
University of Central Florida University of Central Florida

STARS STARS

Electronic Theses and Dissertations, 2004-2019

2006

A Life Cycle Software Quality Model Using Bayesian Belief A Life Cycle Software Quality Model Using Bayesian Belief

Networks Networks

Justin Beaver
University of Central Florida

 Part of the Computer Engineering Commons

Find similar works at: https://stars.library.ucf.edu/etd

University of Central Florida Libraries http://library.ucf.edu

This Doctoral Dissertation (Open Access) is brought to you for free and open access by STARS. It has been accepted

for inclusion in Electronic Theses and Dissertations, 2004-2019 by an authorized administrator of STARS. For more

information, please contact STARS@ucf.edu.

STARS Citation STARS Citation
Beaver, Justin, "A Life Cycle Software Quality Model Using Bayesian Belief Networks" (2006). Electronic
Theses and Dissertations, 2004-2019. 1027.
https://stars.library.ucf.edu/etd/1027

https://stars.library.ucf.edu/
https://stars.library.ucf.edu/
https://stars.library.ucf.edu/
https://stars.library.ucf.edu/etd
http://network.bepress.com/hgg/discipline/258?utm_source=stars.library.ucf.edu%2Fetd%2F1027&utm_medium=PDF&utm_campaign=PDFCoverPages
https://stars.library.ucf.edu/etd
http://library.ucf.edu/
mailto:STARS@ucf.edu
https://stars.library.ucf.edu/etd/1027?utm_source=stars.library.ucf.edu%2Fetd%2F1027&utm_medium=PDF&utm_campaign=PDFCoverPages
https://stars.library.ucf.edu/
https://stars.library.ucf.edu/

A Life Cycle Software Quality Model
Using Bayesian Belief Networks

by

Justin M. Beaver
B.S.E.E., Tennessee Technological University, 1995
M.S.Cp.E., University of Central Florida, 2001

A dissertation submitted in partial ful�llment of the requirements
for the degree of Doctor of Philosophy

in the School of Electrical Engineering and Computer Science
in the College of Engineering and Computer Science

at the University of Central Florida
Orlando, Florida

Fall Term
2006

Major Professor:
Guy A. Schiavone

c 2006 Justin M. Beaver

ii

ABSTRACT

Software practitioners lack a consistent approach to assessing and predicting quality

within their products. This research proposes a software quality model that accounts for the

inuences of development team skill/experience, process maturity, and problem complexity

throughout the software engineering life cycle. The model is structured using Bayesian Belief

Networks and, unlike previous e�orts, uses widely-accepted software engineering standards

and in-use industry techniques to quantify the indicators and measures of software quality.

Data from 28 software engineering projects was acquired for this study, and was used for

validation and comparison of the presented software quality models. Three Bayesian model

structures are explored and the structure with the highest performance in terms of accuracy

of �t and predictive validity is reported. In addition, the Bayesian Belief Networks are

compared to both Least Squares Regression and Neural Networks in order to identify the

technique is best suited to modeling software product quality.

The results indicate that Bayesian Belief Networks outperform both Least Squares Re-

gression and Neural Networks in terms of producing modeled software quality variables that

�t the distribution of actual software quality values, and in accurately forecasting 25 di�erent

indicators of software quality. Between the Bayesian model structures, the simplest struc-

ture, which relates software quality variables to their correlated causal factors, was found to

iii

be the most e�ective in modeling software quality. In addition, the results reveal that the

collective skill and experience of the development team, over process maturity or problem

complexity, has the most signi�cant impact on the quality of software products.

iv

To the glory of God, who inspired this work, and carried it to completion.

And to my wife, Laura, for her unending encouragement and support.

v

ACKNOWLEDGMENTS

This research was made possible in part by funding from the National Aeronautics and

Space Administration through the Kennedy Graduate Fellowship Program and the Kennedy

Space Center Director's Discretionary Fund.

vi

TABLE OF CONTENTS

LIST OF TABLES : xii

LIST OF FIGURES : xix

CHAPTER 1 INTRODUCTION : 1

1.1 Software Quality Overview . 1

1.2 Research Overview . 3

1.3 Chapter Synopsis . 6

CHAPTER 2 LITERATURE REVIEW : 8

2.1 De�ning Software Quality . 8

2.2 Evolution of Software Quality Modeling . 10

2.2.1 Modeling Software Quality: Correlations 11

2.2.2 Modeling Software Quality: Multivariate Models 19

2.2.3 Modeling Software Quality: Complex Adaptive Systems 26

2.3 Causal Factors of Software Quality . 34

vii

2.3.1 Factors in Software Product Quality: Software Process 35

2.3.2 Factors in Software Product Quality: Problem Scope 38

2.3.3 Factors in Software Product Quality: Personnel Skill/Experience . . . 39

2.4 Software Product Quality Models . 41

CHAPTER 3 METHODOLOGY : 45

3.1 Scope of Research . 46

3.1.1 Research Goals and Objectives . 46

3.1.2 Relevance and Applicability . 47

3.1.3 Uniqueness of Research . 48

3.2 Technical Approach . 50

3.2.1 Technical Overview . 50

3.2.2 Technical Assumptions . 53

3.2.3 Measurement Framework Selection 54

3.2.4 Modeling Technique Selection . 66

3.2.5 Model Implementation . 79

3.3 Validation Approach . 93

3.3.1 Acquisition of Software Engineering Data 96

3.3.2 Methods of Data Analysis . 99

viii

3.3.3 Competing Models Description . 105

CHAPTER 4 RESULTS : 110

4.1 Analysis of Software Quality Variables . 110

4.1.1 Mean and Variance Analysis . 111

4.1.2 Multicollinearity Analysis . 117

4.2 Analysis of the Intuitive Model Structure . 130

4.2.1 Analysis of the Input Tier Model Structure 131

4.2.2 Analysis of the Intermediary Tier Model Structure 143

4.2.3 Structure of the Re�ned Model . 151

4.3 Analysis of Direct E�ects on Software Quality 155

4.3.1 Analysis of the Functionality Software Quality Attributes 156

4.3.2 Analysis of the Reliability Software Quality Attributes 172

4.3.3 Analysis of the E�ciency Software Quality Attributes 175

4.3.4 Analysis of the Usability Software Quality Attributes 178

4.3.5 Analysis of the Maintainability Software Quality Attributes 181

4.3.6 Analysis of the Portability Software Quality Attributes 182

4.3.7 Analysis of Most Signi�cant Causal Factors 186

4.4 Comparison of Bayesian Model Structures 190

ix

4.4.1 Accuracy of Fit Analysis . 192

4.4.2 Predictive Validity Analysis . 195

4.4.3 Summary of Comparison of Bayesian Model Structures 199

4.5 Comparison of Bayesian and Competing Models 201

4.5.1 Accuracy of Fit Analysis . 203

4.5.2 Predictive Validity Analysis . 206

4.5.3 Summary of Comparison of Bayesian and Competing Models 208

4.6 Limitations of the Results . 210

4.6.1 Sample Size . 211

4.6.2 Project Characteristics . 211

4.6.3 E�ects of a Learning Environment . 212

CHAPTER 5 CONCLUSIONS : 213

5.1 Causal Factor Frameworks . 214

5.1.1 Personnel Skill/Experience Framework 214

5.1.2 Process Maturity Framework . 215

5.1.3 Problem Complexity Framework . 216

5.1.4 Software Product Quality Framework 217

5.1.5 Availability of Software Engineering Data 218

x

5.2 Suitability of Bayesian Belief Networks . 219

5.2.1 Comparison of Bayesian Model Structures 219

5.2.2 Comparison of Bayesian and Competing Model Structures 221

5.2.3 System Resource Limitations of Bayesian Belief Networks 222

5.3 Primary Causes of Software Product Quality 224

5.4 Model Applicability in the Software Life Cycle 227

APPENDIX A SOFTWARE SKILL ASSESSMENT QUESTIONNAIRE : 229

APPENDIX B DIRECT EFFECTS ANALYSIS TABLES : : : : : : : : : : 235

APPENDIX C RAW DATA TABLES : 277

LIST OF REFERENCES : 293

xi

LIST OF TABLES

2.1 Widely Used Software Process Improvement Models 36

2.2 Descriptions of ISO/IEC 15504 Process Categories [ISO98] 38

2.3 ISO/IEC 15504 Capability Levels [ISO98] . 38

2.4 ISO/IEC 9126 Software Quality Attributes [ISO01] 42

3.1 Software Development Team Skill/Experience Factors. 57

3.2 Software Process Maturity Factors . 60

3.3 Life Cycle E�ects of Software Problem Complexity 61

3.4 Software Quality Needs . 63

3.5 Software Design Complexity Metrics . 64

3.6 Joint Probability Distribution to Determine P(S = true) and P(S = false) . . . 72

3.7 Joint Probability Distribution to Determine P(J = true) and P(J = false) . . . 72

3.8 Joint Probability Distribution for Variable J (J = true) 75

3.9 Updated Joint Probability Distribution for Variable S (J = true) 76

3.10 Updated Joint Probability (S = false) . 77

xii

3.11 Node Types Developed for Software Quality Modeling 80

3.12 Allocation of BBN Node Types to the Requirements Phase Variables 84

3.13 Allocation of BBN Node Types to the Design Phase Variables 85

3.14 Allocation of BBN Node Types to the Implementation Phase Variables 86

3.15 Allocation of BBN Node Types to the Integration/Test Phase Variables 86

3.16 Data Collection Activities Relative to the Software Life Cycle 97

3.17 Hypothesis Test for Veri�cation of Linear Correlation 101

3.18 Hypothesis Test for Determining Equality of Means 103

3.19 Test for Determining Equality of Variances . 104

3.20 Least Squares Example Data . 107

4.1 Mean and Variance of Requirements Phase Variables 113

4.2 Mean and Variance of Design Phase Variables 114

4.3 Mean and Variance of Implementation Phase Variables 116

4.4 Mean and Variance of Integration/Test Phase Variables 118

4.5 Correlation of Requirements Phase Inputs . 120

4.6 Correlation of Design Phase Inputs . 121

4.7 Correlation of Implementation Phase Inputs . 121

4.8 Correlation of Integration/Test Phase Inputs . 122

xiii

4.9 Correlation of Correctness/Completeness Variables 122

4.10 Correlation of Requirements Phase Inputs to Design Phase Inputs 124

4.11 Correlation of Requirements Phase Inputs to Implementation Phase Inputs . . . 124

4.12 Correlation of Requirements Phase Inputs to Integration/Test Phase Inputs . . 125

4.13 Correlation of Design Phase Inputs to Implementation Phase Inputs 126

4.14 Correlation of Design Phase Inputs to Integration/Test Phase Inputs 126

4.15 Correlation of Implementation Phase Inputs to Integration/Test Phase Inputs . 127

4.16 Listing of Consolidated Model Variables by Life Cycle Phase 128

4.17 Listing of Consolidated Model Variables Across Life Cycle Phases 129

4.18 Correlation of Requirements Variables to Requirements Correctness 134

4.19 Correlation of Requirements Variables to Requirements Completeness 135

4.20 Correlation of Design Variables to Design Correctness 138

4.21 Correlation of Design Variables to Design Completeness 139

4.22 Correlation of Implementation Variables to Correctness 141

4.23 Correlation of Integration/Test Variables to Completeness 142

4.24 Correlation of Requirements Correctness to Software Product Quality 145

4.25 Correlation of Requirements and Test Completeness to Software Product Quality 147

4.26 Correlation of Design Correctness to Software Product Quality 148

4.27 Correlation of Design Completeness to Software Product Quality 149

xiv

4.28 Correlation of Implementation Correctness to Software Product Quality 150

4.29 Identi�cation of Most Signi�cant Positive Causal Factors 188

4.30 Identi�cation of Most Signi�cant Negative Causal Factors 190

4.31 Summary of Accuracy of Fit Determinations for Bayesian Models 195

4.32 Summary of Predictive Validity Determinations for Bayesian Models 198

4.33 Selection of Bayesian Models for Software Quality Variables 200

4.34 Summary of Accuracy of Fit Determinations for Competing Models 207

4.35 Summary of Predictive Validity Determinations for Competing Models 209

B.1 Correlation of Requirements Skill Level 1 to Software Quality 236

B.2 Correlation of Requirements Skill Level 2 to Software Quality 237

B.3 Correlation of Requirements Skill Level 3 to Software Quality 238

B.4 Correlation of Requirements Skill Level 4 to Software Quality 239

B.5 Correlation of Design Skill Level 1 to Software Quality 240

B.6 Correlation of Design Skill Level 2 to Software Quality 241

B.7 Correlation of Design Skill Level 3 to Software Quality 242

B.8 Correlation of Design Skill Level 4 to Software Quality 243

B.9 Correlation of Implementation Skill Level 1 to Software Quality 244

B.10 Correlation of Implementation Skill Level 2 to Software Quality 245

xv

B.11 Correlation of Implementation Skill Level 3 to Software Quality 246

B.12 Correlation of Implementation Skill Level 4 to Software Quality 247

B.13 Correlation of Integration/Test Skill Level 1 to Software Quality 248

B.14 Correlation of Integration/Test Skill Level 2 to Software Quality 249

B.15 Correlation of Integration/Test Skill Level 3 to Software Quality 250

B.16 Correlation of Integration/Test Skill Level 4 to Software Quality 251

B.17 Correlation of Specify Requirements Process to Software Quality 252

B.18 Correlation of Requirements Evaluation Process to Software Quality 253

B.19 Correlation of Update Requirements Process to Software Quality 254

B.20 Correlation of Develop Validation Criteria Process to Software Quality 255

B.21 Correlation of Determine Environmental Impact Process to Software Quality . . 256

B.22 Correlation of Customer Evaluation of Requirements to Software Quality 257

B.23 Correlation of Communicate Requirements Process to Software Quality 258

B.24 Correlation of Develop Release Strategy Process to Software Quality 259

B.25 Correlation of Develop Architecture Process to Software Quality 260

B.26 Correlation of Develop Detailed Design Process to Software Product Quality . . 260

B.27 Correlation of Design Interfaces Process to Software Quality 261

B.28 Correlation of Verify Design Process to Software Quality 262

B.29 Correlation of Design Traceability Process to Software Quality 263

xvi

B.30 Correlation of Develop Unit Test Process to Software Quality 264

B.31 Correlation of Verify Software Units Process to Software Quality 265

B.32 Correlation of Unit Traceability Process to Software Quality 266

B.33 Correlation of Integration Strategy Process to Software Quality 267

B.34 Correlation of Regression Test Strategy Process to Software Quality 267

B.35 Correlation of Regression Integration Tests Process to Software Quality 268

B.36 Correlation of Develop System Test Process to Software Quality 268

B.37 Correlation of Regression Test System Process to Software Quality 269

B.38 Correlation of Requirements Coverage to Software Quality 270

B.39 Correlation of Implementation Prevalence to Software Quality 270

B.40 Correlation of Depth of Inheritance Tree to Software Quality 271

B.41 Correlation of Design Expansion to Software Quality 272

B.42 Correlation of Interface Format Expansion to Software Quality 273

B.43 Correlation of Interface Protocol Expansion to Software Quality 274

B.44 Correlation of Requirements Volatility to Software Quality 275

B.45 Correlation of Design Volatility to Software Quality 276

C.1 Requirements and Design Skill Data . 278

C.2 Implementation and Integration/Test Skill Data 279

xvii

C.3 Requirements Process Data . 280

C.4 Design Process Data . 281

C.5 Implementation Process Data . 282

C.6 Integration Process Data . 283

C.7 Testing Process Data . 284

C.8 Design Complexity Data . 285

C.9 Suitability Data . 286

C.10 Accuracy and Interoperability Data . 287

C.11 Security and Compliance Data . 288

C.12 Reliability Data . 289

C.13 E�ciency Data . 290

C.14 Usability Data . 291

C.15 Maintainability and Portability Data . 292

xviii

LIST OF FIGURES

3.1 High-Level Diagram for Modeling Software Product Quality 51

3.2 A Causal Network Representing the Scenario . 70

3.3 Software Quality Cause E�ect Diagram . 88

3.4 Intuitive and Re�ned Model Structures . 90

3.5 Direct E�ects Model Structure . 92

3.6 Process for Validation of Software Quality Model Predictions 96

3.7 Example Neural Network . 109

4.1 Re�ned Requirements Subnet . 152

4.2 Re�ned Design Subnet . 153

4.3 Re�ned Implementation Subnet . 153

4.4 Re�ned Integration/Test Subnet . 154

4.5 Direct E�ects of Causal Factors on Functional Adequacy 158

4.6 Direct E�ects of Causal Factors on Functional Implementation Completeness . . 159

4.7 Direct E�ects of Causal Factors on Functional Implementation Coverage 160

xix

4.8 Direct E�ects of Causal Factors on Functional Speci�cation Stability 162

4.9 Direct E�ects of Causal Factors on Accuracy . 162

4.10 Direct E�ects of Causal Factors on Precision . 163

4.11 Direct E�ects of Causal Factors on Data Exchangeability 165

4.12 Direct E�ects of Causal Factors on Interface Consistency 166

4.13 Direct E�ects of Causal Factors on Access Auditability 168

4.14 Direct E�ects of Causal Factors on Access Controllability 169

4.15 Direct E�ects of Causal Factors on Data Encryption 170

4.16 Direct E�ects of Causal Factors on Functional Compliance 171

4.17 Direct E�ects of Causal Factors on Failure Avoidance 173

4.18 Direct E�ects of Causal Factors on Incorrect Operation Avoidance 174

4.19 Direct E�ects of Causal Factors on Restorability 175

4.20 Direct E�ects of Causal Factors on I/O Utilization 177

4.21 Direct E�ects of Causal Factors on E�ciency Compliance 178

4.22 Direct E�ects of Causal Factors on Operation Status Monitoring 180

4.23 Direct E�ects of Causal Factors on Usability Compliance 181

4.24 Direct E�ects of Causal Factors on Activity Recording 183

4.25 Direct E�ects of Causal Factors on Software Operability 184

4.26 Direct E�ects of Causal Factors on Hardware Operability 185

xx

4.27 Equality of Means Results for Bayesian Model Structures 193

4.28 Equality of Variances Results for Bayesian Model Structures 194

4.29 Average Relative Error Results for Bayesian Model Structures 196

4.30 Average Belief Results for Bayesian Model Structures 197

4.31 Equality of Means Results for Comparison of Software Quality Modeling Methods 204

4.32 Equality of Variances Results for Comparison of Software Quality Modeling Meth-

ods . 205

4.33 Average Relative Error Results for Comparison of Software Quality Modeling

Methods . 208

xxi

CHAPTER 1

INTRODUCTION

1.1 Software Quality Overview

Software quality is perhaps the most vaguely de�ned and overused term in the �eld of

software engineering. It is meant to encompass all of the stakeholder needs and perspectives

in terms of the delivered software product. It is meant to include both objective and sub-

jective technical evaluations. "High" quality is the inherent, yet vastly subjective goal of

every software development team. However, high quality is a trade o� - it is achieved with

signi�cant cost and e�ort. The challenge to the �eld of software engineering is to simulta-

neously maximize the quality of a software product while minimizing its associated cost and

e�ort. Unfortunately, a lack of universal de�nition of software quality hinders the ability

of a software development team to quantify software quality, and thus achieve the desired

balance with cost.

Formulating consistent and reliable measurements to the quality of a software product

is an enormous challenge itself. Even with adherence to a given de�nition or standard of

1

software quality, the integration of objective and subjective measurement data makes analysis

di�cult. For example, how does one evaluate the usability of a system? There are certainly

approaches to quantifying usability with software product and process measures, but it is

di�cult to ignore the role of the user opinion in such an evaluation. How can the subjective

aspect of an evaluation be captured and presented along with the more objective measures?

Modeling software quality is multi-faceted: it involves both a current assessment of the

software development e�ort, and a prediction of the quality of the delivered software product.

A software development e�ort is a complex venture. It is comprised of many di�erent factors

that can a�ect the quality of the delivered system. Any model that attempts to capture

the driving factors of software quality must be able to comprehensively represent all of

those factors in order to provide meaningful insight. Such insight allows a development

team to identify and address problem areas within an evolving software system, and the

development infrastructure. Many of the prior software quality models are weak in terms of

their ability to address the full spectrum of factors that a�ect software quality, their inability

to be universally applicable, and their inherent data quality problems (discussed in detail in

Sections 2.2.1.6 and 2.2.2.4). However, recent progress in software quality modeling, using

complex adaptive systems, has shown promise in accurately representing causal relationships

in software product development, and providing implementations that are adaptable to a

given development team and environment.

2

1.2 Research Overview

This research e�ort addresses the need for a reliable approach to modeling the quality of

software under development. The intent is to provide a model that will o�er insight into the

quality of the development products at a given stage in the life cycle, and provide dependable

foresight as to the quality of the software product at the time of deployment. The ability

to reliably assess and predict software quality gives a development team several advantages.

From a technical perspective, a software quality model provides insight into the extent to

which the software product meets its quality objectives, and reveals any quality objectives

that are likely not to be met. This helps the development team manage the technical risks

associated with software delivery to a customer, and insures that any probable technical

weaknesses are adequately addressed prior to delivery of the software. From a cost and

schedule perspective, software quality models are valuable in that they allow a development

team to address forecasted problem areas earlier in th development life cycle, when they are

least expensive and less time-critical to correct.

The software quality model developed in this research models cause-e�ect relationships

throughout the development life cycle, and represents software quality as a function of three

driving factors: the skill/experience of the development team, the maturity of the software

development processes, and the complexity of the software product. This approach di�ers

from previously developed software quality models in several ways.

3

1. No prior approach accounts for and relates the activities of the entire software de-

velopment life cycle in modeling software quality. Typically, software quality models

have focused on a speci�c life cycle phase (e.g., requirements, design) and relate mea-

sures from that phase to measures of software quality. The approach presented in this

research accounts for skill, process, and complexity in all four life cycle phases (re-

quirements, design, implementation, and integration/test) and models them as drivers

of speci�c quality attributes.

2. This approach to software quality modeling is also unique in that it combines the

e�ects of development team skill, software process maturity, and software problem

complexity in assessing and predicting software quality. Previously proposed models

focus on a speci�c set of measures, usually design complexity measures, and establish a

relationship between those measures and an attribute of software quality. This research

asserts that software quality is primarily a�ected by the three aforementioned causal

factors. The value of a software quality attribute is determined by accounting for the

inuences of each of these three drivers.

3. Unlike previous software quality models, this research e�ort focuses on the use of ex-

isting standards and industry approaches to measuring the driving factors of software

quality. Software product quality is characterized by the ISO/IEC 9126 Software En-

gineering Product Quality standard [ISO01]. The approach to measuring development

team skill and experience is derived from a workforce management tool currently in

use by the National Aeronautics and Space Administration [NAS05]. The assessment

4

of software process maturity is derived from the ISO/IEC 15504 standard [ISO98].

Software problem complexity is characterized by a combination of complexity mea-

sures established in the literature, and measures associated with the quality attributes

identi�ed in the ISO/IEC 9126 standard.

The unique elements of this approach to software quality modeling make this research an

original contribution to the advancement of the �eld of software engineering.

The approach to modeling software quality in this research is to use Bayesian Belief

Networks, a complex adaptive system, to represent the cause-e�ect relationships within the

software development life cycle. Bayesian Belief Networks were selected because of their

ability to explicitly model causal relationships, their ability to represent both objective and

subjective data, their ability to adapt to prior data, and their performance in the presence

of unknown or uncertain data. Three di�erent Bayesian model structures are proposed and

analyzed. Two of the structures models quality attributes as a function of correctness and

completeness measures for each life cycle phase. One model structure captures a more direct

relationship between model inputs and software quality outputs.

Validation of the proposed software quality model involved the comparison of forecasted

values to actual values for each of the software product quality attributes represented. Two

criteria were considered for comparison of the models: determination of Accuracy of Fit of

modeled data to actual data, and a quanti�cation of the Predictive Validity, or accuracy, of

the model when forecasting. An analysis was performed between proposed Bayesian model

structures, and versus competing software quality modeling methods.

5

1.3 Chapter Synopsis

The following paragraphs summarize the chapters that comprise this research e�ort to

develop a software quality model.

In Chapter 2, a review of existing literature on software quality is presented. It be-

gins with an overview of software quality including relevant de�nitions. A history of the

approaches to modeling software quality is explored in detail, and a path of progress from

simple correlations to complex adaptive systems is identi�ed. This chapter also details pre-

vious approaches to the measurement of factors that inuence software quality, such as

problem complexity, development team skill, and process maturity. The literature review

also explores existing approaches and standards for assessing software quality.

Chapter 3 describes the technical approach to developing a model for software quality.

The scope of the research is presented, including a set of goals and objectives. The measure-

ment frameworks selected for assessing both the drivers and outputs of the software quality

model are detailed. The three proposed Bayesian Model structures are described in terms

of the causal relationships between elements in the software life cycle. The approach to

validation of the model is also presented in this chapter, including the set of criteria used

to verify the model's ability to assess and predict for the various software product quality

measures.

In Chapter 4, the results of the various analyses are presented. Initially, the model vari-

ables are scrutinized in terms of their variability and their multicollinearity with other vari-

6

ables. An analysis of each Bayesian Model structure is performed, as well as an assessment of

the impact of the various causal factors of software quality. The Bayesian model structures

are compared to each other, and then Bayesian Modeling is compared to both Least Squares

Regression, and Neural Networks. The results indicate that the Bayesian approach models

software quality more accurately in terms of the Accuracy of Fit and Predictive Validity

criteria.

Chapter 5, the conclusion, provides a commentary on the results of the research. The

viability of Bayesian Belief Networks as a software quality modeling tool is discussed as well

as a summation of the performance of the measurement frameworks employed. This chapter

also touches on those factors that were found to have the greatest inuence on the quality

of a software product. It concludes with a discussion of the practical application of the

developed software quality model in an industry setting.

7

CHAPTER 2

LITERATURE REVIEW

This section outlines the previous research that de�nes, evaluates, and models software

quality. An overview is provided of software quality in terms of de�nitions and interpreta-

tions. The evolution of software quality modeling is then presented, beginning with correla-

tions used to predict software quality and progressing in maturity to the most recent use of

complex adaptive systems. Finally, the measurement frameworks in the literature used to

represent the various factors surrounding a software development e�ort are discussed.

2.1 De�ning Software Quality

Software quality is a term that is intended to capture the excellence of both the functional

and non-functional aspects of a delivered software product. Its use has ranged in scope from

describing how well the software product meets the requirements to describing how portable

the software is between platforms to describing how aesthetically pleasing a given software

product's interface is. In short, software quality is used to describe the e�ectiveness, e�-

8

ciency, exibility, reliability, robustness, and usability of a given software product. Software

product quality cannot be solely objectively measured, and therefore has endured much de-

bate as to its true de�nition. Perhaps Dromey [Dro96] characterized the nature of software

quality best by saying,

"It helps to get clear at the outset that some very elusive notions - like 'qual-

ity,' 'goodness,' and '�tness-for-purpose' - are experiential. That is, people make

a judgment, depending on their particular needs or perspective, that something

they use, encounter, or examine is 'good' or has 'quality.' Exactly what tangible

properties engender such a response is something quite di�erent. In our quest to

improve software quality, we must devote much more attention to this area."

The passage implies that the burden lies on the software engineering community to estab-

lish relationships between measurements and the subjective assessment, and to create an

approach to modeling that takes as its inputs both subjective and objective data.

In order to understand, assess, and model software quality, it is appropriate to at least

put forth a de�nition of software quality. There is no shortage of de�nitions proposed that

characterize the quality inherent in a software product. In many cases, de�nitions di�er

signi�cantly based on the perspective of the assessor. Kitchenham and Peeger [KP96], for

example, identify �ve di�erent views of software quality that have very di�erent de�nitions

and goals. They point out that software quality for the end user may fall along the lines

of �tness of purpose, while quality from a manufacturing perspective may focus more on

9

the adherence of the software to its requirements. For the purposes of this research, the

de�nition of software quality from the Handbook of Software Quality Assurance [SM99]

shall be modi�ed to de�ne software quality as follows:

"Software quality is the �tness for intended use of the software product."

This de�nition has many implications. It encompasses the measurable elements of a

software product, such as conformance to functional requirements, and the less measurable

elements of a software product, such as ease of use. The ambiguity associated with the

de�nition is appropriate given the goal of incorporating both subjective and objective infor-

mation into a software quality assessment and prediction model. In addition, this de�nition

of software quality is a very customer-centered de�nition. The �tness for use of a product is

ultimately determined by the set of people that will be the users of the software. A software

quality de�nition that implies a reliance on user acceptance increases the likelihood that a

high quality software product will invoke customer acceptance.

2.2 Evolution of Software Quality Modeling

The modeling of software quality is a risk management approach that serves two purposes:

to assess the current state of the software development e�ort, and to predict the �nal state

of the software development e�ort. This section provides a synopsis of the evolution of

software quality modeling during the development life cycle. Initially, software quality models

10

were simply empirical correlations established between a particular metric and a particular

element of software quality. As the complexity of the software development process became

evident, software measurement research turned to intricate multivariate statistical models

to more accurately represent a software product. The statistical models proved inadequate

for global application, which has bent software quality models to explore more adaptive

algorithms to more accurately model the quality of a developing software product.

2.2.1 Modeling Software Quality: Correlations

Early work in using software engineering metrics to characterize software quality focused

on simple empirical correlations between the various metrics and the likelihood for product

faults or changes. These studies would typically present a particular design/implementation

metric as a new way to measure a software product, and then validate that metric as a quality

indicator by correlating it to some software quality attribute (typically the number of faults

discovered before operational use, or the number of changes to a particular software module).

This section presents several of those early papers and their contributions to software quality

modeling. Section 2.2.1.6 then presents the challenges and critiques to these early approaches

to software quality modeling.

11

2.2.1.1 Cyclomatic Complexity

McCabe's Cyclomatic Complexity metric [McC76] is perhaps the most well known in-

stance of establishing a software engineering metric. Graph theory is used to compute the

minimum number of paths through the program control structure, and calculate the metric.

The value of the minimum number of paths (a positive integer) is said to represent the com-

plexity of the program's control ow, also called the Cyclomatic Complexity. The measure

was not validated in this paper but a general rule of thumb was proposed that a Cyclomatic

Complexity of 10 is the complexity threshold. That is, if the calculated Cyclomatic Com-

plexity exceeds 10, it is deemed too complex, and it is recommended to further modularize

a given component. In addition to establishing a mathematical foundation for quantifying

program control ow, this measurement approach was revolutionary because its method of

calculation is dependent on program structure and independent of a speci�c programming

language. In addition, a value of program complexity can be derived at the time of design

that remains constant throughout implementation and test, assuming that the structure of

the implementation represents the design.

2.2.1.2 Software Science Metrics

Halstead's Software Science metrics [Hal77] are based on the grammatical structure of

the source code and are used to characterize software size, and estimate programming e�ort.

12

In Software Science metrics, the grammar of a program is classi�ed as either an operator

or an operand, and size calculations are made based on the variety and quantity of each.

Smith [Smi80] corroborated the accuracy of Halstead's approach to assessing and predicting

the software size with industry data. Although Halstead's metrics were not intended to be

a predictor of the number of faults or changes, several studies have been performed to make

just that connection [EKC98] [Nai82] [KC85]. The results have been varied which calls into

question the universal applicability of these metrics as quality indicators. Another weakness

in these measures is that they depend heavily on the completed code, which limits their

e�ectiveness as predictors of software quality. That is, the code must be complete before the

measurements can accurately depict the quality aspects of the software under development.

Since the completion of code is relatively close to the time at which faults are discovered,

predicting a fault distribution does not provide much value.

2.2.1.3 Information Flow

Henry and Kafura [HK81] performed an early study that established information ow

metrics as measures of interface complexity, and related those metrics to the number of

changes in a software module. Follow-on studies [HK84] [KC85] performed by the same

authors further validated the e�ect of interface complexity. The conclusion reached by

this research e�ort was that the squared product of two of the information ow measures,

Fan-in and Fan-out, were highly correlated to the number of changes in a given software

13

module. The study provided no threshold for information ow metrics as an indicator of

high complexity, but rather took a more relative approach to identifying problem modules

within the development e�ort. That is, it concluded that those modules within the project

that had the highest information ow value were also the most likely to have a largest number

of code changes. The use of information ow was not as successful in other studies [KPL90]

[She90]. The alternative results are discussed in detail in Section 2.2.1.6.

2.2.1.4 Lines of Code

The Lines of Code (LOC) metric is perhaps the most well known measure of software

size. LOC is used regularly in government and industry as the basis for assessing software

project cost estimates, worker productivity, sta�ng needs, etc. Despite its lack of established

de�nition and its unreliability in establishing an estimate, the use of LOC in estimating and

predicting aspects of software development is broad.

The use of LOC in empirical studies is equally as broad. In some empirical studies, LOC

is a factor used in the prediction or assessment of some aspect of software quality. LOC

is validated as having an inverse relationship with the defect density [Wit90] of a program.

LOC is been used to predict the reusability of a software component [TS91]. LOC is also

often used as the size parameter in assessing or predicting project management aspects of

the software e�ort: project cost [BBL76], e�ort [GBB90] [MK92], or size [Dol00] [MK92].

14

2.2.1.5 Chidamber and Kemerer

In 1994, Chidamber and Kemerer [CK94] published a set of six metrics, known as C&K

metrics, which were speci�cally aimed at evaluating the design of an object-oriented (OO)

system. The intent of the metrics suite was to serve as a tool for assessing the quality of

the software being developed, and to provide managers with data to provide insight into

the quality of the design. Li and Henry [LH93] analyzed the relationship between the C&K

metrics and the e�ort required in program maintenance. Using the data of two industry

systems, �ve of the six C&K metrics were correlated to the amount of code change. Basili, et

al, [BBM96] used data from several small and low complexity student projects to empirically

validate �ve of the six Chidamber and Kemerer metrics as a predictor of fault-proneness in

a given class. More recently, Subramanyam and Krishnan [SK03] empirically validated a

subset of the C&K metrics using industry data. This study, unlike its predecessors, provided

empirical evidence after taking into account the confounding e�ect of the size of each class.

2.2.1.6 Challenges to the Validity of the Empirical Correlation Approach

As more metrics became available and the claims of correlation to aspects of software

quality became more common, the validity of the empirically established relationships began

to come into question. Researchers who had less than optimal success in applying these

metrics as software quality predictors began to report their �ndings.

15

Khoshgoftaar and Munson [KM90] measured the level of association of several metrics,

including the Lines of Code metric and di�erent control ow metrics, to the number of

program errors. Using four di�erent regression models, these metrics were tested for their

statistical relationship to the number of program errors. The researchers found that none of

the four models exhibited a relationship between Lines of Code and program errors.

Kitchenham, Pickard, and Linkman [KPL90] performed a study in which the Henry and

Kafura Information Flow metrics were attempted to be validated in a 226 program system.

The result was not as favorable as the Henry and Kafura study. The information ow metric

was found to be only weakly correlated with the number of program changes or the number

of program errors.

Sheppard's [She90] research attempted to discern a correlation between the Henry and

Kafura information ow metrics and the development time of a project. His results found no

correlation using the original information ow metric, but a high correlation using a modi�ed

form of the Henry and Kafura measure. The researcher proposed that the original metric

relies too heavily on indirect ows in its calculation of the information ow, which skews

the result. The research stated that the version of the information ow metric that was

calculated using unique ows was a more accurate predictor of project development time.

In 1994, Briand, Morasca, and Basili [BMB94] attempted to identify error-prone modules

in software development projects using high-level design metrics as indicators. Over 1000

Ada modules were analyzed, and di�erent modeling techniques and metrics were compared to

16

determine their ability to identify error-prone modules. Among their �ndings the researchers

discovered that the information ow metric was not statistically signi�cant.

El Emam, et al. [EBG01], brought into question the validity much of the empirical

research on object-oriented metrics by identifying the confounding e�ect of class size. In

the study, the Chidamber and Kemerer object-oriented metrics were applied to a telecom-

munications framework, and analyzed for an empirical relationship to the fault-proneness

associated with each class. As in previous OO metrics studies, a correlation was established.

However, when the same data was controlled for class size, none of the metrics retained

the correlation. The authors state that the confounding e�ect of class size threatens the

validity of prior OO metric research, and that future empirical studies of OO metrics should

be controlled for class size.

A study performed by Lanubile, Lonigro, and Visaggio [LLV95] compared the predictive

validity of seven di�erent statistical models using eleven di�erent complexity metrics. The

method of comparison was a risk assessment of each of 118 modules using the chi-square

statistic as a determination of statistical signi�cance in predictive validity. Interestingly, the

paper found no statistical signi�cance with respect to either the metric set used, or the model

used. The authors attributed this lack of signi�cance to the fact that results are speci�c to

environments, and that no generalization may be made.

Capers Jones identi�ed in a brief IEEE Computer article [Jon94] the most e�ective and

ine�ective metrics used in software engineering. The article argues that the Lines of Code

metric and Halstead's software science metrics are ine�ective when used to compare produc-

17

tivity information since they are so programming language dependent. The cost-per-defect

metric is argued to be unproductive since it easily misrepresented (more e�cient code is

penalized by this metric). Jones identi�es the complexity metrics and function points as

software engineering metrics that do work. He argues that these metrics are valid as in-

dicators of the quality of the software development e�ort due to their independence from

implementation and their availability in the design phase.

The early studies on software engineering metrics as quality indicators focus more on

establishing rules of thumb than applying a statistical model to the data. That is, these

research contributions seek more to establish acceptable thresholds for their derived metric

than to model statistically the relationships between software metrics and various indicators

of product quality. The varying results according to the data sets used were indicative of

the very speci�c application domain for many of these measures. That is, the validity of the

information ow metric as a predictor of the number of changes appears, from the varying

results, to be highly dependent on the project-speci�c data.

Courtney and Gustafson [CG93] highly criticized the use of empirical correlations in

software engineering research to establish statistical relationships. They argue that small

sample sizes and attempting to correlate several independent variables to a single dependent

variable is not sound statistics, but rather a "shotgun" approach to statistical signi�cance. In

their own words, "Owing to the large number of interacting factors and the limited amount of

data, the likelihood of �nding accidental relationships is high." To illustrate their point, the

authors performed an experiment in which a random number generator was used to produce

18

measures in the range of Halstead's software science metrics. Using the "shotgun" approach,

they were successful in establishing a correlation between the random independent variable,

and a random dependent variable. Courtney and Gustafson also state that the lack of a large

body of careful and consistent software engineering measures has stunted the development

of software engineering statistics because conclusions are speci�c to an environment.

The weakness of the early approaches to predicting the quality of software was the as-

sumption that a single measure was the panacea as an indicator of the quality of a given

software module. As researchers became more aware of the complexity of software develop-

ment and of the quantity of possible indicators of software quality, it became apparent that

the software development e�ort was not su�ciently characterized by simple treatment-e�ect

correlations. The �eld of empirical software engineering began to progress toward more

complex statistical approaches to capture, represent, and predict a software development

e�ort.

2.2.2 Modeling Software Quality: Multivariate Models

The next step in the progression of software modeling techniques was to represent and

determine particular attributes of software quality through the use of multivariate statistical

models. The primary focus of these models was to identify high-risk software modules using

metrics derived early in the development life cycle. These models sought to more accurately

capture the complexities of the software development e�ort by representing several di�erent

19

independent variables and the relationships between those variables to arrive at an indicator

for fault-proneness of a given module.

The use of multivariate models was an important step in software quality modeling be-

cause it built on the empirical validation of previous research, and incorporated a set of those

validated metrics into a statistical model. Basili, Briand, and Hetmanski [CC00a] identi�ed

this process as a two-step approach to developing a multivariate model:

1. De�ne and validate metrics that are good predictors of fault-proneness, and

2. Select an appropriate modeling technique, in terms of underlying assumptions, to yield

the most accurate prediction.

Where empirical validation simply validates individual metrics as indicators of software

quality, the use of statistical methods combines those metrics into a statistically valid ap-

proach to predicting the quality of a given software component. The subsections below

identify some prior research in the use of statistical models to model software quality, and

ends with identifying the weaknesses associated with the approach.

2.2.2.1 Analysis of Variance

Zage and Zage [ZZ93] proposed a design metric to identify the fault-prone aspect of

software quality for modules in a software development e�ort. The design metric consolidated

the external and internal components of design complexity into a single metric. The approach

20

to the identi�cation of fault-prone modules was to calculate the average design metric value

for the modules on a project, and determine the set of modules that exceeded a single

standard deviation from the average. These were the modules that were highlighted as the

most fault-prone. The design metric and the approach to fault-prone identi�cation were

validated on 21 Ada programs from a Department of Defense project, and using McCabe's

cyclomatic complexity and Lines of Code as control groups. The researchers found that their

proposed metric was more accurate than the two other approaches in identifying fault-prone

modules.

Bandi et al. [BVT03] conducted an empirical study in which three measures of object-

oriented design were evaluated for their e�ectiveness in predicting the maintenance perfor-

mance of software under development. Each of the three design metrics (Interaction Level,

Interface Size, and Operation Argument Complexity) was found in an Analysis of Variance

to be a signi�cant impact to the amount of maintenance time required for a given module. In

addition to correlating these complexity metrics to maintenance time, the study determined

through a regression analysis that there is sound evidence of multicollinearity between these

three metrics. Thus, in a practical sense, analysis of only one of the three metrics would

su�ce in projecting maintenance e�ort.

21

2.2.2.2 Regression Models

Regression is a statistical approach in which the mean value of a dependent variable

is expressed as a function of one or more independent variables. In linear regression, the

relationship between dependent and independent variables is expressed in the form of a lin-

ear equation. In logistic regression, an equation based on maximum likelihood estimation

equation is used to relate the dependent and independent variables. A multivariate logistic

regression model expresses the dependent variable in terms of the set of independent vari-

ables. Univariate logistic regression is a special case where only one independent variable

is used. Regression models were used extensively in empirical software engineering litera-

ture as a means of establishing apparent statistical relationships between a set of design

characteristics, and a software quality measure.

Briand et al [BDP98] used logistic regression in 1998 to explore the relationship between

several object-oriented design metrics and the probability of fault detection in a given class.

The data used in this research e�ort was a set of student projects from which design mea-

sures were derived after implementation. For each collected measure, a suitable distribution

and signi�cance in terms of predicting fault-proneness were required to be included in the

multivariate analysis. Of the sets of coupling, cohesion, and inheritance measures used as in-

dependent variables, the class size, frequency of method invocation, and depth of inheritance

measures were the most strongly related to class fault-proneness. The authors did not ap-

pear to address the issue of interaction between independent variables. That is, it is unclear

22

whether any considered independent variable had a confounding e�ect on the signi�cance of

another independent variable.

Khoshgoftaar, et al [KMB92] performed a study in 1992 in which four di�erent approaches

to regression analysis were compared to determine the most e�ective at predicting the number

of changes in a given software module. Applying the four models to two separate data sets

and using the average relative error as the measure for accuracy, the researchers determined

that the Relative Least Squares and Minimum Relative Error estimation techniques were

the most accurate in terms of both quality of �t and predictive accuracy.

Khoshgoftaar and Seliya [KS02b] performed a case study that compared di�erent regres-

sion tree models for use in predicting the quality of high-assurance software. The subject

system was a large telecommunications system with approximately 13 million lines of code.

Design metrics (call graph and control ow graph measures) were used as inputs to the

regression trees that were compared for prediction accuracy and complexity. The average

relative error and average absolute error were the calculations performed to assess accuracy.

The study discovered that one of the three models used, the CART-LAD tree, was e�ective

in terms of its accuracy and complexity. This study was performed a posteriori, and no

mention was made as to the rigor included in the design and development process. That

is, it was unclear from the study whether the rigor of the design process was a factor in

the accuracy of the model or the ability of the design measures to represent the underlying

system. This study mirrors many studies involving design metrics as quality indicators: it

validates a speci�c model in a speci�c situation, but does not comment on the applicability

23

of that model on other software projects, nor does it comment on the e�ect of rigor in the

development process on the quality of the developed software.

2.2.2.3 Other Multivariate Models

Beaver and Linton [BL02] proposed a method for identifying error-prone design modules

in a system by analyzing four di�erent Information Flow measures. The technique used

spatial data analysis to create a surface based on Information Flow metric values in a training

data set, and modeled the extent to which a module was likely to be error-prone. The

technique was found to be a good predictor for design-module error-proneness. In a follow-

on study, Beaver and Schiavone [BS03a] found the spatial data analysis technique to be

superior to both Least Squares and Relative Least Squares Regression techniques in terms

of its ability to predict error-prone design modules.

2.2.2.4 Challenges to the Validity of the Multivariate Model Approach

In 1999, Fenton and Neil [FN99] performed an extensive critical review of existing tech-

niques for predicting software quality. Several of the papers cited in this literature review

[Hal77] [McC76] [CK94] [BBM96] [KMB92] were addressed in the Fenton and Neil critique.

The review outlined several problems with existing approaches including the following:

24

1. Unknown Relationship between Defects and Failures

The authors identify that inconsistent terminology exists for defects/failures. Thus, it

is di�cult to determine exactly which de�nition each presented model claims to predict.

In addition, they propose that defect counts are misleading as a measure of software

reliability due to most studies' neglect of classifying defects to determine severity.

2. Problems with Using Size and Complexity Metrics Exclusively

This paper states that models that are built on size and complexity metrics assume

a direct and exclusive relationship between those measures and the faults discovered.

These models fail to take into account factors such as programmer/designer ability,

and problem di�culty.

3. Weak Statistical Methodology/Data Quality

The authors indicate that several statistical assumptions are ignored in the develop-

ment of software quality prediction models. In the case of linear regression models,

correlation between predicting variables is assumed to be zero, and often is not. It

is also stated that regression approaches are typically centered on �tting models to

data rather than predicting data. That is, a regression model may accurately depict

historical data, but is not necessarily successful at predicting. Furthermore, the paper

emphasizes that removing data and using averaged data is a common practice in these

studies and undermines the integrity of the results.

25

The authors assert that these inherent statistical problems seriously threaten the validity

of the collective �ndings. A study by Henderson-Sellers [Hen96] echoes the points raised

by Fenton and Neil, and argues that, "the misapplication of quantitative techniques together

with errors in the underlying mathematics" have undermined the credibility of the software

engineering community's approach to metrics and measurement.

In a follow-on study, Fenton et al. [FKN02] reinforce their position by discussing the

dangers of relying exclusively on size/complexity measures as indicators of software quality,

and emphasize the importance of creating prediction models which represent cause-e�ect

relationships in a system. The study recommends Bayesian Belief Networks as an approach

that is better suited to the complex conditions surrounding software development. This

paper represents a turning point in the modeling of software quality. They identify the

insu�ciencies of representing software quality with design measures exclusively, and without

regard to the myriad of factors that are causes of software quality. The Fenton papers

propose that Bayesian Belief Networks more appropriately address the problem of modeling

software development because they are well-suited to both integrating objective measures

with subjective inuences, and making predictions with little or incomplete data.

2.2.3 Modeling Software Quality: Complex Adaptive Systems

The most recent step in the evolution of software quality modeling techniques was the

application of complex adaptive systems. These approaches provide unique bene�ts over tra-

26

ditional statistics in modeling the complexities of software development. Complex adaptive

systems are designed to predict. They are models that represent logical chains of decisions,

algorithms, or cause-e�ect relationships that have been weighted using prior data sets, and

forecast the most likely output for a given set of inputs. The use of prior data to "train"

the model is a distinct advantage in that it allows the models to be customized to an orga-

nization's local data. In addition, complex adaptive systems perform well in the presence

of incomplete/uncertain data and can represent both objective and subjective data types.

This section outlines several di�erent complex adaptive systems that have been employed as

methods for creating predictive models of software quality.

2.2.3.1 Decision Trees

A decision tree is a directed acyclic graph in which the outputs from each node represent

a decision made based on a single input situation. The structure of a decision tree outlines

a logical sequence of decisions that need to be made to arrive at the goal decision (the

question the decision tree attempts to answer). Analyzing a training set of data allows

for the determination of the decision tree structure. Decision nodes that isolate the goal

decision quickly are prioritized to the top of the tree, while more evenly distributed decision

outputs are reserved for the bottom of the tree. Decision trees have been demonstrated in

software engineering empirical research [MDC03] [KS02a] [SP88] [KAB96] as a support tool

in assessing and predicting various aspects of software quality.

27

2.2.3.2 Neural Networks

A neural network is a topology of nodes connected by links. Each node in a neural net-

work has a set of input links coming from other nodes, and a set of output links driving to

other nodes. A node's activation function is the characteristic of the node that transforms

the weighted sum of input values to an output value. Each link in the network has a weight

associated with it that designates its inuence over the subsequent node. The weights associ-

ated with each link may be adjusted in value based on a given set of data to bias the network

to certain patterns of output. A neural network is usually represented graphically, but can

also be represented mathematically given that the activation function can be represented

mathematically.

Khoshgoftaar has authored several papers using neural networks as a tool for predicting

software quality, including [KSG95], [KAH97], and [KS96]. In these papers, neural networks

were used to classify software modules as fault-prone based on a set of design complexity

indicator metrics. Principal Components analysis was used to identify the relationships

between the various indicator metrics and the propensity for faults. The results when using

a neural network to model the e�ects of the principal components revealed that the neural

network was a good predictor of module faults, and performed well in terms of its ability to

correctly classify modules.

Quah et al [QT03] used neural networks to predict the quality of a software product in

terms of reliability and maintainability. Reliability was measured as the number of defects

28

in a given software object, and maintainability was quanti�ed as the number of changes

to a given object. The research used object-oriented complexity measures as the indepen-

dent variables and used both the Ward and General Regression neural networks to compare

predictions. The study determined that while both neural network techniques performed

well, the general regression neural network was a better predictor for both software quality

variables.

Kanmani et al [KUS04] applied a general regression neural network to predict software

quality. The study used 64 object-oriented measures as the independent variables and at-

tempted to predict the value of the fault ratio, a measure of the proportion of classes that

were found to contain a fault. The results of this study indicated that the general regres-

sion neural network adequately represented the underlying fault ratio data, and was a good

predictor of the fault ration metric.

2.2.3.3 Genetic Algorithms

Genetic algorithms are an approach to machine learning in which a data point is selected

from a population based on de�ned �tness and reproduction functions. The approach is

intended to emulate Darwin's theory of natural selection (an interpretation of the evolution

of species in nature). The premise behind genetic algorithms is that by correctly describing

the �tness and reproduction functions, a response to a given set of inputs will be selected

from the data set that represents the most likely response for that input criteria.

29

Evett et al [EKC98] elected to use a genetic programming algorithm in order to make

predictions about the reliability of software modules under development. The goal of this

research is to identify, in rank order, those software modules that are most likely to encounter

faults such that those can be targeted for reliability enhancement. Using two industry data

sets, and splitting each set into a training and validation subset, the genetic algorithm

described in the paper was applied to determine the rank order of modules most likely to

encounter faults. The inputs to the model were a collection of software product metrics that

can be captured early in the development life cycle (Halstead's, Cyclomatic Complexity,

Lines of Code), and the output was an ordered list of fault-prone modules. The research

found that the top 10% of the outputted lists accounted for 79% to 86% of the known faults

in the industry data sets. The authors expressed that their approach was speci�cally suited

to identifying modules that are eligible for reliability enhancement, and could be valid as an

indicator of software quality.

Azar et al [APB02] used a genetic algorithm to determine the most appropriate software

quality prediction model to apply on a software project. In addition to the model selection,

the research proposed ways to combine and/or adapt models in a way that best suited a

given development organization. The results were mixed. In one case, the output produced

a classi�cation tree which combined the knowledge of many experts, and produced a model

that performed well in predicting software quality. In another case, the genetic algorithm

produced a model, based largely on the knowledge of a single expert, that did not perform

as well.

30

2.2.3.4 Bayesian Belief Networks

A Bayesian Belief network is a directed acyclic graph (DAG) in which each node repre-

sents a random variable, and each arc represents a causal relationship between the joined

nodes. The graph is called a Bayesian Belief network because the random variables that

each node represents are distributed according to the conditional probability of that node

based on its inputs. The determination of probabilities associated with a node's outcome

is based on Bayes' Rule, a conditional probability equation. When applied to the random

variables within each node, Bayes' rule becomes a powerful tool in limiting the state space

for calculating conditional probabilities over a network of nodes.

Research by Cukic and Chakravarthy [CC00b] demonstrates the applicability of the

Bayesian framework to a safety-critical system. A Bayesian approach was taken to evaluate

the reliability of a deployed system that controlled spacecraft launch guidance commands.

The Bayesian approach was chosen because its framework allowed for the incorporation of

previous program executions as a model input. Until this framework was used, that data

point was not available as an input into the reliability model. The calculations of reliability

for this mission-critical system revealed that the system fell within tolerances for failure

rates.

Chulani [Chu01] elected to use the Bayesian approach in creating a model that predicts

the cost, schedule, and quality of a software product under development. The advantages

of the Bayesian network cited by the author are its ability to cope with scarce data, and

31

its capacity to factor both qualitative and quantitative data into the analysis. In addition,

this study compared the Bayesian approach with the more traditional regression analysis

approach for accuracy of predictions over 161 software projects. The Bayesian model was

found to be signi�cantly more accurate in predicting cost, schedule and quality factors.

Smidts, Sova, and Mandela [SSM97] employed a Bayesian framework in order to quantify

the reliability of a software e�ort by deriving its failure modes. The Bayesian approach

was chosen for this problem because 1) data is rare for software development e�orts, 2)

software failure data is comprised of subjective and objective considerations, 3) data may

be weighted according to relevance, and 4) data points may be derived from engineering

analysis and experience. The model was constructed using the functional architecture as a

basis, and augmented with nonfunctional elements such as quality factors, external interface

requirements, economic requirements, etc. When applied to a simple example, the authors

found their model to be a bit too conservative, but nonetheless felt it was applicable and

scalable to other software development projects. This study's contribution is its identi�cation

and implementation of the Bayesian approach as the best method for modeling software

under development. This study was speci�cally aimed at quantifying the reliability of the

developed software. Although their �ndings are preliminary, they hold promise for the

Bayesian approach as a valid technique for modeling software under development.

Another application of the Bayesian approach was in the assessment of the dependability

of a safety-critical system by Fenton et al [FLN98]. The authors sought to more accurately

quantify the measure of dependability, which traditionally is a subjective assessment, by

32

combining a wide variety of evidence such as failure data, engineering judgment, and team

competency. Bayesian Belief Networks were chosen as the model to assess dependability

because they provide a rigorous technique that can account for future uncertainties based

on the objective and subjective evidence available. Once the Bayesian model was built,

the researchers exercised it to invalidate two common assumptions in the development of

safety-critical systems: 1) that experience developing 'similar' products does not increase

the dependability of the system, and 2) that independent redundant systems improves the

dependability of the system. This paper concluded that although the predictions made by

the model cannot be validated without more complete data, the bene�t of this approach is

that the assessment of dependability is now quanti�able and repeatable.

In a recent IEEE Software article [FKN02], Fenton, Krause and Neil make a strong case

for Bayesian Belief Networks as a predictive model that can provide advance warning of

potential risks in software development. They support their case by pointing out the ability

of BBNs to represent "genuine cause-e�ect relationships". That is, they hypothesize that

complexity measures, process maturity, and fault data only make up a part of the causal

relationship with software quality. The rest of that relationship is comprised of more subjec-

tive measures such as team capability and test e�ectiveness. It is the Bayesian approach that

can accurately integrate the diverse set of data required to create a correct causal model.

The authors claim that the construction and execution of BBN models will provide reliable

data for projects to make more informed risk management decisions.

33

2.3 Causal Factors of Software Quality

What causes software quality in a product? The bulk of software quality literature to

date deals with identifying associations between software development measures and soft-

ware quality measures. Trends among various measurements are identi�ed, but the issue of

causality is insu�ciently addressed. That is, the establishment of an empirical relationship

between a design metric and a software quality measure does not prove, or for that matter

even imply, that the measured design characteristic caused the software quality characteris-

tic. For example, if a study identi�es an empirical relationship between the number of lines

of code in a software component and the corresponding number of defects, is it correct to

assume that large programs cause more defects? Would a viable programming solution be to

consolidate several lines into a single statement to reduce program size? Such a study may

have executed a perfectly correct statistical experiment, and yet has provided little value to

the software engineering community.

What establishes a cause-e�ect relationship, and how can it be scienti�cally validated?

Stephen Kan [Kan95] has cited the following three criteria for using empirical data to estab-

lish a causal relationship:

1. In a causal relationship between two variables, the cause precedes the e�ect in time or

logic.

2. In a causal relationship between two variables, the two variables must be empirically

correlated.

34

3. In a causal relationship between two variables, any observed correlation is logical.

Most prior research in software quality modeling has sought to satisfy conditions 1 and 2

of the causal relationship, and yet has ignored condition 3. Thus, the logical component of

establishing a cause-e�ect relationship is not addressed.

The following subsections explore the existing literature that addresses the three causal

factors of software quality proposed by this research. These three factors attempt to satisfy

the logical component of Stephen Kan's criteria. The intent is to demonstrate an existing

body of research that supports these three factors as causes of software product quality.

2.3.1 Factors in Software Product Quality: Software Process

Both industry and academia have provided strong evidence that an improvement in an

organization's processes for software development can be associated with an improvement in

software product quality. Capers Jones [Jon96] presented the costs and associated bene�ts

of software process on the quality of software. He identi�es a reduction in defect density,

an increase in software productivity, and an increase in the volume of reusable software as

the benchmarks for the quality improvement. El-Emam and Briand [EB99] performed an

analysis of the costs and bene�ts of several software process improvement (SPI) initiatives.

In their results were listed several industry examples of signi�cant cost, schedule, and quality

improvements that resulted from the associated SPI e�orts. In addition to those �ndings,

35

there is plenty of industry testimony [DS97] [Hal96] as to the improvements to the quality

of the software product witnessed by an organization when SPI was implemented.

The implementation of SPI in an organization is typically accomplished by following

an SPI model. The SPI models categorize similar processes into groups that collectively

address the optimum activities in the life cycle of a development e�ort. Within each process

category the SPI models identify practices that a development organization must perform

to demonstrate their e�ectiveness and e�ciency. This e�ectiveness/e�ciency is referred to

as the organization's maturity or capability. The premise is that a de�ned, consistent, and

methodical approach to engineering software problems maximizes an organization's ability

to be successful. The most frequently used models for software process improvement are

detailed in Table 2.1.

Table 2.1: Widely Used Software Process Improvement Models
SPI Managing Validation
Model Organization Focus Studies
Capability Maturity Software Engineering Software Engineering [DS97] [Hal96]
Model Integration, Institute,
Version 1.1 Carnegie Mellon University Systems Engineering [HG96]
[HS87] [Ins02] Project Management
BOOTSTRAP BOOTSTRAP Institute Software Development [ESL97] [HMK94]
ISO 9000 International Organization Quality Assurance [HJP98] [Ben95]
ISO 9000-3 for Standardization (ISO) Software Development

This research e�ort is concerned with the e�ect of process on the quality in the software

product. As such, the quantitative assessment of organizational process capability is critical

to mathematically representing process maturity. Although each model is accompanied by

36

a quantitative assessment method, a common framework for assessing process capability is

more desirable in terms of the applicability of the research.

The International Organization for Standardization (ISO) and the International Elec-

trotechnical Commission (IEC) has established a framework for software process assessment

and improvement called ISO/IEC 15504 Information Technology - Software Process As-

sessment [ISO98]. The ISO/IEC 15504 is an international collaboration, managed by the

Software Standards Working Group in the ISO/IEC Information Technology Task Force

(ISO/IEC JTC1/SC7/WG10) that creates a global standard for process assessment, pro-

cess improvement, and organizational capability determination. It is important to note that

while the ISO/IEC 15504 is not a model for software process improvement, it does provide

a common framework for assessment of an organization's capability.

The ISO/IEC standard provides a two-dimensional view of software development pro-

cesses: a set of process categories and a six-level rating associated with each practice in those

categories. The �ve process categories are listed in Table 2.2.

These �ve process categories consist of 40 speci�c processes that represent activities that

need to be performed in a mature software development organization. In addition there are

9 common processes that apply across all process categories. Assessing the maturity of an

organization is done by way of rating each process as one of six capability levels depicted

in Table 2.3. In addition to establishing the capability levels, the ISO/IEC 15504 provides

guidance for assessing software organizations. The standard is intended to be a common

approach to software development organization capability determination.

37

Table 2.2: Descriptions of ISO/IEC 15504 Process Categories [ISO98]
Process Category Description
Customer-Supplier Process that impact the customer, support the development and transition

of the software to the customer, and provide for the correct operation
and use of the software product and/or service.

Engineering Processes that directly specify, implement, or maintain the software
product, its relation to the system, and its customer documentation.

Support Processes that may be employed by any of the other processes at various
points in the software life cycle.

Management Processes that contain generic practices that may be used by anyone who
manages any type of project or process within a software life cycle.

Organization Processes that establish the business goals of the organization and
develop process, product, and resource assets that, when used by projects
in the organization, will help the organization achieve its business goals.

Table 2.3: ISO/IEC 15504 Capability Levels [ISO98]
Level Name Description
0 Incomplete Process is not performed.
1 Performed Process is performed, but generally not planned or tracked.
2 Managed Process is performed, planned, and tracked. Process incorporates

elements of quality assurance for work products.
3 Established Process is based on established software engineering best practices

and de�ned for the developing organization.
4 Predictable Process is performed consistently and with de�ned control limits.

Detailed measures of process performance are collected and analyzed.
5 Optimizing Continual process improvement is enacted using quantitative process

performance measures.

2.3.2 Factors in Software Product Quality: Problem Scope

Most of the software engineering research to date addresses the e�ect of elements of

the problem scope on the quality of a software product. Problem scope is a term that is

meant to include any attribute of a software solution that represents the size, complexity, or

variety of applications of a software development e�ort. The typical approach in assessing

software quality by problem scope is to characterize and quantify the attributes of a software

development e�ort, and validate that quanti�cation by establishing statistical signi�cance

38

with a speci�c software quality metric. In spite of the fact that much of the prior research has

been riddled with both data quality and experimental design problems (see Section 2.2.2.4),

the causal relationship between problem scope factors and software quality attributes is both

logically and empirically evident. The discussion in Section 2.2 cites numerous examples of

relating an attribute of the software problem to an attribute of software quality.

2.3.3 Factors in Software Product Quality: Personnel Skill/Experience

Perhaps the least amount of existing research deals with the e�ect of the personnel

involved in a software development e�ort on the ultimate software product quality. James

Bach has authored several articles [Bac99] [Bac95] insisting that the quality of the people

is the primary driver for software quality, and that too much industry focus has been on

the process. He argues [Bac99] that personal performance is "guided by higher level process

models embedded within experience, education, and insight." Certainly, from both an intuitive

and experiential perspective, the talents and abilities of an individual play an important part

in their success as an engineer, and the ultimate quality of their developed software. However,

there is little research that supports the logical assumption.

Puerta and Carnal [PC89] performed an experiment with students in which the goal was

to validate the �tness of Halstead's Software Science Metrics as factors in a linear software

quality model derived by the authors. Although a subset of the Halstead measures were

correlated with the set of software quality indexes, a measure of "programmer rating", based

39

on the student's GPA was found to be the most highly correlated with high quality indexes.

The authors merely reported the correlation, and did not comment on the implications of

their �nding.

The Competency Management System (CMS) [NAS05], developed by the National Aero-

nautics and Space Administration (NASA), is an existing approach approach to assessing

the skill and experience associated with a software developers. The CMS is an enterprise

application used to quantify the knowledge, skills, and abilities of the NASA workforce, and

to intelligently manage the allocation of that workforce those projects where appropriate

needs exist. For each technical discipline (e.g., Software Engineering, Systems Engineering,

Chemistry, etc.), the CMS establishes an ordinal, 4-tier scale for assessing an individual's

knowledge, skill, and experience. For each of the four tiers associated with a discipline, a set

of criteria has been developed which an employee must meet in order to be assessed at that

level.

Beaver and Schiavone conducted a study [BS06] in which development team skill was

classi�ed into categories based the CMS system described above. The percentage of the

development team assigned to each skill category was then correlated to four di�erent mea-

sures of software product quality. On the whole, the study found that an increasing presence

of skilled software engineers had a positive impact on the quality of the delivered software

product.

40

2.4 Software Product Quality Models

The term "software product quality model" refers to the assessment of an operational or

�elded software product. That is, a software product quality model provides a framework for

the assessment of software products at the time of delivery. These models are a very speci�c

application of a software quality model and are simply for assessment. That is, they provide

no predictive capabilities. However, the use of a comprehensive software product quality

model is critical in software quality modeling because it provides a consistent approach to

measuring the operational quality of a software product.

Surprisingly, given the vast amount of literature addressing the various aspects of software

quality, there are few models that establish a framework for evaluating the quality of a

software product. It is presumed that the ambiguous nature of many of the assessment

criteria does not lend itself to be captured adequately in a quantitative model. However, the

current software quality models have addressed both objective and subjective criteria as a

basis for software quality determination.

J.A. McCall developed an early model for software product quality at the U.S. Air Force

Rome Air Development Center in 1977 [MRW77]. McCall's quality model described a set of

quality criteria that represented aspects of the software design. Derived from these criteria

were software product qualities, which were caused by a set of the criteria. That is, a software

product quality was derived from the combination of a subset of the quality criteria.

41

The ISO/IEC 9126 [ISO01] describes a model for evaluating software product quality.

This model takes a very customer-centered approach to software quality and represents that

quality in six categories: Functionality, Reliability, Usability, E�ciency, Maintainability,

and Portability. The six ISO/IEC 9126 software quality attributes are de�ned in Table 2.4.

Each of these categories reects a unique area in customer satisfaction. The model's software

quality attributes each include several sub-characteristics that create a hierarchy of quality

factors and further de�ne those particular aspects of software quality. The ISO/IEC 9126

establishes a framework for software product quality.

Table 2.4: ISO/IEC 9126 Software Quality Attributes [ISO01]
Attribute De�nition
Functionality The capability of the software product to provide functions that meets stated

and implied needs when the software is used under speci�c conditions.
Reliability The capability of the software product to maintain a speci�ed level of

performance when used under speci�ed conditions.
Usability The capability of the software product to be understood, learned, used and

attractive to the user, when used under speci�ed conditions.
E�ciency The capability of the software product to provide appropriate performance,

relative to the amount of resources used, under stated conditions.
Maintainability The capability of the software to be modi�ed.
Portability The capability of the software product to be transferred

from one environment to another.

The ISO/IEC 9126 model has been cited frequently in software quality research, and is

recognized as a standard approach to assessing the quality of a software product. However,

it is not without criticism. Kitchenham and Peeger [KP96] point out that there is a lack of

rationale in the model as to what merits a software quality attribute, and what merits a sub-

characteristic of that quality attribute. In addition, Kitchenham and Peeger argue that the

relationship between quality attributes and sub-characteristics is not de�ned or rationalized.

42

That is, it is not clear that a given sub-characteristic is a more detailed derivation of an

attribute. The correlation between the two qualities is not explained verbally in the model,

or mathematically through relationships between indicator metrics.

Dromey, in a proposal of his own software product quality model [Dro95], argues that

even though the quality attributes are decomposed in the ISO/IEC 9126, they are still too

vague to provide adequate guidance in assessing the quality of a software product. Dromey

takes a bottom-up approach to evaluating software quality in which structural elements of the

software being developed have quality attributes that, when evaluated collectively, present

a picture of total software product quality. The model provides a mapping between those

quality aspects of each structural element and the higher-level quality attributes proposed

in the ISO/IEC 9126. For example, Dromey argues that the correctness of the program

statements are a common thread among all components of the software product, and a�ect

both the functionality and reliability quality attributes identi�ed in the ISO/IEC 9126 model.

The author states in a follow-on paper [Dro96] that his model allows for a practical approach

to building and assessing a quality product. In terms of assessing a software product under

development, this may certainly be the case. However, the practicality of the Dromey model

is limited to an assessment at the implementation phase of the software life cycle at the

earliest. This approach does not lend itself well to the predictive aspect of software quality

models.

The di�erences between the ISO/IEC 9126 and the Dromey Software Product Quality

Models are largely in the mappings of product characteristics to quality attributes. The

43

ISO/IEC 9126 approach is a top-down hierarchy of attributes that culminates in a speci�c

set of metrics that may be mapped to an overarching quality attribute. The Dromey model

does not preclude the ISO/IEC 9126 model, but adds a di�erent dimension by proposing

threads of common quality attributes instead of speci�c metrics. For example, the quality

attribute correctness has di�erent interpretations depending on the software artifact being

evaluated. However, the idea of completeness as a measure of how fully a given artifact

addresses the software problem is a common thread across software development artifacts.

The need for a software product quality model as a complement to a predictive software

quality model is obvious: the software product quality model provides the consistent frame-

work for assessment and prediction. The nature of the software product quality model must

accommodate both the objective and subjective measurements of software quality.

Software product quality models are a means to quantify the quality associated with

a delivered software product. However, these models are simply mechanisms to assess a

product at a very speci�c point in the development cycle. Software product quality models

are not structured to explain how their measured quality attributes came about. That is, the

causes of the quality of the software are not provided in a software product quality model,

just a quanti�ed representation of the quality of the software at the time of product delivery.

44

CHAPTER 3

METHODOLOGY

This chapter describes the research proposed for this doctoral dissertation. The intent is

to advance the �eld of software engineering by improving the current approaches to modeling,

evaluating, and predicting the quality of a software product under development. To this end,

the scope of the research is described including stated goals and objectives that are intended

to be met. The technical approach to modeling software is then detailed. The frameworks for

measuring the causal factors and products of the software quality model are presented as well

as the structure of the Bayesian Belief Network that relates those factors to products. This

chapter concludes with a description of the approach to validation of the model, including

the set of criteria for determining predictive validity.

45

3.1 Scope of Research

The following section establishes the scope of this research e�ort. The goals and objectives

of the research are established. In addition, the applicability, relevance, and uniqueness of

the research are addressed.

3.1.1 Research Goals and Objectives

This research e�ort addresses a need for improved insight into the quality of software

under development. The ability of a software project team to reliably assess and predict

the quality of the software being developed provides signi�cant technical and economic ad-

vantages. Technically, it provides a means for managing risk by identifying those areas in

the development e�ort that are likely to be de�cient in terms of the quality expectations of

the customer or users. Economically, it allows the development team to take any necessary

corrective actions earlier in the development life cycle, when corrections are least costly.

The goals of this research e�ort are to develop a model for assessing the quality of a

delivered software product, to develop a model for predicting the quality of a software product

under development, and to validate the model's accuracy of �t and predictive validity. When

met, these three goals will satisfy the need for improved insight into the quality of software

under development, and will result in the existence of a software quality product model that

46

is useful to a software development team in terms of its ability to provide reliable assessments

and predictions.

The objectives of this research e�ort are to develop a software quality model using

Bayesian Belief Networks that captures the e�ects of problem complexity, process infras-

tructure, and development team skill/experience on software quality, to validate the devel-

oped software quality model's accuracy of �t by testing for equality of means and variances

between predicted measures and actual software quality measures, and to validate the de-

veloped software quality model's predictive validity by testing the average relative error of

the model's forecasts.

3.1.2 Relevance and Applicability

Software development carries with it great risks in terms of both the quality of the

delivered product, and meeting cost and schedule projections. The role of software quality

is to maximize the correct operation, usability, and applicability to purpose of a developed

software package, but in such a way that the development of such software remains feasible in

terms of cost and schedule. To this end, software quality models are invaluable tools. They

provide insight into the software development product and process that would otherwise go

unnoticed. The visibility given through a quality model enables a project team to identify

potential safety, cost, and schedule risks associated with the software under development,

47

allows them to address those risks in a pre-emptive way, thus maximizing quality in the most

cost e�ective way.

"Software quality" is a term that has a widespread meaning depending on one's per-

spective. A user may view software quality as a measure of the product's usability and

exibility, where a system engineer may view software quality as a measure of conformance

to the speci�cations. Modeling software development accurately is a di�cult endeavor due

to the multifaceted nature of the software product and process. The complexity of the

software coupled with measures that are either poorly de�ned, or lack any mathematical re-

lationship to the product or process presents a unique challenge to the software engineering

discipline. A model that could accurately represent the quality of a software product under

development, based on inherent causal factors rather than environment-speci�c empirical

relationships, would give a team remarkable predictive insight into their products, and allow

for corrective action early. For example, the ability to identify early in development those

aspects of the software that are most likely to be fault-prone would give a development team

a tremendous opportunity to proactively respond to the model, and save cost and schedule.

3.1.3 Uniqueness of Research

Software quality modeling is an area of software engineering research that has an es-

tablished base of studies. Research that correlates design and implementation metrics to

software quality measures (such as the number of faults) is commonplace in the �eld. Even

48

the mechanism for quality modeling used in this research, Bayesian Belief Networks, was

proposed ten years ago, in 1996. The following paragraphs detail the aspects of this research

that separate it as a unique contribution to the �eld, and di�erentiate it from prior research

e�orts.

This research presents a software quality model that encompasses the entire software

life cycle. Prior research, particularly research with Bayesian Belief Networks and software

quality, has focused on particular aspects of the life cycle, or on speci�c relationships. No

other known research has presented a model of the complete software life cycle. This research

establishes causal ties between life cycle phases, and attempts to model the propagation of

quality through the life cycle relative to an existing product quality standard.

This research e�ort also combines the quality causal factors of problem scope, personnel

skill, and process infrastructure in its software quality model. Prior research has focused

almost exclusively on the elements of the software problem, e.g. software size and complexity,

as indicators of quality in a software product. This research recognizes the critical role that

project personnel and process infrastructure play in producing a quality software product.

There is no other known research e�ort that attempts to combine these categories of causal

factors in a single software quality model.

49

3.2 Technical Approach

This section outlines the technical approach to the modeling of software quality. It

begins with an overview (Section 3.2.1) of the methods used in representing and predicting

quality in a software product. A justi�cation/rationale is provided for the various modeling

decisions, including the selected standards and industry in-use measurement frameworks

(Section 3.2.3), and the decision to use Bayesian Belief Networks as the modeling mechanism

(Section 3.2.4). Section 3.2.5 describes the possible options for model structure that are

explored, and the details of the cause-e�ect relationships between model variables.

3.2.1 Technical Overview

This research proposes a model to predict software product quality. Developing a software

quality model is challenging for several reasons. The quantity of information that has to be

taken into consideration in a software development e�ort is overwhelming as there are many

factors that could possibly inuence the �nal quality of a software product. The model

developed for this research accounts for inuences in the categories of development team

skill, process maturity, and problem complexity. Figure 3.1 depicts at a high level the

elements used as inputs and outputs of the model. The model takes as inputs measurements

of development team skill, software process maturity, and software problem complexity over

the entire software life cycle, and produces as an output forecasts of software product quality.

50

Figure 3.1: High-Level Diagram for Modeling Software Product Quality

The approach to developing a software quality model for this research involved answering

several questions:

1. What kind of measures would be used for model inputs and outputs?

2. What modeling technique would be used to relate inputs to outputs?

3. How would the selected measures be represented and related within the model?

The answers to these questions de�ne the methodology used in this research.

51

In terms of the measures used to de�ne the inputs and outputs to the model, the intent

was to use existing measurement standards or industry in-use frameworks to characterize

the model inputs and outputs. The primary advantage to this approach is that the model

leverages existing bodies of work in characterizing elements of software skill, process, and

complexity instead of formulating measures with no academic or industry pedigree. Section

3.2.3 details the speci�c measurement standards and frameworks that were selected, and pro-

vides a rationale for their selection. In addition to making the developed model more useful

with respect to its ability to incorporate credible software engineering measures, employing

standards as the basis for measurement also makes the developed model more marketable to

software development organizations. Instead of needing to adopt a customized measurement

program to use the quality model produced by this research, a development organization

will likely already have institutionalized many of the necessary measures.

The approach to selecting the modeling technique was to adopt a method that was

validated in industry, can adapt to the environment of a speci�c development organization,

is understandable in its structure, and can operate in the presence of missing data. The

Bayesian Belief Network (BBN) was selected to model software quality in this research,

and the rationale for that decision is detailed in Section 3.2.4. BBNs excel at representing

cause-e�ect relationships between variables, and are capable of performing in the presence of

missing inputs. The exibility of the BBN is also a key component to the usefulness of the

model. If a development organization needs to institute a complete measurement program

in order to use the developed software quality model, then that model becomes much less

52

attractive to use because it is such a signi�cant investment. However, if the model can adjust

to the environment of the development organization, including a measurement program that

may only be a subset of what the model can handle, then the model becomes much more

feasible to implement.

The implementation of the model (captured in Section 3.2.5) describes the way in which

the selected measurement frameworks and the selected modeling technique are combined

to create an accurate software quality model. This includes a speci�cation of the manner

in which each measurement is represented in the proposed model structure. This research

identi�es three possible BBN structures that will relate the inputs to the outputs, with

the structures being compared later in Section 4.4. Also, the tools used to implement the

software quality model are identi�ed.

3.2.2 Technical Assumptions

The software quality model proposed in this research assumes that the development

team is performing the following four phases of the software engineering life cycle, executed

in sequential order: Requirements, Design, Implementation, and Integration/Test. These

phases represent the minimum engineering approach to software development.

Another assumption in the development of this model is that software quality propagates

through the development life cycle. This assumption is logically inferred, but not proved,

and attempts to identify a "snowball e�ect". That is, this research assumes that the level

53

of quality of upstream activities a�ects the level of quality in downstream activities. For

example, poorly captured requirements will logically a�ect the quality of the design solution.

This assumption is captured in the model by those causal relationships established between

life cycle phases (see Section 3.2.5.2).

3.2.3 Measurement Framework Selection

Modeling software quality requires the use of several measurement frameworks to consis-

tently quantify the proposed model inputs and outputs. There are four high-level elements

of the proposed software quality model that require a consistent approach to measurement,

and are described in this section: development team skill (Section 3.2.3.1), software pro-

cess maturity (Section 3.2.3.2), software problem complexity (Section 3.2.3.3), and software

product quality (Section 3.2.3.4). Each of these four selected measurement frameworks is

based on existing standards and/or widely accepted approaches to measurement.

3.2.3.1 Measuring Development Team Skill

The assessment of the capability of the software development team requires insight into

the team's collective education and experience. The assumption with this approach is that

a more educated and experienced team will produce higher quality in their software product

and artifacts. The software life cycle is comprised of four phases, each of which requires

54

di�erent types of skills/experience to accomplish successfully. The requirements phase is fo-

cused on organizational and interpersonal skills: interacting with customers, eliciting needs

from those customers, and organizing the needs into a set of requirements. The design phase

requires the ability to create a software solution that meets the identi�ed requirements, and

skills in evaluating the set of approaches and tools to implement that solution. Implemen-

tation demands a working knowledge and skill in the speci�c development tools, including

languages, operating systems, libraries, and development environments. Integration and Test

involves foresight in verifying the spectrum of possible operational and failure scenarios, and

the knowledge/skills to determine an appropriate level of testing for a given product and a

given use.

Because of the wide range of skills required at each life cycle phase, the approach to

appraisal is to evaluate skill and experience of the team in terms of each of the life cycle

phases: Requirements, Design, Implementation, and Integration/Test. It is important to

capture skills at each life cycle stage so that a correct picture of the team's capabilities is

portrayed. For example, a development team with vast design skill but little requirements

development skill may produce a fantastic product, but may not necessarily meet the needs

of the customer. Each team member will be rated individually based on their skill and

experience in each of the life cycle phases. The individual skill ratings will be consolidated

into a set of measures that reects the distribution of skills for the entire team across the

life cycle phases.

55

This research has adopted the CMS [NAS05] (See Section 2.3.3) approach to individual

skill assessment, and applied it in terms of the software engineering life cycle. A four-

tier ordinal scale is used to rate an individual's skill/experience within each of the four

major phases of the life cycle: requirements, design, implementation, and integration/test.

Associated with each tier, and for each phase, is a set of criteria which, if met, would allow

an individual to be assessed the appropriate numerical rating for that phase.

Although NASA's CMS provides the basis for an approach to individual skill assessment,

it is necessary to broaden the individual ratings in order to capture the combined skill

and experience of an entire software development team. Assessing skill for a development

team involves consolidating the individual skill levels into a set of measurements that would

accurately reect the team's skill distribution in each of the life cycle phases. Table 3.1 below

lists the 16 metrics selected to represent a development team's skill and experience. For each

phase and skill level, the percentage of the development team members that were assessed

at that phase/skill level is the metric used. Normalizing the distribution of team skill by

team size allows for the comparison of projects regardless of the number of team members.

In addition, incorporating measures that independently address each life cycle phase allows

for di�erent team sizes and skill mixes in each phase to be accurately represented in the

model. Within the software quality model, the percentage of team members with a given

skill level at a given life cycle phase was represented discretely in four categories. Each

category represents a quarter of the percentage spectrum.

56

Table 3.1: Software Development Team Skill/Experience Factors.
Phase Skill Level Description
Requirements Level 1 Percentage of requirements team assessed

at requirements skill/experience level 1.
Requirements Level 2 Percentage of requirements team assessed

at requirements skill/experience level 2.
Requirements Level 3 Percentage of requirements team assessed

at requirements skill/experience level 3.
Requirements Level 4 Percentage of requirements team assessed

at requirements skill/experience level 4.
Design Level 1 Percentage of design team assessed

at design skill/experience level 1.
Design Level 2 Percentage of design team assessed

at design skill/experience level 2.
Design Level 3 Percentage of design team assessed

at design skill/experience level 3.
Design Level 4 Percentage of design team assessed

at design skill/experience level 4.
Implementation Level 1 Percentage of implementation team assessed

at implementation skill/experience level 1.
Implementation Level 2 Percentage of implementation team assessed

at implementation skill/experience level 2.
Implementation Level 3 Percentage of implementation team assessed

at implementation skill/experience level 3.
Implementation Level 4 Percentage of implementation team assessed

at implementation skill/experience level 4.
Test Level 1 Percentage of integration/test team assessed

at test skill/experience level 1.
Test Level 2 Percentage of integration/test team assessed

at test skill/experience level 2.
Test Level 3 Percentage of integration/test team assessed

at test skill/experience level 3.
Test Level 4 Percentage of integration/test team assessed

at test skill/experience level 4.

The approach used in this research for the assessment of development team skill and

experience is to quantify individual skill and consolidate that into a measure of development

team skill for each software life cycle phase. No attempt is made in this research to analyze

the composition of the development team in terms of personality, or in the light of team

dynamics. This perspective on collective team skill is very complex and di�cult to assess, and

57

is beyond the scope of this research e�ort. However, investigating the e�ect of development

team cohesiveness on software product quality seems a logical extension of this work, and a

solid candidate for future research.

3.2.3.2 Measuring Software Process Maturity

The assessment of the process maturity is the quanti�cation of an organization's ability

to internally identify, elevate, and instill those best practices that lead to repeated successful

results. The organization's approach to the activities associated with eliciting requirements,

creating a design, implementing the design and verifying/validating the implementation have

a direct e�ect on the quality of the software being produced. At a practical level, this

approach includes of the assets in the organization's infrastructure that enable software

projects to succeed: processes, tools, and templates.

The ISO/IEC 15504: Software Process Assessment [ISO98] is an international standard

for assessing software process maturity, and was the basis for quantifying the development

processes in this research. While several other software process models were considered (See

Section 2.3.1), they are primarily methods of software process improvement, with process

assessment as a secondary objective. That is, the other models focus on providing a path for

systematically improving an organization's development infrastructure with process assess-

ment merely a means for measuring the progress of the improvements. The ISO/IEC 15504

is a standard focused speci�cally on process assessment, without bias to a particular model

58

for improvement, and is the product of a collaboration of all of the process improvement

models. Thus, it is a logical choice for the purposes of process assessment in this research,

which should not be biased by any speci�c improvement model.

The ISO/IEC 15504 is comprised of several di�erent process categories, processes, and

practices which serve to address all activities associated with a software engineering project.

Only a subset of the ISO/IEC 15504 processes, contained in the Engineering process cat-

egory, are applicable to the four traditional phases of the software development life cycle:

requirements, design, implementation, and integration/test. Table 3.2 lists the �ve ISO/IEC

15504 processes, and their associated 27 practices, that were quanti�ed for this research.

Collectively, the 27 practices are the set of activities that characterize a mature software

development organization.

Each practice is represented in the software engineering data as a dichotomous variable

that indicates a software project's compliance or non-compliance with the practice. For

example, a software project that meets with the customers during the requirements phase

to evaluate the correctness and completeness of the software speci�cation will be assigned

a rating of �true for the "Evaluate/Validate Requirement With Customer" practice. The

binary approach to assessment is a break from the 5-tier scale used by the ISO/IEC 15504

standard to indicate a project's level of compliance. This more simpli�ed approach was

selected due to a lack of resources to perform a formal assessment on each software project,

and to reduce the state space associated with the software quality model itself. Process

Maturity is the only measure in the software engineering data that is quanti�ed discretely.

59

Table 3.2: Software Process Maturity Factors
ISO/IEC 15504
Process Practices

Specify Software Requirements
Determine Operating Environment Impact

Software Evaluate/Validate Requirement With Customer
Requirements Develop Validation Criteria for Software
Analysis Develop Release Strategy

Update Requirements
Communicate Software Requirements
Evaluate Software Requirements
Develop Software Architectural Design

Software Design Interfaces
Design Verify the Software Design

Develop Detailed Design
Establish Traceability
Develop Software Units

Software Develop Unit Veri�cation Procedures
Construction Verify the Software Units

Establish Traceability
Develop Software Integration Strategy
Develop Integrated Software Item Integration Strategy

Software Develop Tests for Integrated Software Items
Integration Test Integrated Software Items

Integrate Software Item
Regression Test Integrated Software Items
Develop Integrated Software Test Strategy

Software Develop Tests for Integrated Software
Testing Test Integrated Software

Regression Test Integrated Software

However, the use of the correlation coe�cient as a means of establishing a linear relationship

between variables (see Section 3.3.2.2) is not threatened by this combination of measurement

scales. Correlating a dichotomous (or binary) discrete measure to an interval or ratio scale

variable is a special case correlation called a Point-Biserial Coe�cient of Correlation, and

for this type of correlation, it is acceptable to use the dichotomous variable like a continuous

variable (that is, represented as a continuous 1 or 0) in the correlation calculation [Sci06]

[Gar06].

60

Table 3.3: Life Cycle E�ects of Software Problem Complexity
Life Cycle Software
Phase Complexity Indicator

Has the expected functional operation of
Requirements the software been described?

How volatile are the requirements?
How complex is the design of the software?

Design How complex is the design of the interfaces?
How volatile is the design?
How complex is the implemented software?

Implementation How prevalent are quality needs in the implemented software?
How volatile is the implementation?

Integration/Test How well has the test covered the expected functionality?

3.2.3.3 Measuring Problem Complexity

Software problem complexity is a concept that has di�erent implications throughout the

development life cycle. The challenge in assessing problem complexity is to identify the

measures that capture the way in which complexity manifests itself in each given phase.

Initially, the complexity of a software project embodied in the need statements, including

quality needs, which have been elicited from the customer or user community. From customer

needs, the complexity is expanded to include the intricacy of the design solution, method

of implementation, coverage of the testing, and volatility of the various project artifacts.

Table 3.3 summarizes those questions which, when answered, provide insight into the e�ect

of software problem complexity on each life cycle phase.

In the requirements phase, the development team attempts to understand and formalize

both the operational and quality needs of the customer. Complexity in the requirements

phase is an extension of the customer needs, and captures whether the developed speci�cation

61

addresses those identi�ed needs. For this research, the initial level of complexity associated

with a software development e�ort is represented as a cross-section of customer needs based

on the quality characteristics detailed in the ISO/IEC 9126 software product quality standard

[ISO01] (See Section 2.4). Table 3.4 below details the spectrum of quality needs that were

considered. A total of 34 metrics were analyzed and modeled in an attempt to capture

complexity in terms of the customer's needs. In the proposed software quality model, a

Boolean metric exists for each software quality need which indicates whether or not that

particular need was adequately covered in the software speci�cation.

Complexity in the requirements phase may also be captured by the number of changes

associated with the speci�cation. A high volume of changes may indicate poor understanding

of the needs of the customer, and can a�ect the quality of the software product. The model

attempts to account for this factor by tracking the percentage of requirements that are

changed after the speci�cation has been approved, and the software project has progressed

to software design.

The design phase is the point in the software life cycle where the development team forms

the technical approach to meeting the customer's requirements. Complexity in the design

phase of the software life cycle is concerned more with the system architecture, the amount

interaction between its components, and the degree to which the design has been partitioned

for implementation. Table 3.5 below summarizes the design complexity measures used in this

research. These measures of design complexity are intended to capture the extent to which

the design solution for the system evolved within the design phase. As in the requirements

62

Table 3.4: Software Quality Needs
ISO/IEC 9126
Quality Characteristic:

Quality Indicator Metrics Needs Description
Functionality:

Functional Adequacy Were there customer needs in terms of functional operation?
Functional Completeness Were the customer needs captured completely?
Functional Correctness Were the customer needs implemented correctly?
Speci�cation Stability Were the customer needs stable as development progressed?
Computational Accuracy Were there customer needs for accuracy in the results?
Precision Were there needs for precision in the computed results?
Data Exchangeability Were there customer needs for custom interface formats?
Interface Consistency Were there customer needs for custom interface protocols?
Access Auditability Were there customer needs for auditing user access?
Access Controllability Were there customer needs for controlling user access?
Data Corruption Prevent Were there customer needs for preventing data corruption?
Data Encryption Were there customer needs in terms of encrypting data items?
Functional Compliance Were there customer needs in terms of functional standards?
E�ciency:

Time Behavior Were there customer needs for speci�c time behaviors?
I/O Utilization Were there needs for budgeting input/output resources?
Memory Utilization Were there customer needs for budgeting memory resources?
E�ciency Compliance Were there customer needs in terms of performance standards?
Reliability:

Failure Avoidance Were there customer needs to actively avoid failures?
Incorrect Op Avoidance Were there customer needs to handle incorrect operation?
Restorability Were there customer needs to restore the system after failure?
Restore E�ectiveness Were there customer needs for a system restoration time?
Reliability Compliance Were there customer needs in terms of reliability standards?
Usability:

User Op Cancelability Were there customer needs to cancel user operations?
User Op Undoability Were there customer needs to undo user operations?
Interface Customizability Were there expectations to customize the interface?
Physical Accessibility Were there customer needs for accommodating disabilities?
Op Status Monitoring Were there customer needs for monitoring the system's status?
Op Error Recoverability Were there needs for recovery from operational errors?
Usability Compliance Were there customer needs in terms of usability standards?
Maintainability:

Activity Recording Were there customer needs for recording system activities?
Diagnostic Functions Were there customer needs for software diagnostic functions?
Maintainability Compliance Were there customer needs in terms of maintainability standards?
Portability:

Hardware Adaptability Were there needs for operation across hardware environments?
Software Adaptability Were there needs for operation across software environments?

63

Table 3.5: Software Design Complexity Metrics
Metric Description Calculation
Depth of Measures the depth of the X = A, where A is the longest
Inheritance class hierarchy. root-leaf distance in the
Tree class tree.

Design The degree to which the architectural design X = A

B
, where

Expansion is expanded to a detailed design. A = # design components
B = # designed classes

Interface Indicator of the complexity of the X = A

B
, where

Protocol implemented interface protocols. A = # interfaces
Expansion B = # interface protocols

Interface Indicator of the complexity of the X = A

B
, where

Format implemented interface protocols. A = # interfaces
Expansion B = # interface formats

phase, another characterization of design complexity is the number of changes that are made

to the software design. After the design has been accepted, a large number of changes may

have an a�ect on the ultimate quality of the software product.

Problem complexity is represented in software implementation as the degree to which

captured requirements a�ect the source code. That is, what proportion of the software

implements an expressed quality need (e.g., Accuracy, Precision, etc). This measure, called

prevalence, is modeled as the ratio of the number of source code units that implement a given

quality need to the number of implemented source code units. The intent of this measure for

each quality need is to indicate the complexity that the need has caused in the implemented

product.

Software integration and test is the life cycle phase in which the developed source code

is veri�ed to operate correctly as a system. Problem complexity is represented in this phase

as the extent to which the software requirements and customer needs are covered in the

64

veri�cation and validation of the system. Numerically, this is expressed as the ratio of

the number of requirements veri�ed and validated in the integration and test phase to the

number of requirements.

3.2.3.4 Measuring Software Product Quality

The assessment framework chosen to measure the quality of a software product at the

time of delivery is the ISO/IEC 9126 standard. This standard, discussed in depth in Section

2.4, represents the most widely used and mature standard for assessing the quality of a

software product. The use of a software product quality model is essential to this research

because all software quality assessment and prediction activities will be expressed in terms of

the product quality at the time of delivery. Due to the dependent nature of the software life

cycle, quality (or lack of quality) at any phase propagates to the next phase. The software

product quality serves as a consistent point of measurement in the model. This assessment

of product quality is based on the available data, and is not necessarily comprehensive

depending on the current phase of the life cycle. For example, if a software development

e�ort is in the Requirements Phase, the projected software quality of the product may be

high, but at the time of assessment it is still unknown. Ideally, the model will converge on the

actual measures of software product quality as the software development e�ort progresses.

65

3.2.4 Modeling Technique Selection

This research proposes the use of Bayesian Belief Networks as the mechanism for rep-

resenting causal relationships in software development, and relating speci�c measures of

software product, process and development team quality to software product quality data.

This approach requires a mature metrics program in order to capture the data necessary to

accurately represent the underlying software development process. Using a versatile set of

assessment frameworks that capture team capability, process capability, and software prob-

lem di�culty, a history of data is compiled that allows the application of Bayesian Belief

Networks to validate causal factors in software development. The result is a model of the

software development process that identi�es those elements of the software under develop-

ment that are likely to be at risk for low quality in terms of the ISO/IEC 9126 software

product quality standard.

3.2.4.1 Detailed Description of Bayesian Belief Networks

The Bayesian Belief Network (BBN) is the mathematical technique selected to model

software quality in this research e�ort. A BBN is an adaptive system, meaning that its

underlying algorithm allows for the adjustment of model output values based on prior data

sets. A Bayesian Belief Network is graphically represented as a collection of nodes that are

connected by directed arcs. The nodes that comprise a BBN represent random variables

66

within the model, with each node providing probabilities of outcomes based on a set of input

values. The directed arcs in a BBN represent causal relationships or dependencies between

nodes. The mathematical function that governs each BBN node is Bayes' Theorem.

Bayes' Theorem is a set of conditional probability equations based on the propositions

developed by Reverend Thomas Bayes in 1763, and published posthumously in the "Essay

Towards Solving a Problem in the Doctrine of Chances" [Bay63]. In his essay, Bayes postu-

lated the relationship between the probabilities of two sequential events as the ratio of the

compounded probabilities of each. The resultant Bayes equation is depicted in the Equation

3.1.

Bayes' Rule [MS95]

Given k mutually exclusive and exhaustive states of nature (events), A1; A2; : : : ; Ak; and an
observed event E, then P (AijE), for i = 1; 2; : : : ; k; is

P (AijE) = P (Ai \ E)

P (E)
=
P (Ai; E)

P (E)
=
P (EjAi) � P (Ai)

P (E)
(3.1)

The left hand side of this equation, called the "posterior probability", represents the

probability the event Ai has occurred given the evidence E. The term P (EjAi) in the

equation is called the "likelihood" and represents the probability that the evidence E exists

in the presence of event Ai. The "prior probability", represented in the term P (Ai), is the

probability the event Ai would happen before the evidence E was introduced. The �nal

term, P (E) is the independent probability that the evidence would occur. Although Bayes'

67

work was an important contribution to mathematics, it was not applied as part of a model

of causality until the mid-1980's. At the time of Reverend Bayes, the idea of causality and

mathematically representing cause and e�ect relationships was still in its infancy.

Sewall Wright, in 1921 [Wri21], proposed the �rst network used to represent causation in

a system, and to propagate probabilistic information. Wright's application and validation

consisted of an analysis of both the birth weight of guinea pigs, and the transpiration of

plants. Wright's networks were depicted as diagrams in which variables were arranged in the

�gure, and arrows were used to indicate a cause-e�ect relationship. The networks proposed

by Wright used systems of equations to mathematically represent the causal relationships

and propagate probabilities through the network. Causal networks are a way of showing

a chain of cause-e�ect relationships throughout a series of nodes. Each node in a causal

network represents an event in time. Thus, the original intent of the causal network was to

represent a sequence of events.

The format for the causal network is a directed acyclic graph (DAG). Consider the

following �ctitious scenario that will be analyzed and modeled as an example of how a

causal network emulates logical decisions.

A supervisor has two employees, John and Susan. Upon learning that John is

late, the supervisor presumes that bad tra�c has held up the wayward employee.

He passes by Susan's desk to discover her there working diligently.

The supervisor asks, �Were you at work on time today, Susan?�

"Yes sir, why do you ask?" she replies.

68

"We should cancel the 9am meeting", retorts the supervisor,

"John has overslept again".

This scenario can be easily represented in a causal network. Consider the representation

of this scenario formalized in Figure 3.2 below. There are four variables introduced: John

is late (J), Susan is late (S), Tra�c is bad (T), and John has overslept (O). Each of these

variables has two possible states: true or false. In this causal network, bad tra�c (T) a�ects

the certainty that both Susan (S) and John (J) will be late. In this case, John is late (J =

true), and Susan is on time (S = false). Because Susan is present, the supervisor's certainty

that John was late due to bad tra�c was decreased (T = false), and his certainty that John

was late due to oversleeping was increased. The supervisor inferred that John had simply

overslept (O = true).

This example demonstrates the relationship between dependent and independent vari-

ables in causal networks. Initially the causal network implies a dependence of John's tar-

diness (J) and Susan's tardiness (S) on the state of the tra�c (T), and John's alarm clock

(O). However, the information obtained from the scenario changed the dependence of the

variables. The knowledge that John was late and Susan was not late a�ected the certainty of

the causal factors; in e�ect, making them dependent on the information that was available

at the time. Information that is known for certain and is not a�ected by the state of other

information is called independent. Information whose certainty can change based on other

available information is called conditionally independent.

69

Figure 3.2: A Causal Network Representing the Scenario

Casual networks, in practice, are similar to the example provided in Figure 3.2. They

have nodes that represent events, and directed links that represent a cause-e�ect relationship

between events. The example used nodes with two states (true, false) where, in practice, a

node can have as many states as necessary, or even be continuous. A causal network with

a quanti�able number representing certainty of an event is a special case called a Bayesian

Belief Network.

In 1986, Judea Pearl [Pea86] expanded on the idea of causal networks by introducing

belief networks. Belief networks are causal networks in which the relationships between nodes

(represented as directed arcs) are assigned probabilities. The probability of the outcomes

70

of a given node is calculated based on the probabilities assigned to the input arcs to that

node. This value of probability is a means for representing the certainty associated with

a particular outcome. The method of calculation for model inference is Bayes' Rule of

conditional probability.

In a Bayesian Belief Network, the initial calculations of probabilities as they propagate

through the network are determined through the joint probability distributions of each vari-

able. This joint probability distribution is the product of all relevant conditional probabilities

for a given node. It is characterized by Equation 3.2.

Joint Probability Distribution (JPD) [Jen96]

Let BN be a Bayesian Network over U = A1; : : : ; Am. Then the Joint Probability Distribu-
tion P(U) is the product of all conditional probabilities in BN:

P (U) =
Y

iP (Aijpa(Ai)) (3.2)

Where pa(Ai) is the parent set of Ai.

Consider the scenario above as a Bayesian Belief Network. Assume that the probability

for heavy tra�c is 40% (P(T) = 0.4), and the probability that John has overslept is 20%

(P(O) = 0.2). Also, assume that both employees are late 50% of the time when tra�c is

bad, and that John is always late when he oversleeps. Although graphically, the network

remains the same, the Bayesian version now has probability values associated with it. Table

3.6 details how the joint probability distribution de�nition is applied to determine initial

probability that Susan is late.

71

Table 3.6: Joint Probability Distribution to Determine P(S = true) and P(S = false)
Susan is Late JPD JPD

Tra�c is Bad (T) Yes No (Susan is late) (Susan is not late)
P(T = true) = 0.4 0.5 0.5 P(S = true) = 0.2 P(S = false) = 0.2
P(T = false) = 0.6 0.0 1.0 P(S = true) = 0.0 P(S = false) = 0.6

Total: P(S = true) = 0.2 P(S = false) = 0.8

Using the de�nition of Joint Probability Distribution in Equation 3.2, the Joint Distri-

bution is determined by multiplying the conditional probabilities. In this case, the initial

probability that Susan is late is calculated by multiplying the probability that tra�c is bad

by the associated conditional probability that Susan will be late (the "Yes" column). The

independent results are then summed to provide the total probability. The calculations re-

veal that before any information is known, the probability that Susan will be late to work is

0.2.

Table 3.7 details a similar calculation to determine the initial probability that John will be

late. This Table takes into consideration two causal factors to John's tardiness: oversleeping

and bad tra�c.

Table 3.7: Joint Probability Distribution to Determine P(J = true) and P(J = false)
John is Late JPD JPD

Tra�c is Bad (T) John Overslept (O) Yes No (John is late) (John is not late)
P(T = true) = 0.4 P(O = true) = 0.2 1.0 0.0 P(J = true) = 0.08 P(J = false) = 0.0
P(T = true) = 0.4 P(O = false) = 0.8 0.5 0.5 P(J = true) = 0.16 P(J = false) = 0.16
P(T = false) = 0.6 P(O = true) = 0.8 1.0 0.0 P(J = true) = 0.12 P(J = false) = 0.0
P(T = false) = 0.6 P(O = false) = 0.8 0.0 1.0 P(J = true) = 0.0 P(J = false) = 0.48

Total: P(J = true) = 0.36 P(J = false) = 0.64

Again, the joint distribution is determined by multiplying the conditional probabilities.

In the case of John, two causal factors are considered, and reected in the probabilities that

72

John is late. Since John is always late whenever he oversleeps, the probability for John to be

late is 1.0 when O = true. However, when John has not overslept, his tardiness depends on

the state of tra�c, as depicted in the probability for him to be late under those conditions.

Given the system with the known conditional probabilities, the probability that John will

be late on any given day is 0.36.

To continue the example, consider the rationale of the supervisor in assessing that John

has overslept. This is modeled in the Bayesian Belief network as a set of information about

the tardiness of each employee, and a calculated probability of the occurrence of each causal

factor. Bayesian Belief Networks use Bayes' Rule to handle inference in the network. That

is, a level of con�dence can be assigned to each unknown data point in the network based on

the observed states of each known data point. In this case, the supervisor has two pieces of

information: John is late (J = true), and Susan is not late (S = false). Consider each event

as it occurred.

The supervisor initially learns that John is late. This is an item of evidence in the

Bayesian Belief Network that alters the probabilities associated with each of the other nodes

in the network. Bayes' Rule is used to determine the updated probabilities based on the new

evidence. Equation 3.3 and Equation 3.4 shows the calculations of P(T = true j J = true),

the probability that tra�c is bad given that John is late, and P(O = true j J = true), the

probability that John overslept given that John is late.

73

P (T = truejJ = true) =
P (J = true; T = true)

P (J = true)
=

0:08 + 0:16

0:32
= 0:66667 (3.3)

P (O = truejJ = true) =
P (J = true; T = true)

P (O = true)
=

0:08 + 0:12

0:32
= 0:55556 (3.4)

The calculation to determine the updated probability of bad tra�c is made using the joint

probability of the events that John is late and that tra�c is bad and dividing by the overall

probability that John is late. The joint probability table to determine John's probability for

being late (See Table 3.7) shows two instances in which both John is late (J = true) and

Tra�c is Bad (T = true). The sum of these two conditional probabilities represents the joint

probability of these events. The resultant probability that Tra�c is bad given that John is

late is 0.66667. A similar calculation is performed to determine the probability that John

overslept is 0.55556. From the experience of the supervisor, knowing only that John is late,

it is presumed that John was caught in bad tra�c. The Bayesian Belief Network correctly

models this by reecting a higher probability that tra�c is bad, P(T = true) = 0.66667,

than that John overslept, P(O = true) = 0.55556.

Before proceeding to the next evidential development in the scenario, it is important to

demonstrate how the introduction of evidence changes the values in the joint probability

tables. The application of Bayes' Rule to each of the elements of the joint probability

distributions for John's lateness (variable J) is necessary to reect the updated probabilities.

74

Equation 3.5 below provides an example of how Bayes' Rule is applied to a speci�c joint

probability, and Table 3.8 below is the Joint Probability Table updated for all elements.

P (T = true; O = truejJ = true) =
P (J = true; T = true; O = true)

P (J = true)
=

0:08

0:36
= 0:2222 (3.5)

Notice that the updated Joint Probability Table reects the evidence that is now known:

that John is late. Thus, the probability that John is on time (J = false) is 0.0 for all con-

ditions. Given that this event has occurred, and future calculations employing the Joint

Probability Distribution associated with variable J will use the updated conditional proba-

bilities stored in Table 3.8.

Table 3.8: Joint Probability Distribution for Variable J (J = true)
JPD JPD

Tra�c is Bad (T) John Overslept (O) (John is late) (John is not late)
P(T = true) P(O = true) P(J = true) = 0.2222 P(J = false) = 0.0
P(T = true) P(O = false) P(J = true) = 0.4444 P(J = false) = 0.0
P(T = false) P(O = true) P(J = true) = 0.3333 P(J = false) = 0.0
P(T = false) P(O = false) P(J = true) = 0.0 P(J = false) = 0.0

Total: P(J = true) = 1.00 P(J = false) = 0.00

In addition to resolving how the conditional probabilities associated with John's tardiness

are a�ected by the evidence that he is late, the e�ect on Susan' likelihood to be tardy must

also be considered. Knowing that John is late increases the belief that tra�c is bad on

this particular day. This also increases the likelihood that Susan will be late. The original

Joint Probability Distribution (shown in Table 3.6) for variable S uses the initial values for

75

variable T. This Table must be updated to reect the new values for variable T given that

John is now known to be late. Table 3.9 below captures this update. Knowing that John

is late increases the likelihood that Susan is late. As with variable J, future calculations

employing the Joint Probability Distribution associated with variable S will use the updated

conditional probabilities stored in Table 3.9.

Table 3.9: Updated Joint Probability Distribution for Variable S (J = true)
Susan is Late JPD JPD

Tra�c is Bad (T) Yes No (Susan is late) (Susan is not late)
P(T = true) = 0.66667 0.5 0.5 P(S = true) = 0.33333 P(S = false) = 0.33333
P(T = false) = 0.33333 0.0 1.0 P(S = true) = 0.0 P(S = false) = 0.33333

Total: P(S = true) = 0.33333 P(S = false) = 0.66667

Consider now the changes in the supervisor's belief upon discovering that Susan was on

time to work. This event injects another item of evidence into the network, and therefore

a�ects the probabilities associated with each unknown data point that is connected. Since

Susan's punctuality is a�ected only by the tra�c, Bayes' Rule is applied in Equation 3.6 to

calculate P(T = true j S = false), the new probability that tra�c is bad given that Susan is

on time.

P (T jS = false) =
P (S = false; T = true)

P (S = false)
=

0:3333

0:6667
= 0:5 (3.6)

The conditional probability P(S = false, T = true) elements in this calculation are taken

from the updated Joint Probability Distribution table for variable S (See Table 3.9). Similar

to the procedure for variable J above, the joint probabilities in the variable J are adjusted to

76

reect the change in the probability of the variable T. The resultant Joint Probability Table

is shown in Table 3.10.

Table 3.10: Updated Joint Probability (S = false)
JPD JPD

Tra�c is Bad (T) John Overslept (O) (John is late) (John is not late)
P(T = true) P(O = true) P(J = true) = 0.1666 P(J = false) = 0.0
P(T = true) P(O = false) P(J = true) = 0.3333 P(J = false) = 0.0
P(T = false) P(O = true) P(J = true) = 0.5 P(J = false) = 0.0
P(T = false) P(O = false) P(J = true) = 0.0 P(J = false) = 0.0

Total: P(J = true) = 1.00 P(J = false) = 0.00

Based on the updates, the probability of John oversleeping can be calculated to P(O =

true) = 0.66667. Thus, this Bayesian Belief Network has successfully modeled the reasoning

of the supervisor in deducing that John had overslept, P(O = true) = 0.66667, over the

likelihood of bad tra�c, P(T = true) = 0.5. When observed evidence is incorporated into

the network structure, the resultant probabilities for causes of the observed evidence are

quanti�ably clear.

It is this modeling of reason and belief that is intended to be applied to software quality

as events unfold in the software development process. The model is intended to follow the

time sequence associated with the classic waterfall life cycle model, and reect probabil-

ities associated with di�erent quality outcomes based on the measurements (or evidence)

introduced into the model.

77

3.2.4.2 Justi�cation of Selection of Bayesian Belief Networks

Bayesian Belief Networks have several advantages over other complex adaptive systems

with respect to modeling the quality of a software development e�ort. BBNs are capable of

representing cause-and-e�ect relationships using both subjective and objetive data, can adapt

to prior data, and can infer unknown data elements based on a set of known data elements.

Although neural networks also posses these qualities, neural networks are not as expressive.

Each node in a BBN represents an independent proposition within the network. Intermediary

nodes in a neural network have no such concrete meaning. In addition, BBNs can handle

providing a range of values for a given prepositional output, and a probability associated

with each value. Neural networks conversely can provide only a designated output value

(discrete or continuous), and cannot handle multiple possible outcomes to a proposition.

To date, there have been numerous successful applications of Bayesian Belief Networks

across a variety of industries. BBNs are used in medicine to assist in the monitoring of

patients in intensive care [BSC89], as an aid in the diagnosis of lymph node diseases [HHH92],

and for ovarian tumor classi�cation [AFT03]. They have also been applied in robot sonar

mapping [BS97], and in uncollected debt detection [ES95]. Most notably, they are used as

the engine behind the o�ce assistant in Microsoft O�ce products [HH98].

The structure of a BBN can cause di�culties in terms of performance. The size of the

conditional probability tables grow exponentially with the number of arcs between nodes,

particularly when multiple arcs are directed to the same node. For this reason, complex

78

BBNs are di�cult to construct without maximizing the resources of a computer. Although

this issue is a concern, it was decided to go forward with BBNs as the modeling technique,

and provide a commentary on their suitability to the problem of modeling software quality

in Chapter 5.

3.2.5 Model Implementation

Model implementation is the process of providing a computational context for �tting a

model to a given set of training data, and providing a means for producing predictions for

the modeled variables. The challenges to implementing a software quality model were the

translation of model input measures from continuous to discrete values, and formulating a

structure for the BBN that represented cause-e�ect relationships within the software life

cycle, and was consistent with Kan's three criteria for cause-e�ect relationships (discussed

in Section 2.3). The subsections below details the implementation of the modeling decisions

described in Sections 3.2.3 and 3.2.4. For each causal factor of software quality, the speci�c

measures that were used in the model are identi�ed. In addition, the three structural options

for the model are presented.

79

3.2.5.1 Discretization of Model Inputs and Outputs

Bayesian belief networks are based on relating cause and e�ects, and are designed to

incorporate both objective and subjective inputs to determining an output. As such, it

is necessary to represent all variables within the BBN as discrete variables. This section

details the way in which the various measurements frameworks outlined in Section 3.2.3

were represented in the model as discrete variables.

Discretization is the process of representing continuous numbers on a discrete scale. It

was necessary to convert all measures used as both inputs and outputs to the software

quality model to discrete variables in order to accurately represent subjective and objective

information simultaneously. It provides a common frame of reference. However, di�erent

variables may be represented di�erently in the model, and may require di�erent granularities.

For example, in representing software process, only a "Yes" or "No" indicator of compliance

is required, but the Depth of Inheritance Tree software design measure requires a positive

integer value. In order to support the range of needs in representing the discrete variables,

�ve di�erent node types were developed.

Table 3.11: Node Types Developed for Software Quality Modeling
Node Type No. States Node Description
Compliance Node 2 A variable that describes a "yes" or "no" compliance
Quarter Node 4 Divides a 100% percentage scale into 4 25% intervals
Percentage Node 9 Divides a 100% percentage scale into 8 12.5% intervals
Ratio Node 9 Represents a range of ratios between two variables
Integer Node 4 Represents the positive integer values 1, 2, 3, 4

80

Table 3.11 identi�es the �ve di�erent types of BBN nodes used in this model. Each node

type is intended to address a di�erent need in terms of representing continuous variables

as discrete variables. The Compliance Node is simply a binary node that indicates a truth

value, "Yes" or "No". The compliance node is used frequently in the quality model to identify

whether a given software development practice was employed, or indicate whether a quality

need was adequately covered in the requirements. The compliance node is appropriate in

these cases because they describe whether or not a given activity was performed. For exam-

ple, one modeled ISO/IEC 15504 practice is that of "Specifying the Software Requirements".

The performance of this practice is a binary condition: a project either speci�ed their require-

ments or not. This example demonstrates how two states su�ciently characterize software

processes and practices.

The Quarter Node is used to express the range of values out of four possibilities. For ex-

ample, in this study, the Quarter Node is used to characterize the proportion of development

team skill in a given phase, and for a given skill level. Because the development team size for

this study ranges between 1 and 4 software engineers, representing the ratio of developers

with the Quarter Node is appropriate, and causes no loss of precision from the original ratio

data.

The Percentage Node is used to express a proportion in which the numerator is smaller

than the denominator. This node type has a range of [0:1] and is used extensively in this

research as the mechanism for expressing normalized values. For example, the ISO/IEC

9126 metrics that measure software quality are typically represented as the ratio of veri�ed

81

requirements to number of requirements. The resulting measure is a proportion of the

requirements that were veri�ed, and is normalized by the number of requirements in a given

project. To model this proportion as a discrete variable, it was necessary to partition the

percentage range into a number of discrete sections, each of which represents a portion of

the percentage spectrum. The accuracy of the model depends largely on the granularity of

these partitions - a larger number of discrete sections increases the precision of the model

with respect to the actual proportion value. Thus, the goal is to maximize the number of

discrete states that represent each proportional variable, as system resources will allow (8

states). The Ratio Node is similar to the Percentage Node except that it discretizes the a

proportion between two variables where the numerator is larger than the denominator. In

this model, this variable measures the Expansion design complexity measures descibed in

Table 3.5.

The Integer Node provides a mechanism to introduce a positive integer value into the

model. In this case, each integer value corresponds to a unique discrete state. It is used in

the model only to represent the Depth of Inheritance Tree (DIT) design complexity measure.

Its 4-state range is based on the maximum DIT value in the underlying software engineering

data.

The establishment of several node types for use within the BBN allows for a variety

of ways that data can be represented as discrete variables within in the model. These

node types were all used to characterized the various continuous measurements identi�ed

in Section 3.2.3. Table 3.12 identi�es the allocation of node types for all variables in the

82

requirements phase. Table 3.13 identi�es the allocation of node types for all variables in

the design phase. Table 3.14 identi�es the allocation of node types for all variables in the

implementation phase. Table 3.15 identi�es the allocation of node types for all variables

in the integration/test subnet. Each table contains four columns. The �rst column gives

the abbreviated name of the node as used in the modeling software. The second column

indicates the node type that is used to represent the variable as a discrete in the model. The

third column is one of three values, Skill, Process, or Problem that indicates whether this

factor is categorized as a driver related to development team skill, software process maturity,

or software problem complexity (respectively).

In addition to the inputs to the model, the output of the model is also represented in

a discrete form. As mentioned, all of the software product quality metrics are expressed

as a Percentage Node. Speci�cally, these are intended to be the percentage of the require-

ments associated with that quality attribute which were veri�ed to have been successfully

implemented in the software system. While represented discretely in the model, the need

exists to convert that discrete value to a continuous value. That is, in order to provide a

useful forecast in the case of the software product quality indicators, it becomes necessary

to de�ne a function which converts the discrete output of the model to a continuous value

of prediction. Because all of the software quality indicators use the same function for trans-

forming continuous values to the discrete Percentage Node format, they may use the same

function for transformation from discrete value to continuous value. The formula is outlined

in Equation 3.7.

83

Table 3.12: Allocation of BBN Node Types to the Requirements Phase Variables
Node Node Causal Node

Name Type Factor Description

ReqSkill1 Quarter Skill Percentage of development team with
Requirements Skill Level 1

ReqSkill2 Quarter Skill Percentage of development team with
Requirements Skill Level 2

ReqSkill3 Quarter Skill Percentage of development team with
Requirements Skill Level 3

ReqSkill4 Quarter Skill Percentage of development team with
Requirements Skill Level 4

SpecifyReqs Compliance Process Did the project specify the requirements?
DetEnvImpact Compliance Process Did the project determine the environmental impact?
EvalReqsCust Compliance Process Did the project evaluate requirements with the customer?
DevValCrit Compliance Process Did the project develop a validation criteria?
DevRelStgy Compliance Process Did the project develop a release strategy?
UpdateReqs Compliance Process Did the project update requirements from a

previous iteration?
CommSWReqs Compliance Process Did the project communicate requirement to stakeholders?
ReqTraceable Compliance Process Did the project trace requirements back to customer needs?
ReqCorrect Percentage Problem Percentage of requirements correctly implemented
ReqComplete Percentage Problem Percentage of customer needs covered in requirements
ReqTrace Percentage Problem Percentage of requirements traced back to customer needs
ReqVolatile Percentage Problem Percentage of requirements changed since baseline
QualityNeed Compliance Problem Was there a customer need for this quality attribute?
QualityCov Compliance Problem Were the customer needs adequately addressed in

the requirements?

In e�ect, this transformation takes the midpoint of the percentage range de�ned in the

Percentage Node and linearly scales that midpoint percentage to the original range (B).

A drawback to this approach is its lack of precision. By taking the midpoint, the model

inherently absorbs an error proportional to the size of each partition in the Percentage

Node. Currently, there is no other way to prevent the loss of precision, outside of narrowing

the range of each partition in the Percentage Node Type. Unfortunately, that range is

constrained by the system memory (1 Gigabyte) of the computer used for this research, and

is maximized to eight partitions.

84

Table 3.13: Allocation of BBN Node Types to the Design Phase Variables
Node Node Causal Node

Name Type Factor Description

DesSkill1 Quarter Skill Percentage of development team with
Design Skill Level 1

DesSkill2 Quarter Skill Percentage of development team with
Design Skill Level 2

DesSkill3 Quarter Skill Percentage of development team with
Design Skill Level 3

DesSkill4 Quarter Skill Percentage of development team with
Design Skill Level 4

DevArchDes Compliance Process Did the project develop an architecture?
DevDetailDes Compliance Process Did the project develop a detailed design?
DesInterface Compliance Process Did the project design the interfaces?
VerDesign Compliance Process Did the project verify the design with the customer?
DesTrace Compliance Process Did the project trace the design back to requirements?
DIT Integer Problem Depth of the design's inheritance tree
DesExpand Ratio Problem Ratio of architectural components to design modules
IFFormExpand Ratio Problem Ratio of interfaces to designed interface formats
IFProtExpand Ratio Problem Ratio of interfaces to required interface protocols
DesCorrect Percentage Problem Percentage of design modules correctly implemented
DesComplete Percentage Problem Percentage of customer requirements covered in design
DesTrace Percentage Problem Percentage of design traced back to customer needs
DesVolatile Percentage Problem Percentage of design modules changed since baseline

3.2.5.2 Model Structure

A Bayesian Belief Network represents cause-e�ect relationships between variables. This

section proposes three di�erent BBN model structures as candidates for modeling software

quality. Each model structure is described in this section, analyzed and re�ned in Sections

4.1-4.3, and compared in Section 4.4 in terms of their ability to �t to the training data

set, and their ability to accurately predict for unknown values. Recall from Section 2.3

the three criteria for establishing a cause-e�ect relationship described in Stephen Kan's

"Metrics and Models in Software Quality Engineering" [Kan95]: cause precedes e�ect in

time or logic, cause and e�ect are empirically correlated, and any cause-e�ect relationship

85

Table 3.14: Allocation of BBN Node Types to the Implementation Phase Variables
Node Node Causal Node

Name Type Factor Description

ImpSkill1 Quarter Skill Percentage of development team with
Implementation Skill Level 1

ImpSkill2 Quarter Skill Percentage of development team with
Implementation Skill Level 2

ImpSkill3 Quarter Skill Percentage of development team with
Implementation Skill Level 3

ImpSkill4 Quarter Skill Percentage of development team with
Implementation Skill Level 4

DevSWUnits Compliance Process Did the project develop the source code?
DevUnitVer Compliance Process Did the project develop unit tests?
VerSWUnits Compliance Process Did the project verify the source code units?
ImpTrace Compliance Process Did the project trace source code back to design?
ImpCorrect Percentage Problem Percentage of source code modules correctly implemented
ImpComplete Percentage Problem Percentage of design modules covered in implementation
ImpTrace Percentage Problem Percentage of source code �les traced back to design
ImpVolatile Percentage Problem Percentage of source code �les changed since baseline
QualityPrev Percentage Problem Percentage of source code implementing a quality need

Table 3.15: Allocation of BBN Node Types to the Integration/Test Phase Variables
Node Node Causal Node

Name Type Factor Description

TstSkill1 Quarter Skill Percentage of development team with
Integration/Test Skill Level 1

TstSkill2 Quarter Skill Percentage of development team with
Integration/Test Skill Level 2

TstSkill3 Quarter Skill Percentage of development team with
Integration/Test Skill Level 3

TstSkill4 Quarter Skill Percentage of development team with
Integration/Test Skill Level 4

DevIntStgy Compliance Process Did the project develop an integration strategy?
DevRegStgy Compliance Process Did the project develop a regression test strategy?
DevIntTsts Compliance Process Did the project develop integration tests?
IntSWItems Compliance Process Did the project integrate the software items?
TstIntSW Compliance Process Did the project execute the integration tests?
RegTstIntSW Compliance Process Did the project perform regression integration tests?
DevTstStgy Compliance Process Did the project develop a software test strategy?
DevTsts Compliance Process Did the project develop software test procedures?
TstSW Compliance Process Did the project test the software system?
RegTstSW Compliance Process Did the project regression test the software system?
ReqVerCov Percentage Problem Percentage of requirements functionally veri�ed in testing

86

Converting Percentage Node Discrete Values to Continuous Values

Given a percentage value represented by P = A
B
, where P is categorized into a Percentage

Node discrete format consisting of N state ranges (as described in Table 3.11), and a cor-
responding state number S > 1 which has been output by the quality model. A continuous
value V is determined by:

V = B � [(S � 2) � 1

N
] + (

1

N
� 1
2
) (3.7)

is logical. This research de�nes three model structure that satisfy these three criteria. This

section describes each candidate model structure in terms of the logic of the cause-e�ect

relationships. Once the intuitive structure is established, a statistical analysis of each model's

structure is performed as part of the analysis of the results in Chapter 4. The resultant

streamlined model structures are used to calculate and compare model results.

The model structures proposed in this paper are based largely on three premises for

software product quality:

1. Maturity of software development processes is a causal factor in software product

quality.

2. Complexity of the software problem is a causal factor in software product quality.

3. Capability of the software development team is a causal factor in software product

quality.

87

The question becomes how to relate those factors to software quality. Using the measures

described in Section 3.2.5.1, it is logical that each phase of the software life cycle carries

with it a particular set of needed skills, unique processes, and brand of complexity. That

is, each phase of the software life cycle is directly a�ected by these high level causal factors,

and contributes in turn to the ultimate quality of the �nished software product. Also,

each life cycle phase produces an artifact that is the basis for quality in subsequent phases.

Consider the cause-e�ect, or �shbone, diagram shown in Figure 3.3 that details the internal

relationships between causal factors. Quality is a�ected by the correctness and completeness

of the activities and artifacts at each phase of the development life cycle. Measures of

completeness and correctness are driven by the development team's skill/experience level,

the process maturity or infrastructure, and the problem complexity for each phase.

Figure 3.3: Software Quality Cause E�ect Diagram

88

The �rst model structure proposed is a three-tiered structure that directly implements

the cause-e�ect diagram shown in Figure 3.3. The structure of the model, and the delin-

eation of the tiers is shown more clearly in Figure 3.4. The input tier contains the model

inputs, including the measures of development team skill/experience, process maturity, and

problem complexity for each life cycle phase. The intermediary tier contains correctness

and completeness variables for each life cycle phase. All model inputs indigenous to a life

cycle phase (see Section 3.2.5.1) are linked in the model structure to the correctness and

completeness variables for that phase. Finally, the output tier contains the software quality

variable itself, and is a product of the correctness and completeness measures from each life

cycle phase. This structure will be referred to hereafter as the Intuitive Model. It is based

on the three premises identi�ed above, and uses measures of correctness and completeness of

life cycle artifacts as the intermediary indicators of software quality. The Intuitive Model is

further re�ned through an analysis of the model variables Section 4.1 to eliminate invariant

inputs, and cases of multicollinearity.

A weakness in the Intuitive Model is that it is not rigorous in its formulation. That is,

while the structure is reasonable from a logical standpoint, there is no quanti�able basis for

the relationships. To that end, the second model structure is proposed, which is labeled the

Re�ned Model. The Re�ned Model retains the three tier structure of the Intuitive Model,

but has been subject to a statistical analysis in which cause-e�ect relationships are retained

only if they can be correlated as described in Section 3.3.2.2. The structure of the Re�ned

Model is discussed as part of the analysis performed in Section 4.2.

89

Figure 3.4: Intuitive and Re�ned Model Structures

The �nal proposed structure takes a much more traditional approach to determining

model structure. Model inputs are analyzed to determine if they are correlated with software

quality variables. Any correlations established using the procedure described in Section

3.3.2.2 indicate a link in the Bayesian Belief Net structure. This model structure has been

90

labeled the Direct E�ects model as it simply related inputs to outputs in a two tier model

structure (see Figure 3.5). The Direct E�ects Model considers the full set of inputs and does

not discriminate between life cycle phases. That is, all model input variables are tested for

valid correlations with each quality output, and without regard to the life cycle phase to

which the measure was categorized.

3.2.5.3 Tool Selection

This section identi�es the software packages that were used to develop, and execute the

software quality model in order to make forecasts of software quality. The model was to be

developed as a software package that would be able to read in a data �le, implement the BBN

programmatically, forecast software quality using conditional probabilities calculated from

prior data sets, and automate any validation of the forecasts. This research required decisions

in terms of the Bayesian Belief Network libraries that would be used, the language in which

the model and validation software would be written, and the development environment that

would be used.

A commercial tool was selected for the Bayesian Belief Network libraries. The Netica

Rpackage, by Norsys Software Corporation R[Cor06], provided the basic software classes

that allowed for the construction of the Bayesian Belief Network, the initial calculation

of conditional probabilities based on existing data sets, and the execution of the model

in order to make a inferences about the various software product quality measures. The

91

Figure 3.5: Direct E�ects Model Structure

Netica package provided facilities for creating BBN nodes and arcs, and establishment of the

conditional probability tables associated with each node.

All of the software developed for this research was done in the Java programming lan-

guage, version 1.5. Java was selected for its ease of programming, and also for its com-

92

patibility with the Netica Rlibraries. The custom code developed served to read in the

data �les, de�ne the node types to be used, programmatically establish the BBN structure,

and programmatically provide forecasts and validation of those forecasts. All development

was done using the Eclipse Rintegrated development environment. Eclipse R[Fou06] is an

open-source product that is freely available.

3.3 Validation Approach

Validating the proposed software quality model involves collecting a set of software en-

gineering data, and using that data to con�rm the ability of the model to characterize the

data set, and the ability of the model to make predictions for unknown data sets. This

section describes the approach to these activities. It begins by outlining the methods used

to acquire the software engineering data. The software engineering data set is a combi-

nation of process, product, and skill data from small-scale industry and graduate student

software development projects. This section follows with a description of the statistical tests

and formulas used quantify accuracy of �t and predictive validity. Finally, the approach

to comparing the developed software quality model to quality models using other modeling

mechanisms is outlined.

The purpose of this research is to provide a reliable model for predicting software quality

in a given development project. The model attempts to establish the causal inuences

of personnel skill, problem scope, and process maturity as driving factors in the ultimate

93

quality of the software product. The following list of questions will be answered by through

validation of the model:

1. Does the software quality model provide an accurate assessment of software product

quality?

2. Does the software quality model accurately predict software product quality while the

software is under development?

Initially, a determination is made as to the optimum model structure for each software

quality variable. Section 3.2 outlined three possible candidates for a BBN structure that

are suitable for a given software quality variable. The Intuitive Model structure is the

initially proposed, logically inferred structure that has not been adjusted by any mathemat-

ical corroborations of cause-e�ect relationships. The Re�ned Model retains the three-tiered

structure of the Intuitive Model, but has been streamlined to only include those cause-e�ect

relationships that have been statistically correlated. The Direct E�ects Model structure

abandons the idea of a three-tier BBN structure, and simpli�es the BBN to an association of

software quality outputs to correlated model inputs. The �rst step in validating the model

is to select, based on measures of Accuracy of Fit and Predictive Validity proposed below,

the most appropriate BBN structure for each software quality variable. Once a Bayesian

model structure is selected, the results for each software quality attribute are compared to

competing approaches to modeling software quality.

94

The techniques for validation build upon a previous study in which a smaller scale soft-

ware quality model was validated [BSB05]. Two factors are considered when validating a

software quality model: Accuracy of Fit as expressed through verifying the equality of means

and variances between predicted and actual results, and a measure of the Predictive Validity

or accuracy of the model's forecasts. Since the cost to correct software increases exponentially

as the software life cycle progresses [Boe81], it is useful to project software quality as early

as possible in order to minimize rework and maximize the potential cost savings. However,

without some measurable insight into the architecture of a software system, it is di�cult

to lend credence to any forecasts made prior to the formalization of the system's design.

The conclusion of the design phase was selected as the optimum time in the development

life cycle to make forecasts of software quality. At this point, there is enough information

about the complexity of the software problem and its design solution to give credibility to

the projected quality of the �nal product. By the same token, it is early enough in the life

cycle to make improvements with minimal impact to the project's schedule and budget.

Figure 3.6 shows the validation process. A "leave one out" cross-validation approach was

to taken to evaluate the model's ability to provide reliable forecasts of software quality. In

this approach, the model is trained using all but one of the available projects. The remaining

project's life cycle data is input into the model in order to make predictions about software

quality, and verify the accuracy of those predictions versus the actual values. As shown in

the diagram, the model's software quality predictions for the remaining project are acquired

at the conclusion of the design phase. This process was repeated for each of the projects in

95

Figure 3.6: Process for Validation of Software Quality Model Predictions

the data set. The resultant data is a collection of predicted and actual values for each of the

software quality measures being validated.

3.3.1 Acquisition of Software Engineering Data

This section details the approach to acquiring software engineering data for training and

validating the developed software quality model. Model validation will be through analysis

of data collected from both student and industry software development e�orts. In the case

of the student software development projects, personnel and process for each project was

varied to create a broader range of model input variables in order to provide more complete

coverage of the input state space. For the industry projects, a post-deployment analysis of

96

the project's artifacts provided the data necessary to serve in this study's data set. This

section describes the set of data collected for this study, and the approach to data collection.

3.3.1.1 Data Collection Procedures

This section details the approach to the acquisition of software personnel, process, and

product measurements for use in the developed software quality model. The purpose of this

data is to establish the initial conditional probabilities, or training data, associated with the

relationships de�ned in the model. These conditional probabilities establish the likelihood

of the paths taken through the model structure.

Table 3.16: Data Collection Activities Relative to the Software Life Cycle
Life Cycle Event Data Collection Activities
Project Planning Software Development Skill Questionnaire administered

Overview of Metrics to be collected
Software Speci�cation Baseline Collect Requirements Phase metrics
Software Design Baseline Collect Design Phase metrics
Source Code Complete Collect Implementation Phase metrics
Integration/Test Complete Collect Software Product Quality measures

The data collection period for each of the participating software engineering projects

was the complete life cycle of their development. Table 3.3.1.1 provides a schedule of data

collection activities that were performed and the points in the development life cycle where

data was collected. Initially, the developers for each project were required to �ll out the skill

questionnaire (see Appendix A) in order to assess the capabilities of the development team.

97

Also, the development team was briefed on the types of metrics that would be collected, and

the importance of providing accurate measures. At the conclusion of each phase of the life

cycle, the metrics for that phase would be collected. After the developed product had been

tested as a software system, the �nal set of metrics were collected, and the �nal values of

software product quality were calculated.

3.3.1.2 Description of Acquired Software Engineering Data

The sets of data used to train and validate this software quality model were acquired

from 28 software development projects. The projects were small in scale, and were generally

completed within a 3-4 month time frame. Project teams varied in size from 1 to 4 devel-

opers and included both graduate students and software engineering professionals. Projects

were required to sequentially address each phase of the development life cycle in a classic

"waterfall" fashion. Each project was asked to track various software engineering metrics

through the development life cycle. These metric were reported at the conclusion of each

phase. Of the original 35 projects selected to participate in this research, 28 were actually

used because of their willingness to track life cycle measures completely and correctly. The

raw data collected and used in this study to train and validate the BBN is presented in

Appendix C.

98

3.3.2 Methods of Data Analysis

This section details the various methods used to analyze the acquired software engineering

data, and validate the proposed software quality model. As part of validating cause-e�ect

relationships in the model structure, the approach to calculating and verifying statistical

correlations is described. In addition, the methods used to quantify the proposed model's

Accuracy of Fit and Predictive Validity are presented.

3.3.2.1 Calculating Mean and Variance

The mean and variance are the most basic elements of statistical analysis. Consider a set

of n values, y1; y2; y3; : : : ; yn. The mean (�) is the average of those values and is calculated

using Equation 3.8.

� =
1

n

X
i=1;N

yi (3.8)

The variance (�2) quanti�es the sum of squared deviations of each value from the mean,

and is calculated using Equation 3.9.

�2 =
1

n

X
i=1;N

(yi � �)2 (3.9)

99

An analysis of the mean and variance of model variables is performed in Section 4.1, and

is useful in identifying high-level trends in the model data, and identifying invariant model

inputs.

3.3.2.2 Establishing Statistical Correlation

Much of the model structure analysis is accomplished by calculating and interpreting

the correlation of input variables to both software quality measures and to downstream

nodes within the model structure. Correlation, typically denoted with the variable r, is a

measure of the strength of a linear relationship between two variables. Correlation values

were calculated using Equation 3.10 in which two variables, x and y, are evaluated over N

samples. Determining the signi�cance of any correlations is a necessary step in establishing

a cause-e�ect relationship between two variables [Kan95]. Since the this software quality

model represents cause-e�ect relationships, establishing and analyzing the linear correlation

of variables is appropriate.

r =

P
i=1;N (xi � x) (yi � y)qP

i=1;N (xi � x)2
P

i=1;N (yi � y)2
(3.10)

The calculation of correlation between two variables is an important step, but not suf-

�cient in establishing a cause-e�ect relationship. It is necessary to verify with quanti�able

certainty that the correlation is not merely a random occurrence. A Hypothesis Test is

100

conducted in conjunction with the correlation calculation in order to determine whether the

population correlation coe�cient (�) is su�ciently characterized by the sample correlation

coe�cient r. The Hypothesis Test is summarized in Table 3.17 [MS95]. The null hypothesis

(H0) asserts that variable x contributes no information for predicting y, and the alterna-

tive hypothesis (Ha) asserts that the two variables are correlated. The null hypothesis is

rejected if the Test Statistic (t), which is calculated using the sample size (n) and the sample

correlation coe�cient (r), is larger in magnitude than the Student's T critical value for a

con�dence value of 90%. A rejection of the null hypothesis is interpretted as a determina-

tion, with a con�dence of 90%, that the relationship between variables x and y is an actual

linear correlation, and not a random occurrence between the two data sets. In other words,

it provides a quanti�able level of con�dence in the correlation values determined.

Table 3.17: Hypothesis Test for Veri�cation of Linear Correlation
H0: � = 0
Ha: � 6= 0

Reject H0 if:
jtj > t�=2

where,

t = TestStatistic =
r � pn� 2p

1� r2

and,
r = the sample coe�cient of correlation
n = the total number of samples
t�=2 = Student's T Critical Value for con�dence (1 - �)100%

101

3.3.2.3 Determining Accuracy of Fit

The Accuracy of Fit of a model is a quantitative determination of how well a model

represents the data upon which it is based. In other words, it is a measure that indicates

the correctness of the model with respect to the data that was used to construct the model.

Accuracy of Fit is determined through an analysis of the Equality of Means and the Equality

of Variances between the modeled values of software quality and the actual values.

Verifying the Equality of the Means between the predicted and actual values of software

quality gives the model credibility in terms of its ability to accurately represent the underlying

data. The statistical method for validation is a hypothesis test for equality of means between

expected and actual values for each software quality metric. In this case, the null hypothesis

(H0) is that the means are equal, and the alternative hypothesis (Ha) is that they are

di�erent. The decision rule and associated calculations for the Hypothesis Test is shown in

Table 3.18[MS95].

The Equality of Means Hypothesis Test (see Table 3.18) quanti�es the con�dence that

the mean value of two populations are equivalent. By comparing the Equality of Means

between actual software quality values and modeled software quality values, the ability of

the model to accurately characterize the underlying data set is revealed. If the Test statistic

(t) for the given quality measure is less than the t-distribution value (tn��;�=2) for that

quality measure, then the null hypothesis must be accepted, the means are determined to be

equivalent, and the model is said to provide an accurate �t for the underlying data. For this

102

Table 3.18: Hypothesis Test for Determining Equality of Means
H0: �modeled � �actual = 0
Ha: �modeled � �actual 6= 0

Reject H0 if:
jtj > tn��;�=2

where,

t = TestStatistic =
�actual � �modeledp

msE � (2=n)
and,
�modeled = the mean value of the modeled variable
�actual = the mean value of the actual variable
msE = the mean square error
n = the total number of samples
� = the number of degrees of freedom
tn��;�=2 = t-distribution for con�dence (1 - �)100%

study, a con�dence of � = 0.9, or 90% was used for all Equality of Means calculations. This

means that there is 90% con�dence that all Equality of Means determinations are correct.

The approach to calculating the Equality of Variances is to use a textbook rule of thumb

test recommended in [DV99], and described in Table 3.19. In comparing the modeled data

to the actual data, if the ratio of the maximum variance value to the minimum variance

value must be less than three to consider the variances equivalent. The application of this

rule of thumb is appropriate in that it bounds the relationship of the variances. The goal

for the Equality of Variances is not to get a quanti�able con�dence on the accuracy of the

modeled data (that is accomplished through the Equality of Means test), but to get a discrete

indication that the variance of the modeled data is on the order of the variance of the actual

data.

103

Table 3.19: Test for Determining Equality of Variances

Variances �2
1
and �2

2
are equivalent if:

�2max

�2min

< 3

where,
�2max = the maximum value between �2

1
and �2

2

�2min = the minimum value between �2
1
and �2

2

3.3.2.4 Determining Predictive Validity

The Predictive Validity is a measure of how accurately the model predicts a variable

using an unknown data set as input. It is a quantitative way of determining how well a

given model characterizes an unknown. Predictive Validity is measured using the Average

Relative Error (ARE). ARE describes the deviation of the actual data from the modeled

data, and is de�ned in Equation 3.11 [KBR92].

ARE =
1

N
�
X
i=1;N

����
(yi � yi)

yi

���� (3.11)

In Equation 3.11, N is the number of data elements, yi is the modeled value of the

data, and yi is the actual data value. By de�nition, the lower the value of ARE, the more

closely the model approximates the actual data. Because the ARE is a measure of deviation

of estimated values from actual values, it is appropriate to use in determining how closely

a model represents any data set. The ARE in determining Predictive Validity provides

104

assurance that the models chosen are reliable in making predictions about unknown data.

ARE has already been con�rmed as a signi�cant measure for the Predictive Validity of

software quality models [BS03b] [SYT85], and an ARE of 0.25 or less is considered acceptable

[CDS86] to be a useful value of prediction.

3.3.3 Competing Models Description

This section describes the competing models with which the Bayesian Network will be

compared. In Chapter 2, an evolution of software quality modeling was described that

culminated in the identi�cation of Complex Adaptive Systems, and particularly Bayesian

Belief Networks, as the method of choice for modeling software quality. The validation of

the selected Bayesian network structure will involve a comparison to competing approaches

for modeling software quality. This section describes the Least Squares Regression model

and the Neural Network model. Each of these will be compared to the Bayesian model in

terms of both Accuracy of Fit and Predictive Validity.

3.3.3.1 Least Squares Regression

Least Squares Regression is a technique for �tting a model to an underlying data set. It

involves calculating the set of weights that correspond to each model input so as to minimize

the sum of squared error term for the output. Consider a set of model inputs denoted by the

105

variable x and a model output denoted by the variable y as shown in Equation 3.12. The

y variable can be expressed in terms of the inputs (x) and a weight for each input (�) that

provides the best �t for the set of data, and minimizes the error term (�).

y = �constant + x1�1 + x2�2 + x3�3 + : : :+ xm�m + � (3.12)

However, in order to �t to a set of data, each instance of this equation must be considered.

Table 3.20 is an example data table of how Equation 3.12 might be denoted for n data sets and

m inputs. The resultant array of equations can be represented more succinctly as matrices,

as in Equation 3.13.

Y = X� + � (3.13)

Thus, the aim of the Least Squares Regression model is to determine the matrix of weights

(�) that will minimize the matrix of error terms (�) when using the inputs (X) to model the

outputs (Y). With the set of input and output data available, the determination of weights

simply becomes a matter of matrix algebra. Solving for the weights (�) in Equation 3.13,

Equation 3.14 can be used to solve for the optimum set of inputs weights.

� = (XTX)�1XTY (3.14)

106

Table 3.20: Least Squares Example Data
Data Output Inputs Random
Set y value x1 x2 x3 . . . xm Error
1 y1 x1;1 x1;2 x1;3 . . . x1;m �1
2 y2 x2;1 x2;2 x2;3 . . . x2;m �2
3 y3 x3;1 x3;2 x3;3 . . . x3;m �3
...

...
...

...
...

...
...

...
n yn xn;1 xn;2 xn;3 . . . xn;m �n

In this study the Least Squares Regression was implemented as custom developed soft-

ware. The set of inputs used for each software quality variables were those causal factors

that were veri�ed to be correlated to the quality attribute in the Direct E�ects analysis (see

Section 4.3). The procedure for prediction was to calculate the optimum set of weights that

would minimize the error associated each software quality variable. Once the weights were

determined, they were used to predict software quality using an unfamiliar set of input val-

ues. The intent of using Least Squares Regression as a basis for comparison is to demonstrate

that the Bayesian models are an improvement over a past approach.

3.3.3.2 Neural Networks

Neural Networks are similar to Bayesian Belief Networks in that they are also an adaptive

modeling method, use prior data sets to train the model, and can be represented graphically

as a network of nodes with arcs depicting relationships. Neural Networks are included

in this research as a basis for comparison in order to demonstrate how Bayesian models

107

outperform other modern approaches to modeling software quality. Similar to the Least

Squares Regression, Neural Networks aim to �t to a set of training data by weighting each

input based on prior examples of input and output values.

Figure 3.7 shows the structure of a simple Neural Network. It is comprised of input

nodes (or neurons) which take in data values for both learning and modeling, and output

nodes which produce modeled results. A unique aspect of the Neural Network is that only

the input and output nodes have explicit meaning. There is an intermediary set of nodes,

called hidden nodes that have no real-world meaning, but are the mechanism by which the

network can be trained to produce an optimum set of weights for the inputs. Each layer

of nodes is completely connected to other layers through a network of associations called a

synapse. Neural Networks are trained by inputting values for the model inputs at the input

layer, and comparing the results at the output with actual data values. Through a repetition

of training the model with the set of known data, the weight of each synapse connection is

adjusted until the output most accurately models the actual output values.

Similar to the approach taken in Least Squares Regression, this study constructed a

Neural Network that emulated the Direct E�ects Bayesian Model. Model inputs were directly

associated to each software quality output (although through a set of hidden nodes). The

"leave one out" cross-validation approach applied to the developed Neural Network: the

network was trained using all but one data set, and that data set was used to predict the

software quality attributes. The Neural Network used in this research was implemented using

108

Figure 3.7: Example Neural Network

the Java Object-Oriented Neural Engine (JOONE) Arti�cial Neural Network framework

[Mar04].

109

CHAPTER 4

RESULTS

This chapter reports the results of the acquisition of the software engineering data, and

the use of that data to model software quality. Speci�cally, the proposed software quality

model is statistically analyzed, and the model's structure is re�ned to include only the

most signi�cant contributing factors. In addition, the results of the model's validation are

presented, and those results are compared to the software quality predictions of competing

models.

4.1 Analysis of Software Quality Variables

This research attempts to incorporate many di�erent types of software engineering mea-

sures into a comprehensive software quality model that assesses and predicts quality in a

software development e�ort. The measures and model structure proposed in Chapter 3 are

comprehensive in terms of the number of possible causal factors and software quality vari-

ables that are signi�cant in the model. Using the acquired software engineering data as

110

the foundation for analysis, it is appropriate to further scrutinize the proposed set of soft-

ware quality measures that comprise the model. The purpose of this analysis is to identify

those variables that are not signi�cant in modeling software quality, and therefore may be

eliminated from the model structure. The inputs and intermediary nodes in the model are

analyzed in terms of their mean and variance, as these values give insight into the underlying

data, and reveal invariant variables that add no value in terms of a cause-e�ect model. The

modeled software quality variables are analyzed in terms of their sample sizes, with the goal

of determining whether that size is adequate make a statistical inference.

4.1.1 Mean and Variance Analysis

The mean and variance of the causal factors that comprise the proposed software quality

model can provide insight into the nature of the underlying software engineering data. This

section provides an analysis of the mean and variance for each input and intermediary node

in the software quality model structure. The intent of this analysis is to identify patterns

across the causal factors with respect to the collected software project data. In addition, this

analysis provides an opportunity to re�ne the complexity of the model structure and exclude

from the model those variables that are invariant across the data set. Because Bayesian

Belief Networks are based on the conditional probabilities associated with prior data sets,

a quality factor that does not vary in value cannot provide any discrimination in terms of

its e�ect on software quality variables being modeled. It is therefore appropriate to remove

111

from the model those factors that do not vary in value and thus are not useful in terms of

either assessment or prediction. The mean and variance of the input and intermediary nodes

modeled in each life cycle phase are discussed in detail in the subsections below. As the

analysis of mean and variance provides a broad but not a conclusive sense of the underlying

data, this section references other areas of this document where some of the wide-scale

implications of the data are explored in more detail.

4.1.1.1 Requirements Phase Variables

The mean and variance of the Requirements phase variables are presented in Table 4.1.

The personnel that comprised the development teams used to acquire software engineering

data were primarily intermediate-level software requirements developers. That is, software

development teams on the whole were sta�ed by engineers with some prior experience in the

elicitation and documentation of requirements. Of particular note is the lack of requirements

"experts", or skill level 4 engineers. The presence of software requirements experts and their

e�ect on the software quality are discussed in more detail in Section 4.3.7.

From a process perspective, almost all projects in the software engineering data set

speci�ed software requirements, and developed some form of validation criteria for acceptance

of the software product. The remainder of the requirements phase processes were largely

not performed across the set of projects. The most variant requirements processes are the

practices surrounding an evaluation or review of the developed requirements versus either the

112

Table 4.1: Mean and Variance of Requirements Phase Variables
Model Variable Samples Mean Variance
Requirements Level 1 28 0.1696 0.1014
Requirements Level 2 28 0.5208 0.1531
Requirements Level 3 28 0.2560 0.1121
Requirements Level 4 28 0.0536 0.0105
Specify Software Requirements 28 0.9286 0.0663
Evaluate Requirements With Customer 28 0.5714 0.2449
Update Requirements 28 0.1786 0.1467
Communicate Software Requirements 28 0.2143 0.1684
Determine Environmental Impact 28 0.2143 0.1684
Develop Release Strategy 28 0.2143 0.1684
Develop Validation Criteria 28 0.7857 0.1684
Evaluate Software Requirements 28 0.3571 0.2296
Requirements Correctness 28 0.9777 0.0044
Requirements Completeness 28 0.8018 0.0565

customer or traceability to the identi�ed customer needs. Intuitively, these two process areas

would seem to have a direct e�ect on the correctness and completeness of the requirements.

These will be analyzed further in Section 4.2.1.1.

The intermediary nodes of completeness and correctness reveal that the projects on the

whole were thorough in their requirements development e�orts. Both completeness and

correctness mean values were high, and with little variance, which indicates a consistency

across the various projects. This consistency can be detrimental in terms of the requirements

model structure. A lack of variance in these intermediary nodes has the potential to mask

or block the e�ects of the upstream parameters that may have otherwise had a stronger

inuence on the various software quality variables. The potential for altering the model

structure to remove requirements correctness and completeness as intermediary nodes is

discussed in Section 4.2.2.1.

113

4.1.1.2 Design Phase Variables

Table 4.2 contains the mean and variance values for the input and intermediary nodes

that comprise the Design life cycle phase. The distribution of skill is similar to that of

the requirements phase: a majority of intermediate software designers with some beginners

and few experts. The small proportion and variance associated with design experts calls

into question the signi�cance of the inuence of experienced designers on the quality factors

represented in the model.

Table 4.2: Mean and Variance of Design Phase Variables
Model Variable Samples Mean Variance
Design Level 1 28 0.1577 0.0855
Design Level 2 28 0.5506 0.1599
Design Level 3 28 0.2262 0.1135
Design Level 4 28 0.0655 0.0131
Develop Software Architecture 28 0.8571 0.1224
Develop Detailed Design 28 0.8571 0.1224
Verify Design 28 0.5714 0.2449
Design Interfaces 28 0.8571 0.1224
Design Traceability 28 0.3571 0.2296
Depth of Inheritance Tree 28 1.6071 1.2385
Design Expansion 28 0.7962 0.8486
Interface Format Expansion 19 0.9048 0.4741
Interface Protocol Expansion 18 1.1944 0.3650
Requirements Volatility 28 0.1511 0.0677
Design Correctness 14 0.9121 0.0219
Design Completeness 28 0.9856 0.0025

Those processes associated with documenting the software design were largely practiced

across the set of subject projects. The lesser practiced of the design processes, namely the

veri�cation of design and traceability were the most variant. In terms of design complexity,

114

there was signi�cant variance for all of the measures used. The increases the viability of

these metrics as discriminators for software quality.

As with the requirements phase, correctness and completeness of the software design were

both consistent across projects, and largely invariant. Thus, it is likely that the presence

of these nodes as intermediaries in the Bayesian network may mask signi�cant variations

in upstream parameters. Further analysis was performed (see Section 4.2.2.2) to assess the

necessity of these nodes in the network structure.

4.1.1.3 Implementation Phase Variables

Table 4.3 contains the mean and variance values for the input and intermediary nodes in

the Implementation life cycle phase. On the average, skill level in the implementation phase

was higher than that of the requirements and design phase. Nearly 90% of the developers

had some prior experience as authors of software. Also, the presence of experts was stronger

in the implementation phase, averaging nearly 1 in 5. The higher implementation skill is

not surprising since implementation is typically the focus when learning software. Beginning

software engineers start to learn a programming language and/or various methods of software

implementation long before they are introduced to the engineering of software through sound

requirements elicitation and design development. Thus, the quantity of experience with the

implementation aspect of software development is higher.

115

Table 4.3: Mean and Variance of Implementation Phase Variables
Model Variable Samples Mean Variance
Implementation Level 1 28 0.1190 0.0969
Implementation Level 2 28 0.4137 0.1872
Implementation Level 3 28 0.2827 0.1152
Implementation Level 4 28 0.1845 0.0944
Develop Software Units 28 1.0000 0.0000
Develop Unit Tests 28 0.2143 0.1684
Verify Software Units 28 0.4643 0.2487
Software Unit Traceability 28 0.3571 0.2296
Design Volatility 28 0.1689 0.0849
Implementation Correctness 28 0.8551 0.0378
Implementation Completeness 28 1.0000 0.0000

Two of the model inputs in the implementation phase can be eliminated due to a lack

of variance. The process step that includes the development of software units was practiced

by all projects. Since there is no variance in this process step across the set of project

data, this particular data input becomes useless within a Bayesian Belief Network. The

BBN requires variation in the a variable in order for values across input states to change

in the conditional probability tables. In addition, the intermediary node Implementation

Completeness, which measures the proportion of the designed software modules that were

captured in the implementation, was invariant over the set of software engineering data.

These two variables will be removed from the model.

116

4.1.1.4 Integration/Test Phase Variables

The distribution of skill in the Integration/Test Phase is more uniform than in the other

life cycle phases. That is, each of the skill levels is more equally represented for each devel-

opment project in the data set. Of particular note is the strong presence of testing experts.

The e�ect of this on the various aspects of software quality are analyzed in Section 4.3.

Several of the process inputs associated with the Integration and Test phase are not

useful in the model structure because they are invariant across the project data set. For

example, all of the software development projects tested their system, and so this process

area can add no value as a discriminator for software quality. As with the other phase

completeness measures, Test Completeness will need further analysis (performed in Section

4.2.2)to determine its e�ect on quality, and the extent to which it hides the inuence of

upstream variables.

4.1.2 Multicollinearity Analysis

Multicollinearity is a term that refers to the correlation between input variables in a sta-

tistical model. In other words, multicollinearity occurs when inputs are not orthogonal. The

primary concern with having dependencies among model inputs is over�tting. Over�tting is

a condition where there are more variables than orthogonal inputs that the model attempts

to �t. The result of over�tting is that the model predicts poorly for unknown data while �ts

117

Table 4.4: Mean and Variance of Integration/Test Phase Variables
Model Variable Samples Mean Variance
Test Level 1 28 0.2857 0.1446
Test Level 2 28 0.3393 0.1656
Test Level 3 28 0.1607 0.1021
Test Level 4 28 0.2143 0.1684
Develop Integration Strategy 28 0.2143 0.1684
Develop Regression Strategy 28 0.2143 0.1684
Integrate Software Units 28 1.0000 0.0000
Develop Integration Tests 28 0.0000 0.0000
Test Integrated Units 28 0.0000 0.0000
Regression Test Integrated Units 28 0.2143 0.1684
Develop System Test Strategy 28 1.0000 0.0000
Develop System Tests 28 0.7857 0.1684
Test System 28 1.0000 0.0000
Regression Test System 28 0.2143 0.1684
Test Completeness 28 0.8018 0.0565

well to the set of known data inputs. Multicollinearity can be easily detected by identifying

correlations between input variables in the model, and eliminating redundant variables.

This section reports the results of correlating the set of inputs used in this software

quality model in order to identify those inputs that are not orthogonal. These correlations

are calculated using the entire set of software engineering data acquired for this research

e�ort. The intent behind this analysis is to eliminate multicollinearity in the model, and

streamline the model structure. All correlations are calculated using Equation 3.10 described

in Section 3.3.2.2.

118

4.1.2.1 Multicollinearity Within Life Cycle Phases

For the Intuitive and Re�ned Model structures, model inputs are grouped by phase and

related to variables representing completeness and correctness in that phase. In this section,

a multicollinearity analysis is performed for model inputs within each life cycle phase. The

aim of this analysis is to identify those causal factors that can be consolidated because the

represent the same e�ect. The result is a more succinct model structure that is comprised

of orthogonal inputs.

Table 4.5 itemizes the correlation values between inputs to the Requirements Phase. An

inspection of the resulting correlation coe�cients reveals an opportunity for consolidation

of variables between three of the requirements phase practices: Determine Environmental

Impact, Develop Release Strategy, and Communicate Software Requirements. Interestingly,

while correlated with each other, each of these processes also are correlated with Require-

ments Level 4 variable. In other words, the presence of experts in eliciting and developing

requirements is associated with the actions of planning for the potential impact of the re-

quirements on the operating environment, prioritizing the requirements and mapping their

release, and establishing e�ective communication mechanisms with project stakeholders.

These practices could therefore be characterized as indicators of a more mature require-

ments development team.

The correlation values for input variables that comprise the design phase are captured

in Table 4.6. Not surprisingly, the practices of developing an architecture, a detailed design,

119

Table 4.5: Correlation of Requirements Phase Inputs
Variable Req Req Req Req Eval Updt Spec Det Dev Dev Eval Com

Lvl Lvl Lvl Lvl With Reqs SW Env Val Rlse SW SW
1 2 3 4 Cust Reqs Imp Crit Stgy Reqs Reqs

ReqLvl1 1.00
ReqLvl2 -0.42 1.00
ReqLvl3 -0.37 -0.65 1.00
ReqLvl4 -0.28 -0.36 0.38 1.00
EvalCust -0.18 0.11 -0.09 0.45 1.00
UpdtReqs -0.25 -0.32 0.34 0.89 0.40 1.00
SpecReqs 0.15 0.19 -0.20 -0.53 -0.24 -0.59 1.00
DetEnvIm -0.28 -0.36 0.38 1.00 0.45 0.89 -0.53 1.00
DevValCr 0.28 0.36 -0.38 -1.00 -0.45 -0.89 0.53 -1.00 1.00
DevRelSt -0.28 -0.36 0.38 1.00 0.45 0.89 -0.53 1.00 -1.00 1.00
EvalReqs 0.13 0.36 -0.42 -0.39 0.49 -0.35 0.21 -0.39 0.39 -0.39 1.00
ComReq -0.28 -0.36 0.38 1.00 0.45 0.89 -0.53 1.00 -1.00 1.00 -0.39 1.00

and the design of interfaces are all correlated. Intuitively, this is reasonable. A project that

requires some level of documentation of the design typically requires a complete design. As

the design practice variables model the same thing, they will be consolidated and repre-

sented in the model as a single variable, as described in Section 4.1.2.3. An analysis of the

input variable correlations in the Implementation Phase (see Table 4.7) does not reveal any

multicollinearity.

Table 4.8 captures the analysis of multicollinearity for model variables in the Integration

and Test Phase. Similar to the correlations that were revealed for the requirements phase,

there is a set of Integration and Test practices that is associated with the presence of Inte-

gration and Test experts (Test Level 4). In this case, the practices that deal with developing

a strategy for integration, and also the practices surrounding the planning and execution of

regression testing. It would seem that less skill/experience in Integration and Test would

be less likely to consider these practices as part of the testing regiment. Because of their

120

Table 4.6: Correlation of Design Phase Inputs
Variable Dsgn Dsgn Dsgn Dsgn Dev Dev Dsgn Vrfy Dsgn DIT Dsgn Req

Lvl Lvl Lvl Lvl SW Detl SW Dsgn Trac Expn Vol
1 2 3 4 Arch Dsgn I/Fs

DsgnLvl1 1.00
DsgnLvl2 -0.41 1.00
DsgnLvl3 -0.32 -0.70 1.00
DsgnLvl4 -0.19 -0.41 0.31 1.00
DevArch 0.22 0.31 -0.33 -0.66 1.00
DevDetDs 0.22 0.31 -0.33 -0.66 1.00 1.00
DsgnIFs 0.22 0.31 -0.33 -0.66 1.00 1.00 1.00
VrfyDsgn 0.10 -0.16 -0.06 0.50 -0.35 -0.35 -0.35 1.00
DsgnTrac 0.26 0.29 -0.50 -0.21 0.30 0.30 0.30 0.49 1.00
DIT -0.39 -0.02 0.21 0.48 -0.51 -0.51 -0.51 0.21 -0.07 1.00
DsgnExpn -0.04 0.29 -0.17 -0.40 0.32 0.32 0.32 -0.41 -0.06 -0.38 1.00
ReqVol 0.27 0.07 -0.23 -0.27 0.22 0.22 0.22 -0.10 0.07 -0.42 -0.02 1.00

Table 4.7: Correlation of Implementation Phase Inputs
Variable Imp Imp Imp Imp Vrfy Dev SW Dsgn

Lvl Lvl Lvl Lvl SW Unit Unit Vol
1 2 3 4 Unit Tsts Trac

ImpLvl1 1.00
ImpLvl2 -0.34 1.00
ImpLvl3 -0.32 -0.50 1.00
ImpLvl4 -0.19 -0.51 -0.08 1.00
VrfyUnit 0.18 0.06 -0.35 0.12 1.00
DevUnTst -0.20 -0.50 -0.05 0.96 0.04 1.00
UnitTrac 0.27 0.28 -0.34 -0.29 0.80 -0.39 1.00
DsgnVol 0.30 0.06 -0.22 -0.15 0.11 -0.30 0.25 1.00

multicollinearity, the variables representing Test experts and the Integration and Regression

Testing practices will be consolidated into a single model variable as described in Section

4.1.2.3.

Consider the model structure that represents the Intuitive Model and the Re�ned Model

(Figure 3.4 in Section 3.2.5.2). In order to completely analyze the e�ects of multicollinearity

in the model, the correlations between model variables that comprise the Intermediary Tier of

121

Table 4.8: Correlation of Integration/Test Phase Inputs
Variable Tst Tst Tst Tst Dev Dev Reg Dev Reg

Lvl Lvl Lvl Lvl Int Reg Tst Sys Tst
1 2 3 4 Stgy Stgy Int Tst Sys

TstLvl1 1.00
TstLvl2 -0.35 1.00
TstLvl3 -0.24 -0.30 1.00
TstLvl4 -0.39 -0.44 -0.26 1.00
IntStgy -0.39 -0.44 -0.26 1.00 1.00
RegStgy -0.39 -0.44 -0.26 1.00 1.00 1.00
RegTstInt -0.39 -0.44 -0.26 1.00 1.00 1.00 1.00
DevSysTst 0.39 0.44 0.26 -1.00 -1.00 -1.00 -1.00 1.00
RegTstSys -0.39 -0.44 -0.26 1.00 1.00 1.00 1.00 -1.00 1.00

the structure are presented in Table 4.9. As shown, measures of Requirements Completeness

are correlated with measures of Test Completeness. In other words, the extent to which each

project captured the customer needs in requirements was the extent to which those needs

were tested for correct operation. Thus, in the Intuitive and Re�ned model structures, these

variables are combined.

Table 4.9: Correlation of Correctness/Completeness Variables
Variable Req Des Imp Req Des Int/Test

Correct Correct Correct Complete Complete Complete
ReqCorrect 1.00
DesCorrect 0.17 1.00
ImpCorrect 0.04 0.54 1.00
ReqComplete -0.14 0.70 0.24 1.00
DesComplete -0.08 -0.15 0.13 -0.25 1.00
TstComplete -0.14 0.70 0.24 1.00 -0.25 1.00

122

4.1.2.2 Multicollinearity Analysis Across Life Cycle Phases

In Section 4.1.2.1, a multicollinearity analysis was performed among variables within a

life cycle phase in order to eliminate redundant variables in the Intuitive and Re�ned Model

structures. In the case of the Direct E�ects Model structure, no phase boundaries exist.

Thus, it is appropriate to perform a multicollinearity analysis of input variables across life

cycle phases, in order to consolidate those inputs that provide the same information to the

model.

Table 4.10 shows the correlation between inputs to the requirements phase and inputs

to the design phase. Multicollinearity does exist between variables in these phases. For the

process variables, veri�cation in the design phase is correlated to veri�cation activities in the

requirements phase, or Evaluating Requirements With Customer. Additionally, traceability

activities between the design and requirements phases are correlated. Thus, these variables

can be consolidated in the model structure as they represent identical e�ects.

In Table 4.11, a multicollinearity analysis is performed to identify any variables that

may be consolidated between the requirements phase model inputs and the implementation

phase model inputs. This table reveals a few opportunities. The variables associated with

Expert Requirements Leadership are all correlated to the practice of developing unit tests.

In addition, a correlation exists between practices in which artifacts are veri�ed in the two

phases. That is, in the software engineering data, all projects that practiced evaluating the

requirements with the customer also practiced the veri�cation of the software units. Finally,

123

Table 4.10: Correlation of Requirements Phase Inputs to Design Phase Inputs
Variable Dsgn Dsgn Dsgn Dsgn Dev Dev Dsgn Vrfy Dsgn DIT Dsgn Req

Lvl Lvl Lvl Lvl SW Detl SW Dsgn Trac Expn Vol
1 2 3 4 Arch Dsgn I/Fs

ReqLvl1 0.59 -0.07 -0.36 -0.20 0.22 0.22 0.22 -0.18 0.13 -0.32 0.25 -0.09
ReqLvl2 -0.09 0.45 -0.33 -0.37 0.28 0.28 0.28 0.11 0.36 -0.01 0.11 0.32
ReqLvl3 -0.37 -0.33 0.59 0.37 -0.30 -0.30 -0.30 -0.09 -0.42 0.16 -0.24 -0.21
ReqLvl4 -0.28 -0.39 0.42 0.84 -0.78 -0.78 -0.78 0.45 -0.39 0.50 -0.40 -0.25
EvalCust 0.10 -0.16 -0.06 0.50 -0.35 -0.35 -0.35 1.00 0.49 0.21 -0.41 -0.10
UpdtReqs -0.25 -0.35 0.38 0.75 -0.88 -0.88 -0.88 0.40 -0.35 0.50 -0.36 -0.25
SpecReqs 0.15 0.21 -0.23 -0.45 0.68 0.68 0.68 -0.24 0.21 -0.35 0.22 0.16
DetEnvIm -0.28 -0.39 0.42 0.84 -0.78 -0.78 -0.78 0.45 -0.39 0.50 -0.40 -0.25
DevValCr 0.28 0.39 -0.42 -0.84 0.78 0.78 0.78 -0.45 0.39 -0.50 0.40 0.25
DevRelSt -0.28 -0.39 0.42 0.84 -0.78 -0.78 -0.78 0.45 -0.39 0.50 -0.40 -0.25
EvalReqs 0.26 0.29 -0.50 -0.21 0.30 0.30 0.30 0.49 1.00 -0.07 -0.06 0.07
ComReq -0.28 -0.39 0.42 0.84 -0.78 -0.78 -0.78 0.45 -0.39 0.50 -0.40 -0.25

the practices of artifact traceability in both phases was performed in tandem. This, in

conjunction with the design traceability correlation identi�ed in Table 4.10 is an opportunity

for consolidation of all three traceability variables.

Table 4.11: Correlation of Requirements Phase Inputs to Implementation Phase Inputs
Variable Imp Imp Imp Imp Vrfy Dev SW Dsgn

Lvl Lvl Lvl Lvl SW Unit Unit Vol
1 2 3 4 Unit Tsts Trac

ReqLvl1 0.56 0.07 -0.35 -0.28 0.01 -0.28 0.13 0.22
ReqLvl2 -0.18 0.60 -0.26 -0.37 0.19 -0.36 -0.36 -0.01
ReqLvl3 -0.25 -0.61 0.66 0.40 -0.25 0.38 -0.42 -0.10
ReqLvl4 -0.20 -0.50 -0.05 0.96 0.04 1.00 -0.39 -0.30
EvalCust 0.10 -0.20 -0.31 0.52 0.66 0.45 0.49 0.02
UpdtReqs -0.18 -0.45 -0.04 0.86 0.13 0.89 -0.35 -0.27
SpecReqs 0.11 0.27 0.03 -0.51 -0.30 -0.53 0.21 0.16
DetEnvIm -0.20 -0.50 -0.05 0.96 0.04 1.00 -0.39 -0.30
DevValCr 0.20 0.50 0.05 -0.96 -0.04 -1.00 0.39 0.30
DevRelSt -0.20 -0.50 -0.05 0.96 0.04 1.00 -0.39 -0.30
EvalReqs 0.27 0.28 -0.35 -0.29 0.80 -0.39 1.00 0.25
ComReq -0.20 -0.50 -0.05 0.96 0.04 1.00 -0.39 -0.30

The correlation values between variables in the requirements phase and test phase are

shown in Table 4.12. As can be seen, multicollinearity exists between requirements phase

124

and test phase inputs. The set of requirements model inputs associated with the consoli-

dated Expert Requirements Leadership variable and the set of integration/test model inputs

associated with the consolidated Expert Integration/Test Leadership variable are correlated.

Thus, these variables can be further consolidated. In addition, a relationship exists between

the Develop Validation Criteria and Develop System Tests model inputs.

Table 4.12: Correlation of Requirements Phase Inputs to Integration/Test Phase Inputs
Variable Tst Tst Tst Tst Dev Dev Reg Dev Reg

Lvl Lvl Lvl Lvl Int Reg Tst Sys Tst
1 2 3 4 Stgy Stgy Int Tst Sys

ReqLvl1 0.66 -0.19 -0.19 -0.28 -0.28 -0.28 -0.28 0.28 -0.28
ReqLvl2 -0.27 0.66 -0.05 -0.36 -0.36 -0.36 -0.36 0.36 -0.36
ReqLvl3 -0.19 -0.46 0.32 0.38 0.38 0.38 0.38 -0.38 0.38
ReqLvl4 -0.39 -0.44 -0.26 1.00 1.00 1.00 1.00 -1.00 1.00
EvalCust -0.20 -0.11 -0.20 0.45 0.45 0.45 0.45 -0.45 0.45
UpdtReqs -0.35 -0.39 -0.23 0.89 0.89 0.89 0.89 -0.89 0.89
SpecReqs 0.21 0.23 0.14 -0.53 -0.53 -0.53 -0.53 0.53 -0.53
DetEnvIm -0.39 -0.44 -0.26 1.00 1.00 1.00 1.00 -1.00 1.00
DevValCr 0.39 0.44 0.26 -1.00 -1.00 -1.00 -1.00 1.00 -1.00
DevRelSt -0.39 -0.44 -0.26 1.00 1.00 1.00 1.00 -1.00 1.00
EvalReqs 0.06 0.32 0.01 -0.39 -0.39 -0.39 -0.39 0.39 -0.39
ComReq -0.39 -0.44 -0.26 1.00 1.00 1.00 1.00 -1.00 1.00

Table 4.13 shows the multicollinearity analysis for input variables in the design and im-

plementation phases. Consistent with the results encountered in the analysis of the require-

ments inputs, a correlation exists between traceability variables in these two phases. This

represents the only opportunity for consolidation of variables in comparing these two phases.

Similarly, Table 4.14 compares design variables to model inputs from the integration/test

phase. None of the correlations in that table warrant variable consolidation.

The multicollinearity analysis of variables in both the implementation and integration

and test phases are captured in Table 4.15. Consistent with �ndings in the other tables, the

125

Table 4.13: Correlation of Design Phase Inputs to Implementation Phase Inputs
Variable Imp Imp Imp Imp Vrfy Dev SW Dsgn

Lvl Lvl Lvl Lvl SW Unit Unit Vol
1 2 3 4 Unit Tsts Trac

DsgnLvl1 0.62 -0.01 -0.31 -0.28 0.13 -0.28 0.26 0.38
DsgnLvl2 -0.21 0.66 -0.31 -0.37 0.12 -0.39 0.29 -0.01
DsgnLvl3 -0.26 -0.61 0.68 0.37 -0.31 0.42 -0.50 -0.33
DsgnLvl4 -0.11 -0.47 -0.13 0.91 0.15 0.84 -0.21 0.02
DevArch 0.16 0.39 0.04 -0.75 -0.23 -0.78 0.30 0.24
DevDetDs 0.16 0.39 0.04 -0.75 -0.23 -0.78 0.30 0.24
DsgnIFs 0.16 0.39 0.04 -0.75 -0.23 -0.78 0.30 0.24
VrfyDsgn 0.10 -0.20 -0.31 0.52 0.66 0.45 0.49 0.02
DsgnTrac 0.27 0.28 -0.35 -0.29 0.80 -0.39 1.00 0.25
DIT -0.07 -0.33 -0.02 0.56 0.20 0.50 -0.07 -0.22
DsgnExpn -0.09 0.41 -0.05 -0.43 -0.23 -0.40 -0.06 -0.16
ReqVol -0.01 0.33 -0.15 -0.29 -0.04 -0.25 0.07 0.17

Table 4.14: Correlation of Design Phase Inputs to Integration/Test Phase Inputs
Variable Tst Tst Tst Tst Dev Dev Reg Dev Reg

Lvl Lvl Lvl Lvl Int Reg Tst Sys Tst
1 2 3 4 Stgy Stgy Int Tst Sys

DsgnLvl1 0.46 -0.08 -0.09 -0.28 -0.28 -0.28 -0.28 0.28 -0.28
DsgnLvl2 0.16 0.40 -0.19 -0.39 -0.39 -0.39 -0.39 0.39 -0.39
DsgnLvl3 -0.47 -0.27 0.36 0.42 0.42 0.42 0.42 -0.42 0.42
DsgnLvl4 -0.34 -0.39 -0.18 0.84 0.84 0.84 0.84 -0.84 0.84
DevArch 0.31 0.34 0.21 -0.78 -0.78 -0.78 -0.78 0.78 -0.78
DevDetDs 0.31 0.34 0.21 -0.78 -0.78 -0.78 -0.78 0.78 -0.78
DsgnIFs 0.31 0.34 0.21 -0.78 -0.78 -0.78 -0.78 0.78 -0.78
VrfyDsgn -0.20 -0.11 -0.20 0.45 0.45 0.45 0.45 -0.45 0.45
DsgnTrac 0.06 0.32 0.01 -0.39 -0.39 -0.39 -0.39 0.39 -0.39
DIT -0.34 -0.05 -0.17 0.50 0.50 0.50 0.50 -0.50 0.50
DsgnExpn 0.20 0.18 0.04 -0.40 -0.40 -0.40 -0.40 0.40 -0.40
ReqVol -0.03 0.42 -0.18 -0.25 -0.25 -0.25 -0.25 0.25 -0.25

Develop Unit Tests variable is completely correlated to the set of variables that comprise

the Expert Integration/Test Leadership consolidated variable. This is the only signi�cant

correlation between inputs to these phases.

126

Table 4.15: Correlation of Implementation Phase Inputs to Integration/Test Phase Inputs
Variable Tst Tst Tst Tst Dev Dev Reg Dev Reg

Lvl Lvl Lvl Lvl Int Reg Tst Sys Tst
1 2 3 4 Stgy Stgy Int Tst Sys

ImpLvl1 0.65 -0.29 -0.15 -0.20 -0.20 -0.20 -0.20 0.20 -0.20
ImpLvl2 -0.05 0.54 0.02 -0.50 -0.50 -0.50 -0.50 0.50 -0.50
ImpLvl3 -0.15 -0.08 0.35 -0.05 -0.05 -0.05 -0.05 0.05 -0.05
ImpLvl4 -0.42 -0.37 -0.26 0.96 0.96 0.96 0.96 -0.96 0.96
VrfyUnit -0.10 0.13 -0.09 0.04 0.04 0.04 0.04 -0.04 0.04
DevUnTst -0.39 -0.44 -0.26 1.00 1.00 1.00 1.00 -1.00 1.00
UnitTrac 0.06 0.32 0.01 -0.39 -0.39 -0.39 -0.39 0.39 -0.39
DsgnVol 0.14 0.25 -0.10 -0.30 -0.30 -0.30 -0.30 0.30 -0.30

4.1.2.3 Summary of Model Variable Consolidation

The analysis of the initially proposed model structure has revealed opportunities for

consolidation of model variables due to multicollinearity. In all cases, the variables that were

consolidated were found to be highly correlated in the Multicollinearity analysis performed

in Section 4.1.2. That is, for all projects used as data, one or more of the variables were

essentially modeling the same information. In the Requirements phase, for example, three

of the process variables (Communicate Software Requirements, Determine Environmental

Impact, and Develop Release Strategy) and one of the skill variables (Requirements Level

4) were correlation with a correlation coe�cient of 1.0, the maximum value of a correlation

coe�cient. Thus, those variables model the same input, and can be consolidated into a single

variable, which reduces the complexity of the model.

Table 4.16 lists, for each life cycle phase, the variables that were found to be correlated

based on the analyses in Section 4.1.2.1, and the name of the variable that will represent

their consolidation. In the requirements phase, requirements experts (Requirements Level

127

4) brought certain practices that were not present in projects without those experts. The

consolidation of these variables is characterized by the variable name "Expert Requirements

Leadership" as those practices are indicative of that expert presence. A similar situation

exists in the Integration and Test Phase. The presence of integration/test experts were

associated with planning and structure in the integration/test process. The consolidated

variable in that phase is labeled "Expert Integration/Test Leadership". In the Design phase,

all three of the design practices were correlated, and so provide an opportunity for combining

variables. The variable "Develop Design" will be used to characterize the combination of

architectural, detailed, and interface designs.

Table 4.16: Listing of Consolidated Model Variables by Life Cycle Phase
Life Cycle Correlated Consolidated
Phase Model Variables Variable Name
Requirements Communicate Software Requirements Expert Requirements

Determine Environmental Impact Leadership
Develop Release Strategy
Requirements Level 4

Design Develop Software Architecture Develop Design
Develop Detailed Design
Design Interfaces

Integration/ Develop Integration Strategy Expert Integration/Test
Test Develop Regression Strategy Leadership

Regression Test Integrated Units
Regression Test System
Test Level 4

Phase Outputs Requirements Completeness Requirements and Test
Test Completeness Completeness

Table 4.17 lists the variables across life cycle phases that were found to be correlated

based on the analysis in Section 4.1.2.2, and the name of the variable that will represent

128

their consolidation. It is encouraging to see themes emerge in the practices across life cycle

phases. For example, traceability of work products was a practice that either occurred

or did not occur in each project, and was not limited to a speci�c phase. Thus, because

they were highly correlated, the phase-speci�c practices of traceability were consolidated

into a single traceability variable. A similar situation existed in terms of work product

veri�cation. Projects that practiced verifying requirements with the customer also practiced

veri�cation of design and veri�cation of the implementation through the execution of unit

tests. Addressing the consolidated Requirements and Testing Leadership variables identi�ed

in Section 4.1.2.1, further analysis revealed that they were correlated, and can be represented

as a single variable in the model.

Table 4.17: Listing of Consolidated Model Variables Across Life Cycle Phases
Life Cycle Correlated Consolidated
Phase Model Variables Variable Name
Requirements Evaluate Requirements Life Cycle
Design Design Traceability Traceability
Implementation Software Unit Traceability
Requirements Evaluate Requirements w/Customer Requirements/Design
Design Verify Design Veri�cation
Requirements Develop Validation Criteria System Test
Integration/Test Develop System Tests Strategy
Requirements Expert Requirements Leadership Expert Requirements
Implementation Develop Unit Tests and Testing Leadership
Integration/Test Expert Integration/Test Leadership

The consolidation of these variables applies to all of the model structures proposed in

this research. In addition to the three Bayesian models being compared in this research, the

variables used in the competing models described in Section 3.3.3 will also be subject to the

129

re�nements described in this section. Multicollinearity can negatively a�ect the predictive

accuracy of the model by over�tting to the data because multiple instances of the same

measure weights that measure more in the model's �t. In the case of the Least Squares

Regression model, it can also render the prediction incalculable because multicollinearity

can lead to a nonsingular matrix which cannot perform the inversion operation (produces a

determinant of 0) required for prediction.

4.2 Analysis of the Intuitive Model Structure

This section provides an analysis of the e�ects of the various causal factors of skill and

experience, development process, and problem complexity, on the quality of the �nal software

product. As part of the development of the Methodology (see Section 3.2.5.2), a software

quality model was proposed in Figure 3.4 that captured the intuitive relationship between the

measures of software quality and their associated driving factors. The focus of this section

is to provide a quantitative analysis of the Intuitive Model structure in order to validate

those logical cause-e�ect relationships and, where possible, eliminate any any irrelevant

relationships in order to simplify the model structure. This is the mechanism by which the

Re�ned model structure will be derived from the Intuitive Model Structure.

The analysis and re�nement of the model structure is based on the determination of cor-

relation between variables within the model structure, and the validation of each correlation

through the application of the Hypothesis Test detailed in Section 3.3.2.2. In Section 4.1.1,

130

the mean and variance of model variables was scrutinized in order to eliminate those vari-

ables from the model that are invariant, and therefore provide no inuence. Then, the model

variables in each life cycle phase were analyzed for any multicollinearity (see Section 4.1.2).

The approach to identifying and verifying correlations is now applied to the Intuitive Model

structure and a commentary is provided on the expectations and actual results of the inu-

ences on the various aspects of software quality. This section concludes with a presentation

of the Re�ned Model structure based on the results of this analysis.

4.2.1 Analysis of the Input Tier Model Structure

This section provides an analysis of the Intuitive Model structure proposed in Section

3.2.5.2 and attempts to verify the cause-e�ect relationship between input and intermediary

model nodes. In the three-tiered Intuitive Model of software quality, this section validates

the �rst stage of relationships: analyzing the e�ect of model inputs on life cycle phase cor-

rectness and completeness. The input nodes are the proposed driving factors of software

quality, derived from the skill/experience, process, and problem complexity categories. The

intermediary nodes in the model are those nodes that represent correctness and completeness

at each phase of the development life cycle. These nodes serve as the discriminating factors

in the determination of software quality. The intent of this section is to verify that the logical

cause-e�ect relationships between drivers of software quality, and the discriminators of soft-

ware quality represented by correctness and completeness nodes are valid. The mechanism

131

for this analysis is establishing a statistical correlation through calculation of a correlation

coe�cient ans veri�cation of that correlation through a hypothesis test. This approach is

inline with Kan's criteria for establishing a cause-e�ect relationship described in Section 2.3.

The expectation of the analysis of the model structure is that the various causal factors

identi�ed in each phase with have a signi�cant, positive correlation with the measures of

phase completeness and/or correctness. Correctness in a life cycle phase is a measure of

the percentage of the work product for that phase (e.g., requirements speci�cation, design

document)that did not require correction after baseline. Similarly, the Completeness of a

life cycle phase is a measure of the percentage of the work product for that phase that was

originally baselined (not added after baseline). In the case of personnel skill and experience,

the expectation is that the correlation with phase correctness/completeness will increase as

the skill level increases. That is, the relationship between requirements skill and require-

ments correctness/completeness improves as the skill level being considered improves. For

processes, a positive correlation is expected as each identi�ed process has been deemed im-

portant to software project success in both the CMMI Version 1.1 [Ins02] and the ISO/IEC

15504 [ISO98]. Software complexity measures are expected to have an inverse relationship

with phase correctness and completeness. That is, as complexity increases, it is expected

that quality will decrease.

132

4.2.1.1 Requirements Phase Analysis

Table 4.18 captures the correlation of the model's requirements phase variables to the

correctness of the requirements. Requirements correctness is measured as the proportion of

software requirements against which no faults were found after the requirements baseline.

Surprisingly, correctness in the requirements phase is not signi�cantly a�ected by either

requirements skill or the majority of the requirements processes. The Evaluate Software

Requirements process, and the Evaluate Requirements With Customer process provide a

signi�cant, albeit negative, e�ect. In the Evaluate Software Requirements process, software

requirements are traced to system requirements and/or customer needs, and in the Evaluate

Software Requirements With Customer process, the requirements are validated by being

communicated to the customer, and revising if necessary. Intuitively, these practices should

improve the correctness of the requirements document, and reduce the number of required

changes after document release. These results suggest an opposite e�ect - that these practices

reduce the correctness of the requirements speci�cation.

The e�ects of requirements skill/experience and processes on requirements completeness

is shown in Table 4.19. Requirements Completeness is the percentage of �nal product re-

quirements that were originally baselined in the requirements phase. The inuence of the

causal factors in the requirements phase were mostly as expected, particularly with respect

to the requirements processes. That is, they were positively correlated to the requirements

completeness measure.

133

Table 4.18: Correlation of Requirements Variables to Requirements Correctness
Model Input Correctness Test Signi�cant?
Variable Correlation Stat (t) (t > 1.6726)
Requirements Level 1 -0.1289 0.9549 No
Requirements Level 2 0.0233 0.1715 No
Requirements Level 3 0.0415 0.3049 No
Expert Requirements Leadership 0.1758 1.3120 No
Specify Software Requirements -0.0933 0.6890 No
Evaluate Requirements w/Customer -0.2574 1.9572 Yes
Update Requirements 0.1569 1.1676 No
Develop Validation Criteria -0.1758 1.3120 No
Evaluate Software Requirements -0.4163 3.3648 Yes

The signi�cant positive e�ect of evaluating the requirements with the customer is encour-

aging, despite the seemingly adverse e�ect this practice had on requirements correctness.

One advantage to measuring quality in the requirements phase with both correctness and

completeness is that it provides insight into two di�erent types of changes: additions and

faults. Requirements that do not su�ciently cover the customer's needs require additions.

Requirements that are poorly written, or are simply incorrect are faults. This analysis re-

veals that customer involvement in the requirements phase signi�cantly reduces the number

of additions required to the requirements speci�cation, but adversely e�ects the quality in

the writing and correctness of the requirements. It could be argued that customers are not

as skilled in the formal language required to author requirements speci�cations, and the

inuence of that lack of requirements skill is reected in the quality of the speci�cation's

statements.

In terms of associating the requirements skill of the software engineering team to re-

quirements completeness, the presence of requirements "experts", or Expert Requirements

134

Leadership has a signi�cant positive e�ect on the completeness of the requirements. Recall

from Section 4.1.2.3 that this model variables encompasses Requirements Level 4 from the

skill variables, and three of the requirements process variables. It is not surprising that

a project that has an expert available for the elicitation and speci�cation of software re-

quirements would be more likely to completely capture the customer needs at the time of

requirements baseline.

Table 4.19: Correlation of Requirements Variables to Requirements Completeness
Model Input Completeness Test Signi�cant?
Variable Correlation Stat (t) (t > 1.6726)
Requirements Level 1 -0.0966 0.7130 No
Requirements Level 2 0.0267 0.1961 No
Requirements Level 3 -0.0463 0.3408 No
Expert Requirements Leadership 0.3493 2.7390 Yes
Specify Software Requirements -0.1479 1.0991 No
Evaluate Requirements w/Customer 0.6013 5.5303 Yes
Update Requirements 0.3121 2.4141 Yes
Develop Validation Criteria -0.3493 2.7390 Yes
Evaluate Software Requirements 0.0083 0.0611 No

The correlation of requirements causal factors to requirements phase correctness and

completeness deviated from what was expected. Only the presence of requirements experts

had a signi�cant e�ect in terms of the teams's collective requirements skill. In terms of

process, the results were mixed. Requirements Completeness was signi�cantly a�ected by

6 of the 8 requirements processes where requirements correctness was only a�ected by 2

processes. It could be interpreted that requirements process is more suited to identifying all

of the customer needs and their associated requirements than it is conducive to expressing

those requirements correctly.

135

4.2.1.2 Design Phase Analysis

The correlation of factors of design skill, process, and complexity to correctness in the

software's design is shown in Table 4.20. Design correctness measures the proportion of

design modules in which design faults were not found after the design was baselined. The

majority of skill and process factors had a signi�cant inuence on design correctness. The

variables associated with design size and complexity interestingly had no e�ect on the faults

associated with the design.

The e�ects of the design skill variables on design correctness are as expected. The

increasing presence of more skilled and experienced software designers (Skill Levels 3 and 4)

is positively correlated with correctness in the design. Similarly, the increasing presence of

less skilled software designers (Skill Level 2) is negatively correlated with design correctness,

indicating that more design faults are introduced by these personnel. This premise must be

explored further, however, as the same dramatic deviation was not noticed for the correlation

values associated with Skill Level 1. In a software development e�ort, the minimally skilled

(e.g., Skill Level 1) are easily recognized, and often assigned more trivial aspects of the design

and implementation in order to improve their individual skill/experience. However, those

with a marginal skill set or with a small amount of experience (e.g., Skill Level 2) are not as

appropriately allocated to easier tasks. A developer with basic competence in design is often

assigned an equal share of the development responsibilities with his/her more highly skilled

colleagues. It is proposed that those developers that have a small amount of software design

136

skill (Skill Level 2) are given software development tasks that are inappropriately matched

to their skill/experience level. For that reason, the increased presence of Skill Level 2 has

an adverse negative impact on the quality of the software development product.

While all of the design process variables had a signi�cant impact on the correctness of the

design, only the practice of design veri�cation is positively correlated with correctness in the

design as expected. The Develop Design process, which is a consolidation of three software

design processes (Develop Software Architecture, Develop Detailed Design, and Design Inter-

faces), focuses on the traditional analysis of requirements and methodical decomposition of

the design into manageable and documented components. This practice negatively a�ected

the percentage of designed components that remained unchanged after baseline. This result

is unexpected.

Curiously, the measures of design complexity had no signi�cant e�ect on the correctness

of the design. This is a deviation from the expected inverse relationship between complexity

and correctness. That is, as design complexity increased, it was expected that the correctness

of the design would decrease. This is not too alarming given the relatively simple nature of

the underlying software engineering data. These results are based on small-scale software

projects with typically less than 30 classes to develop, and few interfaces to manage. While

the selected design complexity measures were normalized by design size to provide a basis of

comparison, there is no highly complex or large-scale software engineering measures available

in this data set. Thus, it is not surprising that the e�ect of complexity is limited by the lack

of complexity in the underlying data set.

137

Table 4.20: Correlation of Design Variables to Design Correctness
Model Input Correctness Test Signi�cant?
Variable Correlation Stat (t) (t > 1.7010)
Design Level 1 0.0454 0.2317 No
Design Level 2 -0.5128 3.0461 Yes
Design Level 3 0.4325 2.4456 Yes
Design Level 4 0.4134 2.3153 Yes
Develop Design -0.3758 2.0677 Yes
Verify Design 0.5092 3.0164 Yes
Design Traceability -0.4184 2.3489 Yes
Depth of Inheritance Tree -0.2589 1.3665 No
Design Expansion -0.2040 1.0627 No
Interface Format Expansion 0.0868 0.3896 No
Interface Protocol Expansion -0.3367 1.5989 No
Requirements Volatility -0.0713 0.3646 No
Requirements Correctness 0.1078 0.5531 No

Design completeness is the the proportion of the originally baselined design that is present

in the software's �nal design. Table 4.21 captures the correlation of the design phase input

variables to design completeness. The skill of the software designers had little e�ect on the

design completeness, save for the negative impact of those personnel with Design Level 2.

As with Design Correctness, this inuence is attributed to the inappropriate assignment of

design tasks to these developers with marginal design skill and experience.

From a design process perspective, only two of the practices had a measurable e�ect on

Design Completeness. As with Design Correctness, the Verify Design process was positively

correlated with the completeness of the design. This is intuitively expected as explicitly

verifying the design should allow the development team to more easily identify requirements

and customer expectations that were unmet. The Design Traceability practice, in which

elements of the design are traced to software requirements has an unexpected negative cor-

138

relation with Design Completeness. Logically, this practice should increase a development

team's ability to account for all requirement, and the reason for these results is unknown.

Table 4.21: Correlation of Design Variables to Design Completeness
Model Input Completeness Test Signi�cant?
Variable Correlation Stat (t) (t > 1.6970)
Design Level 1 0.0454 0.5178 No
Design Level 2 -0.5128 2.0481 Yes
Design Level 3 0.4325 1.3896 No
Design Level 4 0.4134 1.4686 No
Develop Design -0.3758 0.9372 No
Verify Design 0.5092 2.0672 Yes
Design Traceability -0.4184 2.5310 Yes
Depth of Inheritance Tree -0.2589 1.0393 No
Design Expansion -0.3653 2.0764 Yes
Interface Format Expansion -0.5571 3.1463 Yes
Requirements Volatility -0.0713 0.8089 No
Requirements Completeness 0.7276 5.6121 Yes

An inverse relationship exists between design complexity variables that were found to

be a signi�cant inuence, and design completeness. This is intuitive as an increase in com-

plexity should logically result in a decrease in quality. It should be noted that the e�ect of

volatility in the requirements was virtually negligible in terms of both design completeness

and correctness. Upstream changes to the requirements document would seem to have an

e�ect of the quality of the design. This could be the result of relatively minor changes in

the requirements after baseline.

In terms of signi�cance, Design Correctness is a�ected most by the skill of the design team,

and by the practice of design veri�cation. Design Completeness is a�ected most strongly by

completeness in the requirements phase, and also is signi�cantly a�ected by the Verify Design

139

practice. The value of reviewing a developed software engineering artifact has surfaced in the

analysis of both the requirements and design phase correctness and completeness variables.

The review practices for both phases have the most signi�cant impact on the quality of these

artifacts from a process perspective.

4.2.1.3 Implementation Phase Analysis

Implementation is the phase of software development where the design is transformed

into an operational software product. Correctness in this phase refers to the proportion of

baselined source code that was unchanged by any discovered faults. Table 4.22 captures the

e�ects of the identi�ed causal factors of the Implementation Phase on the Implementation

Correctness value. Almost all of the variables that characterize skill, process, and complexity

in the implementation phase were found to be a signi�cant inuence on the Implementation

Correctness.

The e�ects of implementation skill on correctness are as expected with the more skilled

developers having a positive correlation with correctness, and the less skilled developers

having a negative correlation with correctness. The interpretation of these relationships

is that an increasing presence of more skilled developers increases the correctness of the

source code and decreases the number of code faults while an increasing presence of less

skilled developers decreases the correctness and increases the number of code faults. Of

particular note is the unusually high negative correlation of those personnel with Skill Level

140

2 to the correctness of the implementation. Consistent with the results found in the analysis

of design factors in Section 4.2.1.2, this is likely the result of software developers with a

marginal implementation skill set being assigned implementation tasks that are inconsistent

with their skill level.

Table 4.22: Correlation of Implementation Variables to Correctness
Model Input Correctness Test Signi�cant?
Variable Correlation Stat (t) (t > 1.7010)
Implementation Level 1 -0.3768 2.0743 Yes
Implementation Level 2 -0.7576 5.9192 Yes
Implementation Level 3 0.3673 2.0138 Yes
Implementation Level 4 0.5968 3.7925 Yes
Develop Unit Tests 0.6452 4.3064 Yes
Verify Software Units -0.2098 1.0940 No
Software Unit Traceability -0.6421 4.2707 Yes
Design Volatility -0.4400 2.4982 Yes
Design Correctness 0.6639 4.5263 Yes

The e�ects of Implementation Phase process on implementation correctness is surprising.

In the Requirements and Design life cycle phases, practices that involved the veri�cation of

work products had a signi�cant and (often) positive e�ect on the correctness and complete-

ness characterized in each phase. In implementation, the practice of veri�cation is not a

signi�cant inuence, yet the development of unit tests is highly correlated to correctness in

the source code implementation. It is proposed that the Verify Software Units practice was

too vague in its description as veri�cation can mean both unit testing and peer review. The

development of unit tests is positively correlated to implementation correctness, and so it

is reasonable to infer that execution of those tests also positively a�ects correctness (as it

is unlikely that unit test were developed and not executed. Unfortunately, the signi�cance

141

of the "Verify Software Units" practice it seems was adversely a�ected by an ambiguous

de�nition.

4.2.1.4 Integration/Test Phase Analysis

Table 4.23 captures the correlation between the skill and process variables in the In-

tegration/Test phase of the software life cycle, and the Test Completeness measure. Test

Completeness measures the percentage of requirements that are functionally veri�ed in the

software test. From a skill perspective, only Expert Integration/Test Leadership (a combi-

nation of skill and process variables), has a signi�cant positive e�ect on the completeness of

the test. Thus the increasing presence of integration and testing experts, and the processes

associated with those experts, increases the quality of the testing artifacts in the form of the

requirements coverage of the software tests. Similar to the results from the analysis of the

Requirements Phase in Section 4.2.1.1, the presence of experts is an indication of leadership

within the testing team, and is reasonable to infer as the driving factor.

Table 4.23: Correlation of Integration/Test Variables to Completeness
Model Input Completeness Test Signi�cant?
Variable Correlation Stat (t) (t > 1.6726)
Test Level 1 -0.0400 0.2941 No
Test Level 2 -0.1505 1.1188 No
Test Level 3 -0.2091 1.5717 No
Expert Integration/Test Leadership 0.3493 2.7390 Yes
Develop System Tests -0.3493 2.7390 Yes

142

4.2.2 Analysis of the Intermediary Tier Model Structure

This section analyzes the second stage of the three-tier Bayesian model for software

quality shown in Figure 3.4. The intent of this analysis is to validate the proposed cause-

e�ect relationship between correctness and completeness in each life cycle phase, and each

modeled software quality variable. Phase correctness is measured as the percentage of phase

products that were produced, and remained unchanged due to faults after phase completion.

Phase completeness is measured as the proportion of the �nal phase products that were

originally baselined. The intended focus of this analysis is a determination of signi�cance.

That is, what is level of inuence of the correctness and completeness measures of each life

cycle phase on the measured elements of software quality.

Intuitively, it is expected that phase correctness and completeness will be positively

correlated with measures of software quality. That is, for increasing values of correctness

and completeness in any life cycle phase, it is expected that a given quality measure will also

increase in value. This implies that writing correct and complete artifacts for that phase

had an inuence on the quality metric being considered. Negative correlations have di�erent

meanings for each correctness/completeness value, and will be discussed as they occur in

the subsections below. It should also be noted that for some software quality variables, the

various measures of phase completeness and correctness did not vary in value across the

project samples, and thus have no e�ect in predicting values of software quality. In these

143

cases, the software quality variables were simply not included in the correlation tables as

they added no value to the results.

4.2.2.1 E�ects of Requirements Phase Correctness and Completeness

Table 4.24 captures the correlation and signi�cance test results for the e�ect of require-

ments correctness on the various measures of software quality. Requirements correctness

was found to be a signi�cant inuence on 5 of the software quality variables, and positively

correlated for each of these. This implies that a development team's ability to accurately

capture and baseline requirements has a positive e�ect on these 5 software quality variables.

Functional Adequacy, Data Encryption, and E�ciency Compliance were all highly inuenced

by correctness in the requirements.

Completeness in the requirements phase reects the ability of the development team to

adequately address the customer's needs in the initial baseline. The correlation values and

associated signi�cance between software quality variables and Requirements Completeness

is captured in Table 4.25. Of the 25 software quality measures evaluated in this analysis, 11

were found to be signi�cantly inuenced by requirements completeness.

The expectation of the e�ect of requirements completeness intuitively is that it would

have a positive correlation to a given software quality variable, thereby indicating that estab-

lishing a complete initial requirements baseline. This gives a development team a consistent

foundation of analyzed customer needs and expectations that changes little, and thus allows

144

Table 4.24: Correlation of Requirements Correctness to Software Product Quality
Software No. Correctness Test Critical Signi�cant?
Quality Variable Samps Correlation Stat(t) Value(cv) (t > cv)
Suitability
Functional Adequacy 28 0.9967 8.83E1 1.6726 Yes
Functional Completeness 28 -0.1509 1.1218 1.6726 No
Functional Coverage 28 0.1278 0.9469 1.6726 No
Speci�cation Stability 28 0.1863 1.3937 1.6726 No
Accuracy 9 -0.3001 1.2585 1.7340 No
Precision 9 -0.1170 0.4714 1.7340 No
Data Exchangeability 13 0.2631 1.3358 1.7060 No
Interface Consistency 9 0.4851 2.2188 1.7340 Yes
Access Auditability 7 0.6455 2.9277 1.7610 Yes
Data Encryption 2 1.0000 N/A 2.1320 Yes
Functional Compliance 5 0.2811 0.8286 1.8120 No
E�ciency
E�ciency Compliance 3 1.0000 1.34E8 1.9430 Yes
Maintainability
Data Logging 12 -0.1505 0.7457 1.7060 No
Portability
Software Operability 13 0.0037 0.0181 1.7060 No
Hardware Operability 7 -0.3037 1.1923 1.7460 No

for consistency in the downstream phases. While 6 of the software quality measures were

determined to be positively correlated to requirements completeness, 5 of them were neg-

atively correlated. A negative correlation does not imply that requirements completeness

adversely impacted quality. Rather, a negative correlation is an indication of the di�culty

in gathering requirements in that particular quality area.

Recall from the Multicollinearity analysis (Section 4.1.2) that Requirements Complete-

ness and Integration/Test Phase Completeness were combined as variables. Thus, the results

captured in Table 4.25 apply to that variables as well. Completeness in the Integration/Test

145

phase describes the extent to which the developed software tests cover the requirements that

are to be veri�ed. A positive correlation to a software quality attribute is an indication

that the ability to verify that quality need was instrumental in that quality attribute being

present in the �nal software product. A negative correlation implies an inverse relationship:

the more comprehensive the test, the less requirements within that quality attribute that

are veri�ed. A negative correlation is more a commentary on implementation of that quality

attribute than the quality of the test. That is, it is reasonable to infer that a more thorough

test would be detrimental to a software product that was poorly implemented, or even an

indication of a quality attribute that is di�cult to implement as speci�ed.

Consider some of the areas of software quality that are negatively correlated with software

quality: Precision, User Cancelability, Failure Avoidance. These are typically the types of

details that are rarely captured at the outset by an analysis of the customer's needs, but

rather begin to surface as the design matures. The various approaches to avoiding failure,

for example, become much more clear as a design begins to shape what kinds of failures

might occur. As another example, the requirements for precision of data items evolve as

the de�nition of interfaces evolves during the design process. Thus, it is reasonable to infer

that the nature of those 5 software quality attributes lend themselves more to additional

requirements after the speci�cation has been baselined, and therefore are negatively and

signi�cantly correlated to requirements completeness.

146

Table 4.25: Correlation of Requirements and Test Completeness to Software Product Quality
Software No. Completeness Test Critical Signi�cant?
Quality Variable Samps Correlation Stat(t) Value(cv) (t > cv)
Suitability
Functional Adequacy 28 -0.1231 0.8945 1.6726 No
Functional Completeness 28 1.0000 N/A 1.6726 Yes
Functional Coverage 28 0.9616 5.0408 1.6726 Yes
Speci�cation Stability 28 0.0214 0.1571 1.6726 No
Accuracy 9 0.1684 0.6834 1.7340 No
Precision 9 -0.5370 2.5465 1.7340 Yes
Data Exchangeability 13 0.0318 0.1556 1.7060 No
Interface Consistency 9 -0.2692 1.1180 1.7340 No
Access Auditability 7 -0.6752 3.1706 1.7610 Yes
Access Controllability 8 0.5900 2.7341 1.7460 Yes
Functional Compliance 5 -0.8880 5.4632 1.8120 Yes
Reliability
Failure Avoidance 8 -0.6467 3.1721 1.7460 Yes
Incorrect Op Avoidance 5 -0.2489 0.7267 1.8120 No
Restorability 7 0.8382 5.3251 1.7610 Yes
E�ciency
E�ciency Compliance 3 -0.0192 0.0383 1.9430 No
Usability
User Cancelability 3 -0.7868 3.1225 1.8600 Yes
Status Monitoring 4 0.2483 0.7251 1.8120 No
Usability Compliance 7 0.7705 4.1868 1.7610 Yes
Maintainability
Data Logging 12 0.4030 2.1571 1.7060 Yes
Portability
Software Operability 13 0.0088 0.0430 1.7060 No
Hardware Operability 7 0.1857 0.7070 1.7460 No

4.2.2.2 E�ects of Design Phase Correctness and Completeness

Table 4.26 captures the e�ects of design correctness on the various indicators of software

quality. Recall that design correctness represents the proportion of the baselined design

against which no faults were identi�ed. Intuitively, fewer design faults should lead to higher

147

quality, and so the expectation is that any signi�cant correlations would be positive. Two of

the system-level quality variables, Functional Implementation Completeness and Coverage,

are the only ones signi�cantly positively a�ected by correctness in the design. This is encour-

aging in that it reinforces the expectation in terms of the positive e�ect that correctness in

the design has on the quality of the delivered system. However, four other quality variables

were found to be signi�cantly inuenced by design correctness, but the correlations were

negative. The cause for this is unclear.

Table 4.26: Correlation of Design Correctness to Software Product Quality
Software No. Correctness Test Critical Signi�cant?
Quality Variable Samps Correlation Stat(t) Value(cv) (t > cv)
Suitability
Functional Adequacy 28 0.1681 0.8355 1.7060 No
Functional Completeness 28 0.7536 5.8457 1.7010 Yes
Functional Coverage 28 0.7662 6.0803 1.7010 Yes
Speci�cation Stability 28 -0.0158 0.0804 1.7010 No
Precision 9 -0.8660 3.4641 1.9430 Yes
Data Exchangeability 13 -0.9751 1.52E1 1.7610 Yes
Interface Consistency 9 -0.0504 0.1237 1.8600 No
Functional Compliance 5 -0.9503 8.6330 1.8120 Yes
Reliability
Failure Avoidance 8 -0.4540 1.2481 1.8600 No
E�ciency
E�ciency Compliance 3 -0.3054 0.6415 1.9430 No
Usability
Usability Compliance 7 0.1557 0.5460 1.7610 No
Portability
Software Operability 13 -0.6724 2.2249 1.8600 Yes

Four of the software quality variables were found to be signi�cantly related to complete-

ness in the design. Recall that Design Completeness represents the extent to which the

baselined software design addresses and ful�lls the needs identi�ed by the requirements.

148

Any signi�cant correlations are expected to be positive, and this was the case for all four of

the a�ected variables.

Table 4.27: Correlation of Design Completeness to Software Product Quality
Software No. Completeness Test Critical Signi�cant?
Quality Variable Samps Correlation Stat(t) Value(cv) (t > cv)
Suitability
Functional Adequacy 28 -0.0867 0.4437 1.6970 No
Functional Completeness 28 0.7276 5.6121 1.6970 Yes
Functional Coverage 28 0.6897 5.0408 1.6970 Yes
Speci�cation Stability 28 0.1479 0.7914 1.6970 No
Data Exchangeability 13 0.1667 0.5855 1.7610 No
Usability
Usability Compliance 7 0.6455 2.9277 1.7610 Yes
Maintainability
Data Logging 12 -0.2000 0.6455 1.7820 No
Portability
Software Operability 13 0.5590 1.9069 1.8120 Yes

4.2.2.3 E�ects of Implementation Phase Correctness

The e�ects of correctness in the implementation phase on the various aspects of software

quality are captured in Table 4.28. Implementation correctness is measured as the ratio of

implemented software modules without a coding fault identi�ed after the completion of the

implementation phase. Thus, a positive correlation with implementation correctness indi-

cates that modules implemented correctly the �rst time have an inuence on the particular

quality attribute. A negative correlation implies that those modules that were implemented

more than once (either fully or partially) were more likely to produce higher quality results.

149

Negative correlations are indicators of elements of software quality that are more complex

from the perspective of actual coding, and thus are more e�ectively implemented across mul-

tiple attempts. The intended focus of this analysis is a determination of signi�cance. That

is, what is the signi�cance of the correctness of the implementation in terms of the measured

elements of software quality.

Table 4.28: Correlation of Implementation Correctness to Software Product Quality
Software No. Correctness Test Critical Signi�cant?
Quality Variable Samps Correlation Stat(t) Value(cv) (t > cv)
Suitability
Functional Adequacy 28 0.0363 0.1779 1.7060 No
Functional Completeness 28 0.6083 3.9076 1.7010 Yes
Functional Coverage 28 0.5886 3.7126 1.7010 Yes
Speci�cation Stability 28 -0.3558 1.9414 1.7010 Yes
Precision 9 -0.8260 2.9312 1.9430 Yes
Data Exchangeability 13 -0.5521 2.2935 1.7610 Yes
Interface Consistency 9 0.1005 0.2474 1.8600 No
Functional Compliance 5 -0.2706 0.7951 1.8120 No
Reliability
Failure Avoidance 8 0.3107 0.8006 1.8600 No
Incorrect Op Avoidance 5 1.0000 N/A 2.1320 Yes
Restorability 7 0.2500 0.7303 1.8120 No
E�ciency
E�ciency Compliance 3 -0.9972 2.66E1 1.9430 Yes
Usability
Usability Compliance 7 0.4737 1.8631 1.7610 Yes
Portability
Software Operability 13 -0.8470 3.9030 1.8600 Yes

Nine di�erent software quality attributes were signi�cantly a�ected by the development

teams ability to correctly implement the source code. In terms of the system-level quality

measures, both Functional Completeness and Coverage were positively inuenced by imple-

mentation correctness, as were the Incorrect Operation Avoidance and Usability Compliance

150

attributes. The remaining variables were found to be negatively correlated, meaning that

their implementation was more complex, and could not be achieved in the original baseline.

4.2.3 Structure of the Re�ned Model

This section describes the adjustments to the Bayesian Belief Network that establishes

the cause-e�ect relationships that comprise the proposed software quality model. Using the

results of the analyses in the previous sections, the Re�ned Model structure is presented

below. It streamlines the model structure by eliminating those intuitive cause-e�ect rela-

tionships that could not be validated empirically. The Re�ned Model structure is presented

as a set of directed acyclic graphs representing the various phase subnets that comprise the

model. In addition, each software quality variable is evaluated in terms of the ability of

the model's structure to account for causal factors that inuence that particular quality

attribute.

Figure 4.1 shows the requirements subnet that has been revised to reect the correlation

analysis detailed in Section 4.2.1.1. Requirements Correctness was found to be signi�cantly

a�ected by only two practices: Evaluating the Requirements with the Customer, and Eval-

uating Requirements through traceability. Requirements Completeness in inuenced by a

more complete set of requirements phase variables including the presence of requirements

development expertise, and a more comprehensive set of requirements practices.

151

Evaluate
Requirements
with Customer

Evaluate
Requirements

Requirements
Correctness

Expert
Requirements

and Test
Leadership

Update
Requirements

Develop
Validation

Criteria

Requirements
Completeness

Figure 4.1: Re�ned Requirements Subnet

The modi�cations to the structure design subnet, as a result of the analysis of signi�cant

variables, are shown in Figure 4.2. Design skill and process variables are well represented as

drivers of both design correctness and completeness. One interesting omission is the lack of

design complexity metrics as inuences on phase quality.

Figure 4.3 captures the subnet for the Implementation phase that has been re�ned to

include only correlated associations. As described above, most of the model inputs for this life

cycle phase were found to be signi�cant with respect to the correctness of the implementation.

All of the skill variables were found to have an inuence, as did the processes that had a

variance. Finally, changes to the baselined design were also found to a�ect the correctness

of the implementation.

152

Design
Skill Level 2

Design
Skill Level 3

Design
Skill Level 4

Develop
Design

Design
Correctness

Design
TraceabilityVerify Design

Design
Completeness

Figure 4.2: Re�ned Design Subnet

Develop Unit
Tests

Implementation
Correctness

Implementation
Skill Level 4

Unit
Traceability

Design
Volatility

Design
Correctness

Implementation
Skill Level 1

Implementation
Skill Level 2

Implementation
Skill Level 3

Figure 4.3: Re�ned Implementation Subnet

153

The Re�ned model's Integration and Test subnet is shown in Figure 4.4. Many of the

practices in this phase were eliminated due to invariance, or combined with the Requirements

and Testing expertise consolidated variable. The resultant subnet is comprised of only two

model inputs. The Develop System Tests node was the only practice from this life cycle

phase that was found to be an independent variable, and have a signi�cant e�ect on the

completeness of the Integration and Test activities.

Test
Completeness

Expert
Requirements

and Test
Leadership

Develop
System Tests

Figure 4.4: Re�ned Integration/Test Subnet

154

4.3 Analysis of Direct E�ects on Software Quality

The analysis of the Intuitive software quality model's structure presented in Section 4.2

revealed that not all of the software quality variables are inuenced by the three-tiered

structure proposed. For that reason, it is appropriate to analyze the set of software quality

variables in an attempt to determine how the various causal factors of software quality (e.g.,

team skill, process maturity, and problem complexity) directly a�ect each one. The intent of

this analysis is to identify the inuences of any causal factors in the model that were masked

by the e�ects of the phase completeness/correctness variables in the intermediary tier. The

Intuitive and Re�ned models structure assume that the software quality variables are most

appropriately modeled using the three-tier model structure. This analysis considers the

Direct E�ects option, in which those software quality variables are modeled by associating

the model inputs directly to the outputs in the Bayesian Belief Network. The directed acyclic

graph that captures the Direct E�ects Model structure is shown in Figure 3.5.

The method for determining the direct e�ects of the various software quality inuences

on the software quality variables is the correlation and associated hypothesis test described

in Section 4.2. This section is organized by each software quality variable modeled, and

provides a graph depicting the signi�cant inuences on that particular quality variable,

and the degree of each inuence. The complete data tables that capture the speci�cs of

the analysis including the correlation values, the calculated Test Statistic, and the Critical

Values are found in Appendix B.

155

By proposing a the Direct E�ects Model in addition to the Intuitive and Re�ned Models,

it becomes necessary to determine which approach is more accurate in predicting software

quality. Section 4.5, which validates the model's ability to predict for each software qual-

ity variable, provides a comparison between the three structure options. In addition, the

Model Comparison section provides an accuracy comparison with competing software quality

modeling approaches.

4.3.1 Analysis of the Functionality Software Quality Attributes

Functionality is the partition of the ISO/IEC 9126 Software product quality standard

that addresses the functional operation of the software product. It covers the suitability of

the software system in terms of the captured customer needs and software requirements, the

level of quality in the implementation of any de�ned interfaces, the computational accuracy

associated with any developed algorithms, and covers any security needs that are required.

The intent of this section is to identify and analyze the elements of development team skill,

process maturity, and problem complexity that have a signi�cant inuence on the software

quality variables associated with Functionality.

156

4.3.1.1 Suitability

Suitability is a sub-characteristic of Functionality that addresses the quality of the deliv-

ered system as a whole. That is, while most of the other software quality attributes address

the extent to which a subset of the customer needs and/or software requirements are met,

the Suitability variables address the extent to which the full complement of the customer

needs and/or software requirements were met. The sample set for the Suitability variables

was the entire project data set.

Three software quality variables were selected to represent the Suitability of the developed

software: Functional Adequacy, Functional Implementation Completeness, and Functional

Implementation Coverage. Functional Adequacy is a measure of how well the development

team implemented the software system, including the extent to which the system was veri�ed

in test. Functional Implementation Completeness, as its name implies, is a variable that rep-

resents the proportion of software requirements that were veri�ed to have been implemented

in the delivered software system. Finally, Functional Implementation Coverage measures the

extent to which the software was correctly implemented, and takes into account any faults

that were identi�ed yet not corrected before the system was delivered to the customer.

Figure 4.5 depicts the correlation values for the software quality causal factors that had

a direct e�ect on Functional Adequacy. Contrary to expectations, all four factors that

were signi�cantly correlated with Functional Adequacy had a negative e�ect, meaning that

the proportion of software requirements veri�ed in test decreased as values of the various

157

inuences increased. The negative correlation is reasonable when considering the inuence

of Test Skill Level 2. It could be inferred that the lack of experience in developing and

executing software test had a negative e�ect on the proportion of requirements tested to

be adequate. Three of the factors that were directly correlated to Functional Adequacy

were process variables - speci�cally those processes in which the requirements, design and

implementation artifacts were veri�ed and traced to upstream project artifacts.

Figure 4.5: Direct E�ects of Causal Factors on Functional Adequacy

The factors that signi�cantly inuenced Functional Implementation Completeness are

shown in Figure 4.6. A total of 10 potential causal factors of software quality were found

to be signi�cant when directly correlated to Functional Implementation Completeness. The

model inputs that represented development team skill and experience a�ected Functional

Implementation Completeness as expected: the increasing presence of more skilled (Level

158

4) developers had a positive correlation, and the increasing presence of less skilled (Level 2)

developers had a negative correlation. Also, the inuence of problem complexity in the form

of the Depth of Inheritance Tree had an expected e�ect, with Functional Implementation

Completeness decreasing as the complexity increases.

Figure 4.6: Direct E�ects of Causal Factors on Functional Implementation Completeness

From a process perspective, most of the process variables had the expected positive

correlation with Functional Implementation Completeness. The most notable exception is

the Develop Design process. Recall that the Develop Design process is a consolidation of three

practices that methodically document and evolve a software design. While intuitively this

practice should increase the quality of the software product, in the area of implementation

159

completeness, which addresses coverage of the requirements in the �nal product, the act of

methodical design appears to decrease requirements coverage. One could infer from these

results that the process of developing the design actually distracts the development team

from completely addressing the requirements. That is, because the focus is the design process

and not the design product, the development team loses sight of the goal.

Figure 4.7: Direct E�ects of Causal Factors on Functional Implementation Coverage

The e�ects of the various causal factors of software quality on the Functional Imple-

mentation Coverage variable is captured in Figure 4.7. The variables that had a signi�cant

impact on this software quality attribute were nearly identical to those that had a signi�cant

impact on Functional Implementation Completeness. This is not surprising given the nature

of these two variables. While Functional Implementation Completeness addresses the soft-

160

ware products coverage of the full set of requirements, Functional Implementation Coverage

addresses the correctness of that implementation. Of particular note for this variable is the

positive correlation of those processes that represent veri�cation of a work product. The

practices of evaluating the requirements and design to verify their correctness are the two

most highly inuential variables for this software quality attribute.

Functional Speci�cation Stability characterizes a project's ability to resist making changes

to the completed speci�cation document. Speci�cation changes have a direct e�ect on the

volatility of downstream artifacts, and often will introduce a lot of rework. Most projects

make an e�ort to be very judicious about the speci�cation changes they allow because of this

adverse e�ect. Figure 4.8 lists the set of model inputs that had a veri�ed correlation with

Speci�cation Stability. Not surprisingly, skill expertise has a signi�cant positive impact on

this variable. In addition, the Update Requirements process, which intrinsically promotes

an iterative approach to development had a signi�cant positive e�ect.

4.3.1.2 Computational Accuracy

Computational Accuracy is the sub-characteristic of Functionality that addresses the

correct implementation of algorithms. It is primarily focused on quality in terms of accuracy

of any calculations implemented in the software, and in any precision of data results. In the

data sets, Accuracy and Precision were quality needs in only a subset of the projects, and

so their sample sizes are less proli�c than those of the Suitability metrics.

161

Figure 4.8: Direct E�ects of Causal Factors on Functional Speci�cation Stability

Figure 4.9: Direct E�ects of Causal Factors on Accuracy

162

Figure 4.9 identi�es the driving factors that were directly correlated to the measure of

Accuracy. Accuracy was inuenced negatively by volatility in the requirements and design

phase, and also by Test Skill at Level 2. Interestingly, Test Skill at Level 3 provided the only

signi�cantly positive e�ects on Accuracy. This implies that skill and experience in developing,

executing and interpreting software tests is necessary to verify that accuracy requirements

are met. The e�ects of requirements and design volatility are cause to suspect that Accuracy

requirements and designs that are not decidedly �xed at the time of baseline are di�cult to

implement correctly. This is reasonable in that custom algorithms implemented in software

are typically complex, and thus frequent changes can be detrimental.

Figure 4.10: Direct E�ects of Causal Factors on Precision

163

The e�ects of the various causal factors of software quality on the Precision attribute is

captured in Figure 4.10. Precision addresses that subset of the requirements that pertain

to the precision of data and/or data types within the system. The presented results are

curious because they defy the expectations for measures of software quality. For Precision,

the increasing presence of less skilled developers in the Implementation and Integration/Test

life cycle were positively correlated to high values of Precision. Conversely, the increasing

presence of experts in each of the four life cycle phases were negatively correlated to measures

of Precision, implying that the presence of experts hurt the likelihood of verifying the im-

plementation of precision requirements. Of the processes, only Develop Validation Criteria,

Develop Design and Develop System Tests are positively correlated, while nearly all of the

processes that stress veri�cation of work products are negatively correlated.

4.3.1.3 Interoperability

In the ISO/IEC 9126 Software product quality standard, Interoperability is the quality

sub-characteristic that captures software quality as it applies to interfaces. Two variables

were selected from the ISO/IEC 9126: Data Exchangeability and Interface Consistency.

Data Exchangeability is a measure of the proportion of interface data format requirements

that were veri�ed to have been implemented correctly. Interface Consistency measures the

proportion of interface communication protocol requirements that were veri�ed to have been

implemented correctly.

164

Figure 4.11: Direct E�ects of Causal Factors on Data Exchangeability

In Figure 4.11 is listed the set of model input variables that were found to be signi�cantly

correlated to the Data Exchangeability attribute. From a Development Team Skills perspec-

tive, Data Exchangeability is positively inuenced by the presence of less skilled engineers

in both the Requirements and Implementation life cycle phases, and negatively inuenced

by the presence of "experts" (Skill Level 4) in all of the life cycle phases. This inverse rela-

tionship from what would intuitively be expected cannot be explained. The most inuential

correlation is that of implementation prevalence, which is positively correlated with Data

Exchangeability. It is proposed that the increasing presence of a well-de�ned design greatly

simpli�es the implementation, and so a higher prevalence of this simpli�ed implementation

leads to higher software quality for this attribute. Other positive inuences seem to focus on

165

veri�cation and traceability throughout the life cycle. It can be argued that for implemen-

tation of interface formats, verifying the correctness of that format, and accounting for all

data structures to be implemented are paramount to high quality in Data Exchangeability.

Figure 4.12: Direct E�ects of Causal Factors on Interface Consistency

The e�ects of the various causal factors of software quality on the Interface Consistency

quality metric are shown in Figure 4.12. Interface Consistency captures the aspect of in-

teroperability associated with correct implementation of the interface protocols. As with

Functional Adequacy, all of the signi�cant correlations to this software quality attribute

were found to be negative. The most inuential model input was the Design Skill Level 1.

This is logical in that the presence of inexperienced designers can certainly negatively a�ect

software quality with respect to the interfaces. The practices that address traceability for

each of the requirements, design, and implementation phases were negatively correlated to

166

Interface Consistency. In terms of problem complexity, increasing values of Interface Pro-

tocol Expansion negatively a�ect this quality variable. Thus, as expected, an increasing

proportion of protocols for the project to support increases the complexity of the interface

software, and decreases the associated quality.

4.3.1.4 Security

Security is the aspect of Functionality that addresses how the software controls access

to the system. Security is concerned with both access restrictions and data restrictions.

Access Auditability accounts for any requirements to create types or levels of access to the

software system. Access Controllability addresses any requirements to restrict access to the

software system. Data Encryption refers to the need to protect individual data elements

from unauthorized access. The three Security quality metrics are represented in a subset of

the software projects used for data in this research.

Figure 4.13 shows the e�ects of the signi�cant causal factors on the Access Auditability

quality metric. This aspect of Security covers any requirements that address user access to

the system and auditing those accesses. The negative inuence of design volatility and inter-

face complexity are expected with respect to any quality attribute. The negative inuence

of both veri�cation and traceability practices, however, are less easy to explain. In terms

of veri�cation, perhaps involving the customer in the evaluation of this particular quality

attribute confounds the issue. The intent behind Access Auditability is straightforward:

167

Figure 4.13: Direct E�ects of Causal Factors on Access Auditability

what are the customer needs with respect to operator access, and being able to trace that

access. However, often users will exaggerate their needs in this quality area. Often, the goal

is to maximize the security of the system without regard to what the actual needs are. Only

at test time, when a complicated accessibility scheme is determined to be infeasible, is this

realized. The user often then settles for their actual needs. In this scenario, it is possible

to see how veri�cation may have a negative inuence on the Access Auditability quality

attribute.

The software quality model inputs that a�ect the Access Controllability quality variable

are identi�ed in Figure 4.14. Access Controllability is positively inuenced by veri�cation

activities in the requirements and design phase. Speci�cally, verifying requirements with the

168

Figure 4.14: Direct E�ects of Causal Factors on Access Controllability

customer and verifying the design. Inexperience in implementation and test has the most

inuential negative e�ect on implementing software to control access to the system.

The factors that signi�cantly inuenced Data Encryption are shown in Figure 4.15. Data

Encryption was required in only two software projects in the data set, and so correlation

values reect that small sample size (all correlations are of value 1.0). Data Encryption is

almost exclusively a�ected by Development Team Skill. That is, the increasing presence of

skill levels in all life cycle phases is linked to quality in terms of ful�lling Data Encryption

requirements. Despite this seeming signi�cant inuence, the small sample size of Data En-

cryption in this research (only two projects identi�ed this as a software quality need) should

be cause for concern. The results of this software quality variable are reported here simply

169

Figure 4.15: Direct E�ects of Causal Factors on Data Encryption

to identify the subset of causal factors that was used in the Direct E�ects model. However,

it may be premature to infer how these factors truly inuence Data Encryption quality.

4.3.1.5 Functional Compliance

Functional Compliance is the portion of Functionality which measures the extent to which

the software complied with any levied functional standards. The functional standards may be

scoped to an internationally approved standard, or may be organization-speci�c. Figure 4.16

identi�es the factors that were calculated to have a direct e�ect on Functional Compliance.

Only two of the causal factors were signi�cant in their correlation to Functional Compliance,

both focused in the implementation life cycle phase.

170

Figure 4.16: Direct E�ects of Causal Factors on Functional Compliance

A measure of Implementation Skill (Level 2), and Implementation Prevalence were pos-

itively correlated with Functional Compliance. This is surprising as a negative correlation

for each would have been more intuitive. Implementation Prevalence, which measures the

proportion of the source code impacted by the Functional Compliance requirements, is a

measure of complexity and thus it is expected that an increase in prevalence will cause a

decrease in the quality associated with Functional Compliance. The positive correlation is

an indication that the implementation of functional standards is less complex in that the

behavior is already de�ned. That is, the larger prevalence of more standardized functional

behavior actually decreases the complexity of the design because it propagates recognized and

well understood software operations. The simpli�cation of the software through widespread

171

implementation of standardized behavior may also serve to explain why those less skilled,

Implementation Skill Level 2, are signi�cantly correlated to higher quality for this attribute.

4.3.2 Analysis of the Reliability Software Quality Attributes

Reliability is the portion of the ISO/IEC 9126 standard that addresses the software

product's ability to handle failures, operator errors, and recover from other unexpected

events. Reliability is typically expressed in software requirements as o�-nominal conditions

or alternative use case scenarios, and represent a subset of the actual software requirements

(if they are captured at all). The focus for the measures of reliability is to make the developed

software available, even in the face of failures. The categories used to measures Reliability

include Failure Avoidance, Incorrect Operation Avoidance, Restorability, and Reliability

Compliance. In this section, these measures are discussed in terms of any discovered direct

e�ect relationships with those variables that are drivers of software quality.

The e�ects of the various causal factors of software quality on the Failure Avoidance

attribute are captured in Figure 4.17. Failure Avoidance is the subset of the requirements

that speci�cally address identi�ed failure scenarios, and requires the software to recover from

those scenarios. Testing skill was an inuence on Failure Avoidance, but curiously the nature

of the relationship was not as expected: the presence of more skilled testers (Level 3) was

negatively correlated and the the presence of less skilled testers (Level 1) was positively

correlated. Similarly, as the complexity of the developed software, characterized by the

172

Figure 4.17: Direct E�ects of Causal Factors on Failure Avoidance

depth of the inheritance tree, increased, the percentage of Failure Avoidance requirements

that were veri�ed to be correctly implemented also increased.

Incorrect Operation Avoidance is the set of requirements that address the ability of the

system to remain available in the presence of incorrect operation. The model inputs that

had a signi�cant impact on this quality attribute are shown in Figure 4.18. The majority of

factors that had an e�ect on Incorrect Operation Avoidance were Skill/Experience variables.

All of these were correlated as expected with higher skill levels positively correlated and lower

skill levels negatively correlated. All signi�cant process variables, however, are negatively

correlated. This implies that instrumenting the software with functions to gracefully handle

an operator's misuse of the system is impaired by veri�cation and traceability processes.

173

Figure 4.18: Direct E�ects of Causal Factors on Incorrect Operation Avoidance

Restorability is the ISO/IEC 9126 quality attribute that captures the ability of the system

to restore itself to a known state after a failure event. Seven of the projects in the acquired

software engineering data had quality needs in Restorability. Figure 4.19 displays the set

of skill, process, and complexity factors that had an inuence on this quality variable. In

terms of causal factors, nearly all of the inputs a�ecting Restorability had correlation values

that were expected. Higher skill levels were positively correlated with Restorability, and

lower skill levels were negatively correlated. Design Expansion, a measure of complexity,

was negatively correlated. Process variables were positively correlated except the Develop

Design variable, which was found to be negatively correlated with Restorability.

174

Figure 4.19: Direct E�ects of Causal Factors on Restorability

Reliability Compliance is not included in the Direct E�ects analysis. This software quality

variable is addressed in only three of the projects used in this research. Similar to the

situation encountered in the development of the Re�ned Model structure, none of the causal

factors used as model inputs could be correlated to Reliability Compliance to the desired

degree.

4.3.3 Analysis of the E�ciency Software Quality Attributes

E�ciency refers to the run-time performance of the software quality product. Resource

utilization and software behavior with respect to time are all aspects covered by E�ciency

175

in the ISO/IEC 9126 Software product quality standard. I/O Utilization, E�ciency Com-

pliance, and Time Behavior are all quality sub-characteristics that were identi�ed as needs

in a subset of the projects used in this research.

Input/Output (I/O) Utilization refers to those requirements that express performance

needs in the software with respect to the physical machine's I/O devices. Typically, these

requirements express a performance target to be met, or a performance budget to operate

within. Figure 4.20 shows the eight model inputs that had a veri�ed correlation with I/O

Utilization. Due to the small sample size of I/O Utilization variables (only two projects had

this quality need), the set of causal factors that are correlated have a correlation coe�cient

of 1.0. Based on the small sample size, it would be premature to make any inferences about

the factors inuencing I/O Utilization. The results are shown here for completeness, but this

quality attribute is not considered in the analysis of the most signi�cant inuential factors

on software quality (presented in Section 4.3.7).

E�ciency Compliance provides a means to capture any performance or capacity quality

needs that were identi�ed by a project, but cannot be categorized into any of the other Ef-

�ciency quality sub-characteristics. Three of the projects in this research had these types of

quality needs. Figure 4.21 lists the subset of causal factors that were found to be signi�cantly

correlated with the E�ciency Compliance model variable. As with I/O Utilization, the small

sample size makes it di�cult to make inferences about these inuences. However, it seems

clear that skill and problem complexity are driving factors. Skill variables from all four life

cycle phases were identi�ed. In addition, requirements volatility was identi�ed as a driver

176

Figure 4.20: Direct E�ects of Causal Factors on I/O Utilization

for E�ciency Compliance. This is reasonable as performance and capacity requirements are

typically solidi�ed as a statement in the speci�cation at requirements time, but with actual

performance and capacity values listed as "To Be Determined". It is often later in the life

cycle when those values are more concretely speci�ed. Thus, the positive correlation of E�-

ciency Compliance with Requirements Volatility is logical. Another interesting relationship

is that of E�ciency Compliance with the interface complexity measures. One inference that

can be made is that this quality category is typically associated with the performance of the

software in terms of relating to its interfaces as opposed to internal operations.

Time Behavior is not included in the Direct E�ects analysis because no direct correlations

could be veri�ed between it and the model inputs. This software quality variable is addressed

in only three of the projects used in this research. Similar to the situation encountered in

177

Figure 4.21: Direct E�ects of Causal Factors on E�ciency Compliance

the development of the Re�ned Model structure, none of the causal factors used as model

inputs could be correlated to Time Behavior to the desired degree.

4.3.4 Analysis of the Usability Software Quality Attributes

Usability is the portion of the ISO/IEC 9126 Software product quality standard that

addresses the way in which the software interacts with the operator. Quality characteristics

such as the ability to cancel and undo user operations, accommodations in the user interface

for those with physical disabilities, and the ability to communicate the operational status

of the software system are all covered in the Usability partition of the standard. In this

research, three of the software quality metrics that characterize Usability were quality needs

178

of the projects that comprised the set of software engineering data: User Cancellability,

Operational Status Monitoring, and Usability Compliance.

User Cancellability covers a very speci�c aspect of operator interaction: the ability for

a user to cancel an operation that has previously been initiated. From an implementa-

tion standpoint, this feature often involves tracking how an operator-initiated operation has

changed the state of the system, and returning the system to the original state in the event

that the operation has been canceled. Only one model input variable was correlated to User

Cancellability. The Design Level 2 variable, or marginal design skill, was positively associ-

ated with User Cancellability. This lone correlation is not easily explained. As with a couple

of other variables in this study, the small sample size (three projects) makes it premature

to make inferences about cause and e�ect. However, this study has identi�ed that a veri�ed

correlation is required for the Direct E�ects model structure. Design Level 2 is the only

variable that passed this criteria, and so was used in the Bayesian Direct E�ects model, the

Least Squares Regression model, and the Neural Network model (see Sections 4.4 and 4.5).

Figure 4.22 depicts the subset of software quality causal factors that were found to be

signi�cantly correlated to Operation Status Monitoring. This attribute encompasses those

software quality needs that pertain to the availability of information to the user on the

operational status of the software system. Seventeen of the causal factors were veri�ed to

correlate to Status Monitoring, and their coe�cients were inline with expectations. From a

skill/experience perspective, higher skill levels (Level 3 and Level 4) in all life cycle phases

were positively correlated with this quality attribute, and lower skill levels were negatively

179

correlated. In the area of problem complexity, design expansion had the strongest negative

e�ect. This is logical as design expansion captures the relative size of the software system,

and a larger system would intuitively make verifying requirements more challenging. From

a process perspective, the practices of veri�cation were positively correlated.

Figure 4.22: Direct E�ects of Causal Factors on Operation Status Monitoring

Usability Compliance captures the set of usability requirements that are not easily cate-

gorized in other sub-characteristics. In addition, Usability Compliance involves requirements

to comply with a speci�ed usability standard or convention. Seven projects from the set of

software engineering data identi�ed needs for Usability Compliance. The results of the cor-

relation analysis for this variables is captured in Figure 4.23. The factors that inuence

Usability Compliance were very similar to those that a�ected Operational Status Monitor-

180

ing. Skill and complexity measures were correlated as expected. One additional factor was

the negative inuence of Traceability throughout the life cycle.

Figure 4.23: Direct E�ects of Causal Factors on Usability Compliance

4.3.5 Analysis of the Maintainability Software Quality Attributes

The Maintainability software quality category encompasses those features that assist an

operator in troubleshooting the system in the presence of an unexplained event. Activity

recording and diagnostic requirements are all elements of Maintainability. For this research,

only the Activity Recording software quality variable is modeled from the Maintainability

category.

181

Activity Recording is the quality sub-characteristic that addresses the ability of the soft-

ware to log signi�cant system events that occur. The purpose of this is primarily as a

troubleshooting aid: it allows an operator to reconstruct the events that occurred, possibly

in time order. Figure 4.24 shows the software quality factors that a�ected Activity Record-

ing. Design skill and experience was the only factor that positively inuenced this quality

attribute. Conversely, volatility of that design had the most signi�cant negative e�ect on

Activity Recording. One interesting revelation is the negative inuence of the relevant inter-

faces on Activity Recording. This could be indicative of situations where event logging with

respect to interfaces complicates the software system. That is, if the software system is re-

sponsible for recording the events that happen across interfaces as well as internal events, it is

reasonable to see how the prevalence of interface functionality in the system would negatively

inuence the ability of the development team to meet its Activity Recording requirements.

4.3.6 Analysis of the Portability Software Quality Attributes

Portability is a category of quality within the ISO/IEC 9126 Software product quality

model that addresses the ability of the software product to operate in conjunction with other

software packages, and across operating system and hardware boundaries. The intent of this

section is to identify and analyze the elements of development team skill, process maturity,

and problem complexity that have a signi�cant inuence on the software quality variables

associated with Portability.

182

Figure 4.24: Direct E�ects of Causal Factors on Activity Recording

Software Operability is the quality attribute that captures the software product's porta-

bility across software platforms. This is usually manifested in the form of requirements that

specify a set of operating systems on which the software under development must perform.

Figure 4.25 shows the model inputs that have a signi�cant e�ect on Software Operability.

The two process inputs and the complexity input a�ect Software Operability as expected.

That is, the presence of practices to trace artifacts through the life cycle and verify the

coded software had a positive inuence, and the design expansion had an expected negative

inuence.

Hardware Operability is the operation of the software product across di�erent hardware

platforms. This quality attribute is the traditional concept that is associated with porta-

bility. Figure 4.26 presents the set of causal factors that signi�cantly inuence Hardware

183

Figure 4.25: Direct E�ects of Causal Factors on Software Operability

Operability. Volatility, in both the Requirements and Design Phase, had a signi�cant nega-

tive e�ect. Increasing numbers of requirements and design changes are expected to have a

negative e�ect on any software quality variable.

The skill variables did not perform as expected in relating to either Software Operability

or Hardware Operability. Inexperience in software design had a positive e�ect on this quality

variable, and experience in both software design and requirements development had a nega-

tive e�ect. A negative e�ect means that the presence of more skilled engineers in the areas

of Requirements and Design was related to less Software Operability requirements being ver-

i�ed to function correctly. One possible explanation for this phenomenon is overcon�dence

on the part of more skilled engineers. Non-functional requirements, and particularly those

184

Figure 4.26: Direct E�ects of Causal Factors on Hardware Operability

that require little analysis to understand and communicate, typically are overlooked during

requirements and design, and are left to be addressed in detail in the implementation. The

measures of Portability fall into this category. Requiring a software product to function

across a set of operating systems or hardware platforms is easily understood by both the

software development team, and the customers. This type of requirement is easy to overlook

and leave for implementation, especially if the engineering team is experienced. A novice

engineer, conversely, analyzes these types of requirements in full, and does not have the

overcon�dence to dismiss its potential impact.

185

4.3.7 Analysis of Most Signi�cant Causal Factors

The analysis of the direct correlations between the various input values and measures

of software quality addressed in Sections 4.3.1 through 4.3.6 calls into question the set of

inputs that has the most signi�cant impact on software quality. This has many practical

implications. An organization that is interested in improving their software development

processes would be interested in knowing which of those processes will have the largest

return on investment if implemented. Identifying the most signi�cant model inputs can

be an important contribution, and can provide skill, process, and complexity areas for an

organization to focus on in order to improve their software product quality.

The identi�cation of the most signi�cant model inputs will be partitioned into two areas:

identifying those model inputs that have the most positive e�ect on the software quality

variables, and those model inputs that have the most negative e�ect on the software quality

variables. The method of analysis will be to present the signi�cance information in terms

of software quality variables, and then by average signi�cance. That is, the information of

interest is the number of di�erent software quality variables that the input variable a�ected,

and the average correlation over that number of variables. The source of the information is

the Direct E�ects analysis performed in the preceding subsections. Recall that Reliability

Compliance and Time Behavior were not directly correlated to any model inputs, and so

will be excluded from this analysis. In addition, those software quality variables with sample

186

sizes less than three will be excluded, as several inputs correlate to those variables with a

coe�cient of 1.0, which skews the results.

Table 4.29 presents the model inputs that positively a�ected 5 or more software quality

variables, and their associated average correlation coe�cients. These are considered to have

the most signi�cant impact on the spectrum of software quality. Of particular note is the

presence of skill and experience factors in Table 4.29. The presence of experts, or Skill Level

4, for each of the life cycle phases (recall Requirements and Test Skill Level 4 values are

combined in the Leadership variable) is a strong indication of the inuence that expertise

has on software product quality. From a process perspective, the Life Cycle veri�cation

activities such as evaluating requirements with the customer and verifying the design has

the most signi�cant impact. This is logical as veri�cation of artifacts is the best way to get

an indication of whether the project is on track to �ll the customer needs.

The Update Requirements process having a signi�cant inuence on overall software prod-

uct quality is an interesting revelation. Of all the ISO/IEC 15504 Software engineering

practices, this is the only one that implies a certain type of software life cycle. Update

Requirements addresses the case where a project maintains the requirements speci�cation

as part of the transition between iterations in an incremental life cycle model. Thus, the

presence of this practice as a signi�cant positive contributor to software quality is an indirect

endorsement of incremental development.

The presence of the Depth of Inheritance Tree in Table 4.29 was unexpected. Prior

software quality research e�orts have identi�ed DIT as a measure of design complexity and

187

have associated this measure with the number of faults or changes in a given software module.

The results here indicate an opposite e�ect, that an increasing DIT is correlated with higher

quality values for 4 of the software quality variables modeled. Reconsidering this e�ect, it

seems reasonable. A larger DIT indicates more inheritance in the developed source code.

While this does introduce complexity in terms of inheritance, it reduces the size of the code

base in that the same functionality would have been implemented in parallel across multiple

modules. Thus, the results found here seem more logical in terms of how inheritance is used

on a software project. In addition, this �nding provides an indirect endorsement of the e�ect

of the object-oriented paradigm on the quality of software products.

Table 4.29: Identi�cation of Most Signi�cant Positive Causal Factors
Model No. Quality Average
Causal Factor Variables A�ected Signi�cance
Implementation Level 4 6 0.507
Expert Reqs/Test Leadshp 6 0.505
Design Level 4 6 0.496
Update Requirements 6 0.431
Design Level 3 5 0.619
Life Cycle Veri�cation 5 0.593
Depth of Inheritance Tree 4 0.558

Table 4.30 lists the causal factors that have the most negative inuence on software

quality variables. As with the positive causal factors, the most noticeable feature of this

table is the presence of Skill/Experience model inputs. Just as skill and experience are

correlated positively with quality, lack of skill and experience are correlated negatively with

quality. For the Requirements and Integration/Test life cycle phases, this is particularly

188

concerning as all skill levels below "expert" appear to have a negative e�ect on software

quality.

Not surprisingly, volatility in both the requirements and design has a signi�cant e�ect

on quality. This supports the �ndings of other software quality research which identi�es

volatility as a negative inuence on quality. Design expansion, which is a normalized measure

of the size of the software project also negatively a�ects quality as expected.

The process variables that negatively a�ect software quality are di�cult to understand

as their inuence is not intuitive. System Test Strategy, which incorporates the practices

of developing both a validation criteria and a set of system-level tests, does not seem likely

to have a negative inuence on software quality. Likewise, the processes associated with

developing a design, in which design approaches are documented prior to implementation,

should not negatively inuence software quality. Veri�cation activities appear on both lists

- they are one of the most signi�cant positive and negative inuences. The cause for this is

not clear. One possibility is that these projects made process their focus, instead of product.

That is, perhaps these software development e�orts concentrated too heavily on meeting

the demands of the process (documentation standards for design, system test procedures,

veri�cation activities, etc), and focused too little on satisfying the quality needs required

in the actual software product. One could infer that for these small-scale projects, the

process was infeasible for the complexity of the software product and the time allotted for

completion. This isn't an argument against process, but rather an indication that the impact

189

of the selected processes must be well understood for them to be feasibly performed in a

software development e�ort.

Table 4.30: Identi�cation of Most Signi�cant Negative Causal Factors
Model No. Quality Average
Causal Factor Variables A�ected Signi�cance
Implementation Level 2 7 -0.518
Life Cycle Traceability 6 -0.526
Test Level 3 5 -0.648
Design Level 2 5 -0.565
Design Level 1 5 -0.501
System Test Strategy 5 -0.466
Test Level 2 5 -0.402
Design Expansion 4 -0.645
Requirements Volatility 4 -0.643
Design Volatility 4 -0.636
Test Level 1 4 -0.634
Life Cycle Veri�cation 4 -0.494
Requirements Level 3 4 -0.491
Develop Design 4 -0.419

4.4 Comparison of Bayesian Model Structures

In Chapter 3, an intuitive model for software quality was proposed. This model was based

on experience, and justi�ed through a logical analysis of what factors in the development of

software are expected to be inuences on the quality of the product. In Sections 4.1-4.2, the

intuitive model structure was analyzed in terms of correlations within the model structure.

The result was a model that kept the general form of the original structure, but was re�ned

in that only those cause-e�ect relationships justi�ed through empirical correlations were

retained. Finally, Section 4.3 analyzed the direct e�ects of the set of measures used as model

190

inputs to the set of software quality measures. This analysis examined the potential for a

much simpler model structure in which there are no intermediate nodes in the structure of

the model, simply a direct relationship between inputs and outputs.

This section compares the three approaches to modeling software quality: Intuitive model,

Re�ned model, and Direct E�ects model. In all three cases, the mechanism for modeling

software quality is the Bayesian Belief Network, but the approach to structuring the model

is di�erent. The purpose of this section is to determine which of the three approaches

characterizes software quality more accurately, and identify any patterns that may exist

between the quality measures being evaluated, and the structural type being compared.

Sections 3.3.2.3 and 3.3.2.4 describe the methods to be used to compare the Bayesian

model structures. Accuracy of Fit will be determined by verifying the Equality of Means

and Equality of Variances between modeled and actual values of software product quality.

Predictive Validity will be compared in terms of the measure of Average Relative Error

for the predicted values of software quality versus the actual values. In addition to these

criteria, this section will also analyze the Belief associated with predicted values. Bayesian

Belief Networks are unique as a forecasting model in that they provide a quanti�ed level

of con�dence, called Belief, in addition to a value of prediction. Thus, a prediction using a

Bayesian Belief network is always accompanied by a measure of con�dence in the prediction.

The Belief value will be considered as a criteria for weighting the results of the forecasts

made using each of the three Bayesian structures.

191

4.4.1 Accuracy of Fit Analysis

The Accuracy of Fit for the three Bayesian structures involves determining whether the

structure models each software quality variable such that modeled values are comparable to

actual values. The technique for determining this is to verify that the mean and variance of

the modeled values are equivalent to the mean and variance of the actual values, as described

in Section 3.3.2.3. Figure 4.27 compares the Equality of Means results for each of the three

Bayesian structures. Recall that equality of means is a Hypothesis Test in which a test

statistic is calculated, and the means between two data sets are considered equal if the value

that test statistic is less than the Student's T distribution value for the given sample size,

and desired level of con�dence. In Figure 4.27, the line labeled "Students T Value" is the

threshold for equality of means for each of the software quality variables modeled, and for a

90% con�dence. The remaining lines show the test statistic values calculated for each of the

three Bayesian model structures proposed.

In general, all three of the Bayesian models did well in modeling the set of software

quality variables with a mean that was equivalent to the mean of actual values. The Re�ned

model shows some variables that were not modeled within this threshold, and the Intuitive

structure reveals one software quality attribute (Failure Avoidance) that it could not model

correctly. Of particular note is the number of missing attributes modeled by the Re�ned

structure. This reects the discovery that causation could not be established between phase

correctness and completeness when the Intuitive Model was re�ned to eliminate insigni�cant

192

Figure 4.27: Equality of Means Results for Bayesian Model Structures

correlations. Of the three Bayesian approaches, the Direct E�ects model structure passes

the Equality of Means test for all variables it can model (two software quality variables are

uncorrelated to the set of model inputs).

Figure 4.28 depicts the comparison of the three Bayesian models with respect to the

Equality of Variances condition described in Table 3.19. As with the Equality of Means

graph, the "Variance Threshold" line represents the threshold for equality of variances,

and the remaining lines are the variance ratio values for each Bayesian model with respect

to each software quality variable modeled. In cases of extreme variance ratio values, the

maximum value was clamped to 15 in order to keep the chart readable. As with Equality

of Means, the Direct E�ects Model �ts the actual data best in terms of variance. Only one

193

Figure 4.28: Equality of Variances Results for Bayesian Model Structures

software quality attribute (Functional Speci�cation Stability) was modeled poorly by the

Direct E�ects Model.

Table 4.31 summarizes the comparison of accuracy of �t for the three model structures.

Both the Intuitive and Direct E�ects Models performed well with respect to �tting the set of

software quality variables used in this research, although the Direct E�ects Model was more

accurate by comparison. The Re�ned Model, however, did not perform well. It was able to

model the software quality data well for only 10 of the 25 variables.

194

Table 4.31: Summary of Accuracy of Fit Determinations for Bayesian Models
ISO/IEC 9126 Intuitive Model Re�ned Model Direct E�ects Model
Quality Metrics Means Vars Means Vars Means Vars

Equal? Equal? Equal? Equal? Equal? Equal?
Functionality:

Functional Adequacy Yes Yes Yes Yes Yes Yes
Functional Imp Complete Yes Yes Yes Yes Yes Yes
Functional Imp Coverage Yes Yes Yes Yes Yes Yes
Functional Spec Stablty Yes Yes Yes Yes Yes No
Accuracy Yes No N/A N/A Yes Yes
Precision Yes Yes Yes No Yes Yes
Data Exchangeability Yes No Yes No Yes Yes
Interface Protocol Yes Yes No Yes Yes Yes
Access Auditability Yes Yes No Yes Yes Yes
Access Controllability Yes Yes No Yes Yes Yes
Data Encryption Yes Yes Yes Yes Yes Yes
Functional Compliance Yes Yes Yes No Yes Yes
Reliability:

Failure Avoidance No Yes No Yes Yes Yes
Incorrect Op Avoidance Yes Yes Yes Yes Yes Yes
Restorability Yes No No Yes Yes Yes
Reliability Compliance Yes Yes N/A N/A N/A N/A
E�ciency:

Time Behavior Yes No N/A N/A N/A N/A
I/O Utilization Yes Yes N/A N/A Yes Yes
E�ciency Compliance Yes Yes Yes Yes Yes Yes
Usability:

User Op Cancelability Yes No Yes Yes Yes Yes
Op Status Monitoring Yes Yes N/A N/A Yes Yes
Usability Compliance Yes Yes Yes Yes Yes Yes
Maintainability:

Activity Recording Yes Yes Yes Yes Yes Yes
Portability:

Software Operability Yes No No No Yes Yes
Hardware Operability Yes No N/A N/A Yes Yes

4.4.2 Predictive Validity Analysis

Comparing the Intuitive, Re�ned and Direct E�ects Model structures in terms of their

Predictive Validity involves calculating the Average Relative Error (ARE) for each software

quality variable as speci�ed in Section 3.3.2.4. The ARE is a measure of model accuracy

195

that describes the deviation of the predicted results from the actual results. The closer an

ARE value is to zero, the more accurate the predictions. Figure 4.29 graphs the comparative

ARE values for each of the three Bayesian model structures by modeled software quality

attribute. From the diagram, it can be seen that the Intuitive Model is more accurate for

14 of the 25 software quality variables, and the Direct E�ects model is more accurate for 10

of the software quality variables (for the Usability Compliance variables, both the Intuitive

Model and the Direct E�ects model have the same accuracy). The Re�ned Model structure

is the least accurate of the three models.

Figure 4.29: Average Relative Error Results for Bayesian Model Structures

Figure 4.30 shows a plot that compares the average belief, or con�dence, associated

with each model's software quality predictions. For 16 of the 25 software quality variables,

196

Figure 4.30: Average Belief Results for Bayesian Model Structures

the Direct E�ects Model had the highest belief in its predictions. Belief is a factor for

consideration when choosing the most appropriate model for each software quality variable.

It gives the model's prediction credibility. A model in which the predictions are not as

accurate, but the con�dence in those predictions is high is often more desirable than a

model with more accurate predictions, but less con�dence.

Table 4.32 summarizes the comparison of the Bayesian models in terms of Predictive

Validity. For most variables, the Intuitive Model provided the most accurate forecasts, but

with low belief values. The Direct E�ects model provided forecasts on the order of the

197

Intuitive Model, but had much higher belief values. The Re�ned Model performed poorly in

predicting software quality.

Table 4.32: Summary of Predictive Validity Determinations for Bayesian Models
ISO/IEC 9126 Intuitive Model Re�ned Model Direct E�ects Model
Quality Metrics ARE Belief ARE Belief ARE Belief
Functionality:

Functional Adequacy 0.062 18.28 0.076 24.69 0.085 70.04
Functional Imp Complete 0.l30 17.87 0.202 19.77 0.158 54.39
Functional Imp Coverage 0.139 17.86 0.208 19.73 0.143 54.39
Functional Spec Stablty 2.138 16.75 0.775 38.03 0.677 52.36
Accuracy 0.553 11.46 N/A N/A 0.390 40.23
Precision 0.875 66.90 0.663 19.49 0.413 29.83
Data Exchangeability 0.481 13.81 0.556 26.01 0.544 35.74
Interface Protocol 0.471 13.96 0.667 56.10 0.353 52.46
Access Auditability 0.311 11.90 0.714 24.43 0.320 35.80
Access Controllability 0.633 17.60 1.000 59.59 0.659 49.78
Data Encryption 0.030 13.51 0.500 77.85 0.500 72.62
Functional Compliance 0.096 12.21 0.212 28.55 0.200 69.20
Reliability:

Failure Avoidance 0.875 14.06 0.875 57.57 0.405 47.98
Incorrect Op Avoidance 0.242 12.23 0.600 45.79 0.066 47.21
Restorability 0.578 18.64 0.714 55.91 0.341 53.89
Reliability Compliance 0.060 11.82 N/A N/A N/A N/A
E�ciency:

Time Behavior 0.530 17.38 N/A N/A N/A N/A
I/O Utilization 0.060 13.88 N/A N/A 0.500 79.38
E�ciency Compliance 0.120 11.88 0.667 21.91 0.353 76.36
Usability:

User Op Cancelability 0.353 11.41 0.667 73.03 0.667 75.60
Op Status Monitoring 0.515 26.91 N/A N/A 0.045 51.06
Usability Compliance 0.103 22.10 0.237 23.53 0.103 64.05
Maintainability:

Activity Recording 0.603 16.11 0.598 46.80 0.449 26.57
Portability:

Software Operability 0.442 11.51 0.444 12.80 0.140 51.44
Hardware Operability 0.454 11.27 N/A N/A 0.554 25.02

198

4.4.3 Summary of Comparison of Bayesian Model Structures

This section summarizes the results of the comparative analyses of the three proposed

Bayesian software quality model structures. The Intuitive Model is a three-tiered model

structure that �rst relates model inputs to intermediary nodes representing software life cycle

phase correctness and completeness, and then relates those nodes to the various measures

of software quality. The Re�ned Model streamlines the Intuitive Model to only include the

cause-e�ect relationships that are veri�ed through a correlative analysis. The Direct E�ects

Model structure is two-tiered, and simply relates inputs to software quality outputs.

Table 4.33 contains the model structures selected for each software quality variable. The

selection of a model structure for a given software quality variable is based on the analyses

performed in Sections 4.4.1 and 4.4.2. The model structure must have provided an accurate

�t for modeled variables versus their actual values in terms of equality of means and variances.

Also, the model structure had to produce software quality predictions that were relatively

accurate, and carried with them a comparably high degree of con�dence.

The Direct E�ects Model structure was the most prominently selected. It o�ered the

best combination of predictive accuracy and belief in that prediction. The Intuitive Model

also was the selected structure option for several of the software quality variables. The

Intuitive Model seems well-suited to model variables that are not correlated to any inputs,

or model variables that have particularly small sample sizes. In practice, the Intuitive Model

would likely be applied in just these types of circumstances, where little information is

199

Table 4.33: Selection of Bayesian Models for Software Quality Variables
ISO/IEC 9126 Selected Justi�cation
Quality Metrics Model
Functionality:

Functional Adequacy Direct E�ects Acceptable accuracy, Highest belief
Functional Imp Complete Direct E�ects Acceptable accuracy, Highest belief
Functional Imp Coverage Direct E�ects Acceptable accuracy, Highest belief
Functional Spec Stablty Re�ned Best accuracy for Models that Fit
Accuracy Direct E�ects Only Bayesian structure that Fit
Precision Direct E�ects Highest accuracy, Acceptable belief
Data Exchangeability Direct E�ects Only Bayesian structure that Fit
Interface Protocol Direct E�ects Highest accuracy, Acceptable belief
Access Auditability Direct E�ects Acceptable accuracy, Highest belief
Access Controllability Direct E�ects Acceptable accuracy, Highest belief
Data Encryption Intuitive Highest accuracy
Functional Compliance Intuitive Highest accuracy
Reliability:

Failure Avoidance Direct E�ects Only Bayesian structure that Fit
Incorrect Op Avoidance Direct E�ects Highest accuracy, Highest belief
Restorability Direct E�ects Only Bayesian structure that Fit
Reliability Compliance Intuitive Only Bayesian structure that Fit
E�ciency:

Time Behavior Intuitive Only Bayesian structure that Fit
I/O Utilization Intuitive Highest accuracy
E�ciency Compliance Intuitive Highest accuracy
Usability:

User Op Cancelability Intuitive Highest accuracy
Op Status Monitoring Direct E�ects Highest accuracy, Highest belief
Usability Compliance Direct E�ects Highest accuracy, Highest belief
Maintainability:

Activity Recording Direct E�ects Highest accuracy, Acceptable belief
Portability:

Software Operability Direct E�ects Only Bayesian structure that Fit
Hardware Operability Direct E�ects Only Bayesian structure that Fit

known about cause-e�ect relationships that a�ect a given software quality variable. In these

situations, a model structure that incorporates all possible inputs is sensible to apply. It is

expected that as more software engineering data is collected, and cause-e�ect relationships

are more concretely identi�ed, that the Direct E�ects approach would emerge as a superior

representation.

200

The poor performance of the Re�ned Model structure should not be construed as evidence

against Kan's criteria for cause-e�ect relationships. After all, that same correlation criteria

proved successful in identifying cause-e�ect relationships for the Direct E�ects Model. As

was suggested in the model variable analysis in Section 4.1.1, the phase correctness and com-

pleteness measures collected for this research were so invariant that they did not serve well

as discriminators in a Bayesian Model. Once the Re�ned Model structure was determined

through elimination of uncorrelated associations, the discriminating power that those phase

correctness and completeness variables had as a set was whittled down to a single variable or

two. In those cases, there simply was not enough variance to provide enough discriminating

inuence on the downstream software quality variables.

4.5 Comparison of Bayesian and Competing Models

In Section 4.4, a comparative analysis was performed between alternative Bayesian model

structures in order to determine the structure that best modeled a set of software quality

attributes. This same process is repeated in order to compare the selected Bayesian model

structures with competing methods for modeling software quality. As described in Section

3.3.3, this research compares the Bayesian Belief Network with both the Least Squares

Regression model and the Neural Network model. There is precedence for each of these

methods as models of software quality (see Sections 2.2.2.2 and 2.2.3.2).

201

Least Squares Regression determines a set of weights for each independent variable,

based on minimizing the Sum of Squared Error, in order to predict a dependent variable.

Least Squares Regression represents a previous step in the evolution of software quality

modeling. The intent of comparing Bayesian Belief Networks to Least Squares Regression

is to demonstrate that BBNs are an improvement over Least Squares Regression in the

modeling of software quality.

Neural Networks are similar to BBNs in that they can be represented as graphs of nodes

that represent model inputs and outputs. Like BBNs, Neural Networks are adaptive systems

that are trained, and then model based on prior data sets. In Neural Networks, training

produces a weighting scheme for each input node to each output node. The intent of com-

paring Bayesian Belief Networks to Neural Networks is to demonstrate that BBNs are an

improvement over other current methods of modeling software quality.

The approach to comparing the modeling techniques is similar to the approach used

to compare the Bayesian models. Competing models will be compared in terms of their

Accuracy of Fit to the data set, and in terms of their Predictive Validity. Accuracy of Fit

will be measured through an analysis of the Equality of Means and Equality of Variances tests

described in Section 3.3.2.3. The Accuracy of Fit tests identify those models that produce a

mean and variance for modeled variables that is statistically equivalent to the actual mean

and variance of those variables. The Predictive Validity test (see Section 3.3.2.4) is the

measure of Average Relative Error which quanti�es the deviation of the predicted values

from the actual values of software quality. Because, like the Direct E�ects Bayesian model,

202

both the Least Squares Regression Model and the Neural Networks use correlated input

variables, the Reliability Compliance and Time Behavior software quality variables will be

ignored in this part of the analysis, as they had no correlated inputs.

4.5.1 Accuracy of Fit Analysis

Determining the Accuracy of Fit for the three competing models involves identifying

whether each technique models software quality variables such that the modeled values are

equivalent to actual values. The technique for determining this is to verify that the mean

and variance of the modeled values are statistically comparable to the mean and variance

of the actual values, as described in Section 3.3.2.3. Figure 4.31 compares the Equality of

Means results for each of the three modeling methods evaluated. The Equality of Means

test involves the calculation of a test statistic which is expected to be less than the Student's

T distribution value for the given sample size, and desired level of con�dence if the means

between two data sets are to be considered equal. In Figure 4.31, the line labeled "Students

T Value" is the threshold for equality of means for each of the software quality variables

modeled, and for a 90% con�dence. The remaining lines show the test statistic values

calculated when each of the the three software quality modeling methods were used. For

the Equality of Means test to be passed, the test statistic values should be less than the

threshold line.

203

Figure 4.31: Equality of Means Results for Comparison of Software Quality Modeling Meth-
ods

Each of the three competing methods did well in modeling the set of software quality

variables with a mean that was equivalent to the mean of actual values. The Neural Net-

work shows some variables that were not modeled within this threshold. However, all three

software quality modeling methods performed well. Of the three, the BBN is able to pass

the Equality of Means test for all of the software quality variables. The Least Squares Re-

gression model could not be applied to all software quality variables due to the presence of

non-singular matrices, which makes a Least Squares prediction incalculable.

Figure 4.32 shows the comparison of the three competing software quality modeling

methods with respect to the Equality of Variances condition described in Section 3.3.2.3. As

204

Figure 4.32: Equality of Variances Results for Comparison of Software Quality Modeling
Methods

with the Equality of Means graph, the "Variance Threshold" line represents the threshold for

equality of variances, and the remaining lines are the variance ratio values for each modeling

technique with respect to each software quality variable. In cases of extreme variance ratio

values, the maximum value was clamped to 15 in order to keep the chart readable.

The BBN model is clearly superior in terms of Equality of Variances. For all software

quality variables except User Operation Cancellability the BBN satis�es the test for Equality

of Variances. Least Squares Regression and Neural Networks by comparison modeled several

205

variables as having a much di�erent distribution than the actual data. Although the mean

values of the Least Squares modeling method were accurate, the variances of the software

quality variables were much less broad than it modeled. In the case of Neural Networks,

the information presented in Figure 4.32 is misleading. While it is true that the ratio of

variances for the Neural Network method, calculated as described in Table 3.19, produced

a modeled distribution that did not vary with the actual distribution, the Neural Network

model produced a variance that was more narrow than the actual distribution of software

quality values. That is, the Neural Network modeled variables close to the mean value.

Table 4.34 summarizes the comparison of accuracy of �t for the three modeling ap-

proaches. While all three modeling techniques did well in modeling a distribution with a

mean equivalent to the mean of the actual distribution, Bayesian Belief Networks outper-

formed both the Least Squares Regression and Neural Network models in terms of producing

equivalent variances. The Neural Network did not produce variances that were equivalent,

but in all cases produced a distribution with a much smaller variance than the actual data,

indicating a tendency to model close to the mean.

4.5.2 Predictive Validity Analysis

Comparing the BBN, Least Squares Regression and Neural Network models in terms

of their Predictive Validity involves calculating the Average Relative Error (ARE) for each

software quality variable which is a measure of model accuracy. Figure 4.33 graphs the

206

Table 4.34: Summary of Accuracy of Fit Determinations for Competing Models
ISO/IEC 9126 Bayesian Belief Net Least Squares Regression Neural Net
Quality Metrics Means Vars Means Vars Means Vars

Equal? Equal? Equal? Equal? Equal? Equal?
Functionality:

Functional Adequacy Yes Yes Yes Yes No No
Functional Imp Complete Yes Yes Yes No Yes No
Functional Imp Coverage Yes Yes Yes No Yes No
Functional Spec Stablty Yes Yes No Yes
Accuracy Yes Yes Yes Yes Yes No
Precision Yes Yes Yes Yes Yes No
Data Exchangeability Yes Yes Yes Yes Yes No
Interface Protocol Yes Yes Yes Yes Yes No
Access Auditability Yes Yes Yes Yes Yes No
Access Controllability Yes Yes Yes No Yes No
Data Encryption Yes Yes Yes Yes Yes No
Functional Compliance Yes Yes Yes Yes Yes No
Reliability:

Failure Avoidance Yes Yes Yes Yes Yes No
Incorrect Op Avoidance Yes Yes Yes No
Restorability Yes Yes Yes No
E�ciency:

I/O Utilization Yes Yes Yes No Yes No
E�ciency Compliance Yes Yes Yes Yes Yes Yes
Usability:

User Op Cancelability Yes No Yes No Yes No
Op Status Monitoring Yes Yes Yes Yes Yes No
Usability Compliance Yes Yes Yes No Yes Yes
Maintainability:

Activity Recording Yes Yes Yes No Yes No
Portability:

Software Operability Yes Yes Yes Yes Yes No
Hardware Operability Yes Yes Yes No Yes No

comparative ARE values for each of the three competing software quality modeling methods.

As a lower value of ARE indicates higher accuracy in making predictions, it can be seen that

the BBN model is more accurate in predicting software quality. That is, for most of the

software quality variables model, the BBN provides the lowest ARE value.

Table 4.35 summarizes the comparison of the Bayesian, Least Squares, and Neural Net-

work models in terms of Predictive Validity. For 22 of the 23 variables, the BBN provided

207

Figure 4.33: Average Relative Error Results for Comparison of Software Quality Modeling
Methods

the most accurate forecasts. In addition, the 0.25 threshold for acceptable ARE proposed

by Conte, et. al [CDS86], was met for 11 of the 23 modeled software quality variables.

4.5.3 Summary of Comparison of Bayesian and Competing Models

This section summarizes the results of the comparative analysis of the three competing

software quality modeling methods. The Bayesian Belief Network outperformed the Least

Squares Regression Model and the Neural Network in terms of both Accuracy of Fit and

Predictive Validity. That is, the Bayesian Belief Network modeled software quality data

208

Table 4.35: Summary of Predictive Validity Determinations for Competing Models
ISO/IEC 9126 Bayesian Least Neural
Quality Metrics Belief Net Squares Regression Net
Functionality:

Functional Adequacy 0.085 0.469 0.476
Functional Imp Complete 0.158 2.898 0.534
Functional Imp Coverage 0.143 1.161 0.520
Functional Spec Stablty 0.775 1.00 5.526
Accuracy 0.390 1.211 0.737
Precision 0.413 0.643 0.385
Data Exchangeability 0.544 1.751 1.081
Interface Protocol 0.353 0.576 0.432
Access Auditability 0.320 0.193 0.510
Access Controllability 0.659 1.027 0.437
Data Encryption 0.030 N/A 0.509
Functional Compliance 0.096 0.708 0.800
Reliability:

Failure Avoidance 0.405 0.770 0.458
Incorrect Op Avoidance 0.066 N/A 0.429
Restorability 0.341 N/A 0.433
E�ciency:

I/O Utilization 0.060 0.750 0.502
E�ciency Compliance 0.120 N/A 1.051
Usability:

User Op Cancelability 0.353 0.667 0.515
Op Status Monitoring 0.045 N/A 0.526
Usability Compliance 0.103 0.792 0.845
Maintainability:

Activity Recording 0.449 0.786 0.507
Portability:

Software Operability 0.140 0.589 0.431
Hardware Operability 0.554 0.983 0.624

within acceptable thresholds of the actual data, and provided the most accurate predictions

for unknown data sets. This result demonstrates that Bayesian Belief Networks, as a tech-

nique for modeling software quality, are an improvement over a prior popular approach to

software quality modeling (Least Squares Regression), and perform better than at least one

current approach to software quality modeling (Neural Networks).

209

Both the Least Squares Regression model and the Neural Network were weak in their

ability to model the variances of the software quality variables. In the case of Least Squares

Regression, the modeled variance was too broad, resulting in software quality forecasts that

were accurate only when the set of actual software quality values happened to be close to

their mean values. The Least Squares model was too reactive to value changes in the model

inputs, and often produced forecasts that were well outside the actual value in terms of

ARE. Interestingly, the Neural Network represents the other extreme in that it modeled the

variances of software quality variables too narrowly. That is, the Neural Network was not

sensitive enough to the value changes of the inputs, and produced predicted values that were

too close to the mean value. The result was a set of ARE values that typically gravitated

around 0.5.

4.6 Limitations of the Results

It is important to identify and discuss any elements of the sample environment or the

analysis procedure which limit the applicability of the results. This section addresses those

limitations.

210

4.6.1 Sample Size

The validation of this model includes statistical techniques that accounted for the sample

sizes of the various software quality variables. The Equality of Means Hypothesis Test,

for example, uses the Student's T distribution in its calculations which accounts for the

sample size being used to make the determination of equivalence. Despite this, however, it

is recognized that the small sample sizes of several of these metrics are cause for concern. In

the case of the Reliability Compliance metrics, for example, only two of the projects in the

software engineering data set identi�ed this as a quality need that was to be �lled. Thus,

the validation results for software quality variables with small sample sizes should be treated

with caution.

4.6.2 Project Characteristics

As described in Section 3.3.1.2, the software projects selected for this research are all

small-scale development e�orts. Team size varied from one to four software engineers, the

number of source code �les did not exceed 50 �les, and the life cycle was typically com-

pleted inside a 3-4 month time period. While the results provide evidence that Bayesian

Belief Networks are e�ective in modeling various attributes of software product quality, it

is premature to infer that the results are applicable outside of the scope of the underlying

211

software engineering data. A logical extension to this research is to apply this methodology

to larger scale software development projects.

4.6.3 E�ects of a Learning Environment

This research acquired software engineering data from a combination of projects, in-

cluding industry projects and those in an academic setting. While the student teams were

comprised of both students and software engineering professionals, the intent of the class

was to instruct students on the practices of software engineering. Thus, the artifacts for

many projects were scrutinized in terms of the correctness of practically applying software

engineering techniques, and not in terms of cost, schedule, or other industry drivers of en-

gineering artifacts. It is possible that the ability of the model to provide accurate forecasts

was a�ected by this learning environment. For example, all of the quality models had dif-

�culty predicting for the Functional Speci�cation Stability software quality attribute. In

the process of developing a speci�cation for a student project, that artifact, in many cases,

incurred more changes than it would have in an industrial setting as the students re�ned

their abilities to write succinct requirements. The additional changes associated with the

student projects had the potential to skew the Functional Speci�cation Stability measures

for the set of projects used in this research.

212

CHAPTER 5

CONCLUSIONS

This research has proposed a model for software quality based on the cause-e�ect re-

lationships that exist throughout the software development life cycle, and using Bayesian

Belief Networks as the mechanism for relating software quality causal factors to variables

that represent aspects of software quality. The purpose for developing the model is to ad-

dress the need for a consistent approach to assessing and predicting software quality within

a development project. The use of widely accepted and/or existing standards has been lever-

aged in order to provide a framework for quantifying the various drivers and indicators of

software quality. The intent of this research is to establish a baseline for modeling quality in

the software engineering life cycle, which may be further improved and extended with future

research e�orts. This section discusses the conclusions reached as a result of this research.

213

5.1 Causal Factor Frameworks

This research focused on the use of standards and industry in-use frameworks for quanti-

fying causal factors that drive software quality, and for the variables that represent software

quality. The subsections below provide discussion on the viability of the selected measure-

ment frameworks in the context of software quality modeling. The major discriminators in

these conclusions are the presence of multicollinearity among variables, and the framework

to represent causal factors in a consistent and logical manner. The suitability of the various

frameworks is focused largely on their ability to identify independent measurement categories

that �t the acquired software engineering data.

5.1.1 Personnel Skill/Experience Framework

This research used the industry in-use Competency Management System, �elded by

NASA, as the basis for the assessment of skill and experience among software developers.

This framework was found to model development team capability very e�ectively. Only two

variables within the framework, Requirements Level 4 and Test Level 4, were found to model

the same information. In addition to a lack of multicollinearity between skill variables in

the same life cycle phase, there was only the one instance of multicollinearity between model

variables across life cycle phases. This independence of variables gives the skill delineations

credibility in terms of their ability to capture unique and discrete categories of skill.

214

The various correlation results were primarily consistent with expectations. In the iden-

ti�cation of most signi�cant causal factors of software quality, the presence of higher skill

levels was correlated positively to software quality, and the presence of lower skill levels was

correlated negatively to software quality. These results portray the expectation. It is the

conclusion of this research that the proposed framework for measuring software personnel

skill and experience is e�ective for modeling the capability of the development team in each

phase of the software life cycle.

5.1.2 Process Maturity Framework

The approach to quantifying process maturity for this research proved adequate, but

not exceptional. In terms of multicollinearity, there was a large amount of overlap between

variables. That is, several process variables were found to be modeling identical phenomena

and so were ultimately consolidated. It is possible that this is a result of using small-scale

projects as the basis for the data. Larger projects, in terms of size/complexity of the software

and also team size, require more infrastructure to facilitate communication between groups

of personnel. The ISO/IEC 15504, which was the standard used to categorize software

engineering practices, is intended for the assessment of a wide range of project sizes. For

the projects used in this research, the results indicate that such a broad set of practices is

unnecessary.

215

5.1.3 Problem Complexity Framework

This research proposed a framework for measuring problem complexity across several

phases of the development life cycle. In the requirements phase, two complexity measures

were introduced: quality need, which identi�ed whether a the need existed in a project for

a speci�c quality attribute, and quality coverage, which was an indicator of whether a given

need was addressed in the speci�cation. The design phase incorporated several di�erent

types of design measures that attempted to characterize the size of the designed software.

The implementation phase focused on the proportion of developed source code that could

be attributed to a given quality need as the complexity measure.

Of all of these measures, only those associated with the design phase or those represent-

ing changes to phase artifacts were signi�cant. That is, only the design phase complexity

variables, such as Depth of Inheritance Tree and Design Expansion, and the volatility mea-

sures for the requirements and design artifacts were found to be signi�cant in the assessment

and prediction of software quality. The measures of quality need and requirements coverage

were quickly eliminated in the analysis of means and variances. The implementation phase

complexity measure called prevalence, was signi�cant only for one software quality variable.

Design measures and measures of change (volatility) are traditionally used in software

quality prediction literature as discriminators for the inuence of size and complexity on

software quality. This research reinforces that position, and complements it with the knowl-

216

edge that attempts at size and complexity measures in other software life cycle phases were

found to be insigni�cant in terms of their correlation to software quality variables.

5.1.4 Software Product Quality Framework

The ISO/IEC 9126 Software Product Quality standard was the basis for the measures

that modeled software quality in this research. The ISO/IEC 9126 partitions software quality

into logical categories, and provides speci�c measures for quantifying quality in each of those

categories. For this study, 25 software quality variables were modeled using the measures

described in the standard. The ISO/IEC 9126 standard was found to be e�ective in capturing

the di�erent aspects of software quality. The range of classi�cation options were clearly

de�ned such that assignment of a requirement to a quality category was a simple task. The

classi�cation of requirements in terms of the quality attributes provided an extra veri�cation

of the speci�cation as those requirements that could be classi�ed into multiple categories

were deemed too complex and rewritten. Modeled quality variables were found to capture

unique and independent aspects of software quality.

One impact in using the ISO/IEC 9126 standard is that it requires more �delity in terms

of categorizing requirements. Most of the quality measures proposed are simply proportions

of the number of veri�ed requirements in a quality category to the number of requirements

in that categiory. Thus, it is helpful to organize the requirements speci�cation according to

the categories described in the standard. This allows the development team to classify both

217

requirements, and the veri�cation of requirements correctly. For a software organization

with an institutionalized set of processes, this would simply involve an adjustment to the

speci�cation templates to accommodate the organization of requirements into the categories

provided by the ISO/IEC 9126.

5.1.5 Availability of Software Engineering Data

Both the construction and validation of the software quality model developed in this

research relied heavily on the existence of software engineering data. Very early on in the

planning for this study, it became apparent that any software engineering data needed would

need to be speci�cally acquired. That is, the type of software engineering data needed

to provide insight into this software quality model was not readily available. Of the few

existing data sets that are freely available, none of them provided a level of detail necessary

to give insight into the full complement of driving factors of quality. While most tracked

various measures of size and complexity of the design problem or source code, there was no

consistency in the measures selected, there was little measurement of factors outside of size

and complexity, and there were no references to existing software quality standards.

Whether or not the measurement/modeling approaches presented in this study are widely

adopted, it is clear from this research exercise that the software engineering community is

in need of a standard measurement framework for quantifying the factors that inuence

software quality. It is the opinion of this researcher that the primary reason that software

218

quality prediction models are not prevalently used is the lack of a standardized, validated,

and applicable set of software engineering measures that quanti�es the various driving factors

of software quality.

5.2 Suitability of Bayesian Belief Networks

This research explored Bayesian Belief Networks as a mechanism for modeling software

quality. BBNs model cause-e�ect relationships between variables, and quantify those rela-

tionships using conditional probabilities. Initially, three di�erent approaches to BBN model

structures were described and compared. The intent was to identify the optimum BBN

structure for relating model inputs to outputs in the domain of software quality assessment

and prediction. The resultant model was then compared to competing software quality

model approaches. The criteria for comparison was an evaluation of the Accuracy of Fit of

the modeled software quality data with respect to the actual software quality data, and an

evaluation of the Predictive Validity of the the model's forecasts given a set of model inputs.

5.2.1 Comparison of Bayesian Model Structures

Three di�erent BBN model structures were proposed and compared in this research. The

Intuitive Model structure was a three-tiered structure that related causal factors of software

quality to software quality variables through an intermediary set of variables that represented

219

quality of the artifacts of each software life cycle phase. This structure was based simply on

a logical association of cause and e�ect. The Re�ned Model structure attempted to improve

on the Intuitive Model structure by applying statistical rigor to each logical cause-e�ect

relationship. The Direct E�ects Model was a much simpler two-tiered model that related

software quality variables to the set of model inputs that were signi�cantly correlated.

Overall, the Direct E�ects Model structure o�ered the best results in terms of all the

criteria: Equality of Means and Variances, Average Relative Error, and in terms of the Belief,

or level of con�dence, in the results. This structure was found to produce the optimum results

for 17 of the 25 software quality variables modeled. The Intuitive Model accounted for 7

of software quality attributes, and was found to produce the best results when sample sizes

were low, or when no model inputs could be directly correlated to a model output. This is

reasonable as the Intuitive structure provides a much more general model that is not biased

by any correlated model inputs. That is, it is better suited to low sample size situations,

where patterns have not yet emerged. In the results, a sample size of 5 projects was the

boundary for transition between the Intuitive Model providing an optimum structure, and

the Direct E�ects Model providing an optimum structure. The Re�ned Model was found to

produce the best results only for a single software quality variable, Functional Speci�cation

Stability. The expectations of this research were that the Re�ned Model would outperform

the Intuitive Model as its internal structure was veri�ed through an analysis of signi�cant

correlations. However, it was found that a lack of variance in the intermediary variables

220

representing life cycle phase correctness and completeness masked the upstream inuence of

the model inputs.

5.2.2 Comparison of Bayesian and Competing Model Structures

This research compared the Bayesian software quality modeling method to two other

competing techniques: Least Squares Regression and Neural Networks. Least Squares Re-

gression minimizes the sum of squared error values to produce a set of weights that are used

to scale each input variable's inuence on the modeled output. A Neural Network is an

adaptive approach to modeling that weights an input's e�ect on the modeled output based

on learning from a set of training data. For both Least Squares Regression and Neural

Networks, the correlated causal factors associated with each software quality output were

used as the model inputs (the same set of inputs used for the Direct E�ects Bayesian model

structure).

In terms of Accuracy of Fit, the three modeling techniques all performed well in terms

of the Equality of Means Test. That is, the set of modeled software quality variables had

an average value that was equivalent to the average value of the actual software quality

measures. However, in terms of Equality of Variances, the Bayesian approach vastly outper-

formed the other methods. Least Squares Regression was found to be too reactive to model

inputs, creating software quality variable distributions that were too broad. Conversely, the

Neural Network was not sensitive enough to model inputs, and produced variances that were

221

too narrow. Only the Bayesian models produced Accuracy of Fit results that passed both

Equality of Means and Equality of Variances tests for 22 of the 23 variables used in the

comparison.

This research has provided evidence that the use of Bayesian Belief Networks to model

software quality is superior to both Least Squares Regression and Neural Networks. In

addition to a better �t to the set of known data values, the Bayesian approach o�ered more

accurate predictions for 22 of the 23 software quality variables used in the comparison. In

addition, the Bayesian Belief Network model produced an Average Relative Error value of

less than 0.25 for 11 of the 23 software quality variables. This is the threshold for acceptable

ARE proposed by Conte, et. al [CDS86]. By comparison, modeling software quality using

Least Squares Regression or Neural Networks could not achieve this threshold for any of the

modeled variables.

5.2.3 System Resource Limitations of Bayesian Belief Networks

The use of the Bayesian Belief Network as a modeling tool proved largely successful in

terms of its ability to make accurate forecasts. However, there were several limitations that

emerged during the process of implementing the model in the software. These limitations

deal primarily with the consumption of system resources. A large amount of memory is

required to implement a network of any signi�cant size. The excessive memory consump-

tion is inevitable as the Bayesian Belief Network increases in complexity. The state space is

222

consumed quickly, particularly in cases where a given node in the BBN has several parents.

The conditional probability table required to support such an arrangement requires consid-

eration of all possible combinations of all possible states, and thus must calculate and store

the probabilities associated with all combinations in memory. The BBNs constructed for

this study routinely maximized the memory capacity of the machine on which they were ex-

ecuted (which had 1 Gigabyte of system memory). Although the simpli�cation of the model

structure discussed in Chapter 4 improved the model's consumption of the system memory,

it remained an issue. The granularity of the Percentage Node discussed in Section 3.2.5.1

impacts both the precision of the model and the consumption of system memory. For this

research, the balance between these two competing factors was realized with a maximum

resolution of eight states. A host computer system with a larger memory capacity will allow

for more discrete states in the output variables and thus improve the precision of the model's

predictions.

Despite the complexity limitation due to memory capacity of the host machine, this study

demonstrates that a BBN can be constructed that accurately models a complex software en-

gineering problem. The encouraging aspect of this is that as technology improves, and higher

performance computing machines are developed, complex BBNs can become an increasingly

viable option for modeling. Machines with 64-bit memory addressing and 2 GHz processing

speeds, available in today's market, could easily accommodate the BBNs developed for this

research. While the near-term application of complex BBNs to represent software quality

223

and other modeling problems may be sluggish in performance, there is enormous future

potential for use of these models as the technology improves.

5.3 Primary Causes of Software Product Quality

Current trends in software engineering focus on process as the driving factor in software

quality. The popular idea is that the institution of best practices in a development organi-

zation will lead to higher quality, better estimated software products (see Section 2.3.1 for

a discussion of supporting studies). Government agencies, such as the National Aeronautics

and Space Administration (NASA), require contracting organizations to be appraised at a

certain process maturity level before considering their proposals [NAS04]. The perception is

that a mature process brings with it an assurance of both process and product quality.

The results of this research do not address process quality, but do provide an alternate

set of �ndings regarding product quality. The analysis performed in Section 4.3.7 clearly

identi�es personnel skill and experience as the principal set of factors in both software quality,

and lack of software quality. That is, the capability of the development team had the most

signi�cant positive e�ect on the quality of the software product, and the most signi�cant

negative e�ect. Highly skilled personnel were correlated to high product quality, and less

skilled personnel were correlated with poorer software quality. These results are vastly

di�erent than current convention which touts the development process as the primary driver

for sound software quality.

224

The results indicate that the presence of less skilled developers has a negative inuence on

the product quality in a software development e�ort. This must be explored further, however,

as it is infeasible to expect a project to completely comprised of expert personnel. The issue is

not with the personnel, but with the assignment of tasks to those personnel. A developer with

minimal competence in software development is typically expected to perform an equal share

of the software construction responsibilities as his/her more highly skilled colleagues. This

research concludes that those developers that have a minimal software skill set are assigned

software development tasks that are inappropriately matched to their skill/experience level.

This issue can be corrected through either an allocation of responsibilities appropriate to

each team member's skill level, or possibly through a mentoring program that encourages

developers to mature under to the tutelage of a more skilled and experienced team member.

If personnel skill and experience is most strongly correlated with software product quality,

as this research asserts, then the e�ect of software process maturity warrants discussion.

There is little doubt that software process improves the process quality of a development

organization - this is the establishment of infrastructure that allows for more insight and

understanding in the development process. The goal of process quality is to improve the

management of the software development process and produce meaningful cost and schedule

estimates. It is important to separate this type of quality, process quality, from quality in

the software product itself. Software product quality addresses the quality in the delivered

software system. How aspects of the process infrastructure a�ect the product quality were

the focus of this research.

225

In Section 4.3.7, elements of the software process were found to signi�cantly inuence

the various software product quality attributes, but with some inconsistencies. Veri�cation

practices, for example, inuenced software quality both positively and negatively. On the

surface, these results gives no clear direction on how to incorporate process into a software

development e�ort in an e�ective way. This research asserts that the confused results are the

result of process quality being the focus of the development e�ort instead of product quality.

That is, project teams are interested in establishing process for the sake of the bene�ts

gained from process quality and making assumptions that those practices will also bene�t

product quality. Intuitively, there is value in all of the practices modeled in this research

as they relate to product quality. After all, it is di�cult to argue against the practice of

verifying artifacts. However, the issue seems one of application of the process, not of value

of the process. That is, are the processes feasible to perform by the development team

given the schedule and budget? This question seems to be the fulcrum of the issue. If the

set of processes are planned appropriately, and the impact of those processes incorporated

into the project schedule, then development teams can perform the process and still focus

on the product, yielding a higher quality product. If processes are poorly planned or not

complementary to the development team's product focus, then they become a distraction,

and are a detriment to the product's quality.

One of the more interesting and unexpected results of analyzing the e�ects of process

variables on variables of software quality was the positive e�ect that the Update Require-

ments variable had on software quality. Update Requirements is the practice of revisiting

226

the requirements with the customer at the start of each iteration of an incremental life cycle.

This result seems to be an indirect endorsement of an iterative approach to software devel-

opment. Although for some processes, there was confusion in the results on whether certain

practices positively or negatively a�ected software quality, it was clear that the repetitive

review of the requirements was a positive inuence.

The conclusion of this research in terms of factors that most signi�cantly a�ect software

quality is that projects should concentrate on acquiring the strongest set of skills for a

development team in preference to attempting to engineer the best process or constrain the

complexity of the software problem. The results indicate that skill and experience have the

most signi�cant e�ect on the software quality attributes measured in this study. Process

maturity has the potential to positively inuence software quality if the set of processes

are complementary to the life cycle, and feasible to complete. This research a�rms that

software problem complexity a�ects software quality in a negative way, with changes in the

requirements and design having the most dramatic adverse e�ect.

5.4 Model Applicability in the Software Life Cycle

There are multiple opportunities for application of this software quality model in the

engineering life cycle. This model was developed primarily to assess and predict software

quality. To that end, it would serve well in evolutionary life cycles such as the spiral model.

Evolutionary life cycles iterate through development activities in order to mature the software

227

product until it meets the customers' needs. The software quality model proposed in this

research would functional well as a risk analysis tool at both the conclusion of the design

phase, and at the conclusion of the test phase. Modeling at the conclusion of the design

phase would give an opportunity for the development team to model their software e�ort,

and react to any quality predictions made by the model. At the conclusion of the testing

phase, the model would provide an accurate assessment of the state of the software product's

quality. That information would be useful in the subsequent life cycle iteration to correct

any identi�ed quality de�ciencies.

At the start of a software engineering project, the developed software quality model

would be useful as an advisory tool for establishing development teams and processes. One

of the bene�ts of Bayesian Belief Networks is they are bidirectional in terms of how they

process variable states in the context of the training data. At the outset of a project, a

project manager could use the model to input software quality values that are targets for the

project. The underlying Bayesian Belief Network will process those values as inputs, and

produce as outputs the skill/experience and process combination, based on that development

organization's software engineering data, that is most likely to meet the designated target.

228

APPENDIX A

SOFTWARE SKILL ASSESSMENT

QUESTIONNAIRE

229

Individual Software Skill Assessment Form

Software Engineering

Skill Assessment Questionnaire

Instructions

This form is intended to assess your current level of education and experience in the �eld of

software engineering. Please complete the questions below as accurately as possible. The

information gathered here will be used as data to determine the e�ect of your skill level on

the quality of your delivered software.

Personal Information

Name:

Occupation:

Years of industry software experience:

Contact email:

Requirements Development

Formal Training:

Number of academic/professional courses you have taken that has included requirements

development as a subset of the curriculum:

Number of academic/professional courses you have taken in which the focus of the class was

requirements/speci�cation development:

230

Number of student projects in which you interacted with a user/customer in order to determine

and document user/customer needs:

Number of student projects in which you developed a software speci�cation:

Experience:

Number of industry projects in which you interacted with a user/customer in order to determine

and document user/customer needs:

Number of industry projects in which you developed a software speci�cation:

Number of industry projects in which you served as the lead user/customer interface:

Number of industry projects in which you developed a system-level speci�cations (such as an

interface speci�cation de�ning the relationship between subsystem components):

Number of industry projects in which you developed a highly formalized (e.g., safety-critical)

software speci�cation:

Number of formal speci�cation reviews in which you have participated:

Number of times you have presented a software speci�cation for review:

Software Design

Formal Training:

Number of academic/professional courses you have taken that has included software design as a

subset of the curriculum:

Number of academic/professional courses you have taken in which the focus of the class was

software design:

231

Number of academic/professional courses you have taken that focused on a specialized form of

software design (e.g., Database Design, design patterns, real-time software design, etc.):

Number of student projects in which you developed a software design and associated

documentation:

Experience:

Number of industry projects in which you developed a software design and associated

documentation:

Number of industry projects in which you developed a specialized form of software design and

associated documentation (e.g., Database Design, design patterns, real-time software design, etc.):

Number of industry projects in which you served as the lead for designing a software component

of a larger system:

Number of industry projects in which you have served as the software architect (lead software

designer) for a system with multiple components:

Number of formal design reviews in which you have participated:

Number of times you have presented a software design for review:

Software Implementation

Formal Training:

Number of academic/professional courses you have taken that has included software

implementation as a subset of the curriculum (e.g., coding was required as part of a class project):

Number of academic/professional courses you have taken in which the focus of the class was

software implementation (e.g., a class devoted to a speci�c programming language):

232

Number of student projects in which you implemented software:

Experience:

Number of industry projects in which you implemented software:

For each major programming language below, list the number of projects in which you used the

language:

C/C++

Java

Visual Basic

List any other languages/packages/products/protocols/etc that you are familiar with (e.g., SQL,

HTML, TCP/IP, VxWorks, Python):

Number of industry projects in which you served as the lead for implementing a software

component in a larger system:

Number of formal code reviews in which you have participated:

Number of times you have presented source code for review:

Software Integration and Test

Formal Training:

Number of academic/professional courses you have taken that has included software testing as a

subset of the curriculum:

Number of academic/professional courses you have taken in which the focus of the class was

software testing:

233

Number of student projects in which you interacted with a user/customer in order to determine

and document user/customer needs:

Number of student projects in which you developed software test plans and/or procedures:

Number of student projects in which you executed a software test procedure:

Experience:

Number of industry projects in which you developed software test plans and/or procedures::

Number of industry projects in which you executed a software test procedure:

Number of industry projects in which you served as the lead for testing a software component in a

larger system:

Number of industry projects in which you served as the system test lead for a software system

with multiple components:

Number of industry projects in which you served as a quality assurance specialist for the testing

of a software package:

234

APPENDIX B

DIRECT EFFECTS ANALYSIS TABLES

235

The following tables capture the analysis of the direct e�ects of each of the various

potential causal factors of software quality on the software quality variables represented

in the developed model. The tables are organized by category (Development Team Skill,

Process Maturity, and Problem Complexity) and then by life cycle phase (Requirements,

Design, Implementation, Integration/Test). These tables form the basis for the analysis

performed in Section 4.3.

Table B.1: Correlation of Requirements Skill Level 1 to Software Quality
Software Samp. Req Skill 1 Test Critical Signi�cant?
Quality Variable Size Correlation Stat(t) Value(cv) (t > cv)
Suitability
Functional Adequacy 28 -0.1027 0.7447 1.6726 No
Functional Completeness 28 -0.0966 0.7130 1.6726 No
Functional Coverage 28 -0.1329 0.9851 1.6726 No
Speci�cation Stability 28 -0.1066 0.7878 1.6726 No
Accuracy 9 0.2988 1.2522 1.7340 No
Precision 9 0.3705 1.5955 1.7340 No
Data Exchangeability 13 -0.0860 0.4227 1.7060 No
Interface Consistency 9 0.0062 0.0249 1.7340 No
Access Auditability 7 0.0430 0.1492 1.7610 No
Functional Compliance 5 -0.2500 0.7303 1.8120 No
Reliability
Failure Avoidance 8 0.3031 1.1901 1.7460 No
Usability
User Cancelability 3 0.3333 0.8660 1.8600 No
Status Monitoring 4 -0.2500 0.7303 1.8120 No
Usability Compliance 7 -0.6455 2.9277 1.7610 Yes
Maintainability
Data Logging 12 0.2524 1.2780 1.7060 No

236

Table B.2: Correlation of Requirements Skill Level 2 to Software Quality
Software Samp. Req Skill 2 Test Critical Signi�cant?
Quality Variable Size Correlation Stat(t) Value(cv) (t > cv)
Suitability
Functional Adequacy 28 0.0151 0.1092 1.6726 No
Functional Completeness 28 0.0267 0.1961 1.6726 No
Functional Coverage 28 0.0333 0.2447 1.6726 No
Speci�cation Stability 28 0.3142 2.4319 1.6726 Yes
Accuracy 9 -0.2011 0.8213 1.7340 No
Precision 9 -0.0950 0.3815 1.7340 No
Data Exchangeability 13 0.5894 3.5743 1.7060 Yes
Interface Consistency 9 -0.2798 1.1658 1.7340 No
Access Auditability 7 -0.1698 0.5968 1.7610 No
Access Controllability 8 0.5229 2.2953 1.7460 Yes
Functional Compliance 5 0.5145 1.6971 1.8120 No
Reliability
Failure Avoidance 8 -0.4088 1.6760 1.8120 Yes
Restorability 7 -0.4470 1.7312 1.7610 No
Usability
User Cancelability 3 -0.3333 0.8660 1.8600 No
Status Monitoring 4 -0.7906 3.6515 1.8120 Yes
Usability Compliance 7 -0.3063 1.1145 1.7610 No
Maintainability
Data Logging 12 0.0117 0.0576 1.7060 No
Portability
Software Operability 13 0.1882 0.9386 1.7060 No
Hardware Operability 7 0.3341 1.3263 1.7460 No

237

Table B.3: Correlation of Requirements Skill Level 3 to Software Quality
Software Samp. Req Skill 3 Test Critical Signi�cant?
Quality Variable Size Correlation Stat(t) Value(cv) (t > cv)
Suitability
Functional Adequacy 28 0.0250 0.1804 1.6726 No
Functional Completeness 28 -0.0463 0.3408 1.6726 No
Functional Coverage 28 -0.0349 0.2566 1.6726 No
Speci�cation Stability 28 -0.1932 1.4470 1.6726 No
Accuracy 9 -0.0796 0.3194 1.7340 No
Precision 9 -0.1448 0.5855 1.7340 No
Data Exchangeability 13 -0.5609 3.3188 1.7060 Yes
Interface Consistency 9 0.2095 0.8571 1.7340 No
Access Auditability 7 0.2582 0.9258 1.7610 No
Access Controllability 8 0.3780 1.5275 1.7460 No
Functional Compliance 5 -0.4564 1.4510 1.8120 No
Reliability
Failure Avoidance 8 0.3031 1.1901 1.7460 No
Incorrect Op Avoidance 5 -0.5590 1.9069 1.8120 Yes
Restorability 7 0.2810 1.0142 1.7610 No
Usability
Status Monitoring 4 0.6124 2.1909 1.8120 Yes
Usability Compliance 7 0.3000 1.0894 1.7610 No
Maintainability
Data Logging 12 -0.3465 1.8096 1.7060 Yes
Portability
Software Operability 13 -0.4799 2.6799 1.7060 Yes
Hardware Operability 7 -0.5774 2.6458 1.7460 Yes

238

Table B.4: Correlation of Requirements Skill Level 4 to Software Quality
Software Samp. Req Skill 4 Test Critical Signi�cant?
Quality Variable Size Correlation Stat(t) Value(cv) (t > cv)
Suitability
Functional Adequacy 28 0.1799 1.3189 1.6726 No
Functional Completeness 28 0.3493 2.7390 1.6726 Yes
Functional Coverage 28 0.3995 3.2022 1.6726 Yes
Speci�cation Stability 28 -0.2369 1.7918 1.6726 Yes
Precision 9 -0.8047 5.4210 1.7340 Yes
Data Exchangeability 13 -0.3886 2.0660 1.7060 Yes
Interface Consistency 9 0.3001 1.2585 1.7340 No
Access Controllability 8 0.2928 1.1456 1.7460 No
Reliability
Failure Avoidance 8 0.2037 0.7783 1.7460 No
Restorability 7 0.7024 3.4188 1.7610 Yes
Usability
Status Monitoring 4 0.6124 2.1909 1.8120 Yes
Usability Compliance 7 0.7303 3.7033 1.7610 Yes
Maintainability
Data Logging 12 0.2855 1.4595 1.7060 No

239

Table B.5: Correlation of Design Skill Level 1 to Software Quality
Software Samp. Des Skill 1 Test Critical Signi�cant?
Quality Variable Size Correlation Stat(t) Value(cv) (t > cv)
Suitability
Functional Adequacy 28 -0.1120 0.8124 1.6726 No
Functional Completeness 28 0.1827 1.3656 1.6726 No
Functional Coverage 28 0.1403 1.0413 1.6726 No
Speci�cation Stability 28 0.2582 1.9642 1.6726 Yes
Accuracy 9 0.1427 0.5768 1.7340 No
Precision 9 0.2765 1.1508 1.7340 No
Data Exchangeability 13 0.1429 0.7076 1.7060 No
Interface Consistency 9 -0.6656 3.5678 1.7340 Yes
Access Auditability 7 -0.1557 0.5460 1.7610 No
Functional Compliance 5 -0.2500 0.7303 1.8120 No
Reliability
Failure Avoidance 8 0.3031 1.1901 1.7460 No
Incorrect Op Avoidance 5 -0.5590 1.9069 1.8120 Yes
Restorability 7 -0.5960 2.5714 1.7610 Yes
Maintainability
Data Logging 12 -0.4237 2.2916 1.7060 Yes
Portability
Software Operability 13 0.4702 2.6103 1.7060 Yes
Hardware Operability 7 0.5625 2.5459 1.7460 Yes

240

Table B.6: Correlation of Design Skill Level 2 to Software Quality
Software Samp. Des Skill 2 Test Critical Signi�cant?
Quality Variable Size Correlation Stat(t) Value(cv) (t > cv)
Suitability
Functional Adequacy 28 -0.1172 0.8509 1.6726 No
Functional Completeness 28 -0.3548 2.7887 1.6726 Yes
Functional Coverage 28 -0.3813 3.0308 1.6726 Yes
Speci�cation Stability 28 0.0698 0.5140 1.6726 No
Accuracy 9 -0.3087 1.2983 1.7340 No
Precision 9 -0.0073 0.0293 1.7340 No
Data Exchangeability 13 0.2115 1.0602 1.7060 No
Interface Consistency 9 0.1894 0.7714 1.7340 No
Access Auditability 7 0.1557 0.5460 1.7610 No
Access Controllability 8 -0.2928 1.1456 1.7460 No
Data Encryption 2 1.0000 N/A 2.1320 Yes
Functional Compliance 5 0.3953 1.2172 1.8120 No
Reliability
Failure Avoidance 8 -0.4088 1.6760 1.7460 No
Incorrect Op Avoidance 5 -0.2795 0.8234 1.8120 No
Restorability 7 -0.7476 3.8998 1.7610 Yes
E�ciency
E�ciency Compliance 3 1.0000 N/A 1.9430 Yes
Usability
User Cancelability 3 1.0000 N/A 1.8600 Yes
Status Monitoring 4 -0.6124 2.1909 1.8120 Yes
Usability Compliance 7 -0.7303 3.7033 1.7610 Yes
Maintainability
Data Logging 12 -0.1551 0.7689 1.7060 No
Portability
Software Operability 13 -0.2328 1.1728 1.7060 No
Hardware Operability 7 -0.2529 0.9779 1.7460 No

241

Table B.7: Correlation of Design Skill Level 3 to Software Quality
Software Samp. Des Skill 3 Test Critical Signi�cant?
Quality Variable Size Correlation Stat(t) Value(cv) (t > cv)
Suitability
Functional Adequacy 28 0.1672 1.2229 1.6726 No
Functional Completeness 28 0.1580 1.1761 1.6726 No
Functional Coverage 28 0.2077 1.5599 1.6726 No
Speci�cation Stability 28 -0.2184 1.6446 1.6726 No
Accuracy 9 0.3966 1.7281 1.7340 No
Precision 9 -0.1448 0.5855 1.7340 No
Data Exchangeability 13 -0.1982 0.9906 1.7060 No
Interface Consistency 9 0.3001 1.2585 1.7340 No
Access Controllability 8 0.2928 1.1456 1.7460 No
Functional Compliance 5 -0.2500 0.7303 1.8120 No
Reliability
Failure Avoidance 8 0.2037 0.7783 1.7460 No
Incorrect Op Avoidance 5 0.5590 1.9069 1.8120 Yes
Restorability 7 0.8278 5.1120 1.7610 Yes
Usability
Status Monitoring 4 0.6124 2.1909 1.8120 Yes
Usability Compliance 7 0.7303 3.7033 1.7610 Yes
Maintainability
Data Logging 12 0.3673 1.9348 1.7060 Yes
Portability
Software Operability 13 -0.1777 0.8845 1.7060 No
Hardware Operability 7 0.0000 N/A 1.7460 No

242

Table B.8: Correlation of Design Skill Level 4 to Software Quality
Software Samp. Des Skill 4 Test Critical Signi�cant?
Quality Variable Size Correlation Stat(t) Value(cv) (t > cv)
Suitability
Functional Adequacy 28 0.1975 1.4527 1.6726 No
Functional Completeness 28 0.3079 2.3783 1.6726 Yes
Functional Coverage 28 0.3627 2.8605 1.6726 Yes
Speci�cation Stability 28 -0.2608 1.9848 1.6726 Yes
Accuracy 9 -0.3752 1.6188 1.7340 No
Precision 9 -0.8047 5.4210 1.7340 Yes
Data Exchangeability 13 -0.3886 2.0660 1.7060 Yes
Interface Consistency 9 0.3001 1.2585 1.7340 No
Access Controllability 8 0.2928 1.1456 1.7460 No
Functional Compliance 5 -0.2500 0.7303 1.8120 No
Reliability
Failure Avoidance 8 0.3069 1.2067 1.7460 No
Restorability 7 0.7024 3.4188 1.7610 Yes
Usability
Status Monitoring 4 0.6124 2.1909 1.8120 Yes
Usability Compliance 7 0.7303 3.7033 1.7610 Yes
Maintainability
Data Logging 12 0.2855 1.4595 1.7060 No
Portability
Software Operability 13 0.2417 1.2201 1.7060 No

243

Table B.9: Correlation of Implementation Skill Level 1 to Software Quality
Software Samp. Imp Skill 1 Test Critical Signi�cant?
Quality Variable Size Correlation Stat(t) Value(cv) (t > cv)
Suitability
Functional Adequacy 28 -0.0688 0.4975 1.6726 No
Functional Completeness 28 0.1513 1.1249 1.6726 No
Functional Coverage 28 0.1246 0.9227 1.6726 No
Speci�cation Stability 28 -0.0236 0.1733 1.6726 No
Accuracy 9 0.1427 0.5768 1.7340 No
Precision 9 0.4096 1.7962 1.7340 Yes
Data Exchangeability 13 0.3404 1.7738 1.7060 Yes
Access Auditability 7 0.2582 0.9258 1.7610 No
Access Controllability 8 0.1429 0.5401 1.7460 No
Functional Compliance 5 -0.2500 0.7303 1.8120 No
Reliability
Failure Avoidance 8 0.2694 1.0467 1.7460 No
Usability
User Cancelability 3 0.3333 0.8660 1.8600 No
Maintainability
Data Logging 12 -0.2408 1.2153 1.7060 No
Portability
Software Operability 13 0.3136 1.6181 1.7060 No
Hardware Operability 7 -0.3780 1.5275 1.7460 No

244

Table B.10: Correlation of Implementation Skill Level 2 to Software Quality
Software Samp. Imp Skill 2 Test Critical Signi�cant?
Quality Variable Size Correlation Stat(t) Value(cv) (t > cv)
Suitability
Functional Adequacy 28 0.0627 0.4531 1.6726 No
Functional Completeness 28 -0.2979 2.2933 1.6726 Yes
Functional Coverage 28 -0.2805 2.1477 1.6726 Yes
Speci�cation Stability 28 0.3216 2.4962 1.6726 Yes
Accuracy 9 -0.0544 0.2181 1.7340 No
Precision 9 -0.0370 0.1481 1.7340 No
Data Exchangeability 13 0.2397 1.2097 1.7060 No
Interface Consistency 9 -0.1380 0.0399 1.7340 No
Access Auditability 7 0.1698 0.5968 1.7610 No
Access Controllability 8 -0.4587 1.9314 1.7460 Yes
Data Encryption 2 1.0000 N/A 2.1320 Yes
Functional Compliance 5 0.5833 2.0313 1.8120 Yes
Reliability
Failure Avoidance 8 -0.4073 1.6687 1.7460 No
Incorrect Op Avoidance 5 -0.8385 4.3529 1.8120 Yes
Restorability 7 -0.8158 4.8863 1.7610 No
E�ciency
I/O Utilization 2 1.0000 N/A 2.1320 Yes
E�ciency Compliance 3 1.0000 N/A 1.9430 Yes
Usability
User Cancelability 3 0.5773 1.7321 1.8600 No
Status Monitoring 4 -0.6124 2.1909 1.8120 Yes
Usability Compliance 7 -0.4528 1.7593 1.7610 No
Maintainability
Data Logging 12 0.0693 0.3403 1.7060 No
Portability
Software Operability 13 0.2495 1.2620 1.7060 No
Hardware Operability 7 0.4437 1.8524 1.7460 Yes

245

Table B.11: Correlation of Implementation Skill Level 3 to Software Quality
Software Samp. Imp Skill 3 Test Critical Signi�cant?
Quality Variable Size Correlation Stat(t) Value(cv) (t > cv)
Functionality
Functional Adequacy 28 -0.0326 0.2352 1.6726 No
Functional Completeness 28 -0.0804 0.5926 1.6726 No
Functional Coverage 28 0.0846 0.6239 1.6726 No
Speci�cation Stability 28 -0.1375 1.0202 1.6726 No
Accuracy 9 0.0162 0.0648 1.7340 No
Precision 9 0.0475 0.1904 1.7340 No
Data Exchangeability 13 -0.2596 1.3171 1.7060 No
Interface Consistency 9 0.0868 0.5571 1.7340 No
Access Auditability 7 -0.1557 0.5460 1.7610 No
Access Controllability 8 0.3394 1.3502 1.7460 No
Data Encryption 2 1.0000 N/A 2.1320 Yes
Functional Compliance 5 -0.3430 1.0328 1.8120 No
Reliability
Failure Avoidance 8 0.2037 0.7783 1.7460 No
Incorrect Op Avoidance 5 0.8385 4.3529 1.8120 Yes
Restorability 7 0.3083 1.1228 1.7610 No
Usability
Status Monitoring 4 0.6124 2.1909 1.8120 Yes
Usability Compliance 7 -0.7156 3.5491 1.7610 Yes
Maintainability
Data Logging 12 -0.1626 0.8076 1.7060 No
Portability
Software Operability 13 -0.4696 2.6055 1.7060 Yes
Hardware Operability 7 -0.1796 0.6831 1.7460 No

246

Table B.12: Correlation of Implementation Skill Level 4 to Software Quality
Software Samp. Imp Skill 4 Test Critical Signi�cant?
Quality Variable Size Correlation Stat(t) Value(cv) (t > cv)
Functionality
Functional Adequacy 28 0.0179 0.1292 1.6726 No
Functional Completeness 28 0.3550 2.7904 1.6726 Yes
Functional Coverage 28 0.3627 2.8561 1.6726 Yes
Speci�cation Stability 28 -0.2771 2.1194 1.6726 Yes
Accuracy 9 0.3752 1.6188 1.7340 No
Precision 9 -0.8047 5.4210 1.7340 Yes
Data Exchangeability 13 -0.3886 2.0660 1.7060 Yes
Interface Consistency 9 -0.4610 0.3487 1.7340 No
Access Controllability 8 0.2928 1.1456 1.7460 No
Functional Compliance 5 -0.4082 1.2649 1.8120 No
Reliability
Failure Avoidance 8 0.2843 1.1096 1.7460 No
Restorability 7 0.7024 3.4188 1.7610 Yes
Usability
Status Monitoring 4 0.6124 2.1909 1.8120 Yes
Usability Compliance 7 0.7303 3.7033 1.7610 Yes
Maintainability
Data Logging 12 0.2855 1.4595 1.7060 No
Portability
Software Operability 13 0.1169 0.5768 1.7060 No

247

Table B.13: Correlation of Integration/Test Skill Level 1 to Software Quality
Software Samp. Tst Skill 1 Test Critical Signi�cant?
Quality Variable Size Correlation Stat(t) Value(cv) (t > cv)
Functionality
Functional Adequacy 28 0.0301 0.2169 1.6726 No
Functional Completeness 28 -0.0400 0.2941 1.6726 No
Functional Coverage 28 0.0416 0.3057 1.6726 No
Speci�cation Stability 28 -0.0372 0.2736 1.6726 Yes
Accuracy 9 0.0064 0.0256 1.7340 No
Precision 9 0.5068 2.3517 1.7340 No
Data Exchangeability 13 0.1450 0.7181 1.7060 No
Interface Consistency 9 -0.2651 1.0999 1.7340 No
Access Auditability 7 0.5119 2.0641 1.7610 Yes
Access Controllability 8 -0.6064 2.8538 1.7460 Yes
Functional Compliance 5 -0.2500 0.7303 1.8120 No
Reliability
Failure Avoidance 8 0.4608 1.9426 1.7460 Yes
Incorrect Op Avoidance 5 0.0000 N/A 1.8120 No
Restorability 7 -0.9234 8.3324 1.7610 Yes
Usability
User Cancelability 3 0.5774 1.7321 1.8600 No
Status Monitoring 4 -0.2500 0.7303 1.8120 No
Usability Compliance 7 -0.6455 2.9277 1.7610 Yes
Maintainability
Data Logging 12 -0.3594 1.8865 1.7060 Yes
Portability
Software Operability 13 0.0116 0.0568 1.7060 No
Hardware Operability 7 -0.2097 0.8023 1.7460 No

248

Table B.14: Correlation of Integration/Test Skill Level 2 to Software Quality
Software Samp. Tst Skill 2 Test Critical Signi�cant?
Quality Variable Size Correlation Stat(t) Value(cv) (t > cv)
Suitability
Functional Adequacy 28 -0.2838 2.1340 1.6726 Yes
Functional Completeness 28 -0.1505 1.1188 1.6726 No
Functional Coverage 28 -0.2247 1.6943 1.6726 Yes
Speci�cation Stability 28 0.4083 3.2866 1.6726 Yes
Accuracy 9 -0.5266 2.4781 1.7340 Yes
Precision 9 0.0719 0.2883 1.7340 No
Data Exchangeability 13 0.1094 0.5393 1.7060 No
Interface Consistency 9 0.1155 0.4651 1.7340 No
Access Auditability 7 -0.5675 2.0641 1.7610 Yes
Access Controllability 8 0.2757 1.0730 1.7460 No
Data Encryption 2 1.0000 N/A 2.1320 Yes
Functional Compliance 5 0.3953 1.2172 1.8120 No
Reliability
Failure Avoidance 8 0.0272 0.1020 1.7460 No
Incorrect Op Avoidance 5 0.7500 3.2071 1.8120 Yes
Restorability 7 -0.0789 0.2743 1.7610 No
E�ciency
I/O Utilization 2 1.0000 N/A 2.1320 Yes
E�ciency Compliance 3 1.0000 N/A 1.9430 Yes
Usability
User Cancelability 3 -0.5774 1.7321 1.8600 No
Usability Compliance 7 -0.4528 1.7593 1.7610 No
Maintainability
Data Logging 12 -0.0675 0.3314 1.7060 No
Portability
Software Operability 13 0.1989 0.9942 1.7060 No
Hardware Operability 7 0.3919 1.5940 1.7460 No

249

Table B.15: Correlation of Integration/Test Skill Level 3 to Software Quality
Software Samp. Tst Skill 3 Test Critical Signi�cant?
Quality Variable Size Correlation Stat(t) Value(cv) (t > cv)
Suitability
Functional Adequacy 28 0.0923 0.6684 1.6726 No
Functional Completeness 28 -0.2091 1.5717 1.6726 No
Functional Coverage 28 0.1773 1.3241 1.6726 No
Speci�cation Stability 28 -0.1715 1.2792 1.6726 No
Accuracy 9 0.5133 2.3922 1.7340 Yes
Precision 9 -0.0221 0.0885 1.7340 No
Data Exchangeability 13 0.1163 0.5739 1.7060 No
Interface Consistency 9 -0.4716 2.1394 1.7340 Yes
Access Auditability 7 0.2582 0.9258 1.7610 No
Functional Compliance 5 -0.3430 1.0328 1.8120 No
Reliability
Failure Avoidance 8 -0.6873 3.5408 1.7460 Yes
Incorrect Op Avoidance 5 -0.8385 4.3529 1.8120 Yes
Restorability 7 -0.5960 2.5714 1.7610 No
Usability
Usability Compliance 7 -0.6455 2.9277 1.7610 Yes
Maintainability
Data Logging 12 0.1953 0.9755 1.7060 No
Portability
Software Operability 13 -0.2343 1.1807 1.7060 No
Hardware Operability 7 -0.1796 0.6831 1.7460 No

250

Table B.16: Correlation of Integration/Test Skill Level 4 to Software Quality
Software Samp. Tst Skill 4 Test Critical Signi�cant?
Quality Variable Size Correlation Stat(t) Value(cv) (t > cv)
Suitability
Functional Adequacy 28 0.1799 1.3189 1.6726 No
Functional Completeness 28 0.3493 2.7390 1.6726 Yes
Functional Coverage 28 0.3995 3.2022 1.6726 Yes
Speci�cation Stability 28 -0.2369 1.7918 1.6726 Yes
Precision 9 -0.8047 5.4210 1.7340 Yes
Data Exchangeability 13 -0.3886 2.0660 1.7060 Yes
Interface Consistency 9 0.3001 1.2585 1.7340 No
Access Controllability 8 0.2928 1.1456 1.7610 No
Reliability
Failure Avoidance 8 0.2037 0.7783 1.7460 No
Restorability 7 0.7024 3.4188 1.7610 Yes
Usability
Status Monitoring 4 0.6124 2.1909 1.8120 Yes
Usability Compliance 7 0.7303 3.7033 1.7610 Yes
Maintainability
Data Logging 12 0.2855 1.4595 1.7060 No

251

Table B.17: Correlation of Specify Requirements Process to Software Quality
Software Samp. Spec Reqs Test Critical Signi�cant?
Quality Variable Size Correlation Stat(t) Value(cv) (t > cv)
Suitability
Functional Adequacy 28 0.0952 0.6896 1.6726 No
Functional Completeness 28 -0.1479 1.0991 1.6726 No
Functional Coverage 28 0.1745 1.3021 1.6726 No
Speci�cation Stability 28 0.1570 1.1678 1.6726 No
Access Controllability 8 -0.1429 0.5401 1.7460 No
Reliability
Failure Avoidance 8 -0.2037 0.7783 1.7460 No
Restorability 7 -0.3311 1.2157 1.7610 No
Usability
Status Monitoring 4 -0.2500 0.7303 1.8120 No
Usability Compliance 7 -0.2582 0.9258 1.7610 No
Maintainability
Data Logging 12 -0.1505 0.7457 1.7060 No

252

Table B.18: Correlation of Requirements Evaluation Process to Software Quality
Software Samp. Eval Reqs Test Critical Signi�cant?
Quality Variable Size Correlation Stat(t) Value(cv) (t > cv)
Suitability
Functional Adequacy 28 0.4292 3.4266 1.6726 Yes
Functional Completeness 28 0.0083 0.0611 1.6726 No
Functional Coverage 28 -0.1079 0.7975 1.6726 No
Speci�cation Stability 28 0.0598 0.4400 1.6726 No
Accuracy 9 0.2144 0.8779 1.7340 No
Precision 9 0.0585 0.2345 1.7340 No
Data Exchangeability 13 0.5029 2.8501 1.7060 Yes
Interface Consistency 9 -0.4610 2.0778 1.7340 Yes
Access Auditability 7 -0.7303 3.7033 1.7610 Yes
Access Controllability 8 0.2182 0.8367 1.7460 No
Data Corruption Prevention 2 1.0000 N/A 2.1320 Yes
Functional Compliance 5 -0.4082 1.2649 1.8120 No
Reliability
Failure Avoidance 8 -0.3246 1.2841 1.7460 No
Incorrect Op Avoidance 5 -0.5590 1.9069 1.8120 Yes
Usability
User Cancelability 3 0.3333 0.8660 1.8600 No
Usability Compliance 7 -0.6455 2.9277 1.7610 Yes
Maintainability
Data Logging 12 -0.3301 1.7135 1.7060 Yes
Portability
Software Operability 13 0.3705 1.9539 1.7060 Yes
Hardware Operability 7 0.0000 N/A 1.7460 No

253

Table B.19: Correlation of Update Requirements Process to Software Quality
Software Samp. Update Reqs Test Critical Signi�cant?
Quality Variable Size Correlation Stat(t) Value(cv) (t > cv)
Suitability
Functional Adequacy 28 0.1605 1.1723 1.6726 No
Functional Completeness 28 0.3121 2.4141 1.6726 Yes
Functional Coverage 28 0.3570 2.8080 1.6726 Yes
Speci�cation Stability 28 -0.2447 1.8545 1.6726 Yes
Precision 9 -0.8047 5.4210 1.7340 No
Data Exchangeability 13 -0.2631 1.3358 1.7060 No
Access Controllability 8 0.2182 0.8367 1.7460 No
Reliability
Failure Avoidance 8 0.2037 0.7783 1.7460 No
Restorability 7 0.5130 2.0702 1.7610 Yes
Usability
Status Monitoring 4 0.6124 2.1909 1.8120 Yes
Usability Compliance 7 0.5477 2.2678 1.7610 Yes
Maintainability
Data Logging 12 0.2855 1.4595 1.7060 Yes

254

Table B.20: Correlation of Develop Validation Criteria Process to Software Quality
Software Samp. Val Critra Test Critical Signi�cant?
Quality Variable Size Correlation Stat(t) Value(cv) (t > cv)
Suitability
Functional Adequacy 28 -0.1799 1.3189 1.6726 No
Functional Completeness 28 -0.3493 2.7390 1.6726 Yes
Functional Coverage 28 -0.3995 3.2022 1.6726 Yes
Speci�cation Stability 28 0.2369 1.7918 1.6726 Yes
Precision 9 0.8047 5.4210 1.7340 Yes
Data Exchangeability 13 0.3886 2.0660 1.7060 Yes
Interface Consistency 9 -0.3001 1.2585 1.7340 No
Access Controllability 8 -0.2928 1.1456 1.7460 No
Reliability
Failure Avoidance 8 -0.2037 0.7783 1.7460 No
Restorability 7 -0.7024 3.4188 1.7610 Yes
Usability
Status Monitoring 4 -0.6124 2.1909 1.8120 Yes
Usability Compliance 7 -0.7303 3.7033 1.7610 Yes
Maintainability
Data Logging 12 -0.2855 1.4595 1.7060 No

255

Table B.21: Correlation of Determine Environmental Impact Process to Software Quality
Software Samp. Env Impact Test Critical Signi�cant?
Quality Variable Size Correlation Stat(t) Value(cv) (t > cv)
Suitability
Functional Adequacy 28 0.1799 1.3189 1.6726 No
Functional Completeness 28 0.3493 2.7390 1.6726 Yes
Functional Coverage 28 0.3995 3.2022 1.6726 Yes
Speci�cation Stability 28 -0.2369 1.7918 1.6726 Yes
Precision 9 -0.8047 5.4210 1.7340 Yes
Data Exchangeability 13 -0.3886 2.0660 1.7060 Yes
Interface Consistency 9 0.3001 1.2585 1.7340 No
Access Controllability 8 0.2928 1.1456 1.7460 No
Reliability
Failure Avoidance 8 0.2037 0.7783 1.7460 No
Restorability 7 0.7024 3.4188 1.7610 Yes
Usability
Status Monitoring 4 0.6124 2.1909 1.8120 Yes
Usability Compliance 7 0.7303 3.7033 1.7610 Yes
Maintainability
Data Logging 12 0.2855 1.4595 1.7060 No

256

Table B.22: Correlation of Customer Evaluation of Requirements to Software Quality
Software Samp. Cust Eval Test Critical Signi�cant?
Quality Variable Size Correlation Stat(t) Value(cv) (t > cv)
Suitability
Functional Adequacy 28 -0.2342 1.7370 1.6726 Yes
Functional Completeness 28 0.6013 5.5303 1.6726 Yes
Functional Coverage 28 0.5314 4.6102 1.6726 Yes
Speci�cation Stability 28 -0.1073 0.7928 1.6726 No
Accuracy 9 0.2144 0.8779 1.7340 No
Precision 9 -0.4534 2.0347 1.7340 Yes
Data Exchangeability 13 -0.0593 0.2912 1.7060 No
Interface Consistency 9 -0.2712 1.1269 1.7340 No
Access Auditability 7 -0.7303 3.7033 1.7610 Yes
Access Controllability 8 0.4880 2.0917 1.7460 Yes
Data Corruption Prevent 2 1.0000 N/A 2.1320 Yes
Functional Compliance 5 -0.4082 1.2649 1.8120 No
Reliability
Failure Avoidance 8 -0.1796 0.6831 1.7460 No
Incorrect Op Avoidance 5 -0.5590 1.9069 1.8120 Yes
Restorability 7 0.7024 3.4188 1.7610 Yes
Usability
User Cancelability 3 0.3333 0.8660 1.8600 No
Status Monitoring 4 0.6124 2.1909 1.8120 Yes
Usability Compliance 7 0.7303 3.7033 1.7610 Yes
Maintainability
Data Logging 12 0.0165 0.0808 1.7060 No
Portability
Software Operability 13 0.1278 0.6313 1.7060 Yes
Hardware Operability 7 0.0000 0.0000 1.7460 No

257

Table B.23: Correlation of Communicate Requirements Process to Software Quality
Software Samp. Comm Reqs Test Critical Signi�cant?
Quality Variable Size Correlation Stat(t) Value(cv) (t > cv)
Suitability
Functional Adequacy 28 0.1799 1.3189 1.6726 No
Functional Completeness 28 0.3493 2.7390 1.6726 Yes
Functional Coverage 28 0.3995 3.2022 1.6726 Yes
Speci�cation Stability 28 -0.2369 1.7918 1.6726 Yes
Precision 9 -0.8047 5.4210 1.7340 Yes
Data Exchangeability 13 -0.3886 2.0660 1.7060 Yes
Interface Consistency 9 0.3001 1.2585 1.7340 No
Access Controllability 8 0.2928 1.1456 1.7460 No
Reliability
Failure Avoidance 8 0.2037 0.7783 1.7460 No
Restorability 7 0.7024 3.4188 1.7610 Yes
Usability
Status Monitoring 4 0.6124 2.1909 1.8120 Yes
Usability Compliance 7 0.7303 3.7033 1.7610 Yes
Maintainability
Data Logging 12 0.2855 1.4595 1.7060 No

258

Table B.24: Correlation of Develop Release Strategy Process to Software Quality
Software Samp. Rel Strtgy Test Critical Signi�cant?
Quality Variable Size Correlation Stat(t) Value(cv) (t > cv)
Suitability
Functional Adequacy 28 0.1799 1.3189 1.6726 No
Functional Completeness 28 0.3493 2.7390 1.6726 Yes
Functional Coverage 28 0.3995 3.2022 1.6726 Yes
Speci�cation Stability 28 -0.2369 1.7918 1.6726 Yes
Precision 9 -0.8047 5.4210 1.7340 Yes
Data Exchangeability 13 -0.3886 2.0660 1.7060 Yes
Interface Consistency 9 0.3001 1.2585 1.7340 No
Access Controllability 8 0.2928 1.1456 1.7460 No
Reliability
Failure Avoidance 8 0.2037 0.7783 1.7460 No
Restorability 7 0.7024 3.4188 1.7610 Yes
Usability
Status Monitoring 4 0.6124 2.1909 1.8120 Yes
Usability Compliance 7 0.7303 3.7033 1.7610 Yes
Maintainability
Data Logging 12 0.2855 1.4595 1.7060 No

259

Table B.25: Correlation of Develop Architecture Process to Software Quality
Software Samp. Arch Design Test Critical Signi�cant?
Quality Variable Size Correlation Stat(t) Value(cv) (t > cv)
Suitability
Functional Adequacy 28 -0.1404 1.0223 1.6726 No
Functional Completeness 28 -0.2565 1.9501 1.6726 Yes
Functional Coverage 28 -0.2957 2.2747 1.6726 Yes
Speci�cation Stability 28 0.2101 1.5789 1.6726 No
Precision 9 0.8047 5.4210 1.7340 Yes
Access Controllability 8 -0.2182 0.8367 1.7460 No
Reliability
Failure Avoidance 8 -0.2037 0.7783 1.7460 No
Restorability 7 -0.5130 2.0702 1.7610 Yes
Usability
Status Monitoring 4 -0.6124 2.1909 1.8120 Yes
Usability Compliance 7 -0.4000 1.5119 1.7610 No
Maintainability
Data Logging 12 -0.2855 1.4595 1.7060 Yes

Table B.26: Correlation of Develop Detailed Design Process to Software Product Quality
Software Samp. Det Design Test Critical Signi�cant?
Quality Variable Size Correlation Stat(t) Value(cv) (t > cv)
Suitability
Functional Adequacy 28 -0.1404 1.0223 1.6726 No
Functional Completeness 28 -0.2565 1.9501 1.6726 Yes
Functional Coverage 28 -0.2957 2.2747 1.6726 Yes
Speci�cation Stability 28 0.2101 1.5789 1.6726 No
Precision 9 0.8047 5.4210 1.7340 Yes
Access Controllability 8 -0.2182 0.8367 1.7460 No
Reliability
Failure Avoidance 8 -0.2037 0.7783 1.7460 No
Restorability 7 -0.5130 2.0702 1.7610 Yes
Usability
Status Monitoring 4 -0.6124 2.1909 1.8120 Yes
Usability Compliance 7 -0.4000 1.5119 1.7610 No
Maintainability
Data Logging 12 -0.2855 1.4595 1.7060 Yes

260

Table B.27: Correlation of Design Interfaces Process to Software Quality
Software Samp. Design I/F Test Critical Signi�cant?
Quality Variable Size Correlation Stat(t) Value(cv) (t > cv)
Suitability
Functional Adequacy 28 -0.1404 1.0223 1.6726 No
Functional Completeness 28 -0.2565 1.9501 1.6726 Yes
Functional Coverage 28 -0.2957 2.2747 1.6726 Yes
Speci�cation Stability 28 0.2101 1.5789 1.6726 No
Precision 9 0.8047 5.4210 1.7340 Yes
Access Controllability 8 -0.2182 0.8367 1.7460 No
Reliability
Failure Avoidance 8 -0.2037 0.7783 1.7460 No
Restorability 7 -0.5130 2.0702 1.7610 Yes
Usability
Status Monitoring 4 -0.6124 2.1909 1.8120 Yes
Usability Compliance 7 -0.4000 1.5119 1.7610 No
Maintainability
Data Logging 12 -0.2855 1.4595 1.7060 Yes

261

Table B.28: Correlation of Verify Design Process to Software Quality
Software Samp. Ver Design Test Critical Signi�cant?
Quality Variable Size Correlation Stat(t) Value(cv) (t > cv)
Suitability
Functional Adequacy 28 -0.2342 1.7370 1.6726 Yes
Functional Completeness 28 0.6013 5.5303 1.6726 Yes
Functional Coverage 28 0.5314 4.6102 1.6726 Yes
Speci�cation Stability 28 -0.1073 0.7928 1.6726 No
Accuracy 9 0.2144 0.8779 1.7340 No
Precision 9 -0.4534 2.0347 1.7340 Yes
Data Exchangeability 13 -0.0593 0.2912 1.7060 No
Interface Consistency 9 -0.2717 1.1269 1.7340 No
Access Auditability 7 -0.7303 3.7033 1.7610 Yes
Access Controllability 8 0.4880 2.0917 1.7460 Yes
Data Corruption Prevent 2 1.0000 N/A 2.1320 Yes
Functional Compliance 5 -0.4082 1.2649 1.8120 No
Reliability
Failure Avoidance 8 -0.1796 0.6831 1.7460 No
Incorrect Op Avoidance 5 -0.5590 1.9069 1.8120 Yes
Restorability 7 0.7024 3.4188 1.7610 Yes
Usability
User Cancelability 3 0.3333 0.8660 1.8600 No
Status Monitoring 4 0.6124 2.1909 1.8120 Yes
Usability Compliance 7 0.7303 3.7033 1.7610 Yes
Maintainability
Data Logging 12 0.0165 0.0808 1.7060 No
Portability
Software Operability 13 0.1278 0.6313 1.7060 No
Hardware Operability 7 0.0000 0.0000 1.7460 No

262

Table B.29: Correlation of Design Traceability Process to Software Quality
Software Samp. Des Trace Test Critical Signi�cant?
Quality Variable Size Correlation Stat(t) Value(cv) (t > cv)
Suitability
Functional Adequacy 28 -0.4292 3.4266 1.6726 Yes
Functional Completeness 28 0.0083 0.0611 1.6726 No
Functional Coverage 28 -0.1079 0.7975 1.6726 No
Speci�cation Stability 28 0.0598 0.4400 1.6726 No
Accuracy 9 0.2144 0.8779 1.7340 No
Precision 9 0.0585 0.2345 1.7340 No
Data Exchangeability 13 0.5029 2.8501 1.7060 Yes
Interface Consistency 9 -0.4610 2.0778 1.7340 Yes
Access Auditability 7 -0.7303 3.7033 1.7610 Yes
Access Controllability 8 0.2182 0.8367 1.7460 No
Data Corruption Prevent 2 1.0000 N/A 2.1320 Yes
Functional Compliance 5 -0.4082 1.2649 1.8120 No
Reliability
Failure Avoidance 8 -0.3246 1.2841 1.7460 No
Incorrect Op Avoidance 5 -0.5590 1.9069 1.8120 Yes
Usability
User Cancelability 3 0.3333 0.8660 1.8600 No
Usability Compliance 7 -0.6455 2.9277 1.7610 Yes
Maintainability
Data Logging 12 -0.3301 1.7135 1.7060 Yes
Portability
Software Operability 13 0.3705 1.9539 1.7060 Yes
Hardware Operability 7 0.0000 0.0000 1.7460 No

263

Table B.30: Correlation of Develop Unit Test Process to Software Quality
Software Samp. Dev Unit Tst Test Critical Signi�cant?
Quality Variable Size Correlation Stat(t) Value(cv) (t > cv)
Suitability
Functional Adequacy 28 0.1799 1.3189 1.6726 No
Functional Completeness 28 0.3493 2.7390 1.6726 Yes
Functional Coverage 28 0.3995 3.2022 1.6726 Yes
Speci�cation Stability 28 -0.2369 1.7918 1.6726 Yes
Precision 9 -0.8047 5.4210 1.7340 Yes
Data Exchangeability 13 -0.3886 2.0660 1.7060 Yes
Interface Consistency 9 0.3001 1.2585 1.7340 No
Access Controllability 8 0.2928 1.1456 1.7460 No
Reliability
Failure Avoidance 8 0.2037 0.7783 1.7460 No
Restorability 7 0.7024 3.4188 1.7610 Yes
Usability
Status Monitoring 4 0.6124 2.1909 1.8120 Yes
Usability Compliance 7 0.7303 3.7033 1.7610 Yes
Maintainability
Data Logging 12 0.2855 1.4595 1.7060 No

264

Table B.31: Correlation of Verify Software Units Process to Software Quality
Software Samp. Verify Unit Test Critical Signi�cant?
Quality Variable Size Correlation Stat(t) Value(cv) (t > cv)
Suitability
Functional Adequacy 28 -0.3319 2.5373 1.6726 Yes
Functional Completeness 28 0.1441 1.0701 1.6726 No
Functional Coverage 28 0.0531 0.3906 1.6726 No
Speci�cation Stability 28 -0.0494 0.7928 1.6726 No
Precision 9 -0.0357 0.2345 1.7340 No
Data Exchangeability 13 0.5029 2.8501 1.7060 Yes
Interface Consistency 9 -0.4610 2.0778 1.7340 Yes
Access Auditability 7 -0.7303 3.7033 1.7610 Yes
Access Controllability 8 0.2928 1.1456 1.7460 No
Data Corruption Prevent 2 1.0000 N/A 2.1320 Yes
Functional Compliance 5 -0.4082 1.2649 1.8120 No
Reliability
Failure Avoidance 8 -0.1796 0.6831 1.7460 No
Incorrect Op Avoidance 5 -0.5590 1.9069 1.8120 Yes
Restorability 7 0.5130 2.0702 1.7610 Yes
Usability
User Cancelability 3 0.3333 0.8660 1.8600 No
Status Monitoring 4 0.4082 1.2649 1.8120 No
Usability Compliance 7 -0.3000 1.0894 1.7610 No
Maintainability
Data Logging 12 -0.1448 0.7169 1.7060 No
Portability
Software Operability 13 0.3705 1.9539 1.7060 Yes
Hardware Operability 7 0.0000 0.0000 1.7460 No

265

Table B.32: Correlation of Unit Traceability Process to Software Quality
Software Samp. Unit Trace Test Critical Signi�cant?
Quality Variable Size Correlation Stat(t) Value(cv) (t > cv)
Suitability
Functional Adequacy 28 -0.4292 3.4266 1.6726 Yes
Functional Completeness 28 0.0083 0.0611 1.6726 No
Functional Coverage 28 -0.1079 0.7975 1.6726 No
Speci�cation Stability 28 0.0598 0.4400 1.6726 No
Accuracy 9 0.2144 0.8799 1.7340 No
Precision 9 0.0585 0.2345 1.7340 No
Data Exchangeability 13 0.5029 2.8501 1.7060 Yes
Interface Consistency 9 -0.4610 2.0778 1.7340 Yes
Access Auditability 7 -0.7303 3.7033 1.7610 Yes
Access Controllability 8 0.2182 0.8367 1.7460 No
Data Corruption Prevent 2 1.0000 N/A 2.1320 Yes
Functional Compliance 5 -0.4082 1.2649 1.8120 No
Reliability
Failure Avoidance 8 -0.3246 1.2841 1.7460 No
Incorrect Op Avoidance 5 -0.5590 1.9069 1.8120 Yes
Usability
User Cancelability 3 0.3333 0.8660 1.8600 No
Usability Compliance 7 -0.6455 2.9277 1.7610 Yes
Maintainability
Data Logging 12 -0.3301 1.7135 1.7060 Yes
Portability
Software Operability 13 0.3705 1.9535 1.7060 Yes
Hardware Operability 7 0.0000 0.0000 1.7460 No

266

Table B.33: Correlation of Integration Strategy Process to Software Quality
Software Samp. Integ Stgy Test Critical Signi�cant?
Quality Variable Size Correlation Stat(t) Value(cv) (t > cv)
Suitability
Functional Adequacy 28 0.1799 1.3189 1.6726 No
Functional Completeness 28 0.3493 2.7390 1.6726 Yes
Functional Coverage 28 0.3995 3.2022 1.6726 Yes
Speci�cation Stability 28 -0.2369 1.7918 1.6726 Yes
Precision 9 -0.8047 5.4210 1.7340 Yes
Data Exchangeability 13 -0.3886 2.0660 1.7060 Yes
Interface Consistency 9 0.3001 1.2585 1.7340 No
Access Controllability 8 0.2928 1.1456 1.7460 No
Reliability
Failure Avoidance 8 0.2037 0.7783 1.7460 No
Restorability 7 0.7024 3.4188 1.7610 Yes
Usability
Status Monitoring 4 0.6124 2.1909 1.8120 Yes
Usability Compliance 7 0.7303 3.7033 1.7610 Yes

Table B.34: Correlation of Regression Test Strategy Process to Software Quality
Software Samp. Regrss Stgy Test Critical Signi�cant?
Quality Variable Size Correlation Stat(t) Value(cv) (t > cv)
Suitability
Functional Adequacy 28 0.1799 1.3189 1.6726 No
Functional Completeness 28 0.3493 2.7390 1.6726 Yes
Functional Coverage 28 0.3995 3.2022 1.6726 Yes
Speci�cation Stability 28 -0.2369 1.7918 1.6726 Yes
Precision 9 -0.8047 5.4210 1.7340 Yes
Data Exchangeability 13 -0.3886 2.0660 1.7060 Yes
Interface Consistency 9 0.3001 1.2585 1.7340 No
Access Controllability 8 0.2928 1.1456 1.7460 No
Reliability
Failure Avoidance 8 0.2037 0.7783 1.7460 No
Restorability 7 0.7024 3.4188 1.7610 Yes
Usability
Status Monitoring 4 0.6124 2.1909 1.8120 Yes
Usability Compliance 7 0.7303 3.7033 1.7610 Yes

267

Table B.35: Correlation of Regression Integration Tests Process to Software Quality
Software Samp. Reg Int Tst Test Critical Signi�cant?
Quality Variable Size Correlation Stat(t) Value(cv) (t > cv)
Suitability
Functional Adequacy 28 0.1799 1.3189 1.6726 No
Functional Completeness 28 0.3493 2.7390 1.6726 Yes
Functional Coverage 28 0.3995 3.2022 1.6726 Yes
Speci�cation Stability 28 -0.2369 1.7918 1.6726 Yes
Precision 9 -0.8047 5.4210 1.7340 Yes
Data Exchangeability 13 -0.3886 2.0660 1.7060 Yes
Interface Consistency 9 0.3001 1.2585 1.7340 No
Access Controllability 8 0.2928 1.1456 1.7460 No
Reliability
Failure Avoidance 8 0.2037 0.7783 1.7460 No
Restorability 7 0.7024 3.4188 1.7610 Yes
Usability
Status Monitoring 4 0.6124 2.1909 1.8120 Yes
Usability Compliance 7 0.7303 3.7033 1.7610 Yes

Table B.36: Correlation of Develop System Test Process to Software Quality
Software Samp. Dev Sys Tst Test Critical Signi�cant?
Quality Variable Size Correlation Stat(t) Value(cv) (t > cv)
Suitability
Functional Adequacy 28 -0.1799 1.3189 1.6726 No
Functional Completeness 28 -0.3493 2.7390 1.6726 Yes
Functional Coverage 28 -0.3995 3.2022 1.6726 Yes
Speci�cation Stability 28 0.2369 1.7918 1.6726 Yes
Precision 9 0.8047 5.4210 1.7340 Yes
Data Exchangeability 13 0.3886 2.0660 1.7060 Yes
Interface Consistency 9 -0.3001 1.2585 1.7340 No
Access Controllability 8 -0.2928 1.1456 1.7460 No
Reliability
Failure Avoidance 8 -0.2037 0.7783 1.7460 No
Restorability 7 -0.7024 3.4188 1.7610 Yes
Usability
Status Monitoring 4 -0.6124 2.1909 1.8120 Yes
Usability Compliance 7 -0.7303 3.7033 1.7610 Yes

268

Table B.37: Correlation of Regression Test System Process to Software Quality
Software Samp. Reg Tst Sys Test Critical Signi�cant?
Quality Variable Size Correlation Stat(t) Value(cv) (t > cv)
Suitability
Functional Adequacy 28 0.1799 1.3189 1.6726 No
Functional Completeness 28 0.3493 2.7390 1.6726 Yes
Functional Coverage 28 0.3995 3.2022 1.6726 Yes
Speci�cation Stability 28 -0.2369 1.7918 1.6726 Yes
Precision 9 -0.8047 5.4210 1.7340 Yes
Data Exchangeability 13 -0.3886 2.0660 1.7060 Yes
Interface Consistency 9 0.3001 1.2585 1.7340 No
Access Controllability 8 0.2928 1.1456 1.7460 No
Reliability
Failure Avoidance 8 0.2037 0.7783 1.7460 No
Restorability 7 0.7024 3.4188 1.7610 Yes
Usability
Status Monitoring 4 0.6124 2.1909 1.8120 Yes
Usability Compliance 7 0.7303 3.7033 1.7610 Yes

269

Table B.38: Correlation of Requirements Coverage to Software Quality
Software Samp. Coverage Test Critical Signi�cant?
Quality Variable Size Correlation Stat(t) Value(cv) (t > cv)
Usability
User Cancelability 3 -0.3333 0.8660 1.8600 No
Status Monitoring 4 -0.2500 0.7303 1.8120 No
Maintainability
Data Logging 12 -0.1505 0.7457 1.7060 No
Portability
Software Operability 13 -0.2417 1.2201 1.7060 No
Hardware Operability 7 -0.3780 1.5275 1.7460 No

Table B.39: Correlation of Implementation Prevalence to Software Quality
Software Samp. Prevalence Test Critical Signi�cant?
Quality Variable Size Correlation Stat(t) Value(cv) (t > cv)
Suitability
Precision 9 -0.7686 2.4030 1.9430 Yes
Data Exchangeability 13 0.8278 5.1123 1.7610 Yes
Interface Consistency 9 0.5340 1.7863 1.8120 No
Functional Compliance 5 0.9582 9.4789 1.8120 Yes
Reliability
Failure Avoidance 8 0.2429 0.6133 1.8600 No
Restorability 7 0.0258 0.0731 1.8120 No
Usability
User Cancelability 3 0.0000 0.0000 1.8600 No
Usability Compliance 7 -0.1825 0.5869 1.7820 No
Maintainability
Data Logging 12 0.2912 0.9627 1.7820 No

270

Table B.40: Correlation of Depth of Inheritance Tree to Software Quality
Software Samp. DIT Test Critical Signi�cant?
Quality Variable Size Correlation Stat(t) Value(cv) (t > cv)
Suitability
Functional Adequacy 28 -0.1510 1.1012 1.6726 No
Functional Completeness 28 -0.2440 1.8490 1.6726 Yes
Functional Coverage 28 -0.2769 2.1177 1.6726 Yes
Speci�cation Stability 28 -0.4259 3.4588 1.6726 Yes
Accuracy 9 -0.1286 0.5188 1.7340 No
Precision 9 -0.1578 0.6393 1.7340 No
Data Exchangeability 13 0.1474 0.7302 1.7060 No
Interface Consistency 9 0.1966 0.8019 1.7340 No
Access Auditability 7 0.4282 1.6413 1.7610 No
Access Controllability 8 0.2607 1.2585 1.7460 No
Data Encryption 2 1.0000 N/A 2.1320 Yes
Functional Compliance 5 0.5145 1.6971 1.8120 No
Reliability
Failure Avoidance 8 0.5357 2.3735 1.7460 Yes
Incorrect Op Avoidance 5 0.6578 2.4702 1.8120 Yes
Restorability 7 0.3035 1.1034 1.7610 No
E�ciency
E�ciency Compliance 3 0.1890 0.3849 1.9430 No
Usability
User Cancelability 3 0.1741 0.4330 1.8600 No
Status Monitoring 4 0.6124 2.1909 1.8120 Yes
Usability Compliance 7 -0.4000 1.5119 1.7610 No
Maintainability
Data Logging 12 0.2593 1.3154 1.7060 No
Portability
Software Operability 13 0.1674 0.8320 1.7060 No
Hardware Operability 7 0.0000 0.0000 1.7460 No

271

Table B.41: Correlation of Design Expansion to Software Quality
Software Samp. Des Expand Test Critical Signi�cant?
Quality Variable Size Correlation Stat(t) Value(cv) (t > cv)
Suitability
Functional Adequacy 28 0.0183 0.1317 1.6726 No
Functional Completeness 28 -0.1350 1.0010 1.6726 No
Functional Coverage 28 -0.1310 0.9712 1.6726 No
Speci�cation Stability 28 -0.0186 0.1366 1.6726 No
Accuracy 9 0.3673 1.5798 1.7340 No
Precision 9 0.2800 1.1667 1.7340 No
Data Exchangeability 13 0.3555 1.8630 1.7060 Yes
Interface Consistency 9 0.1034 0.4158 1.7340 No
Access Auditability 7 -0.0537 0.1863 1.7610 No
Access Controllability 8 -0.3263 1.2917 1.7460 No
Functional Compliance 5 -0.5045 1.6527 1.8120 No
Reliability
Failure Avoidance 8 0.1621 0.6147 1.7460 No
Incorrect Op Avoidance 5 -0.2818 0.8308 1.8120 No
Restorability 7 -0.4626 1.8074 1.7610 Yes
E�ciency
I/O Utilization 2 1.0000 N/A 1.7340 Yes
E�ciency Compliance 3 -0.0822 0.1650 1.9430 No
Usability
User Cancelability 3 -0.5659 1.6813 1.8600 No
Status Monitoring 4 -0.9824 1.48E1 1.8120 Yes
Usability Compliance 7 -0.7065 3.4581 1.7610 Yes
Maintainability
Data Logging 12 0.1812 0.9027 1.7060 No
Portability
Software Operability 13 -0.4288 2.3250 1.7060 Yes
Hardware Operability 7 -0.2692 1.0458 1.7460 No

272

Table B.42: Correlation of Interface Format Expansion to Software Quality
Software Samp. I/F Fmt Exp Test Critical Signi�cant?
Quality Variable Size Correlation Stat(t) Value(cv) (t > cv)
Suitability
Functional Adequacy 28 -0.2760 1.7227 1.6864 Yes
Functional Completeness 28 0.1395 0.8450 1.6864 No
Functional Coverage 28 0.0858 0.5170 1.6864 No
Speci�cation Stability 28 0.0657 0.3949 1.6864 No
Accuracy 9 -0.3059 0.9087 1.8120 No
Precision 9 0.6752 2.2419 1.8600 Yes
Data Exchangeability 13 0.3927 1.7083 1.7340 No
Interface Consistency 9 0.0230 0.0796 1.7610 No
Access Auditability 7 -0.7877 3.1322 1.8600 Yes
Access Controllability 8 -0.0916 0.2909 1.7820 No
Functional Compliance 5 0.1147 0.2309 1.9430 No
Reliability
Failure Avoidance 8 -0.2500 0.7303 1.8120 No
Restorability 7 0.4042 1.0825 1.8600 No
E�ciency
I/O Utilization 2 1.0000 N/A 2.1320 Yes
E�ciency Compliance 3 1.0000 N/A 2.1320 Yes
Usability
Status Monitoring 4 -0.3503 1.0579 1.8120 No
Usability Compliance 7 -0.0376 0.1188 1.7820 No
Maintainability
Data Logging 12 -0.5138 2.5406 1.7250 Yes
Portability
Software Operability 13 -0.1226 0.4623 1.7460 No
Hardware Operability 7 0.0000 0.0000 1.8120 No

273

Table B.43: Correlation of Interface Protocol Expansion to Software Quality
Software Samp. I/F Prt Exp Test Critical Signi�cant?
Quality Variable Size Correlation Stat(t) Value(cv) (t > cv)
Suitability
Functional Adequacy 28 -0.3776 2.3776 1.6888 Yes
Functional Completeness 28 -0.0167 0.0976 1.6888 No
Functional Coverage 28 -0.1786 1.0585 1.6888 No
Speci�cation Stability 28 0.0785 0.4593 1.6888 No
Accuracy 9 -0.5270 1.7541 1.8120 No
Precision 9 0.5222 1.5000 1.8600 No
Data Exchangeability 13 0.3977 1.5016 1.7610 No
Interface Consistency 9 -0.4894 2.0996 1.7460 Yes
Access Auditability 7 -0.5000 1.1547 1.9430 No
Functional Compliance 5 0.2928 0.7500 1.8600 No
Reliability
Failure Avoidance 8 0.2500 0.7303 1.8120 No
E�ciency
I/O Utilization 2 1.0000 N/A 2.1320 Yes
E�ciency Compliance 3 1.0000 N/A 2.1320 Yes
Usability
Usability Compliance 7 0.2000 0.6455 1.7820 No
Maintainability
Data Logging 12 -0.5185 2.2687 1.7460 Yes
Portability
Software Operability 13 0.0000 0.0000 1.7610 No
Hardware Operability 7 0.2582 0.6547 1.8600 No

274

Table B.44: Correlation of Requirements Volatility to Software Quality
Software Samp. Req Volaty Test Critical Signi�cant?
Quality Variable Size Correlation Stat(t) Value(cv) (t > cv)
Suitability
Functional Adequacy 28 0.1846 1.3545 1.6726 No
Functional Completeness 28 0.0143 0.1052 1.6726 No
Functional Coverage 28 0.0645 0.4750 1.6726 No
Speci�cation Stability 28 0.9977 1.09E2 1.6726 Yes
Accuracy 9 -0.6013 3.0102 1.7340 Yes
Precision 9 -0.0357 0.1429 1.7340 No
Data Exchangeability 13 -0.1996 0.9979 1.7060 No
Interface Consistency 9 -0.2748 1.1431 1.7340 No
Access Auditability 7 0.3171 1.1582 1.7610 No
Access Controllability 8 0.1837 0.6992 1.7460 No
Functional Compliance 5 0.0963 0.2736 1.8120 No
Reliability
Failure Avoidance 8 -0.2236 0.8583 1.7460 No
Incorrect Op Avoidance 5 0.0129 0.0365 1.8120 No
Restorability 7 0.0862 0.2998 1.7610 No
E�ciency
I/O Utilization 2 1.0000 N/A 2.1320 Yes
E�ciency Compliance 3 0.7450 2.2336 1.9430 Yes
Usability
User Cancelability 3 0.2196 0.5512 1.8600 No
Status Monitoring 4 0.2500 0.7303 1.8120 No
Usability Compliance 7 0.3495 1.2921 1.7610 No
Maintainability
Data Logging 12 -0.5381 3.1278 1.7060 Yes
Portability
Software Operability 13 0.1717 0.8538 1.7060 No
Hardware Operability 7 -0.4340 1.8026 1.7460 Yes

275

Table B.45: Correlation of Design Volatility to Software Quality
Software Samp. Des Volaty Test Critical Signi�cant?
Quality Variable Size Correlation Stat(t) Value(cv) (t > cv)
Suitability
Functional Adequacy 28 -0.1077 0.7809 1.6726 No
Functional Completeness 28 0.0237 0.1743 1.6726 No
Functional Coverage 28 -0.0031 0.0231 1.6726 No
Speci�cation Stability 28 0.1607 1.1964 1.6726 No
Accuracy 9 -0.5223 2.4499 1.7340 Yes
Precision 9 0.3527 1.5030 1.7340 No
Data Exchangeability 13 0.0056 0.0272 1.7060 No
Interface Consistency 9 0.0094 0.0378 1.7340 No
Access Auditability 7 -0.6455 2.9277 1.7610 Yes
Access Controllability 8 0.1429 0.5401 1.7460 No
Functional Compliance 5 0.1103 0.3140 1.8120 No
Reliability
Failure Avoidance 8 0.2903 1.1352 1.7460 No
E�ciency
I/O Utilization 2 1.0000 N/A 2.1320 Yes
E�ciency Compliance 3 0.3054 0.6415 1.9430 No
Usability
User Cancelability 3 0.3333 0.8660 1.8600 No
Usability Compliance 7 0.2582 0.9258 1.7610 No
Maintainability
Data Logging 12 -0.8736 8.7955 1.7060 Yes
Portability
Software Operability 13 0.2190 1.0996 1.7060 No
Hardware Operability 7 -0.5044 2.1857 1.7460 Yes

276

APPENDIX C

RAW DATA TABLES

277

Table C.1: Requirements and Design Skill Data
Requirements Design

Proj. Team Num Num Num Num Team Num Num Num Num
ID Size Skill1 Skill2 Skill3 Skill4 Size Skill1 Skill2 Skill3 Skill4
1 1 0 1 0 0 1 0 1 0 0
2 1 1 0 0 0 1 1 0 0 0
3 2 0 2 0 0 2 0 2 0 0
4 2 0 2 0 0 2 1 1 0 0
5 2 1 1 0 0 2 0 2 0 0
6 1 0 0 1 0 1 0 1 0 0
7 1 0 0 1 0 1 0 0 1 0
8 1 0 1 0 0 1 0 1 0 0
9 1 1 0 0 0 1 1 0 0 0
10 1 0 1 0 0 1 0 0 1 0
11 3 1 2 0 0 3 1 2 0 0
12 1 1 0 0 0 1 0 1 0 0
13 1 0 0 1 0 1 0 0 1 0
14 2 0 1 1 0 2 0 2 0 0
15 3 1 1 1 0 3 1 1 0 1
16 3 0 3 0 0 3 1 1 1 0
17 3 0 3 0 0 3 2 1 0 0
18 3 0 2 1 0 3 0 3 0 0
19 3 0 3 0 0 3 0 3 0 0
20 3 1 2 0 0 3 0 3 0 0
21 3 0 3 0 0 3 0 3 0 0
22 4 1 3 0 0 4 1 3 0 0
23 4 0 1 2 1 4 0 1 2 1
24 4 0 1 2 1 4 0 1 2 1
25 4 0 1 2 1 4 0 1 2 1
26 4 0 1 2 1 4 0 1 2 1
27 4 0 1 2 1 4 0 1 2 1
28 4 0 1 2 1 4 0 1 2 1

278

Table C.2: Implementation and Integration/Test Skill Data
Implementation Integration/Test

Proj. Team Num Num Num Num Team Num Num Num Num
ID Size Skill1 Skill2 Skill3 Skill4 Size Skill1 Skill2 Skill3 Skill4
1 1 0 1 0 0 1 0 0 1 0
2 1 1 0 0 0 1 1 0 0 0
3 2 0 2 0 0 2 0 2 0 0
4 2 0 2 0 0 2 1 0 1 0
5 2 0 2 0 0 2 1 1 0 0
6 1 0 0 1 0 1 1 0 0 0
7 1 0 0 1 0 1 0 0 1 0
8 1 1 0 0 0 1 1 0 0 0
9 1 1 0 0 0 1 1 0 0 0
10 1 0 0 1 0 1 0 1 0 0
11 3 0 2 1 0 3 1 2 0 0
12 1 0 1 0 0 1 1 0 0 0
13 1 0 0 1 0 1 0 0 1 0
14 2 0 1 1 0 2 1 1 0 0
15 3 1 1 0 1 3 1 1 1 0
16 3 0 1 2 0 3 1 1 1 0
17 3 0 3 0 0 3 0 3 0 0
18 3 0 1 1 1 3 0 3 0 0
19 3 0 3 0 0 3 0 3 0 0
20 3 0 2 1 0 3 0 2 1 0
21 3 0 3 0 0 3 0 3 0 0
22 4 0 3 1 0 4 2 2 0 0
23 4 0 0 1 3 1 0 0 0 1
24 4 0 0 1 3 1 0 0 0 1
25 4 0 0 1 3 1 0 0 0 1
26 4 0 0 1 3 1 0 0 0 1
27 4 0 0 1 3 1 0 0 0 1
28 4 0 0 1 3 1 0 0 0 1

279

Table C.3: Requirements Process Data
Proj. Specify Rel Val Env Updt Comm Eval Eval
ID Reqs Stgy Crit Impact Reqs Reqs Cust Reqs
1 1.0 0.0 1.0 0.0 0.0 0.0 1.0 1.0
2 1.0 0.0 1.0 0.0 0.0 0.0 0.0 0.0
3 1.0 0.0 1.0 0.0 0.0 0.0 1.0 1.0
4 1.0 0.0 1.0 0.0 0.0 0.0 0.0 0.0
5 1.0 0.0 1.0 0.0 0.0 0.0 0.0 0.0
6 1.0 0.0 1.0 0.0 0.0 0.0 0.0 0.0
7 1.0 0.0 1.0 0.0 0.0 0.0 0.0 0.0
8 1.0 0.0 1.0 0.0 0.0 0.0 1.0 1.0
9 1.0 0.0 1.0 0.0 0.0 0.0 1.0 1.0
10 1.0 0.0 1.0 0.0 0.0 0.0 0.0 0.0
11 1.0 0.0 1.0 0.0 0.0 0.0 1.0 1.0
12 1.0 0.0 1.0 0.0 0.0 0.0 0.0 0.0
13 1.0 0.0 1.0 0.0 0.0 0.0 0.0 0.0
14 1.0 0.0 1.0 0.0 0.0 0.0 0.0 0.0
15 1.0 0.0 1.0 0.0 0.0 0.0 1.0 1.0
16 1.0 0.0 1.0 0.0 0.0 0.0 1.0 0.0
17 1.0 0.0 1.0 0.0 0.0 0.0 1.0 1.0
18 1.0 0.0 1.0 0.0 0.0 0.0 1.0 1.0
19 1.0 0.0 1.0 0.0 0.0 0.0 0.0 0.0
20 1.0 0.0 1.0 0.0 0.0 0.0 0.0 1.0
21 1.0 0.0 1.0 0.0 0.0 0.0 0.0 0.0
22 1.0 0.0 1.0 0.0 0.0 0.0 1.0 1.0
23 1.0 1.0 0.0 1.0 0.0 1.0 1.0 0.0
24 1.0 1.0 0.0 1.0 1.0 1.0 1.0 0.0
25 1.0 1.0 0.0 1.0 1.0 1.0 1.0 0.0
26 0.0 1.0 0.0 1.0 1.0 1.0 1.0 0.0
27 0.0 1.0 0.0 1.0 1.0 1.0 1.0 0.0
28 1.0 1.0 0.0 1.0 1.0 1.0 1.0 0.0

280

Table C.4: Design Process Data
Proj. Develop Develop Dsgn Vrfy Dsgn
ID Archtctr Det Dsgn I/Fs Dsgn Trace
1 1.0 1.0 1.0 1.0 1.0
2 1.0 1.0 1.0 0.0 0.0
3 1.0 1.0 1.0 1.0 1.0
4 1.0 1.0 1.0 0.0 0.0
5 1.0 1.0 1.0 0.0 0.0
6 1.0 1.0 1.0 0.0 0.0
7 1.0 1.0 1.0 0.0 0.0
8 1.0 1.0 1.0 1.0 1.0
9 1.0 1.0 1.0 1.0 1.0
10 1.0 1.0 1.0 0.0 0.0
11 1.0 1.0 1.0 1.0 1.0
12 1.0 1.0 1.0 0.0 0.0
13 1.0 1.0 1.0 0.0 0.0
14 1.0 1.0 1.0 0.0 0.0
15 1.0 1.0 1.0 1.0 1.0
16 1.0 1.0 1.0 1.0 0.0
17 1.0 1.0 1.0 1.0 1.0
18 1.0 1.0 1.0 1.0 1.0
19 1.0 1.0 1.0 0.0 0.0
20 1.0 1.0 1.0 0.0 1.0
21 1.0 1.0 1.0 0.0 0.0
22 1.0 1.0 1.0 1.0 1.0
23 1.0 1.0 1.0 1.0 0.0
24 1.0 1.0 1.0 1.0 0.0
25 0.0 0.0 0.0 1.0 0.0
26 0.0 0.0 0.0 1.0 0.0
27 0.0 0.0 0.0 1.0 0.0
28 0.0 0.0 0.0 1.0 0.0

281

Table C.5: Implementation Process Data
Proj. Develop Develop Vrfy Unit
ID Units Unit Tsts Unit Trace
1 1.0 0.0 1.0 1.0
2 1.0 0.0 0.0 0.0
3 1.0 0.0 1.0 1.0
4 1.0 0.0 0.0 0.0
5 1.0 0.0 0.0 0.0
6 1.0 0.0 0.0 0.0
7 1.0 0.0 0.0 0.0
8 1.0 0.0 1.0 1.0
9 1.0 0.0 1.0 1.0
10 1.0 0.0 0.0 0.0
11 1.0 0.0 1.0 1.0
12 1.0 0.0 0.0 0.0
13 1.0 0.0 0.0 0.0
14 1.0 0.0 0.0 0.0
15 1.0 0.0 1.0 1.0
16 1.0 0.0 1.0 0.0
17 1.0 0.0 1.0 1.0
18 1.0 0.0 1.0 1.0
19 1.0 0.0 0.0 0.0
20 1.0 0.0 1.0 1.0
21 1.0 0.0 0.0 0.0
22 1.0 0.0 1.0 1.0
23 1.0 1.0 0.0 0.0
24 1.0 1.0 0.0 0.0
25 1.0 1.0 0.0 0.0
26 1.0 1.0 1.0 0.0
27 1.0 1.0 1.0 0.0
28 1.0 1.0 1.0 0.0

282

Table C.6: Integration Process Data
Proj. Integ Rgrss Integ Integ Tst Tst
ID Stgy Stgy Tests Systm Integ Rgrss
1 0.0 0.0 0.0 1.0 0.0 0.0
2 0.0 0.0 0.0 1.0 0.0 0.0
3 0.0 0.0 0.0 1.0 0.0 0.0
4 0.0 0.0 0.0 1.0 0.0 0.0
5 0.0 0.0 0.0 1.0 0.0 0.0
6 0.0 0.0 0.0 1.0 0.0 0.0
7 0.0 0.0 0.0 1.0 0.0 0.0
8 0.0 0.0 0.0 1.0 0.0 0.0
9 0.0 0.0 0.0 1.0 0.0 0.0
10 0.0 0.0 0.0 1.0 0.0 0.0
11 0.0 0.0 0.0 1.0 0.0 0.0
12 0.0 0.0 0.0 1.0 0.0 0.0
13 0.0 0.0 0.0 1.0 0.0 0.0
14 0.0 0.0 0.0 1.0 0.0 0.0
15 0.0 0.0 0.0 1.0 0.0 0.0
16 0.0 0.0 0.0 1.0 0.0 0.0
17 0.0 0.0 0.0 1.0 0.0 0.0
18 0.0 0.0 0.0 1.0 0.0 0.0
19 0.0 0.0 0.0 1.0 0.0 0.0
20 0.0 0.0 0.0 1.0 0.0 0.0
21 0.0 0.0 0.0 1.0 0.0 0.0
22 0.0 0.0 0.0 1.0 0.0 0.0
23 1.0 1.0 0.0 1.0 0.0 1.0
24 1.0 1.0 0.0 1.0 0.0 1.0
25 1.0 1.0 0.0 1.0 0.0 1.0
26 1.0 1.0 0.0 1.0 0.0 1.0
27 1.0 1.0 0.0 1.0 0.0 1.0
28 1.0 1.0 0.0 1.0 0.0 1.0

283

Table C.7: Testing Process Data
Proj. Develop Develop Tst Regrss Tst
ID Tst Stgy Systm Tsts Systm Systm
1 1.0 1.0 1.0 0.0
2 1.0 1.0 1.0 0.0
3 1.0 1.0 1.0 0.0
4 1.0 1.0 1.0 0.0
5 1.0 1.0 1.0 0.0
6 1.0 1.0 1.0 0.0
7 1.0 1.0 1.0 0.0
8 1.0 1.0 1.0 0.0
9 1.0 1.0 1.0 0.0
10 1.0 1.0 1.0 0.0
11 1.0 1.0 1.0 0.0
12 1.0 1.0 1.0 0.0
13 1.0 1.0 1.0 0.0
14 1.0 1.0 1.0 0.0
15 1.0 1.0 1.0 0.0
16 1.0 1.0 1.0 0.0
17 1.0 1.0 1.0 0.0
18 1.0 1.0 1.0 0.0
19 1.0 1.0 1.0 0.0
20 1.0 1.0 1.0 0.0
21 1.0 1.0 1.0 0.0
22 1.0 1.0 1.0 0.0
23 1.0 0.0 1.0 1.0
24 1.0 0.0 1.0 1.0
25 1.0 0.0 1.0 1.0
26 1.0 0.0 1.0 1.0
27 1.0 0.0 1.0 1.0
28 1.0 0.0 1.0 1.0

284

Table C.8: Design Complexity Data
Proj. Num Num Num I/F I/F Num Spec Num Dsgn
ID DIT Compnts Objs Ext I/F Prots Fmts Changes Changes
1 1 9 22 1 1 1 0 0
2 0 1 4 0 0 0 4 2
3 0 8 8 1 1 1 0 2
4 1 3 3 0 0 0 2 2
5 1 5 5 1 1 1 0 1
6 0 20 22 3 1 1 9 42
7 1 4 4 0 0 0 2 0
8 3 6 12 0 0 0 4 8
9 1 4 4 0 0 0 1 0
10 2 2 2 0 0 0 2 0
11 1 6 6 2 1 1 0 0
12 1 17 17 2 0 3 0 0
13 1 2 2 0 1 1 2 2
14 3 8 33 1 1 2 0 0
15 2 7 14 1 1 1 1 12
16 1 7 8 6 0 4 7 8
17 1 3 16 1 1 1 40 1
18 3 14 28 2 1 0 0 3
19 3 3 9 3 2 5 5 1
20 3 3 3 0 0 0 0 0
21 0 3 2 1 0 0 21 1
22 0 12 11 1 1 6 19 1
23 2 3 26 1 1 3 3 0
24 2 3 39 1 1 3 0 0
25 3 4 47 1 1 11 0 0
26 3 4 60 1 1 1 0 0
27 3 5 68 1 1 1 0 0
28 3 6 77 1 1 1 1 0

285

Table C.9: Suitability Data
Proj. Num Num Specs Num Specs Num Num Missing Num Incorr
ID Specs Intend Vrfy Vrfy Faults Specs Imp Specs
1 54 54 54 0 0 0
2 13 12 12 0 1 0
3 63 63 63 0 0 0
4 30 21 21 1 9 0
5 42 30 30 0 12 0
6 30 23 23 0 7 0
7 17 9 9 2 8 0
8 35 28 28 1 7 0
9 23 23 20 2 0 3
10 23 23 23 0 0 0
11 13 13 11 1 0 2
12 38 19 19 4 19 0
13 32 22 21 1 10 1
14 28 13 13 1 15 0
15 38 30 30 1 8 0
16 63 63 63 1 0 0
17 40 28 28 1 12 0
18 26 22 14 1 4 8
19 15 6 6 1 9 0
20 10 0 0 1 10 0
21 23 22 22 1 1 0
22 33 30 30 1 3 0
23 25 24 24 1 1 0
24 9 9 9 1 0 0
25 19 18 18 1 1 0
26 9 9 9 1 0 0
27 21 18 18 1 3 0
28 19 19 19 1 0 0

286

Table C.10: Accuracy and Interoperability Data
Proj. Accry Accry Precn Precn DatXg DatXg IFPrt IFPrt
ID Specs Vrfy Specs Vrfy Specs Vrfy Specs Vrfy
1 1 2 2 1 2 2 0 0
2 2 1 1 1 0 1 0 0
3 0 0 0 0 0 0 1 1
4 0 0 0 0 1 1 1 0
5 2 3 2 2 1 1 1 1
6 2 0 0 23 0 0 0 0
7 4 4 4 4 0 0 0 0
8 0 28 2 28 1 6 0 0
9 8 7 8 7 0 7 0 0
10 0 0 0 0 5 6 0 0
11 0 1 0 1 0 2 4 2
12 0 0 0 0 3 0 0 0
13 0 0 0 0 10 0 0 0
14 0 0 0 0 1 1 0 1
15 1 0 0 0 0 0 0 0
16 0 0 0 0 0 0 0 0
17 0 7 0 7 0 7 0 7
18 0 0 0 0 0 0 0 0
19 1 2 1 2 1 5 1 2
20 0 0 0 0 0 0 0 0
21 5 1 2 0 4 0 0 0
22 0 0 0 0 0 0 0 0
23 0 0 0 0 0 1 0 1
24 0 0 0 0 0 1 0 0
25 0 0 1 1 0 0 0 0
26 0 0 0 0 0 0 0 0
27 0 0 0 0 0 0 0 0
28 0 0 0 0 0 0 0 0

287

Table C.11: Security and Compliance Data
Proj. AcAud AcAud AcCtl AcCtl Ecypt Ecypt FComp FComp
ID Specs Vrfy Specs Vrfy Specs Vrfy Specs Vrfy
1 0 0 0 0 0 0 0 0
2 0 0 0 0 0 0 0 0
3 1 0 1 1 0 0 0 0
4 1 1 0 0 0 0 0 0
5 0 0 0 0 0 0 0 0
6 0 1 0 2 0 0 0 0
7 0 0 0 0 0 0 0 0
8 1 1 1 1 0 0 0 0
9 0 1 0 1 1 0 0 0
10 0 0 0 0 0 0 0 0
11 1 0 0 0 0 0 0 0
12 2 2 2 1 0 1 0 0
13 0 0 0 0 0 0 2 5
14 1 1 1 1 1 1 0 1
15 0 0 0 0 0 0 1 0
16 0 0 0 0 0 0 0 0
17 0 0 0 0 0 0 0 6
18 0 0 0 0 0 0 1 0
19 0 3 0 2 0 4 1 3
20 0 0 0 0 0 0 0 1
21 1 1 1 1 0 0 3 1
22 0 0 0 0 0 0 0 0
23 0 0 1 1 0 0 0 0
24 0 0 0 0 0 0 0 0
25 0 0 1 1 0 0 0 0
26 0 0 0 0 0 0 0 0
27 0 0 3 3 0 0 0 0
28 0 0 0 0 0 0 0 0

288

Table C.12: Reliability Data
Proj. FtAvd FtAvd OpAvd OpAvd Restr Restr RComp RComp
ID Specs Vrfy Specs Vrfy Specs Vrfy Specs Vrfy
1 1 0 1 0 0 0 0 0
2 0 1 0 1 0 1 0 0
3 0 0 0 0 0 0 0 0
4 1 1 1 0 1 0 0 0
5 1 1 0 1 0 0 0 0
6 0 16 0 16 0 0 0 0
7 0 2 0 0 0 0 0 0
8 1 6 0 1 0 2 0 0
9 0 0 0 0 0 0 0 0
10 0 2 1 2 1 2 0 0
11 0 1 0 1 0 0 0 0
12 0 6 0 0 0 0 0 0
13 0 2 0 8 0 0 0 2
14 0 0 1 18 1 0 0 18
15 1 1 0 1 0 0 0 0
16 0 1 0 0 0 0 0 0
17 0 2 0 2 0 2 0 2
18 0 0 0 0 0 0 0 0
19 1 5 0 5 0 4 2 5
20 0 0 0 0 0 0 0 0
21 2 1 2 1 2 1 1 1
22 0 0 0 0 0 0 0 0
23 0 0 0 0 2 2 0 0
24 0 0 0 0 0 0 0 0
25 0 0 0 0 0 0 0 0
26 0 0 0 0 0 0 0 0
27 1 1 0 0 1 1 0 0
28 0 0 0 0 1 1 0 0

289

Table C.13: E�ciency Data
Proj. TmBvr TmBvr IOUtl IOUtl EComp EComp
ID Specs Vrfy Specs Vrfy Specs Vrfy
1 0 0 0 0 0 0
2 0 0 0 0 0 0
3 0 0 0 0 0 0
4 0 0 0 0 0 0
5 0 0 0 0 0 0
6 0 0 0 0 0 0
7 0 0 0 0 0 0
8 0 0 0 0 0 0
9 0 0 0 0 0 0
10 0 0 0 0 0 0
11 0 0 0 0 0 0
12 0 0 0 0 0 0
13 2 2 0 0 4 0
14 0 0 1 2 0 0
15 0 0 0 0 0 0
16 0 0 0 5 0 0
17 0 0 0 0 0 1
18 0 0 0 0 0 0
19 0 1 1 0 1 2
20 0 0 0 0 0 0
21 1 1 0 0 1 1
22 3 0 0 0 0 0
23 1 1 0 0 0 0
24 0 0 0 0 0 0
25 0 0 0 0 0 0
26 1 1 0 0 0 0
27 0 0 0 0 0 0
28 0 0 0 0 0 0

290

Table C.14: Usability Data
Proj. UsCnc UsCnc SyMon SyMon UComp UComp
ID Specs Vrfy Specs Vrfy Specs Vrfy
1 0 0 0 0 0 0
2 0 5 0 0 0 0
3 0 0 0 0 0 0
4 0 0 0 0 0 0
5 0 0 1 0 0 0
6 0 16 0 0 0 0
7 0 0 0 0 0 0
8 3 4 0 1 0 0
9 0 0 0 0 0 0
10 1 0 0 0 0 0
11 0 0 0 0 0 0
12 0 4 0 0 0 0
13 0 0 0 0 0 2
14 0 0 0 4 1 0
15 0 0 0 0 0 0
16 0 1 0 0 0 0
17 0 6 0 0 0 7
18 0 0 0 0 0 0
19 1 1 0 1 1 1
20 0 0 0 0 6 0
21 0 1 0 0 0 1
22 0 0 0 0 0 0
23 0 0 0 0 2 2
24 0 0 0 0 4 4
25 0 0 1 1 3 3
26 0 0 0 0 0 0
27 0 0 1 1 1 1
28 0 0 1 1 0 0

291

Table C.15: Maintainability and Portability Data
Proj. AcRec AcRec SWOp SWOp HWOp HWOp
ID Specs Vrfy Specs Vrfy Specs Vrfy
1 1 1 0 0 0 0
2 0 0 1 1 0 0
3 0 0 0 0 0 0
4 0 0 3 3 1 1
5 1 1 1 0 1 0
6 2 0 1 0 1 0
7 0 2 3 2 0 0
8 2 1 0 0 2 0
9 0 1 0 0 0 0
10 1 2 1 1 1 1
11 2 2 1 1 1 1
12 0 0 0 2 0 2
13 0 0 1 0 2 0
14 0 0 0 1 0 1
15 0 0 1 1 0 1
16 1 1 1 0 0 1
17 1 0 1 1 0 0
18 0 0 2 1 0 0
19 0 5 0 4 0 1
20 0 0 0 0 0 0
21 1 1 0 0 0 1
22 0 0 2 0 0 0
23 0 0 0 0 0 0
24 0 0 0 0 0 0
25 1 1 0 0 0 0
26 0 0 0 0 0 0
27 3 3 0 0 0 0
28 2 2 0 0 0 0

292

LIST OF REFERENCES

[AFT03] P. Antal, G. Fannes, D. Timmerman, Y.Moreau, and B.DeMoor. \Bayesian appli-
cations of belief networks and multilayer perceptrons for overian tumor classi�ca-
tion with rejection." Arti�cial Intelligence in Medicine, 29(2):39{60, September-
October 2003.

[APB02] D. Azar, D. Precup, S. Bouktif, B. Kegl, and H. Sahraoui. \Combining and
adapting software quality predictive models by genetic algorithms." In Proceedings
of the 17th IEEE International Conference on Automated Software Engineering,
pp. 285{288, Los Angeles, CA, September 2002. IEEE Computer Society Press.

[Bac95] J. Bach. \Enough About Process: What We Need Are Heroes." Computer,
12(2):96{98, March 1995.

[Bac99] J. Bach. \What Software Reality Is Really About." Computer, 32(12):148{149,
December 1999.

[Bay63] T. Bayes. \Essay Towards Solving a Problem in the Doctrine of Chances." Phili-
sophical Transactions of the Royal Society of London, 53:370{418, 1763.

[BBL76] B.W. Boehm, J.R. Brown, and M. Lipow. \Quantitative Evaluation of Software
Quality." In Proceedings of the 2nd International Conference on Software Engi-
neering, pp. 592{605, Los Alamitos, CA, 1976. IEEE Computer Society Press.

[BBM96] V.R. Basili, L.C. Briand, and W.L. Melo. \A Validation of Object-Oriented De-
sign Metrics as Quality Indicators." IEEE Transactions on Software Engineering,
22(10):751{760, October 1996.

[BDP98] L.C. Briand, J. Daly, V. Porter, and J. Wust. \Predicting fault-prone classes with
design measures in object-oriented systems." In Proceedings of the 9th Interna-
tional Symposium on Software Reliability Engineering, pp. 334{343, Paderborn,
November 1998.

[Ben95] G. Ben-Yaacov. \Reap the rewards of quality with ISO 9000." IEEE Computer
Applications in Power, 8(4):26{30, October 1995.

[BL02] J.M. Beaver and D.G. Linton. \Using Design Metrics to Predict Error-Prone Mod-
ules." In Proceedings of the 6th IASTED International Conference on Software
Engineering and Applications, Cambridge, MA, November 2002. ACTA Press.

293

[BMB94] L. Briand, S. Morasca, and V.R. Basili. \De�ning and Validating High-Level
Design Metrics." Technical report, University of Maryland, USA, 1994.

[Boe81] B. Boehm. Software Engineering Economics. Prentice-Hall, Englewood Cli�s,
NJ, 1981.

[BS97] A. Berler and S.E. Shimony. \Bayes Networks for Sonar Sensor Fusion." In
Proceedings of the 13th Conference on Uncertainty in Arti�cial Intelligence, pp.
14{21. Morgan Kaufmann, August 1997.

[BS03a] J.M. Beaver and G.A. Schiavone. \A Comparison of Software Quality Modeling
Techniques." In Proceedings of the International Conference on Software Engi-
neering Research and Practice, Las Vegas, NV, June 2003. CSREA Press.

[BS03b] J.M. Beaver and G.A. Schiavone. \Spatial Data Analysis as a Software Quality
Modeling Technique." In Proceedings of the Fifteenth International Conference
on Software Engineering and Knowledge Engineering, San Francisco, CA, July
2003. Knowledge Systems Institute.

[BS06] J.M. Beaver and G.A. Schiavone. \The E�ects of Development Team Skill on
Software Product Quality." ACM SIGSOFT Softw. Eng. Notes, 31(3):1{5, May
2006.

[BSB05] J.M. Beaver, G.A. Schiavone, and J.S. Berrios. \Predicting Software Suitability
Using a Bayesian Belief Network." In 4th International Conference on Machine
Learning and Applications, Los Angeles, CA, December 2005. IEEE Computer
Society Press.

[BSC89] I.A. Beinlich, H.J. Suermondt, R.M. Chavez, and G.F. Cooper. \The ALARM
Monitoring System: A Case Study with Two Probabilistic Inference Techniques
for Belief Networks." In Proceedings of the 2nd European Conference on Arti�cial
Intelligence in Medicine, pp. 247{256. Springer-Verlag, 1989.

[BVT03] R.K. Bandi, V.K. Vaishanavi, and D.E. Turk. \Predicting Maintenance Perfor-
mance Using Object-Oriented Design Complexity Metrics." IEEE Transactions
on Software Engineering, 29(1):77{87, January 2003.

[CC00a] B. Cukic and D. Chakravarthy. \Bayesian framework for reliability assurance of
a deployed safety critical system." In Proceedings of the 5th International IEEE
Symposium on High Assurance Systems Engineering, pp. 321{329, Los Angeles,
CA, November 2000. IEEE Computer Society Press.

[CC00b] B. Cukic and D. Chakravarthy. \Bayesian framework for reliability assurance of
a deployed safety critical system." In Proceedings of the 5th International IEEE
Symposium on High Assurance Systems Engineering, pp. 321{329, Los Angeles,
CA, November 2000. IEEE Computer Society Press.

294

[CDS86] S.D. Conte, H.E. Dunsmore, and V.Y. Shen. Software Engineering Metrics and
Models. Benjamin/Cummings, Menlo Park, CA, 1986.

[CG93] R.E. Courtney and D.A. Gustafson. \Shotgun correlations in software measures."
Softw. Eng. J., 8(1):5{13, January 1993.

[Chu01] S. Chulani. \Bayesian analysis of software cost and quality models." In Proceed-
ings of the IEEE International Conference on Software Maintenance, 2001, pp.
565{568, Los Angeles, CA, November 2001. IEEE Computer Society Press.

[CK94] S. R. Chidamber and C.F. Kemerer. \A Metrics Suite for Object-Oriented De-
sign." IEEE Transactions on Software Engineering, 20(6):476{493, June 1994.

[Cor06] Norsys Software Corporation. \Netica (online)." In http://www.norsys.com, Van-
couver, Canada, 2006. Norsys Software Corporation.

[Dol00] J.J. Dolado. \A validation of the component-based method for software size
estimation." IEEE Transactions on Software Engineering, 26(10):1006{1021, Oc-
tober 2000.

[Dro95] R.G. Dromey. \A Model for Software Product Quality." IEEE Transactions on
Software Engineering, 21(2):146{162, February 1995.

[Dro96] R.G. Dromey. \Cornering the Chimera [software quality]." IEEE Software,
13(1):33{43, January 1996.

[DS97] M. Diaz and J. Sligo. \How software process improvement helped Motorola."
IEEE Software, 14(5):75{81, Sept.-Oct. 1997.

[DV99] A.M. Dean and D.T. Voss. Design and Analysis of Experiments. Springer-Verlag
New York, Inc., New York, NY, 1999.

[EB99] K. El-Emam and L. Briand. \Costs and Bene�ts of Software Process Improve-
ment." Technical report, 1999.

[EBG01] K. El Emam, S. Benlarbi, N. Goal, and S.N. Rai. \The Confounding E�ect of
Class Size on the Validity of Object-Oriented Metrics." IEEE Transactions on
Software Engineering, 27(7):630{650, July 2001.

[EKC98] Matthew Evett, Taghi Khoshgoftar, Pei der Chien, and Edward Allen. \GP-
based software quality prediction." In Genetic Programming 1998: Proceedings
of the Third Annual Conference, pp. 60{65, University of Wisconsin, Madison,
Wisconsin, USA, 22-25 1998. Morgan Kaufmann.

295

[ES95] K.J. Ezawa and T. Schuermann. \Fraud/Uncollectible Debt Detection Using a
Bayesian Network Based Learning System: A Rare Binary Outcome with Mixed
Data Structures." In Proceedings of the 11th Conference on Uncertainty in Arti-
�cial Intelligence, pp. 157{166. Morgan Kaufmann, August 1995.

[ESL97] F. Engelmann, H. Steinan, and E. Lebsanft. \Bootstrap: Four Years of As-
sessment Experience." In Proceedings of the 19th International Conference on
Software Engineering, pp. 568{569, New York, NY, May 1997. IEEE Computer
Society Press.

[FKN02] N. Fenton, P. Krause, and M. Neil. \Software Measurement: Uncertainty and
Causal Modeling." IEEE Software, 19(4):116{122, July/August 2002.

[FLN98] N.E. Fenton, B. Littlewood, M. Neil, L. Strigini, A. Sutcli�e, and D. Wright.
\Assessing Dependability of Safety Critical Systems using Diverse Evidence." lEE
Proc. Softw. Eng., 145(1):35{39, February 1998.

[FN99] N.E. Fenton and M. Neil. \A Critique of Software Defect Prediction Models."
IEEE Transactions on Software Engineering, 25(5):675{689, September/October
1999.

[Fou06] Eclipse Foundation. \Eclipse (online)." In http://www.eclipse.org, Ontario,
Canada, 2006. Eclipse Foundation, Inc.

[Gar06] G.D. Garson. \Correlation (online)." In
http://www2.chass.ncsu.edu/garson/PA765/correl.htm, Raleigh, North Car-
olina, 2006. Cruise Scienti�c.

[GBB90] N. Gorla, A.C. Benander, and B.A. Benander. \Debugging e�ort estimation using
software metrics." IEEE Transactions on Software Engineering, 16(2):223{231,
February 1990.

[Hal77] M.H. Halstead. Elements of Software Science. El Sevier North Holland, Inc.,
1977.

[Hal96] T.J. Haley. \Software process improvement at Raytheon." IEEE Software,
13(6):33{41, November 1996.

[Hen96] B. Henderson-Sellers. \The mathematical validity of software metrics." SIGSOFT
Softw. Eng. Notes, 21(5):89{94, 1996.

[HG96] J.D. Herbsleb and D.R. Goldenson. \A systematic survey of CMM experience
and results." In Proceedings of the 18th International Conference on Software
Engineering, pp. 323{330. IEEE Computer Society Press, March 1996.

296

[HH98] D. Heckerman and E. Horvitz. \Inferring Informational Goals from Free-Text
Queries: A Bayesian Approach." In Proceedings of the 14th Conference on Un-
certainty in Arti�cial Intelligence, pp. 230{237. Morgan Kaufmann, July 1998.

[HHH92] D.E. Heckerman, E.J. Horvitz, and B.N. Hathwani. \Toward Normative Expert
Systems: Part I: The Path�nder Project." Methods of Information in Medicine,
31:90{105, 1992.

[HJP98] A.M.J. Hass, J. Johansen, and J. Preis-Heje. \Does ISO 9001 increase software
development maturity?" In Proceedings of the 24th Euromicro Conference, 1998,
pp. 860{866, August 1998.

[HK81] S. Henry and D. Kafura. \Software Structure Metrics Based on Information
Flow." IEEE Transactions on Software Engineering, SE-7(5):510{517, Septem-
ber 1981.

[HK84] S. Henry and D. Kafura. \The Evaluation of Software Systems' Structure Using
Quantitative Software Metrics." Softw. - Practice and Experience, 14(6):561{573,
June 1984.

[HMK94] V. Haase, R. Messnarz, G. Koch, H.J. Kugler, and P. Decrinis. \Bootstrap: �ne-
tuning process assessment." IEEE Software, 11(4):25{35, July 1994.

[HS87] W.S. Humphrey andW.L. Sweet. \A Method for Assessing the Software Engineer-
ing Capability of Contractors." Technical report, Software Engineering Institute,
Pittsburgh, PA, 1987.

[Ins02] Software Engineering Institute. Capability Maturity Model Integrated, Version
1.1. Carnegie Mellon University, Pittsburgh, PA, 2002.

[ISO98] ISO/IEC 15504. ISO/IEC 15504:1998. Information Technology - Software Process
Assessment. International Organization for Standardization, Geneva, Switzer-
land, 1998.

[ISO01] ISO/IEC 9126. ISO/IEC 9126:2001. Software Engineering - Product Quality.
International Organization for Standardization, Geneva, Switzerland, 2001.

[Jen96] F.V. Jensen. An Introduction to Bayesian Networks. UCL Press Limited, 1996.

[Jon94] C. Jones. \Software metrics: good, bad, and missing." Computer, 27(9):98{100,
September 1994.

[Jon96] C. Jones. \The economics of software process improvement." Computer,
29(1):95{97, January 1996.

297

[KAB96] T.M. Khoshgoftaar, E.B. Allen, L.A. Bullard, R. Halstead, and G.P. Trio. \A
tree-based classi�cation model for analysis of a military software system." In
Proceedings of the High-Assurance Systems Engineering Workshop, 1996, pp. 244{
251. IEEE Computer Society, October 1996.

[KAH97] T.M. Khoshgoftaar, E.B. Allen, J.P. Hudepohl, and S.J. Aud. \Application of
Neural Networks to Software Quality Modeling of a Very Large Telecommunica-
tions System." IEEE Trans. Neural Networks, 8(4):902{909, July 1997.

[Kan95] S.H. Kan. Metrics and Models in Software Quality Engineering. Addison-Wesley,
1995.

[KBR92] T.M. Khoshgoftaar, B.B. Bhattacharya, and G.D. Richardson. \Predicting Soft-
ware Errors, During Development, Using Nonlinear Regression Models: A Com-
parative Study." IEEE Trans. Rel., 41(3):390{395, September 1992.

[KC85] D. Kafura and J. Canning. \A validation of software metrics using many met-
rics and two resources." In Proceedings of the 8th International Conference on
Software Engineering, pp. 378{385. IEEE Computer Society Press, August 1985.

[KM90] T.M. Khoshgoftaar and J.C. Munson. \The line of code metric as a predictor
of program faults: a critical analysis." In Proceedings of the 14th Annual Inter-
national Computer Software and Applications Conference (COMPSAC 90), pp.
408{413. IEEE Computer Society, November 1990.

[KMB92] T.M. Khoshgoftaar, J.C. Munson, B.B. Bhattacharya, and G.D. Richardson.
\Predictive Modeling Techniques of Software Quality from Software Measures."
IEEE Transactions on Software Engineering, 18(5):979{987, November 1992.

[KP96] B. Kitchenham and S.L. Peeger. \Software Quality: The Elusive Target." IEEE
Software, 13(1):12{21, January 1996.

[KPL90] B.A. Kitchenham, L.M. Pickard, and S.J. Linkman. \An evaluation of some design
metrics." Softw. Eng. J., 5(1):50{58, January 1990.

[KS96] T.M. Khoshgoftaar and R.M. Szabo. \Using Neural Networks to Predict Software
Faults During Testing." IEEE Trans. Rel., 45(3):456{462, September 1996.

[KS02a] T.M. Khoshgoftaar and N. Seliya. \Software quality classi�cation modeling using
the SPRINT decision tree algorithm." In Proceedings of the 14th International
Conference on Tools with Arti�cial Intelligence, 2002 (ICTAI 2002), pp. 365{374.
IEEE Computer Society, November 2002.

[KS02b] T.M. Khoshgosftaar and N. Seliya. \Software quality classi�cation modeling using
the SPRINT decision tree algorithm." In Proceedings of the 14th IEEE Interna-
tional Conference on Tools with Arti�cial Intelligence, pp. 365{374, Los Angeles,
CA, November 2002. IEEE Computer Society Press.

298

[KSG95] T.M. Khoshgoftaar, R.M. Szabo, and P.J. Guasti. \Exploring the behaviour of
neural network software quality models." Softw. Eng. J., 10(3):89{96, May 1995.

[KUS04] S. Kanmani, V.R. Uthariaraj, V. Sankaranarayanan, and P. Thambidurai. \Ob-
ject oriented software quality prediction using general regression neural networks."
ACM SIGSOFT Softw. Eng. Notes, 29(5):1{6, September 2004.

[LH93] W. Li and S. Henry. \Object-oriented metrics that predict maintainability." Jour-
nal of Systems and Software, 23:111{122, 1993.

[LLV95] F. Lanubile, A. Lonigro, and G. Visaggio. \Comparing models for identifying
fault-prone software components." In Proceedings of the 7th Anuual Conference on
Software Engineering and Knowledge Engineering, pp. 12{19. Knowledge Systems
Institute, June 1995.

[Mar04] P. Marrone. \Java Object-Oriented Neural Engine (JOONE)(online)." In
http://www.jooneworld.com, 2004.

[McC76] T. McCabe. \A Complexity Measure." IEEE Transactions on Software Engi-
neering, SE-2(4):308{320, December 1976.

[MDC03] T. Menzies, J.S. DiStefano, and M. Chapman. \Learning early lifecycle IV and
V quality indicators." In Proceedings of the 9th International Software Metrics
Symposium, 2003, pp. 88{96. IEEE Computer Society, September 2003.

[MK92] T. Mukhopadhyay and S. Kekre. \Software e�ort models for early estimation
of process control applications." IEEE Transactions on Software Engineering,
18(10):915{924, October 1992.

[MRW77] J. McCall, P. Richards, and G. Walters. \Factors in Software Quality." Technical
report, Rome Air Development Center, New York, November 1977.

[MS95] W. Mendenhall and T. Sincich. Statistics for Engineers and the Sciences.
Prentice-Hall, Upper Saddle River, NJ, 4 edition, 1995.

[Nai82] F.A. Naib. \An application of software science to the quantitative measurement
of code quality." In Proceedings of the 1982 Workshop on Software Metrics, pp.
101{128, March 1982.

[NAS04] NASA. NASA Procedural Requirements 7150.2: Software Engineering Require-
ments. National Aeronautics and Space Administration, Goddard Space Flight
Center, MD, 2004.

[NAS05] NASA. \Competency Management System (online)." In
http://ohr.gsfc.nasa.gov/cms/home.htm, Goddard Space Flight Center, MD,
April 2005. National Aeronautics and Space Administration.

299

[PC89] A. Puerta and C.L. Carnal. \An exploratory study on a linear model for measuring
software quality." In Proceedings of Southeastcon '89: Energy and Information
Technologies in the Southeast, pp. 1099{1102. IEEE Computer Society Press, April
1989.

[Pea86] J. Pearl. \Fusion, Propagation, and Structuring in Belief Networks." Arti�cial
Intelligence, 29:241{288, 1986.

[QT03] Tong-Seng Quah and Mie Mie Thet Thwin. \Application of Neural Networks for
Software Quality Prediction Using Object-Oriented Metrics." In Proceedings of
the International Conference on Software Maintenance, 2003, pp. 116{125. IEEE
Computer Society Press, September 2003.

[Sci06] Cruise Scienti�c. \Visual Statistics: Chapter 15 The Point Biserial Coe�cient of
Correlation (online)." In http://www.visualstatistics.net. Cruise Scienti�c, 2006.

[She90] M. Sheppard. \Design metrics: an empirical analysis." Softw. Eng. J., 5(1):3{10,
January 1990.

[SK03] R. Subramanyam and M.S. Krishnan. \Empirical Analysis of CK Metrics for
Object-Oriented Design Complexity: Implications for Software Defects." IEEE
Transactions on Software Engineering, 29(4):297{310, April 2003.

[SM99] G.G. Schulmeyer and J.I. McManus. Handbook of Software Quality Assurance.
Prentice-Hall, Inc., 1999.

[Smi80] C.P. Smith. \A software science analysis of program size." In Proceedings of the
1980 ACM Annual Conference, pp. 437{446, January 1980.

[SP88] R.W. Selby and A.A. Porter. \Learning from examples: generation and evaluation
of decision trees for software resource analysis." IEEE Transactions on Software
Engineering, 14(12):1743{1757, December 1988.

[SSM97] C. Smidts, D. Sova, and G.K. Mandela. \An architectural model for software
reliability quanti�cation." In Proceedings of the 8th IEEE Symposium on Software
Reliability Engineering, pp. 324{335, Los Angeles, CA, November 1997. IEEE
Computer Society Press.

[SYT85] V. Shen, T. Yu, S. Thebout, and L. Paulsen. \Identifying error-prone software -
An empirical study." IEEE Transactions on Software Engineering, 11:317{323,
April 1985.

[TS91] W.R. Torres and M. Samadzadeh. \Software reuse and information theory based
metrics." In Proceedings of the 1991 Symposium on Applied Computing, pp. 437{
446, April 1991.

300

[Wit90] C. Withrow. \Error density and size in Ada software." IEEE Software, 7(1):26{
31, January 1990.

[Wri21] S. Wright. \Correlation and Causation." Journal of Agricultural Research,
20:557{585, 1921.

[ZZ93] W.M. Zage and D.M. Zage. \Evaluating design metrics on large-scale software."
IEEE Software, 10(4):75{81, July 1993.

301

	A Life Cycle Software Quality Model Using Bayesian Belief Networks
	STARS Citation

	ABSTRACT
	ACKNOWLEDGMENTS
	TABLE OF CONTENTS
	LIST OF TABLES
	LIST OF FIGURES
	CHAPTER 1 INTRODUCTION
	1.1 Software Quality Overview
	1.2 Research Overview
	1.3 Chapter Synopsis

	CHAPTER 2 LITERATURE REVIEW
	2.1 Defining Software Quality
	2.2 Evolution of Software Quality Modeling
	2.3 Causal Factors of Software Quality
	2.4 Software Product Quality Models

	CHAPTER 3 METHODOLOGY
	3.1 Scope of Research
	3.2 Technical Approach
	3.3 Validation Approach

	CHAPTER 4 RESULTS
	4.1 Analysis of Software Quality Variables
	4.2 Analysis of the Intuitive Model Structure
	4.3 Analysis of Direct Effects on Software Quality
	4.4 Comparison of Bayesian Model Structures
	4.5 Comparison of Bayesian and Competing Models
	4.6 Limitations of the Results

	CHAPTER 5 CONCLUSIONS
	5.1 Causal Factor Frameworks
	5.2 Suitability of Bayesian Belief Networks
	5.3 Primary Causes of Software Product Quality
	5.4 Model Applicability in the Software Life Cycle

	APPENDIX A SOFTWARE SKILL ASSESSMENT QUESTIONNAIRE
	APPENDIX B DIRECT EFFECTS ANALYSIS TABLES
	APPENDIX C RAW DATA TABLES
	LIST OF REFERENCES

