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“’Failure is not an option’ is a sentence originated during the discussions to prepare a film
about the space program from Sputnik through the moon missions. During an interview to
Jerry Bostick, NASA Flight Controller, the writers asked ’Weren’t there times when everybody,
or at least a few people, just panicked?’ His answer was ’No, when bad things happened, we
just calmly laid out all the options, and failure was not one of them. We never panicked, and we
never gave up on finding a solution.’”
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Departament d’Enginyeria de Sistemes, Automàtica i Informàtica Industrial
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Doctor by the UPC

FAST: a Fault Detection and Identification Software Tool

by Jordi DUATIS

The aim of this work is to improve the reliability and safety of complex critical
control systems by contributing to the systematic application of fault diagnosis. In
order to ease the utilization of fault detection and isolation (FDI) tools in the industry,
a systematic approach is required to allow the process engineers to analyze a system
from this perspective. In this way, it should be possible to analyze this system to find
if it provides the required fault diagnosis and redundancy according to the process
criticality. In addition, it should be possible to evaluate what-if scenarios by slightly
modifying the process (f.i. adding sensors or changing their placement) and evaluating
the impact in terms of the fault diagnosis and redundancy possibilities.

Hence, this work proposes an approach to analyze a process from the FDI perspec-
tive and for this purpose provides the tool FAST which covers from the analysis and
design phase until the final FDI supervisor implementation in a real process. To syn-
thesize the process information, a very simple format has been defined based on XML.
This format provides the needed information to systematically perform the Structural
Analysis of that process. Any process can be analyzed, the only restriction is that the
models of the process components need to be available in the FAST tool. The processes
are described in FAST in terms of process variables, components and relations and the
tool performs the structural analysis of the process obtaining: (i) the structural matrix,
(ii) the perfect matching, (iii) the analytical redundancy relations (if any) and (iv) the
fault signature matrix.

To aid in the analysis process, FAST can operate stand alone in simulation mode
allowing the process engineer to evaluate the faults, its detectability and implement
changes in the process components and topology to improve the diagnosis and re-
dundancy capabilities. On the other hand, FAST can operate on-line connected to the
process plant through an OPC interface. The OPC interface enables the possibility to
connect to almost any process which features a SCADA system for supervisory control.
When running in on-line mode, the process is monitored by a software agent known as
the Supervisor Agent.

FAST has also the capability of implementing distributed FDI using its multi-agent
architecture. The tool is able to partition complex industrial processes into subsystems,
identify which process variables need to be shared by each subsystem and instantiate
a Supervision Agent for each of the partitioned subsystems. The Supervision Agents
once instantiated will start diagnosing their local components and handle the requests
to provide the variable values which FAST has identified as shared with other agents
to support the distributed FDI process.

vii

HTTP://WWW.UPC.EDU
http://esaii.upc.edu
http://esaii.upc.edu
http://esaii.upc.edu




UNIVERSITAT POLITÈCNICA DE CATALUNYA

Abstract
ESAII

Departament d’Enginyeria de Sistemes, Automàtica i Informàtica Industrial
Programa: Control, Visió, Robòtica (CVR)

Doctor by the UPC

FAST: a Fault Detection and Identification Software Tool

by Jordi DUATIS

Per tal de facilitar la utilització d’eines per la detecció i identificació de fallades (FDI)
en la indústria, es requereix un enfocament sistemàtic per permetre als enginyers de
processos analitzar un sistema des d’aquesta perspectiva. D’aquesta forma, hauria de
ser possible analitzar aquest sistema per determinar si proporciona el diagnosi de fal-
lades i la redundància d’acord amb la seva criticitat. A més, hauria de ser possible
avaluar escenaris de casos modificant lleugerament el procés (per exemple afegint sen-
sors o canviant la seva localització) i avaluant l’impacte en quant a les possibilitats de
diagnosi de fallades i redundància.

Per tant, aquest projecte proposa un enfocament per analitzar un procés des de la
perspectiva FDI i per tal d’implementar-ho proporciona l’eina FAST la qual cobreix
des de la fase d’anàlisi i disseny fins a la implementació final d’un supervisor FDI en
un procés real. Per sintetitzar la informació del procés s’ha definit un format simple
basat en XML. Aquest format proporciona la informació necessària per realitzar de
forma sistemàtica l’Anàlisi Estructural del procés. Qualsevol procés pot ser analitzat,
només hi ha la restricció de que els models dels components han d’estar disponibles en
l’eina FAST. Els processos es descriuen en termes de variables de procés, components
i relacions i l’eina realitza l’anàlisi estructural obtenint: (i) la matriu estructural, (ii) el
Perfect Matching, (iii) les relacions de redundància analítica, si n’hi ha, i (iv) la matriu
signatura de fallades.

Per ajudar durant el procés d’anàlisi, FAST pot operar aïlladament en mode de
simulació permetent a l’enginyer de procés avaluar fallades, la seva detectabilitat i im-
plementar canvis en els components del procés i la topologia per tal de millorar les
capacitats de diagnosi i redundància. Per altra banda, FAST pot operar en línia con-
nectat al procés de la planta per mitjà d’una interfície OPC. La interfície OPC permet
la possibilitat de connectar gairebé a qualsevol procés que inclogui un sistema SCADA
per la seva supervisió. Quan funciona en mode en línia, el procés està monitoritzat per
un agent software anomenat l’Agent Supervisor.

Addicionalment, FAST té la capacitat d’implementar FDI de forma distribuïda util-
itzant la seva arquitectura multi-agent. L’eina permet dividir sistemes industrials com-
plexes en subsistemes, identificar quines variables de procés han de ser compartides
per cada subsistema i generar una instància d’Agent Supervisor per cadascun dels sub-
sistemes identificats. Els Agents Supervisor un cop activats, començaran diagnosticant
els components locals i despatxant les peticions de valors per les variables que FAST
ha identificat com compartides amb altres agents, per tal d’implementar el procés FDI
de forma distribuïda.
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Definitions

Fault A fault is any not permitted deviation of at least one charac-
teristic property (feature) of the system from the acceptable,
usual, standard conditions.

Failure A failure is a permanent interruption of a system’s ability
to perform a required function under specified operating
conditions.

Malfunction A malfunction is an intermittent irregularity in the fulfill-
ment of a system’s desired function.

Reliability Ability of a system to perform a required function under
stated conditions, within a given scope, during a given pe-
riod of time.

Safety Ability of a system not to cause danger to persons or equip-
ment or the environment.

Availability Probability that a system or equipment will operate satis-
factorily and effectively at any period of time.

Dependability A form of availability that has the property of always be-
ing available when required (and not at any time). It is the
degree to which a system is operable and capable of per-
forming its required function at any randomly chosen time
during its specific operating time, provided that the system
is available at the start of the period.

Integrity Safety integrity is the probability of a safety-related system
satisfactorily performing the required safety functions un-
der all the stated conditions within a period of time.

1

1Definitions as used in the text and reproduced from [Isermann, 2006]
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Chapter 1

Introduction

1.1 Motivation

The European Space Agency has been working since more than 25 years in a concept
of a bio-regenerative Life Support System. The project known as MELiSSA (Micro-
Ecological Life Support System Alternative) has as objective to develop the research
in artificial ecosystems and recycling technologies and in the last term to reach a bio-
regenerative life support system for long space journeys and for permanent planetary
bases [Binot, Tamponnet, and Lasseur, 1994]. The project is based on reproducing the
ecosystem which can be found in a lake, from the lower deep-water layers, with few
light and a lot of organic compounds up to the upper layers with a lot of light and
oxygen with the objective of recycling human wastes in fresh water, oxygen and food.
The layers are reproduced separately in bio-reactors, with strict control of the environ-
mental conditions (temperature, pressure, pH, etc.). An experimental plant in form
of a pilot plant is installed in the Chemical Engineering Department of the Universitat
Autònoma de Barcelona, UAB. The MELiSSA Pilot Plant - Claude Chipaux Laboratory
is composed of a set of bio-reactors with specific microorganism cultures which in a
controlled and isolated form reproduce the bio-degradation processes emulating the
lake ecosystem. The objective of the pilot plant is to characterize the bio-reactors and
implement experiments to validate the models and the associated basic research.

The first contribution of the author was in 2002 as the responsible to design a new
Control System Architecture for the MELiSSA Pilot Plant with the objective of covering
current and future requirements, scalable, with a high reliability and availability and
easy to maintain. The implementation of this project followed the classical approach,
studying the process requirements, the currently available technologies and applying
mature standards. However, during the implementation it was clear that the process
was very complex and that even at pilot plant scale, a minor fault could cause that
an experiment which lasted months becomes useless. The current implementation of
fault detection is the traditional signal analysis based on thresholds, generating alarms
which can be monitored in the SCADA system. Although this method is useful to avoid
catastrophic faults, it is clear that faults are detected too late and the recovery process
takes too long. For instance the loss of the biomass of a bio-reactor can take months to
recover.

The MELiSSA project is exciting in the sense that implies the possibility of jumping
to the stars with lack of dependence of supplies from Earth and at the same time con-
tributes to the evolution of the recycling technologies which can be used on-ground (a
Water Recovery Unit experiment is being used in the Concordia Antarctic base [Lasseur
et al., 2004]) . However, it is clear that a life support system is a critical part of the mis-
sion with direct dependence on the crew safety and needs to operate transparently and

1
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continuously. Therefore, fault diagnosis techniques will be even more relevant for a
real space implementation.

Nevertheless, after starting the development of this work the author quickly real-
ized that the application and benefits are widely applicable. From industrial plants to
complex systems, any process with a certain level of complexity involving sensors and
actuators and control loops, should apply a systematic fault diagnosis methodology as
part of the engineering design process. In the space sector, any system is critical, in
the sense of the lack of repair possibilities and the high development and operation
costs. In space projects, the fault analysis is an essential part of the design process,
trying to identify each fault possibility for each single component and the effects of
fault propagation. However, it is clear that it is impossible to identify all potential
faults and implement a totally fault tolerant system just covering the faults identified
at design level, examples are widely known even in this mission critical sector. There-
fore fault diagnosis during system operation (i.e. Active Fault Diagnosis) should be
also considered systematically and incorporated into all on-board FDIR Fault Detection,
Identification and Recovery subsystems.

There is a long way in developing fault diagnosis research and there are several
methods already proposed. However, the implementation in the industry is not sys-
tematic and each sector has its own recipes. The research in fault diagnosis methods
is quite transversal, in the sense that can be applied to any technology or discipline.
The well-known FMEA Failure Modes and Effects Analysis technique offers a system-
atic approach to design systems with a high level of reliability. For critical processes,
the fault detection and fault tolerance approach is via implementing hardware redun-
dancy, duplicating sensors, actuators and even complete subsystems with the objective
of avoiding that single faults cause a total mission loss or a process emergency stop.
However, the advantage that model-based fault diagnosis and the analytical redun-
dancy can provide to the on-line fault diagnosis should be also considered, specially
for industrial processes where the cost of having hardware redundancy is difficult to
assume. But even for the critical systems with a high degree of hardware redundancy,
a systematic approach for active fault detection and isolation during the system opera-
tion is of primary importance since it provides valuable information which can be used
to generate a more reliable fault diagnosis and therefore better possibilities of imple-
menting effective active fault tolerance.

1.2 Previous Work

The Structural Analysis applied to FDI was proposed by [Declerck and Staroswiecki,
1991], [Cassar, Staroswiecki, and Declerck, 1994] and [Staroswiecki, Attouche, and As-
sas, 1999], it has been refined and evolved in several posterior works [Izadi-Zamanabadi,
1999] and it is also extensively described in [Blanke et al., 2006].

The objective of having a tool to aid the FDI process design has been approached by
other research groups and as a result there are two relatively known tools which have
been developed; the SATOOL [Blanke and Lorentzen, 2006] and the Bond Graphs tool
SYMBOLS-2000 [Bouamama et al., 2005]. SATOOL was able to implement up to the
perfect matching and the parity relations by symbolic transformations. The tool is im-
plemented in MATLAB. The Bond Graphs tool is able to define a process by graphically
connecting component models, derive the bond-graph representation and simulate the
process.
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Distributed FDI has been also subject of research in various projects. In [Llanos
Rodríguez, 2008], the time constraints are studied in detail and in [Ferrari, 2008] de-
centralized and distributed fault diagnosis for discrete and continuous time systems
are analyzed. In [Belkacem and Bouamama, 2015], it was presented a possible iden-
tification of subsystem candidates for a distributed FDI implementation based on the
Fault Signature Matrix, in a similar way as the proposed in this work. A decentralised
FDI implementation for water management network is also discussed in [Puig and
Ocampo-Martínez, 2015]. Distributed FDI is also a matter of research in swarm robotics
and other coordinated organizations of autonomous systems.

A work was proposed involving software agents in the FDI process as part of the
research project MAGIC [Köppen-seliger, Ding, and Frank, 2002] and [Ploix, Gentil,
and Lesecq, 2003]. The work proposed an architecture defining a hierarchical structure
distributed in several layers each one implementing a specific function. A complete
architecture for active fault diagnosis applied to bio-regenerative life-support systems
was proposed in [Duatis et al., 2008].

1.3 Objectives and Contributions

The objectives in this thesis are twofold: From one side to propose a systematic ap-
proach to active fault diagnosis analysis of a system which could be easily applied to
any process and which could be used to improve the system design from the FDI per-
spective. On the other hand, to provide an architecture suitable to implement on-line
distributed fault diagnosis. In this sense, the implementation of on-line fault diagnosis
through software agents becomes a natural approach after analyzing the capabilities of
this relatively new software engineering paradigm.

The first contribution of this work is the implementation of a tool to perform the
Structural Analysis of a process in a simple and systematic way. The Structural Anal-
ysis is a powerful tool to obtain the active fault diagnosis capabilities of a process.
From a preliminary design, just by providing the process components information, it
is possible to analyze which are the fault detection and isolation inherent possibilities
and identify the improvements to the process increasing this capability. The structural
analysis implemented in FAST is detailed in Chapter 4. The tool also allows the process
engineer to simulate the fault injection into the process and evaluate the effects.

The second contribution is the introduction of the software agents in the implemen-
tation of the on-line fault diagnosis. In addition, with special relevance for industrial
processes, an OPC interface has been incorporated to these software components en-
abling their direct interaction with a real process and obtain in real-time the measured
variable values and feed the process with diagnostic results. The OPC (OLE for Process
Control) is a mature technology used for SCADA systems to access to the supervision
information of industrial processes. This standard is managed by the OPC Foundation
1. The FAST tool implements the Supervisor Agent responsible of the on-line fault di-
agnosis process. This agent is able, via the OPC interface, to instantiate a Knowledge
Base with the process information, updated it in real-time and provide feedback to the
process and/or to the SCADA supervision system. The architecture of the Supervisor
Agent is explained in Section 3.4.

The third contribution is the possibility of implementing distributed FDI by using
the software agents taking the advantage of their capability to exchange information

1More information in OPC Foundation, http://opcfoundation.org (visited 07/10/2015).
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and be self-organized in a network as a multi-agent system. FAST provides the func-
tionality of analyzing a process and detecting possible subsystem candidates to be su-
pervised in a distributed way based on the concept of components coupling. Each sub-
system will provide its local information to a local Supervisor Agent, which will use
this information to implement the local diagnosis process. However, the Supervisor
Agent working in cooperation with the neighbor agents will be also able to consolidate
information from other connected subsystems and extend the fault detection capabili-
ties by using this information. The distributed FDI is illustrated in Chapter 5.

1.4 Structure of the Thesis

In this Chapter 1, the author presents the motivations which resulted in the embarking
into this project, a brief indication of the previous research on the matter, the objec-
tives and contributions of this work and the organization followed to expose all the
themes. In Chapter 2, the theory in which all the development of this work is founded
is summarized. This project is based on the previous research in Fault Diagnosis and
Identification discipline, specially on model based fault diagnosis and the structural
analysis method. On the other hand, the software agents paradigm is visited in order
to offer a sufficient background to understand the proposed architecture to implement
the real-time and distributed FDI. Chapter 3 details the FAST tool architecture. This
tool is composed of two different components, the FAST Simulator and the FAST Super-
visor Agent. The simulation component is the consequence of the research in a method
to facilitate the FDI analysis of a process in a systematic way and the Supervisor Agent
is the natural implementation after analyzing the requirements to implement on-line
real time fault diagnosis in a distributed organization. The Chapter 4 is devoted to the
detailed exposition of the Structural Analysis implementation in the FAST tool. The al-
gorithms used are explained and an application example is provided. The distributed
FDI implementation is discussed in the Chapter 5, where the algorithm to determine
subsystem candidates to be supervised in a distributed way is exposed. In this chapter,
the implementation details are explained and an application example of a water dis-
tribution system is used to illustrate this implementation. Finally, in Chapter 6 some
conclusions are presented and a list of recommendations for future work are discussed.
The appendixes are the precursors of a user manual to ease the utilization of FAST, with
tool user instructions indicated in the Appendix A and how to add additional compo-
nent models to the tool explained in the Appendix B.



Chapter 2

Fundamentals and State of the Art

2.1 Fault Diagnosis and Identification (FDI)

2.1.1 Introduction to FDI

The FDI research has been developed to increase the reliability of critical processes by
providing systematic techniques to design fault diagnosis systems and as a preliminary
mandatory step for fault tolerant control implementation. Furthermore, FDI is able to
provide a valuable assistance to plant operators when there is any fault in the system by
identifying the component causing the fault and improving the maintainability of the
system. With the proliferation of the automatic control and its wide implementation
in many critical services nowadays, the continuous operation is a compulsory require-
ment implying human safety and material risks. Eventually the objective of FDI is to
detect any fault in the process and identify uniquely which is the process component
which is causing the fault in a systematic way and in a limited (short) time. Therefore,
we can identify three phases in the FDI process:

• Fault detection: identification of the existence of a fault and the time of its occur-
rence.

• Fault isolation: identification of the component originating the fault.

• Fault identification and estimation: identification of the fault mode and estima-
tion of its magnitude.

There are many types of faults which can occur in an automated process, just to
mention a few:

• The electrical fault of a sensor, leading to provide a wrong value or no value at
all.

• The leakage of a valve, a tank or a pipe.

• The clogging of some filter, valve or pipe.

• The data connection failure with some control devices

• A change in the environmental conditions of the process which causes a perturba-
tion of the process. For instance, the stop of the pressurized air supply to actuate
pneumatic valves or the variation of the environmental humidity or temperature
to an uncontrollable levels.

• A device which by its use has degraded its performance and is not reaching the
adequate level to maintain the objectives of the process.

5
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• A wrong operation of some device by a plant operator which causes some process
to deviate its nominal performance.

• A design problem not detected which causes some continuous or intermittent
deviation of the nominal behavior of the plant. For instance, a bug in the PLC
control algorithms, or the bad dimensioning of an installed device.

FDI is also the first step to apply fault tolerant control, as to design a fault tolerant
system first it is needed to study the possible faults, its detection capability, and how
to accommodate them in the control of the process.

2.1.2 Fault Detection in Traditional Control Systems

In traditional control systems, the faults are detected using signal analysis methods
such as limit-checking and/or spectral signal analysis [Isermann, 2006]. Isermann de-
fines a Fault as "any not permitted deviation of at least one system parameter or prop-
erty which deviates it from an acceptable situation".

A traditional control system can be represented by the Figure 2.1.

FIGURE 2.1: Traditional control system architecture

In direct interaction with the plant, we have the sensors and the actuators. The
sensors will read plant outputs which will feed the controller and provide information
about the plant process behavior. Actuators will provide means to influence the plant
process and control its behavior, providing the optimal conditions for the process to
achieve its objectives.

The controller will acquire the data provided by the sensors and will process it via
the control algorithms used to bring the process variables to the defined set-points.

Usually, there is a Data Management System which archives the information pro-
vided by the sensors and by the controller. With these data, it will be possible generate
trend graphs and check the behavior of the system during specific time intervals.
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The Commanding will be the part of the Control System to implement maintenance
and troubleshooting. It can be used to operate manually some actuators, change the
mode of operation of the controller (from automatic to manual, or to OFF, for instance).

The Supervision system will be used to monitor the process behavior in real-time.
The information provided by the controller is displayed graphically in a computer soft-
ware and any deviation of a process variable is displayed as an alarm. The Supervision
system can incorporate the Alarm Management system, which will contain the accept-
able limits of the process variables when the system is working in nominal mode. If
any process variable goes beyond these limits for a certain time, the Alarm Manage-
ment system will generate an alarm. This alarm is archived and normally represented
in a graphical way in the Supervision software.

The Alarm Management system also provides information to perform maintenance
interventions as some alarms can be caused by components which are not working
properly or have degraded its function to a level to which is affecting the process.

Traditionally, the supervision of the systems is performed by humans, which for
critical processes (such as a nuclear reactor) requires continuous monitoring 24 hours a
day, every day. The supervision operators monitor visually that the plant processes are
performed according to the expectations and no critical alarms are generated. When a
critical alarm is detected by a human supervisor, he/she will apply a known procedure,
by following a maintenance manual or by advise of an expert. The procedure can
mitigate the problem detected by the alarm changing the operation mode of the process
or a maintenance intervention interrupting part of the process to change or repair some
components.

FIGURE 2.2: MELiSSA Control System Architecture

2.1.3 FDI Detection Methods

Nowadays it is possible to identify three groups of detection methods:

• Methods based on the signal analysis.
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• Methods based on models.

• Methods based on the process knowledge

In addition, the different FDI techniques can also be classified in the detection and
diagnostic phases. The objective of the detection phase is to detect if there is a fault in
the system while the objective of the diagnostic phase is to identify the fault, classify it
and to determine the originating cause.

2.1.4 Model Based Fault Detection

The key of Model based fault detection is to obtain the measures of the inputs and out-
puts of the process, feed it into a process model and compare the real process behavior
with the model.

A process can be represented by:

ẋ(t) = g(x(t), u(t), θ)

y(t) = h(x(t), u(t), θ)
(2.1)

where:

• x ∈ <nx, u ∈ <nu and y ∈ <ny are the state space , the input and output vectors
respectively.

• g and h are the state space functions and measure respectively.

• θ is the parameters vector of dimension p.

2.1.5 Detection Based on Quantitative Models

FIGURE 2.3: Model based fault detection

In the Figure 2.3, we can identify:

• u = u0, u1, ..., uk as the measured process inputs.

• y = y0, y1, ..., yl as the measured process outputs

• ŷ = ŷ0, ŷ1, ..., ŷm as the model estimated outputs.
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The principles of the model based fault detection are based on the calculation of the
difference between the estimated outputs by the model and the measured outputs y−ŷ.
Where the model is calculated from the measurement of the inputs and the outputs of
the process.

Therefore, we define a residual as the result of the difference of the real output and
the estimated output and is formulated as:

r(t) = y(t)− ŷ(t) (2.2)

When the relation becomes more complex involving also the process inputs u(t)
and the parameters θ, it is known as analytical redundant relation (ARR) and can be
represented as ψ(t):

ψ(t) = f(y(t), u(t), θ) (2.3)

The most utilized formal methods to generate residuals by means of analytical mod-
els are:

• parity equations proposed by Gertler in [Gertler, 1991].

• observers proposed by Chen in [Chen, 1995].

• parameter estimation proposed by Isermann in [Isermann, 2005].

The most known techniques to generate analytical redundant relations are:

• parity space proposed by Chow in [Chow and Willsky, 1984].

• structural analysis proposed by Staroswiecki and Cassar in [Staroswiecki, Cassar,
and Declerck, 2000].

Note that in lack of presence of a fault, the residual evaluation will approximate to
0 while if there is some fault, the residual should be different from 0. However, this
is only in the ideal case, as the sensors noise, the plant perturbations and the errors
in the models will make not possible to detect if there is a fault in the system just
by determining if a residual is null or not. In order to be able to detect a fault, the
residuals should be insensitive to the noise, perturbations and model errors being this
the objective of designing robust residuals. The process of generating robust residuals
can be performed during the residual generation phase or during the evaluation phase.
When the robust residual design is applied during the residual generation phase, it is
known as active robustness while when the robust residual design is applied during the
residual evaluation phase it is known as passive robustness.

The passive robustness is basically to design properly the thresholds that the resid-
uals should pass to determine that there is a fault in the system. These thresholds need
to be defined to be insensitive to the noise and perturbations and taking into account
the process operational modes applying adaptive techniques. The advantage of these
techniques is that they can be adjusted to avoid the effect of uncertainty in the models.
This is achieved by adjusting the thresholds in such that when the process is working
properly no fault is reported. However, the definition of the thresholds in this way lead
to the lack of detection of faults which cause only a small perturbation in the residuals.
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The active robustness includes the uncertainty in the calculation of the residual and
tries to decouple the perturbations from them. Several techniques have been proposed
by [Gertler, 1998], [Chen and Zhang, 1991] or [Frank, 1994] among others.

This work is based on the generation of analytical redundant relations based on
the Staroswiecki proposed structural analysis [Declerck and Staroswiecki, 1991], [Cas-
sar, Staroswiecki, and Declerck, 1994], [Staroswiecki, Attouche, and Assas, 1999] and
the application of passive robustness to the evaluation of the residuals as explained in
Chapter 3.

2.1.6 Detection Based on Qualitative or Semi-qualitative Models

These techniques are used when it is not possible to obtain an accurate or complete
model of the system, or merely the process does not need such precision. In this
case, just by using qualitative models describing only the primary and substantial re-
lations and ignoring relations which are not relevant or unknown. In this case, the
relations will define system properties where instead of numerical values, are repre-
sented by a quality attribute (grows, decreases, maintains, positive, negative, etc.).
Semi-qualitative models use characterized value sets, intervals or fuzzy sets. These
models have the drawback that are imprecise and some times the knowledge of the
fault model is required prior to the detection process design, but have the advantage
that do not need the complete model of the process to implement fault detection.

2.1.7 Detection Based on Soft-computing Methods

When there is no model at all, it is still possible to implement fault detection specially
in highly non-linear processes by using soft-computing techniques, such as:

• Neural networks

• Fuzzy logic

• Genetic algorithms

• Expert systems

Some techniques combine neural networks with fuzzy logic to take the advantage
of the learning process of the neural networks and the qualitative reasoning provided
by the fuzzy logic. The advantage of these techniques is that can be applied with very
few knowledge of the model of the system, however they lack of a deterministic be-
havior and it is difficult to verify its function in all possible operation modes.

2.1.8 Fault Diagnosis

The fault diagnosis will consist of the fault isolation and identification processes. The
fault isolation is the process to determine the cause of the fault while the identifica-
tion is the process of quantifying the type, magnitude and severity of the fault. There
are mainly two approaches to the fault diagnosis although most of the concepts are
common [Puig et al., 2000]:

• the FDI approach, near to the control engineering discipline.

• the DX approach, near to the artificial intelligence techniques.
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The DX approach is based on the implementation of model based approaches using
logic reasoning techniques coming from the artificial intelligence community [Kleer,
Mackworth, and Reiter, 1992, Reiter, 1987]. DX fault diagnosis has been initially devel-
oped for combinatory logic circuits, at later extended to dynamic systems. The diagno-
sis algorithms offer a sound and complete diagnosis able to cope with multiple faults.
However, the consistency based DX algorithms are too complex to be operated on-line
with dynamic systems. Recent results show that they can be used to generate a set of
relations (possible conflicts) which can be evaluated on-line in a similar manner than
ARR in FDI [Pulido and Gonzalez, 2004].

The FDI approach is based on an existing set of residuals which can be evaluated in
real-time and generate a fault vector. This vector is compared with a fault matrix where
for each process component there is a dependency relation between the component and
a fault. Then, by comparing the fault vector with the fault matrix, it is possible for some
faults identify the component originating the fault.

2.2 The Structural Analysis

The structural analysis is a technique proposed by Staroswiecki in [Staroswiecki and
Declerck, 1989] which consists on performing an analysis of the structural properties
of the model of a process S, that is, considering process properties which are indepen-
dent of the value of the parameters. In principle, the structural model definition of a
process is independent of the nature of the relations involved (quantitative, qualitative,
equations, rules, etc.) as only takes into account the link between the relations and the
variables linked to the relation. Note that in this work we will indicate as relations
the set of model properties which describe the behavior of a component. In [Blanke
et al., 2006], the relations are named constraints. The structural analysis is based on the
generation of a bi-partite graph between the relations and the variables of the model.
These links are indeed independent of the representation of the relations and represent
a qualitative, very low level and easy to obtain model of the system behavior. Although
its simplicity, the structural model provides very valuable information such as:

• Identify such components which are (or not) monitored.

• Provide design approaches for analytical redundancy based residuals.

• Suggest alarm filtering strategies

• Identify those components whose failure can be tolerated through reconfigura-
tion.

In the case that the relations are analytical and hold a specific set of properties, it will
also be possible to obtain analytical redundancy relations which can be used to generate
a set of residuals. From these residuals, it will be possible for some faults to implement
the fault detection, isolation and identification phases. The component behavior will be
described by a set of relations. Therefore, by establishing a link between the relations
of a component participating in a residual and the residual, it will be possible to match
non-zero residuals with faulty components.

2.2.1 The Structural Model

The structural model of a process S is generated as a bi-partite graph representing
the links between a set of relations and a set of variables. The behavior of the system
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can be described by the pair (R,V) being R = {r1, r2, · · · , rn} the set or relations and
V = {v1, v2, · · · , vm} the set of variables and parameters. The set of relations can be of
different forms (e.g. algebraic, differential equations, rules, etc.).

The relations must hold two properties in order to be considered for the analysis of
the structural model:

• The relations ri ∈ R are compatible. Meaning that the relation really describes
the behavior of a component, hold a solution and are not contradictory.

• The relations ri ∈ R are independent. That is, there is not the case where there
is a set of relations which solutions are included into another set of relations, that
is, being ϕ(R1) the solutions set corresponding to the relations in R1 and ϕ(R2)
another set of solutions corresponding to the relations in R2, it is never the case
that ϕ(R1) ⊆ ϕ(R2).

Definition 1 The bi-partite graph is formed by considering all the edges linking a relation with
a process variable, that is, being A the set of edges relating the set of variables V to the set of
relationsR: the edge (ri, vj) ∈ A if the variable vj appears in the relation ri.

The bi-partite graph is formed by representing as bars the relations ri and in circles
the process variables vj .

The example of the single tank system will be used along the Section to illustrate
the structure analysis. This system is composed of the following set of relations repre-
senting a continuous time, continuous variable model:

• Tank r1 : ḣ = qi(t)− qo(t)

• Input valve r2 : qi(t) = cvu(t)

• Output pipe r3 : qo(t) = k
√
h(t)

• Level sensor r4 : hm(t) = h(t) in the ideal case.

• Controller r5 :

u(t) =

{
1 if hm(t) ≤ h0 − r,
0 if hm(t) ≥ h0 + r,

We can add an additional relation by the fact that there is a derivative of the level
h(t):

Derivative r6 : ḣ = dh(t)
dt

The bi-partite graph of the single tank system is represented in the Figure 2.5.
Another representation in a common bi-partite graph is indicated in Figure 2.6.

2.2.2 The Structural Matrix

Applying the generic graph theory, the incidence matrix is generated from a bi-partite
graph following a well-known procedure [Blanke et al., 2006]. Note that the bi-partite
graph is unoriented, and therefore the following definition can be applied:

Definition 2 The incidence matrix (or unoriented incidence matrix) of G is a n×m matrix
(gij), where n and m are the numbers of vertex and edges respectively, such that gij = 1 if the
vertex vi and edge xj are incident and 0 otherwise.
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FIGURE 2.4: Single process tank example

FIGURE 2.5: Bi-partite graph of the single tank system example
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FIGURE 2.6: Common representation of a bi-partite graph of the single
tank system example

For the example system of the single tank, the incidence matrix is provided in Table
2.1. It is simple to recognize that the matrix is formed by placing a "1" where there is
an edge in the bi-partite graph between a process variable and a relation and a 0 when
the process variable has not an edge with this relation.

TABLE 2.1: Incidence matrix of the single tank example

Relations u qi qo hm h ḣ

〈r1〉 0 1 1 0 0 1
〈r2〉 1 1 0 0 0 0
〈r3〉 0 0 1 0 1 0
〈r4〉 0 0 0 1 1 0
〈r5〉 1 0 0 1 0 0
〈r6〉 0 0 0 0 1 1

It is also important to note that in a system the set process variables Vl can be split
into known and unknown variables. Known variables will be the variables resulting
from a sensor measurement or values which are already known by the controller, such
as a control algorithm output. On the other hand, unknown variables will be process
variables which are not measured or parameters which are not known. If the set of
measured variables is identified as Vm and the set of unknown variables as Vu:

Vl = Vm ∪ Vu (2.4)

For the single tank example the known or measured variables are Vm = {u, hm}
and the unknown are Vu = {qi, qo, ḣ}.
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It will be of interest to group the variables in the incidence matrix in a way that in
one side are the known variables and in the other the unknown variables. As explained
in the following Section, it is a previous step in order to identify the relations which can
be used to calculate the unknown variables. This incidence matrix is known in FDI as
the Structural Matrix.

Definition 3 The Structural Matrix or SM is defined as a matrix which rows correspond to
the model relations and the columns to the process variables, sorted by known and unknown
variables. Each of the matrix elements mij is set to "1" if and only if the process variable of that
column j contained in the relation of the row i and is set to "0" otherwise.

For the single tank example, the Structural Matrix is presented in Table 2.2.

TABLE 2.2: Structural Matrix of the single tank example

Relations u hm qi qo h ḣ

〈r1〉 0 0 1 1 0 1
〈r2〉 1 0 1 0 0 0
〈r3〉 0 0 0 1 1 0
〈r4〉 0 1 0 0 1 0
〈r5〉 1 1 0 0 0 0
〈r6〉 0 0 0 0 1 1

2.2.3 The Perfect Matching

From the Structural Matrix it is possible to determine the relations which can be used
to calculate the unknown variables and which relations are not essential for that. This
process needs to take into account the causality of the relations with respect to the
process variables contained. Therefore, considering the causality, the bi-partite graph
will be oriented, that is, some process variables will participate in a relation but a subset
of them will be also calculable from this relation. That is, the relation ri is invertible
with respect to the contained variable vj .

This process of assigning unknown variables to relations which can be used to cal-
culate it is called matching.

Definition 4 A process model M is composed of the set of process variables V and the set
of relations R, and where the process variables are split into the set of known variables Vm
and unknown variables Vu, with V = Vm ∪ Vu, and being A the set of edges relating the
process variables to the relations in the oriented bi-partite graph. The set of edges Apm will be
the subset of A (Apm ⊂ A) which relate uniquely an unknown variable with a relation. The
Perfect Matching is reached when the number of edges in Apm is the same than the number of
unknown variables, #Apm = #Vu.

Note that the Perfect Matching is not unique and several combinations are possible.
Later on, it will be illustrated how the selection of the relations which are part of the
Perfect Matching will determine the fault diagnosis possibilities. Note also that there
are combinations which break the causality property. If instead of selecting the variable
ḣ in the perfect matching from Table 2.3, we select the process variable h. This will
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TABLE 2.3: Perfect Matching of the single tank example

Relations u hm qi qo h ḣ

〈r1〉 0 0 1 1 0 1
〈r2〉 1 0 1© 0 0 0
〈r3〉 0 0 0 1© 1 0
〈r4〉 0 1 0 0 1© 0
〈r5〉 1 1 0 0 0 0
〈r6〉 0 0 0 0 1 1©

imply that the value of h should be obtained from ḣ which is not possible in all cases
by solving the integration rule:

x1(t) = x1(0) +

∫
x2(σ)dσ (2.5)

where x1(t) cannot be determined if x1(0) is unknown. That is, the initial value x1(0)
is not known in the general case if a real diagnostic is to be implemented and cannot
be obtained as a measured variable.

An important deduction from the Perfect Matching is that the relations not partici-
pating can be identified as Redundant Relations while the set of relations participating
in the Perfect Matching are known as Elementary Relations. The existence of Redundant
Relations means that the system is over-constrained, that is, there are more relations
than unknown variables and therefore there is analytical redundancy in the system.
Up to this point, the relations could be of any type, although the causality property in
most of the cases implies that quantitative relations are involved. However, the key
of the diagnostic process will be to use a model with analytical relations which can
be used to really compute the unknown variables and use the rest of the relations to
generate the Analytical Redundant Relations by substituting in these relations the un-
known variables by the relations which are able to compute it from known variables.
These Analytical Redundant Relations will be used in the diagnostic of faults by generat-
ing residual expressions which evaluate 0 if the system is working nominally and will
evaluate different from 0 if there is any fault.

In the single-tank example, if we observe the Table 2.3, it is possible to identify
two relations which are not participating in the Perfect Matching: r1 and r5. It is easily
deduced that r5 is not providing relevant information, as in the relation only known
variables are participating. However, from r1 it is possible to substitute all unknown
variables by the corresponding elementary relations from the Perfect Matching:

• qi : r2 → qi(t) = cv · u(t)

• qo : r3 → qo(t) = k
√
h(t), h : r4 → h = hm

• ḣ : r6 → ḣ = dh(t)
dt , h : r4 → h = hm

which can be represented as:

r1(r6(r4(hm)), r2(u), r3(r4(hm))) (2.6)
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Therefore, by substituting in r1 leads to:

dh

dt
= cv · u(t)− k

√
h(t) (2.7)

It is easy to deduce that by moving all terms to the right side of the equality, we
have an equation which holds 0 if the relations evaluate the nominal behavior of the
process and non-zero if there is any anomaly which is introducing a perturbation in the
process. This equation is known as a residual z:

z → cv · u(t)− k
√
hm(t)− dhm

dt
= 0 (2.8)

Residuals are evaluated against a threshold to determine if the deviation is because
of a fault. The model uncertainties, noise and perturbations will cause the residuals to
never evaluate exactly 0. Several techniques have been proposed to provide adaptive
methods to calculate the thresholds as it is desired that thresholds are defined in a
generic way and not depending on each implementation.

Whatever technique is used to evaluate the residual, eventually in the ideal case in
a process with no faults the complete set of residuals will be evaluated as 0 while in a
presence of a fault some residuals will evaluate different from 0. These residuals are
compared with a threshold providing the result value 1 if the threshold is passed and 0
otherwise. These results grouped in a vector define the fault vector. Formally if τ(zi) is
the threshold evaluation function of the residual zi, the fault vector will be the vector
f = {τz1, · · · , τzn}.

This vector is the source for the fault diagnosis using the structural analysis. The
vector will be evaluated in real-time and a component in the vector different from "0"
will indicate the presence of a fault in the system.

2.2.4 The Fault Signature Matrix

In the previous Section, we have defined how to obtain a set of residuals from the
Structural Matrix by following the process to determine the Perfect Matching. As a result
of this process, a set of relations are identified as redundant relations and another set
as elementary relations. The set of redundant relations can be transformed in a set of
residuals which evaluate 0 if there are no faults present in the system. On the other
hand, it is important to remark that the relations can be always associated to one or
more components in the system. Therefore, the set C of components is introduced in the
model and it holds that a bi-partite graph can be also obtained between the components
and the relations. This is trivial, since the relations have been obtained from the process
model and specifically from the components forming the process.

Definition 5 The Fault Signature Matrix or F is a matrix where the rows are the residuals
Z={z1, · · · , zn} and the columns are the process components C={c1, · · · , cn}, where we set the
value "1" to the position fij if the component cj is sensitive to the residual zi and "0" otherwise.
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Note that the sensitivity is determined in a way that if any change in a process
variable of any of the relations belonging to a component can affect the calculation
of the residual, we conclude that a fault in this component will be detected with this
residual. In this sense, in the single tank example, the controller output u(t) is also
influencing the calculation of the residual r1 and therefore a fault on the controller will
also imply a perturbation which will result in evaluating the residual as non-zero.

The Fault Signature Matrix of the single-tank example is the most simple, as it has
only one row and five columns corresponding to the components set C = {tank, valve,
output pipe, level sensor, controller} and it has the value "1" in all columns, as all rela-
tions are used to calculate the residual.

From this definition of the Fault Signature Matrix, it can be deduced that in the
Structural Analysis, faults correspond to deviations in the evaluation of component
relations. Therefore, the only detectable faults will be faults which indeed cause a de-
viation in the evaluation of any of the component relations. It is possible to identify
two properties from the Fault Signature Matrix:

• A relation deviation is structurally detectable if and only if it causes a non-zero
value in some residual z.

• A relation deviation is structurally isolable if and only if it has a unique signature
in the Fault Signature Matrix.

The first property provides the capability of identifying the occurrence of a fault but
does not allow the identification of the faulty component, while the second, if in the
Fault Signature Matrix, it is possible to define a different signature for each component
and it will be also possible to identify the faulty component. Obviously this is not
always possible and in most of the systems there will be common signatures for several
components. For the simple case of the single-tank system, the first property is hold
as any deviation in a component relation will cause to evaluate the residual non-zero,
however it will not be possible to identify which is the faulty component.

The example of fault signature matrix in Table 2.4 relates the set of components
C = {c1, · · · , c6} with the set of residuals Z = {z1, · · · , z5}. It can be verified in the
Table that each component has a different fault signature, i.e. the Hamming distance
between any combination of two component fault signatures is bigger than 0. Formally,
being f(ci) the fault vector of the component ci and ⊕ the Hamming distance:

∀ci ∈ C,@cj ∈ C|f(ci)⊕ f(cj) = 0 (2.9)

TABLE 2.4: Example of a fault signature matrix

Residuals c1 c2 c3 c4 c5 c6

〈z1〉 0 0 1 1 0 1
〈z2〉 1 0 1 0 0 0
〈z3〉 0 0 0 1 1 0
〈z4〉 0 1 0 0 1 0
〈z5〉 1 1 0 0 0 0
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2.2.5 Evaluating the Fault Vector

There are at least two different ways of evaluating the fault vector f to implement the
fault diagnosis. The simplest way is to calculate the Hamming distance of the vector
with the fault vectors of each component and consider as the faulty component the
component with the minor distance to the fault vector. However, it is clear that this
method provides the same importance to the consistent residuals than to the incon-
sistent residuals. A consistent residual, that is, a residual which evaluates as 0, is not
conclusive as the sensitivity of the residual to a fault depends on the fault and the fault
magnitude [Blesa et al., 2014]. Therefore, there is a better approach which is to com-
pare only the inconsistent residuals row by row and give a positive score point if the
value matches and a negative score point if the value is different, and finally sum all
points for each component column. The estimated faulty component will be the one
with more score points.

Considering a process with the Fault Signature Matrix in the Table 2.5, and the fault
vector f = {1, 1, 0, 0}T , the Hamming distance of the fault vector to each of the columns
is d = {1, 2, 1} while if we apply the second method we obtain the following result
s = {0, 0, 2}. In the first case, the component c1 and c3 have the same Hamming dis-
tance and it is not possible to distinguish between both components. However, in the
second case as the inconsistent residuals are most significant, the result is that the fault
estimation indicates that is the component c3 the faulty component.

TABLE 2.5: Estimation of the faulty component example

Residuals c1 c2 c3

〈z1〉 1 0 1
〈z2〉 0 1 1
〈z3〉 0 0 1
〈z4〉 0 1 0

2.3 Agent Based Systems

Agent based systems will be systems which are supervised, managed or controlled by
software agents or with the participation of software agents. The design of multi-agent
systems is a relatively new approach of the Software Engineering which allows the
software components not only to encapsulate the methods and data (Object Oriented
Systems) but also the behavior [Wooldridge, 2002]. Nowadays software agents are
also known as Active Components. This Section revises the current architectures of
the software agents in order to select the best option to implement FDI supervision
using software agents. In this way, the review goes into the implementation details of
the selected architecture in order to know the available functionalities and how can be
used.

2.3.1 Software Agents Characteristics

The main characteristics of the software agents are:
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• Autonomy: An agent is autonomous in the sense that it does not need an exter-
nal intervention (in particular a human intervention) to react upon an event, to
control its own actions or to control its own state.

• Reactivity: An agent receives information (signals) from its environment and re-
acts according to this information.

• Proactivity: A agent not only will start actions as a response to changes in its
environment but also will exhibit a behavior oriented to objectives even taking
the initiative.

• Sociability: An agent might require information or services from other agents
(systems or humans) to accomplish its tasks and reach its objectives.

An important characteristic of the agents is that they do not need to know all pos-
sible situations (or states) to define an action plan. An agent can be considered an
stochastic state machine, since the following state cannot be determined a priori. The
following state will depend on the current state and the stimuli received by the agent
in this state. In the case of a deliberative agent, before moving to the following state
there will be also a deliberative phase to determine the following action.

A traditional software component receives external stimuli from the environment
in form of events. Each event will contain associated information, which can be very
simple, as the activation of a switch, or very complex, as for instance the reception of a
data frame. The software component reacts executing in a reactive form the algorithm
which has been pre-programmed in the design phase and will provide a response in
function of that. The system is totally deterministic and for the same internal state,
given the same inputs it will provide the same outputs.

The importance of software agents remains in that the agent has an internal repre-
sentation of the external world and will react to changes to this world in a spontaneous
way. This representation will be implemented in the Knowledge Base or Beliefs Base.
On the other hand, the agent programming is implemented based in objectives. To de-
termine the agent structure first it is required to define the objectives or goals which
have to be reached to solve the laid problem. Once the objectives are defined, the
mechanisms to reach these objectives will need to be identified, these mechanisms are
normally known as plans. An agent can have multiple plans to reach an objective. The
selection of the most suitable plan to be applied to reach the objective is a deliberative
function which can be implemented in several ways, for instance, using optimization
functions.

2.3.2 Software Agent Architectures

The different architectures to implement software agents which have been proposed
depend on the ability to respond to decisions based on a natural reasoning, somehow
reproducing the human reasoning. This fact facilitates the modeling and the capac-
ity of abstraction. The software agent architectures can be split into two main groups:
the architectures of deliberative agents and the architectures of reactive agents. The
deliberative agents have a symbolic representation of the real world and decide their
actions (plans) based on the information they received, the knowledge base and a set
of rules. The reactive agents, on the other hand, do not contain this internal represen-
tation of the real world nor their actions are based on the past history nor plan future
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actions based on the current status, they simply respond to the stimuli received in real-
time evaluating the results and using mechanisms such as the reinforcement learning to
deduce which actions have been more successful.

Nowadays the most popular way of implementing agents is an intermediate ap-
proach, that is, mixing the deliberative and reactive architectures. This approach al-
lows the agent to react quickly or in a more deliberative way depending on the event
received and the timing required to provide a response.

BDI Architecture

The most popular agent architecture to implement multi-agent systems is based on
the human reasoning theory proposed by Bratman [Bratman, 1999]. BDI stands for
Believes, Desires and Intentions, which match with the definitions of Knowledge, Ob-
jectives and Plans. This architecture is based on defining the mental attitudes of an
agent in these three concepts.

• The Knowledge (Believes) corresponds to the knowledge that the agent has of the
real world in the current instant. It is normally represented as a database which
is updated in real-time from the events (or stimuli) that the agent receives. It is
also known as Believe Base and it is usually implemented as a set of structured
data or even as a relational data-base. It can also include a set of rules which can
be executed periodically or by changes in the data caused by internal or external
effects.

• The Objectives (Desires) define the final purpose of the actions undertaken by the
agent.

• The Plans (Intentions) are the representation of the set of actions which an agent
can execute to accomplish its objectives.

AOP Architecture

This architecture was proposed by Shoham in [Shoham, 1993] and is based on defining
the mental state of an agent through an specific programming language named Agent-
0. This language allows the definition of the believes (the knowledge), the capacities
and a set of inference rules which will define the behavior of the agent in the form
of commitments. Initially the Agent-0 language had several drawbacks, as for instance
that the complete specification should be implemented in LISP, it did not have available
planning utilities, the agent actions were executed sequentially and it was not possible
to implement the interaction with remote agents. However, recently some extensions
and improvements have been implemented which allow these functionalities and solve
some previous problems [Eduard Muntaner, Acebo, and Rosa, 2005].

SOAR Architecture

These architecture allows the creation of deliberative agents with its own symbolic rep-
resentation of the real world. The architecture define a set of components which form
the deliberative capacity of the agent:

• States: Maintain the information of the current situation.

• Operators: Set of operations which are the means to progress through the prob-
lem space.
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• Working Memory: Set of data which contain the hierarchy of states and the oper-
ators which have been applied up to now.

• Long-term Memory: Set of data which form the repository used by the architec-
ture to generate the behavior.

• Motor Interface: Component which translate the perceptions of the real-world to
the corresponding symbols in the internal representation.

• Decision Cycle: Process which continuously selects the more appropriate oper-
ator to apply to the current state to pass the the next state according to a global
objective.

• Impasses: Situations in which more knowledge is required to resolve the situation
and progress towards the target objective.

• Knowledge mechanisms: Set of mechanisms as Chunking, Reinforcement Learn-
ing, Episodic Learning and Semantic Learning [Lehman, 1996].

The development structure of this type of agents is similar to the development en-
vironments of some expert systems such as CLIPS. An updated implementation is de-
scribed in [Laird and Congdon, 2006].

2.3.3 Multi-agent System Platforms

In this Section, some software agents development platforms will be presented. The
selection of a platform to implement software agents is a critical decision. The devel-
opment environment needs to be mature enough to allow the developer to focus on the
implementation of the agents and not having to devote a big effort just to use the tools.
Also it needs to be supported in some way, allowing the request of support in case it is
needed. If the development platform has currently some implementations working in
the real-world it is also a positive fact. Note that once a platform is selected, there will
be a lot of effort invested which will depend on the proper functioning of this platform.

JACK

JACK is a complete development environment to implement agent-based systems. It is
based on the BDI architecture. Define and extension of the Java language to program
the agent structure, the agent plans, the events and the data structures. The language
is pre-processed to generate the class structures in the Java language which finally will
be executed in the corresponding Java Virtual Machine. JACK is a commercial product
for which the source code is not available [JACK Documentation].

JADE

JADE is a set of libraries and utilities which facilitate the development of multi-agent
systems, including an execution platform (runtime). The implementation is programmed
in the Java language which allows to deploy multi-agent systems on several hardware
platforms were there is the availability of a Java Virtual Machine. The tool does not
anticipate any specific hardware platform. The exchange of messages between agents
is implemented through ACL, a specification which has been standardized by the FIPA
organization [Caire, 2007].
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JADEX

JADEX allows the implementation of agents following the BDI architecture. It defines
the data structures to specify the knowledge (believes), the desires (objectives) and
the intentions (plans). The platform can use JADE and allows also to be adapted to
other execution environments (runtime). The definition of the agents is implemented
in XML and the implementation in Java. JADEX incorporates a model of behavior of
the agents, reacting to changes in the knowledge base, the introduction of new plans or
incorporate changes in the target objectives. The platform also includes a deliberative
model to select the plan to execute at each moment in function of the current objectives
[Braubach, Lamersdorf, and Pokahr, 2003].

RETSINA

This platform also follows the BDI architecture model, implementing a set of classes
which support the generation of the behavior of the agents and the communications
between them. A difference with the other platforms is that the development envi-
ronment is Microsoft Visual C and the classes then are developed in C++. It does not
include a reasoning engine and the communications language is based in KQML. The
agents can be executed on the operative systems Windows, Solaris and Linux [Michael
Rectenwald, 2002]

ARTIS/SIMBA

This platform has a specific characteristic which is that it takes into account the re-
sponse time of the agents. In order to implement this characteristic, it is needed that
the agent is executed in a real-time platform and therefore that takes into account the
time restrictions when executing the agent functions. The research group GTI-IA of the
Universitat Politècnica de València (UPV) has developed a platform of multi-agent sys-
tems in real-time named SIMBA [Julian et al., 2002]. The agents of the SIMBA platform
are developed with the ARTIS platform. This architecture include extensions to work
in systems with strong restrictions in real-time. The implementation language is C++
and the execution platform is RT-Linux.

3-APL

The triple-APL (Artificial Autonomous Agents Programming Language) defines a pro-
gramming language and a set of tools to define multi-agent systems based on the BDI
architecture. As a difference with Jack and others, it allows the definition of the desires,
capacity, knowledge, plans, objectives and rules with the high-level language PROLOG
in an easy way. The agents are implemented in Java and the platform incorporates an
interpreter for the BDI specifications. The environment can be executed in several op-
erating systems as Windows, Linux and Solaris. The agents can be distributed and
communicate between them through the network from the different platforms. This
platform includes a component where agents are registered called AMS (Agent Man-
agement System). It also allows the interaction with agents developed with other ar-
chitectures since the communications are implemented following the standard FIPA
[Dastani, 2006].
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2.3.4 Architecture of the BDI Agents

In previous Section, it has been explained that the agents are software components
which allow the systematic development of intelligent behavior. The objective of agent
based programming is to provide an structure which allows the implementation of al-
gorithms of decision-making in a natural form and easy to understand. The complexity
of an agent should come from:

• The complexity of the problem to be solved by the agent.

• The complexity of the platform used to create the agent.

In this work, the agents are introduced as a natural solution to the distributed diag-
nosis problem. In this Section, the components and functions of an agent are presented
and it will be demonstrated how they fit simply and in a comprehensible way with the
requirements to implement a systematic fault diagnostic system.

The BDI architecture has been finally selected. The main reasons are: its extensibil-
ity, its wide application and its maturity.

In general, the problems of the BDI architecture are:

• The lack of mechanisms to implement machine-learning.

• It does not incorporate explicit mechanisms to interact with other agents.

• The architecture does not incorporate the forward-planning and it is not possible
to evaluate a priori the results of the execution of a plan.

The reasoning basic algorithm of the BDI agents it is known as the Procedural Rea-
soning System (PRS) and is indicated below:

1. initialize-state

2. repeat

(a) options: option-generator(event-queue)

(b) selected-options: deliberate(options)

(c) update intentions(selected-options)

(d) execute()

(e) get-new-external-events()

(f) drop-unsuccessful-attitudes()

(g) drop-impossible-attitudes()

3. end repeat

The agent architecture can be represented as a set of states and the allowed tran-
sitions between these states. The architecture presented is based on the extended BDI
architecture presented by Pockahr in [Pokahr, Braubach, and Lamersdorf, 2005]. This
architecture breaks-down the generic PRS algorithm in sub-parts, which are only in-
voked when required. These sub-parts are known as meta-actions.

The platform selected to implement the Supervisor Agent is JADEX. This platform
has reached an important relevance either in the academic world as with implemen-
tations which solve real problems [Braubach and Pokahr, 2007]. Furthermore, it is an
open-source project and the code of the whole platform is available.
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In JADEX, the agent architecture will define in which form it will be decided which
is the next action that an agent has to execute and when new actions shall be initiated.

The interpreter which will perform these actions is based on the following struc-
tures:

Agenda

The Agenda are the data structures which contain the actions which have to be exe-
cuted. The interpreter will select the next action to execute and will execute it, chang-
ing the internal state of the agent. The execution of an action may lead to the creation
of new actions which will be inserted into the agenda or may affect the order in which
the previous actions were in the agenda, put on hold some actions or even drop actions
from the agenda which have become obsolete. Thus, the objectives could have changed
or the context of execution for an action could have changed.

The agent state σ ∈ Σ defined by the tuple 〈B,Γ,Π, A〉, where:

• B is the knowledge base.

• Γ is the set of agent objectives.

• Π is the set of agent plans.

• A is the set of planned actions in the agenda {α1, α2, · · · }.

An action will be defined by the tuple 〈τ, φ1, φ2, · · · 〉, where τ is the type of actions
and φ1, φ2, · · · are the action parameters. The name and type of parameters are deter-
mined by the type of action.

For each type of action, the following characteristic functions are introduced:

• ppre is the pre-condition function which determines if the action is still valid in
the current context.

• fB is the transition function which describes the changes in B (the knowledge
base).

• fΓ is the transition function which describes the changes in Γ (the set of objec-
tives).

• fΠ is the transition function which describes the changes in Π (the set of plans).

• fA is the transition function which describes the changes in the set of actions
planned in the agenda.

• feff is the effect function which determines the set of next actions which should
be added to the agenda.

A state transition caused by the execution of an agent action σ ∈ Σ according to
these function definitions can be represented as: σ α−→ σ′, with σ = 〈B,Γ,Π, A〉, α ∈ A
and σ′ = 〈B′,Γ′,Π′, A′〉. And therefore:

B′ = fB(α, σ)

Γ′ = fΓ(α, σ)

Π′ = fΠ(α, σ)
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A′ = A\{α} ∪ feff (α, σ)

Other external sources can add actions {α} to the agenda, as for instance a mes-
sage received from another agent. These new agenda entries will not affect any other
component of the agent, therefore, the state transition in this case will be defined by
A′ = A ∪ {α′}.

In order to define the process to select the next action to execute from the agenda,
the function fsel(A) is implemented. This function can be as simple as for instance
take the next action from the list, but it is possible also to complicate it by adding the
possibility of introducing priorities. This capability is important as some mechanism is
required to schedule the execution of actions in a real-time environment, that is, with
time constraints.

FIGURE 2.7: BDI agent actions sequencer

Events

In order to understand the planning mechanism of the actions in the agenda, it is im-
portant to note that this architecture is driven by events ε. There are two types of
events:

• External events: correspond to those events generated by the reception of a mes-
sage from another agent.

• Internal events: correspond to those events which are generated as the result of
the execution of a plan, by changes in the knowledge base or by changes in the
objectives of an agent.

The events can be handled by plans already instantiated and running or trigger the
creation of new plan instances from a template, according with the intentions of each
plan. That is, each plan declares the intention of handling one or more events, in a
way that when an event is received the plan requests its activation to handle it. It can
happen that there are no plans with a declared intention to handle an events and in this
case the event is simply ignored.
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An agent will implement an events queue which will be handled and by default
this queue is implemented following the FIFO algorithm (first-in first-out).

The Plan Set

The plan set of an agent Π is formed by instances of plans and plan templates. The plan
instances will have the form π = 〈pt, ε, µ〉, where pt is the plan template, ε is the current
event being handled by the plan and µ is a counter which indicates in which is the
current plan execution step. The plan templates contain two different parts: The header
and the body. The header contains the parameters which indicate in which conditions
the plan should be activated (the set of intended events) and the plan priority. The
priority will determine which plan will be selected for execution, in case that there
are several plans which intend to handle the same event or have the same execution
conditions. The body of the plan contains the plan instructions grouped in steps.

The Meta-actions Definition

In order to select the plans which will be executed, the following actions are defined:

• Find applicable candidates αfac: Obtains from the plan set all plans Πapp which
are candidate to handle an event ε arrived to the system and which do not have
any event to handle yet i.e. 〈pt,⊥, µ〉, where µ is the step counter.

• Select candidates αsc: This function will obtain from the plan set (instances or
templates) the plans Πcan which are candidate for execution. For instance, evalu-
ating the plan execution pre-conditions. For the selected plan templates pt which
become candidates for execution a new instance will be generated π = 〈pt,⊥, 0〉
indicating that an event is not yet assigned (⊥) and with the step counter 0.

• Schedule candidates αschc: This action updates all selected plan instances π ∈
Πcan to include the event to be handled, thereby adding newly created plan in-
stances to the plan set. In addition a new αeps execute plan step action is added
to the agenda for each of the selected plan instances.

• Execute plan step αeps: This action will execute a step of the plan. This function
can change any aspect of the agent. Thefeore, it can contain any of the previously
indicated functions which modify the agent state: fBπ , fΓπ , fΠπ . In addition, the
agent step counter will be incremented in 1 and a new action αeps will be added
to the agenda. In case that it is the last step of the plan, it can happen than the
instance is deleted or keeps waiting another event. In any case, with the last step
no further actions are introduced in the agenda.

2.3.5 Agent Goals

An important point of the BDI architecture is that the agent goals are defined explicitly.
Designing an agent based on the objectives which should reach is a very simple and
natural task. For instance a garbage collector robot the list of goals would be: {patrol,
charge_batteries, collect_garbage}. In order to define which goals should pursue the
agent at each instant, it is possible to define pre-conditions which will indicate the
validity of the goal in the current context. In the garbage collector robot, it could be
defined that it should "collect garbage" during the day and "patrol" during the night.
In this way, the context of the goal "patrol" would be only valid in the night hours
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and the context of the goal "collect garbage" will be only valid during the day hours.
In addition, the architecture allows the definition of relations between goals which at
design level delimit the goals which can be pursued at the same time. For instance, in
the example, the goals "patrol" and "collect garbage" are opposite to "charge batteries".
That is, if the context of the goal "charge batteries" is valid, the activation of this goal
will override the goals "patrol" and "collect garbage".

The goals can be created and dropped at execution time. A condition defined over
the knowledge base, for example, can generate the action to create a new goal. This
new goal will pass to a pre-defined state depending on its validity pre-condition. In
this way, the agent goals, once created, will follow a life-cycle based on three states:
option, suspended and active. See Figure 2.8.

• Option: goals in the option state are the goals which momentarily cannot be pur-
sued, for instance, because they are in conflict with another goal.

• Suspended: Goals are suspended because they cannot be executed in the current
context. That is, the execution pre-condition does not hold. When the context
will change making the execution context pre-condition valid, the state will be
updated to option.

• Active: Active goals are the goals which were in the state option and which can
be pursued at this moment and in this context because are not in conflict with any
other goal and their context is valid.

FIGURE 2.8: BDI agent objectives life-cycle

In order to manage the goals creation, the new type of action CreateGoal is added,
αcg = 〈CreateGoal, gt〉, where gt is the objective template (goal template). A new goal
γ ∈ Γ will be composed of:

γ = 〈gt, s〉, s ∈ {optional, active, suspended}

That is each goal instance will originate from a specific goal template and will be in
a specific state.

This action αcg will be always applicable and will only affect the goals set, adding
a new one, leaving the rest of agent components unchanged.

fΓ(αcg, σ) = Γ ∪ {γ}, γ = fcreate(gt)
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When a context change is produced which affects a goal, the goal context has to be
evaluated to determine if it is still valid or the goal state has to change to suspended
or option. In order to implement these goal state changes, a new action SwitchCon-
text is added, αsc = 〈SwitchContext, γ, s′〉, where s′ is the new state to be achieved,
s′ = {suspended, option}. This action only has the pre-condition that the goal is not
already in one of the target states. This action will only change the goal set as follows:

fΓ(αsc, σ) = Γ\{γ} ∪ {γ′}, γ′ = 〈gt, s′〉

Finally a new action is added to drop a goal from the goal set αdg = 〈DropGoal, γ〉
leaving the goal set as follows:

fGamma(αdg, σ) = Γ\{γ}

Goals Deliberation

In order that an agent with multiple goals which should be pursued at the same time
do not conflict among them, the agent must follow a deliberation process. A simple
deliberation process is presented which is known as Easy Deliberation and is based in
two type of properties: the cardinality and the inhibition arcs.

• Cardinalities: Restrict the maximum number of goals of the same type which can
be active at the same time.

• Inhibition arcs: Define the relations between goals which imply a negative effect
with respect their activation. That is, if an goal is active and another goal needs
to pass from option to active but it has an inhibition arc with the one which is
active, this second goal cannot be activated.

There are two situations in which the deliberation algorithm must be activated: the
first is when a goal is newly created and passes to the option state or when a suspended
goal passes to option because its execution context becomes valid, in these cases the
algorithm should decide if the new option goal can be activated and which are the
consequences of activating it, that is, if any of the currently active goals need to be
suspended. The other situation is when for any goal its execution context becomes not
valid and must be suspended. In this case, the algorithm should decide which from the
optional goals which were inhibited can be now activated. In order to manage these
two situations the actions DeliberateNewOption αdno and DeliberateDeactivatedGoal αddg.

The DeliberateNewOption is responsible for activating a goal in the option state γo =
〈gtoptional〉 ∈ Γo when its execution context becomes valid. Therefore, the function has
to test the cardinality and the inhibition arcs with the currently active goals by checking
the predicate pact(γo) defined as:

pact(γo) : Γo → {true, false}, pact(γo) = ∀γ ∈ Γα(γ 9 γo) ∧ |Γη| < fcard(gto)

with Γη = {γ = 〈gt, active〉 ∈ Γα|gt = gto ∧ σo 9 σ} and fcard(gto) : Γ → N the
cardinality function and→⊆ Γ× Γ the inhibition relation.
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fGamma(αdno) = Γ {γ} ∪ {〈gt, active〉} Γinh ∪ Γo

The predicate pact(γo) is true when there is no active goal that inhibits goal γo, i.e.
no pair (γ, γo), γ ∈ Γα is part of the inhibition relation →⊆ Γ × Γ and the number
of goals of this type which can be active Γη is lower than the allowed cardinality of
this goal defined by the function fcard(γo). Note that the set Γη needs to remove the
goals which will be inhibited when the goal γo becomes active. This set is defined as
Γinh = {γ ∈ Γα|γo → γ}.

In addition, another meta-action DeliberateDeactivatedGoal αddg is required to check
for any goal which has been deactivated if there are goals in the Γo set which could
benefit from that.

feff (αddg, σ) = {〈DeliberateNewOption, γx〉 |γx ∈ Γinh}

The set of inhibited goals is defined as Γinh and is calculated with the function
finhibit(γ, γx).

To illustrate this functionality, the example of the garbage collector robot can be
used. In the most simple defintion, we can define 3 goals:

Γ = {ChargeBattery, CollectGarbage, Patrol}

for the agent controlling the robot. The activation context for the Collect Garbage goal
is the day time range [08 : 00] < t < [17 : 00] and the activation context for the Patrol
goal is the night time range [17 : 00] ≤ t ≤ [08 : 00] while the execution context
for the Charge Battery goal is that the battery level is below 5%. The Charge Battery
goal has an inhibition arc with each of the other two goals and the cardinality of all
goals is 1, meaning that only one goal instance of each type can be active at a time.
The Easy Deliberation algorithm will exactly implement the expected behavior for the
agent, during the day will collect garbage until the activation context of the Charge
Battery goal becomes true, then it will become the active goal deactivating by inhibition
the collect garbage goal. Note that once the goal Charge Battery becomes active the
execution context has to be maintained true until the battery reaches the level 100%.
Then, the Charge Battery goal activation context is not valid any more and the goal
becomes option again. The DeliberateDeactivatedGoal function will be executed selecting
from the option goals which can be activated again, and depending on the current time;
day or night, it will activate the Patrol or Collect Garbage goal.

Goal Types

The architecture implements four types of goals depending on the definition of the
activation context:

• Perform Goal: This goal will define an action which must be executed. While the
goal is active the agent will be executing this action by executing the associated
plan. The goal "Patrol" is a Perform Goal.

• Achieve Goal: This goal will become active until a specific condition is reached.
That is, while the condition is not reached, it will be active and all matching plans
will be executed until the condition is met or error.
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• Query Goal: The function of this goal is to reach some specific information and
finishes when this information is provided. That is, while the information can-
not be obtained it will continue executing all matching available plans until the
information is reached or error.

• Maintain Goal: This goal implements the function of maintaining a defined state.
This is expressed as a condition which should be maintained (for example battery
level > 20%). Additionally, another condition can be defined which indicates the
target condition once the condition to be maintained is violated, in the case of the
garbage collector robot the target condition would be battery level = 100%. This
goal will never expire unless it is explicitly eliminated.





Chapter 3

FAST Architecture

In [Blanke et al., 2006], the component-based FDI analysis and architecture is intro-
duced. This architecture defines a generic component model based on services and
use modes. The use modes define which subset of services is available at each mode.
A component defines a physical entity with physical characteristics and a component
model is exactly modeling those characteristics. The components can be aggregated
and both, the analysis of faults and fault propagation are extended to the aggregation.

However, sometimes the concept of component aggregation is not enough. In our
work, an aggregation of components will be a process, and the objectives of the process
and its constraints are not component properties but process properties. These two dif-
ferent layers can enhance the FDI architecture since component (or component aggre-
gation) objectives and process objectives are not always related. In a fermentation re-
actor, for instance, each component (tank, valve, sensor, pump, heater, heat-exchanger,
etc.) has a very specific objective. However, the purpose of the process is to maintain
the environmental variables at fixed set points in order to perform the fermentation in
optimal conditions, hence a more complex model is required to monitor the process
objective. This complex model could be determined by using well known techniques
(first principles, estimation, identification, etc.), especially if the system is already exist-
ing. In this example, the model can define the BOD (Biological Oxygen Demand) in the
reactor in function of the time, the environment variables (temperature, pH, pressure)
and some chemical compounds concentration.

Therefore, a process is described as the aggregation of components with a global ob-
jective. From this definition, it is possible to study even the aggregation of processes,
where higher level objectives are defined. The set of aggregated processes will repre-
sent a process plant involving higher level objectives and also the evaluation of the FDI
process in a distributed manner.

In [Bouamama et al., 2005] and [Merzouki et al., 2013], model based FDI and FTC
are introduced using bond-graphs as a helpful modeling paradigm. Moreover, some
tools ([Blanke and Lorentzen, 2006], [Bouamama et al., 2005]) allow the generation of
the process model by connecting blocks and they can generate C code for the model.
These tools are mainly oriented to the modeling of the process and some of them per-
form the Structural Analysis. FAST is not a modeling tool but a tool to implement a
FDI system that can be tested in simulation and deployed to an on-line implementation
with a minimal effort. The only requisite is that the models of the process components
must be already available in the tool. They can be expressed in any form (as e.g. ex-
pressed by means of analytical equations or bond-graphs) being easily integrated in
FAST just by implementing the interface as specified in the Appendix B. In this case,
the tool utilization is very simple: the process engineer does not need to deal with
modeling, but only indicating the topology of the process (components and their re-
lationships) as indicated in a P&ID diagram it is possible to obtain valuable design
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information (by simulation) which can be feed-backward into the design to refine it.
Finally, it is possible to connect the tool to the process and implement FDI in real-time
without needing to add some extra modeling information. For this latter feature, the
tool implements an OPC interface which allows the direct interaction with any com-
mercial SCADA. The tag names, which establish the relation between the process data
and FAST, are provided in the Process Definition File (PDL).

The low level FDI analysis implemented in FAST related to process components
has been introduced in [Duatis, Angulo, and Puig, 2014], where the algorithms to per-
form the Structural Analysis from the process components point of view are explained
and verified using the well-known two-tanks example. The main software architecture
characteristics of FAST are the elements that will be introduced in detail in this Chapter:

• The aggregation of components with shared objectives is defined as a process.

• It is possible to define process objectives in the form of relations.

• Components are abstracted like software structures (Java classes).

• The software representation of the components are basically data structures which
do not implement behavior since are only an abstraction of the real component
associated to one or more relations.

• Services belonging to each component are generalized by the definition of rela-
tions. Each component has a predefined set of relations. Each type of relation is
represented also as a class. Several input process variables are implied in each
relation but for the process simulation only one output process variable is calcu-
lated.

• Each process variable is also represented as a class.

• The real-time FDI behavior is provided by a software BDI agent which is the
responsible of the supervision of a process. Software agents are developed in the
JADEX platform [Braubach and Pokahr, 2007].

• The aggregation of components is the world representation of this agent.

• Processes can be distributed in subsystems.

The FAST tool is implemented in the Java language and is composed of three main
software components:

• The FAST Libraries

• The FAST Simulator and,

• the FAST Supervisor Agent.

The FAST Simulator is the component responsible of loading the process definition
from the Process Definition File (PDL) generating the Process Model and performing
the FDI Structural Analysis as defined in [Duatis, Angulo, and Puig, 2014] following
the approach proposed in [Staroswiecki and Declerck, 1989], [Blanke et al., 2006], and
[Isermann, 1997]. In this way, the FAST Simulator is able from the simple definition of a
process to obtain the Structural Matrix M and the Fault Signature Matrix F. Although
other tools have been proposed in [Bouamama et al., 2005] and [Blanke and Lorentzen,
2006], the FAST Simulator is not a modeling tool, but a tool to carry out the design of
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a FDI system for a process and to evaluate its diagnosibility, allowing eventually to
perform a final FDI implementation by connecting FAST to the process by means of the
OPC interface.

In this Section, the architecture of the FAST tool will be presented based on the first
ideas indicated in [Duatis, Angulo, and Puig, 2015]. First the components will be de-
scribed from a functional perspective, being the most important; the Process Definition
File and the Process Model. The PDL structure will be defined in Section 3.1. This file
provides the process information required to build the process model based on com-
ponents, relations and process variables. Then, the Section 3.2 will present how the
process model is generated by the software. The process model is a component part of
the FAST Libraries and is reused either in the FAST Simulator and in the FAST Supervisor
Agent. In Section 3.3 the FAST Simulator is described and in Section 3.4 it is explained
how the implementation of the process supervision is based in a software agent.

3.1 The FAST Process Definition File

The Process Definition File provides the process description in XML. The eXtensible
Markup Language allows the representation of entities, entity properties and entity
attributes in a structured form both human and machine readable. In this way, compo-
nents, relations and process variables are represented as XML data structures. The in-
formation in these structures is obtained from the component physical properties (e.g.
the device data sheet) and from the P&ID which describes the process topology. During
the design process, the process engineer will select and represent the process compo-
nents in the P&ID diagram according to the process objectives and specifications. In
this design phase, is when it is more important to obtain information about the process
redundancies. Therefore, FAST can be used stand-alone, that is, without being con-
nected to the real process but just providing the Process Definition File (PDL), in order
to analyze the FDI capabilities of the process under design. In effect, the process engi-
neer will be able to perform what-if analysis and identify if adding or relocating pro-
cess components the reliability can be increased. In [Samantaray, 2004], it is illustrated
how using a software tool and through the systematic structural analysis of a process,
it is possible to improve the sensor placement in order to increase the observability
and therefore the capacity for fault detection and isolation. The Process Definition FiLe
(PDL) defines the process topology and composition by identifying the list of process
variables V = {vk}, process components C = {cm} and component relations R = {rn}
(see Listing 4.1). Each relation rn corresponds to a mathematical relation linking sev-
eral process variables: rn : f(vk). A relation can only belong to one component, that is,
the association between a relation and a component is unique, although a component
normally has associated several relations.

3.1.1 Process Variables

The process inputs and outputs are represented in FAST as Process Variables V = {vk}.
For each component, it is possible to identify a set of relations between these inputs and
outputs. The Process Variables define the connection between components since nor-
mally more than one component will have a relation where the same Process Variable
is involved. Process Variables can be measured (Vm) or not measured (Vu), V = Vm∪Vu.
A measured process variable is a process variable for which exist a sensor providing
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LISTING 3.1: Process description in an XML file

<ProcessVars >
<ProcessVar Name=" Flow Input " Symbol="Qp" I n i t =" 0 "/>
<ProcessVar Name=" Flow Input Measured " Symbol="mQp"/>

. . .
</ProcessVars >

<Components>
<Component Name=" Tank1 "/>
<Component Name=" Tank2 "/>

. . .
</Components>

<Rela t ions >
<Rela t ion Name=" R01 " Type=" Sensor ">

<Component>Level Sensor1 </Component>
<ProcessVar >H1</ProcessVar >
<ProcessVarMeasured >mH1</ProcessVarMeasured >

</Relat ion >
. . .

</Rela t ions >

the variable value. Unmeasured variable values do not have a sensor available and
their values shall be obtained from the analytical relations.

In the PDL, a process variable has the following attributes:

• Name: Descriptive name of the process variable (f.i.: “Flow Input”)

• Symbol: Identifier of the process variable (f.i.: “Qp”)

• Init: Initial value used for simulation

• Units: Descriptive name to indicate the physical units

• Tag: In case this process variable corresponds to a tag in the OPC Server, this
identifier links the process variable to this tag.

Example: <ProcessVar Name="Flow Input" Symbol="Qp" Init="0" Units="m3/s"
Tag="FTE_1001_01"/>

3.1.2 Components

A component in FAST is the minimum unit to identify in case of a fault. The correct
definition of components is of key importance since it will drive all the diagnostic pos-
sibilities. A first approach is to identify as a component each physical entity which has
a specific function in the process although FAST allows to extend this definition to pro-
cess objectives which can be expressed as relations and therefore with the possibility of
being implemented and used in the tool. A component shall have at least one relation,
involving one or more process variables.

In the PDL, a component has the following attributes:
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• Name: Descriptive name of the component (f.i.: “Tank1”)

• Tag_Error: Identifier of the tag used to communicate the status of the component
(OK/Error) to the OPC Server/SCADA.

Example: <Component Name="Tank1" Tag_Error="TK_1001_01_ERR"/>

3.1.3 Relations

Relations are presenting the model of the component. Relations shall be derived from
the component behavior. Usually, relations will be mathematical expressions involving
one or more process variables. FAST will take into account the causality of the variables
participating in a relation when performing the structural analysis, as this causality can
be determined at design time just by analyzing the structure of the relation.

In the PDL, a relation has the following attributes:

• Name: Descriptive name of the relation (f.i.: “Pump”)

• Component: component to which the relation belongs.

• Process Variables: symbols of the specific process variables participating in the
relation.

Relations have some fields dependent on the relation type. Examples of types of re-
lations are: Sensor, Pump, ControllerPID, ControllerOnOff, Valve2Levels, ValveLevel,
Derivative, Tank, FlowJunction.

For instance, a process which includes a liquid tank will incorporate the component
Liquid_Tank. The cylindrical tank has a level sensor in millimeters and one input and
one output valves. The following relations associated to the tank will be defined:

1. Cylindrical Tank Relation: defines the relation of the level variation inside the
liquid tank with respect to the input and output flows and the tank geometry.

2. Derivative Relation: defines a derivative relation between two process variables.
In this case, it will be the variation of the level and the level.

3. Sensor Relation: it will exist for each measured variable. In this case, it will be the
liquid level.

For this component, the process variables corresponding to the tank level and input
and output flows will be defined. The relations model is implemented into FAST and
therefore just by indicating that the component Liquid_Tank contains this set of Re-
lations with the defined Process Variables, the component model will be instantiated
and initialized from the data provided in the PDL. Relation models can be extended to
cover a wide range of components and component configurations. As the software is
structured in classes, new relations can be added by just creating a new class for every
new relation. New relations inherit from the Relation virtual class and must implement
the virtual methods which are mandatory to be used by the software model. Mainly,
it will implement the expression (analytical, algorithm or even fuzzy) which will relate
the indicated process variables and the different explicit forms to obtain the value of
each causal process variable (see Appendix B).

The task of grouping and defining the relations associated to a component is very
important as we are interested in identifying faults at component level. Eventually, the
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FIGURE 3.1: FAST Simulator processes

relations define the model of the component or process objective and deviations from
the component model will be identified as faults. Thus, the real behavior measured by
the sensors, and the possible analytical redundancy is what will provide the fault detec-
tion and isolation capabilities. Every Process Definition File identifies the information
related to one process. Therefore, if the plant is formed by several related processes,
several files will be generated, one for each process.

3.2 The Process Model

FAST loads the PDL file through the Parser component (see Figure 3.1) generating the
Process Model. The Process Model is commonly used in the FAST Simulator and the
FAST Supervisor agent. The PDL is the only input used, besides some ancillary config-
uration parameters, to generate the Process Model.

The parsing of the PDL provides to the tool the inputs to perform the structural
analysis of the process [Maquin and Cocquempot, 1997]. This initialization process will
generate the Structural Matrix (M), obtain the analytical redundant relations (ARRs),
the residuals and the Fault Signature Matrix F. All this information will form the Pro-
cess Model (PM).

FAST is able from the PDL to perform the structural analysis, obtain the set of an-
alytical redundant relations RARR and the set of residuals Z . The residuals are gener-
ated in a way that their evaluation hold near to zero (≈ 0) when the system is working
without faults and different (6= 0) if there is any fault in the components that are de-
tectable by means of this residual.

The component models are defined following a similar approach as indicated in
[Blanke et al., 2006], where components implement a set of services, use modes and
can be aggregated to generate more complex components. In fact, a system goal can be
better identified into a process than into a single or aggregated component. Therefore,
we defined two type of components, the physical entities of the process and the process
objectives. Both can be defined by Relations inside a Process.

Components, Relations and ProcessVars are represented as Java classes and
compiled into a Java library. For the Relations, every relation type is implemented
as a derived class. The parent Relation class has some generic methods implemented
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which provide all common functionality and it is abstract. The Parser module imple-
ments the parsing of the Process Definition File and creates the Process abstraction as
instances of Components, Relations and ProcessVars related accordingly. The
Process Simulator module performs the process simulation generating a set of Excel
files reporting; the Structural matrix, the Perfect Matching matrix, the Analytical Re-
dundancy Relations list, the process simulation results and the residuals evaluation
results for simulated faults. The tool can be extended by adding more Components
and its Relations as additional Java classes to the library. Several models of the same
component can be defined by generating alternative relations and select which ones
are the more appropriate.

When FAST is used on-line, this software is in fact part of a software agent. The
Components abstraction form its knowledge base, the agent goals are the to detect
and notify process faults and the behavior is implemented through plans. The BDI
(Believes, Desires, Intentions) agent structure [Wooldridge, 1992] fits perfectly with the
requirements of the automatic process supervision, providing communication, auton-
omy, reactivity and pro-activity. A software agent is created to wrap every system
process. The agents implement the concept of use modes and a set of common services
which can be shared among them to provide distributed fault diagnosis capabilities.
The agents are executed in the JADEX multi-agent platform [Braubach and Pokahr,
2007].

One of the key skills of FAST is the calculation of residuals. From the structural
analysis, the ARR set is obtained. Then, from every ARRi, there is a related set of ele-
mentary relations which allows the tool to calculate all process variables participating
in the ARRi. Therefore, in every cycle, FAST will acquire the process values for the
measured variables and next it will calculate all the residuals by calling for each ARRi,
which are in fact a subset of Relation instances, the method calcResidual. This method
will obtain from the elementary relations, the value of the unmeasured variables. For
every process variable, the method goes through the list of related elementary relations
checking if the elementary relation contains this variable and defining a perfect match-
ing with respect to this process variable. The algorithms to obtain the ARR and the
Fault Signature Matrix F are detailed in the Chapter 4.

3.3 The FAST Simulator

During the design phase, the FAST Simulator can be used to analyze the process and
the fault diagnosis capabilities. The off-line mode allows the engineer to simulate the
process and analyzing different configurations and to introduce error conditions eval-
uating the effects and the diagnoser outputs. The basic products of the FAST Simulator
are several comma separated files which can be opened in MATLAB or MS Excel with
the simulation results (outputs, fault diagnosis, residuals) which can be used to gener-
ate graphs and reports to support the design decisions.

The FAST Simulator is composed of the two components: the FAST SimApplication
and the FAST Libraries, see the Figure 3.2.

FAST Simulator Application

The FAST SimApplication is implemented in Java (tested in a Java Virtual Machine ver-
sion 7), and therefore it can be executed in any of the supported platforms and oper-
ating systems. The computation requirements depend on the number of components
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FIGURE 3.2: FAST Simulator software components

to be analyzed. The process described in Section 4.4 takes less than 1 second to obtain
the structural analysis in a PC with an Intel Core I5. The tool have a simple graphi-
cal interface (in English) for loading the PDL and select to start the simulation and a
log window. The results are always generated in comma-separated value (CSV) files.
These files can be loaded in MATLAB or MS Excel to display the results and generate
graphs. The OPC interface enables FAST to display the fault detection into the synop-
tic of an SCADA. The FAST Simulator uses the data structures in the Process Model to
simulate the process from an initial state by computing the component relations. The
tool is able to simulate a fault during a pre-defined time interval and evaluate its ef-
fects, calculating the observed fault signature and applying the Fault Signature Matrix
to identify the faulty component. The FAST Simulator, by using a client OPC interface
[Young and Trindade, 2013], is able to feed the process sensors with the simulated val-
ues, allowing to the control engineer to rehearse different faults and the system reaction
as well as different system configurations. The values are provided to an OPC Server
to which the Supervisor Agent can be connected as in a real system.

The FAST SimApplication is composed of the following components:

• The Graphical User Interface (GUI) classes: The GUI classes implement the user
interface to load the PDL interfacing with the PDL Parser and to start the simula-
tion interfacing with the Process Simulator. The GUI allows the operator to see all
loaded components, relations and process variables from the PDL in a two-pane
view.

• The Process Simulator: The process simulator is the component which from the
Process Model computes the process outputs, calculates and evaluates the resid-
uals, generates the fault vector and in case of simulating a fault, compares the
vector with the Fault Signature Matrix to check if the faulty component can be
identified. The Process Simulator also interfaces with the OPC Client and if con-
nected to an OPC Server it will provide the simulated values for the relations and
in case that the fault can be associated to a component the indication of the fault
in this component.

FAST Libraries

The FAST Libraries are composed of the following components:

• The OPC Client: The OPC client is the software interface which allows the ap-
plication to communicate with the OPC Server by sending the tag values cor-
responding to the relation outputs and the fault indication for the components.
The tag need to be defined either in the PDL and in the configuration of the OPC
Server.
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FIGURE 3.3: FAST Supervisor Agent software components

• The PDL Parser: This component is responsible of parsing the PDL file which is
an XML. It uses the XML Document Object Model libraries which implement the
parsing of generic XML structures. Each component type and relation type has
its own function in order to be instantiated correctly in the Process Model. Right
after loading the PDL and instantiating the data structures it will call the function
to perform the Structural Analysis interfacing with the Process Model classes.

• The Process Model: The Process Model is the set of classes implementing the
data structures required to manage the Components, Relations and Process Vari-
ables and the Fault Signature Matrix F. Note that after performing the Structural
Analysis all relations will be associated between them as elementary relations or
redundant relations. Redundant relations will be resolved by substituting all un-
known variables by the corresponding elementary relations which can be used to
calculate them. Therefore it is not needed to store permanently in the model the
Structural Matrix nor the Perfect Matching.

3.4 The FAST Supervisor Agent

The FAST functionality is fully deployed once the process has been physically assem-
bled in the plant and is running. In this case, the tool is able to perform the on-line
monitoring of the process by just providing the final PDL corresponding to the final
process design. The Process Model forms the observation world of a Software Agent,
commonly called the agent knowledge-base.

Usually an industrial process is supervised through a SCADA system. The SCADA
system interfaces with the Process Logic Controllers (PLCs) from which acquires the
process variable values. The SCADA stores the values of the sensors in the process
database, where are refreshed periodically. FAST will be connected to the SCADA pro-
cess database through an OPC interface library. Through this library, FAST will have
access to the values of the process variables obtained from the process database of the
SCADA. The FAST Supervisor Agent will take these values and calculate the fault vector
through the residuals obtained in the initialization process using the OPC Interface.

The Supervisor Agent is based on the multi-agent platform JADEX. The agent is the
responsible of evaluating on-line the process residuals as defined in the Process Model.
These process residuals are evaluated by acquiring the process data on-line via the
OPC interface, connected to an OPC server, which at the same time receives the process
data from the Process Logic Controllers. The Supervisor Agent is using the same FAST
Libraries than in the FAST Simulator Tool to implement the FDI functionality while the
JADEX Libraries will be used to implement the software agent behavior, see Figure 3.3.
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FIGURE 3.4: FAST Supervisor Agent processes

In addition, the Supervisor Agent will have as well the capability of being deployed as
a multi-agent system and implement the FDI of a process in a distributed manner.

The Supervisor Agent is the component responsible of the on-line evaluation of faults
and the decision-making part. By using the OPC Interface, FAST is able to connect to a
process in real-time. The Supervisor Agent will implement a Knowledge Base with the
process variables, refreshing periodically their values and feeding the Process Model
from them. In the presence of a fault, the Supervisor Agent will activate a Plan to notify
the fault, also via the OPC Interface.

In JADEX, an agent is configured by the Agent Definition File, which is an XML file
which defines the beliefs, goals, events and plans (see A). The plans are implemented
as Java classes which are instantiated at run-time as needed to achieve the agent ob-
jectives. In the same way, the beliefs are implemented as a Java class containing the
data structures which will compose the Knowledge Base. Several plans can coexist to
achieve an objective and reasoning algorithms can be introduced to select the appro-
priate plan. An scheme of the agent process to select the action to be executed and
the execution effects is presented in Figure 3.5. JADEX simplifies the implementation
of agents and the capability of handling inter-agent messages. Agent messages are
handled as new objectives by applying the corresponding reactive plan. In the case of
the FAST Supervisor Agent, the software agent will continuously monitor the process
with the objective of detecting faults. The agents follow the Believe, Desire, Intention
(BDI) architecture, which is composed by the following parts (see Section 2.3.4 for an
extended explanation of the generic BDI agents architecture):

• Knowledge Base (B): contains all the information needed by the agent to perform
its function. It is continuously refreshed and changes in elements can trigger
events.

• Objectives (Γ): define the set of purposes of the agent which it should autonomously
reach.

• Plans (Π): define the set of procedures which are available to the agent to reach
the objectives.
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FIGURE 3.5: Supervisor Agent action scheduler

• Agenda (A): is the sequence of actions scheduled by the agent. It is continuously
changing due to the generation of events, which create new actions and force
rescheduling for actions already in the agenda.

A software agent can be seen as a state machine with an indefinite number of states.
Each state σ is determined by the tuple σ =< B,Γ,Π, A > . Every action executed by
the agent will generate a new tuple σ′ =< B′,Γ′,Π′, A′ >, since each of these elements
can be affected. Actions are generated as a result of an internal event or by receiving
an external event, normally from another agent. The fact of having objectives and
plans, although it might seem redundant, allows the agent to apply different plans to
achieve the same objectives and have a deliberative process to evaluate which plan is
the optimal one to be applied according to the current conditions. For the most simple
implementation of our Supervision Agent, there will be a single matching between
objectives and plans.

In the case of a single Supervisor Agent, just diagnosing local components, the set
of plans is defined as: Π = {Calculate_Residuals_Plan, Send_Fault_Plan}. That is, this
agent will execute the plan Calculate_Residuals_Plan to achieve the goal Detect_Faults_Goal
and the plan Send_Faults_Plan to achieve the goal Notify_Faults respectively. The
functionality working in a multi-agent distributed deployment is explained in Chapter
5.





Chapter 4

FAST Structural Analysis

The structural analysis is widely documented in [Blanke et al., 2006] and there are
several examples in the literature [Staroswiecki and Declerck, 1989; Maquin and Coc-
quempot, 1997] which illustrate the way that the analytical redundant relations can
be calculated. The algorithms describe how to perform such analysis in an analytical
way [Izadi-Zamanabadi and Staroswiecki, 2000] or from bond graphs [Merzouki et al.,
2013]. That is, involving symbolic transformations, graphical interpretation or manual
derivation of the analytical redundant relations starting from the process model and
usually restricted to specific cases. Some tools have already been proposed [Blanke
and Lorentzen, 2006; Bouamama et al., 2005] but without covering the full cycle that
goes from the analysis up to the on-line process interaction.

The structure of this chapter is as follows: in Section 4.1 the representation in FAST
of a process is exposed. The Section 4.2 introduces the algorithms implemented in FAST
to perform the structural analysis. In Section 4.3, the residuals evaluation algorithm
is presented. Finally in Section 4.4, the results of verifying the FAST tool with the
two-tank system case study are presented, as it is a case very well documented in the
literature and models of the components and even simulators are available to compare
the results.

4.1 Process Description

In order to apply the FAST tool, a process should be described providing the set of pro-
cess variables (V), the set of components (C), and the association of the process variables
to the set of elementary relations (R) associated to the process components. Then, this
process description is translated to an XML file constituting the Process Definition File
(PDL). This is a possible solution to the requirement identified by Blanke in [Blanke
et al., 2006] of having a language for describing systems and their components in a
generic form.

FAST generates an abstraction of the process by parsing the PDL, which declares
for each process the three groups of items of interest: components C, relations R and
process variables V (see Listing 4.1). Declaring the ProcessVars, FAST is able to
identify the set of process variables V , which contain both, m measured (Vm) and u
not measured (Vu) variables, i.e. V = Vm ∪ Vu, l = m + u. The declaration of the
Components will allow to generate the component oriented fault signature matrix
that will constitute the core of the fault diagnosis algorithm and will allow to identify
which component is faulty. All the declared Relations, 〈rk〉 ∈ R, will be associated
to a component, ci ∈ C. FAST implements the model of each component by means
of a set relations. Therefore, the relations group will provide the association of the
ProcessVars to the Relations and the Relations to Components. For instance,
in Listing 4.1 the relation R01 is declared, which corresponds to the level sensor of the
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LISTING 4.1: Process description in an XML file

<ProcessVars >
<ProcessVar Name=" Flow Input " Symbol="Qp" I n i t =" 0 "/>
<ProcessVar Name=" Flow Input Measured " Symbol="mQp"/>

. . .
</ProcessVars >

<Components>
<Component Name=" Tank1 "/>
<Component Name=" Tank2 "/>

. . .
</Components>

<Rela t ions >
<Rela t ion Name=" R01 " Type=" Sensor ">

<Component>Level Sensor1 </Component>
<ProcessVar >H1</ProcessVar >
<ProcessVarMeasured >mH1</ProcessVarMeasured >

</Relat ion >
. . .

</Rela t ions >

tank 1 component (Tank1) using the Process Variable H1 (H1) which is representing
the actual level of the tank and the measured variable Hm1 (mH1) which is representing
the measured value provided by the sensor. FAST already knows the sensor model
which is instantiated as 〈r1〉 : H1 = Hm1 (noise, precision and other parameters are not
represented for simplicity).

4.2 FAST implementation of the Structural Analysis

In this Section, we are going to introduce the algorithm to perform the structural anal-
ysis implemented in FAST. The algorithm generates: (i) the structural matrix M, (ii)
the perfect matching set (Apm), (iii) the set of analytical redundant relations (RARR),
and (iv) the set of residuals Z and the fault signature matrix F. The algorithm starts
from the representation of the system as a bipartite graph (see Figure 4.1) between the
process variables V and the component relationsR.

Given the system description by the tuple< C,R,V > , as introduced in Section 4.1,
we define A := {aij | ∃ aij : 〈ri〉 → xj} as the set of arcs aij between a relation 〈ri〉 ∈ R
and a process variable xj ∈ V , where the arcs are also represented as aij(ri, xj). Defin-
ing k as the number of identified relations and l the number of variables, the structural
matrix M will have k rows and l columns. The Algorithm 1 builds the structural matrix
M by considering that for each element of the matrix mij ∈M, mij = 1 if ∃aij ∈ A and
mij = 0, otherwise.

The Perfect Matching (PM) algorithm identifies the set of arcs Apm ⊂ A which are
elementary, that is the set of arcs which links uniquely all unmeasured variables to
relations [Blanke et al., 2006]. The PM algorithm is based on initializing Apm with arcs
linking relations corresponding to sensors. The complete PM procedure is presented in
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FIGURE 4.1: Bipartite graph example

1: M:=0
2: for i = 1 to k do
3: for j = 1 to l do
4: if ∃ aij : 〈ri〉 → xj then
5: mij=1
6: end if
7: end for
8: end for

Algorithm 1: Structural matrix algorithm

Algorithm 2, where it is considered that the first m variables are the measured ones and
the last u variables are unmeasured. Similarly, the first s out of l relations correspond
to sensors.

1: Apm = {aij |aij(ri)→ xj ∧ 〈ri〉 ∈ S} {Apm is initialised with sensor relations}
2: for i = s+ 1 to k do
3: for j = m+ 1 to l do
4: if aij(xj) /∈ Apm and aij(ri) /∈ Apm and 〈ri〉 → xj can be explicit then
5: Apm:=Apm ∪ {aij}
6: end if
7: end for
8: end for

Algorithm 2: Perfect Matching algorithm

Typically the perfect matching matrix P is generated from the structural matrix,
using the perfect matching algorithm, and it is represented in the same way than M
but emphasizing every element indicated as mij = 1 corresponding to an arc aij which
belongs to the Apm set. It is said that “the perfect matching is reached” if the number
of arcs in Apm is the same than the number of not measured variables, #Apm = #Vu.
In this case, it is possible to identify which relations are redundant, that is, without any
arc belonging to the perfect matching set.

The relations not employed by arcs in the perfect matching set, that is, non elemen-
tary relations, are the analytical redundant relations RARR. From these relations it is
possible to construct a set of equations Z = {z1, ..., zn} with #RARR = #Z , which
are commonly known as residuals, by writing each redundant relation with all the not
measured variables substituted by the corresponding elementary relations and with
all terms grouped in the left hand side and equal to 0. The Algorithm 3 identifies
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the set of elementary relations required to calculate the residuals, which can be ex-
pressed as: If 〈ri〉 ∈ RARR is a redundant relation, for each 〈ri〉 there will be a set
Rel(〈ri〉) := {〈rj〉|ajk(rj)→ xk, ajk ∈ Apm, i 6= j} of elementary relations which permit
the calculation of the unmeasured variables in the analytical redundant relation 〈ri〉.

for i = 1 to #R do
if 〈ri〉 /∈ Apm then

for j = 1 to n do
Determine_Relations(〈ri〉, aij(xj))

end for
end if

end for

Rec_Function{Determine_Relations}{〈ri〉, aij(xj)}
for k = 1 to #Apm do

for each akj ∈ Apm do
if akj(xj) = aij(xj) ∧ 〈rk〉 /∈ RARR then
Rel(〈ri〉) := Rel(〈ri〉) ∪ 〈rk〉
for k = 1 to n do

Determine_Relations(〈ri〉, akj(xj))
end for

end if
end for

end for
EndFunction

Algorithm 3: Determining the Redundant Relations

If there is any deviation in the measured values which do not match the resulting
residuals model Z , the residuals will deviate from 0. Therefore, by comparing these
residuals with a threshold it is possible to identify that there is a fault. We define the
fault vector f = (f1, .., fn)T as the bits’ vector resulting of comparing all residuals with
the thresholds and putting a 1 if the residual value goes over the threshold and a 0
otherwise.

The Fault Signature Matrix F will then be constructed associating a component to
a residual when a relation belonging to that component participates in the calculation
of the residual. That is, in this matrix, the columns correspond to the components
and the rows to the residuals. When a component has an associated relation which
participates in the calculation of the residual, we put a 1 in the corresponding row for
that residual and a 0 otherwise. To identify that a component is faulty, we compare the
inconsistent residuals indicated as a 1 in the fault vector with the Fault Signature Matrix
by identifying which components are sensitive to that residual. The matching cannot
be implemented comparing directly the fault vector with the column corresponding to
a component since a consistent residual is not conclusive. The activation of a residual
depends on its sensitivity to the fault and the fault magnitude. The consequence is
that more than one component can be identified as faulty. The selection is based on
comparing the obtained inconsistent residuals with respect to the expected for each
component and take the best matching. However, if there are components with very
similar fault signatures in some cases a single identification will not be possible.

FAST is able to perform all the presented analysis and, if working on-line, calculate



Chapter 4. FAST Structural Analysis 49

the residuals continuously, generate the fault vector and compare it with the Fault Sig-
nature Matrix. In this way, the tool is able to detect for some faults if a component of the
process has a problem. When connected to a SCADA, the tool is able to communicate
via OPC the fault to the SCADA system and the SCADA can display this information
in the synoptics. The tool fully deployed is able to monitor multiple processes and
fault diagnosis can be also coordinated between them. In Section 4.4, the algorithms
are presented in a simple example which will illustrate how all the analysis is executed
and which results are generated by FAST when working off-line.

4.3 Evaluating the Residuals

The evaluation process of the residuals to obtain the fault vector has a direct impact
on the diagnosis of the system. The noise, the quality of the models, the quality of the
signals will affect the residual evaluation. In FAST, an adaptive threshold algorithm
has been developed to determine if a residual is ’positive’, that is, the residual it is
indicating a fault, or ’negative’ meaning the a fault cannot be detected for this residual.
This algorithm takes into account the existence of noise in the measurements. For each
residual a window of N samples is defined to calculate the residual standard deviation:

σ =
1

N − 1

√√√√ n∑
i=1

(xi − x) (4.1)

The window works backwards in a sliding window manner, that is, the variance is
calculated from past samples and the current sample is compared. In order to avoid
false positives caused by spikes or artifacts, a number of consecutive samples are com-
pared. The set of samples s = {s0, . . . , sm} is compared with the average signal plus/mi-
nus the standard deviation with a safety factor (5 · σ). When the signal goes over or
under the deviation the residual is signaled ’positive’ indicating that there is a potential
fault. Once the residual is signaled ’positive’, if the signal returns to a nominal value,
after the transition from the deviation mark, the system is reset and a new delay is ap-
plied in order not to include the faulty signal in the calculation of the margins for the
following samples. See Figure 4.2.

The fault signature is then extracted from the residuals which are signaling ’pos-
itive’. The fault vector is composed by each residual, indicating 1 if there is a fault
signaled positive or 0 if not. Each residual is compared for each component in the fault
signature matrix. If there is a 1 in the fault signature matrix for that residual, which
indicates the residual participates in the component function, and this residual is indi-
cating a fault, the component error index is incremented, and it is decremented if there
is no error. In addition, if there is a 0 in the fault signature for that residual/component
and the residual is in error, the error index for that component is decremented. This
increases the distance between two different fault vectors for each component. The im-
portance is given when the fault vector has a “1” more than when has a “0”. Since a “1”
is a strong indication that the fault is detected, while a “0” can be a result of weak fault
detection, i.e., the residuals are not able to capture the fault while the fault is present.

FAST has a parameter which defines how aggressive will be the faulty component
identification. There are several possibilities in presence of an inconsistent residual:

• Pessimistic approach: only identify that a component is faulty if there is only a
single component with the maximum score an this score is maximum with respect
to the fault vector.
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FIGURE 4.2: Residual evaluation

• Medium approach: identify the faulty component if there is only a single com-
ponent with a maximum score even it is not the maximum for the given fault
vector.

• Optimistic approach: identify all faulty components which have a maximum
score even if it is not the maximum for the given fault.

Depending on the utilization of the fault information, the most pessimistic or the
most optimistic approach can be chosen. For instance if FAST is only providing infor-
mation to the plant operator of the faulty component the optimistic approach could be
useful even if more than one component is signaled, however if the information is to
be used for automatic reconfiguration of the system the pessimistic approach would be
more suitable.

4.4 Case Study: The Two-Tank System

The two-tanks system is proposed to verify the Structural Analysis algorithms imple-
mented in FAST as they are commonly used to evaluate the FDI analysis, as for instance
in [Ould Bouamama et al., 2001].

In the two-tank system (see Figure 4.3), we identify the following variables which
are measured and therefore known:

Vm = {Qmp, Qm12, Qm0, Hm1, Hm2, Ump, Umb, Um0}

The prefix m is added to the variable subindex to note that these variables are mea-
sured. In addition, we can identify the following components: C = {pump, flow
sensor1, flow sensor2, level sensor1, level sensor2, valve1, valve2, PI-controller, on-off
controller, tank1, tank2}.
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FIGURE 4.3: The two tanks system

For these components, the following relations are derived in a simplified form for
sake of clarity, without noise and without additional constraints:

1. Pump
Q = a · Uc + b (4.2)

considering the most simple case as a linear relation between the output flow and
the control signal.

Uc = Umc (4.3)

2. Tank. Defining Qi for input flow, Qo for output flow, and H level,

dH

dt
=

1

A
(Qi(t)−Qo(t)) (4.4)

Ḣ =
dH

dt
(4.5)

3. Flow sensor.
Qm = Q (4.6)

without considering error nor adaptation to the measure range of the sensor.

4. Level sensor.
Hm = H (4.7)

without considering error nor adaptation to the measure range of the sensor.

5. Valve.
Qo = Cv ·

√
H (4.8)

being Cv the valve hydraulic coefficient.

6. PI controller.

Uc = Kpi(Hc − hm(t)) +Kii

∫
(Hc − hm(t))dt (4.9)
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7. On-off controller.

Ub =

{
1 if x ≥ P
0 otherwise.

(4.10)

with x as the tank level and P as input parameter indicating the tank level set-
point.

FAST implements the components in a way that just reading the component list and
the relation section from the PDL, all relations are initialised according to the provided
data. According to that, the process variables need to be expanded with the variables
coming from the analytical relations which are unmeasured:

Vu = {Qp, Q12, H1, Ḣ1, H2, Ḣ2, Up, Ub}

In the PDL, the process variables associated to each relation are defined by indicat-
ing the symbol of the process variable. The resulting relations are listed in Table 4.1.
When the PDL is loaded into the FAST tool, the structural matrix, the perfect match-
ing matrix and the residuals are automatically calculated. For the example, applying
Algorithm 1, we obtain the structural matrix. This Table is automatically generated by
the FAST tool in a comma separated values (csv) file which can be directly transferred
into an Excel file.

The software FAST also generates a table indicating which relations form the perfect
matching according to the Algorithm 2 adding an asterisk ‘*’ to the ‘1’ as indicated
in Table 4.2. The Structural Matrix is generated in a file which can be also directly
imported into Excel.
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TABLE 4.1: Component relations

Relation Type Component Variables Description
〈r1〉 Sensor Level Sensor 1 Hm1, H1 Level sensor tank

1
〈r2〉 Sensor Level Sensor 2 Hm2, H2 Level sensor tank

2
〈r3〉 Sensor Flow Sensor Qmp, Qp Flow sensor at

pump output
〈r4〉 Sensor Pump Ump, Up Pump control sig-

nal
〈r5〉 Sensor Valve 1 Umb, Ub Two tanks link-

ing valve control
signal

〈r6〉 Sensor Valve 2 Umo, Uo Tank 2 output
valve control
signal

〈r7〉 Pump Pump Qp, Up Pump action
〈r8〉 PI Con-

troller
PI Controller Hm1, Up PI controller

〈r9〉 Valve2Levels Valve Tanks Q12, H1, H2, Ub Calculated flow
output from the
valve linking the
two tanks

〈r10〉 On-Off
Controller

On-Off Controller Hm2, Ub Controller open-
ing/closing the
linking the two
tanks

〈r11〉 Valve Level Valve 2 Qo, H2, Uo Calculated flow
output from the
tank 2 output
valve

〈r12〉 Tank Tank 1 Qp, Q12, Hm1, Ḣ1 Relation between
flow input/out-
put and tank 1
level

〈r13〉 Tank Tank 2 Qo, Q12, Hm2, Ḣ2 Relation between
flow input/out-
put and tank 2
level

〈r14〉 Derivative Tank 1 H1, Ḣ1 Derivative re-
lation in tank
1

〈r15〉 Derivative Tank 2 H2, Ḣ2 Derivative re-
lation in tank
2
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The FAST tool generates the analytical redundant relations in another file, identify-
ing which of the primary relations from the perfect matching can be used to calculate
the redundant relations. For the example, the redundant relations obtained are indi-
cated in Table 4.3.

TABLE 4.3: Analytical redundancy relations with the associated elemen-
tary relation set

Rel(〈ri〉) Elementary Relations Set
Rel〈r7〉 〈r3〉, 〈r4〉
Rel〈r8〉 〈r4〉, 〈r1〉
Rel〈r12〉 〈r1〉, 〈r14〉, 〈r3〉, 〈r2〉, 〈r5〉, 〈r9〉
Rel〈r10〉 〈r2〉, 〈r5〉
Rel〈r13〉 〈r1〉, 〈r11〉, 〈r2〉, 〈r15〉, 〈r5〉, 〈r6〉, 〈r9〉

TABLE 4.4: Analytical redundancy relations with the associated elemen-
tary relation set from [Ould Bouamama et al., 2001]

Rel(〈ri〉) Elementary Relations Set
Rel〈r12〉 〈r9〉, 〈r14〉, 〈r1〉, 〈r3〉, 〈r2〉, 〈r5〉
Rel〈r13〉 〈r2〉, 〈r1〉, 〈r5〉, 〈r6〉, 〈r11〉, 〈r9〉, 〈r15〉
Rel〈r8〉 〈r4〉, 〈r1〉
Rel〈r7〉 〈r4〉, 〈r3〉

TABLE 4.5: Fault signature matrix

FSM Qmp Hm1 Hm2 Umb Ump Pump Tank 1 Tank 2 Valve Out Valve Tanks
z1〈r7〉 1 0 0 0 1 1 0 0 0 0
z2〈r8〉 0 1 0 0 1 0 0 0 0 0
z3〈r9〉 0 0 1 1 0 0 0 0 0 0
z4〈r12〉 1 1 1 1 0 0 1 0 0 1
z5〈r13〉 0 1 1 1 0 0 0 1 1 1

The Table 4.3 can be compared with the results obtained by Bouamama in [Ould
Bouamama et al., 2001] indicated in Table 4.4. In this work, the Structural Analysis
produced 4 residuals. It is possible to identify quickly that the residuals are the same as
the identified by the FAST tool. The conclusion is that the tool is providing equivalent
results than the previous work which was performed analytically but now applying
the FAST algorithms in a systematic way.

Furthermore, it is important to remark that FAST has found one additional residual
considering the redundant relation < r10 >. This relation is the On-Off controller. The
diagnostic information that can be obtained from this relation is only applicable to a
restricted number of cases. The On-Off controller is a binary signal depending on the
level of the Tank2 and therefore the level process variable H2 is not causal with respect
to this relation and only the control signal Ub can be calculated. Thus only when the
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TABLE 4.6: Fault signature matrix from [Ould Bouamama et al., 2001]

FSM Qmp Hm1 Hm2 Umb Ump Pump Tank 1 Tank 2 Valve Tanks
z1〈r7〉 1 0 0 0 1 1 0 0 0
z2〈r8〉 0 1 0 0 1 0 0 0 0
z3〈r12〉 1 1 1 1 0 0 1 0 1
z4〈r13〉 0 1 1 1 0 0 0 1 1

On-Off controller will be indicating a valve position which is not in line with the level
sensor measured in Tank2 it will be possible to identify a possible fault. However, it
is relevant information which could help to better diagnose a fault and therefore is an
improvement with respect to the residuals identified in the previous work.

Another difference from the previous work is that in order to use the residual de-
rived from the PI relation and obtain a clear fault indication it is not enough to use the
tank level measured variable Hm, as the PI adapts quickly to the error. Instead, the
model variable of the tank level H1 is used. The model variable is obtained from the
relation < r12 > and < r14 >.

From Table 4.3 it is very easy to obtain the Fault Signature Matrix associating each
component with its fault vector, if the component has a relation which is sensitive to
a residual, we place a ‘1’ in the cell of the residual zn crossing the component or ‘0’
otherwise. The Fault Signature Matrix for the example is indicated in Table 4.5.

If the results of the fault signature are compared with the results obtained in [Ould
Bouamama et al., 2001] indicated in Table 4.6, we can see that they are totally equiva-
lent. The only differences are that in the previous work, the Valve Output component
and the additional residual coming from the On-Off controller are not considered but
for the rest of the components and residuals the fault signatures are identical.

As FAST contains the models for each component, it is able to simulate the process
dynamics. Therefore, providing the initial values in the PDL, it is possible to simulate
the process behavior and generate a file which can also be imported into Excel with the
time and the value that each Process Variable takes at that time. In this way, to test the
response of the residual calculation, it is possible to indicate that a component has a
fault, if the fault is additive, multiplicative or a fixed value and the time interval. For
each component, a limited set of faults can be configured depending on the component.
This feature is as well coded in the component.

FAST is able to calculate the residuals by simulating the process. The control setting
for the Tank1 level is 0.8m while the Tank2 level is controlled by the on/off controller, if
the level goes over 0.6m, the valve is closed. The Valve Output is by default closed. For
each analytical redundancy relationRel all associated elementary relations are checked.
When a relation containing a the process variable is found, it is checked if this process
variable can be calculated from that relation, if not, associated relations to this one are
also checked recursively, until a relation is found from which the variable value can be
obtained.

It is possible to force a component fault in simulation during a defined time interval.
In the component section of the PDL, it can be indicated which fault type is forced (ad-
ditive, multiplicative or a fixed value) and the starting and ending times. In this way,
during the simulation, we can obtain the residuals and evaluate the sensitivity of each
residual to the indicated fault. For example, to simulate a fault in the LevelSensor1, an
additive fault of value 0.2 (range is 0 to 2 liters) is indicated for the time interval from
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FIGURE 4.4: LevelSensor_1 error simulation

second 30 to second 50. This will add an offset deviation to the LevelSensor1 output of
0.2m, simulating a fault of the sensor as shown in the Figure 4.4.

From the simulations it has been verified several already known effects, such as that
the noise has a big impact on the fault sensitivity of the residuals. FAST also includes
the capability of defining the sensor precision by adding a white noise in the range
indicated as a parameter in the PDL. For instance, a white noise in the range of 10−2

which is a precision of centimeters in the level sensor causes that the offset deviation
fault is not detected while if the noise is in the range of 10−3 in this case the fault is
clearly visible in the residuals.

Figure 4.5 present the residuals calculated by FAST. Notice that only the residuals
corresponding to the z2, z4 and z5 are sensitive to this fault. This is in accordance with
the Fault Signature Matrix presented in Table 4.5. Note that due to the noise for the
residual z5 is more difficult to detect the fault. This is because the effect of the error in
the LevelSensor1 has a lower effect in the Tank2. The model is using the derivative to
calculate the redundant value of the tank level and the tank level is affected with an
increment near to the noise. This is a fact to consider when evaluating the residuals,
if the variations of the process variables due to a fault are near the to the noise or to
the precision of the sensor it will be difficult to use this residual to identify a fault. The
determination of the magnitude of the fault with respect to the sensitivity of a residual
is already studied in FDI. The Diagnosis Model Processor [Petti, Klein, and Dhurjati,
1990], for instance, has been proposed which performs an analysis of fault sensitivity
with respect to the model in real-time. This method could be incorporated by FAST to
improve the the fault identification process. Note also that the artifacts on second 68 on
the residuals are due to the closure of the valve between the two tanks when the Tank2

reaches the target level.
FAST will calculate the fault vector by comparing the residuals with a threshold.



58 Chapter 4. FAST Structural Analysis

(A) Residual z1 (B) Residual z2

(C) Residual z3 (D) Residual z4

(E) Residual z5

FIGURE 4.5: LevelSensor1 fault residuals

Each residual with a value over the threshold will imply a ‘1’ in the corresponding posi-
tion in the vector. For the considered fault scenario, the fault vector is f1 = (0, 1, 0, 1, 1)T .
This vector is compared with the Fault Signature Matrix. In this case, the result matches
completely with the column of the Level Sensor_1 fault. Therefore the faulty compo-
nent is the set Cf1 = {LevelSensor1}.

A second fault is simulated in the LevelSesor2 by forcing a value 0 in the same
interval from second 30 to 50. The simulation output is indicated in Figure 4.6. In this
case, the residuals sensitive to the fault according to Table 4.5 are z3, z4 and z5. In the
Figure 4.7, we can see the residuals as calculated by FAST when simulating this fault.
The noisy residual is z4, as it is less sensitive to this fault. The fault vector will be
f2 = (0, 0, 1, 1, 1)T which according to the Fault Signature Matrix, it matches with the
LevelSensor2 and the On-Off controller. Therefore for this fault, the faulty component
is the set Cf2 = {LevelSensor2, On−Off_controller}.
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FIGURE 4.6: LevelSensor_2 error simulation
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(A) Residual z1 (B) Residual z2

(C) Residual z3 (D) Residual z4

(E) Residual z5

FIGURE 4.7: LevelSensor2 fault residuals



Chapter 5

FAST Distributed FDI

FAST has been designed as a tool to aid in the fault diagnosis design of complex indus-
trial systems and provide a systematic implementation process. As the tool is able to
identify the analytical redundancies early in the design phase, it helps the process en-
gineer to decide the architecture of the system and for instance add or remove sensors
or hardware redundancies to increase the FDI capabilities and eventually the reliabil-
ity of the system. An update of the tool has been implemented to allow partitioning of
complex systems into more simple subsystems by following the component coupling
criteria. This characteristic will aid the process engineer to distribute among different
processors the FDI diagnosers in a complex large scale industrial system. There are
several motivations which could request the implementation of distributed FDI. Just to
mention a few:

• A very complex system with many different components, which make solving
the FDI process a too complex computation task for one single processor.

• A physically distributed system with several processors located in different re-
mote sites but physically interconnected, and therefore sharing FDI process vari-
ables.

• A system with well identified subsystems which are controlled by different pro-
cessors in a process plant.

In addition, the criteria for the partitioning of such systems into subsystems can be
also selected by several factors: the proximity between the different components, which
could be associated to a cost function; the physical implementation of the connections
between components and processors; the physical distribution of the process.

In this chapter, we will propose a method to partition a complex industrial system
based on the concept of components coupling with the aim to implement distributed
FDI. The coupling between components will be defined in Section 5.1 where also the
partitioning of the system and residuals calculation for FDI analysis are introduced.
The Section 5.2 explains how by assigning a supervision agent for each subsystem,
the complex distributed FDI networked multi-agent system is generated. In Section
5.3, it is explained how the residuals calculation is changed to adapt to the possibil-
ities of sharing the values of the local relations among several connected Supervisor
Agents aiding to resolve the distributed diagnosis problem. In Section 5.4, it is briefly
discussed how the time affects to the residual calculation, since when the FDI is dis-
tributed in a network, the communication delays are not negligible. Finally in Section
5.5, an example based on a water distribution system will be used to illustrate the use
of FAST for implementing a distributed FDI system.

61
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FIGURE 5.1: Component fault detectability definition example

5.1 Partitioning a System

FAST proposes the partitioning of the system from the information provided by the
Fault Signature Matrix. The Fault Signature Matrix F = {fi,j} indicates the relation of
the residuals (rows) with the process components (columns). A value fi,j = 1 indicates
that the residual i is sensitive to a fault in the component j. Hence, when the residual
evaluation is not zero, we can identify that all components with fi,j = 1 in the i-th
row of the residual are affected. This association can be established because residuals
are calculated by using the redundant relations RARR and all relations are associated
uniquely to a component as indicated above.

Definition 6 A fault in the component cj is defined as detectable by means of a residual zi
when fi,j = 1 in the Fault Signature Matrix F.

In FAST, the detectability of a component fault by means of a residual is determined
by checking whether the elementary relation of the component has been used to gener-
ate the analytical redundancy relation associated to the residual. Thus, if 〈ri〉 ∈ RARR
is a redundant relation and Rel〈ri〉 is the set of elementary relations associated to that
relation 〈ri〉 and Rcomp〈cj〉 is the set of relations associated to a component, a fault in
the component cj is detectable using the residual zi if there is a process variable vk
which is common to at least in one relation fromRel〈ri〉 andRcomp〈cj〉.

In the Figure 5.1, the components set C={c1, c2, c3}, the set of relations R={r1, ..., r6}
and the set of process variables V={v1, ..., v9} can be identified. Let us consider that the
structural analysis concluded that the residual z1 is obtained by combining the elemen-
tary relations r1 and r4. Then, faults in components c1, c2 and c3 will be detectable by
means of this residual, as they share the variables v1, v2, v3 and v6 which participate in
relations r1, r2, r4 and r5 associated to the these components.

Definition 7 A component cj is defined as coupled with a component ck, with respect to
a set of residuals Zc = {zn, ..., zl} if faults in both components are detectable in one or more
residuals of the set Zc. Hence, two components are coupled with respect to the residual
zi ∈ Zc if fi,j = 1 and fi,k = 1.

The coupling property could be also quantified. That is, by calculating the Ham-
ming distance ⊕ between the fault signatures associated to one or more components
with respect to a residual subset, we can determine the coupling level between the
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component with respect to this subset. For example, if the Hamming distance of a com-
ponent fault signature with respect to all faulty components detectable by the residuals
from one set is 3 and from another residual subset is 1, we can say that this component
is more coupled with respect to the second set than with respect to the first one. For-
mally, if fc is the fault vector of a component and Zc is a residual subset, we define the
function ζ(c,Zc) as:

ζ(c,Zc) =
1

1
n

∑
{fc ⊕ fj}

(5.1)

being fj , j = 1, . . . , n the fault signatures of the components detectable by the resid-
ual subset Zc, and fc the fault signature associated to the component c.

This definition is trivial for two components which are detectable by the same resid-
uals. However, it is more relevant in the case that there is a group of components
detectable only by a specific subset of residuals, which means that they are coupled be-
tween them but not coupled with another subset. In addition, this definition will help
to determine the subsystem to which those components which are coupled to more
than one residuals subset will be assigned by quantifying the level of coupling and
assigning the components to the subsystem with a higher coupling level.

Definition 8 Two components are defined as independent with respect to the set of resid-
uals Zd if they are not coupled with respect all the residuals in this set. That is, a component
ci, where fi,j = 1 is independent of a component ck, if there is not any fi,k = 1 for any residual
zi ∈ Zd.

Once the Fault Signature Matrix F is obtained for a process, it is possible to group
the residuals by considering the coupling between components. If we sort the columns
(the components) of F by moving to the left the columns where there is a value “1”
in the rows from top to down, and then we sort the rows (the residuals) in the same
way by moving up the residuals which have a value “1” from left to right and so on,
we will finally obtain the components and residuals sorted in a way that there are
components only detectable by a specific subset of residuals (see Algorithm 4). In fact,
we are grouping components which are coupled according to Definition 2.

Definition 9 A group of components Ca is defined as independent from another group of
components Cb if all the components in Ca are independent from any component in Cb. That
is, there are no components which are detectable by the residuals in the group Ca and Cb at the
same time.

This definition helps to identify groups of components which are totally indepen-
dent. These groups do not share any relation or process variable and therefore can be
diagnosed locally. All information to implement the FDI diagnoser is self-provided by
the components in the group. These groups will originate the candidates to be defined
as subsystem.

Definition 10 A shared component is defined as a component which is coupled to two or
more components from different independent groups.

It is easy to deduce that independent component groups could be partitioned into
subsystems, and consider only the residuals affecting to those subsystems. However, as
the subsystems have relations which share process variables, there will be component
faults affecting residuals from more than one subsystem. For these shared components,
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it is possible to join them to any of the independent groups to which they are coupled.
Nevertheless, we propose to use the coupling level to assign the shared components
as per Definition 2. We identify the set of components as Ca, and Za is the set of resid-
uals that is able to detect faults in this set of components Ca. On the other hand, we
have Cb and Zb corresponding to another set of components detectable by means of
a different set of residuals, and the set Ca is independent from Cb as per Definition 4.
We calculate the coupling level of cs with respect Ca and Cb by solving ζ(cs,Za) and
ζ(cs,Zb). Therefore, we will join the shared components to the component group for
which the resulting coupling level value is maximum. That is, the sum of the Hamming
distances between the shared components and all the components from the indepen-
dent group is minimum. The fact of using the coupling level results on a definition
of partitions which minimizes the interdependencies between subsystems. The diag-
noser for subsystems with shared components will calculate the residuals involving
these components and will share the value of the process variables to other diagnosers.

1: {Sort columns}
2: for i = 1 to #Z do
3: for j = 1 to #C do
4: if fij = 1 then
5: swap(cj , cj+1)
6: end if
7: end for
8: end for
9: {Sort rows}

10: for j = 1 to #C do
11: for i = 1 to #Z do
12: if fij = 1 then
13: swap(zi, zi+1)
14: end if
15: end for
16: end for
17: EndFunction

Algorithm 4: FDI subsystem partitioning algorithm.

Once the structural analysis of the full process is performed, FAST has the capa-
bility of pre-processing the Fault Signature Matrix of the full process, identifying the
independent and shared component groups and partitioning them into subsystems ac-
cording to the definitions provided above. Thus, from the set of components C, there
will be n subsets of components. Each subsystem will be monitored by a “local” di-
agnoser which in FAST is implemented by a Supervisor Agent. Therefore, FAST will
create an instance of a Supervisor Agent for each subsystem. When a value of a variable
is required to calculate a residual and this variable cannot be obtained from the local
set, the Supervisor Agent will request this value to the neighbor Supervisor Agent in-
stances and will use this value to solve the diagnosis, that is, to calculate the observed
fault signature.

In the distributed implementation of the fault diagnosis system, not all relations
can be solved locally. Therefore, the algorithm needs to take into account if a relation
can be solved locally or not, and if it cannot be solved locally request the calculation to
a remote Supervisor Agent in which the relation can be solved. All Supervisor Agents
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implement a function to check whether they are the “owner” of the relation. A Super-
visor Agent is the owner of a relation if the relation is associated to a local component.
In case that the agent is not the owner, it will send a message to the Supervisor Agent
for which the associated component is local and will wait for the response with the
result of the relation calculation. This functionality is implemented by the function
Remote_Calculate (see Algorithm 5).

Function{Calc_From_Relation}{vj , 〈ri〉}
for each 〈rk〉 ∈ Rel(〈ri〉) do

if vj ∈ Vk then
if IsLocal(〈rk〉) then
result=Calculate(〈rk〉, vj)

else
result=Remote_Calculate(〈rk〉, vj)

end if
end if

end for
EndFunction

Algorithm 5: Calculating the residuals in a distributed FDI.

5.2 Distributed Supervisor Agents

There are several network architectures to define a multi-agent system. Although ba-
sically they can be split in two groups: the hierarchical distribution, where there is a
higher level entity which communicates with the entities of the lower level and pro-
vides an encapsulated view to higher level entities, and the decentralized approach
(peer to peer) where each entity is at the same level and communicates with the imme-
diate neighbors. In this work, we have chosen the decentralized approach, since it has
several well known advantages:

• There exist less implementation dependencies, that is, if the agents act in a hier-
archical level the information flow needs to be structured in the same way at each
level.

• It is less sensitive to modifications, the agent only know their neighbors and any
change beyond its immediate vicinity will not have any effect.

• The computation complexity is maintained linear, each agent will have an equiva-
lent computation complexity while in a hierarchical organization, the upper level
entity will require a higher computation complexity depending on the number of
child.

• The same agent implementation can be used for the diagnostic of all subsystems.

The hierarchical approach, however, has the advantage that a services directory can
be made available and the agents could query the required services from other agents
from this directory service in run-time, while in the pure decentralized approach the
interfaces with the surrounding agents need to be known in advance at design-time or
the agents should use broadcast messages.

In [Console, Picardi, and Theseider Dupré, 2007], an example of architecture is pre-
sented; although the authors indicate that the architecture is decentralized, a higher
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LISTING 5.1: Agents definition in the PDL file

<Agents>
<Agent name="SA1@SRV01"
opc_server=" Matrikon .OPC. Simulat ion . 1 "/>
<Agent name="SA2@SRV01"
opc_server=" Matrikon .OPC. Simulat ion . 1 "/>
</Agents>

level Supervisor entity is required to coordinate the Local Diagnosers of all subsystems.
In FAST there is no need of a single Supervision system, since all diagnosers work in the
JADEX multi-agent system based on the architecture proposed in [Wooldridge, 1992]
and are self sufficient to perform the diagnosis of the corresponding subsystems. How-
ever, in order to implement a human-machine interface where the diagnosis results
can be provided human readable, FAST implements the OPC client interface which
is able to communicate with a SCADA system. The SCADA system does not need
to be unique, since each Supervisor Agent is configured to communicate to a specific
SCADA. In the same way, the Supervisor Agents in FAST read the subsystem signals
through this OPC interface. The OPC interface requires an OPC Server which imple-
ments the physical communications with the controllers and sensors of the subsystem.
All this information is provided in the PDL file, which is loaded when the agent is
instantiated (see Listing 5.1). Therefore, each PDL contain only the components and
relations of the immediate neighbors, with normally different PDL for each Supervisor
Agent as the neighborhood of each agent is different.

With FAST, the analysis of the system and its partition into subsystems is performed
at design time. Thus, this information is used to define the system architecture and
deploy the OPC servers according to the subsystem partitions. Each Supervisor Agent
requires local access through its associated OPC Server to the measured variables of
the associated components.

The Supervisor Agents run in a Java Virtual Machine, providing almost total inde-
pendence of the target computer operating system and hardware. The agent names
in the PDL provide the server address embedded in the name (see Listing 5.1) as the
right part after the ‘@’ symbol. This is a standard agent naming convention and al-
lows the JADEX platform to connect to remote agents residing in other Java Virtual
Machines connected in a network. This architecture allows a large number of possi-
ble configurations, with some agents running in the same Java Virtual Machine, some
agents running in the same computer but in separated Java Virtual Machines (or Virtual
Servers) or agents running remotely in several computers connected through Internet.

5.3 Agent Request of an External Residual Calculation

To calculate the residuals in a distributed configuration, the Supervisor Agent will im-
plement the Remote_Calculate_Relation_Plan which will be activated when a request
from other agent is received to calculate a relation involving local components and pro-
vide the resulting value to the message originator agent. The receiver will be able to
complete the calculation of the fault vector and compare it with the local portion of
the Fault Signature Matrix. However, it should be taken into account, that in the most
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LISTING 5.2: Components associated to the Supervision Agent in the
PDL

<Components>
<Component Name=" Tank1 " Tag_Error=" TK_1001_01_ERR "
agent="SA1" />
<Component Name=" Tank2 " Tag_Error=" TK_1002_01_ERR "
agent="SA1"/>
<Component Name=" Tank3 " Tag_Error=" TK_1003_01_ERR "
agent="SA2"/>
<Component Name=" Tank4 " Tag_Error=" TK_1004_01_ERR "
agent="SA2"/>
. . .

</Components>

FIGURE 5.2: Complex distributed FDI.

complex case, the second Supervisor Agent might require access to another agent to
calculate the relation, depending on the complexity of the system (see Figure 5.2) .

5.4 Time Constraints

In a distributed configuration, a special attention must be given to the communication
delays. A misalignment of the values obtained from different Supervision Agents dis-
tributed in far locations can cause false alarms just because old and new samples are
mixed and cause the residual to evaluate different from 0 [Blesa et al., 2014].

Initially, the proposed architecture is feasible in soft-real time processes. Normally,
the set OPC Server and SCADA has a sample time in the order of the second. Just by
this restriction the level of concern about communication delays is minor. Clearly, the
processes supervised should have a cycle time much higher. On the other hand, the
computation cycle of the residual evaluation by the Supervisor Agent is also defined in
the order of a second.
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FIGURE 5.3: Water distribution example.

Therefore, in order to be able to detect time misalignments between among consol-
idated diagnosis data from several Supervisor Agents, all information exchanged shall
provide the time signature and all nodes should be synchronized periodically to avoid
time deviations over the sampling period. Although this is a transversal problem and
well identified in distributed systems, it has implementation implications in the for-
mat of the messages exchanged between Supervision Agents and the requirement of
considering the synchronization between nodes when deploying the architecture.

5.5 A Water Distribution Example

Consider the system presented in Figure 5.3. After processing the corresponding PDL
with the FAST Analysis Tool and performing the structural analysis we can identify 32
different relations, 34 process variables and 21 components. The resulting fault signa-
ture matrix F is indicated in Figure 5.4. In F, we can identify that there are 11 residuals
Z = {z1, ..., z11}. After applying the partitioning algorithm based on the components
coupling, the resulting fault signature matrix is indicated in the Figure 5.5. In this ma-
trix, we can identify two independent groups of components which are candidate to
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be subsystems: Ca ={c1, c10, c12, c14, c4} and Cb = {c11, c13, c16, c2, c6, c9, c7, c21, c17, c19}.
In addition, we can identify a group of shared components Cs ={c8, c5, c20, c15, c18, c3}.
The shared components set Cs correspond to the group of sensors, controller and valve
belonging to the Tank 2 and the Flow Sensor 3 placed at the output of the system. This
result is logic, since the partitioning in this case is quite trivial just looking at the sys-
tem diagram. The variable which relates the two subsystems is the output flow which
is measured by the Flow Sensor 3. Therefore, just by knowing the flow from one of the
branches through the Flow Sensor 3, the flow of the other branch can be determined.

To assign the shared components, FAST calculates the coupling level but now tak-
ing into account the subsystem candidates. That is, by defining two residual subsets
Za = {z1, z4, z2, z5, z3} and Zb = {z11, z10, z9, z7, z6, z8}, we can identify which compo-
nents are with a higher coupling with respect to each residuals subset, as indicated in
Definition 2:

ζ(c8,Za) = 0.42 and ζ(c8,Zb) = 0.32

ζ(c3,Za) = 0.36 and ζ(c3,Zb) = 0.48

resulting that components c8, c5, c20, c15, c18 have a higher coupling level with respect
to Ca and c3 has a higher coupling level Cb. With these results, we can finally assign
the components to the two subsystems identified:

• C ′a ={c1, c10, c12, c14, c4, c8, c5, c20, c15, c18}

• C ′b = {c11, c13, c16, c2, c6, c9, c7, c21, c17, c19, c3}

This information is fed into the PDL by defining the subsystems as Supervisor
Agents and identifying for each component to which Supervisor Agent is assigned
(see Listing 5.1 and Listing 5.2).

Therefore for this example, two Supervisor Agents will be instantiated: the SA1 will
identify as local the components set C ′a and the SA2 will identify as local the compo-
nents set C ′b. For this case, there will be only one interface between them, although in
more complex cases there might be multiple supervisor agents with multiple interfaces.
In this case, the PDL will be the same for each agent as they contain the components
and relations of the immediate neighbors.

Each agent executes periodically the plan Calculate_Residuals_Plan which evalu-
ates all residuals to which the local components are detectable, note that the other
residuals do not provide useful information, as they do not belong to the supervised
subsystem. In the example, the SA1 calculates the residuals Za = {z1, z4, z2, z5, z3}
plus z11. The residuals from Za can be solved locally. However, the residual z11 re-
quires to calculate some relations which are remote (r32, r20, r26, r17). These relations
are requested to be solved by the SA2.

At the same time, the Supervisor Agent SA2 will be as well executing the same
plan. For the SA2, the residuals which can be solved locally are z9, z7, z6 and z8 while
z10 and z11 require that some relations are solved by the Supervisor Agent SA1.

In this application example, the two agents SA1 and SA2 run in the same Java Vir-
tual Machine and access to the same OPC server connected to the Proficy iFix SCADA.
The values are provided by the FAST Simulator which communicates as well with the
OPC server but providing the values that should be obtained from the physical pro-
cess. With this configuration, it is very easy to test the diagnosibility of the system and
modify its configuration to increase it. In this case, by adding the residuals z19 and
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FIGURE 5.4: Resulting Fault Signature Matrix F.

FIGURE 5.5: Fault signature matrix after applying the partitioning algo-
rithm.

z11 to the Fault Signature Matrix of the Subsystem SA1, we increase the capability of
identifying the faulty component. For instance, the Hamming distance between the
fault signature corresponding to fc18 and fc3 without the additional residuals is 1 and
with the additional residuals is 2. The addition of these residuals, however, forces the
supervisor agent SA1 to request the value for some of the relations to the SA2.
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Conclusions and Recommendations

6.1 Conclusions

Through the development of this work, it has been possible to demonstrate that the
Structural Analysis is a valuable technique to obtain fault diagnosis information, which
can be used in real-time to perform on-line fault diagnosis. The utilization of this tech-
nique, facilitated by a tool which automates the analysis and implementation process,
approaches its systematic application to the industry. The FDI analysis should be estab-
lished as a mandatory step in the design of automated industrial processes providing
feedback to the design, components and topology with the final objective of increas-
ing the process reliability and safety. On the other hand, the deployment of FDI inte-
grated in the SCADA supervision system and using as a support the software agents
architecture, it has been also proven as a feasible and a worthy way of implementing
distributed fault diagnosis. The proposed FAST tool provides an easy path from the de-
sign phase to the implementation phase by using the same source of information. The
tool used connected to the process, provides the possibility of feeding the FDI infor-
mation directly to the SCADA supervision software, where the fault diagnosis results
can be presented directly in the synoptic together with the rest of the supervision in-
formation. Furthermore, the analysis presented can be extended to other application
environments beyond the classic industrial process. The simulation part could be di-
rectly reused for any complex system, just by incorporating the component models in
FAST, and the same concept of feeding the real-time diagnosis with the information
utilized in the design phase could be also reused by adapting the residual evaluation
algorithms to any target environment.

6.2 Future Work

6.2.1 FAST in Switched Affine Systems

Almost all systems mix discrete-event and continuous modes of operation behaving
as hybrid systems. The design of control algorithms is progressively incorporating the
possibility of mode changes due to discrete-events which cause to reconfigure the sys-
tem and requires the adaptation of the control system to the new mode. The way these
discrete events and mode changes are incorporated into the Structural Analysis and
their effects on the residuals calculation should be evaluated. It should be also evalu-
ated the possibility that FAST implements the functionality to manage these discrete-
events mode changes incorporating the changes into the models used for the residu-
als calculation and therefore generalize the fault diagnosis capability beyond only one
mode of operation.
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6.2.2 FAST Extension to Hybrid Systems

As commented in the introduction part of this thesis, in the space sector almost all
systems are critical. Beyond the implementation during the design phase of the FMEA
analysis and incorporating hardware redundancy to avoid that any single failure causes
a mission loss, there are a lot of possibilities to incorporate analytical redundancy and
the proper Structural Analysis to provide in real-time information about faults. Even
though the detailed analysis and all hardware redundancy, fault detection and isola-
tion continue being a problem for satellite systems. The faults are detected late and it
is easy that there is not enough information to identify uniquely the faulty component.
For instance, if there is an over-temperature detection by a sensor in one of the space-
craft subsystems, the autonomous reaction will be to switch-off this system which can
be the scientific payload which carries out the major function in terms of science result
in the spacecraft. However, it is possible that the faulty component is not the payload
but the temperature sensor chain. The structural analysis proposed by FAST and the
modeling of the spacecraft components at low level can prevent these problems by
identifying where sensor redundancy is required and using the analytical redundancy
improve the fault identification, eventually improving the science return. The appli-
cation of FAST to this projects in the implementation phase would be straight forward
by using the FAST simulation capabilities. However, the deployment in a real system
would require to move the implementation of the on-line supervision to a real-time
embedded environment, with lack of the possibility of using a software agents frame-
work. This is a considerable task in terms of time and effort but affordable and in fact
the resulting software could be reused among several projects.

6.2.3 FAST in MELiSSA

The deployment of FAST in the MELiSSA Pilot Plant is an interesting exercise, more if
the fact that it was the inspiring project for the development of this work is considered.
However, the major interest to incorporate FAST to the supervision system would be
to include the process model as an additional component as part of the FDI analysis.
That is, apart from considering for the FDI analysis the ancillary components (pumps,
valves, sensors, etc.) the biological process model for the MELiSSA bio-reactors could
be also incorporated providing additional fault diagnosis information. For instance, the
compartment CIVa is a photo-trophic compartment, which means that the algae culture
in the bio-reactor needs light energy to perform the photosynthesis. The metabolic
model of the algae, which is the Spirulina Platensis, is known and therefore the model
of growth rate of the biomass, related to the light energy and the nutrients compounds
concentration, can be calculated. As the biomass concentration is also measured it
would be possible by adding this process information to the fault diagnosis model to
detect faults also related with the biological process. On the other hand, the MELiSSA
Pilot Plant is a real distributed process, as it has different bio-reactors interconnected.
The system would benefit of the capability of FAST to implement distributed diagnosis.
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A.1 The Process Definition File

The definition of the Process and Instrumentation Diagram (P&ID) is a common step
in industrial processes design. In fact, the diagram is the result of the design, where the
topology, the components and the control are indicated. The diagram will be used by
the process engineers to implement the actual process. It is from this diagram that FAST
can obtain the information to start the FDI analysis generating the Process Definition
File (PDL).

A.1.1 Generation of the PDL

Any process can be represented with a PDL. The only pre-condition is that the models
of the components are available. In case that a model has to be incorporated to FAST
see Appendix B.

As defined in Section 3.1, the PDL is composed of:

• Process Variables

• Components

• Relations

In order to describe the process of creating a PDL the example of the two-tanks
system will be used. A simple representation of the P&ID is indicated in Figure A.1.

The PDL can be generated with any plain text processor or XML editor. To start
the generation of the PDL we need to identify the components which participate in the

FIGURE A.1: Two-tanks process example
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process. For the example the list of components with the relations corresponding to the
component models is indicated in the listing A.1.

1. Pump Considering the most simple case as a linear relation between the output
flow and the control signal:

Q = a · Uc + b (A.1)

Uc = Umc (A.2)

2. Tank Defining Qi for input flow, Qo for output flow, and H level:

dH

dt
=

1

A
(Qi(t)−Qo(t)) (A.3)

Ḣ =
dH

dt
(A.4)

3. Flow sensorç For flowQ, without considering error nor adaptation to the measure
range of the sensor:

Qm = Q (A.5)

4. Level sensor Without considering error nor adaptation to the measure range of
the sensor:

Hm = H (A.6)

5. Valve Being Cv the valve hydraulic coefficient:

Qo = Cv ·
√
H (A.7)

6. PI controller
Uc = Kpi(Hc − hm(t)) +Kii

∫
(Hc − hm(t))dt (A.8)

7. On-off controller.

Ub = { 1 if x ≥ P
0 otherwise

(A.9)

with P as input parameter.

The corresponding representation in the PDL is indicated in the listing A.1:

LISTING A.1: PDL of the two-tanks example
1 <?xml vers ion=" 1 . 0 " encoding="UTF−8" ?>
2 <Process >
3 <ProcessVars >
4 <ProcessVar Name=" Flow Input " Symbol="Qp" I n i t =" 0 " Units="m3/s " Tag=" FTE_1001_01 "/>
5 <ProcessVar Name=" Flow Input Measured " Symbol="mQp" Units="m3/s " Tag=" FT_1001_01 "/>
6 <ProcessVar Name=" Tank1 Level " Symbol="H1" Units="m" I n i t =" 0 . 2 " Tag=" LSE_1001_01 "/>
7 <ProcessVar Name=" Tank2 Level " Symbol="H2" Units="m" I n i t =" 0 . 2 " Tag=" LSE_1002_01 "/>
8 <ProcessVar Name=" Tank1 Level Measured " Symbol="mH1" Units="m" Tag=" LS_1001_01 "/>
9 <ProcessVar Name=" Tank2 Level Measured " Symbol="mH2" Units="m" Tag=" LS_1002_01 "/>

10 <ProcessVar Name=" Flow Tank1 to Tank2 " Symbol="Q12" Units="m3/s " I n i t =" 0 " Tag=" FTE_1001_02 "/>
11 <ProcessVar Name=" Flow Tank2 out " Symbol="Qo" Units="m3/s " I n i t =" 0 " Tag=" FTE_1002_01 "/>
12 <ProcessVar Name=" Tank1 Level Delta " Symbol="dH1" Units="m" I n i t =" 0 "/>
13 <ProcessVar Name=" Tank2 Level Delta " Symbol="dH2" Units="m" I n i t =" 0 "/>
14 <ProcessVar Name=" Control S igna l " Symbol="Up" Units=" " I n i t =" 0 "/>
15 <ProcessVar Name=" Control S igna l Measured " Symbol="mUp" I n i t =" 0 " Units=" " Tag=" PP_1001_01 "/>
16 <ProcessVar Name=" Valve Tank1 to Tank2 " Symbol="Ub" Units=" " I n i t =" 1 "/>
17 <ProcessVar Name=" Valve Tank1 to Tank2 Measured " Symbol="mUb" Units=" " I n i t =" 0 " Tag=" VT_1001_01 "/>
18 <ProcessVar Name=" Valve Tank2 output " Symbol="Uo" Units=" " I n i t =" 0 "/>
19 <ProcessVar Name=" Valve Tank2 output Measured " Symbol="mUo" Units=" " I n i t =" 0 " Tag=" VT_1002_01 "/>
20 </ProcessVars >
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21 <Parameters >
22 <Parameter Name=" SampleTime " Value=" 1 . 0 "/>
23 </Parameters >
24 <Components>
25 <Component Name=" Tank1 " Tag_Error=" TK_1001_01_ERR "/>
26 <Component Name=" Tank2 " Tag_Error=" TK_1002_01_ERR "/>
27 <Component Name="Pump" Tag_Error=" PP_1001_01_ERR "/>
28 <Component Name=" PI C o n t r o l l e r " Tag_Error=" PI_1001_01_ERR "/>
29 <Component Name=" Valve Tanks " Tag_Error=" VT_1001_01_ERR "/>
30 <Component Name=" Valve Output " Tag_Error=" VT_1002_01_ERR "/>
31 <Component Name=" Level Sensor1 " Tag_Error=" LS_1001_01_ERR "/>
32 <Component Name=" Level Sensor2 " Tag_Error=" LS_1002_01_ERR "/>
33 <Component Name=" Flow Sensor1 " Tag_Error=" FT_1001_01_ERR "/>
34 <Component Name="On/Off C o n t r o l l e r " Tag_Error=" CT_1002_01_ERR "/>
35 </Components>
36 <Rela t ions >
37 <Rela t ion Name=" R01 " Type=" Sensor ">
38 <Component>Level Sensor1 </Component>
39 <ProcessVar >H1</ProcessVar >
40 <ProcessVarMeasured >mH1</ProcessVarMeasured >
41 <Prec i s ion >0.001 </ Prec i s ion >
42 </Relat ion >
43 <Rela t ion Name=" R02 " Type=" Sensor ">
44 <Component>Level Sensor2 </Component>
45 <ProcessVar >H2</ProcessVar >
46 <ProcessVarMeasured >mH2</ProcessVarMeasured >
47 <Prec i s ion >0.001 </ Prec i s ion >
48 </Relat ion >
49 <Rela t ion Name=" R03 " Type=" Sensor ">
50 <Component>Flow Sensor1 </Component>
51 <ProcessVar >Qp</ProcessVar >
52 <ProcessVarMeasured >mQp</ProcessVarMeasured >
53 <Prec i s ion >0.000001 </ Prec i s ion >
54 </Relat ion >
55 <Rela t ion Name=" R04 " Type=" Sensor ">
56 <Component>Valve Tanks</Component>
57 <ProcessVar >Ub</ProcessVar >
58 <ProcessVarMeasured >mUb</ProcessVarMeasured >
59 </Relat ion >
60 <Rela t ion Name=" R05 " Type=" Sensor ">
61 <Component>Valve Output</Component>
62 <ProcessVar >Uo</ProcessVar >
63 <ProcessVarMeasured >mUo</ProcessVarMeasured >
64 </Relat ion >
65 <Rela t ion Name=" R06 " Type=" Sensor ">
66 <Component>Pump</Component>
67 <ProcessVar >Up</ProcessVar >
68 <ProcessVarMeasured >mUp</ProcessVarMeasured >
69 </Relat ion >
70 <Rela t ion Name=" R07 " Type="Pump">
71 <Component>Pump</Component>
72 <ProcessVarFlow >Qp</ProcessVarFlow >
73 <ProcessVarControl >Up</ProcessVarControl >
74 <Gain>1</Gain>
75 <Offset >0</ Offset >
76 </Relat ion >
77 <Rela t ion Name=" R08 " Type=" Control lerPID ">
78 <Component>PI Contro l ler </Component>
79 <ParamKi>5e−6</ParamKi>
80 <ParamKp>1e−3</ParamKp>
81 <ProcessVarControl >Up</ProcessVarControl >
82 <ProcessVarMeasured >mH1</ProcessVarMeasured >
83 <SetPoint >0.8 </ SetPoint >
84 </Relat ion >
85 <Rela t ion Name=" R09 " Type=" Control lerOnOff ">
86 <Component>On/Off Contro l ler </Component>
87 <ProcessVarControl >Ub</ProcessVarControl >
88 <ProcessVarMeasured >mH2</ProcessVarMeasured >
89 <HighLimit >0.6 </ HighLimit >
90 <LowLimit >0.1 </LowLimit>
91 </Relat ion >
92 <Rela t ion Name=" R10 " Type=" Valve2Levels ">
93 <Component>Valve Tanks</Component>
94 <ProcessVarFlow >Q12</ProcessVarFlow >
95 <ProcessVarLevel1 >H1</ProcessVarLevel1 >
96 <ProcessVarLevel2 >H2</ProcessVarLevel2 >
97 <ProcessVarControl >Ub</ProcessVarControl >
98 < C o e f f i c i e n t >1.596E−4</C o e f f i c i e n t >
99 </Relat ion >

100 <Rela t ion Name=" R11 " Type=" ValveLevel ">
101 <Component>Valve Output</Component>
102 <ProcessVarFlow >Qo</ProcessVarFlow >
103 <ProcessVarLevel >H2</ProcessVarLevel >
104 <ProcessVarControl >Uo</ProcessVarControl >
105 < C o e f f i c i e n t >1.596E−4</C o e f f i c i e n t >
106 </Relat ion >
107 <Rela t ion Name=" R12 " Type=" Der ivat ive ">
108 <Component>Tank1</Component>
109 <ProcessVar >H1</ProcessVar >
110 <ProcessVarDerivat ive >dH1</ProcessVarDerivat ive >
111 </Relat ion >
112 <Rela t ion Name=" R13 " Type=" Der ivat ive ">
113 <Component>Tank2</Component>
114 <ProcessVar >H2</ProcessVar >
115 <ProcessVarDerivat ive >dH2</ProcessVarDerivat ive >
116 </Relat ion >
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117 <Rela t ion Name=" R14 " Type=" Tank ">
118 <Component>Tank1</Component>
119 <ProcessVarDeltaLevel >dH1</ProcessVarDeltaLevel >
120 <ProcessVarFlowIn >Qp</ProcessVarFlowIn >
121 <ProcessVarFlowOut >Q12</ProcessVarFlowOut >
122 <TankArea >0.0154 </TankArea>
123 </Relat ion >
124 <Rela t ion Name=" R15 " Type=" Tank ">
125 <Component>Tank2</Component>
126 <ProcessVarDeltaLevel >dH2</ProcessVarDeltaLevel >
127 <ProcessVarFlowIn >Q12</ProcessVarFlowIn >
128 <ProcessVarFlowOut >Qo</ProcessVarFlowOut >
129 <TankArea >0.0154 </TankArea>
130 </Relat ion >
131 </Relat ions >
132 </Process >

A.1.2 General Conventions

To generate the PDL some general conventions will help to better understand the re-
sults and diagnose possible problems when parsing the file.

The components should have meaningful names, possibly related with their refer-
ence in the P&ID diagram.

The naming of the process variables should be consistent, use the same name in
each relation where each process variable is involved. Process variables define the links
between relations, that is, two relations with the same process variable are connected.
FAST uses these connections to perform the structural analysis. In the examples the
following names are used:

• Q: Flow rate

• H : Tank level

The measured process variables name starts with ”m”. For example ”Q” for the not
measured variable and ”mQ” for the measured process variable.

If there is more than one process variable of the same physical property, that is,
more than one tank level or liquid flow, add a suffix number to the process variable:
H1 or Q2.

The Relations should be named with a sequential number ”R01, R02, R03, ...”.

A.2 FAST Models

The version 1.0 of FAST incorporate a simple version of several component models
used to implement the case studies indicated in Sections 4.4 and 5.5. Although the
models can be much more complex, with this simple version it is possible to evaluate
the feasibility of the tool and the possibilities of its utilization. The models are detailed
in the subsections below:

A.2.1 Controller On-Off

The model of the On-off controller is indicated below:

Ub =


1 if x < Lhigh,
1 if x ≥ Llow,
0 otherwise.

(A.10)

The representation in the PDL is as follows:
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<Relation Name="[name of the relation]" Type="ControllerOnOff">
<Component>On/Off Controller</Component>
<ProcessVarControl>[From process vars]</ProcessVarControl>
<ProcessVarMeasured>[From process vars]</ProcessVarMeasured>
<HighLimit>[High limit value]</HighLimit>
<LowLimit>[Low limit value]</LowLimit>

</Relation>

The description of the attributes is the following:

• Relation Name = Name of the relation, for example "R01". Use it to identify the
relation in the structural analysis matrices.

• Relation Type = Shall be "ControllerOnOff". Defines the type of the relation.

• Component: Component to which the relation belongs. Provide the name of the
component as indicated in the components list in the PDL.

• ProcessVarControl: Controlled process variable. Provide the name of the process
variable as indicated in the list of process variables of the PDL.

• ProcessVarMeasured: Measured process variable. Provide the name of the pro-
cess variable as indicated in the list of process variables of the PDL.

• HighLimit: Output transition upper limit value.

• LowLimit: Output transition lower limit value.

A.2.2 Controller PID

The model of a Process,Integrative and Derivative controller is indicated below:

Uc = Kp(xc − xm(t)) +Ki

∫
(xc − xm(t))dt+Kd ∗

d(xc − xm(t))

dt
(A.11)

The discrete representation of the controller is implemented in FAST as follows, if
we represent the error as ε(k) = xc − x(k), being xc the set-point and x(k) the model
variable corresponding to the measured value, using the trapezoidal rule to calculate
the integrative part and the differences approximation for the derivative part, consid-
ering the sample time T = 1:

Uc(k) = Kp ∗ ε(k) +Ki ∗ ε(k) ∗ T +Kd ∗ [ε(k)− ε(k − 1)]/T + Uc(k − 1) (A.12)

The representation in the PDL is as follows:

<Relation Name="[Name of the relation]" Type="ControllerPID">
<Component>[Name of the component]</Component>
<ParamKi>[Value of the Ki parameter]</ParamKi>
<ParamKd>[Value of the Kd parameter]</ParamKi>
<ParamKp>[Value of the Kp parameter]</ParamKp>
<ProcessVarControl>

[Controlled process variable]
</ProcessVarControl>
<ProcessVarMeasured>
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[Measured process variable]
</ProcessVarMeasured>
<SetPoint>[Set point value]</SetPoint>

</Relation>

The description of the attributes is the following:

• Relation Name: Name of the relation, for example "R01". Use it to identify the
relation in the structural analysis matrices.

• Relation Type: Shall be "ControllerPID". Defines the type of the relation.

• Component: Component to which the relation belongs. Provide the name of the
component as indicated in the components list in the PDL.

• ParamKi: Value of the integration part gain (notation 1e-6 is possible).

• ParamKd: Value of the derivative part gain (notation 1e-3 is possible).

• ParamKp: Value of the proportional part gain.

• ProcessVarControl: Controlled process variable. Provide the name of the process
variable as indicated in the list of process variables of the PDL.

• ProcessVarMeasured: Measured process variable. Provide the name of the pro-
cess variable as indicated in the list of process variables of the PDL.

• SetPoint: Set point of the measured variable objective of the controller.

A.2.3 Derivative

The model of a derivative relation is implemented as follows:

y(t) =
dx

dt
(A.13)

The discrete form is calculated using the differences approximation:

y(k) =
x(k)− x(k − 1)

T
(A.14)

being T the sampling period.
The representation in the PDL is as follows:

<Relation Name="[Name of the relation]" Type="Derivative">
<Component>[Name of the component]</Component>
<ProcessVar>[Name of the process variable]</ProcessVar>
<ProcessVarDerivative>

[Name of the derivative process variable]
</ProcessVarDerivative>

</Relation>

The description of the attributes is the following:
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• Relation Name: Name of the relation, for example "R01". Use it to identify the
relation in the structural analysis matrices.

• Relation Type: Shall be "Derivative". Defines the type of the relation.

• Component: Component to which the relation belongs. Provide the name of the
component as indicated in the components list in the PDL.

• ProcessVar: Process variable which will be derived. Provide the name of the
process variable as indicated in the list of process variables of the PDL.

• ProcessVarDerivative: Process variable corresponding to the derivative of the
ProcessVar. Provide the name of the process variable as indicated in the list of
process variables of the PDL.

A.2.4 Flow Union

The model the flow output a flow union relation is implemented as follows:

Qo(t) = Qa(t) +Qb(t) (A.15)

being the Qo the output flow resulting of the sum of the flows Qa and Qb.
The representation in the PDL is as follows:

<Relation Name=" [Name of the relation]" Type="Flow Union">
<Component>[Name of the compoenent]</Component>
<ProcessVarFlowIn1>

[Process variable flow input a]
</ProcessVarFlowIn1>
<ProcessVarFlowIn2>

[Process variable flow input b]
</ProcessVarFlowIn2>
<ProcessVarFlowOut>

[Process variable flow output]
</ProcessVarFlowOut>

</Relation>

The description of the attributes is the following:

• Relation Name: Name of the relation, for example "R01". Use it to identify the
relation in the structural analysis matrices.

• Relation Type: Shall be "Flow Union". Defines the type of the relation.

• Component: Component to which the relation belongs. Provide the name of the
component as indicated in the components list in the PDL.

• ProcessVarFlowIn1: Process variable which will corresponds to the flow input
a. Provide the name of the process variable as indicated in the list of process
variables of the PDL.

• ProcessVarFlowIn2: Process variable which corresponds to the flow input b. Pro-
vide the name of the process variable as indicated in the list of process variables
of the PDL.
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• ProcessVarFlowOut: Process variable which corresponds to the output flow. Pro-
vide the name of the process variable as indicated in the list of process variables
of the PDL.

A.2.5 Pump

The model of the flow output of a pump is implemented as follows:

Q(t) = a · Uc(t) + b (A.16)

considering the most simple case as a linear relation between the output flow Q(t)
and the control signal Uc(t).

The representation in the PDL is as follows:

<Relation Name="[Name of the relation]" Type="Pump">
<Component>[Name of the component]</Component>
<ProcessVarFlow>[Process variable flow output]</ProcessVarFlow>
<ProcessVarControl>

[Process variable control signal]
</ProcessVarControl>
<Gain>[Value corresponding to the gain]</Gain>
<Offset>[Value corresponding to the offset]</Offset>

</Relation>

The description of the attributes is the following:

• Relation Name: Name of the relation, for example "R01". Use it to identify the
relation in the structural analysis matrices.

• Relation Type: Shall be "Pump". Defines the type of the relation.

• Component: Component to which the relation belongs. Provide the name of the
component as indicated in the components list in the PDL.

• ProcessVarFlow: Process variable which will corresponds to the flow output pro-
vided by the pump. Provide the name of the process variable as indicated in the
list of process variables of the PDL.

• ProcessVarControl: Process variable which corresponds to control signal pro-
vided by the controller. Provide the name of the process variable as indicated
in the list of process variables of the PDL.

• Gain: Proportional gain for the linearization of the pump action.

• Offset: Offset for the linearization of the pump action.

A.2.6 Sensor

The model of a sensor is implemented as follows:

xm(t) =


xlow if x < Llow,
xhigh if x > Lhigh,

x(t) + σ(t) if Llow ≤ x(t) ≤ Lhigh
(A.17)
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considering the adaptation to the measure range of the sensor xhigh, xlow and tak-
ing into account the sensor precision as σ(t), providing an added white noise signal
simulating the sensor error due to its precision.

The representation in the PDL is as follows:

<Relation Name="[Name of the relation]" Type="Sensor">
<Component>[Name of the component]</Component>
<ProcessVar>[Name of the process variable]</ProcessVar>
<ProcessVarMeasured>

[Name of the measured process variable]
</ProcessVarMeasured>
<UpperLimit>[Value of the upper limit]</UpperLimit>
<LowerLimit>[Value of the lower limit]</LowerLimit>
<Precision>[Value of the sensor precision]</Precision>

</Relation>

The description of the attributes is the following:

• Relation Name: Name of the relation, for example "R01". Use it to identify the
relation in the structural analysis matrices.

• Relation Type: Shall be "Pump". Defines the type of the relation.

• Component: Component to which the relation belongs. Provide the name of the
component as indicated in the components list in the PDL.

• ProcessVar: Process variable which is measured. Provide the name of the process
variable as indicated in the list of process variables of the PDL.

• ProcessVarMeasured: Process variable results from the measurement. Provide
the name of the process variable as indicated in the list of process

•

• UpperLimit: Value of the saturation upper limit of the sensor.

• LowerLimit: Value of the saturation lower limit of the sensor.

• Precision: Value of the precision of the sensor.

A.2.7 Tank

The model of the level variation in a cylindrical tank is implemented as follows:

dH

dt
=

1

A
(Qi(t)−Qo(t)) (A.18)

being dH the derivative of the tank level, A the tank section in meters, and Qi the
flow input and Qo the flow output. The discrete representation uses the differences
approximation for the derivative part ∆h(k) = (h(k)− h(k − 1))/T .

The residual is then calculated as follows considering the sampling period T = 1:

∆h(k) =
1

A
(Qmi(k)−Qmo(k)) (A.19)
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with Qmi the measured flow input and Qmo the measured flow output if sensors
are available or from other relations taking only measured variables to calculate it.

The representation in the PDL is as follows:

<Relation Name="[Name of the relation]" Type="Tank">
<Component>[Name of the component]</Component>
<ProcessVarDeltaLevel>

[Process variable of the level derivative]
</ProcessVarDeltaLevel>
<ProcessVarFlowIn>

[Process variable flow input]
</ProcessVarFlowIn>
<ProcessVarFlowOut>

[Process variable flow ouptut]
</ProcessVarFlowOut>
<TankArea>[Value of the tank area section]</TankArea>

</Relation>

The description of the attributes is the following:

• Relation Name: Name of the relation, for example "R01". Use it to identify the
relation in the structural analysis matrices.

• Relation Type: Shall be "Tank". Defines the type of the relation.

• Component: Component to which the relation belongs. Provide the name of the
component as indicated in the components list in the PDL.

• ProcessVarDeltaLevel: Process variable corresponding to the level derivative in
meters. Provide the name of the process variable as indicated in the list of process
variables of the PDL.

• ProcessVarFlowIn: Process variable corresponding to the flow input. Provide the
name of the process variable as indicated in the list of process variables of the
PDL.

• ProcessVarFlowOut: Process variable corresponding to the flow output. Provide
the name of the process variable as indicated in the list of process variables of the
PDL.

• TankArea: Value of the tank area section in meters.

A.2.8 Valve Level

The model of the flow output of a valve connected to a tank output is implemented as
follows:

Qo(t) = Cv ·
√
H(t) (A.20)

beingCv the valve hydraulic coefficient,Qo(t) the flow output of the valve andH(t)
the level of the tank.

The representation in the PDL is as follows:
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<Relation Name="[Name of the relation" Type="ValveLevel">
<Component>[Name of the component]</Component>
<ProcessVarFlow>[Process variable flow]</ProcessVarFlow>
<ProcessVarLevel>[Process variable level]</ProcessVarLevel>
<ProcessVarControl>[Process variable control]</ProcessVarControl>
<Coefficient>[Value of the valve coefficient]</Coefficient>

</Relation>

• Relation Name: Name of the relation, for example "R01". Use it to identify the
relation in the structural analysis matrices.

• Relation Type: Shall be "ValveLevel". Defines the type of the relation.

• Component: Component to which the relation belongs. Provide the name of the
component as indicated in the components list in the PDL.

• ProcessVarFlow: Process variable corresponding to the flow output of the valve
in m3/s. Provide the name of the process variable as indicated in the list of pro-
cess variables of the PDL.

• ProcessVarLevel: Process variable corresponding to the level of the tank in meters
to which the valve is connected. Provide the name of the process variable as
indicated in the list of process variables of the PDL.

• ProcessVarControl: Process variable corresponding to the valve which controls
the valve status (open = 1/ closed = 0). Provide the name of the process variable
as indicated in the list of process variables of the PDL.

• Coefficient: Value of the coefficient of the valve.

A.2.9 Valve Two-Levels

The model of the output flow of a valve connected to a tank output and to a tank input
is implemented as follows:

Q12(t) = Cv · sgn(h1 − h2)
√
|h1 − h2| · Uc (A.21)

being Cv the valve hydraulic coefficient, Q12(t) the flow output of the valve and h1

the level of the tank connected to the valve input and h2 the level of the tank output in
meters.

The representation in the PDL is as follows:

<Relation Name="[Name of the relation" Type="ValveLevel">
<Component>[Name of the component]</Component>
<ProcessVarFlow>[Process variable flow]</ProcessVarFlow>
<ProcessVarLevel1>[Process variable level1]</ProcessVarLevel>
<ProcessVarLevel2>[Process variable level2]</ProcessVarLevel>
<ProcessVarControl>[Process variable control]</ProcessVarControl>
<Coefficient>[Value of the valve coefficient]</Coefficient>

</Relation>

• Relation Name: Name of the relation, for example "R01". Use it to identify the
relation in the structural analysis matrices.



84 Appendix A. FAST User Manual

• Relation Type: Shall be "ValveLevel". Defines the type of the relation.

• Component: Component to which the relation belongs. Provide the name of the
component as indicated in the components list in the PDL.

• ProcessVarFlow: Process variable corresponding to the flow output of the valve
in m3/s. Provide the name of the process variable as indicated in the list of pro-
cess variables of the PDL.

• ProcessVarLevel1: Process variable corresponding to the level of the tank in me-
ters to which the valve input is connected. Provide the name of the process vari-
able as indicated in the list of process variables of the PDL.

• ProcessVarLevel2: Process variable corresponding to the level of the tank in me-
ters to which the valve output is connected. Provide the name of the process
variable as indicated in the list of process variables of the PDL

• ProcessVarControl: Process variable corresponding to the valve which controls
the valve status (open = 1/ closed = 0). Provide the name of the process variable
as indicated in the list of process variables of the PDL.

• Coefficient: Value of the coefficient of the valve.

A.3 FAST Simulator

As indicated in Chapter 3 FAST is composed of two main applications. The FAST Sim-
ulator and the Supervisor Agent. The FAST Simulator is a stand-alone Java application
(JAR file) which can be started from the command line. As a Java application is fully
platform independent and only the Java run-time engine (JRE) corresponding to the
target operating system is required. The exercises presented in this work have been
mainly executed in a Microsoft Windows 7 environment. The CPU, memory and hard
disk space requirements are not very relevant as the Java application is light-weight
and will run in mostly in all modern hardware configurations.

A.3.1 Loading the PDL

Once the application is started, from the menu ’Archive/Open process...’ it is possible
to load a PDL file. Just after loading a PDL file following processes are run sequentially:

• PDL Parsing: The PDL file is parsed and component models are instantiated.

• Structural Matrix analysis: The application generates the Structural Matrix. The
Structural Matrix is generated in a ’comma-separated-values’ (csv) file named
”struct_matrix.csv”.

• Perfect Matching analysis: The application generates the Perfect Matching matrix.
The Perfect Matching is generated in a ’comma-separated-values’ (csv) file named
”perfect_matching.csv”. The primary relations are indicated with an asterisc ’*’
next to the "1" indicating the association between the relation and the process
variable.

• Fault Signature Matrix analysis: The application generates the Fault Signature Ma-
trix. The Fault Signature Matrix is generated in a ’comma-separated-values’ (csv)
file named ”fault_signature_matrix.csv”.
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FIGURE A.2: FAST Simulator main window

After processing the PDL the application shows a tree view in the left panel with
all components and their associated relations as childs (see Figure A.2). By selecting a
relation it is possible to display the following relation attributes in the right panel:

• Type of the relation. Refer to Section A.2 for a list of possible relation types.

• Name: Name of the relation as indicated in the PDL.

• Redundant: If checked indicates that the relation is redundant.

• Primary Relations: If the relation is redundant, indicates the list of primary rela-
tions used to solve the not measured process variables in this relation.

• Process Variables: Displays the process variables involved in that relation and the
current value updated during the simulation.

The ’comma-separated-values’ (csv) files can be opened by several generic software
applications, from MATLAB to the Microsoft Excel.

The figure A.3 show the structural matrix file ’sctruct_matrix.csv’ opened and for-
matted with Microsoft Excel.

The figure A.4 show the perfect matching matrix file ’fault_signature_matrix.csv’
opened and formatted with Microsoft Excel.

The figure A.5 show the fault signature matrix file ’perfect_matching.csv’ opened
and formatted with Microsoft Excel.
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FIGURE A.3: Structural Matrix file generated by the FAST Simulator

A.3.2 Simulating the Process

By selecting from the menu the option ’Run/Start’ a dialog will be displayed allowing
to simulate the process providing the simulation time and the simulation step (equiv-
alent to the sample period). After confirming the simulation of the process will start.
The simulation generates the following files with the results:

• Simulation Output file (’simoutput.csv’): a comma separated values file with the
values of each of the relations at each simulation step. With this file it is easy to
obtain a graph of the behaviour of the different relations.

• Residuals output file (’arroutput.csv’): a comma separated values file with the
values of each of the residuals at each simulation step. With this file it is possible
to generate a graph of each of the residuals.

• Error output file (’erroutput.csv’): a comma separated values file with the result
of the residual evaluation.

As with the files generated during the structural analysis at loading the PDL, FAST
generates these files in a format which can be opened from many generic software
applications suchs as MATLAB or the Microsoft Excel.

The figure A.6 is an example of the simulation outputs when simulating the two-
tanks example obtained from the file ’simoutput.csv’ after some formatting in Excel,
selecting all relation values and using the option Insert Graph. It can be seen how the
tank levels identified by the relations R01 (Tank1 level) and R02 (Tank2 level) reach the
set point and how the R04 corresponding to the valve communicating the two tanks
changes the state to 0 when the set-point level of the Tank2 is reached.

The figures A.7, A.8, A.9, A.10, A.11, show how using the same Microsoft Excel
funcionality it is easy to draw the residual graphs using the file ’arrouput.csv’. The file
contains for each residual 4 columns:

• Residual Value: The value of the residual at each simulation step.

• Residual Average: The average of the value calculated from the window of N
samples.
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FIGURE A.4: Perfect Matching matrix file generated by the FAST Simu-
lator

FIGURE A.5: Structural Matrix file generated by the FAST Simulator

• Residual Deviation: The deviation calculated taking into account the 5 · σ rule.

The file ’errouput.csv’ it is the file resulting of the evaluation of the fault vector at
each simulation step. The details of the evaluation process of the fault vector and the
evaluation of the residuals are described in Section 4.3.

A.3.3 Simulating a Fault

With FAST it is possible to simulate additive and multiplicative faults in any of the
relations. To add a fault, in the PDL include the following XML attribute in a relation:

<Error Type="[Type of error]">
<Value>[Value]/Value>
<TimeStart>[Time to start in seconds]</TimeStart>
<TimeEnd>[Time to end in seconds]</TimeEnd>

</Error>

For example, to indicate an additive error in a level sensor, we can define the rela-
tion as follows:

<Relation Name="R02" Type="Sensor">
<Component>Level Sensor2</Component>
<ProcessVar>H2</ProcessVar>
<ProcessVarMeasured>mH2</ProcessVarMeasured>
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FIGURE A.6: Simulation of the two tanks process

<Precision>0.001</Precision>
<Error Type="Additive">

<Value>1</Value>
<TimeStart>30</TimeStart>
<TimeEnd>40</TimeEnd>

</Error>
</Relation>

In this case, the error will add 1 to the sensor output from the second 30 to the
second 40 of the simulation.

FIGURE A.7: Residual z1 of the two tanks process
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FIGURE A.8: Residual z2 of the two tanks process

FIGURE A.9: Residual z3 of the two tanks process

A.4 FAST Supervisor Agent

A.4.1 Installation Requirements

To set-up the on-line process supervision it is needed the following infraestructure:

• The JADEX Agent Framework

• An OPC Server

• A SCADA

The JADEX Agent Framework is a Java application, so the same constraints than for
the FAST simulator apply. That is, wherever the Java Virtual Machine (JVM) can run,
the JADEX Framework can be executed. In this case the computation requirements are
more demanding, although not exhaustive tests have been performed, in a Windows 7
computer with 4 GB of RAM works without problems. The JADEX Agent Framework
is the context in which the Supervision Agents are executed.

As indicated in Section 5.2, each agent can run in a different JVM, even in re-
mote computers with Internet or TCP/IP connection. This functionality allows the
distributed FDI implementation.
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FIGURE A.10: Residual z4 of the two tanks process

FIGURE A.11: Residual z5 of the two tanks process

The OPC Server can be any product compliant with the OPC standard. In the ex-
periments we have used the Matrikon OPC Server which is available for download
from MatrikonOPC R©. The OPC server requires to configure the tags used by the Su-
pervision Agent. But this configuration is identical to the configuration of the tags for
any SCADA system which accesses to the process via OPC.

The SCADA is the system where finally the results of the FDI process will be dis-
played. In the ideal case, and if a good identification is possible in the process, each
component in the different SCADA displays will have an indicator if this component
has a fault, being the indicator feed by the information provided by the Supervisor
Agent. For the experiments in this work the General Electric iFix R© SCADA software is
used.
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FIGURE A.12: The two tanks representation in a SCADA

A.4.2 Configuring the Supervision Agent

Each supervision agent has an Agent Definition File, which is also implemented in
XML. In this agent definition file the most important parameter and in principal the
only parameter which needs to be modified is the path to the Process Definition File to
be used by this agent. This parameter is indicated as an agent ’believe’ as can be seen
below:

<belief name="PDL_file" class="String" exported="true">
<fact>"D:\\iAgent\\Support files\\twotanks.xml"</fact>

</belief>

The Agent Definition File is loaded from the JADEX Agent Framework at run-time
(see Listing ??). The PDL contains the definition of the OPC Server to which the agent
will be connected:

<Agents>
<Agent name="SA1" opc_server="Matrikon.OPC.Simulation.1"/>
<Agent name="SA2" opc_server="Matrikon.OPC.Simulation.1"/>
</Agents>

Note that in a distributed configuration the PDL indicates which components are
supervised for each agent. This is also indicated in the PDL by setting the attribute
’agent’ with the corresponding ’Agent name’.

LISTING A.2: JADEX Agent Definition File (ADF) for the Supervisor
Agent

1 <agent xmlns=" ht tp :// jadex . sourceforge . net/jadex "
2 xmlns : x s i =" ht tp ://www. w3 . org /2001/XMLSchema−i n s t a n c e "
3 x s i : schemaLocation=" ht tp :// jadex . sourceforge . net/jadex http :// jadex . sourceforge . net/jadex −2.0. xsd "
4 name=" ProcessSupervisor "
5 package=" ProcessSupervisorAgent ">
6 <imports >
7 <import>java . u t i l . logging .∗</ import>
8 <import>java . u t i l .∗</ import>
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9 <import>jadex . adapter . base . f i p a .∗</ import>
10 </imports >
11 < b e l i e f s >
12 < b e l i e f name=" environment " c l a s s =" IEnvironment ">
13 < f a c t >Environment . g e t I n s t a n c e ( ) </ f a c t >
14 </ b e l i e f >
15 < b e l i e f name=" PDL_fi le " c l a s s =" S t r i n g " exported=" t rue ">
16 < f a c t >"D:\\ P r o j e c t F i l e s \\ampanet\\trunk\\iAgent\\Support f i l e s \\twotanks_tankscale . xml "</

f a c t >
17 </ b e l i e f >
18 < b e l i e f name=" process " c l a s s =" Supervisor . Process ">
19 < f a c t > $ b e l i e f b a s e . environment . l o a d P r o c e s s D e f i n i t i o n F i l e ( $ b e l i e f b a s e . PDL_fi le ) </ f a c t >
20 </ b e l i e f >
21 </ b e l i e f s >
22 <goals >
23 <!−− The goal to d e t e c t a f a u l t . −−>
24 <performgoal name=" d e t e c t _ f a u l t s " exclude=" never " r e t r y d e l a y =" 2000 ">
25 </performgoal >
26 <achievegoal name=" n o t i f y _ f a u l t s ">
27 </achievegoal >
28 </goals >
29 <events >
30 <messageevent name=" request_var " d i r e c t i o n =" r e c e i v e " type=" f i p a ">
31 <parameter name=" performative " c l a s s =" S t r i n g " d i r e c t i o n =" f i x e d ">
32 <value >jadex . bridge . f i p a . SFipa . REQUEST</value >
33 </parameter >
34 </messageevent >
35 <messageevent name=" inform " d i r e c t i o n =" send " type=" f i p a ">
36 <parameter name=" performative " c l a s s =" S t r i n g " d i r e c t i o n =" f i x e d ">
37 <value >jadex . bridge . f i p a . SFipa . INFORM</value >
38 </parameter >
39 </messageevent >
40 < i n t e r n a l e v e n t name=" gui_update ">
41 <parameter name=" content " c l a s s =" S t r i n g "/>
42 </ i n t e r n a l e v e n t >
43 </events >
44 <plans >
45 <!−− React ive plan to c a l c u l a t e r e s i d u a l s −−>
46 <plan name=" c a l c u l a t e ">
47 <body c l a s s =" Calcu la teRes idualsP lan "/>
48 < t r i g g e r >
49 <goal r e f =" d e t e c t _ f a u l t s "/>
50 </ t r i g g e r >
51 </plan >
52 <!−− React ive plan to n o t i f y a f a u l t −−>
53 <plan name=" n o t i f y ">
54 <body c l a s s =" SendFaultPlan "/>
55 < t r i g g e r >
56 <goal r e f =" n o t i f y _ f a u l t s "/>
57 </ t r i g g e r >
58 </plan >
59 <plan name=" provide_var ">
60 <body c l a s s =" ProvideVarPlan "/>
61 < t r i g g e r >
62 <messageevent r e f =" request_var "/>
63 </ t r i g g e r >
64 </plan >
65 <!−− I n i t i a l plan for c r e a t i n g and updating the gui . −−>
66 <plan name=" gui ">
67 <body c l a s s =" GuiPlan "/>
68 </plan >
69 </plans >
70 <events >
71 <!−− S p e c i f i e s an i n t e r n a l event for updating the gui.−−>
72 < i n t e r n a l e v e n t name=" gui_update ">
73 <parameter name=" content " c l a s s =" S t r i n g [ ] "/>
74 </ i n t e r n a l e v e n t >
75 </events >
76 <express ions >
77 </express ions >
78 <conf igura t ions >
79 < c o n f i g u r a t i o n name=" d e f a u l t ">
80 <goals >
81 <!−− I n i t i a l goal for searching for garbage . −−>
82 < i n i t i a l g o a l r e f =" d e t e c t _ f a u l t s "/>
83 </goals >
84 <plans >
85 < i n i t i a l p l a n r e f =" gui "/>
86 </plans >
87 </conf igurat ion >
88 </conf igura t ions >
89 </agent >

A.4.3 The JADEX Framework

The JADEX Agent Framework can be started from the command line. However, the
path to the different libraries used by the Supervision Agent needs to be defined. A
tutorial of this framework is available in Braubach and Pokahr, 2007. The paths need
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FIGURE A.13: JADEX Agent Framework

to be added using the JADEX framework main window as can be seen in the figure
A.13.

The agent is loaded in the framework from the Start window (main window in the
JADEX Framework) by selecting the Agent Definition File in the tree on the left panel
and pressing the Start button on the right panel. If the agent is loaded successfully,
it will start communicating with the OPC Server acquiring process data, calculating
the fault vector and evaluating the fault vector with respect to the process components
indicated in the PDL. In case a fault is detected it will provide as well the information
to the OPC Server tags defined in the PDL for this purpose. The SCADA, which needs
to be configured to include in the synoptic displays these tags, it will show the fault
information when generated.

It is possible to communicate with any Supervisor Agent from the JADEX Agent
Framework from the Conversation Center. In this window it is possible to send mes-
sages to the agent to acquire the value of a process variable by sending the message:

’request([name of the process variable])’

The agent can be in the local computer or in a remote computer if accessible through
Internet or TCP/IP. The server/computer name is part of the agent name as can be seen
in the right panel window of the Conversation Center in the figure A.14. If the agent
is in a remote computer the agent name needs to contain the IP Address or the URL
(Unified Resource Location) computer name. In fact the Conversation Center is acting
as any other Agent in a Multi-agent system.
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FIGURE A.14: JADEX Conversation Center

A.4.4 Working with the FAST Simulator

The architecture of FAST allows the testing of the Supervisor Agent using simulated
data from the FAST simulator. The Simulator is able to feed the OPC server with sim-
ulated process data and the Process Supervisor Agent is able to read this data and
process it. In this way it is possible to close the loop, that is, simulate a fault with the
simulator and see the result of this fault in a SCADA generated by the FDI processing
implemented in the Supervisor Agent, see Figure A.15.

FIGURE A.15: FAST Simulator and Supervisor Agent connected
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FAST Model Extension

In this Section, it will be presented the way of generating the model of a new compo-
nent in FAST. The models in FAST are implemented as Java classes. The classes need to
have a predefined structure and some mandatory methods. In FAST to add a new com-
ponent apart of generating the Java classes for the corresponding relations, the parsing
module needs to be modified. An opportunity of improvement is to generate compo-
nent definition files which could be parsed by the tool which defines the structure of
the component and its relations and then avoid the necessity of modifying the parser.

B.1 Creating a New FAST Component Model

In this Section, the process of creating a new component model will be described. In
order to perform properly this process, knowledge of the Java programming language
is required. All component models in FAST are programmed as Java classes.

B.1.1 The TankScale Model

To illustrate the way of creating a new component, the component ’TankScale’ and its
corresponding relations will be generated. A TankScale is a tank were the level is ob-
tained indirectly with a scale by measuring the mass in kilograms inside the reactor
instead the level. The tank has an input flow and an output flow. The density of the
liquid is known and therefore it is possible by using the flow input/output measure-
ments to calculate the mass-in and mass-out from the tank. Therefore, by using the
mass conservation principle it is possible to define the following relation for this com-
ponent:

dM

dt
= ρ(Qi(t)−Qo(t)) (B.1)

being dM/dt the variation of the mass, ρ the liquid density, Qi the flow input and
Qo the flow output.

The component will require the initial value of the mass of the tank to be provided
in the process variable M corresponding to the tank mass.

The component will have as well associated a mass sensor, that is, the scale, but this
relation can be reused, since it is a Sensor relation.

B.1.2 Creating the Component Java Class

The example will be described using Eclipse as the development environment, al-
though the code can be programmed using any development environment or Java code

95
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editor. The FAST models are located in the Supervisor package. In Eclipse select the
Supervisor package and select Create a new class (see Figure B.1).

FIGURE B.1: Creating the class for a new model

• Input in the class Name: TankScale

• Input in the Superclass: Relation

• and press Finish.

The initially generated code for the TankScale component class is indicated in the
Listing B.1.2:

1 /∗∗
2 ∗
3 ∗/
4 package Supervisor ;
5
6 /∗∗
7 ∗ @author J . Duat i s
8 ∗
9 ∗/

10 public c l a s s TankScale extends Rela t ion {
11
12 /∗ ( non−J a v a d o c )
13 ∗ @see S u p e r v i s o r . R e l a t i o n # o ut pu t ( d o u b l e )
14 ∗/
15 @Override
16 public double output ( double t imeStep ) {
17 / / TODO Auto−g e n e r a t e d method s t u b
18 return 0 ;
19 }
20
21 /∗ ( non−J a v a d o c )
22 ∗ @see S u p e r v i s o r . R e l a t i o n # c a l c R e s i d u a l ( )
23 ∗/
24 @Override
25 public double c a l c R e s i d u a l ( ) throws Relat ionExcept ion {
26 / / TODO Auto−g e n e r a t e d method s t u b
27 return 0 ;
28 }
29
30 /∗ ( non−J a v a d o c )
31 ∗ @see S u p e r v i s o r . R e l a t i o n # c a l c P r o c e s s V a r ( S u p e r v i s o r . R e l a t i o n , S u p e r v i s o r . P r o c e s s V a r )
32 ∗/
33 @Override
34 public double ca lcProcessVar ( Re la t ion parentRel , ProcessVar var )
35 throws Relat ionExcept ion {
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36 / / TODO Auto−g e n e r a t e d method s t u b
37 return 0 ;
38 }
39
40 }

As the base class has no default constructor, it is mandatory to define a specific
constructor. The constructor will be used to instantiate the class from the parser module
and it shall have two parameters:

• String name: parameter receiving the name as indicated in the PDL.

• Component c: reference to the component to which this relation will belong.

The code of the constructor is indicated in the Listing B.1.2.
1 TankScale ( S t r i n g name , Component c )
2 {
3 super ( name , c ) ;
4 }

The following step will be to define the content of the method output. This method
shall contain the calculation of the relation. It will be used during the simulation to
provide the value of the relation obtaining the value of the process variables from the
measured values. This relation will manage three process variables:

• Qi as the flow input.

• Qo as the flow output.

• dM as the derivative of the tank mass.

Therefore, it is practical to define an attribute for each of these process variables
and the corresponding methods to assign the process variable references and another
attribute for the density parameter ρ:

1 ProcessVar Qi ;
2 ProcessVar Qo ;
3 ProcessVar dM;
4 double param_rho ;
5 . . .
6
7 public void setProcessVarFlowIn ( ProcessVar pv )
8 {
9 Qi = pv ;

10 addProcessVar ( pv ) ;
11 setCausal ( pv , t rue ) ;
12 }
13
14 public void setProcessVarFlowOut ( ProcessVar pv )
15 {
16 Qo = pv ;
17 addProcessVar ( pv ) ;
18 setCausal ( pv , t rue ) ;
19 }
20
21 public void setProcessVarDeltaMass ( ProcessVar pv )
22 {
23 dM = pv ;
24 addProcessVar ( pv ) ;
25 setCausal ( pv , t rue ) ;
26 }
27
28 public void se tDens i ty ( double rho )
29 {
30 param_rho = rho ;
31 }

The method addProcessVar adds the process variable to the list of process vari-
ables managed in this relation and the method setCausal indicates that the process
variable is causal for this relation, which means that it is possible to obtain the value of
this process variable knowing the value of the rest. Once this intermediate steps have
been implemented it is easy to define the output method as:
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1 public double output ( double t imeStep ) {
2 double r e s u l t = ( Qi . getValue ( ) −
3 Qo . getValue ( ) ) ∗ param_rho ;
4 r e s u l t = getErrorValue ( r e s u l t ) ;
5 dM. setValue ( r e s u l t ) ;
6 return r e s u l t ;
7 }

The method getErrorValue(result) is used to be able to introduce process er-
rors. In the PDL it is possible to indicate an additive or multiplicative error during a
period of time, and taking the result as input it will apply to the value the correspond-
ing error if indicated. The ProcessVar class has the method setValue to assign the
current value.

The method CalcResidual shall be implemented to cover the case that this rela-
tion is selected as a redundant relation and a residual is derived. In this case, all process
variable values need to be obtained from other relations and all terms of the relation
passed to one hand of the equal, forcing the relation to evaluate 0, that is, converting
the relation to a residual which if there is no fault it will provide as a result a value near
to 0.

The method which provides the value of a process variable from other relations is
calcFromRelation, and as parameters, the this and the process variable shall be
indicated. The function is implemented below:

1 public double c a l c R e s i d u a l ( ) throws Relat ionExcept ion {
2 double r e s i d u a l = 0 ;
3 double vdM = calcFromRelat ion ( this , dM) ;
4 double vQi = calcFromRelat ion ( this , Qi ) ;
5 double vQo = calcFromRelat ion ( this , Qo) ;
6
7 r e s i d u a l = vdM / param_rho − vQi + vQo ;
8
9 return r e s i d u a l ;

10 }

Finally it is possible that the relation, as a result of the Structural Analysis is selected
as an elementary relation. In this case, some process variable will be required to be cal-
culated but obtaining the value of the other process variables from other relations, as
indicated in the Structural Matrix. To implement this functionality the class shall im-
plement the method calcProcessVar. This method will receive the parent relation
requiring the value of the process variable and the reference to the process variable
itself. The method is illustrated in the listing below:

1 public double ca lcProcessVar ( Re la t ion parentRel , ProcessVar var ) throws Relat ionExcept ion
2 {
3 double r e s u l t = 0 ;
4 i f ( var == Qo)
5 r e s u l t = calcFlowOutput ( parentRel ) ;
6 e lse i f ( var == Qi )
7 r e s u l t = calcFlowInput ( parentRel ) ;
8 e lse i f ( var == dM)
9 r e s u l t = c a l c D e r i v a t i v e ( parentRel ) ;

10 e lse
11 {
12 S t r i n g s = S t r i n g . format ( " Var iab le %s cannot be c a l c u l a t e d from r e l a t i o n %s " ,
13 var . getSymbol ( ) , t h i s . getName ( ) ) ;
14 throw new Relat ionExcept ion ( s ) ;
15 }
16 return r e s u l t ;
17 }

The methods calcFlowOutput, calcFlowInput, calcDerivative are pri-
vate methods which shall be implemented to calculate the value of the indicated pro-
cess variables using the values of the other variables obtained from other relations:

1 private double calcFlowOutput ( Re la t ion parentRel ) throws Relat ionExcept ion
2 {
3 double vdM = parentRel . calcFromRelat ion ( this , dM) ;
4 double vQi = parentRel . calcFromRelat ion ( this , Qi ) ;
5 double r e s u l t = 0 ;
6 r e s u l t = vdM / param_rho − vQi ;
7 return r e s u l t ;
8 }
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9
10 private double calcFlowInput ( Re la t ion parentRel ) throws Relat ionExcept ion
11 {
12 double vdM = parentRel . calcFromRelat ion ( this , dM) ;
13 double vQo = parentRel . calcFromRelat ion ( this , Qo) ;
14 double r e s u l t = 0 ;
15 r e s u l t = vdM / param_rho + vQo ;
16 return r e s u l t ;
17 }
18
19 private double c a l c D e r i v a t i v e ( Re la t ion parentRel ) throws Relat ionExcept ion
20 {
21 double vQi = parentRel . calcFromRelat ion ( this , Qi ) ;
22 double vQo = parentRel . calcFromRelat ion ( this , Qo) ;
23 double r e s u l t = 0 ;
24 r e s u l t = ( vQi−vQo)∗param_rho ;
25 return r e s u l t ;
26 }

Two important things to note from these methods: The first is that the method
calcFromRelation is called from the parentRel object which is the parent rela-
tion. This is because the process variables need to be calculated from the set of re-
lations belonging to the parent relation. This set is determined when performing the
Structural Analysis. The second important thing is that the method can return the
RelationException indicating that there is some error in the process because the
process variable required cannot be calculated from this relation. This is a bad thing,
because if this method is requested indicates that the Structural Analysis has deter-
mined that the process variable can be calculated from this relation, therefore some
coding problem should be present somewhere.

And with this steps we have finalized the class representing the model of a TankScale.
When we introduce this model in the process it will probably generate some analyti-
cal redundancy since in case there are flow sensors and the scale sensor providing the
mass, the relation can be used to calculate any of the process variables, since all will be
measured.

B.1.3 Implementing the Parsing of the PDL

The following step will be to implement the parsing part in the parser module to read
the parameters from the PDL.

In the Supervisor package edit the class DomParser. This class is the parser module
and contains the parsing of all the components, process variables and relations repre-
sented in the PDL. To add a new relation type, the following methods shall be modified:

• getRelation: method which instantiates the relation type by calling the method to
parse the specific relation parameters.

• newTankScaleRelation: new method to be created to parse the specific parame-
ters of this relation.

The getRelation method needs to be modified by adding a new line to instanti-
ated the new relation. See the code listing below:

1 . . .
2 i f ( type . equalsIgnoreCase ( " TankScale " ) ) r e l = newTankScale ( name , r e l E l ) ;
3 . . .

Following the method newTankScale needs to be implemented.
1 private Rela t ion newTankScale ( S t r i n g name , Element r e l E l ) throws ProcessParserExcept ion
2 {
3 Component c = getComponent ( getTextValue ( r e l E l , " Component " ) ) ;
4 TankScaleRelat ion t r = new TankScaleRelat ion ( name , c ) ;
5 t r . setProcessVarDeltaMass ( getProcessVar ( getTextValue ( r e l E l , " ProcessVarDeltaMass " ) ) ) ;
6 t r . setProcessVarFlowIn ( getProcessVar ( getTextValue ( r e l E l , " ProcessVarFlowIn " ) ) ) ;
7 t r . setProcessVarFlowOut ( getProcessVar ( getTextValue ( r e l E l , " ProcessVarFlowOut " ) ) ) ;
8 t r . se tDens i ty ( getDoubleValue ( r e l E l , " Density " ) ) ;
9 return t r ;

10 }
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An example of the corresponding PDL representation in XML is illustrated in the
following listing:

1 <Rela t ion Name=" R15 " Type=" TankScale ">
2 <Component>Tank3</Component>
3 <ProcessVarDeltaMass >dM3</ProcessVarDeltaMass >
4 <ProcessVarFlowIn >Q13</ProcessVarFlowIn >
5 <ProcessVarFlowOut >Qo</ProcessVarFlowOut >
6 <Density >998.2071 </ Density >
7 </Relat ion >

B.2 Simulating the New Component Model

In this Section, the newly generated component will be integrated in a process model
and tested as part of the FDI analysis of that process. In order to ease the integration of
the new model into the already presented two-tanks system another relation is needed
which translates the measure in mass into a level. This new relation has been modeled
as the LevelScaleSensor. The relation requires the density and the tank area to imple-
ment the translation. The relation will then calculate the process variable H2 and the
measured variable Hm2 used by other relations.The PDL representation of this relation
is:

1 <Rela t ion Name=" R15 " Type=" Sca leLevelSensor ">
2 <Component>Level/S c a l e Sensor </Component>
3 <ProcessVarScaleMeasured >mM</ProcessVarScaleMeasured >
4 <ProcessVarLevel >H2</ProcessVarLevel >
5 <ProcessVarLevelMeasured >mH2</ProcessVarLevelMeasured >
6 <Density >998.2071 </ Density >
7 <TankArea >0.0154 </TankArea>
8 </Relat ion >

In the PDL there will be then 16 relations, one more than for the PDL indicated in
the Section 4.4 as the new relation ScaleLevelSensor has been added. The relations are
indicated in table B.1.

After loading the PDL into the FAST simulator the Structural Matrix is generated
with the indicated relations belonging to the perfect matching. The Structural Matrix
is indicated in table B.2.
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TABLE B.1: Scale Tank example component relations

Relation Type Component Variables Description
〈r1〉 Sensor Level Sensor 1 Hm1, H1 Level sensor tank

1
〈r2〉 Sensor Mass/Level Sensor Mm,M Mass sensor of

tank 2
〈r3〉 ScaleLevelSensorMass/Level Sensor Mm, H2, Hm2 Level of tank 2

obtained from
the scale mea-
surement

〈r4〉 Sensor Flow Sensor Qmp, Qp Flow sensor at
pump output

〈r5〉 Sensor Pump Ump, Up Pump control sig-
nal

〈r6〉 Sensor Valve 1 Umb, Ub Two tanks link-
ing valve control
signal

〈r7〉 Sensor Valve 2 Umo, Uo Tank 2 output
valve control
signal

〈r8〉 Pump Pump Qp, Up Pump action
〈r9〉 PI Con-

troller
PI Controller Hm1, Up PI controller

〈r10〉 Valve2Levels Valve Tanks Q12, H1, H2, Ub Calculated flow
output from the
valve linking the
two tanks

〈r11〉 On-Off
Controller

On-Off Controller Hm2, Ub Controller open-
ing/closing the
linking the two
tanks

〈r12〉 Valve Level Valve 2 Qo, H2, Uo Calculated flow
output from the
tank 2 output
valve

〈r13〉 Tank Tank 1 Qp, Q12, Hm1, Ḣ1 Relation between
flow input/out-
put and tank 1
level

〈r14〉 Tank Tank 2 Qo, Q12,M, Ṁ Relation between
flow input/out-
put and tank 2
mass

〈r15〉 Derivative Tank 1 H1, Ḣ1 Derivative level
relation in tank 1

〈r16〉 Derivative Tank 2 M,Ṁ Derivative mass
relation in tank 2
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FIGURE B.2: Scale sensor error simulation.

In the same way, the fault signature matrix is obtained and indicated in table B.3.

TABLE B.3: Scale tank example fault signature matrix

FSM Qmp Hm1 Mm2 Umb Ump Pump Tank 1 Tank 2 Valve Out Valve Tanks
z1〈r7〉 0 1 0 0 1 0 1 0 0 0
z2〈r8〉 1 0 0 0 1 1 0 0 0 0
z3〈r9〉 0 0 1 1 0 0 0 0 0 0
z4〈r12〉 1 1 1 1 0 0 1 0 0 1
z5〈r13〉 0 1 1 1 0 0 1 1 1 1

The simulation of the process, with a fault in the scale sensor which sets the value 0
in the interval from 30 to 50 seconds, can be seen in the figure B.2. In the figure only the
measured scale sensor Mm relation < r2 > and the model variable M obtained from
relations < r14 > and < r16 > is displayed, as the rest of relations have the same values
as in the example indicated in Section 4.4.

The residuals as generated during the simulation are presented in figure B.3.

B.3 Using a New FAST Component Model On-line

To test the component model Tank Scale on-line, it is possible to use the FAST Simulator
connected to the OPC Server. The simulator is used to generate the process data which
is sent to the OPC Server and the Supervisor Agent works as connected to a real pro-
cess. The simulator is configured to update the process data in the OPC Server every
second and the Supervisor Agent is configured to acquire and compute the residuals
every 2 seconds. In the PDL the error simulation is set to start in the second 40 until
the second 60.
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(A) Residual z3 (B) Residual z4

(C) Residual z5

FIGURE B.3: LevelSensor1 fault residuals

The FAST Simultor is started and the JADEX environment is started as well. The Su-
pervisor Agent starts acquiring the process data through the embedded OPC client and
calculating the residuals. After some seconds after the second 40 from the simulation
it can be seen in the Supervisor Agent monitor window how the tags LS_1002_01_ERR
and CT_1002_01_ERR change to Value=true indicating an error in the Scale/Level sen-
sor 2 or the Valve on/off controller (see Figure B.4). In this case, as can be seen in the
Fault Signature Matrix (see Table B.3) the two components are sensitive to the same
three residuals. The Supervisor Agent updates this Tags which can be displayed in a
SCADA to indicate a possible error in any of these components.
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FIGURE B.4: Scale sensor error detected by the Supervisor Agent.
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