1,593 research outputs found

    A Life Cycle Software Quality Model Using Bayesian Belief Networks

    Get PDF
    Software practitioners lack a consistent approach to assessing and predicting quality within their products. This research proposes a software quality model that accounts for the influences of development team skill/experience, process maturity, and problem complexity throughout the software engineering life cycle. The model is structured using Bayesian Belief Networks and, unlike previous efforts, uses widely-accepted software engineering standards and in-use industry techniques to quantify the indicators and measures of software quality. Data from 28 software engineering projects was acquired for this study, and was used for validation and comparison of the presented software quality models. Three Bayesian model structures are explored and the structure with the highest performance in terms of accuracy of fit and predictive validity is reported. In addition, the Bayesian Belief Networks are compared to both Least Squares Regression and Neural Networks in order to identify the technique is best suited to modeling software product quality. The results indicate that Bayesian Belief Networks outperform both Least Squares Regression and Neural Networks in terms of producing modeled software quality variables that fit the distribution of actual software quality values, and in accurately forecasting 25 different indicators of software quality. Between the Bayesian model structures, the simplest structure, which relates software quality variables to their correlated causal factors, was found to be the most effective in modeling software quality. In addition, the results reveal that the collective skill and experience of the development team, over process maturity or problem complexity, has the most significant impact on the quality of software products

    A Review of Metrics and Modeling Techniques in Software Fault Prediction Model Development

    Get PDF
    This paper surveys different software fault predictions progressed through different data analytic techniques reported in the software engineering literature. This study split in three broad areas; (a) The description of software metrics suites reported and validated in the literature. (b) A brief outline of previous research published in the development of software fault prediction model based on various analytic techniques. This utilizes the taxonomy of analytic techniques while summarizing published research. (c) A review of the advantages of using the combination of metrics. Though, this area is comparatively new and needs more research efforts

    A systematic literature review of machine learning techniques for software maintainability prediction

    Get PDF
    Context: Software maintainability is one of the fundamental quality attributes of software engineering. The accurate prediction of software maintainability is a significant challenge for the effective management of the software maintenance process. Objective: The major aim of this paper is to present a systematic review of studies related to the prediction of maintainability of object-oriented software systems using machine learning techniques. This review identifies and investigates a number of research questions to comprehensively summarize, analyse and discuss various viewpoints concerning software maintainability measurements, metrics, datasets, evaluation measures, individual models and ensemble models. Method: The review uses the standard systematic literature review method applied to the most common computer science digital database libraries from January 1991 to July 2018. Results: We survey 56 relevant studies in 35 journals and 21 conference proceedings. The results indicate that there is relatively little activity in the area of software maintainability prediction compared with other software quality attributes. CHANGE maintenance effort and the maintainability index were the most commonly used software measurements (dependent variables) employed in the selected primary studies, and most made use of class-level product metrics as the independent variables. Several private datasets were used in the selected studies, and there is a growing demand to publish datasets publicly. Most studies focused on regression problems and performed k-fold cross-validation. Individual prediction models were employed in the majority of studies, while ensemble models relatively rarely. Conclusion: Based on the findings obtained in this systematic literature review, ensemble models demonstrated increased accuracy prediction over individual models, and have been shown to be useful models in predicting software maintainability. However, their application is relatively rare and there is a need to apply these, and other models to an extensive variety of datasets with the aim of improving the accuracy and consistency of results

    Predicting software maintainability in object-oriented systems using ensemble techniques

    Get PDF
    Prediction of the maintainability of classes in object-oriented systems is a significant factor for software success, however it is a challenging task to achieve. To date, several machine learning models have been applied with variable results and no clear indication of which techniques are more appropriate. With the goal of achieving more consistent results, this paper presents the first set of results in an extensive empirical study designed to evaluate the capability of bagging models to increase accuracy prediction over individual models. The study compares two major machine learning based approaches for predicting software maintainability: individual models (regression tree, multilayer perceptron, k-nearest neighbors and m5rules), and an ensemble model (bagging) that are applied to the QUES data set. The results obtained from this study indicate that k-nearest neighbors model outperformed all other individual models. The bagging ensemble model improved accuracy prediction significantly over almost all individual models, and the bagging ensemble models with k-nearest neighbors as a base model achieved superior accurate prediction. This paper also provides a description of the planned programme of research which aims to investigate the performance over various datasets of advanced (ensemble-based) machine learning models

    An Extensive Analysis of Machine Learning Based Boosting Algorithms for Software Maintainability Prediction

    Get PDF
    Software Maintainability is an indispensable factor to acclaim for the quality of particular software. It describes the ease to perform several maintenance activities to make a software adaptable to the modified environment. The availability & growing popularity of a wide range of Machine Learning (ML) algorithms for data analysis further provides the motivation for predicting this maintainability. However, an extensive analysis & comparison of various ML based Boosting Algorithms (BAs) for Software Maintainability Prediction (SMP) has not been made yet. Therefore, the current study analyzes and compares five different BAs, i.e., AdaBoost, GBM, XGB, LightGBM, and CatBoost, for SMP using open-source datasets. Performance of the propounded prediction models has been evaluated using Root Mean Square Error (RMSE), Mean Magnitude of Relative Error (MMRE), Pred(0.25), Pred(0.30), & Pred(0.75) as prediction accuracy measures followed by a non-parametric statistical test and a post hoc analysis to account for the differences in the performances of various BAs. Based on the residual errors obtained, it was observed that GBM is the best performer, followed by LightGBM for RMSE, whereas, in the case of MMRE, XGB performed the best for six out of the seven datasets, i.e., for 85.71% of the total datasets by providing minimum values for MMRE, ranging from 0.90 to 3.82. Further, on applying the statistical test and on performing the post hoc analysis, it was found that significant differences exist in the performance of different BAs and, XGB and CatBoost outperformed all other BAs for MMRE. Lastly, a comparison of BAs with four other ML algorithms has also been made to bring out BAs superiority over other algorithms. This study would open new doors for the software developers for carrying out comparatively more precise predictions well in time and hence reduce the overall maintenance costs

    11th SC@RUG 2014 proceedings:Student Colloquium 2013-2014

    Get PDF
    • …
    corecore