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Abstract— Prediction of the maintainability of classes in 

object-oriented systems is a significant factor for software 

success, however it is a challenging task to achieve. To date, 

several machine learning models have been applied with 

variable results and no clear indication of which techniques are 

more appropriate. With the goal of achieving more consistent 

results, this paper presents the first set of results in an 

extensive empirical study designed to evaluate the capability of 

bagging models to increase accuracy prediction over individual 

models. The study compares two major machine learning 

based approaches for predicting software maintainability: 

individual models (regression tree, multilayer perceptron, k-

nearest neighbors and m5rules), and an ensemble model 

(bagging) that are applied to the QUES data set. The results 

obtained from this study indicate that k-nearest neighbors 

model outperformed all other individual models. The bagging 

ensemble model improved accuracy prediction significantly 

over almost all individual models, and the bagging ensemble 

models with k-nearest neighbors as a base model achieved 

superior accurate prediction in both datasets. This paper also 

provides a description of the planned programme of research 

which aims to investigate the performance over various 

datasets of advanced (ensemble-based) machine learning 

models. 

Keywords— individual models, bagging ensemble model, 

software maintainability, prediction, Object-oriented systems. 

I. INTRODUCTION  

Prediction of software maintainability has received much 
attention in recent years due to its essential  role in managing 
maintenance resource and controlling future maintenance 
effort. It is also an essential task supporting software quality 
assurance activities. However, the development of an 
accurate model to predict software maintainability of OO 
system is difficult to accomplish.  

Utilization of individual machine learning models has 
been investigated in several studies to predict software 
maintainability[1-8]. Recently, ensemble models have been 
applied across a wide range of software engineering problem 
domains, such as fault prediction, to increase accuracy 
prediction over individual models [9]. Nevertheless, far too 

little attention has been paid to use ensemble models in 
software maintainability domain. 

 This programme of research adopts an empirical 
approach to evaluate the performance of bagging ensemble 
models against individual models for predicting software 
maintainability of OO systems. To date we have carried out 
two experiments to compare individual models, namely, 
regression tree (RT), multilayer perceptron (MLP), k-nearest 
neighbors (KNN) and m5rules (M5Rules), and a bagging 
ensemble model. These models are evaluated on the well-
known public dataset collected from OO system maintenance 
activities, namely QUES (Quality Evaluation System). To 
the best of our knowledge, this the only study that 
investigates the capability of bagging ensembles on the 
QUES datasets. However, these are relatively old datasets 
and the aim of this research is to further explore the use 
ensemble approaches on more recent datasets and systems.  

The remainder of this paper is organized as follows: 
Section II describes related work and summarizes research 
conducted in software maintenance prediction. Section III 
discusses the research questions and contributions. Section IV 
describes the individual prediction models that we used as a 
base model for the bagging ensemble. Section V presents the 
bagging ensemble models.  Section VI explains the initial 
empirical study design. Section VII demonstrates results and 
answers the research questions. Section VIII defines the 
planned proggrame of research. The authors conclude this 
paper with a summary and lessons learned in Section IX. 

II. RELATED WORK 

Key to the prediction of software maintainability is the 
determination of software maintenance measurements which 
are notoriously hard to capture due to the problems in 
estimating the effort associated with the maintenance task. 
Software maintenance effort depends on various aspects of 
software maintenance operation, such as corrective, adaptive, 
emergency or perfective [10], and is a function of the subtle 
interplay between the maintenance change and the software 
being modified. A considerable amount of literature has 
investigated different types of software maintenance 



measurement: corrective maintenance effort [11]; adaptive 
maintenance effort [12]; maintainability index [13] and 
maintenance time[14]. A common maintenance effort 
measure used in many studies is based on changes made in 
the maintenance process and determines maintenance effort 
by computing the number of modifications made per class 
during the maintenance period[1-7, 15-17]. A higher number 
of changes indicates greater maintenance effort. 

A range of OO metrics have been used in the various 
studies to try and capture the concept of software 
maintainability: Chidamber and Kemerer [18, 19]; Oman and 
Hagemeister [20]; Li and Henry [21]; Coleman and Ash et al 
[22]; Welker and Oman [23];  Genero and Piattini et al [24]; 
Misra [13]; Yuming and Baowen [25]. Many of these metrics 
have been validated only in a limited number of studies, and 
some of them have been published but never applied. Several 
studies have found a robust relationship between software 
maintainability and OO metrics[1-3, 13, 26, 27], although 
Thwin and Quah [26] conclude that this relationship is 
complicated, nonlinear and low accuracy.  

Among the wide variety of OO metrics, Chidamber and 
Kemerer (C&K) [18, 19] provided a foundation of OO 
metrics by introducing six metrics: depth of the inheritance 
tree (DIT), number of children (NOC), response for a class 
(RFC), lack of cohesion of methods (LCOM), coupling 
between objects  (CBO) and  weighted method per class  
(WMC). Li and Henry [21] extended their work by using  all 
C&K metrics except CBO and introducing additional 
independent ones: message-passing coupling (MPC), abstract 
data type (ADT), number of methods (NOM), lines of code 
(LOC), number of semicolons in a class (SIZE1) and number 
of properties (SIZE2), as well as CHANGE metrics as the 
dependent variable to predict software maintainability by 
calculating the number of lines changed in the class during 
maintenance process.  

A number of studies have employed individual machine 
learning models to predict software maintainability based on 
historical data of OO systems on the QUES dataset 
specifically: Bayesian network [1]; Multivariate adaptive 
regression splines [2]; TreeNet [3]; Mamdani-based model 
[4]; Group Method of Data Handling model [5]; Artificial 
neural network and genetic algorithm [6]; Neuro-Genetic 
algorithm [7]; Hybrid neural network and fuzzy logic 
approach [8]. Furthermore, two research studies have 
investigated the application of ensemble models in software 
maintainability: Aljamaan et al. [15] developed a 
heterogeneous ensemble model by selecting the best base 
model in training; and Elish et al. [17] evolved their work by 
generalizing a heterogeneous ensemble to include averaging, 
weighted averaging and best base in training as well. The 
results confirm that both of these heterogeneous ensemble 
models are at least as accurate as individual ones.  

 The most obvious gap from previous studies is that a 
wide variety of individual models were constructed to predict 
software maintainability, while only two studies were 
performed using heterogenous ensemble models (i.e. those 
which combine different types of models). Furthermore, 
homogeneous ensemble models (which combine models of 

the same type) have never been used in any study that 
employed on QUES dataset. Overall, it is clear that the 
application of ensemble models in predicting software 
maintainability is limited and there is no evidence of the 
performance of homogenous models on the QUES dataset 
specifically. Consequently, we select bagging ensemble 
models, because it is recommended to apply on the small 
training set, such as QUES dataset, to decrease the variance 
between the base models that causes the unstable problem 
[28]. 

III. RESEARCH QUESTIONS AND CONTRIBUTION 

The primary objective is to predict software maintainability 
accurately by evaluating the capability of bagging ensemble 
models to increase or decrease accuracy prediction over 
individual models. Therfore, our objective in this paper focus 
on answering the following research questions: 

RQ1) What is the best performing individual model to 
predict software maintainability? 

RQ2) How much can a bagging ensemble model increase 
or decrease the performance of individual models? 

In order to make a contribution in both the machine 
learning and software maintainability fields, it is necessary to 
investigate the capability of the various machine learning 
models on a range of datasets. Therefore, homogeneous 
ensemble models (bagging) and some novel individual 
models (KNN and M5Rules) are chosen in our empirical 
study.  

IV. INDIVIDUAL PREDICTION MODELS 

This section presents a summary description of the most 
well-known regression models that have been applied to 
various machine learning domain. Some of these models, 
such as RT and KNN are considered amongst the best ten 
data mining models [29], while MLP is the best neural 
networks in term of extreme learning machine [30]. M5rules 
is categorized from the tree that generates a set of rules 
accurately [31].  In our empirical study, we used these 
models as a base model for the bagging ensemble model. 

• Regression Tree (RT) is constructed by using the 
binary recursive partitioning process that divides 
dataset recursively into partitions or branches by 
selecting at each stage the independent variables 
that have the lowest minimum sum of the squared 
deviations from the mean [32]. RT is an unstable 
algorithm as any small changes in the training set 
can lead to considerable changes in the model's 
prediction [33].   

• Multilayer Perceptron (MLP) is an artificial 
neural network built from several layers of nodes 
(neurons) that combine weighted inputs and 
generate an output defined by a non-linear 
activation function. The MLP uses backpropagation 
to construct the neural model from historical 
training data [34].  



• K-Nearest Neighbors (KNN) is computed by 
choosing the closest neighbors in the training data 
to generate the target data. The algorithm 
categorizes data by selecting the majority class of k 
the closest neighbors in the training set based on 
Euclidean (or other specified) distance [35]. 

• M5rules(M5Rules) is built by creating a decision 
list for regression problems to apply a separate-
and-conquer strategy. This is an iterative process 
that constructs a model tree by utilizing the M5 
algorithm and selecting the best leaf to transform 
into a rule. M5Rules differs slightly from the RT in 
that M5Rules has a regression model in its nodes to 
predict a value, while the RT has only a constant 
fitted mean in its nodes, therefore each one can be 
used to make different predictions [31]. 

V. ENSEMBLE PREDICTION MODELS  

This section provides a brief clarification of the bagging 
ensemble model used in our empirical study. The bagging 
ensemble model is one of the most common ensemble 
models that combine a set of multiple models to generate a 
final prediction. Because the  QUES dataset has limited 
records it can lead to an unstable model so we decided to 
perform bagging which can address this situation [28]. 

• Bootstrap aggregating (Bagging) is an ensemble 
technique to enhance model prediction by 
integrating several models of the same type. The 
bagging algorithm starts by generating further data 
for training from an initial training set iteratively 
with the replacement, and creates an equal weight of 
the models. After that, the bagging algorithm 
combines the results of these models by using 
voting or averaging. Bagging can improve the 
prediction of unstable models, such as RT and is 
also recommended to use with data training sets, 
(such as QUES) to decrease the variance between 
the base models [28]. Three parameters are required 
to be determined in the bagging algorithm: 

• Base model: the individual model to be used as a 
base model in the bagging algorithm. 

•  Ensemble size: the number of the individual 
models to be created in the bagging algorithm.  

• Training set size: the size for each bagging 
algorithm as a percentage of the training set [36].  

VI. INITIAL EMPIRICAL STUDY DESIGN 

The primary goal of this empirical study is to investigate 
the efficiency of the bagging ensemble model in terms of 
accurate prediction as compared to an individual model. To 
accomplish this goal, we carried out two experiments to 
predict software maintainability as follows: 

• The first experiment compares different well-
known individual regression models (RT, MLP, 
KNN, and M5Rules) to compare their accuracy. 

• The second experiment evaluates the accuracy of 
homogeneous ensemble models against each 
individual model in the first experiment using 
individual regression models from the first 
expirement as a base model.  

A. Dataset 

We utilized the QUES object-oriented software datasets 
proposed by Li and Henry [10]. QUES is publicly available, 
accurate, validated and widely used in software 
maintainability prediction studies. Based on the Classic-Ada 
tool the QUES dataset consists of class-level metrics data 
was gathered from 71 classes. The independent variables 
consist of five of the metrics published by Chidambar and 
Kemerer [19]: WMC, DIT, NOC, RFC, and LCOM, along 
with four metrics published by Li and Henry [10]: MPC, 
DAC, NOM, SIZE2, and one traditional lines of code size 
metric SIZE1. The dependent metric is CHANGE that 
measures software maintainability by identifying the 
number of lines changed per class from 3 years of software 
maintenance.  A high number of changes refers to the high 
maintenance effort [2].  

B. Prediction accuracy measures 

Since OO software maintainability prediction is a 
regression problem, we used the de facto standard prediction 
accuracy measures that well-known and most frequently 
used in regression problem, namely: the magnitude of 
relative error (MRE), pred measures (Pred (q)) and absolute 
residual (Ab.Res). In addition, several evaluation measures 
are used in this paper generated from the above equations, 
such as, the standard deviation of the absolute residuals (SD. 
Ab.Res) that  computes the  amount of variation, and 
maximum number of magnitude of relative error (MAX. 
MRE). 

Ten-fold cross-validation is used in this paper to 
evaluate and compare between prediction models and R is 
used to build these models [37]. 

VII. RESULTS AND ANALYSİS 

  Table I summarizes the results obtained from applying 
the individual and bagging models on QUES dataset. Bold 
values in the table indicate the best results among each 
experiment, which are the lowest (MAX. MRE, MMRE and 
SD. Ab.Res) or the highest (Pred(.25) and Pred(.30)) 
depending on the measure. Among individual models, KNN 
achieved the best MMRE value that reaches to (0.43), while 
MLP and RT were the worst MMRE value. In addition, 
KNN produced significantly better Pred(.25),  Pred(.30) and 
SD. Ab.Res than other individual models. However, 
M5Rules achieved the best MAX. MRE value. After 
building a bagging ensemble on each individual model, KNN 
outperformed all others models in all accuracy predictions 
except SD. Ab.Res. Overall, the findings from Table I 
reports that the bagging ensemble model enhances the 
accuracy over the individual models. These findings 
confirmed with the previous study, showing that the bagging 
ensemble models have a high potential to build more 
accurate predictions than individual models [28], [38]. The 



notable improvement of prediction accuracy in individual 
model verified the bagging ensemble model improves 
performance effectively when it applies to the limited 
amount of datasets, such as in this case the QUES dataset, 
which has only 71 rows [28]. 

TABLE I: THE SUMMARY RESULT OF QUES DATASET. 

Model 
Name 

Individual models Bagging ensemble model 

RT MLP KNN 
M5r

ules 

Bag 

(RT

) 

Bag 

(ML

P) 

Bag 

(KN

N) 

Bag 

(M5ru

les) 

MAX. 
MRE 

6.5
9 

7.36 2.86 1.94 
1.7
7 

0.67 0.54 1.18 

MMRE 
0.6
8 

0.76 0.43 0.55 
0.3
0 

0.20 0.10 0.33 

Pred 
(.25) 

0.3
2 

0.25 0.56 0.28 
0.5
6 

0.72 0.90 0.51 

Pred 
(.30) 

0.3
9 

0.38 0.59 0.37 
0.6
9 

0.77 0.93 0.62 

SD. 
Ab.Res 

18.
91 

32.1
5 

18.5

2 
19.9

9 
16.
04 

8.48 12.35 13.68 

 
 Fig. 1 illustrates a histogram of Pred(.25) to investigate 
the comparison between individual models and bagging 
ensemble models on QUES dataset. The results from Fig. 1 
provide confirmatory evidence that the bagging model 
increased the performance dramatically overall individual 
models.  
 

 
 Fig. 2 employs a box plot of MRE to enable a visual 
comparison of different prediction models in QUES dataset. 
The upper line and lower line of the box represents 
"whiskers". The middle horizontal line across box presents 
middle quartile, which is MMRE value for prediction 
models. The upper quartile is the line between upper 
whiskers and middle quartile, where the lower quartile is the 
line between lower whiskers and middle quartile. It clearly 
demonstrates the improved accuracy achieved by applying 
bagging ensemble models on various individual models.  

 

VIII. RESEARCH PLAN 

Further investigation of the prediction of software 
maintainability is planned using the research plan, as 
described below: 

• Identify and source a number of representative data 
sets for software maintainability either from open 
source data sets hosted in PROMISE [39] (for 
example) or by extraction from exiting open source 
projects proposed in repositories such as Github or 
SourceForge. 

• Construct a range of advanced machine learning 
models (i.e. homogenous and heterogenous 
ensemble models) from existing individual models 
to predict software maintainability. 

• On the identified datasets, compare the prediction 
performance between the ensemble models over 
individual models, and study the gained 
performance using the most commonly used 
evaluation measures in software maintainability 
such as accuracy and f-measure for classification 
problems, and MMRE and pred for regression 
problems. 

• Draw conclusions from the conducted empirical 
studies to evaluate the prediction performance of 
machine learning models in software 
maintainability. 

IX. CONCLUSION 

 Prior studies have documented the effectiveness of 
machine learning models in predicting software 
maintainability of object-oriented systems. However, these 
studies have used a wide variety of individual models and 
paid limited attention on ensemble models. This paper has 
identified a programmed of research to investigate these 
approaches and presented the results of an initial empirical 
study to assess the impact of bagging ensemble models over 
individual models in predicting software maintainability. 

The results concluded that among individual models, 
KNN has achieved the best prediction accuracy in QUES 
dataset, and the bagging ensemble model has improved the 
prediction accuracy magnificently over almost all individual 
models. The bagging ensemble with KNN as a base model 
particularly has outperformed all other models in both 
datasets. These findings extend our knowledge of the 
capability of ensemble model to advance accuracy 
prediction of individual models and provide a basis for 
exploring this on a wider range of datasets.  
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