198,069 research outputs found

    Design of a Multi-Agent System for Process Monitoring and Supervision

    Get PDF
    New process monitoring and control strategies are developing every day together with process automation strategies to satisfy the needs of diverse industries. New automation systems are being developed with more capabilities for safety and reliability issues. Fault detection and diagnosis, and process monitoring and supervision are some of the new and promising growth areas in process control. With the help of the development of powerful computer systems, the extensive amount of process data from all over the plant can be put to use in an efficient manner by storing and manipulation. With this development, data-driven process monitoring approaches had the chance to emerge compared to model-based process monitoring approaches, where the quantitative model is known as a priori knowledge. Therefore, the objective of this research is to layout the basis for designing and implementing a multi-agent system for process monitoring and supervision. The agent-based programming approach adopted in our research provides a number of advantages, such as, flexibility, adaptation and ease of use. In its current status, the designed multi-agent system architecture has the three different functionalities ready for use for process monitoring and supervision. It allows: a) easy manipulation and preprocessing of plant data both for training and online application; b) detection of process faults; and c) diagnosis of the source of the fault. In addition, a number of alternative data driven techniques were implemented to perform monitoring and supervision tasks: Principal Component Analysis (PCA), Fisher Discriminant Analysis (FDA), and Self-Organizing Maps (SOM). The process system designed in this research project is generic in the sense that it can be used for multiple applications. The process monitoring system is successfully tested with Tennessee Eastman Process application. Fault detection rates and fault diagnosis rates are compared amongst PCA, FDA, and SOM for different faults using the proposed framework

    FAST : a fault detection and identification software tool

    Get PDF
    The aim of this work is to improve the reliability and safety of complex critical control systems by contributing to the systematic application of fault diagnosis. In order to ease the utilization of fault detection and isolation (FDI) tools in the industry, a systematic approach is required to allow the process engineers to analyze a system from this perspective. In this way, it should be possible to analyze this system to find if it provides the required fault diagnosis and redundancy according to the process criticality. In addition, it should be possible to evaluate what-if scenarios by slightly modifying the process (f.i. adding sensors or changing their placement) and evaluating the impact in terms of the fault diagnosis and redundancy possibilities. Hence, this work proposes an approach to analyze a process from the FDI perspective and for this purpose provides the tool FAST which covers from the analysis and design phase until the final FDI supervisor implementation in a real process. To synthesize the process information, a very simple format has been defined based on XML. This format provides the needed information to systematically perform the Structural Analysis of that process. Any process can be analyzed, the only restriction is that the models of the process components need to be available in the FAST tool. The processes are described in FAST in terms of process variables, components and relations and the tool performs the structural analysis of the process obtaining: (i) the structural matrix, (ii) the perfect matching, (iii) the analytical redundancy relations (if any) and (iv) the fault signature matrix. To aid in the analysis process, FAST can operate stand alone in simulation mode allowing the process engineer to evaluate the faults, its detectability and implement changes in the process components and topology to improve the diagnosis and redundancy capabilities. On the other hand, FAST can operate on-line connected to the process plant through an OPC interface. The OPC interface enables the possibility to connect to almost any process which features a SCADA system for supervisory control. When running in on-line mode, the process is monitored by a software agent known as the Supervisor Agent. FAST has also the capability of implementing distributed FDI using its multi-agent architecture. The tool is able to partition complex industrial processes into subsystems, identify which process variables need to be shared by each subsystem and instantiate a Supervision Agent for each of the partitioned subsystems. The Supervision Agents once instantiated will start diagnosing their local components and handle the requests to provide the variable values which FAST has identified as shared with other agents to support the distributed FDI process.Per tal de facilitar la utilitzaciĂł d'eines per la detecciĂł i identificaciĂł de fallades (FDI) en la indĂșstria, es requereix un enfocament sistemĂ tic per permetre als enginyers de processos analitzar un sistema des d'aquesta perspectiva. D'aquesta forma, hauria de ser possible analitzar aquest sistema per determinar si proporciona el diagnosi de fallades i la redundĂ ncia d'acord amb la seva criticitat. A mĂ©s, hauria de ser possible avaluar escenaris de casos modificant lleugerament el procĂ©s (per exemple afegint sensors o canviant la seva localitzaciĂł) i avaluant l'impacte en quant a les possibilitats de diagnosi de fallades i redundĂ ncia. Per tant, aquest projecte proposa un enfocament per analitzar un procĂ©s des de la perspectiva FDI i per tal d'implementar-ho proporciona l'eina FAST la qual cobreix des de la fase d'anĂ lisi i disseny fins a la implementaciĂł final d'un supervisor FDI en un procĂ©s real. Per sintetitzar la informaciĂł del procĂ©s s'ha definit un format simple basat en XML. Aquest format proporciona la informaciĂł necessĂ ria per realitzar de forma sistemĂ tica l'AnĂ lisi Estructural del procĂ©s. Qualsevol procĂ©s pot ser analitzat, nomĂ©s hi ha la restricciĂł de que els models dels components han d'estar disponibles en l'eina FAST. Els processos es descriuen en termes de variables de procĂ©s, components i relacions i l'eina realitza l'anĂ lisi estructural obtenint: (i) la matriu estructural, (ii) el Perfect Matching, (iii) les relacions de redundĂ ncia analĂ­tica, si n'hi ha, i (iv) la matriu signatura de fallades. Per ajudar durant el procĂ©s d'anĂ lisi, FAST pot operar aĂŻlladament en mode de simulaciĂł permetent a l'enginyer de procĂ©s avaluar fallades, la seva detectabilitat i implementar canvis en els components del procĂ©s i la topologia per tal de millorar les capacitats de diagnosi i redundĂ ncia. Per altra banda, FAST pot operar en lĂ­nia connectat al procĂ©s de la planta per mitjĂ  d'una interfĂ­cie OPC. La interfĂ­cie OPC permet la possibilitat de connectar gairebĂ© a qualsevol procĂ©s que inclogui un sistema SCADA per la seva supervisiĂł. Quan funciona en mode en lĂ­nia, el procĂ©s estĂ  monitoritzat per un agent software anomenat l'Agent Supervisor. Addicionalment, FAST tĂ© la capacitat d'implementar FDI de forma distribuĂŻda utilitzant la seva arquitectura multi-agent. L'eina permet dividir sistemes industrials complexes en subsistemes, identificar quines variables de procĂ©s han de ser compartides per cada subsistema i generar una instĂ ncia d'Agent Supervisor per cadascun dels subsistemes identificats. Els Agents Supervisor un cop activats, començaran diagnosticant els components locals i despatxant les peticions de valors per les variables que FAST ha identificat com compartides amb altres agents, per tal d'implementar el procĂ©s FDI de forma distribuĂŻda.Postprint (published version

    Automated post-fault diagnosis of power system disturbances

    Get PDF
    In order to automate the analysis of SCADA and digital fault recorder (DFR) data for a transmission network operator in the UK, the authors have developed an industrial strength multi-agent system entitled protection engineering diagnostic agents (PEDA). The PEDA system integrates a number of legacy intelligent systems for analyzing power system data as autonomous intelligent agents. The integration achieved through multi-agent systems technology enhances the diagnostic support offered to engineers by focusing the analysis on the most pertinent DFR data based on the results of the analysis of SCADA. Since November 2004 the PEDA system has been operating online at a UK utility. In this paper the authors focus on the underlying intelligent system techniques, i.e. rule-based expert systems, model-based reasoning and state-of-the-art multi-agent system technology, that PEDA employs and the lessons learnt through its deployment and online use

    Issues in integrating existing multi-agent systems for power engineering applications

    Get PDF
    Multi-agent systems (MAS) have proven to be an effective platform for diagnostic and condition monitoring applications in the power industry. For example, a multi-agent system architecture, entitled condition monitoring multi-agent system (COMMAS) (McArthur et al., 2004), has been applied to the ultra high frequency (UHF) monitoring of partial discharge activity inside transformers. Additionally, a multi-agent system, entitled protection engineering diagnostic agents (PEDA) (Hossack et al., 2003), has demonstrated the use of MAS technology for automated and enhanced post-fault analysis of power systems disturbances based on SCADA and digital fault recorder (DFR) data. In this paper, the authors propose the integration of COMMAS and PEDA as a means of offering enhanced decision support to engineers tasked with managing transformer assets. By providing automatically interpreted data related to condition monitoring and power system disturbances, the proposed integrated system offer engineers a more comprehensive picture of the health of a given transformer. Defects and deterioration in performance can be correlated with the operating conditions it experiences. The integration of COMMAS and PEDA has highlighted the issues inherent to the inter-operation of existing multi-agent systems and, in particular, the issues surrounding the use of differing ontologies. The authors believe that these issues need to be addressed if there is to be widespread deployment of MAS technology within the power industry. This paper presents research undertaken to integrate the two MAS and to deal with ontology issues

    Molecular techniques and target selection for the identification of Candida spp. in oral samples

    Get PDF
    Candida species are the causative agent of oral candidiasis, with medical devices being platforms for yeast anchoring and tissue colonization. Identifying the infectious agent involved in candidiasis avoids an empirical prescription of antifungal drugs. The application of high-throughput technologies to the diagnosis of yeast pathogens has clear advantages in sensitivity, accuracy, and speed. Yet, conventional techniques for the identification of Candida isolates are still routine in clinical and research settings. Molecular approaches are the focus of intensive research, but conversion into clinic settings requires overcoming important challenges. Several molecular approaches can accurately identify Candida spp.: Polymerase Chain Reaction, Microarray, High-Resolution Melting Analysis, Multi-Locus Sequence Typing, Restriction Fragment Length Polymorphism, Loop-mediated Isothermal Amplification, Matrix Assisted Laser Desorption Ionization-mass spectrometry, and Next Generation Sequencing. This review examines the advantages and disadvantages of the current molecular methods used for Candida spp. Identification, with a special focus on oral candidiasis. Discussion regarding their application for the diagnosis of oral infections aims to identify the most rapid, affordable, accurate, and easy-to-perform molecular techniques to be used as a point-of-care testing method. Special emphasis is given to the difficulties that health care professionals need to overcome to provide an accurate diagnosis.info:eu-repo/semantics/publishedVersio

    Using evidence combination for transformer defect diagnosis

    Get PDF
    This paper describes a number of methods of evidence combination, and their applicability to the domain of transformer defect diagnosis. It explains how evidence combination fits into an on-line and implemented agent-based condition monitoring system, and the benefits of giving selected agents reflective abilities. Reflection has not previously been deployed in an industrial setting, and theoretical work has been in domains other than power engineering. This paper presents the results of implementing five different methods of evidence combination, showing that reflective techniques give greater accuracy than non-reflective

    Practical applications of multi-agent systems in electric power systems

    Get PDF
    The transformation of energy networks from passive to active systems requires the embedding of intelligence within the network. One suitable approach to integrating distributed intelligent systems is multi-agent systems technology, where components of functionality run as autonomous agents capable of interaction through messaging. This provides loose coupling between components that can benefit the complex systems envisioned for the smart grid. This paper reviews the key milestones of demonstrated agent systems in the power industry and considers which aspects of agent design must still be addressed for widespread application of agent technology to occur

    Multi-Agent Cooperation for Particle Accelerator Control

    Get PDF
    We present practical investigations in a real industrial controls environment for justifying theoretical DAI (Distributed Artificial Intelligence) results, and we discuss theoretical aspects of practical investigations for accelerator control and operation. A generalized hypothesis is introduced, based on a unified view of control, monitoring, diagnosis, maintenance and repair tasks leading to a general method of cooperation for expert systems by exchanging hypotheses. This has been tested for task and result sharing cooperation scenarios. Generalized hypotheses also allow us to treat the repetitive diagnosis-recovery cycle as task sharing cooperation. Problems with such a loop or even recursive calls between the different agents are discussed

    On-line transformer condition monitoring through diagnostics and anomaly detection

    Get PDF
    This paper describes the end-to-end components of an on-line system for diagnostics and anomaly detection. The system provides condition monitoring capabilities for two in- service transmission transformers in the UK. These transformers are nearing the end of their design life, and it is hoped that intensive monitoring will enable them to stay in service for longer. The paper discusses the requirements on a system for interpreting data from the sensors installed on site, as well as describing the operation of specific diagnostic and anomaly detection techniques employed. The system is deployed on a substation computer, collecting and interpreting site data on-line

    Distributed Adaptive Fault-Tolerant Control of Uncertain Multi-Agent Systems

    Get PDF
    This paper presents an adaptive fault-tolerant control (FTC) scheme for a class of nonlinear uncertain multi-agent systems. A local FTC scheme is designed for each agent using local measurements and suitable information exchanged between neighboring agents. Each local FTC scheme consists of a fault diagnosis module and a reconfigurable controller module comprised of a baseline controller and two adaptive fault-tolerant controllers activated after fault detection and after fault isolation, respectively. Under certain assumptions, the closed-loop system's stability and leader-follower consensus properties are rigorously established under different modes of the FTC system, including the time-period before possible fault detection, between fault detection and possible isolation, and after fault isolation
    • 

    corecore