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ABSTRACT

We present practical investigations in a real industrial controls environment
for justifying theoretical DAI (Distributed Artificial Intelligence) results,
and we discuss theoretical aspects of practical investigations for
accelerator control and operation. A generalized hypothesis is introduced,
based on a unified view of control, monitoring, diagnosis, maintenance and
repair tasks leading to a general method of cooperation for expert systems
by exchanging hypotheses. This has been tested for task and result sharing
cooperation scenarios. Generalized hypotheses also allow us to treat the
repetitive diagnosis-recovery cycle as task sharing cooperation. Problems
with such a loop or even recursive calls between the different agents are
discussed.

Keywords: Distributed AI, industrial control, diagnosis, cooperating expert
systems, multi-agent systems.

1. INTRODUCTION

Quite exhaustive theoretical studies exist in DAI, but it seems that there is not enough feedback from
practice. In this paper we present practical investigations for applying and justifying the theoretical DAI
results in a real industrial controls environment, and, conversely, we discuss the theoretical aspects of
practical findings in these applied investigations made for accelerator control and operation. The results
presented here are partly based on the research carried out at CERN during the ESPRIT-II Project
ARCHON™ [1].

The CERN Proton Synchrotron accelerator environment, the motivation to apply DAI methods and,
related to it, the results of the ESPRIT-II Project ARCHON on ARchitecture for Cooperating Heterogene-
ous ON-line systems, are given in chapter 2. Chapter 3 describes different cooperation techniques applied
to accelerator control and accelerator operation, some cooperation scenarios between diagnostic agents
and examples taken from a control program called SETUP [2] to bring the accelerator into working con-
dition after a shutdown period or after some component breakdowns. The analysis made in chapter 4 leads
to a general method of exchanging hypotheses by cooperating expert systems which has been tested. This

1. on leave from KFKI-MSZKI, Budapest, POB 49, 1525 Hungary, and supported by OTKA F4064

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Repository of the Academy's Library

https://core.ac.uk/display/11857513?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


result sharing cooperation amounts to exchanging diagnostic knowledge at different levels (partial
results) and of different certainty. The definition of a generalized hypothesis allows for a unified view of
control, monitoring, diagnosis, maintenance and repair tasks such that agents implementing these tasks
simply exchange hypotheses. This permits us to treat the repetitive diagnosis-recovery cycle as task shar-
ing cooperation. Problems with such a loop or even recursive calls between the different agents are dis-
cussed. From another area of accelerator control concerning the different aspects of diagnosing timing
faults we show that feedback from one diagnostic agent to another can be considered as similar to
machine learning in a multi-agent system by rule compilation from simulation runs in another agent.

2. BACKGROUND

CERN is a European research institute, financed  by 19 member states and employing some 3000
staff members. In addition, 5000 visiting physicists, engineers and computer experts from nearly 400
research centres and universities in 40 countries use its facilities: accelerators and experimental areas.
Particle accelerators are necessary to provide physicists with beams for their experiments. The CERN
accelerator complex is one of the world’s most sophisticated high energy research tools. The CERN Pro-
ton Synchrotron (PS) is the heart of CERN’s accelerators and experimental facilities, and acts also as
injector for CERN’s bigger accelerators, the Super Proton Synchrotron and the huge LEP (Large Electron
Positron rings). Accelerator operation and maintaining the underlying control system are complex tasks
and difficult to survey. The necessary knowledge is naturally distributed, as is the control system which
contains many  systems to solve common problems. These facts suggest the application of DAI methods
and in particular solutions emerging from multi-agent cooperation.

Given the need to apply DAI techniques, CERN joined the ARCHON project as an application part-
ner providing a large accelerator control system and two expert systems as a test-bed for the development
and evaluation of the methodologies and software produced by this collaboration. ARCHON [3], [4] can
be considered as a cooperation shell for combining semi-autonomous systems to work on an implicitly
defined common goal, in our case, the correctly operating accelerator. In ARCHON, and this was one of
the very important design objectives, the different agents can be pre-existing systems. Problems, insights
and experiences gained whilst deploying ARCHON technology in real applications with the two on-line
running examples (respectively IBERDROLA, an electricity utility in Spain, and CERN) are described in
[5]. Details of applying the ARCHON technology can also be found in [6] and [7].

The ARCHON system architecture [3] defines an agent as an independent system (Intelligent Sys-
tem) plus its “ARCHON Layer”, the cooperation layer to be added. The Intelligent Systems are systems
dealing with a certain field of application. They are first of all expert systems, but other systems like data-
base and control systems are also included: so that one could talk about Industrial Systems in general.

The ARCHON Layers of each agent provide the functionality for cooperation, so that they can com-
municate to coordinate their tasks if necessary, similarly to human operators in a control room who decide
when and how to cooperate and take the necessary actions. Via these ARCHON Layers the Intelligent
Systems now control not only themselves but also the way they interact with each other: this is the
essence of cooperation provided by an ARCHON Layer. It is not only the distribution of data and control,
but rather the distribution of the control of all data available.

Each ARCHON Layer has two I/O channels according to its twofold functionality: controlling the
Intelligent System and controlling cooperation, i.e. one connecting to the underlying domain system and
the other to communicate to the other agents in the community. The ARCHON Layer consists of several
modules like the one for the task control and status check of the Intelligent System and another one that
reasons about other agents and decides when and how to cooperate, and supervises cooperation by situa-
tion assessment and planning. The acquaintance and self models are also part of the ARCHON Layer.



3. MULTI-AGENT COOPERATION SCENARIOS

Cooperating Diagnostic Expert Systems

The two diagnostic expert systems written at CERN and then used for the ARCHON test-bed were
CODES [8], which stands for COntrol system Diagnosis Expert System and BEDES [9], [10] for BEam
Diagnosis Expert System. The first aspect in running an accelerator is addressed by CODES and related to
fault finding and repair tasks in the complex control system of these accelerators. The main problem lies
in the complexity and the implicit connectivity of the processes to be diagnosed, with its numerous inter-
connected hardware and software modules. CODES was implemented using the expert system toolkit
KEE™ from IntelliCorp to write a generic shell for diagnostic reasoning and includes device-centred
model-based reasoning and on-line access to a database describing the parts and modules of the control
system and their connectivity. BEDES addresses another aspect of the work done in the control room of
an accelerator, the work of the operators to set up a certain particle beam, keep stable running conditions
or change to a different kind of beam. BEDES was written to help the operators to detect and to treat mal-
functions in the transfer line between LINAC II and the PS Booster Accelerator (PSB)1, and in the proc-
ess to inject the beam into the PSB.

The operators act upon the accelerator exclusively via the control system. Different sections of the
accelerator are controlled from different general purpose consoles (work stations) in the same control
room. From here stems the idea of introducing the notion of cooperation between expert systems and
cooperating heterogeneous systems in general. Just as different operators coordinate their work on a com-
mon goal by cooperative communication, the software in the different ARCHON Layers provides this
cooperation.

A general method has been developed at CERN for cooperation which was applied to expert systems
that create hypothesis trees for their diagnosis. This method uses essentially result sharing cooperation, by
which it speeds up the diagnostic process and gives more detailed results. The method works better if
hypotheses are in a tree structure, because the additional information of relations between the hypotheses
provides more information for cooperation.

The two expert systems use the same diagnostic shell: Hypotheses are created by some high level
symptoms, error codes coming from the control system, by the verification method of a hypothesis just
being evaluated, etc. They are kept in an agenda which is aware of a tree structure of the hypotheses and
they are selected from this agenda by certain criteria related to the importance of a hypothesis to be able to
lead to a result. Child hypotheses in the tree structure usually correspond to subparts and more specific
fault suspicions. In more detail, ahypothesis is an object which comprises, among other attributes, the fol-
lowing principal information:Suspected Entity: which object in the control system is suspected (e.g. a
focusing quadrupole);State of the Entity: what is the suspected erroneous state (e.g. switched off); and
Verification Method: how to verify or abandon this particular hypothesis. The verification method
includes both procedural data (e.g. to be collected from the database or from the process via the control
system itself), and declarative data (i.e. the diagnostic rules).

The cooperation is based on the exchange of hypotheses. This has the advantage that it fits naturally
into the diagnostic structure of the expert systems and can be applied to existing expert systems - as
shown in our case - with only slight modifications [11]. Although the hypothesis exchange as a means for
cooperation was developed mainly for the cooperation of diagnostic expert systems and a larger applica-
bility was not among the design goals like in the design of the Knowledge Query and Manipulation Lan-
guage (KQML) and the Knowledge Interchange Format (KIF), hypothesis exchange proves to be a
generally applicable method as we will see later in this paper.

1. The LINAC II is a linear accelerator which injects into the PS Booster, a pre-accelerator boosting the
energy and the beam qualities before injecting the beam into the main PS accelerator.



The two expert system may cooperate in several ways. In a simple task sharing cooperation when
BEDES finds something that indicates a possible error in the control system, it sends this indication to
CODES. In a result sharing cooperation CODES runs ahead of BEDES and makes sure that BEDES can
complete its diagnosis. The result of CODES, sent to BEDES, enables BEDES to arrive at a better or
more detailed diagnosis. The result sharing cooperation is also possible in the other direction: repeated
messages from BEDES redirect the attention of CODES which is working in parallel to BEDES in its
expanded hypothesis tree. Details of these scenarios are described in [5], [11], and [12]. These scenarios
have been implemented and tested as part of the ARCHON project.

The basic elements of this cooperation method are the following: sending hypothesis to each other
based on the acquaintance models to check if they are of interest at all, translating received hypothesis to
be understood by the receiving agent if necessary, inserting hypotheses into the agenda, and influencing
the reasoning mechanism inside the expert systems by changing the “importance” of this hypothesis. The
cooperating expert systems can give more details and more accurate results than the stand-alone systems
which means that information can be presented to the system’s operators in a more coherent and accurate
manner. In stand-alone operation, BEDES can tell that the beam is lost and suspects the operator having
set wrong values or used wrong archived values and then CODES can be asked if the control system is not
faulty. The DAI system, on the other hand, can immediately present the information that the efficiency of
the beam went down because a control module is stopped and a control value cannot be set.

Cooperation Between Accelerator Setup And Diagnosis

The SETUP is a collection of programs to bring an equipment or interface module or a collection of
them into a correct working state. It is quite natural to think of the SETUP as an integrated part of a gen-
eral fault finding system. In relation to a CODES-agent (CODES stands here for any diagnostic expert
system for analysing control system faults) the SETUP would represent a “recovery”-agent: on finding an
error, CODES can cooperate with the SETUP for error recovery, and - in the other direction - the SETUP
agent, in case of errors in its recovery actions, can ask CODES for more details. One could even think of
an extended arbitration via an ARCHON Layer of finding the most efficient recovery procedure if there is
a dynamic choice between several possibilities.

There are also good reasons to include BEDES, the beam diagnosis expert system, in such a cooper-
ation: as we have seen, BEDES provides a different, additional view of the diagnosis and therefore a more
powerful diagnosis for the SETUP than CODES alone, and in some cases, BEDES needs directly recov-
ery actions provided by a SETUP.

The diagnostic modules can cooperate with the SETUP modules in other ways as well. Besides help-
ing the diagnostic module with the capability of recovery, the SETUP module can contribute to the diag-
nosis process of the diagnostic module. The diagnosis requires some tests to be executed (in the
verification methods of the hypotheses). In a simple case it reads an alarm code from the appropriate
equipment driver, but by calling the SETUP the diagnostic module can execute complex tests and receive
high level information. These scenarios have been proposed as improvements to the present SETUP sys-
tem [13].

Cooperation Between Different Aspects Of Timing Diagnosis

The timing system in accelerator control has two main functions: to provide real-time control inde-
pendent of the operator, and the time-sharing and sequencing of different operation modes, i.e. different
beams through the chained accelerators. The timing diagnosis can be related to three levels of the timing
system: (1) Programming the schedule of operation modes mentioned above, (2) generating the master
timing, and (3) the derived timings on different levels and generated in the various timing modules of the
control system, depending on the changing operation modes.



On the operation modes programming level the diagnostic and checking system (as described in the
paper I. Campos, J. Lewis, P. Skarek, L.Z. Varga; Rule-Based Consultant for Accelerator Beam Schedul-
ing, to be submitted to: ICALEPS’95, Chicago; 1995.) should detect if the schedule can be executed by
the accelerators. On the master timing level the diagnostic system should help to detect why the master
timing generator select certain operation modes, because this is not uniquely determined by the planned
schedule, but also by the state of the equipment. On the detailed timing level the diagnostic system should
be able to detect whether the correct signals are generated as it is requested by the master timing genera-
tor.

The different aspects of timing diagnosis are interrelated. Some of the restrictions expressed in the
rules of the operation modes programming level are partially based on the results of the master timing and
detailed timing level analysis. For example if the master timing generator can never select a certain com-
bination in a schedule then this combination can be ruled out immediately at the programming level.
Automating the feedback from the lower level diagnostic agents to the operation modes programming
level is similar to machine learning.

The agent responsible for the programming level instructs the master timing level to execute a cer-
tain schedule and assigns to this schedule a credibility factor (in the sense: suitable for execution). This
credibility factor is - let us say - 1 in the beginning. If the master timing level is unable to execute parts of
the schedule, it reports this to the programming level which reduces the factor each time it detects a prob-
lem, and if it goes below a certain level, the programming level can take action to add a rule to the pro-
gramming level diagnostic system to inhibit this type of schedule. The programming level must be
intelligent enough to identify those characteristics of the schedule which cause the master timing level to
fail. This identification can be done by comparing the schedule that failed several times with accepted
schedules, and by finding those characteristics which are present only in a schedule which fails.

Currently the first two agents (operation modes programming and master timing simulation) are
implemented and running; the proposed feedback and the detailed timing diagnosis are in the design
stage.

The reason for this rule generation from numerous simulation runs is an argument for speed since the
master timing level would detect the impossibility anyway, but the simulation can take a very long time. If
the rules in the first agent are rather complete, the simulation run can become superfluous.

4. ANALYSIS AND GENERALIZATION

We have seen that diagnostic expert systems were made to cooperate by hypothesis exchange. Now
we are going to extend our view of hypotheses in such a way that the major tasks in accelerator control
can be related to these hypotheses to constitute a sound basis for cooperation.

Generalized Hypotheses

We define a generalized hypothesis as a triplet consisting of anobject, thesuspected element, with a
certain fault attribute (what is suspected) and averification method or a reference to it (what to do and
how to proceed in the diagnosis). In diagnosis one usually talks about the Hypothesis-and-Test strategy.
We have combined these activities into the generalized hypothesis, which is a knowledge package or a
knowledge source, but in a wider sense than used in the blackboard paradigm.

The tasks behind the “verification-methods” need not be locally available but can be distributed in
the agents’ community. This conceptual unit called generalized hypothesis represents the “Diagnostic
Knowledge” and exchanging hypotheses between knowledge based systems in the form of cooperation
should be seen as the exchange of formalized diagnostic knowledge. It amounts to a Hypothesis-and-Test
strategy in a distributed but conceptually very compact form.



Another attribute of a hypothesis refers to the “State of the Hypothesis”, which can have values like:
“not yet evaluated”, “proved”, “denied”, etc. It corresponds to different types of diagnostic knowledge,
and may also be seen as different steps towards a final result. The mechanism of our cooperation scheme
is exchanging hypotheses based on the state of the hypothesis and possibly on the availability of the veri-
fication method.

We give some simple example of hypotheses from the accelerator domain in TABLE I. It is worth-
while noting that the methods can create other hypotheses, child hypotheses in the hypotheses tree.
Hypotheses can be “at different levels”, e.g. talking about different objects in a part/subpart hierarchy.
The different levels in this abstraction correspond to different levels of the partial result as present in the
result sharing cooperation via a Functionally Accurate/Cooperative [14] type strategy.

Usually one distinguishes in diagnostic reasoning betweensymptoms (observed, initial data to start
the reasoning) from which one deriveshypotheses on several levels. If one finally can identify thefault,
then this corresponds to a final verified hypothesis, which in turn is now able to explain thesymptoms. For
us conceptually and in our implementation these are all hypotheses on different levels of details as the
examples in TABLE II show.

Our definition for a hypothesis even allows more: the unification of the concepts of control, diagno-
sis, maintenance and repair/recovery actions and represents therefore a handy way of implementing coop-
eration between agents executing these tasks.

We recall that the SETUP program system brings the accelerator into an initial state (normal work-
ing conditions) after a shutdown or simply recovers from a failure in one or several modules of the control
system. It initializes the equipment one by one and sets the correct values in the correct order. The SETUP
is just an example of acontrols task.Diagnosis finds out why a certain control or accelerator components
are not working as they are supposed to do and suggests possible recovery actions from the fault. Cooper-
ation between the SETUP, i.e. a control and the corresponding diagnosis, is quite natural. If a control
action cannot be executed, one needs to diagnose the reason, which in turn will suggest a repair/recovery
action to correct the fault. This recovery action is again a control which might fail, and diagnosis should
give as answer: why, and so on. This type of cooperation implements the task sharing operation. The
interwoven play between control and diagnosis can be seen on FIGURE 1.

TABLE I - Examples For Hypotheses.

Object Attribute Method

The particle beam is lost
Some measurement

procedures (including data
acquisitions)

A crate controller is in bypass A rule set or/and test
program to verify it

TABLE II - Symptoms And Faults Seen As Hypotheses.

Symptom Hypothesis Fault

Object: a magnet an electronic modulea microprocessor in
that module

Attribute: is uncontrollable is faulty has a corrupted
software table



FIGURE 1. - Control And Diagnosis

Table III shows how the different control tasks are represented as hypotheses. The generalized
hypotheses integrate the different activities in accelerator control. Any agent can create such hypotheses,
and the hypotheses will be treated by those agents which have the capability to execute a verification
method of these hypotheses. In this way the cooperative problem solving can be viewed as problem solv-
ing in a tree of these generalized hypotheses, where the hypotheses are evaluated by different agents,
always by agents, who have the best knowledge base and capabilities for that. The hypotheses can be dis-
tributed to the appropriate agent by the ARCHON Layer. With that unified view for an hypothesis, coop-
eration is reduced to the standard operation of exchanging hypotheses for all kinds of control and
diagnostic tasks.

Handling Of Infinite Cycles

In the scenarios of control/recovery and diagnosis agents, repetitive mutual calls are possible and
these calls may end up in infinite loops or even recursive calls of infinite depth. It may occur that the
request from one agent to another agent may generate another request to the other agent which may regen-
erate the first request and these cycles are infinitely repeated.

In a loop, we have repeated calls from a diagnosis agent to a recovery agent (SETUP), but if the
recovery is successful, the whole system is all right immediately, i.e it recovers immediately from the first,
the original problem. In recursion any recovery is related just to the last diagnosed problem. This latest
diagnosis can now therefore try the corresponding remedy proposed. Thus we have to work back through
the different levels of depth to the moment where the original recovery works. This need not, however, to
be the case: it is possible to think of a diagnosis at any level which has several possibilities for a recovery,
and it would now try an alternative. This backtracking in a tree of recovery possibilities complicates the
interaction between control and diagnosis agents even more.

The detection of an infinite loop or recursion is difficult, because an agent cannot reliably establish
from its local information if the other agent’s action is a response to a message sent to it, or if there is
another reason. Therefore it cannot detect alone the presence of infinite cycles with certainty. Since infi-
nite cycles must be avoided, they have to be detected and stopped with the help of a joint agreement of a
group of agents. A seemingly easy way to stop the infinite cycle would be that if an agent detects that it

TABLE III - The Generalization Of Hypotheses.

Object Attribute Method

CONTROL in
general:

Element to control
(to set)

Control value (Set
point value) Equipment access

RECOVERY Faulty element Fault Repair and recovery
action

DIAGNOSIS Faulty element Suspected fault Verification methods

MONITORING Element that can go
wrong Possible fault Checks (if it has

really happened)

CONTROL
DIAGNOSIS
(Monitoring is just
anticipated diagnosis)

If problems occur, then

suggested RECOVERY/REPAIR



repeatedly executes the same action, it stops the repeated action. However this may not be appropriate in
the case of a database type of agent for example, which has to answer to similar requests repeatedly, and
these requests may not be part of an infinite cycle. An infinite cycle detection protocol is needed to stop
such a cycle. Such a protocol must be activated when one of the agents suspects that an infinite cycle has
been entered, i.e. when it sends out several requests and/or data of the same type, receives several requests
and/or data of the same type and there is a causal relation between the incoming and outgoing request and/
or data.

An infinite cycle detection protocol could work basically in the following way: If agent A0 suspects
that a request related to a message X0 sent to agent A1 ends in an infinite cycle, it sends a message “Agent
A0 suspects an infinite cycle related to request X0” to agent A1. If agent A1 receives this message and
agent A1 also suspects an infinite cycle, agent A1 finds out which messages are generated as a conse-
quence of X0. Let us assume that these messages are X10, X11, etc. and they are sent to agent A10, A11,
etc., respectively. Agent A1 then sends a message to each of agents A1i with the content: “Agent A0 and
A1 suspect an infinite cycle related to request X0 and X1i”. These messages are propagated by the agents
in the similar way as A1 has done it. If in the end one of these messages gets back to one of the agents that
has sent out such a message, there is a loop of agents where each agent suspects an infinite cycle and it
indicates that there is an infinite cycle. Now the agents can stop this cycle.

The basic infinite cycle detection algorithm described above can be included in the concept of the
generalized hypotheses. The generalized hypotheses can contain, as attributes, references to the requests
and data exchanged in cooperation and the causal actions of the agents is represented by the creation of
descendent hypotheses. If one keeps track of the creation dependencies of hypotheses, the information
that is needed in the above infinite cycle detection protocol is immediately included in the generalized
hypotheses. Each hypothesis should thus contain references to its direct and indirect ancestors. This was
already included into the hypotheses used in the ARCHON test-bed scenarios. If an agent sees that a chain
of descendent hypotheses returns to the agent several times, it can detect the infinite cycle.

5. SUMMARY

This paper has presented examples of applying the methods and results of DAI to an industrial con-
trols environment, in particular in the accelerator field, and it has demonstrated the validity of several DAI
concepts and techniques. These investigations are among the first experiences in creating operational DAI
systems by transforming existing intelligent systems of a real industrial environment into members of a
multi-agent community.

The generalization of the fault hypothesis concept has two major advantages: firstly, a unified view
of control, diagnosis and recovery, which leads to an easy mapping of different tasks in accelerator control
to cooperating agents, and secondly a straightforward method of transforming autonomous intelligent
systems into a cooperating multi-agent system by exchanging hypotheses. Although some translation
between the internal representation of the intelligent systems and the hypothesis representation may be
needed, hypothesis exchange is a simple way to exchange knowledge in a multi-agent system.

These ideas have been illustrated by several cooperation scenarios and a suggestion to avoid the
problem of infinite cycles of mutual agent calls and an example of relating knowledge exchange between
agents to machine learning. The development of new intelligent systems related to timing and alarm infor-
mation handling as well as their transformation into a multi-agent community are under study.
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