
Alsolai, Hadeel (2018) Predicting software maintainability in object-

oriented systems using ensemble techniques. In: 2018 IEEE

International Conference on Software Maintenance and Evolution. IEEE,

Piscataway, NJ, pp. 716-721. ISBN 9781538678701 ,

http://dx.doi.org/10.1109/ICSME.2018.00088

This version is available at https://strathprints.strath.ac.uk/67014/

Strathprints is designed to allow users to access the research output of the University of

Strathclyde. Unless otherwise explicitly stated on the manuscript, Copyright © and Moral Rights

for the papers on this site are retained by the individual authors and/or other copyright owners.

Please check the manuscript for details of any other licences that may have been applied. You

may not engage in further distribution of the material for any profitmaking activities or any

commercial gain. You may freely distribute both the url (https://strathprints.strath.ac.uk/) and the

content of this paper for research or private study, educational, or not-for-profit purposes without

prior permission or charge.

Any correspondence concerning this service should be sent to the Strathprints administrator:

strathprints@strath.ac.uk

The Strathprints institutional repository (https://strathprints.strath.ac.uk) is a digital archive of University of Strathclyde research

outputs. It has been developed to disseminate open access research outputs, expose data about those outputs, and enable the

management and persistent access to Strathclyde's intellectual output.

http://strathprints.strath.ac.uk/
mailto:strathprints@strath.ac.uk
http://strathprints.strath.ac.uk/

XXX-X-XXXX-XXXX-X/XX/$XX.00 ©20XX IEEE

Predicting Software Maintainability in Object-
Oriented Systems Using Ensemble Techniques

Hadeel Alsolai
1Computer Science and Information

system

Princess Nourah Bint Abdulrahman
University

Riyadh, Saudi Arabia
2Computer and Information Sciences

University of Strathclyde

Glasgow, United Kingdom

hadeel.alsolai@strath.ac.uk

Supervisor :Dr.Marc Roper

Computer and Information
Sciences

University of Strathclyde
 Glasgow, United Kingdom

Marc.roper@strath.ac.uk

Co-Supervisor :Dr.Dua' Nassar

Computer Science and Information
system

Princess Nourah Bint Abdulrahman
University

Riyadh, Saudi Arabia

DANassar@pnu.edu.sa

Abstract— Prediction of the maintainability of classes in

object-oriented systems is a significant factor for software

success, however it is a challenging task to achieve. To date,

several machine learning models have been applied with

variable results and no clear indication of which techniques are

more appropriate. With the goal of achieving more consistent

results, this paper presents the first set of results in an

extensive empirical study designed to evaluate the capability of

bagging models to increase accuracy prediction over individual

models. The study compares two major machine learning

based approaches for predicting software maintainability:

individual models (regression tree, multilayer perceptron, k-

nearest neighbors and m5rules), and an ensemble model

(bagging) that are applied to the QUES data set. The results

obtained from this study indicate that k-nearest neighbors

model outperformed all other individual models. The bagging

ensemble model improved accuracy prediction significantly

over almost all individual models, and the bagging ensemble

models with k-nearest neighbors as a base model achieved

superior accurate prediction in both datasets. This paper also

provides a description of the planned programme of research

which aims to investigate the performance over various

datasets of advanced (ensemble-based) machine learning

models.

Keywords— individual models, bagging ensemble model,

software maintainability, prediction, Object-oriented systems.

I. INTRODUCTION

Prediction of software maintainability has received much
attention in recent years due to its essential role in managing
maintenance resource and controlling future maintenance
effort. It is also an essential task supporting software quality
assurance activities. However, the development of an
accurate model to predict software maintainability of OO
system is difficult to accomplish.

Utilization of individual machine learning models has
been investigated in several studies to predict software
maintainability[1-8]. Recently, ensemble models have been
applied across a wide range of software engineering problem
domains, such as fault prediction, to increase accuracy
prediction over individual models [9]. Nevertheless, far too

little attention has been paid to use ensemble models in
software maintainability domain.

 This programme of research adopts an empirical
approach to evaluate the performance of bagging ensemble
models against individual models for predicting software
maintainability of OO systems. To date we have carried out
two experiments to compare individual models, namely,
regression tree (RT), multilayer perceptron (MLP), k-nearest
neighbors (KNN) and m5rules (M5Rules), and a bagging
ensemble model. These models are evaluated on the well-
known public dataset collected from OO system maintenance
activities, namely QUES (Quality Evaluation System). To
the best of our knowledge, this the only study that
investigates the capability of bagging ensembles on the
QUES datasets. However, these are relatively old datasets
and the aim of this research is to further explore the use
ensemble approaches on more recent datasets and systems.

The remainder of this paper is organized as follows:
Section II describes related work and summarizes research
conducted in software maintenance prediction. Section III
discusses the research questions and contributions. Section IV
describes the individual prediction models that we used as a
base model for the bagging ensemble. Section V presents the
bagging ensemble models. Section VI explains the initial
empirical study design. Section VII demonstrates results and
answers the research questions. Section VIII defines the
planned proggrame of research. The authors conclude this
paper with a summary and lessons learned in Section IX.

II. RELATED WORK

Key to the prediction of software maintainability is the
determination of software maintenance measurements which
are notoriously hard to capture due to the problems in
estimating the effort associated with the maintenance task.
Software maintenance effort depends on various aspects of
software maintenance operation, such as corrective, adaptive,
emergency or perfective [10], and is a function of the subtle
interplay between the maintenance change and the software
being modified. A considerable amount of literature has
investigated different types of software maintenance

measurement: corrective maintenance effort [11]; adaptive
maintenance effort [12]; maintainability index [13] and
maintenance time[14]. A common maintenance effort
measure used in many studies is based on changes made in
the maintenance process and determines maintenance effort
by computing the number of modifications made per class
during the maintenance period[1-7, 15-17]. A higher number
of changes indicates greater maintenance effort.

A range of OO metrics have been used in the various
studies to try and capture the concept of software
maintainability: Chidamber and Kemerer [18, 19]; Oman and
Hagemeister [20]; Li and Henry [21]; Coleman and Ash et al
[22]; Welker and Oman [23]; Genero and Piattini et al [24];
Misra [13]; Yuming and Baowen [25]. Many of these metrics
have been validated only in a limited number of studies, and
some of them have been published but never applied. Several
studies have found a robust relationship between software
maintainability and OO metrics[1-3, 13, 26, 27], although
Thwin and Quah [26] conclude that this relationship is
complicated, nonlinear and low accuracy.

Among the wide variety of OO metrics, Chidamber and
Kemerer (C&K) [18, 19] provided a foundation of OO
metrics by introducing six metrics: depth of the inheritance
tree (DIT), number of children (NOC), response for a class
(RFC), lack of cohesion of methods (LCOM), coupling
between objects (CBO) and weighted method per class
(WMC). Li and Henry [21] extended their work by using all
C&K metrics except CBO and introducing additional
independent ones: message-passing coupling (MPC), abstract
data type (ADT), number of methods (NOM), lines of code
(LOC), number of semicolons in a class (SIZE1) and number
of properties (SIZE2), as well as CHANGE metrics as the
dependent variable to predict software maintainability by
calculating the number of lines changed in the class during
maintenance process.

A number of studies have employed individual machine
learning models to predict software maintainability based on
historical data of OO systems on the QUES dataset
specifically: Bayesian network [1]; Multivariate adaptive
regression splines [2]; TreeNet [3]; Mamdani-based model
[4]; Group Method of Data Handling model [5]; Artificial
neural network and genetic algorithm [6]; Neuro-Genetic
algorithm [7]; Hybrid neural network and fuzzy logic
approach [8]. Furthermore, two research studies have
investigated the application of ensemble models in software
maintainability: Aljamaan et al. [15] developed a
heterogeneous ensemble model by selecting the best base
model in training; and Elish et al. [17] evolved their work by
generalizing a heterogeneous ensemble to include averaging,
weighted averaging and best base in training as well. The
results confirm that both of these heterogeneous ensemble
models are at least as accurate as individual ones.

 The most obvious gap from previous studies is that a
wide variety of individual models were constructed to predict
software maintainability, while only two studies were
performed using heterogenous ensemble models (i.e. those
which combine different types of models). Furthermore,
homogeneous ensemble models (which combine models of

the same type) have never been used in any study that
employed on QUES dataset. Overall, it is clear that the
application of ensemble models in predicting software
maintainability is limited and there is no evidence of the
performance of homogenous models on the QUES dataset
specifically. Consequently, we select bagging ensemble
models, because it is recommended to apply on the small
training set, such as QUES dataset, to decrease the variance
between the base models that causes the unstable problem
[28].

III. RESEARCH QUESTIONS AND CONTRIBUTION

The primary objective is to predict software maintainability
accurately by evaluating the capability of bagging ensemble
models to increase or decrease accuracy prediction over
individual models. Therfore, our objective in this paper focus
on answering the following research questions:

RQ1) What is the best performing individual model to
predict software maintainability?

RQ2) How much can a bagging ensemble model increase
or decrease the performance of individual models?

In order to make a contribution in both the machine
learning and software maintainability fields, it is necessary to
investigate the capability of the various machine learning
models on a range of datasets. Therefore, homogeneous
ensemble models (bagging) and some novel individual
models (KNN and M5Rules) are chosen in our empirical
study.

IV. INDIVIDUAL PREDICTION MODELS

This section presents a summary description of the most
well-known regression models that have been applied to
various machine learning domain. Some of these models,
such as RT and KNN are considered amongst the best ten
data mining models [29], while MLP is the best neural
networks in term of extreme learning machine [30]. M5rules
is categorized from the tree that generates a set of rules
accurately [31]. In our empirical study, we used these
models as a base model for the bagging ensemble model.

• Regression Tree (RT) is constructed by using the
binary recursive partitioning process that divides
dataset recursively into partitions or branches by
selecting at each stage the independent variables
that have the lowest minimum sum of the squared
deviations from the mean [32]. RT is an unstable
algorithm as any small changes in the training set
can lead to considerable changes in the model's
prediction [33].

• Multilayer Perceptron (MLP) is an artificial
neural network built from several layers of nodes
(neurons) that combine weighted inputs and
generate an output defined by a non-linear
activation function. The MLP uses backpropagation
to construct the neural model from historical
training data [34].

• K-Nearest Neighbors (KNN) is computed by
choosing the closest neighbors in the training data
to generate the target data. The algorithm
categorizes data by selecting the majority class of k
the closest neighbors in the training set based on
Euclidean (or other specified) distance [35].

• M5rules(M5Rules) is built by creating a decision
list for regression problems to apply a separate-
and-conquer strategy. This is an iterative process
that constructs a model tree by utilizing the M5
algorithm and selecting the best leaf to transform
into a rule. M5Rules differs slightly from the RT in
that M5Rules has a regression model in its nodes to
predict a value, while the RT has only a constant
fitted mean in its nodes, therefore each one can be
used to make different predictions [31].

V. ENSEMBLE PREDICTION MODELS

This section provides a brief clarification of the bagging
ensemble model used in our empirical study. The bagging
ensemble model is one of the most common ensemble
models that combine a set of multiple models to generate a
final prediction. Because the QUES dataset has limited
records it can lead to an unstable model so we decided to
perform bagging which can address this situation [28].

• Bootstrap aggregating (Bagging) is an ensemble
technique to enhance model prediction by
integrating several models of the same type. The
bagging algorithm starts by generating further data
for training from an initial training set iteratively
with the replacement, and creates an equal weight of
the models. After that, the bagging algorithm
combines the results of these models by using
voting or averaging. Bagging can improve the
prediction of unstable models, such as RT and is
also recommended to use with data training sets,
(such as QUES) to decrease the variance between
the base models [28]. Three parameters are required
to be determined in the bagging algorithm:

• Base model: the individual model to be used as a
base model in the bagging algorithm.

• Ensemble size: the number of the individual
models to be created in the bagging algorithm.

• Training set size: the size for each bagging
algorithm as a percentage of the training set [36].

VI. INITIAL EMPIRICAL STUDY DESIGN

The primary goal of this empirical study is to investigate
the efficiency of the bagging ensemble model in terms of
accurate prediction as compared to an individual model. To
accomplish this goal, we carried out two experiments to
predict software maintainability as follows:

• The first experiment compares different well-
known individual regression models (RT, MLP,
KNN, and M5Rules) to compare their accuracy.

• The second experiment evaluates the accuracy of
homogeneous ensemble models against each
individual model in the first experiment using
individual regression models from the first
expirement as a base model.

A. Dataset

We utilized the QUES object-oriented software datasets
proposed by Li and Henry [10]. QUES is publicly available,
accurate, validated and widely used in software
maintainability prediction studies. Based on the Classic-Ada
tool the QUES dataset consists of class-level metrics data
was gathered from 71 classes. The independent variables
consist of five of the metrics published by Chidambar and
Kemerer [19]: WMC, DIT, NOC, RFC, and LCOM, along
with four metrics published by Li and Henry [10]: MPC,
DAC, NOM, SIZE2, and one traditional lines of code size
metric SIZE1. The dependent metric is CHANGE that
measures software maintainability by identifying the
number of lines changed per class from 3 years of software
maintenance. A high number of changes refers to the high
maintenance effort [2].

B. Prediction accuracy measures

Since OO software maintainability prediction is a
regression problem, we used the de facto standard prediction
accuracy measures that well-known and most frequently
used in regression problem, namely: the magnitude of
relative error (MRE), pred measures (Pred (q)) and absolute
residual (Ab.Res). In addition, several evaluation measures
are used in this paper generated from the above equations,
such as, the standard deviation of the absolute residuals (SD.
Ab.Res) that computes the amount of variation, and
maximum number of magnitude of relative error (MAX.
MRE).

Ten-fold cross-validation is used in this paper to
evaluate and compare between prediction models and R is
used to build these models [37].

VII. RESULTS AND ANALYSİS

 Table I summarizes the results obtained from applying
the individual and bagging models on QUES dataset. Bold
values in the table indicate the best results among each
experiment, which are the lowest (MAX. MRE, MMRE and
SD. Ab.Res) or the highest (Pred(.25) and Pred(.30))
depending on the measure. Among individual models, KNN
achieved the best MMRE value that reaches to (0.43), while
MLP and RT were the worst MMRE value. In addition,
KNN produced significantly better Pred(.25), Pred(.30) and
SD. Ab.Res than other individual models. However,
M5Rules achieved the best MAX. MRE value. After
building a bagging ensemble on each individual model, KNN
outperformed all others models in all accuracy predictions
except SD. Ab.Res. Overall, the findings from Table I
reports that the bagging ensemble model enhances the
accuracy over the individual models. These findings
confirmed with the previous study, showing that the bagging
ensemble models have a high potential to build more
accurate predictions than individual models [28], [38]. The

notable improvement of prediction accuracy in individual
model verified the bagging ensemble model improves
performance effectively when it applies to the limited
amount of datasets, such as in this case the QUES dataset,
which has only 71 rows [28].

TABLE I: THE SUMMARY RESULT OF QUES DATASET.

Model
Name

Individual models Bagging ensemble model

RT MLP KNN
M5r

ules

Bag

(RT

)

Bag

(ML

P)

Bag

(KN

N)

Bag

(M5ru

les)

MAX.
MRE

6.5
9

7.36 2.86 1.94
1.7
7

0.67 0.54 1.18

MMRE
0.6
8

0.76 0.43 0.55
0.3
0

0.20 0.10 0.33

Pred
(.25)

0.3
2

0.25 0.56 0.28
0.5
6

0.72 0.90 0.51

Pred
(.30)

0.3
9

0.38 0.59 0.37
0.6
9

0.77 0.93 0.62

SD.
Ab.Res

18.
91

32.1
5

18.5

2
19.9

9
16.
04

8.48 12.35 13.68

 Fig. 1 illustrates a histogram of Pred(.25) to investigate
the comparison between individual models and bagging
ensemble models on QUES dataset. The results from Fig. 1
provide confirmatory evidence that the bagging model
increased the performance dramatically overall individual
models.

 Fig. 2 employs a box plot of MRE to enable a visual
comparison of different prediction models in QUES dataset.
The upper line and lower line of the box represents
"whiskers". The middle horizontal line across box presents
middle quartile, which is MMRE value for prediction
models. The upper quartile is the line between upper
whiskers and middle quartile, where the lower quartile is the
line between lower whiskers and middle quartile. It clearly
demonstrates the improved accuracy achieved by applying
bagging ensemble models on various individual models.

VIII. RESEARCH PLAN

Further investigation of the prediction of software
maintainability is planned using the research plan, as
described below:

• Identify and source a number of representative data
sets for software maintainability either from open
source data sets hosted in PROMISE [39] (for
example) or by extraction from exiting open source
projects proposed in repositories such as Github or
SourceForge.

• Construct a range of advanced machine learning
models (i.e. homogenous and heterogenous
ensemble models) from existing individual models
to predict software maintainability.

• On the identified datasets, compare the prediction
performance between the ensemble models over
individual models, and study the gained
performance using the most commonly used
evaluation measures in software maintainability
such as accuracy and f-measure for classification
problems, and MMRE and pred for regression
problems.

• Draw conclusions from the conducted empirical
studies to evaluate the prediction performance of
machine learning models in software
maintainability.

IX. CONCLUSION

 Prior studies have documented the effectiveness of
machine learning models in predicting software
maintainability of object-oriented systems. However, these
studies have used a wide variety of individual models and
paid limited attention on ensemble models. This paper has
identified a programmed of research to investigate these
approaches and presented the results of an initial empirical
study to assess the impact of bagging ensemble models over
individual models in predicting software maintainability.

The results concluded that among individual models,
KNN has achieved the best prediction accuracy in QUES
dataset, and the bagging ensemble model has improved the
prediction accuracy magnificently over almost all individual
models. The bagging ensemble with KNN as a base model
particularly has outperformed all other models in both
datasets. These findings extend our knowledge of the
capability of ensemble model to advance accuracy
prediction of individual models and provide a basis for
exploring this on a wider range of datasets.

ACKNOWLEDGEMENTS

 The authors would like to acknowledge Princess
Nourah bint Abdulrahman University for supporting various
development and providing several facilities in this research
paper.

Fig. 1. Pred (.25) for each models apply on QUES dataset.

Fig. 2. Box plot of MRE for models in QUES dataset.

REFERENCES

[1] C. van Koten and A. R. Gray, "An application of Bayesian
network for predicting object-oriented software maintainability,"
Information and Software Technology, vol. 48, pp. 59-67, 1//
2006.

[2] Y. Zhou and H. Leung, "Predicting object-oriented software
maintainability using multivariate adaptive regression splines,"
Journal of Systems and Software, vol. 80, pp. 1349-1361, 8//
2007.

[3] M. O. Elish and K. O. Elish, "Application of TreeNet in
Predicting Object-Oriented Software Maintainability: A
Comparative Study," in 2009 13th European Conference on
Software Maintenance and Reengineering, 2009, pp. 69-78.

[4] M. A. Ahmed and H. A. Al-Jamimi, "Machine learning
approaches for predicting software maintainability: a fuzzy-
based transparent model," IET Software, vol. 7, pp. 317-326,
2013.

[5] R. Malhotra and A. Chug, "Application of Group Method of
Data Handling model for software maintainability prediction
using object oriented systems," International Journal of System
Assurance Engineering and Management, vol. 5, pp. 165-173,
2014.

[6] L. Kumar and S. Rath, "Predicting Object-Oriented Software
Maintainability using Hybrid Neural Network with Parallel
Computing Concept," in Proceedings of the 8th India Software
Engineering Conference, 2015, pp. 100-109.

[7] L. Kumar, D. K. Naik, and S. K. Rath, "Validating the
Effectiveness of Object-Oriented Metrics for Predicting
Maintainability," Procedia Computer Science, vol. 57, pp. 798-
806, 2015/01/01 2015.

[8] L. Kumar and S. K. Rath, "Software maintainability prediction
using hybrid neural network and fuzzy logic approach with
parallel computing concept," International Journal of System
Assurance Engineering and Management, vol. 8, pp. 1487-1502,
November 01 2017.

[9] C. W. Yohannese, T. Li, M. Simfukwe, and F. Khurshid,
"Ensembles based combined learning for improved software
fault prediction: A comparative study," in 2017 12th
International Conference on Intelligent Systems and Knowledge
Engineering (ISKE), 2017, pp. 1-6.

[10] "IEEE Standard for Software Maintenance," IEEE Std 1219-
1993, pp. 1-45, 1993.

[11] A. De Lucia, E. Pompella, and S. Stefanucci, "Assessing effort
estimation models for corrective maintenance through empirical
studies," Information and Software Technology, vol. 47, pp. 3-
15, 1/1/ 2005.

[12] F. Fioravanti and P. Nesi, "Estimation and prediction metrics for
adaptive maintenance effort of object-oriented systems," IEEE
Transactions on Software Engineering, vol. 27, pp. 1062-1084,
2001.

[13] S. C. Misra, "Modeling Design/Coding Factors That Drive
Maintainability of Software Systems," Software Quality
Journal, vol. 13, pp. 297-320, 2005.

[14] R. K. Bandi, V. K. Vaishnavi, and D. E. Turk, "Predicting
maintenance performance using object-oriented design
complexity metrics," IEEE Transactions on Software
Engineering, vol. 29, pp. 77-87, 2003.

[15] H. Aljamaan, M. O. Elish, and I. Ahmad, "An Ensemble of
Computational Intelligence Models for Software Maintenance
Effort Prediction," in Advances in Computational Intelligence:
12th International Work-Conference on Artificial Neural
Networks, IWANN 2013, Puerto de la Cruz, Tenerife, Spain,
June 12-14, 2013, Proceedings, Part I, I. Rojas, G. Joya, and J.
Gabestany, Eds., ed Berlin, Heidelberg: Springer Berlin
Heidelberg, 2013, pp. 592-603.

[16] S. K. Dubey, A. Rana, and Y. Dash, "Maintainability prediction
of object-oriented software system by multilayer perceptron
model," SIGSOFT Softw. Eng. Notes, vol. 37, pp. 1-4, 2012.

[17] M. O. Elish, H. Aljamaan, and I. Ahmad, "Three empirical
studies on predicting software maintainability using ensemble
methods," Soft Computing, vol. 19, pp. 2511-2524, 2015.

[18] S. R. Chidamber and C. F. Kemerer, Towards a metrics suite for
object oriented design vol. 26: ACM, 1991.

[19] S. R. Chidamber and C. F. Kemerer, "A metrics suite for object
oriented design," IEEE Transactions on software engineering,
vol. 20, pp. 476-493, 1994.

[20] P. Oman and J. Hagemeister, "Metrics for assessing a software
system's maintainability," in Software Maintenance, 1992.
Proceedings., Conference on, 1992, pp. 337-344.

[21] W. Li and S. Henry, "Object-oriented metrics that predict
maintainability," The Journal of Systems & Software, vol. 23,
pp. 111-122, 1993.

[22] D. Coleman, D. Ash, B. Lowther, and P. Oman, "Using metrics
to evaluate software system maintainability," Computer, vol. 27,
pp. 44-49, 1994.

[23] K. D. Welker, P. W. Oman, and G. G. Atkinson, "Development
and application of an automated source code maintainability
index," Journal of Software: Evolution and Process, vol. 9, pp.
127-159, 1997.

[24] M. Genero, M. Piattini, E. Manso, and G. Cantone, "Building
UML class diagram maintainability prediction models based on
early metrics," in Software Metrics Symposium, 2003.
Proceedings. Ninth International, 2003, pp. 263-275.

[25] Y. Zhou and B. Xu, "Predicting the maintainability of open
source software using design metrics," Wuhan University
Journal of Natural Sciences, vol. 13, pp. 14-20, February 01
2008.

[26] M. M. T. Thwin and T.-S. Quah, "Application of neural
networks for software quality prediction using object-oriented
metrics," Journal of Systems and Software, vol. 76, pp. 147-156,
5// 2005.

[27] C. Jin and J.-A. Liu, "Applications of support vector mathine
and unsupervised learning for predicting maintainability using
object-oriented metrics," in Multimedia and Information
Technology (MMIT), 2010 Second International Conference on,
2010, pp. 24-27.

[28] M. Skurichina and R. P. Duin, "Bagging for linear classifiers,"
Pattern Recognition, vol. 31, pp. 909-930, 1998.

[29] X. Wu, V. Kumar, J. R. Quinlan, J. Ghosh, Q. Yang, H. Motoda,
et al., "Top 10 algorithms in data mining," Knowl. Inf. Syst., vol.
14, pp. 1-37, 2007.

[30] J. Tang, C. Deng, and G. B. Huang, "Extreme Learning Machine
for Multilayer Perceptron," IEEE Transactions on Neural
Networks and Learning Systems, vol. 27, pp. 809-821, 2016.

[31] G. Holmes, M. Hall, and E. Prank, "Generating Rule Sets from
Model Trees," Berlin, Heidelberg, 1999, pp. 1-12.

[32] W.-Y. Loh, "Classification and regression trees," Wiley
Interdisciplinary Reviews: Data Mining and Knowledge
Discovery, vol. 1, pp. 14-23, 2011.

[33] R.-H. Li and G. G. Belford, "Instability of decision tree
classification algorithms," in Proceedings of the eighth ACM
SIGKDD international conference on Knowledge discovery and
data mining, 2002, pp. 570-575.

[34] J. B. Bradley, "Neural networks: A comprehensive foundation:
S. HAYKIN. New York: Macmillan College (IEEE Press Book)
(1994). v + 696 pp. ISBN 0-02-352761-7," Information
Processing & Management, vol. 31, p. 786, 1995/09/01/ 1995.

[35] D. W. Aha, D. Kibler, and M. K. Albert, "Instance-based
learning algorithms," Machine Learning, vol. 6, pp. 37-66,
January 01 1991.

[36] L. Breiman, "Bagging Predictors," Machine Learning, vol. 24,
pp. 123-140, August 01 1996.

[37] R. Ihaka and R. Gentleman, "R: A Language for Data Analysis
and Graphics," Journal of Computational and Graphical
Statistics, vol. 5, pp. 299-314, 1996/09/01 1996.

[38] D. W. Opitz and R. Maclin, "Popular ensemble methods: An
empirical study," J. Artif. Intell. Res.(JAIR), vol. 11, pp. 169-
198, 1999.

[39] T. Menzies, Krishna, R., Pryor, D. (2016). The Promise
Repository of Empirical Software Engineering Data. Available:
http://openscience.us/repo.

http://openscience.us/repo

