a given

deployment generator could be selected. Note that the results of the algorithms can be

different for different execution configuration models and the physical resource models. The

approach and the tool can be used to assist in selecting the most feasible deployment model.

As stated before, if needed, new deployment generators can be easily defined to optimize the

results even further.

Table 7-12: Comparison of Expert Deployment models with respect to Deployment Model Generators

Deployment Generator Communication Cost [%] Execution Cost [%]
DMG_TopicBasedAllocation 92.8 94.1
DMG_GeneticAlgorithm 114.4 106.4
DMG_MinimumNodeAllocation 92.1 94.1
DMG_SequesntialAllocation 108.9 107.7
Expert Deployment Model 100 100

7.8 DISCUSSION

The Data Distribution Service (DDS) is now a popular and recognized data-centric publish-

subscribe programming model and specification for distributed systems. It has been applied

in many different application domains which have resulted in several lessons learned. One of

the important issues is the support for modeling and design abstractions in DDS based

systems. OMG has provided the DDS UML Profile to support the analysis and design of a DDS-

based distributed system. The focus of this chapter has been mainly on deriving configuration

alternatives. This is an important and relevant problem for many DDS-based systems which

consist usually of multiple participant applications each of which has different responsibilities

in the system. The potential configuration space is in general too large and not tractable for

the human system engineer and a systematic approach with automated support is necessary.

 183

We have provided both a systematic approach with the related toolset that can be used for a

broad range of DDS-based systems to derive feasible configuration alternatives to meet the

functional and quality concerns given the available resources. The approach has also been

illustrated for a relevant case study on smart city engineering which has been used to illustrate

both the problem and the approach.

The approach adopted the UML profile to complement the existing work. The UML profile

appeared to be very useful in preparing and supporting the analysis and design of the DDS

system for deriving design alternatives. It should be noted that the OMG’s DDS UML Profile is

a specification and no realization of it was present yet. As such, one of the supporting

contributions in this chapter is also the realization of this profile in the Eclipse Modeling

Framework (EMF). To support the systematic approach for generating the design alternatives

we had to enhance the profile further (e.g. physical resource modeling, and execution

configuration model).

Based on the modeled system design and physical resources using the realized DDS’s UML

Profile, the feasible deployment alternatives could be algorithmically derived and

automatically generated using the developed tools. In the toolset, we have implemented

different algorithms for deriving feasible deployment alternatives. Yet the approach does not

mandate the usage of a particular algorithm but provides the required input values for these

algorithms. The focus of the chapter is not the design of algorithms but the overall system

engineering approach for selecting a feasible alternative in a large configuration space. The

algorithms that we used were justified in the literature for solving the MPTA problem as

discussed in section 7.5. The correctness of these algorithms has been discussed in the

corresponding papers and based on this we can assume that a feasible solution is derived. In

addition, depending on the state of the system different MPTA algorithm implementations

may be used to optimize the values for the metrics. For comparison of the algorithms, we refer

to, for example, (Ucar et al., 2006).

Both the approach and the tools assist the designer to derive a feasible deployment model.

We do not maintain a claim that the tool is a replacement for the human expert. In fact, the

tool can be a complementary and supporting alternative for the human expert who can

design, generate and evaluate the derived alternatives. After deriving the deployment

alternative, if necessary, expert judgment can be further used to refine the deployment

alternative.

One of the important benefits of the approach is also the early analysis of the system and the

generation of the feasible deployment model at design time. Deferring the definition of the

deployment to the development phase might in practice easily lead to non-feasible

implementations which will require iterating the design and the related project lifecycle

artifacts such as detailed design, implementation, test artifacts, documentation, etc.

The identified deployment model may be refined and optimized if more accurate information

is available in subsequent phases of the project lifecycle. The approach itself can actually be

used at any time during the project life cycle and, if possible, even after the system has been

developed. In the latter case, the measured run-time parameter values can be used, instead

184

of estimated values, to define the optimal deployment model. The runtime parameter values

can be collected by using tools that collect activities (e.g. topic updates) of domain

participants.

7.9 RELATED WORK

The allocation of software units on computing systems has applications in different computing

domains such as embedded systems, local/wide area distributed systems, parallel and

distributed simulations, etc. In our earlier work, we have carried out a systematic review to

identify the obstacles of DDS based systems (Köksal & Tekinerdogan, 2017b). One of the

identified key obstacles that we derived from the systematic review was indeed the task

allocation problem. In this chapter, we have provided a systematic approach with the

corresponding toolset to tackle this task allocation problem.

In the literature, we can observe that some of the studies propose concrete approaches for

specific domains (such as Parallel and Distributed Systems or DDS) while others provide more

generic approaches that can be configured to use in different domains. In this work, we have

focused on the allocation problem that is directly focused on the DDS domain. In our early

work, we have provided an approach for deriving feasible deployment alternatives for parallel

and distributed simulation systems in (Celik, Tekinerdogan, & İmre, 2013) and tool support for

the approach in (Celik & Tekinerdogan, 2013). From a generic perspective, the solved

allocation problem is characterized as the Multi-Processor Task Assignment (MPTA) problem

(Stone, 1977) which is a general problem that can be applied to different domains. Each MPTA

problem however requires a specific approach and dedicated steps to solve the allocation

problem. In this study, it is clear that the domain of DDS is specific and different and provides

additional challenges including modeling the DDS system, the individual steps of the overall

approach and the corresponding toolset. Our work could be further specialized by considering

specific QoS parameters (such as reliability) to derive feasible alternatives. We consider this

as a further complementary research.

Several generic approaches can be identified in the literature to provide a solution for the

allocation problem. For example, in (Koziolek & Reussner, 2011), the authors introduced a

generic quality optimization framework that can be used for different component based

models. Similarly, in (Malek et al., 2012) the authors propose an extensible framework that

supports formal modeling of distributed software systems. The study provides a set of

tailorable algorithms for finding optimized deployment architectures with respect to multiple,

possibly conflicting QoS (Quality of Service) dimensions. The study also provides a visual

deployment architecture modeling and analysis environment for the framework. Similar to

our work, the authors evaluated the framework with simulated distributed system scenarios.

In (Svogor & Carlson, 2016), the authors use heuristics and Analytic Hierarchy Process (AHP)

(Saaty, 1988) for weighted multi-objective design space exploration. The main objective of the

study is to support systems architects in complex allocation decisions in the early design

phases. In (Aleti, Grunske, et al., 2009) the authors use constructive algorithms for deployment

optimization of embedded systems. Hereby, an Ant Colony Optimization (ACO) is used as a

 185

constructive multi-objective optimization strategy which is compared with a Genetic

Algorithm (GA) based iterative approach. The authors conclude that they observed that

constructive and iterative approaches performed similarly in their experiments.

In (Kruchten, 2000), the authors define an approach to optimize the task placement and the

signal to message mapping in hard-real time distributed systems domain. Authors use a mixed

integer linear optimization framework to automate the assignment of priorities to tasks and

messages. The optimization process aims to meet end-to-end deadline constraints and

minimize latencies by leveraging worst case response time analysis. Authors validate the

developed approach by applying it to an automotive system case study.

In (Islam, Lindstrom, & Suri, 2006), authors focused on reducing error propagation while

allocating software components to distributed embedded hardware nodes. The study

presents a systematic resource allocation approach for the consolidated mapping of safety

critical and non-safety critical applications onto a distributed platform with consideration of

dependability and real-time requirements as primary drivers. The approach focuses on finding

a feasible solution satisfying multiple concurrent constraints such as ensuring criticality

partitioning, avoiding error propagation and reducing interactions across components. The

authors applied the approach to an actual automotive case study to prove its feasibility.

In (Martens, Koziolek, Becker, & Reussner, 2010), an approach is defined for automatically

improving software architecture models for performance, reliability, and cost using

evolutionary algorithms. Starting with a given initial architectural model, the approach

iteratively modifies and evaluates architectural models by using a multi-criteria genetic

algorithm based on Palladio Component Model (Becker, Koziolek, & Reussner, 2009). The

approach supports quantitative performance, reliability, and cost prediction of software

architectures. The approach is validated by automatically investigating more than 1200

alternative design candidates for a component-based business information system and

analyzing quality criteria trade-offs.

The detailed literature study showed us that the task allocation is a well-known and still widely

studied research area with a large application domain spreading from embedded systems to

wide area distributed systems. Our approach is complementary to these approaches and is

specific since it provides and integrates the necessary modeling abstractions using the

extended DDS UML profile, the systematic approach, and the tool environment which can be

extended for different additional functionality including different algorithms.

It should be noted that besides the academic papers we can also identify several interesting

tools on the task allocation problem, which have been provided by several vendors or which

have been presented in various papers. In (Aleti, Björnander, Grunske, & Meedeniya, 2009),

the authors define an extensible tool for Architecture Optimization of AADL (Architecture

Analysis and Description Language) Models (Feiler, Gluch, & Hudak, 2006) with name of

ArcheOpterix. The study provides a framework to identify optimal and near optimal

deployment architectures with respect to multiple quality objectives and design constraints.

The existing DDS design tools focus in general on designing the DDS application and code

generation. Prismtech (Prismtech, n.d.-a), a well-known DDS infrastructure vendor, provides

186

Vortex OpenSplice Modeler (Prismtech, n.d.-b) that is a domain specific model driven

development tool. Vortex OpenSplice Modeler enables definition of topics (information

modeling), DDS entities such as publishers/writers and subscribers/readers (application

design). These capabilities are similar to our tool framework, but Vortex OpenSplice Modeler

enables Java/C++ code generation which our tool does not provide. On the other hand, our

tool framework provides an automated deployment design optimization approach which is

not provided by Vortex OpenSplice Modeler. Another major DDS vendor is RTI (RTI, n.d.),

which provides UML based modeling environment for DDS. Sparx Systems also provide a UML

based DDS modeling environment (OMG, 2010) as a plug-in for Enterprise Architect

application. Another DDS vendor, MilSOFT, also provides a modeling & code generation tool

for DDS (Milsoft, n.d.). All these tools provide modeling support and to some extent code

generation for DDS topics and applications, but they do not provide explicit support for the

deployment optimization which is the main contribution of our research. In principle, our

systematic approach could be also integrated with the existing tools.

7.10 CONCLUSION

An increasing number of systems are data-intensive and rely on the publish-subscribe

programming model to realize the distribution aspects. The Data Distribution Service (DDS)

provides a standard data-centric publish-subscribe programming model and specification for

distributed systems. In addition, the OMG has provided the DDS UML Profile to support the

modeling of the DDS applications. These are important developments but they do not consider

the design aspects explicitly. An important design concern is of course the selection of the

feasible deployment alternative given the application model, the physical resources, and the

execution configurations. So far, this problem has not been explicitly addressed in the DDS

literature. We have provided a systematic approach by extending the DDS UML profile and an

extensible tool framework.

We have developed a tool framework, Deploy-DDS that provides an integrated development

environment for deriving a feasible deployment alternative. The tool framework consists of

several tools for modeling, generating and analyzing of the deployment alternatives.

Furthermore, we have evaluated the approach for a relevant IoT case study on smart city

engineering. The approach showed to be useful in the modeling, the design and the evaluation

of the DDS deployment alternatives. The adoption of different algorithms and the ability to

add new algorithms can support the system architect also in the experimentation of the

different algorithms. Since in practice the task allocation problem and the selection of the

feasible design alternatives are not tractable we believe that the approach and the toolset

that we have provided is necessary.

In our future work, we will do research on further extension and specialization of the

approach. In this context, we will consider the adoption of specific quality criteria such as

reliability and further focus on the trade-off analysis using multiple quality criteria. Further,

we will also consider the analysis and comparison of various algorithm implementations to

further optimize the approach.

 187

8

GENERAL DISCUSSION

188

 189

8.1 INTRODUCTION

In this thesis, our main objective was to analyze and design integrated IoT systems. To this

end, we have started with first defining the characteristic features of IoT systems. We have

described a layered reference architecture for deriving IoT system architectures. Further, we

have presented the common and variant features of the most commonly used session layer

protocols. Subsequently, we have provided a systematic approach to architect the design of

IoT-based FMISs whereby we have adopted a feature-driven domain analysis approach.

Further, we have provided several design patterns to integrate IoT-based systems at different

layers of the IoT reference architecture. Among the session layer protocols of the IoT

reference architecture, we have focused on the DDS middleware that is mainly used for

machine-to-machine communication in IIoT. We have used a systematic review approach to

identify the obstacles of DDS middleware and to provide the corresponding solution

directions. Using the IoT reference architecture and the DDS architecture we have designed

the architecture for DDS-based IoT systems. Finally, we have provided a systematic approach

to find feasible deployment alternatives for DDS-based systems by extending the DDS UML

profile and developing the Deploy-DDS research tool. In the next sections, we will provide the

details on how we have addressed the defined research questions and the corresponding

contributions in the thesis.

8.2 ADDRESSING RESEARCH QUESTIONS

As stated above, the main objective of this thesis is to analyze and design integrated IoT

systems. In this context, we defined the following research questions:

RQ1. What are the characteristic features of the IoT systems?

RQ2. How to design the architecture for an IoT-based system?

RQ3. What are the identified obstacles of the DDS middleware?

RQ4. What are the solution directions for the identified obstacles of DDS?

RQ5. What are the approaches for integrating multiple IoT-based systems?

RQ6. How to design a DDS-based IoT system?

RQ7. How to derive feasible deployment alternatives for DDS-based systems?

In order to answer these research questions, three different research methodologies were

used: Systematic Literature Review, Design Science Research, and Case Study Research.

8.2.1 RQ1-What are the characteristics features of the IoT systems?

Before dealing with the integration of IoT devices it is important to identify the current state

of the IoT and identify the IoT features. We have applied a feature-based domain analysis

approach and identified the common and variant features of the IoT systems. We have

developed feature diagrams to model the IoT-based systems. Further, we developed a

reference architecture including multiple different layers for the IoT systems. Among these

layers, we have particularly focused on session layer that which is responsible for setting up

190

and taking down of the association between the IoT connection points. Further we have

defined the criteria for selecting the identified communication protocols for the different

conditions. Adopting a feature-driven domain modeling approach appeared to be useful in

identifying the key features of IoT systems. Hereby, we have not adopted a heavy systematic

literature review approach but selected relevant primary studies from which we could derive

the IoT features. We believe that the feature model includes the necessary features of IoT

system and it appeared to be very useful for the subsequent activities in our overall study.

8.2.2 RQ2-How to design the architecture for an IoT-based system?

In order to design the architecture for an IoT-based system we have presented a systematic

approach to guide the architect. Again, we have adopted a feature-driven domain analysis

approach to model the common and variant precision farming features. Further, based on

FMIS and IoT reference architectures we have described the steps and the modeling

approaches for designing the IoT-based FMIS architecture.

The method that we have discussed can be adopted for deriving IoT-based FMIS architecture

for multiple different systems. Hence, we focus on the whole product family of IoT-based FMIS

systems rather than on a single system. The notion of product families or product line

engineering and the corresponding systematic reuse is discussed in detail in the product line

engineering community (Clements, 2006). Our method is inspired and customizes the product

line engineering approach in which reference models are developed and applications are

developed by reusing these reference models. The reference feature diagram that we have

shown aims to target and integrate the domains of IoT and FMIS illustrating the overall

method. The feature diagrams as well as the reference architecture design could be easily

extended. We have discussed the architectures for IoT and FMIS separately and illustrated the

integration of both for supporting IoT-based FMIS systems. The architecture can be extended

in two ways. First of all, we could of course detail the different views to provide an even more

comprehensive result. This would require for example to further detail the modules that are

needed in the decomposition view. Secondly, we could extend the architecture

representations with other architecture views. We have chosen three architecture views

including decomposition view, layered view and deployment view. If needed other

architecture views in the architecture documentation process could be used as well. Although,

we have showed our approach for two important case studies in the smart agri-food sector

the method can be actually applied for the development of other FMISs.

8.2.3 RQ3- What are the identified obstacles of the DDS middleware?

One of the session layer protocols of the IoT is the DDS which is a standard data-centric

publish-subscribe programming model. We have shown that DDS can be used for integrating

IoT systems. We have applied a meticulous systematic literature review based on the proven

protocol of Kitchenham et al (Kitchenham et al., 2009). The SLR included 468 papers in from

which we selected 34 as primary studies. We have carefully devised and applied our selection

and elimination criteria in order not to miss any relevant primary study. The primary goal of

SLR was to identify the relevant obstacles and the corresponding solution directions. Based on

our thorough study we could identify 11 problem categories. It appears that different studies

have focused on different problems and solutions and as such we could observe an uneven

 191

distribution. We consider this fact also as the result of our study since this highlights the

important obstacles as well as the obstacles which have not yet been fully explored. On its

turn this provides a broader vision on DDS and also paves the way for further research.

We could identify 11 different problem categories. An important number of the problems

relate to quality concerns such as reliability, scalability and security. We have described the

problems related to specific quality concerns if these were also the topic and focus of the

identified primary studies. Quality concerns which were not explicitly reported were not

included as obstacles. Our study could on the one hand be used to highlight the relevance of

the quality concerns in DDS based systems. On the other hand, our SLR shows also which

quality concerns have not been explicitly discussed. This only implies that no in-depth research

has been carried out for these quality concerns, and not necessarily that these quality

concerns are not relevant for DDS. On its turn this observation can trigger further research on

quality concerns in DDS.

Our research methodology however is a systematic literature review that focuses on the

analysis of existing primary studies in the literature. Hence, we can only report on the

problems that were identified in these primary studies. From our SLR we can observe that

implementing a DDS is one of the obstacles. This is an important observation when adopting

DDS for integrating IoT systems. In this thesis we have tackled this problem by showing the

DDS-based IoT architecture which was discussed in chapter 6. It should be noted that several

other more detailed but unreported problems could exist that are directly related to

implementation of DDS-based systems. The identification of these problems would require an

in-depth study to the corresponding implementations of the DDSs. The identification of DDS

obstacles is also important beyond the context of IoT. Further research could be carried out

in this context.

8.2.4 RQ4-What are the solution directions for the identified obstacles of DDS?

As stated above, based on the SLR we have identified 11 basic categories of obstacles for the

DDS middleware. Our SLR has resulted in a set of feature diagrams that summarize the

reported obstacles as well as the solution directions. The feature models that we have

developed can be also used to pave the way and support the development of a DDS ontology.

These solution directions are proposed by the authors of the selected primary studies. For

each identified obstacle the solution directions appeared to be diverse in nature. Solution

directions include design heuristics and design abstractions, adoption of different paradigms,

refinement of the DDS concepts, novel introduction and implementation of algorithms,

integration with other paradigms, and solutions for realizing system-wide quality

management.

From our SLR we could also observe that for some of the identified problem categories have

been also considered in some of the proposed extensions to the OMG’s DDS specification.

While describing the problems and the corresponding solutions we could identify that some

researchers claim that the offered solution in the primary study is better than the one used of

the DDS specification. Further, other primary studies handle topics that are not (completely)

192

covered by the provided DDS specification yet. Finally, it should be noted that some DDS

specifications are still in beta version and have not been finalized yet.

8.2.5 RQ5-What are the approaches for integrating multiple IoT-based systems?

One of the key challenges in IoT is coping with the heterogeneous set of systems and the

integration of these systems in the same communication network. Based on a layered

reference architecture for IoT we have indicated that the integration can be at different layers

including session layer, cloud layer and application layer. Further we have shown that the

integration is typically carried out based on well-defined patterns, that is, generic solutions

structures for recurring problems. We have not provided any new integration solution but

rather systematically compiled and structured the integration patterns as defined in the

literature. Our study has resulted in 15 different patterns which can be used in different

combinations. To guide the application of the patterns we have provided a general process

represented using the BPMN. The process and the patterns have been successfully applied to

a smart city case study. Hence, we have shown that the systematic structuring of the

integration patterns is useful for developing IoT systems that need to integrate heterogeneous

elements.

8.2.6 RQ6-How to design a DDS-based IoT system?

Based on the IoT reference architecture and the DDS reference architecture that we have

developed, we have provided a DDS-based architecture for IoT systems. We have adopted

architecture viewpoints for modeling DDS, IoT and finally DDS-based IoT systems using a

systematic approach. Further, we have applied the layered viewpoint to represent the DDS-

based IoT since both the DDS and IoT are often represented as layered structures. We have

also defined the deployment view for DDS-IoT. We can state that we succeeded to integrate

and represent the architecture models that can be used to model DDS-based IoT systems for

various application domains.

8.2.7 RQ7-How to derive feasible deployment alternatives for DDS-based systems?

We have provided both a systematic approach and a research toolset that can be used for a

broad range of DDS-based systems to derive feasible configuration alternatives to meet the

functional and quality concerns given the available resources. The approach has also been

illustrated for a relevant case study on smart city engineering which has been used to illustrate

both the problem and the approach.

The approach adopted the UML profile to complement the existing work. The UML profile

appeared to be very useful in preparing and supporting the analysis and design of the DDS

system for deriving design alternatives. It should be noted that the OMG’s DDS UML Profile is

a specification and no realization of it was present yet. As such, one of the supporting

contributions is the realization of this profile in the Eclipse Modeling Framework (EMF). To

support the systematic approach for generating the design alternatives we had to enhance

the profile further (e.g. physical resource modeling, and execution configuration model).

Based on the modeled system design and physical resources using the realized DDS’s UML

Profile, the feasible deployment alternatives could be using the developed Deploy-DDS tool.

In this toolset, we have implemented different algorithms for deriving feasible deployment

 193

alternatives. Our focus here is not the design of algorithms but the overall system engineering

approach for selecting a feasible alternative in a large configuration space. Both the approach

and the tools assist the designer to derive a feasible deployment model. One of the important

benefits of the approach is also the early analysis of the system and the generation of the

feasible deployment model at design time.

8.3 FUTURE RESEARCH

In this thesis we have presented several novel approaches to analyze and design integrated

IoT systems.

First, we have defined a layered reference architecture for IoT systems and modeled the

common and variant features of the most commonly used session layer protocols.

Researchers can use the results of this study to elaborate on further research on session layer

protocols. Also, our future work for this part is to focus on the performance evaluations of

these session layer protocols under different environments (LAN, WAN, etc.) and work

conditions (high-performance computing, constrained environments, etc.).

Second, we have presented a systematic approach to guide the architect in designing IoT-

based FMIS. Based on FMIS and IoT reference architectures we have described the steps and

the modeling approaches for designing the IoT-based FMIS architecture. We have used

prospective and retrospective case studies to illustrate our approach. Although, we have

showed our approach for two important case studies in the smart agri-food sector the method

can be actually applied for the development of other FMISs. We have not focused on the

implementation of these systems. For the prospective case study, it is decided to develop first

a simulation system to evaluate the outcome of the method. We consider this as part of our

future work. Although our method has illustrated the development of IoT-based FMIS systems

we could even use the method for developing traditional FMIS systems. In that case we would

omit the IoT architecture part and just focus on the development of reference models for

FMIS. This part was also considered as another future work.

Third, we provide several integration patterns that can be used to integrate IoT-based systems

via different layers of the IoT reference architecture as stated above. This study could be

further extended by considering other patterns. Hereby, other type of IoT reference

architectures could be considered and based on these the set of patterns that we have

described in this chapter could perhaps be enhanced. Further, IoT patterns beyond the

integration concern such as security and safety patterns could be identified in the future work.

Fourth, among the session layer protocols of the IoT, we focused on the DDS which is mainly

used for machine-to-machine communication in IIoT. We have also shown that DDS can be

used for integrating IoT systems. Based on the SLR we have performed we have identified 11

problem categories for DDS. An important number of the problems relate to quality concerns

such as reliability, scalability and security. On its turn this observation can trigger further

research on quality concerns in DDS. Also, the identification of DDS obstacles is also important

beyond the context of IoT. Further research could be carried out in this context. Apart from

these, our SLR has resulted in a set of feature diagrams that summarize the reported obstacles

194

as well as the solution directions. The feature models that we have developed can be used to

pave the way and support the development of a DDS ontology. We consider this as another

possible future work.

Fifth, we have defined a DDS-based architecture for IoT systems. We have adopted

architecture viewpoints for modeling DDS, IoT and finally DDS-based IoT systems using a

systematic approach. Further, we have applied the layered viewpoint to represent the DDS-

based IoT since both the DDS and IoT are often represented as layered structures. As a future

work, other architecture viewpoints could be used. In addition, we will adopt the viewpoints

for real world industrial IoT projects in which DDS is applied.

Sixth, we have provided a systematic approach to find feasible deployment alternatives for

DDS-based systems by extending the DDS UML profile and developing the Deploy-DDS

research tool. In our future work, we will do research on further extension and specialization

of the approach. In this context, we will consider the adoption of specific quality criteria such

as reliability and further focus on the trade-off analysis using multiple quality criteria. Further,

we will also consider the analysis and comparison of various algorithm implementations to

further optimize the approach. Further, as the future work of our research tool, we will add

different algorithms to the Deploy-DDS tool to find feasible deployment alternatives for the

DDS-based systems and evaluate and compare the solutions with respect to the existing

algorithms.

 195

APPENDICES

Appendix A – Primary Studies for deriving characteristics of DDS

Appendix B – Assessment of Primary Studies for DDS

Appendix C – Primary Studies for deriving characteristics of IoT

Appendix D – Primary Studies for deriving characteristics of FMIS

196

 197

APPENDIX A – PRIMARY STUDIES FOR DERIVING CHARACTERISTICS OF DDS

A. B. Zieba, and M. van Sinderen, ‘‘Preservation of Correctness during System Reconfiguration in Data

Distribution Service for Real-Time Systems’’, IEEE International Conference on Distributed Computing

Systems Workshops, pp. 30, 2006.

B. R. Baldoni, L. Querzoni, and S. Scipioni, ‘‘Event-Based Data Dissemination on Inter-Administrative

Domains: Is it Viable?’’, International Workshop on Future Trends of Distributed Computing Systems, pp.

44–50, 2008.

C. P. Boonma, and J. Suzuki, ‘‘Middleware Support for Pluggable Non-Functional Properties in Wireless

Sensor Networks’’, IEEE Congress on Services, pp. 360–367, 2008.

D. Corradi, and L. Foschini, ‘‘A DDS-Compliant P2P Infrastructure for Reliable and QoS-Enabled Data

Dissemination’’, IEEE International Symposium on Parallel & Distributed Processing, pp. 1–8, 2009.

E. P. Boonma, and J. Suzuki, ‘‘Self-Configurable Publish/Subscribe Middleware for Wireless Sensor

Networks’’, IEEE Consumer Communications and Networking Conference, pp. 1–8, 2009.

F. P. Boonma, and J. Suzuki, ‘‘Toward Interoperable Publish/Subscribe Communication between Wireless

Sensor Networks and Access Networks’’, IEEE Consumer Communications and Networking Conference,

pp. 1–6, 2009.

G. Corradi, L. Foschini, and Luca Nardelli, ‘‘A DDS-Compliant Infrastructure for Fault-Tolerant and Scalable

Data Dissemination’’, International Symposium on Computer and Communications, pp. 489–495, 2010.

H. Napolitano, G. Carrozza, A. Bovenzi, and C. Esposito, ‘‘Automatic Robustness Assessment of DDS-

Compliant Middleware’’, International Symposium on Dependable Computing, pp. 302–307, 2011.

I. I. S. Monedero, J. P. Molina, J. M. L. Vega, and J. M. L. Soler, ‘‘Bloom filter-based discovery protocol for

DDS middleware’’, Journal of Parallel and Distributed Computing, pp. 1305–1317, 2011.

J. W. R. Otte, A. Gokhale, D. C. Schmidt, and J. Willemsen, ‘‘Infrastructure for Component-Based DDS

Application Development’’, International Conference on Generative Programming and Component

Engineering, pp. 53–62, 2011.

K. J.A. Dianes, M. Diaz, and B. Rubio, ‘‘Using standards to integrate soft real-time components into

dynamic distributed architectures’’, Computer Standards and Interfaces, pp. 238–262, 2011.

L. K. Beckmann, and M. Thoss, ‘‘A Wireless Sensor Network Protocol for the OMG Data Distribution

Service’’, Intelligent Solutions in Embedded Systems, pp. 45–50, 2012.

M. H. S. Park, J. H. Jang, J. D. Kim, H. I. Jung, and S. H. Lee, ‘‘Bandwidth-Aware DDS Communication in

WLAN’’, International Conference on Systems and Informatics, pp. 1542–1546, 2012.

N. Corradi, L. Foschini, J. P. Molina, J. M. L. Soler, ‘‘DDSEnabled Cloud Management Support for Fast Task

Offloading’’, International Symposium on Computer and Communications, pp. 67–74, 2012.

O. H. P. Tijero, and J. J. Gutierrez, ‘‘On the schedulability of a data-centric real-time distribution

middleware’’, Computer Standards and Interfaces, pp. 203–211, 2012.

P. J. M. L. Vega, J. P. Molina, G. P. Castellote, and J. M. L. Soler, ‘‘A content-aware bridging service for

publish/subscribe environments’’, Journal of Systems and Software, pp. 108–124, 2013.

Q. Zhi, W. Z. Shun, D. G. Lan, and D. F. Jun, ‘‘Data management solutions based on the data distribution

service communication model’’, The Journal of China Universities of Posts and Telecommunications, pp.

127–132, 2013.

198

R. P. Bellavista, A. Corradi, L. Foschini, A. Pernafini, ‘‘Data Distribution Service: A Performance Comparison

of OpenSplice & RTI Implementations’’, International Symposium on Computer and Communications,

pp. 377–383, 2013.

S. K. An, T. Kuroda, A. Gokhale, S. Tambe, and A. Sorbini, ‘‘Modeldriven Generative Framework for

Automated OMG DDS Performance Testing in the Cloud’’, International Conference on Generative

Programming and Component Engineering, pp. 179–182, 2013.

T. Hakiri, P. Berthou, A. Gokhale, D. C. Schmidt, and T. Gayraud, ‘‘Supporting end-to-end quality of service

properties in OMG data distribution service publish/subscribe middleware over wide area networks’’,

Journal of Systems and Software, pp. 2574–2593, 2013.

U. D. Feiock, and J. H. Hill, ‘‘Using Component-based Middleware to Design and Implement Data

Distribution Servise Systems’’, EUROMICRO Conference on Software Engineering and Advanced

Applications, pp. 208–211, 2013.

V. K. An, A. Gokhale, D. C. Schmidt, S. Tambe, P. Pazandak, and G. P. Castellote, ‘‘Content-based Filtering

Discovery Protocol: Scalable and Efficient OMG DDS Discovery Protocol’’, Distributed Event Based

Systems, pp. 130–141, 2014.

W. T. Celik, O. Koksal, and B. Tekinerdogan, ‘‘Deploy-DDS: Tool Framework for Supporting Deployment

Architecture of Data Distribution Service based Systems’’, European Conference on Software

Architecture Workshops, pp. Article No: 35, 2014.

X. H. A. Putra, and D. S. Kim, ‘‘Node discovery scheme of DDS combat management system’’, Computer

Standards and Interfaces, pp. 20–28, 2014.

Y. K. H. Lee, C. K. Kim, K. T. Kim, and W. T. Kim, ‘‘Router Design for DDS: architecture and performance

evaluation’’, International Conference on Big Data and Smart Computing, pp. 250–254, 2014.

Z. Hakiri, P. Berthou, A. Gokhale, D. C. Schmidt, and T. Gayraud, ‘‘Supporting SIP-based end-to-end Data

Distribution Service QoS in WANs’’, Journal of Systems and Software, pp. 100–121, 2014.

AA. L. Bertaux, A. Hakiri, S. Medjiah, P. Berthou, and S. Abdellatif, ‘‘A DDS/SDN Based Communication

System for Efficient Support of Dynamic Distributed Real-Time Applications’’, Distributed Simulation and

Real Time Applications, pp. 77–84, 2014.

AB. S. Pradhan, W. Emfinger, A. Dubey, W. R. Otte, D. Balasubramanian, and A. Gokhale, ‘‘Establishing

Secure Interactions Across Distributed Applications in Satellite Clusters’’, Space Mission Challenges for

Information Technology, pp. 67–74, 2014.

AC. H. Kim, G. Yoon, W. Lee, J. Park, and H. Choi, ‘‘A Performance Simulator for DDS Networks’’, Conference

on Information Networking, pp. 122–126, 2015.

AD. S. Khare, K. An, A. Gokhale, S. Tambe, and A. Meena, ‘‘Reactive Stream Processing for Data Centric

Publish/Subscribe’’, Proceedings of the 9th ACM International Conference on Distributed Event Based

Systems, pp. 234–245, 2015.

AE. M.R. Khaefi, J. Y. Im, and D. S. Kim, ‘‘An Efficient DDS Node Discovery Scheme for Naval Combat

System’’, Emerging Technologies & Factory Automation, IEEE 20th Conference on, pp. 1–8, 2015.

AF. K. H. Lee, C.K. Kim, S. H. Lim, and W. T. Kim, ‘‘Rateless Code Based Reliable Multicast for DDS’’, Big Data

and Smart Computing, International Conference on, pp. 150–156, 2015.

AG. B. Kai, and D. Olga, ‘‘sDDS: A portable DDS implementation for WSN & IoT Platforms’’, Intelligent

Solutions in Embedded Systems, 12th International Workshop on, pp. 115–120, 2015.

AH. Hector Perez, and J. Javier Gutierrez, ‘‘Modeling the QoS parameters of DDS for event-driven RT

Application’’, Journal of Systems and Software, Volume 104, pp. 126–140, 2015.

 199

APPENDIX B – ASSESSMENT OF PRIMARY STUDIES FOR DDS

Table 10-1: Definition of Assessment Questions

Criteria Q Definition

Reporting
Q1 Are the aims of study clearly defined?
Q2 Are the scope, the context and the experimental design of the study clearly stated?

Relevance
Q3 Does the report have implications for research and/or practice?
Q4 Are the variables used in the evaluation likely to be valid and reliable?

Rigor
Q5 Are the measures used in the study quite explicit & aligned with the research aims?
Q6 Is the research process documented adequately?

Credibility
Q7 Are the main findings stated clearly in terms of validity and reliability?
Q8 Is there an explicit statement of the limitations?

Table 10-2: Assessment of Primary Studies

 Reporting Relevance Rigor Credibility
Primary Study Q1 Q2 Q3 Q4 Q5 Q6 Q7 Q8 Total

A 1.0 0.5 0.5 0.5 0.5 1.0 0.5 0.5 5.0
B 1.0 1.0 0.5 0.5 1.0 0.5 1.0 1.0 6.5
C 1.0 1.0 0.5 0.5 0.5 1.0 0.5 0.0 5.0
D 1.0 1.0 0.5 1.0 1.0 0.5 1.0 0.5 6.5
E 1.0 1.0 0.5 0.5 1.0 0.5 0.5 0.0 5.0
F 1.0 1.0 0.5 0.5 1.0 0.5 0.5 0.0 5.0
G 1.0 1.0 1.0 1.0 1.0 1.0 0.5 0.5 7.0
H 1.0 1.0 0.5 1.0 1.0 0.5 1.0 0.5 6.5
I 1.0 1.0 1.0 1.0 1.0 0.5 1.0 0.5 7.0
J 1.0 1.0 1.0 1.0 1.0 1.0 1.0 0.5 7.5
K 1.0 1.0 1.0 1.0 1.0 0.5 1.0 0.5 7.0
L 1.0 1.0 0.5 0.5 0.0 1.0 0.5 0.5 5.0
M 1.0 1.0 1.0 0.5 0.5 0.5 1.0 1.0 6.5
N 1.0 1.0 1.0 0.5 0.5 1.0 0.5 0.5 6.0
O 1.0 1.0 1.0 1.0 1.0 1.0 1.0 0.5 7.5
P 1.0 1.0 1.0 1.0 1.0 1.0 0.5 1.0 7.5
Q 0.5 0.5 1.0 1.0 1.0 0.5 0.5 0.5 5.5
R 1.0 1.0 1.0 1.0 1.0 0.5 1.0 0.5 7.0
S 1.0 1.0 1.0 1.0 1.0 0.5 1.0 0.5 7.0
T 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 8.0
U 1.0 1.0 1.0 1.0 0.5 0.5 0.5 0.5 6.0
V 1.0 1.0 1.0 0.5 0.5 0.5 1.0 0.5 6.0
W 1.0 1.0 1.0 1.0 0.5 1.0 1.0 0.5 7.0
X 1.0 1.0 1.0 1.0 0.5 1.0 1.0 1.0 7.5
Y 1.0 1.0 1.0 0.5 1.0 0.5 1.0 0.5 6.5
Z 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 8.0

AA 1.0 0.5 1.0 0.5 0.5 1.0 1.0 0.5 6.0
AB 1.0 1.0 1.0 1.0 1.0 0.5 1.0 0.5 7.0
AC 1.0 0.5 0.5 1.0 0.5 0.5 1.0 0.0 5.0
AD 1.0 1.0 1.0 1.0 1.0 1.0 1.0 0.5 7.5
AE 1.0 1.0 1.0 1.0 0.5 0.5 1.0 0.5 6.5
AF 1.0 1.0 1.0 1.0 0.5 1.0 1.0 0.5 7.0
AG 1.0 1.0 1.0 1.0 0.5 1.0 1.0 0.5 7.0
AH 1.0 1.0 1.0 1.0 1.0 1.0 1.0 0.5 7.5

200

APPENDIX C – PRIMARY STUDIES FOR DERIVING CHARACTERISTICS OF IOT

A. Al-Fuqaha, A., Guizani, M., Mohammadi, M., Aledhari, M., & Ayyash, M. (2015). Internet of Things: A

Survey on Enabling Technologies, Protocols, and Applications. IEEE Communications Surveys and

Tutorials, 17(4), 2347–2376. https://doi.org/10.1109/COMST.2015.2444095

B. Gazis, V., Gortz, M., Huber, M., Leonardi, A., Mathioudakis, K., Wiesmaier, A., … Vasilomanolakis, E.

(2015). A survey of technologies for the internet of things. In IWCMC 2015 - 11th International Wireless

Communications and Mobile Computing Conference (pp. 1090–1095).

https://doi.org/10.1109/IWCMC.2015.7289234

C. Gilchrist, A. (2016). Industry 4.0: the industrial internet of things. Apress.

D. IETF. (2011). XMPP Main. Retrieved March 19, 2018, from https://xmpp.org/

E. IETF. (2013). CoAP. Retrieved from http://coap.technology/

F. Köksal, Ö., & Tekinerdogan, B. (2017). Feature-driven domain analysis of session layer protocols of

internet of things. In Proceedings - 2017 IEEE 2nd International Congress on Internet of Things, ICIOT

2017 (pp. 105–112). https://doi.org/10.1109/IEEE.ICIOT.2017.19

G. OASIS. (2011). AMQP. Retrieved February 18, 2018, from

http://www.amqp.org/specification/1.0/amqp-org-download

H. OASIS. (2014). MQTT. Retrieved February 18, 2018, from http://mqtt.org/2014/11/mqtt-v3-1-1-now-an-

oasis-standard

I. OMG. (2015). DDS Specification V 1.4, 180. Retrieved from http://www.omg.org/spec/DDS/1.4/

J. Palattella, M. R., Accettura, N., Vilajosana, X., Watteyne, T., Grieco, L. A., Boggia, G., & Dohler, M.

(2013). Standardized protocol stack for the internet of (important) things. IEEE Communications Surveys

and Tutorials, 15(3), 1389–1406. https://doi.org/10.1109/SURV.2012.111412.00158

K. Pandya, H. B., & Champaneria, T. A. (2015). Internet of things: Survey and case studies. 2015

International Conference on Electrical, Electronics, Signals, Communication and Optimization (EESCO),

1–6. https://doi.org/10.1109/EESCO.2015.7253713

L. Schneider, S. (2016). Leading Applications & Architecture for the Industrial IoT. Retrieved from

https://www.rti.com/leading-applications-ebook

M. Sheng, Z., Yang, S., Yu, Y., Vasilakos, A., McCann, J., & Leung, K. (2013). A survey on the IETF protocol

suite for the internet of things: Standards, challenges, and opportunities. IEEE Wireless

Communications, 20(6), 91–98. https://doi.org/10.1109/MWC.2013.6704479

 201

APPENDIX D – PRIMARY STUDIES FOR DERIVING CHARACTERISTICS OF FMIS

A. Adamchuk, V. I., Hummel, J. W., Morgan, M. T., & Upadhyaya, S. K. (2004). On-the-go soil sensors for

precision agriculture. Computers and Electronics in Agriculture.

https://doi.org/10.1016/j.compag.2004.03.002

B. Fountas, S., Carli, G., Sørensen, C. G., Tsiropoulos, Z., Cavalaris, C., Vatsanidou, A., … Tisserye, B. (2015).

Farm management information systems: Current situation and future perspectives. Computers and

Electronics in Agriculture, 115, 40–50. https://doi.org/10.1016/j.compag.2015.05.011

C. Kaloxylos, A., Eigenmann, R., Teye, F., Politopoulou, Z., Wolfert, S., Shrank, C., … Kormentzas, G. (2012).

Farm management systems and the Future Internet era. Computers and Electronics in Agriculture, 89,

130–144. https://doi.org/10.1016/j.compag.2012.09.002

D. Murakami, E., Saraiva, A. M., Ribeiro, L. C. M., Cugnasca, C. E., Hirakawa, A. R., & Correa, P. L. P. (2007).

An infrastructure for the development of distributed service-oriented information systems for precision

agriculture. Computers and Electronics in Agriculture, 58(1), 37–48.

https://doi.org/10.1016/j.compag.2006.12.010

E. Nikkilä, R., Seilonen, I., & Koskinen, K. (2010). Software architecture for farm management information

systems in precision agriculture. Computers and Electronics in Agriculture, 70(2), 328–336.

https://doi.org/10.1016/j.compag.2009.08.013

F. Rains, G. C., & Thomas, D. L. (2009). Precision farming: an introduction. University of Georgia. Retrieved

from https://athenaeum.libs.uga.edu/handle/10724/12223?show=full

G. Schmitz, M., Martini, D., Kunisch, M., & Mösinger, H. J. (2009). AgroXML enabling standardized,

platform-independent internet data exchange in farm management information systems. In Metadata

and Semantics (pp. 463–468). https://doi.org/10.1007/978-0-387-77745-0_45

H. Shibusawa, S. (2001). Precision Farming Approaches for Small Scale Farms. IFAC Proceedings Volumes,

34(11), 22–27. https://doi.org/10.1016/S1474-6670(17)34099-5

I. Sørensen, C. G., Fountas, S., Nash, E., Pesonen, L., Bochtis, D., Pedersen, S. M., … Blackmore, S. B. (2010).

Conceptual model of a future farm management information system. Computers and Electronics in

Agriculture, 72(1), 37–47. https://doi.org/10.1016/j.compag.2010.02.003

J. Sørensen, C. G., Pesonen, L., Bochtis, D. D., Vougioukas, S. G., & Suomi, P. (2011). Functional

requirements for a future farm management information system. Computers and Electronics in

Agriculture, 76(2), 266–276. https://doi.org/10.1016/j.compag.2011.02.005

K. Steinberger, G., Rothmund, M., & Auernhammer, H. (2009). Mobile farm equipment as a data source in

an agricultural service architecture. Computers and Electronics in Agriculture, 65(2), 238–246.

https://doi.org/10.1016/j.compag.2008.10.005

L. Wang, N., Zhang, N., & Wang, M. (2006). Wireless sensors in agriculture and food industry—Recent

development and future perspective. Computers and Electronics in Agriculture, 50(1), 1–14.

https://doi.org/10.1016/J.COMPAG.2005.09.003

M. Zhang, N., Wang, M., & Wang, N. (2002). Precision agriculture - A worldwide overview. Computers and

Electronics in Agriculture, 36(2–3), 113–132. https://doi.org/10.1016/S0168-1699(02)00096-0

202

 203

REFERENCES

Adamchuk, V. I., Hummel, J. W., Morgan, M. T., & Upadhyaya, S. K. (2004). On-the-go soil sensors for precision
agriculture. Computers and Electronics in Agriculture. https://doi.org/10.1016/j.compag.2004.03.002

Al-Fuqaha, A., Guizani, M., Mohammadi, M., Aledhari, M., & Ayyash, M. (2015). Internet of Things: A Survey on
Enabling Technologies, Protocols, and Applications. IEEE Communications Surveys and Tutorials, 17(4),
2347–2376. https://doi.org/10.1109/COMST.2015.2444095

Al-Fuqaha, A., Khreishah, A., Guizani, M., Rayes, A., & Mohammadi, M. (2015). Toward better horizontal
integration among IoT services. IEEE Communications Magazine, 53(9), 72–79.
https://doi.org/10.1109/MCOM.2015.7263375

Aleti, A., Björnander, S., Grunske, L., & Meedeniya, I. (2009). MOMPES: ArcheOpterix: An Extendable Tool for
Architecture Optimization of AADL Models. Retrieved from
https://researchbank.swinburne.edu.au/file/64734696-2617-4a83-b47e-2d0fc7cadaec/1/PDF
%28Published version%29.pdf

Aleti, A., Grunske, L., Meedeniya, I., & Moser, I. (2009). Let the ants deploy your software - An ACO based
deployment optimisation strategy. In ASE2009 - 24th IEEE/ACM International Conference on Automated
Software Engineering (pp. 505–509). https://doi.org/10.1109/ASE.2009.59

Alliance for IoT Innovation. (2015). AIOTI WG03 Reports. Retrieved October 11, 2016, from
https://aioti.eu/aioti-wg03-reports-on-iot-standards/

Angelo Corsaro. (n.d.). The Simple DDS API. Retrieved March 19, 2018, from
https://code.google.com/archive/p/simd-cxx/

Angelov, S., Grefen, P., & Greefhorst, D. (2012). A framework for analysis and design of software reference
architectures. Information and Software Technology, 54(4), 417–431.
https://doi.org/10.1016/j.infsof.2011.11.009

Apel, S., Batory, D., Kästner, C., & Saake, G. (2013). Feature-Oriented Software Product Lines. Feature-Oriented
Software Product Lines: Concepts and Implementation (Vol. 9783642375). https://doi.org/10.1007/978-
3-642-37521-7

Aqeel-Ur-Rehman, Abbasi, A. Z., Islam, N., & Shaikh, Z. A. (2014). A review of wireless sensors and networks’
applications in agriculture. Computer Standards and Interfaces. https://doi.org/10.1016/j.csi.2011.03.004

Awduche, D. O. (1999). MPLS and traffic engineering in IP networks. IEEE Communications Magazine, 37(12),
42–47. https://doi.org/10.1109/35.809383

Bass, L., Clements, P., & Kazman, R. (2003). Software Architecture in Practice , Second Edition. Software
Architecture. https://doi.org/10.1024/0301-1526.32.1.54

Beck, H. (2001). Agricultural enterprise information management using object databases, Java, and CORBA.
Computers and Electronics in Agriculture, 32(2), 119–147. https://doi.org/10.1016/S0168-
1699(01)00162-4

Becker, S., Koziolek, H., & Reussner, R. (2009). The Palladio component model for model-driven performance
prediction. Journal of Systems and Software, 82(1), 3–22. https://doi.org/10.1016/j.jss.2008.03.066

Botta, A., De Donato, W., Persico, V., & Pescape, A. (2014). On the integration of cloud computing and internet
of things. In Proceedings - 2014 International Conference on Future Internet of Things and Cloud, FiCloud
2014 (pp. 23–30). IEEE. https://doi.org/10.1109/FiCloud.2014.14

Budinsky, F., Steinberg, D., Merks, E., Ellersick, R., & Grose, T. J. (2003). Eclipse Modeling Framework. Addison-
Wesley.

Bushmann, F., Meunier, R., & Rohnert, H. (1996). Pattern-oriented software architecture: A system of patterns.
John Wiley&Sons, 1, 476. https://doi.org/10.1192/bjp.108.452.101

Calbimonte, J. P., Sarni, S., Eberle, J., & Aberer, K. (2014). XGSN: An open-source semantic sensing middleware

204

for the web of things. In CEUR Workshop Proceedings (Vol. 1401, pp. 51–66).

Capilla, R., Bosch, J., Trinidad, P., Ruiz-Cortés, A., & Hinchey, M. (2014). An overview of Dynamic Software
Product Line architectures and techniques: Observations from research and industry. Journal of Systems
and Software, 91(1), 3–23. https://doi.org/10.1016/j.jss.2013.12.038

Celik, T., & Tekinerdogan, B. (2013). S-IDE: A tool framework for optimizing deployment architecture of High
Level Architecture based simulation systems. Journal of Systems and Software, 86(10), 2520–2541.
https://doi.org/10.1016/j.jss.2013.03.013

Celik, T., Köksal, Ö., & Tekinerdogan, B. (2014). Deploy-DDS. In Proceedings of the 2014 European Conference
on Software Architecture Workshops - ECSAW ’14 (pp. 1–5). New York, New York, USA: ACM Press.
https://doi.org/10.1145/2642803.2642838

Celik, T., Tekinerdogan, B., & İmre, K. M. (2013). Deriving Feasible Deployment Alternatives for Parallel and
Distributed Simulation Systems. ACM Transactions on Modeling and Computer Simulation, 23(3), 1–24.
https://doi.org/10.1145/2499913.2499917

Chaudhary, S., Sorathia, V., & Laliwala, Z. (2004). Architecture of sensor based agricultural information system
for effective planning of farm activities. In Proceedings - 2004 IEEE International Conference on Services
Computing, SCC 2004 (pp. 93–100). https://doi.org/10.1109/SCC.2004.1357994

Clements, P. (2006). Software Product Lines. Software Product Lines, 3714(3), 1–105.
https://doi.org/10.1007/11554844

Clements, P., Bachmann, F., Bass, L., Garlan, D., Ivers, J., Little, R., … Nord, R. (2011). Documenting Software
Architectures: Views and Beyond (2nd ed.). Addison-Wesley. Retrieved from
https://www.amazon.com/Documenting-Software-Architectures-Views-Beyond/dp/0321552687

Clements, P., Bachmann, F., Bass, L., Garlan, D., Ivers, J., Little, R., … Stafford, J. (2010). Documenting Software
Architectures. Style DeKalb IL, 592. https://doi.org/10.1109/ICSE.2003.1201264

Cloutier, R., Muller, G., Verma, D., Nilchiani, R., Hole, E., & Bone, M. (2010). The concept of reference
architectures. Systems Engineering, 13(1), 14–27. https://doi.org/10.1002/sys.20129

Croes, E. (2015). Software Architectural Styles in the Internet of Things. Radboud University Nijmegen.
Retrieved from http://www.ru.nl/publish/pages/769526/z_evertson_croes_master_thesis_s4241754.pdf

Czarnecki, K., Kim, C. H. P., & Kalleberg, K. T. (2006). Feature models are views on ontologies. 10th International
Software Product Line Conference, SPLC 2006, 1, 41–51. https://doi.org/10.1109/SPLINE.2006.1691576

Daly, C. (2004). Emfatic Language Reference. Retrieved March 10, 2018, from
http://www.eclipse.org/epsilon/doc/articles/emfatic/

Daniel Kellmereit, D. O. (2013). The Silent Intelligence--The Internet of Things. DnD Ventures. Retrieved from
https://books.google.com.tr/books/about/The_Silent_Intelligence.html?id=0SQLnwEACAAJ&redir_esc=y

David Garlan, M. S. (1994). An Introduction to Software Architecture. New Jersey: World Scientific Publishing
Company. Retrieved from
http://www.cs.cmu.edu/afs/cs/project/able/www/paper_abstracts/intro_softarch.html

Demirli, E., & Tekinerdogan, B. (2011). Software language engineering of architectural viewpoints. In Lecture
Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes
in Bioinformatics) (Vol. 6903 LNCS, pp. 336–343). https://doi.org/10.1007/978-3-642-23798-0_36

Diaz-Cacho, M., Delgado, E., Falcon, P., & Barreiro, A. (2015). IoT integration on industrial environments. In IEEE
International Workshop on Factory Communication Systems - Proceedings, WFCS (Vol. 2015–July).
https://doi.org/10.1109/WFCS.2015.7160553

Dlodlo, N., & Kalezhi, J. (2015). The internet of things in agriculture for sustainable rural development. In 2015
International Conference on Emerging Trends in Networks and Computer Communications (ETNCC) (pp.
13–18). IEEE. https://doi.org/10.1109/ETNCC.2015.7184801

Dybå, T., & Dingsøyr, T. (2008). Strength of evidence in systematic reviews in software engineering. Proc.
Second ACM-IEEE Int. Symp. Empir. Softw. Eng. Meas. T, (7465), 178–187.
https://doi.org/http://doi.acm.org/10.1145/1414004.1414034

 205

Dybå, T., Kitchenham, B. A., & Jorgensen, M. (2005). Evidence-based software engineering for practitioners.
IEEE Software, 22(1), 58–65. https://doi.org/10.1109/MS.2005.6

Eugster, P. T., Felber, P. A., Guerraoui, R., & Kermarrec, A.-M. (2003). The many faces of publish/subscribe.
ACM Computing Surveys, 35(2), 114–131. https://doi.org/10.1145/857076.857078

Evans, D. (2011). The Internet of Things How the Next Evolution of the Internet Is Changing Everything.
Retrieved from https://www.cisco.com/c/dam/en_us/about/ac79/docs/innov/IoT_IBSG_0411FINAL.pdf

Feiler, P. H., Gluch, D. P., & Hudak, J. J. (2006). The Architecture Analysis & Design Language (AADL): An
Introduction, (February), CMU/SEI-2006-TN-011. Retrieved from
http://www.sei.cmu.edu/publications/pubweb.html

Fielding, R. T. (2000). Architectural Styles and the Design of Network-based Software Architectures. University
of California, Irvine. Retrieved from
https://www.ics.uci.edu/~fielding/pubs/dissertation/fielding_dissertation.pdf

Fountas, S., Carli, G., Sørensen, C. G., Tsiropoulos, Z., Cavalaris, C., Vatsanidou, A., … Tisserye, B. (2015). Farm
management information systems: Current situation and future perspectives. Computers and Electronics
in Agriculture, 115, 40–50. https://doi.org/10.1016/j.compag.2015.05.011

Fountas, S., Wulfsohn, D., Blackmore, B. S., Jacobsen, H. L., & Pedersen, S. M. (2006). A model of decision-
making and information flows for information-intensive agriculture. Agricultural Systems, 87(2), 192–210.
https://doi.org/10.1016/j.agsy.2004.12.003

Gazis, V., Gortz, M., Huber, M., Leonardi, A., Mathioudakis, K., Wiesmaier, A., … Vasilomanolakis, E. (2015). A
survey of technologies for the internet of things. In IWCMC 2015 - 11th International Wireless
Communications and Mobile Computing Conference (pp. 1090–1095).
https://doi.org/10.1109/IWCMC.2015.7289234

Gilchrist, A. (2016). Industry 4.0 : the industrial internet of things. Apress.

Griffin, T. W., & Lowenberg-DeBoer, J. (2005). Worldwide adoption and profitability of precision agriculture
Implications for Brazil. Revista de Política Agrícola, 14(4), 20–37. Retrieved from
https://seer.sede.embrapa.br/index.php/RPA/article/view/549/498

Griffin, T. W., Shockley, J. M., Mark, T. B., Shannon, D. K., Clay, D. E., & Kitchen, N. R. (2018). Economics of
Precision Farming. https://doi.org/10.2134/precisionagbasics.2016.0098

Hevner, A. R. (2007). A Three Cycle View of Design Science Research. Scandinavian Journal of Information
Systems, 19(2), 87–92. https://doi.org/http://aisel.aisnet.org/sjis/vol19/iss2/4

IETF. (2011). XMPP Main. Retrieved March 19, 2018, from https://xmpp.org/

IETF. (2013). CoAP. Retrieved from http://coap.technology/

IETF. (2017). Internet Engineering Task Force. Retrieved March 10, 2018, from https://www.ietf.org/

Iijima, K. (2012). Systems Development Technology for Public Infrastructure. Hitachi Review, 61(3), 159–166.
Retrieved from https://pdfs.semanticscholar.org/e896/8e42869c25662db9ab0fc9512cf052510036.pdf

Islam, S., Lindstrom, R., & Suri, N. (2006). Dependability driven integration of mixed criticality SW components.
In Proceedings - Ninth IEEE International Symposium on Object-Oriented Real-Time Distributed
Computing, ISORC 2006 (pp. 485–495). IEEE. https://doi.org/10.1109/ISORC.2006.

ITU. (2005). The Internet of Things. Itu Internet Report 2005, 212. https://doi.org/10.2139/ssrn.2324902

Jawad, H., Nordin, R., Gharghan, S., Jawad, A., & Ismail, M. (2017). Energy-Efficient Wireless Sensor Networks
for Precision Agriculture: A Review. Sensors, 17(8), 1781. https://doi.org/10.3390/s17081781

Juneau, J. (2013). Java Message Service. Retrieved March 10, 2018, from
http://www.oracle.com/technetwork/java/docs-136352.html

Kaloxylos, A., Eigenmann, R., Teye, F., Politopoulou, Z., Wolfert, S., Shrank, C., … Kormentzas, G. (2012). Farm
management systems and the Future Internet era. Computers and Electronics in Agriculture, 89, 130–
144. https://doi.org/10.1016/j.compag.2012.09.002

Karagiannis, V., Chatzimisios, P., Vazquez-Gallego, F., & Alonso-Zarate, J. (2015). A Survey on Application Layer

206

Protocols for the Internet of Things. Transaction on IoT and Cloud Computing, 3(1), 11–17.
https://doi.org/10.5281/ZENODO.51613

Khan, R., Khan, S. U., Zaheer, R., & Khan, S. (2012). Future Internet: The Internet of Things Architecture,
Possible Applications and Key Challenges. In 2012 10th International Conference on Frontiers of
Information Technology (pp. 257–260). IEEE. https://doi.org/10.1109/FIT.2012.53

Kitchenham, B. a, & Pfleeger, S. L. (2002). Principles of Survey Research Part 3: Constructing a Survey
Instrument. ACM SIGSOFT Software Engineering Notes, 27(2), 20.
https://doi.org/10.1145/511152.511155

Kitchenham, B., & Charters, S. (2007). Guidelines for performing Systematic Literature Reviews in Software
Engineering. Engineering, 2, 1051. https://doi.org/10.1145/1134285.1134500

Kitchenham, B., Pearl Brereton, O., Budgen, D., Turner, M., Bailey, J., & Linkman, S. (2009). Systematic literature
reviews in software engineering - A systematic literature review. Information and Software Technology,
51(1), 7–15. https://doi.org/10.1016/j.infsof.2008.09.009

Kolovos, D. S., Paige, R. F., & Polack, F. A. C. (2006). Eclipse Development Tools for Epsilon. Eclipse Modeling
Symposium on Eclipse Summit Europe, (October). Retrieved from
https://pdfs.semanticscholar.org/8268/b0795e2af075b4d0f78d1cc558dd69b24ea7.pdf

Kolovos, D. S., Rose, L. M., Abid, S. Bin, Paige, R. F., Polack, F. A. C., & Botterweck, G. (2010). Taming EMF and
GMF using model transformation. In Lecture Notes in Computer Science (including subseries Lecture
Notes in Artificial Intelligence and Lecture Notes in Bioinformatics) (Vol. 6394 LNCS, pp. 211–225).
Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-16145-2_15

Koziolek, A., & Reussner, R. (2011). Towards a generic quality optimisation framework for component-based
system models. In Proceedings of the 14th international ACM Sigsoft symposium on Component based
software engineering - CBSE ’11 (p. 103). New York, New York, USA: ACM Press.
https://doi.org/10.1145/2000229.2000244

Köksal, Ö., & Akyuz, M. (2017). Aspect Oriented Approach for Cross-Cutting Concerns in Data Distribution
Service Based Systems. Journal of Science and Engineering, 19(55), 43–56.
https://doi.org/10.21205/deufmd.2017195528

Köksal, Ö., & Tekinerdogan, B. (2017a). Feature-driven domain analysis of session layer protocols of internet of
things. In Proceedings - 2017 IEEE 2nd International Congress on Internet of Things, ICIOT 2017 (pp. 105–
112). https://doi.org/10.1109/IEEE.ICIOT.2017.19

Köksal, Ö., & Tekinerdogan, B. (2017b). Obstacles in Data Distribution Service Middleware: A Systematic
Review. Future Generation Computer Systems, 68, 191–210.
https://doi.org/10.1016/j.future.2016.09.020

Kruchten, P. (2000). The Rational Unified Process: An Introduction. The Rational Unified Process: An
Introduction. Addison-Wesley. Retrieved from
https://books.google.com.tr/books/about/The_Rational_Unified_Process.html?id=RYCMx6o47pMC&redi
r_esc=y

Kruize, J. W., Wolfert, J., Scholten, H., Verdouw, C. N., Kassahun, A., & Beulens, A. J. M. (2016). A reference
architecture for Farm Software Ecosystems. Computers and Electronics in Agriculture, 125, 12–28.
https://doi.org/10.1016/J.COMPAG.2016.04.011

Kutter, T., Tiemann, S., Siebert, R., & Fountas, S. (2011). The role of communication and co-operation in the
adoption of precision farming. Precision Agriculture, 12(1), 2–17. https://doi.org/10.1007/s11119-009-
9150-0

Linseisen, H. (2001). Development of a Precision Farming Information System. In Proceedings of the Third
European Conference on Precision Agriculture (pp. 689–694). Retrieved from
http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.460.5744

Lomotey, R. K., Pry, J., Sriramoju, S., Kaku, E., & Deters, R. (2017). Middleware Framework for IoT Services
Integration. In Proceedings - 2017 IEEE 6th International Conference on AI and Mobile Services, AIMS
2017 (pp. 89–92). IEEE. https://doi.org/10.1109/AIMS.2017.20

 207

Lowenberg-DeBoer, J., Erickson, K., & Vogel, K. A. (2000). Precision farming profitability. Agricultural Research
Programs, Purdue University.

Ma, J., Zhou, X., Li, S., & Li, Z. (2011). Connecting Agriculture to the Internet of Things through Sensor Networks.
In 2011 International Conference on Internet of Things and 4th International Conference on Cyber,
Physical and Social Computing (pp. 184–187). IEEE. https://doi.org/10.1109/iThings/CPSCom.2011.32

Malek, S., Medvidovic, N., & Mikic-Rakic, M. (2012). An Extensible Framework for Improving a Distributed
Software System’s Deployment Architecture. IEEE Transactions on Software Engineering, 38(1), 73–100.
https://doi.org/10.1109/TSE.2011.3

Martens, A., Koziolek, H., Becker, S., & Reussner, R. (2010). Automatically improve software architecture
models for performance, reliability, and cost using evolutionary algorithms. In Proceedings of the first
joint WOSP/SIPEW international conference on Performance engineering - WOSP/SIPEW ’10 (p. 105).
New York, New York, USA: ACM Press. https://doi.org/10.1145/1712605.1712624

McEwen, A., & Cassimally, H. (2014). Designing the Internet of Things. Wiley. Retrieved from
https://www.wiley.com/en-tr/Designing+the+Internet+of+Things-p-9781118430620

Mehrabi, A., Mehrabi, S., & Mehrabi, A. (2009). An Adaptive Genetic Algorithm for Multiprocessor Task
Assignment Problem with Limited Memory. Proceedings of the World Congress on Engineering and
Computer Science, II. Retrieved from
https://www.researchgate.net/publication/44260490_An_Adaptive_Genetic_Algorithm_for_Multiproces
sor_Task_Assignment_Problem_with_Limited_Memory

Milsoft. (n.d.). MilSOFT DDS Middleware. Retrieved March 19, 2018, from
http://www.milsoft.com.tr/en/portfolio/mil-dds/

Moore, B., Dean, D., Gerber, A., Wagenknecht, G., & Vanderheyden, P. (2004). Eclipse Development using the
Graphical Editing Framework and the Eclipse Modeling Framework. IBM, International Technical Support
Organization. https://doi.org/10.1147/JRD.2010.2041693

Murakami, E., Saraiva, A. M., Ribeiro, L. C. M., Cugnasca, C. E., Hirakawa, A. R., & Correa, P. L. P. (2007). An
infrastructure for the development of distributed service-oriented information systems for precision
agriculture. Computers and Electronics in Agriculture, 58(1), 37–48.
https://doi.org/10.1016/j.compag.2006.12.010

Myerson, J. (2002). The Complete Book of Middleware. Auerbach. Retrieved from
http://books.google.com/books?hl=en&lr=&id=Gc886KgsdcsC&oi=fnd&pg=PR15&dq=The+Complete+Bo
ok+of+Middleware&ots=tJvUIis_-
B&sig=u38CH5ZT8eUBClg80hN061_WFAg%5Cnhttp://books.google.com/books?hl=en&lr=&id=Gc886Kgs
dcsC&oi=fnd&pg=PR15&dq=The+complete+book+of+midd

Ngu, A. H., Gutierrez, M., Metsis, V., Nepal, S., & Sheng, Q. Z. (2017). IoT Middleware: A Survey on Issues and
Enabling Technologies. IEEE Internet of Things Journal, 4(1), 1–20.
https://doi.org/10.1109/JIOT.2016.2615180

Nikkilä, R., Seilonen, I., & Koskinen, K. (2010). Software architecture for farm management information systems
in precision agriculture. Computers and Electronics in Agriculture, 70(2), 328–336.
https://doi.org/10.1016/j.compag.2009.08.013

OASIS. (2010). OASIS. Retrieved March 10, 2018, from https://www.oasis-open.org/

OASIS. (2011). AMQP. Retrieved February 18, 2018, from http://www.amqp.org/specification/1.0/amqp-org-
download

OASIS. (2014). MQTT. Retrieved February 18, 2018, from http://mqtt.org/2014/11/mqtt-v3-1-1-now-an-oasis-
standard

Olivieri, A. C., & Rizzo, G. (2015). Scalable Approaches to Integration in Heterogeneous IoT and M2M Scenarios.
In Proceedings - 2015 9th International Conference on Innovative Mobile and Internet Services in
Ubiquitous Computing, IMIS 2015 (pp. 358–363). https://doi.org/10.1109/IMIS.2015.55

OMG. (n.d.-a). Data Distribution Service Specification. Retrieved February 18, 2018, from
http://www.omg.org/spec/DDS/

208

OMG. (n.d.-b). OMG. Retrieved May 17, 2018, from http://www.omg.org

OMG. (n.d.-c). OMG DDS Portal. Retrieved March 10, 2018, from http://portals.omg.org/dds/

OMG. (2006a). Deployment and Configuration of component-based Distributed Applications Specification
Version 4.0. Retrieved from https://www.omg.org/spec/DEPL/About-DEPL/

OMG. (2006b). The CORBA Component Model Specification Version 4.0. Retrieved from
https://www.omg.org/spec/CCM/About-CCM/

OMG. (2008). OMG Marte Specification - beta2. Retrieved from
http://www.omg.org/omgmarte/Specification.htm

OMG. (2010). DDS UML Profile - beta1. Retrieved from http://www.omg.org/cgi-bin/doc?ptc/10-05-17.pdf

OMG. (2012a). CORBA Specification Version 3.3. Retrieved from http://www.omg.org/spec/CORBA/

OMG. (2012b). DDS for Lightweight CCM Specification Version 1.1. Retrieved from
http://www.omg.org/spec/DDS4CCM/1.1

OMG. (2014). DDS Interoperability Wire Protocol Specification Version 2.2. Retrieved March 10, 2018, from
http://www.omg.org/spec/DDSI-RTPS/2.2/

OMG. (2015a). DDS + DLRL Specification V 1.4. Retrieved from https://www.omg.org/spec/DDS-DLRL/About-
DDS-DLRL/

OMG. (2015b). DDS Specification V 1.4, 180. Retrieved from http://www.omg.org/spec/DDS/1.4/

OMG. (2016). DDS Security Specification V 1.0. Retrieved March 10, 2018, from
https://www.omg.org/spec/DDS-SECURITY/1.0/

Otte, W. R., Gokhale, A., Schmidt, D. C., & Willemsen, J. (2011). Infrastructure for Component-Based DDS
Application Development. In GPCE 11: PROCEEDINGS OF THE TENTH INTERNATIONAL CONFERENCE ON
GENERATIVE PROGRAMMING AND COMPONENT ENGINEERING (Vol. 47, pp. 53–61).
https://doi.org/10.1145/2047862.2047872

Öztürk, K., & Tekinerdogan, B. (2011). Feature Modeling of Software as a Service Domain to Support
Application Architecture Design. Proc. of the Sixth International Conference on Software Engineering
Advances (ICSEA 2011), 142–148.

Palattella, M. R., Accettura, N., Vilajosana, X., Watteyne, T., Grieco, L. A., Boggia, G., & Dohler, M. (2013).
Standardized protocol stack for the internet of (important) things. IEEE Communications Surveys and
Tutorials, 15(3), 1389–1406. https://doi.org/10.1109/SURV.2012.111412.00158

Pandya, H. B., & Champaneria, T. A. (2015). Internet of things: Survey and case studies. 2015 International
Conference on Electrical, Electronics, Signals, Communication and Optimization (EESCO), 1–6.
https://doi.org/10.1109/EESCO.2015.7253713

Prismtech. (n.d.-a). PrismTech. Retrieved March 10, 2018, from http://www.prismtech.com/

Prismtech. (n.d.-b). Vortex OpenSplice Modeler. Retrieved March 10, 2018, from
http://www.prismtech.com/vortex/vortex-opensplice/tools/modeler

Pritchard, J. (1999). COM and CORBA side by side: Architectures, Strategies, and Implementations. Addison-
Wesley.

Rains, G. C., & Thomas, D. L. (2009). Precision farming: an introduction. University of Georgia. Retrieved from
https://athenaeum.libs.uga.edu/handle/10724/12223?show=full

RTI. (n.d.). RTI. Retrieved March 10, 2018, from https://www.rti.com/

Runeson, P., & Höst, M. (2008). Guidelines for conducting and reporting case study research in software
engineering. Empirical Software Engineering. https://doi.org/10.1007/s10664-008-9102-8

Saaty, T. L. (1988). What is the Analytic Hierarchy Process? In Mathematical Models for Decision Support (pp.
109–121). Berlin, Heidelberg: Springer Berlin Heidelberg. https://doi.org/10.1007/978-3-642-83555-1_5

Salman, T., & Jain, R. (2017). Networking protocols and standards for internet of things. In Internet of Things
and Data Analytics Handbook (pp. 215–238). https://doi.org/10.1002/9781119173601.ch13

 209

Schimmelpfennig, D. (2016). Farm Profits and Adoption of Precision Agriculture. Retrieved from
https://www.ers.usda.gov/webdocs/publications/80326/err-217.pdf?v=42661

Schmitz, M., Martini, D., Kunisch, M., & Mösinger, H. J. (2009). AgroXML enabling standardized, platform-
independent internet data exchange in farm management information systems. In Metadata and
Semantics (pp. 463–468). https://doi.org/10.1007/978-0-387-77745-0_45

Schneider, S. (2016). Leading Applications & Architecture for the Industrial IoT. Retrieved from
https://www.rti.com/leading-applications-ebook

Seelan, S. K., Laguette, S., Casady, G. M., & Seielstad, G. A. (2003). Remote sensing applications for precision
agriculture: A learning community approach. Remote Sensing of Environment.
https://doi.org/10.1016/j.rse.2003.04.007

Shelby, Z., Hartke, K., & Bormann, C. (2004). The Constrained Application Protocol (CoAP). Kenchiku Setsubi Iji
Hozen Suishin Kyōkai. Retrieved from https://www.ietf.org/rfc/rfc7252.txt

Sheng, Z., Yang, S., Yu, Y., Vasilakos, A., McCann, J., & Leung, K. (2013). A survey on the IETF protocol suite for
the internet of things: Standards, challenges, and opportunities. IEEE Wireless Communications, 20(6),
91–98. https://doi.org/10.1109/MWC.2013.6704479

Singh, M., Rajan, M. A., Shivraj, V. L., & Balamuralidhar, P. (2015). Secure MQTT for Internet of Things (IoT). In
Proceedings - 2015 5th International Conference on Communication Systems and Network Technologies,
CSNT 2015 (pp. 746–751). https://doi.org/10.1109/CSNT.2015.16

Sørensen, C. G., Fountas, S., Nash, E., Pesonen, L., Bochtis, D., Pedersen, S. M., … Blackmore, S. B. (2010).
Conceptual model of a future farm management information system. Computers and Electronics in
Agriculture, 72(1), 37–47. https://doi.org/10.1016/j.compag.2010.02.003

Sørensen, C. G., Pesonen, L., Bochtis, D. D., Vougioukas, S. G., & Suomi, P. (2011). Functional requirements for a
future farm management information system. Computers and Electronics in Agriculture, 76(2), 266–276.
https://doi.org/10.1016/j.compag.2011.02.005

Sparx Systems. (n.d.). Enterprise Architect UML modeling tool. Retrieved March 10, 2018, from
http://sparxsystems.com/

Steinberg, D. (2009). EMF: Eclipse Modeling Framework. Addison-Wesley.

Steinberger, G., Rothmund, M., & Auernhammer, H. (2009). Mobile farm equipment as a data source in an
agricultural service architecture. Computers and Electronics in Agriculture, 65(2), 238–246.
https://doi.org/10.1016/j.compag.2008.10.005

Stone, H. S. (1977). Multiprocessor Scheduling with the Aid of Network Flow Algorithms. IEEE Transactions on
Software Engineering, SE-3(1), 85–93. https://doi.org/10.1109/TSE.1977.233840

Svogor, I., & Carlson, J. (2016). SCALL: Software Component Allocator for Heterogeneous Embedded Systems.
Proceedings of the 2015 European Conference on Software Architecture Workshops - ECSAW ’15, 1–5.
https://doi.org/10.1145/2797433.2797501

Tekinerdogan, B. (2014). Software Architecture. In T. Gonzalez, J. Diaz-Herrera, & A. Tucker (Eds.), Computing
Handbook: Computer Science and Software Engineering (p. 2280). Chapman and Hall/CRC . Retrieved
from https://www.crcpress.com/Computing-Handbook-Third-Edition-Computer-Science-and-Software-
Engineering/Gonzalez-Diaz-Herrera-Tucker/p/book/9781439898529

Tekinerdogan, B., Celik, T., & Köksal, Ö. (2018). Generation of feasible deployment configuration alternatives
for Data Distribution Service based systems. Computer Standards & Interfaces, 58, 126–145.
https://doi.org/10.1016/J.CSI.2018.01.002

Tekinerdogan, B., & Köksal, Ö. (2018). Pattern Based Integration of Internet of Things Systems. In Internet of
Things - ICIOT 2018 (pp. 19–33). Springer, Cham. https://doi.org/10.1007/978-3-319-94370-1_2

Tekinerdogan, B., Köksal, Ö., & Celik, T. (2017). Data Distribution Service-Based Architecture Design for the
Internet of Things Systems. In Connected Environments for the Internet of Things (pp. 269–285).
Springer, Cham. https://doi.org/10.1007/978-3-319-70102-8_13

Tekinerdogan, B., & Öztürk, K. (2013). Feature-Driven Design of SaaS Architectures. In Zaigham Mahmood &

210

Saqib Saeed (Eds.), Software Engineering Frameworks for the Cloud Computing Paradigm (pp. 189–212).
Springer. https://doi.org/10.1007/978-1-4471-5031-2_9

Tekinerdogan, B., Öztürk, K., & Doǧru, A. (2011). Modeling and reasoning about design alternatives of software
as a service architectures. In Proceedings - 9th Working IEEE/IFIP Conference on Software Architecture,
WICSA 2011 (pp. 312–319). IEEE. https://doi.org/10.1109/WICSA.2011.49

Tekinerdogan, B., Sozer, H., & Aksit, M. (2012). Feature-Based Rationale Management System for Supporting
Software Architecture Adaptation. International Journal of Software Engineering and Knowledge
Engineering, 22(7), 945–964. https://doi.org/10.1142/S021819401250026X

Turkish Land Crop Office. (2017). Turkish Grain Report 2016. Retrieved from
http://www.tmo.gov.tr/Upload/Document/hububat/hububatraporu2016.pdf

Turkish Ministry of Agriculture. (2018). Herbal Production Data. Retrieved from
http://www.tarim.gov.tr/sgb/Belgeler/SagMenuVeriler/BUGEM.pdf

Tüzün, E., Tekinerdogan, B., Kalender, M. E., & Bilgen, S. (2015). Empirical evaluation of a decision support
model for adopting software product line engineering. Information and Software Technology, 60, 77–101.
https://doi.org/10.1016/j.infsof.2014.12.007

Ucar, B., Aykanat, C., Kaya, K., & Ikinci, M. (2006). Task assignment in heterogeneous computing systems.
Journal of Parallel and Distributed Computing, 66(1), 32–46. https://doi.org/10.1016/j.jpdc.2005.06.014

Verdouw, C., Wolfert, J., & Tekinerdogan, B. (2016). Internet of Things in agriculture. CAB Reviews: Perspectives
in Agriculture, Veterinary Science, Nutrition and Natural Resources, 11(35).
https://doi.org/10.1079/PAVSNNR201611035

Vermesan, O., & Friess, P. (2014). Internet of Things – From Research and Innovation to Market Deployment.
River Publishers. https://doi.org/10.1007/s11036-012-0415-x

Voelter, M., Kolb, B., Efftinge, S., & Haase, A. (2006). From Front End To Code - MDSD in Practice. Retrieved
March 10, 2018, from http://www.eclipse.org/articles/Article-FromFrontendToCode-
MDSDInPractice/article.html

Wolfert, J., Verdouw, C. N., Verloop, C. M., & Beulens, A. J. M. (2010). Organizing information integration in
agri-food-A method based on a service-oriented architecture and living lab approach. Computers and
Electronics in Agriculture, 70(2), 389–405. https://doi.org/10.1016/j.compag.2009.07.015

Wolfert, S., Ge, L., Verdouw, C., & Bogaardt, M.-J. (2017). Big Data in Smart Farming – A review. Agricultural
Systems, 153, 69–80. https://doi.org/10.1016/J.AGSY.2017.01.023

Xi Chen, R. J. (2014). Constrained Application Protocol for Internet of Things. Wireless and Mobile Networking,
857, 1–12. Retrieved from http://www.cse.wustl.edu/~jain/cse574-14/ftp/coap/index.html

Yin, R. K. (2009). Case study research: design and methods / Robert K. Yin. Applied social research methods
series: 5. https://doi.org/10.1097/FCH.0b013e31822dda9e

Yoshikawa, Y., Sato, A., Hirasawa, S., Takahashi, M., & Yamamoto, M. (2012). Hitachi’s vision of the smart city.
Hitachi Review. Retrieved from http://www.hitachi.com/rev/pdf/2012/r2012_03_101.pdf

Zhang, H., Babar, M. A., & Tell, P. (2011). Identifying relevant studies in software engineering. Information and
Software Technology, 53(6), 625–637. https://doi.org/10.1016/J.INFSOF.2010.12.010

Zhang, N., Wang, M., & Wang, N. (2002). Precision agriculture - A worldwide overview. Computers and
Electronics in Agriculture, 36(2–3), 113–132. https://doi.org/10.1016/S0168-1699(02)00096-0

 211

SUMMARY

IoT (Internet of Things) enables anytime and anyplace connectivity for anything by linking the

objects of the real world with the virtual world. In the near future, it is predicted that more

than 50 billion of things will be connected to the internet. This will lead to many different IoT-

based systems that will have a huge impact on the society. Often, these IoT systems will not

be standalone but will be composed with other different systems to create additional value.

Hence, with the heterogeneity and the integration of IoT-based systems with other IoT-based

or non-IoT-based systems has become an important challenge.

In this thesis, the main objective is to analyze, design and integrate IoT-based systems and to

answer the following research questions:

RQ1. What are the characteristic features of IoT systems?

RQ2. How to design the architecture for an IoT-based system?

RQ3. What are the identified obstacles of the data distribution (DDS) middleware?

RQ4. What are the solution directions for the identified obstacles of DDS?

RQ5. What are the approaches for integrating multiple IoT-based systems?

RQ6. How to design a DDS-based IoT system?

RQ7. How to derive feasible deployment alternatives for DDS-based systems?

In order to answer these research questions, three different research methodologies were

used: Systematic Literature Review, Design Science Research, and Case Study Research.

In chapter 2, we have applied a feature driven domain analysis of IoT systems. We have

presented the reference architecture for IoT and discussed the corresponding layers. Among

these layers, we have focused on the session layer of the IoT. The protocols in this layer are

related with the communication sessions of the IoT systems and hence determine the

communication characteristics of the IoT systems. We have presented the common and

variant features of the most commonly used session layer protocols, namely AMQP, CoAP,

DDS, MQTT, and XMPP which are used for communication between M2M (machine-to-

machine), M2S (machine-to-server), and S2S (server-to-server). Further, we have provided an

evaluation framework to compare session layer communication protocols. Among these

protocols, we focused on the DDS that is mainly used for M2M communication in Industrial

Internet of Things (IIoT).

In chapter 3, we have described an architecture design method for architecting IoT systems

for the Farm Management Information Systems (FMIS) domain. Hereby, we have also

developed a family feature diagram to represent the common and variant features of IoT-

based FMIS. In order to illustrate our approach, we have performed a systematic case study

approach including the IoT-based wheat and tomato production with IoT-based FMIS. The

case study research showed that the approach was both effective and practical.

212

In chapter 4, we have presented the method for designing integrated IoT systems. We showed

that integration of IoT-based systems can be at different layers including session layer, cloud

layer and application layer. Further we have shown that the integration is typically carried out

based on well-defined patterns, that is, generic solutions structures for recurring problems.

We have systematically compiled and structured the 15 different integration patterns which

can be used in different combinations and likewise supporting the composition of different

IoT systems. We have illustrated the use of example patterns in a smart city case study and

have shown that the systematic structuring of the integration patterns is useful for integrating

IoT systems.

A systematic research methodology has been applied in chapter 5 to identify the current

obstacles to adopt DDS and their solution directions. We have selected 34 primary studies

among the 468 identified papers since the introduction of DDS in 2003. We identified 11 basic

categories of problems including complexity of DDS configuration, performance prediction,

measurement and optimization, implementing DDS, DDS integration over WAN, DDS using

wireless networks and mobile computing, interoperability among DDS vendor

implementations, data consistency in DDS, reliability in DDS, scalability in DDS, security, and

integration with event-based systems. We have adopted feature diagrams to summarize and

provide an overview of the identified problem and their solutions defined in the primary

studies.

DDS based architecture design for IoT systems is presented in chapter 6. DDS is considered to

be a potential middleware for IoT because of its focus on event-driven communication in

which quality of service is also explicitly defined. We provide a systematic approach to model

the architecture for DDS-based IoT in which we adopted architecture viewpoints for modeling

DDS, IoT and DDS-based IoT systems. We have integrated and represented the architecture

models that can be used to model DDS-based IoT systems for various application domains.

When designing DDS-based systems typically multiple different alternatives can be derived.

Chapter 7 presents an approach for deriving feasible DDS configuration alternatives. For this

we have provided a systematic approach for extending the DDS UML profile and developed

an extensible tool framework Deploy-DDS to derive feasible deployment alternatives given

the application model, the physical resources, and the execution configurations. The tool

framework Deploy-DDS implements a set of predefined algorithms and can be easily extended

with new algorithms to support the system architect. We have evaluated the approach and

the tool framework for a relevant IoT case study on smart city engineering.

Chapter 8 concludes the thesis by summarizing the contributions.

 213

SAMENVATTING

IoT (Internet of Things) maakt altijd en overal connectiviteit mogelijk van allerdaagse

voorwerpen die kunnen communiceren met personen en met andere objecten, en die op

grond hiervan autonome beslissingen kunnen nemen. In de nabije toekomst wordt voorspeld

dat meer dan 50 miljard entiteiten met internet verbonden zullen zijn. Dit zal leiden tot veel

verschillende op IoT gebaseerde systemen die zodoende een grote impact op de samenleving

zullen hebben. Vaak zullen deze IoT-systemen niet op zichzelf staan, maar zullen

gecombineerd worden met andere verschillende systemen om zodoende additionele waarde

te creëren. Bijgevolg is de heterogeniteit en de integratie van IoT systemen met andere IoT

systemen een belangrijke uitdaging geworden.

In dit proefschrift is het hoofddoel het analyseren, ontwerpen en integreren van IoT-

gebaseerde systemen en hiermee het beantwoorden van de volgende onderzoeksvragen:

1. Wat zijn de karakteristieke kenmerken van IoT-systemen?

2. Hoe ontwerp je de architectuur voor een op IoT gebaseerd systeem?

3. Wat zijn de geïdentificeerde obstakels in het DDS-domein?

4. Wat zijn de oplossingsrichtingen voor de geïdentificeerde obstakels van DDS?

5. Wat zijn de benaderingen voor het integreren van meerdere IoT-gebaseerde systemen?

6. Hoe een DDS-gebaseerd IoT-systeem te ontwerpen?

7. Hoe haalbare haalbaarheidsalternatieven voor DDS-gebaseerde systemen kunnen worden

afgeleid?

Om deze onderzoeksvragen te beantwoorden, werden drie verschillende

onderzoeksmethoden gebruikt: Systematisch literatuur onderzoek, design science research en

case study research.

In hoofdstuk 2 hebben we een feature-driven domeinanalyse van de IoT-systemen toegepast.

We hebben de architectuur en de softwarelagen van de IoT-referentiearchitectuur

gepresenteerd. Hierbij hebben we ons vooral gericht op de sessielaag van het IoT. De

protocollen in deze laag zijn gerelateerd aan de communicatiesessies van de IoT-systemen en

bepalen daarom de communicatiekenmerken van de IoT-systemen. We hebben de algemene

en variantkenmerken gepresenteerd van de meest gebruikte sessielaagprotocollen, namelijk

AMQP, CoAP, DDS, MQTT en XMPP die worden gebruikt voor communicatie tussen M2M

(machine-to-machine), M2S (machine-naar-server)) en S2S (server-naar-server). Verder

hebben we een evaluatiekader geboden om communicatieprotocollen voor sessielagen te

vergelijken. Vervolgens hebben we ons gericht op de DDS die hoofdzakelijk wordt gebruikt

voor M2M-communicatie in Industrial Internet of Things (IIoT).

In hoofdstuk 3 hebben we een nieuwe aanpak beschreven voor het ontwerpen van IoT-

systemen voor Farm Management Information Systemen (FMIS). Verder hebben we een

214

domein gebaseerde aanpak gebruikt en een feature diagram ontwikkeld met de

gemeenschappelijke en variabele eigenschappen van een op IoT-gebaseerde FMIS. Om onze

aanpak te illustreren, hebben we een systematische case study-aanpak uitgevoerd,

waaronder de op IoT gebaseerde tarwe- en tomatenproductie met IoT-gebaseerde FMIS. Uit

het case study-onderzoek bleek dat de aanpak zowel effectief als praktisch was.

Hoofdstuk 4 presenteert het ontwerp van geïntegreerde IoT-systemen. We hebben

aangegeven dat integratie van op IoT gebaseerde systemen zich op verschillende niveaus kan

bevinden, waaronder sessielaag, cloudlaag en applicatielaag. Verder hebben we laten zien dat

de integratie meestal wordt uitgevoerd op basis van goed gedefinieerde patronen, dat wil

zeggen generieke oplossingsstructuren voor terugkerende problemen. We hebben

systematisch de 15 verschillende integratiepatronen gecompileerd en gestructureerd die in

verschillende combinaties kunnen worden gebruikt. We hebben het gebruik van patronen in

een Smart City-casestudy geïllustreerd en hebben aangetoond dat de systematische

structurering van de integratiepatronen nuttig is voor het ontwikkelen van IoT-systemen.

In hoofdstuk 5 is een systematische onderzoeksmethode toegepast om de huidige obstakels

voor het adopteren van DDS en hun oplossingsrichtingen te identificeren. We hebben 34

primaire onderzoeken geselecteerd uit de 468 geïdentificeerde artikelen sinds de introductie

van DDS in 2003. We identificeerden 11 basiscategorieën van problemen, waaronder de

complexiteit van DDS, prestatievoorspelling, meting en optimalisatie, implementatie van DDS,

DDS-integratie via WAN, DDS met behulp van draadloos netwerken en mobiel

computergebruik, interoperabiliteit tussen implementaties van DDS-leveranciers,

gegevensconsistentie in DDS, betrouwbaarheid in DDS, schaalbaarheid in DDS, beveiliging en

integratie met op events gebaseerde systemen. We hebben de feature diagrammen gebruikt

om een overzicht te geven van de geïdentificeerde problemen en hun oplossingen.

In hoofdstuk 6 wordt een op DDS gebaseerd architectuurontwerp voor IOT-systemen

gepresenteerd. DDS wordt beschouwd als een potentiële middleware voor IOT vanwege de

focus op event-based communicatie. We bieden een systematische aanpak om de

architectuur van DDS-gebaseerde IoT-systemen te modelleren. We hebben DDA-gebaseerde

IoT-systemen geïntegreerd voor verschillende toepassingsdomeinen.

Bij het ontwerpen van op DDS gebaseerde systemen kunnen typisch meerdere verschillende

alternatieven worden afgeleid. Hoofdstuk 7 presenteert een aanpak voor het afleiden van

haalbare DDS-configuratie-alternatieven. Het DDS UML-profiel is een uitbreidbaar

hulpmiddelraamwerk dat de implementatie van DDS mogelijk maakt. Het

hulpmiddelraamwerk Deploy-DDS implementeert een set vooraf gedefinieerde algoritmen en

kan eenvoudig worden uitgebreid naar nieuwe systemen. We hebben de aanpak en het tool-

framework geëvalueerd voor een relevante case study over smart city engineering.

Hoofdstuk 8 sluit het proefschrift af door de bijdragen samen te vatten.

 215

ACKNOWLEDGEMENTS

I got the opportunity to start a PhD with Professor Bedir Tekinerdogan in 2010. In this journey

many people helped me and I wish to express my gratitude to each of them.

First of all, I would like to thank my promotor Bedir Tekinerdogan for his endless patience and

support. He always helped me with different aspects and made this PhD degree possible for

me. I greatly appreciate all his efforts. I feel very fortunate to have you as my promotor and

finalizing this journey was not possible without your commitment.

I would like to thank Wageningen University for accepting me into the PhD program. Also, I

would like to thank the information technology group and the secretaries for their support.

My PhD journey started at Bilkent University where I have taken 8 graduate courses and

passed a very difficult qualification exam. I would like to thank Bilkent University for accepting

me and giving me an opportunity to start PhD in one of the best universities in Turkey.

I would like to thank Doğan Altunbay. It was not possible for me to pass qualification exam in

Bilkent University without his tremendous support. Thank you for being my teammate with

your right questions and solutions for passing the qualification exam.

I want to thank my coauthors Turgay Çelik and Mirun Akyüz. Turgay encouraged and helped

me to improve my papers and writing the thesis. I am very grateful for that. Mirun also

supported me in writing our paper and with the lectures that we took together.

I would like to thank my company ASELSAN. They allowed me to continue my PhD study while

I was working for ASELSAN. It was a great chance to have such an opportunity.

I would like to thank General Directorate of Agricultural Research and Policies (TAGEM) and

especially Dr. Hakan Yıldız and Turgay Polat for their support and evaluation of our work

related with precision agriculture. They always showed their interest in my work and were

open for nice conversations.

Such a hard work would not have been possible without the support of my family. I would like

to thank them for the trust they had in me and all the possible support they have provided

during my research. They always encouraged me to challenge myself and, it is lovely to see

and feel their genuine expression of pleasure in the completion of this thesis.

Ömer Köksal Wageningen, July 2018

216

 217

ABOUT THE AUTHOR

Ömer Köksal was born on the 26th of December 1969 in Ankara, Turkey.

He is graduated from Middle East Technical University where he received his MSc degree

(2004) in Computer Engineering. He is working for ASELSAN since 1996 where he is now

fulfilling the position of senior lead software design engineer. His main research topics include

distributed computing, software architecture design, model-driven development, aspect-

oriented software development, design patterns, and software product line engineering.

He has been active in many national and international projects and worked as the software

team leader in many application domains including avionic software development, simulator

development, and command and control software development for naval and unmanned

platforms.

In 2015 Ömer Köksal started his PhD at Wageningen University. In his PhD research he studied

Software Architecture Design and Analysis of Data Distribution Service Based Internet of

Things Systems and their integration. The graduation ceremony of his PhD was in July 2018.

His research focuses on information management in internet of things and data distribution

service domains. His purpose is to improve and facilitate the use of these technologies in the

development of enterprise software projects.

218

Colophon

Financial support from Wageningen University – Information Technology Group printing this

thesis is gratefully acknowledged.

Cover design by:

Ebru Zırhlıoglu

Printed by:

Digiforce

 219

	1 Introduction
	1.1 Background
	1.2 Objectives and Research Questions
	1.3 Case Studies
	1.3.1 Farm Management Information Systems
	1.3.2 Smart Traffic System

	1.4 Research Methodology
	1.4.1 Systematic Literature Review
	1.4.2 Design Science Research
	1.4.3 Case Study Research

	1.5 Contributions
	1.6 Thesis Outline

	2 Feature Driven Domain Analysis of the Internet of Things
	2.1 Introduction
	2.2 The IoT Architecture
	2.3 Feature Driven Domain Analysis
	2.4 Feature Model of the IoT Session Layer Protocols
	2.5 Publish-Subscribe Communication Pattern
	2.6 Selecting Communication Protocol
	2.6.1 Evaluation Framework
	2.6.2 Session Layer Communication Protocol Types
	2.6.3 Overall summary

	2.7 Conclusion

	3 Architecting Internet of Things based Farm Management Information Systems
	3.1 Introduction
	3.2 Background
	3.2.1 Internet of Things
	3.2.2 Architecture Design

	3.3 Case Studies and Problem Statement
	3.3.1 Case Study: Wheat Production
	3.3.2 Case Study: Tomato Production in Greenhouses
	3.3.3 Problem Description

	3.4 FMIS Development Method
	3.5 Family Feature Model
	3.5.1 Feature Model for IoT
	3.5.2 Feature Model for Precision Farming
	3.5.2.1 Global Positioning System
	3.5.2.2 Geographic Information System
	3.5.2.3 Sensor Technology
	3.5.2.4 Variable Rate Technology
	3.5.2.5 Yield Monitoring
	3.5.2.6 Yield Mapping

	3.5.3 Farm Management Information System
	3.5.4 Feature Model for IoT-based FMIS

	3.6 Reference Architecture for FMIS
	3.6.1 Decomposition View
	3.6.2 Layered View
	3.6.3 Deployment View

	3.7 Case Study Evaluation
	3.7.1 Case Study Protocol
	3.7.2 FMIS Architecture Design
	3.7.2.1 Retrospective Case Study: IoT-based Wheat Production
	3.7.2.2 Prospective Case Study: IoT-based Tomato Production in Greenhouses

	3.7.3 Result of the Evaluation for the Retrospective Case Study
	3.7.4 Result of the Evaluation for the Prospective Case Study

	3.8 Discussion
	3.9 Related Work
	3.10 Conclusion

	4 Pattern-Based Integration of Internet of Things Systems
	4.1 Introduction
	4.2 Case Study: Smart City Engineering
	4.3 Integration Framework
	4.3.1 Protocol Integration via IoT Gateway
	4.3.1.1 Distributed Multi-Gateway Approach
	4.3.1.2 Web-Service Multi-Protocol
	4.3.1.3 Intelligent Gateways

	4.3.2 Integration via Middleware
	4.3.3 Integration in the Cloud
	4.3.4 Integration in Application Layer
	4.3.4.1 Peer-to-Peer
	4.3.4.2 Client-Server
	4.3.4.3 Event-Based
	4.3.4.4 Publish-Subscribe
	4.3.4.5 Service-Oriented Architecture (SOA)
	4.3.4.6 Pipes and Filters

	4.4 Overall Approach
	4.5 Integrating the Smart City Engineering Systems
	4.6 Conclusion

	5 Obstacles in Data Distribution Service Middleware
	5.1 Introduction
	5.2 Data Distribution Service
	5.3 Research Method
	5.3.1 Review Protocol
	5.3.2 Research Questions
	5.3.3 Search Strategy
	5.3.4 Study Selection Criteria
	5.3.5 Study Quality Assessment
	5.3.6 Data Extraction
	5.3.7 Data Synthesis

	5.4 Results
	5.4.1 Overview of Selected Studies
	5.4.2 Research Methods
	5.4.3 Methodological Quality
	5.4.4 Systems Investigated

	5.5 Discussion
	5.6 Conclusion

	6 Data Distribution Service Based Architecture Design for the Internet of Things Systems
	6.1 Introduction
	6.2 Software Architecture Modeling
	6.3 Internet of Things Architecture
	6.3.1 Conceptual Model
	6.3.2 Feature Model
	6.3.3 Layered View
	6.3.4 Deployment View

	6.4 Data Distribution Service
	6.4.1 Conceptual View
	6.4.2 Feature Model
	6.4.3 Layered View
	6.4.4 Deployment View

	6.5 DDS-based IoT Architecture
	6.5.1 Conceptual model
	6.5.2 Layered View
	6.5.3 Deployment View

	6.6 Conclusion

	7 Deriving Data Distribution Service Based Feasible Configuration Alternatives
	7.1 Introduction
	7.2 Background and Content
	7.2.1 Deployment View for DDS-based Systems

	7.3 DDS UML Profile
	7.4 Problem Statement
	7.5 Approach For Generating DDS Deployment Configuration Alternatives
	7.5.1 Define DDS Application
	7.5.2 Design Physical Resources
	7.5.3 Design Execution Configuration
	7.5.4 Generate Input Parameters for Allocation Algorithm
	7.5.5 Find Feasible Deployment Configuration
	7.5.6 Generate Deployment Configuration

	7.6 Tools and Applying the Approach to the Case Study
	7.6.1 Tool Architecture
	7.6.2 Using Deploy-DDS to design DDS Application Models for the Case Study

	7.7 Evaluation
	7.8 Discussion
	7.9 Related Work
	7.10 Conclusion

	8 General Discussion
	8.1 Introduction
	8.2 Addressing Research Questions
	8.2.1 RQ1-What are the characteristics features of the IoT systems?
	8.2.2 RQ2-How to design the architecture for an IoT-based system?
	8.2.3 RQ3- What are the identified obstacles of the DDS middleware?
	8.2.4 RQ4-What are the solution directions for the identified obstacles of DDS?
	8.2.5 RQ5-What are the approaches for integrating multiple IoT-based systems?
	8.2.6 RQ6-How to design a DDS-based IoT system?
	8.2.7 RQ7-How to derive feasible deployment alternatives for DDS-based systems?

	8.3 Future Research

	Appendices
	Appendix A – Primary Studies for Deriving Characteristics of DDS
	Appendix B – Assessment of Primary Studies for DDS
	Appendix C – Primary Studies for Deriving Characteristics of IoT
	Appendix D – Primary Studies for Deriving Characteristics of FMIS

	References
	Summary
	Samenvatting
	Acknowledgements
	About the Author

