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Using Evidence Combination for Transformer

Defect Diagnosis
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Glasgow, United Kingdom. Email: victoria.catterson@eee.strath.ac.uk

Abstract—This paper describes a number of methods of
evidence combination, and their applicability to the domain of
transformer defect diagnosis. It explains how evidence combina-
tion fits into an on-line and implemented agent-based condition
monitoring system, and the benefits of giving selected agents
reflective abilities. Reflection has not previously been deployed in
an industrial setting, and theoretical work has been in domains
other than power engineering. This paper presents the results
of implementing five different methods of evidence combination,
showing that reflective techniques give greater accuracy than
non-reflective.

I. INTRODUCTION

Condition monitoring is a key requirement for effective

asset management. However, the volume of data generated

can rapidly become overwhelming for engineers to deal with,

and often requires expert analysis. An automated system for

data capture and interpretation would greatly improve the

usefulness of condition monitoring, ultimately increasing the

reliability and longevity of plant.

This demands a flexible, reconfigurable system capable of

integrating multiple data sources and interpretation techniques.

Multi-agent systems (MAS) technology provides a structure

for designing such a system, as different tasks can be encapsu-

lated in separate agents. These agents can then use their social

ability to co-ordinate their behaviour, and the system goal of

data interpretation emerges rather than being explicitly stated.

This allows new monitoring technologies to be seamlessly

integrated into the community as they become available.

The COndition Monitoring Multi-Agent System

(COMMAS)[1] was developed to exploit the benefits of

MAS technology, by dividing the process of transformer

defect diagnosis into tasks assigned to multiple agents.

Transformers are key assets to utilities, making analysis of

their health a pressing issue. Previous work has defined an

architecture for condition monitoring[2] and the design and

development of specific agents for defect diagnosis[3][4][5].

This paper will describe diagnostic steps taken by COM-

MAS, and the process of evidence combination previously

employed by the system. We believed that the results of the ev-

idence combination stage could be improved by implementing

more sophisticated techniques; various schemes are described

and tested on transformer defect data to validate this theory.

Finally, conclusions are drawn about the most successful and

flexible method of evidence combination for the application

of condition monitoring.

II. CONDITION MONITORING MULTI-AGENT SYSTEM

Partial discharge activity is caused by an electric field

surrounding a conductor exceeding the dielectric strength of

the conductor’s insulation, resulting in an electrical discharge.

Defects causing partial discharge can be introduced during

manufacture or may be the result of degradation over time. Six

classes of defect have been identified: bad contacts, floating

components, suspended particles, protrusions, rolling particles,

and surface discharges[6].

The purpose of COMMAS is to monitor sensors for data

generated by partial discharge activity, then interpret the

data to identify the defect type. The engineer is presented

with defect diagnosis information, corroborated by data from

multiple sensors and interpretation techniques. This process

can be split into four stages:

• Data Monitoring: where data is collected from sensors

and particular features extracted from it;

• Interpretation: where various intelligent system tech-

niques try to classify the defect type, based on the feature

vector;

• Corroboration: where a consensus is reached on the defect

class, based on all available information; and,

• Information: where information from the diagnosis pro-

cess is provided to engineers.

Each of these stages is performed by one or more agents,

as shown in Figure 1. The three interpretation agents currently

used by COMMAS (C5.0 Rule Induction, K-Means Cluster-

ing, and a Back-Propagation Neural Network) are detailed in

[1] and [4], which document the design, training, and testing of

these agents. The purpose of the Substation Manager Agent

is discussed at length in [7], and details of the Engineering

Assistant Agent can be found in [8].

The Transformer Diagnosis Agent must determine the most

likely defect, based on the diagnoses from the three in-

terpretation agents and defect positioning information from

the ∆t Calculation Agent. A weighted average scheme has

been previously reported[1], where each agent provides its

assessment of the probability of the defect belonging to each

of the six classes. The conclusion of the Diagnosis Agent is

then the defect class with the highest average probability.

However, years of research have shown that interpretation

techniques will tend to classify particular defect types with

more accuracy than other types, and each method is most

accurate for different classes[4]. One of the key benefits of
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Fig. 1. The Agent Architecture of COMMAS

the COMMAS architecture is its ability to integrate comple-

mentary interpretation techniques, and use all available data

to corroborate the final diagnosis.

It was believed that knowledge of the particular strengths of

each of the interpretation agents could be used to enhance the

corroboration process in the Diagnosis Agent. A more complex

scheme for arbitrating amongst the diagnoses has the potential

to produce more accurate results than the weighted average

technique. In order to determine the validity of this hypothesis,

a number of arbitration schemes were examined and the results

compared.

III. REFLECTION IN COMMAS

A. Reflective Agents

Reflection is a process of reasoning about where agent

inputs come from, in addition to what those inputs are. A

reflective agent has the ability to reason about other agents’

behaviour, and why they are sending particular inputs[9].

This can help assess the meaning of messages received, by

introducing a layer of meta-reasoning which gives perspective

on the message content.

The agent behaviours producing reflective abilities can be

divided into six categories[9]. A reflective agent need not

implement them all, but useful abilities would generally arise

from a selection of these behaviours. They are:

• Own Process Control: reasoning about their own abilities

and goals;

• Agent Specific Tasks: the core behaviour of the agent;

• Agent Interaction Management: reasoning about the mes-

sages the agent is receiving or not receiving from other

agents;

• Maintenance of Agent Information: ensuring the model

of other agents’ behaviour is consistent;

• World Interaction Management: reasoning about the in-

puts the agent is receiving or not receiving directly from

the environment; and,

• Maintenance of World Information: ensuring the model

of the agent’s environment is consistent.

Reflection has been shown to be effective in a variety of

arbitration situations[10], where meta-knowledge of situations

in which classifiers perform well is used. The design of

systems for on-line vehicle detection[11] and on-line work-

flow adaption[12] using reflective agents have been reported.

However, reflection has not yet been applied to the power

engineering or condition monitoring domains, and most work

remains at the theoretical or demonstrative levels, rather than

being used in industrial applications.

B. Making COMMAS Agents Reflective

The meta-reasoning abilities of reflective agents can be

applied to the corroboration process in COMMAS, allowing

the Transformer Diagnosis Agent to discriminate between

any conflicting diagnoses received from other agents. This

is done by providing the agent with meta-knowledge of the

interpretation agents’ strengths and weaknesses. It can then

reason about where the diagnoses are coming from, instead of

simply what the diagnoses are.

This means the Diagnosis Agent must hold information

on every technique used in the system. If this knowledge

were programmed into the Diagnosis Agent, it would remove

flexibility from COMMAS, as new interpretation agents could

not be added to the system without the Diagnosis Agent

having prior knowledge of their abilities. To prevent this,

interpretation agents should know their own strengths and

weaknesses, and when they join the community they should

send this knowledge to the Diagnosis Agent.

Applying the reflective task classification outlined above,

each interpretation agent gains reflection on the Agent Specific

Task. Rather than only providing defect diagnoses and proba-

bilities, they now provide meta-knowledge of the situations in

which they perform best.

The Transformer Diagnosis Agent gains the reflective tasks

of Agent Interaction Management and Maintenance of Agent

Information. This is due to the comparison between incoming

defect diagnoses and the knowledge of the sending agent’s

abilities, which requires gathering and maintaining informa-

tion on each interpretation agent. Additionally, the reflective

Own Process Control task is needed to reason about which

situations need discrimination between diagnoses. The task

decomposition of the reflective Transformer Diagnosis Agent

is shown in Figure 2.
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IV. EVIDENCE COMBINATION

Whether the Transformer Diagnosis Agent uses reflection

or not, it requires some algorithm to combine all the available

evidence into useful and coherent defect information for the

engineer. This process can be called data fusion or evidence

combination, and there is a range of methods available, from

the computationally simple to more complex schemes.

To assess the most accurate method of evidence combination

for defect diagnoses, a number of schemes were compared.

These are outlined in the following sections.

A. Non-Reflective

1) Weighted Average: This is the scheme previously em-

ployed by COMMAS[1]. Every interpretation agent produces

probabilities of the defect belonging to each of the six defect

classes. The overall probability of a defect class being correct

is then calculated by:

∑n

i=1
Pi(x)

n
(1)

where n is the number of agents who have submitted diag-

noses, and P (x) is the probability submitted by an agent of

the defect class x being correct.

This technique tends to give a majority verdict, making it

accurate in most cases, but it is susceptible to being misled by

agents which are very confident of their diagnosis. Ultimately,

agents with lower confidences can be correct. A detailed

examination of this situation can be found in [2].

2) Dempster’s Rule of Combination: This is a process for

combining experts’ testimony of the probability of particular

outcomes[13]. In this application, the experts are the interpre-

tation agents offering diagnoses, and the event outcomes are

the six defect classes. Each expert produces probabilities of

the defect belonging to each class, as in the Weighted Average

process. This is used to calculate a probability mass for each

agent, where probabilities are assigned to every set of outcome

combinations.

For an example, let there be two defect classes, denoted

FL (floating component) and SD (surface discharge). An

interpretation agent may make the diagnosis that there is a

Predicted Defect
BC FL PRO RP SD SP Undef.

A BC 263 10 0 0 0 0 0
c FL 0 95 10 42 80 52 18
t PRO 17 11 95 34 47 84 7
u RP 0 9 2 246 13 10 1
a SD 0 9 3 3 204 37 9
l SP 2 17 10 26 24 205 13

TABLE I

COINCIDENCE MATRIX FOR THE K-MEANS AGENT ON BAD CONTACT

(BC), FLOATING ELECTRODE (FL), PROTRUSION (PRO), ROLLING

PARTICLE (RP), SURFACE DISCHARGE (SD), AND SUSPENDED PARTICLE

(SP) DEFECTS

60% probability of the defect being FL, 20% of it being SD,

and 20% unsure. This would give a probability mass of:

∅ = 0, {FL} = 0.6, {SD} = 0.2, {FL, SD} = 0.2

The agents’ probability masses are then aggregated to

produce an overall mass, according to Dempster’s Rule:

m12(A) =

∑
B∩C=A

m1(B) · m2(C)

1 −
∑

B∩C=∅
m1(B) · m2(C)

(2)

Once the overall probability mass has been calculated, it can

be used to generate degrees of belief and plausibility of each

outcome. This is known as Dempster–Shafer theory. Assuming

three agents’ diagnoses have been combined, the equations are:

Bel123({FL}) = m123({FL}) (3)

Pl123({FL}) = 1 − Bel123({SD}) (4)

The defect class with the highest belief is the one for which

there is most supporting evidence among the agents, and so

this is the Diagnosis Agent’s final decision.

B. Reflective

During the testing stage of the development of each in-

terpretation agent, a coincidence matrix was compiled of

the actual class and predicted class of each test defect[4].

This gives precise information about the accuracy of each

interpretation technique diagnosing the six classes. Table I

shows the coincidence matrix for the K-Means interpretation

agent. This matrix is used as the report of agent abilities,

which the Transformer Diagnosis Agent needs to reflect on the

agents’ diagnoses. Every method described in the following

sections will use this information to reason about the messages

it receives.

1) Winner-Takes-All: Computationally very simple, but re-

portedly very successful[10], this requires reflective capabili-

ties to assess which agent is most often accurate for the defect

class they are diagnosing. The class chosen by this agent is

then taken as the final diagnosis.

For example, if one agent diagnoses a surface discharge with

80% probability, and another concludes the defect is a rolling

particle with 65% probability, a comparison is made between

the accuracy of the first of diagnosing surface discharges and
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the second of diagnosing rolling particles. If the coincidence

matrices reveal that for 300 surface discharge defects, the first

agent was correct 78% of the time; and for 300 rolling particle

defects, the second agent was correct 95% of the time; then

the diagnosis of the second agent is taken over that of the first.

The final conclusion of the Diagnosis Agent will be that the

defect is a rolling particle.

2) Evidential Reasoning: Based on Dempster–Shafer The-

ory, with its foundations in Dempster’s Rule of Combination,

Evidential Reasoning is a way of assessing the strength of

evidence supporting a particular defect diagnosis. It has been

previously applied in the domain of transformer condition

monitoring[14], but not specifically to defect classification.

It is better suited to condition assessment, as it requires the

definition of a range of grades where Hn+1 is always better

than Hn, such as:

H = {H1,H2,H3}

= {Critical, Poor,Normal}

In COMMAS, the grading would contain the six defect

classes, but there is no simple way of defining them as better or

worse than each other. Future research may investigate the use

of similarity measurements to allocate a grading of defects, but

Evidential Reasoning is currently not applicable to COMMAS.

3) Bayesian Inference: Bayes’ Theorem is used to deter-

mine the probability of an event based on some evidence,

when the causal probability of the event on the evidence is

easier to assess. In its simplest form, Bayes’ rule is:

P (D|E) =
P (E|D) · P (D)

P (E)
(5)

=
P (E|D) · P (D)

P (E|D)P (D) + P (E|¬D)P (¬D)
(6)

where P (D|E) is the probability of a defect D occurring,

given some evidence E. This can be used to infer how likely

a defect type is, given the evidence of an agent diagnosing it.

For example, if an agent diagnoses a surface discharge with

87% probability, and the coincidence matrix indicates that this

agent correctly diagnoses surface discharges 81% of the time,

the probability of the defect being a surface discharge, given

that the agent is saying it is, is calculated by:

P (DSD|ESD) =
0.81 · 0.87

0.81 · 0.87 + (1 − 0.81)(1 − 0.87)

The defect class with the highest probability, given the

evidence, is the Diagnosis Agent’s final decision.

4) Bayesian Belief Network: A Belief Network is a graph-

ical representation of the influence certain variables have

on others. The design of such a network begins with the

identification of root causes, which become the first nodes

in the network. Next, variables which are directly affected

by those root variables are added, and then variables directly

affected by these new nodes. This process is repeated until all

variables are included in the network. Probabilities are then

assigned to each node: independent probabilities to the root

nodes, and dependent probabilities to all others.

Defect

K-Means

Diagnosis

BPNN

Diagnosis

C5.0

Diagnosis

Fig. 3. A Bayesian Belief Network of defect diagnosis

The Belief Network for defect diagnosis is quite small (see

Figure 3). There is only one root node: a defect; and the

diagnoses of each interpretation agent are dependent on it.

The coincidence matrices are used to calculate the dependent

probability tables for each of the non-root nodes.

This network is used to find the probability of a certain

defect class, given the situation that two agents diagnose a

surface discharge and one a rolling particle. This is given by:

P (DRP |KMSD ∧ BPSD ∧ C5RP ) =

P (KMSD|DRP )P (BPSD|DRP )P (C5RP |DRP )P (DRP )

P (KMSD)P (BPSD)P (C5RP )

where KMSD means the K-Means agent diagnoses a sur-

face discharge, BPSD means the Back-Propagation agent

diagnoses a surface discharge, C5RP means the C5.0 agent

diagnoses a rolling particle, and DRP means the defect is a

rolling particle. The defect class with the highest probability,

given the diagnoses of the other agents, is the Diagnosis

Agent’s final decision.

V. RESULTS

In order to determine whether reflective knowledge im-

proves diagnosis, and reach a conclusion about the most

accurate technique for COMMAS, the five schemes discussed

above were implemented in separate Diagnosis Agents. All

five Diagnosis Agents were then deployed in COMMAS

simultaneously, and the resulting diagnoses from a series of

test datasets were compared.

The datasets were captured from defects simulated in lab-

oratory experiments. In total, 3700 partial discharge patterns

were classified: 327 bad contacts, 917 floating electrodes, 733

protrusions, 447 rolling particles, 871 surface discharges, and

405 suspended particles. This gives an average of 617 patterns

per defect type.

The results are shown in Table II.

VI. DISCUSSION

The results support the hypothesis that reflective reasoning

about the strengths of each Interpretation Agent improves

the accuracy of the Diagnosis Agent. The original Weighted

Average scheme is correct 63% of the time, whereas all re-

flective techniques are over 72% accurate. The more complex

non-reflective technique—Dempster’s Rule of Combination—

performs even more poorly than Weighted Average, suggesting

that the reflective schemes are not better just because they are

more complicated.

Of the reflective methods of evidence combination, Winner-

Takes-All and Bayesian Inference performed very similarly.
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Defect Weighted Dempster’s Rule Winner Bayesian Bayesian Belief
Class Average of Combination Takes All Inference Network

BC 83.79 85.63 86.85 86.85 97.55
FL 50.96 38.40 65.54 63.36 68.05
PRO 34.59 34.38 57.84 56.07 59.75
RP 65.32 36.24 83.45 83.45 81.21
SD 70.03 69.35 60.73 60.39 61.88
SP 73.09 62.72 82.47 84.69 82.72

Average 63.0 54.5 72.8 72.5 75.2

TABLE II

PERCENTAGE ACCURACY OF THE FIVE DIAGNOSIS TECHNIQUES

By re-examining these algorithms, it can be seen that Bayesian

Inference is a more complex way of choosing a winning

agent, but essentially still a winner-takes-all technique. Bayes’

Theorem is used to calculate the likelihood of an agent’s

diagnosis being correct, and the diagnosis with the highest

likelihood is the Diagnosis Agent’s final decision. The Winner-

Takes-All algorithm calculates likelihoods directly from the

coincidence matrices without using Bayes’ Theorem, but is

otherwise the same. Therefore, it is to be expected that their

accuracies are similar.

The most accurate algorithm is the Bayesian Belief Net-

work. It differs from the other reflective techniques in that it

considers all available evidence in one equation, rather than

determining the ‘best’ agent’s diagnosis. This means it has

the potential to give counter-intuitive results that no other

technique could provide, such as a particular combination of

diagnoses making an undiagnosed defect class most likely.

The Bayesian Belief Network is constructed flexibly: when

diagnoses are produced by Interpretation Agents, nodes are

added to the network. This is only at the conceptual level; in

the implementation of the Diagnosis Agent, terms are added

to an equation to accomodate new diagnoses. As a result, we

can integrate new Interpretation Agents and data sources in

the future; no modification of the Diagnosis Agent will be

required.

VII. CONCLUSION

The accuracy of the diagnosis produced by COMMAS is

dependent on the output of the interpretation agents, and on

how this is combined to create a final defect diagnosis. This

paper presents a number of schemes for evidence combination,

and explains how they can be applied to COMMAS. A

comparison of the accuracy of each method reveals that re-

flective knowledge significantly benefits the diagnosis process,

and that within the reflective techniques, the Bayesian Belief

Network performed best.

A Bayesian Belief Network populated by reflection is

therefore the method of evidence combination used by the

COMMAS Diagnosis Agent.
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