
Strathprints Institutional Repository

Catterson, Victoria and Davidson, Euan and Mcarthur, Stephen (2012) Practical applications of
multi-agent systems in electric power systems. European Transactions on Electrical Power, 22 (2).
pp. 235-252. ISSN 1430-144X

Strathprints is designed to allow users to access the research output of the University of Strathclyde.
Copyright c© and Moral Rights for the papers on this site are retained by the individual authors
and/or other copyright owners. You may not engage in further distribution of the material for any
profitmaking activities or any commercial gain. You may freely distribute both the url (http://
strathprints.strath.ac.uk/) and the content of this paper for research or study, educational, or
not-for-profit purposes without prior permission or charge.

Any correspondence concerning this service should be sent to Strathprints administrator:
mailto:strathprints@strath.ac.uk

http://strathprints.strath.ac.uk/

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by University of Strathclyde Institutional Repository

https://core.ac.uk/display/9033895?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://strathprints.strath.ac.uk/
http://strathprints.strath.ac.uk/
mailto:strathprints@strath.ac.uk
http://strathprints.strath.ac.uk/

Practical applications of multi-agent systems in electric

power systems

V. M. Catterson, E. M. Davidson, S. D. J. McArthur

Abstract

The transformation of energy networks from passive to active systems requires the embedding

of intelligence within the network. One suitable approach to integrating distributed intelligent

systems is multi-agent systems technology, where components of functionality run as autonomous

agents capable of interaction through messaging. This provides loose coupling between compo-

nents that can benefit the complex systems envisioned for the smart grid. This paper reviews

the key milestones of demonstrated agent systems in the power industry, and considers which

aspects of agent design must still be addressed for widespread application of agent technology to

occur.

1 Introduction

Energy networks are currently undergoing transformation, from the passive system with reactive

protection and control of the last 100 years, to the active and proactive systems required to

deliver smarter grid capabilities. This change requires a raft of technologies and data analysis

1

techniques, to fill what the European SmartGrids Technology Platform document calls “a toolbox

of smart grid capabilities” [1].

The smart grid vision is of multiple, complex systems interacting safely and correctly, delivering

new network functionality such as active network management and integrated condition moni-

toring, with the aim of more efficient use of power system resources and greater participation

of end users. The end result will be a power network that flexibly allows the connection of

more embedded and renewable generation, while handling changing load profiles due to electric

vehicles and demand side management.

Delivery of smarter grid services will require a technology for integrating all of this functionality,

in a way that does not negatively impact key metrics such as customer minutes lost in the

UK, and system average interruption duration index (SAIDI) in the US. One such technology

being proposed is multi-agent systems, where large, complex systems can be built from smaller,

autonomous agents of functionality [2]. In essence, agents offer a platform for designing and

delivering the complex smart grid application, from a set of constituent parts that are currently

being researched and tested.

This paper examines the role that agent technology could play within the power engineering

domain, by reviewing the key contributions within the field of agents in power, and highlight-

ing where more research is required. Section 2 presents the key concepts and definitions, with

consideration of some related areas of research. Section 3 reviews the state-of-the-art of agent

applications by discussing some milestone industrial demonstrators and deployments of agent

technology. The agent application areas discussed include post-fault analysis, condition moni-

toring, congestion management, and automatic restoration. From this, Section 5 draws out some

challenges which remain for agent development in the power industry. Section 6 concludes the

paper.

2

2 Concepts

Many concepts within the area of agent development mean different things to different people.

This leads to obfuscation of the potential benefits that agents may offer, and thus can impede

understanding.

The IEEE Power and Energy Society (PES) Multi-Agent Systems Working Group aims to offer

leadership in this area by defining the terminology most used within the field. Through the

publication of two papers—one specifically on concepts and approaches to developing agent

systems [3], the other on technologies and tools for implementing agents [4]—the working group

has provided some clarity on definitions that all in the field may examine, and decide whether

or not the stated benefits of agents are achievable.

This section presents the key terms with discussion of the working group-agreed definitions, and

provides discussion of the similarities and differences between agents and other intelligent system

techniques and computing platforms.

2.1 Agent

The first task is to define an agent. The power engineering community has largely settled on

the definition proposed by Wooldridge [5], that an agent is “a software (or hardware) entity

that is situated in some environment and is able to autonomously react to changes in that

environment”. The environment here is the world surrounding the agent, able to be observed

by the agent through sensors, and influenced by the agent through it taking some action in the

world, but with a separation between the two.

That the agent is autonomous means that it is able to “exercise control over its actions” [6].

This is a somewhat vague definition, but essentially implies that no other program or entity

3

exerts direct control over the agent; unlike a programming subroutine, which must be called

by a higher-level thread of execution in order to run, the agent itself schedules its behaviours

to run or otherwise. It should be noted that the agent can perform an operation on behalf of

another entity, and indeed, it is common for an agent to react to an incoming message by taking

some action. But the important distinction is that the sending agent is not calling the receiver’s

functions, and the thread of execution does not pass from the message sender to the message

receiver; rather, two separate threads of execution exist and it is possible for the receiving agent

to refuse to service the sender’s request. A legitimate example of this situation would be where

the receiving agent does not have enough memory to complete an action, in which case it replies

with a message refusing the request.

The definition of an agent acting autonomously within an environment is only one of many

posited definitions. The computer science community has proposed a number over the years,

including [7–10]. However, many of the alternative definitions are relatively vague and intention-

ally inclusive, allowing existing systems to be redefined as agents. This offers no tangible benefit

to the engineering community, which is more concerned with the differentiating factors between

agent systems and non-agent systems, in order to assess the potential benefits of this technology.

As a result, Wooldridge’s definition is the one of choice.

2.2 Intelligent Agent

Building on the definition of an agent, Wooldrige also defines the notion of an intelligent agent.

Where an agent displays autonomy in an environment, an intelligent agent displays flexible

autonomy as identified by three properties:

• Reactivity: the ability to respond to an event in a timely manner

• Pro-activeness: the ability to “take the initiative”, as demonstrated through goal-directed

behaviour

4

• Social ability: the ability to interact with other agents in the environment.

Any intelligent agent will display these three properties in some combination, and different

intelligent agents will display varying levels of each. However, it is the goal-directed behaviour

of an intelligent agent which truly sets it apart from other systems, making it more than just

capable of responding to particular situations in a reactive manner.

2.3 Multi-Agent System

A collection of agents and intelligent agents interacting within the same environment comprises

a multi-agent system. Since the system is made up of individual autonomous agents, each with

their individual goals and reactive capabilities, there is no overall system goal or global goal.

Instead, it is left to the system designer to ensure that the correct mix of agents is present within

the system in order to achieve their desired outcomes.

For example, if two tasks are required to achieve the system designer’s goal, the designer must

ensure that agents within the system have the local goals appropriate to performing both tasks,

either by giving both goals to one agent, or one goal each to two different agents.

This suggests the ability of agents to co-operate to meet their goals. Co-operation and co-

ordination can be achieved due to the social ability of intelligent agents, which allows communi-

cation about tasks and goals through adherence to standards for inter-agent messaging.

2.4 Agent Standards

Within the power engineering community, the use of standards is becoming increasingly impor-

tant. Utilities desire systems that conform to industry standards for data exchange, including

5

the Common Information Model (CIM) [11] and IEC 61850 [12]. As a result, any agent sys-

tems developed for this arena must adhere to appropriate standards, to give open, plug-and-play

systems. Since agents interact via messaging, standards-adherence largely means conforming to

open standards for inter-agent communication.

As with other communication systems, messaging occurs in different standardised layers. These

are message transport (the delivery of a message), message format (the agent communication

language), and message content (both grammar and vocabulary).

The Foundation for Intelligent Physical Agents (FIPA) have created a suite of standards that

cover the full stack of agent communication. FIPA was accepted as a standards committee of the

IEEE Computer Society in 2005, and the FIPA standards have become the de facto standards

for agent development within the power domain.

2.4.1 The Agent Platform

Message transport and delivery to agents is specified through FIPA’s Agent Management Refer-

ence model, which defines “the normative framework within which FIPA agents exist and operate.

It establishes the logical reference model for the creation, registration, location, communication,

migration and retirement of agents.” [13]. This means FIPA agents reside on a platform which

handles messaging using a transport protocol such as HTTP or IIOP, and handles addressing of

agents by keeping track of those present on the platform.

This functionality is supplemented by a specified Directory Facilitator (DF) agent. Agents joining

the platform can register their services with the DF, which provides a searchable directory of

services and agents within the system. This allows a decoupling of tasks within the multi-agent

system: agents need not be hard coded with the contact details of others whose services they

need; instead, agents can search the DF for the currently-available providers of those services.

6

The searchable DF and seamless message transport and delivery offered by a FIPA-compliant

agent platform are the foundations of an open, extensible multi-agent system.

2.4.2 Message Format

The agent platform provides the path for message transport between agents, but the format

of the messages themselves must also be standardised for meaningful communication to occur.

Some of the earliest agent systems defined proprietary communication languages (e.g. [14]), which

were followed by interaction through blackboard architectures (e.g. [15]), before development of

standardised communication languages such as Knowledge Query and Manipulation Language

(KQML) [16].

Building on KQML, the FIPA Agent Communication Language (FIPA-ACL) standardises the

structure and flow of messages between agents on a FIPA agent platform [17]. Message fields

include receiving and sending agent addresses, message sequence information, and the message

content. All these fields are optional; the only mandatory field is the message performative which

indicates the intention behind the message, such as whether it is a request for an action, a query

for information, or informing another agent of some information.

FIPA-ACL messages are often sent as part of a sequence of interaction, such as an inform message

being sent in response to a query. Some common interaction patterns are also specified by FIPA.

2.4.3 Message Content

While FIPA-ACL provides the headers for a message, the content structure is out of scope for that

standard. The syntax and semantics, or grammar and lexicon of message content are provided

by a content language and ontology, respectively.

7

The FIPA Semantic Language (FIPA-SL) has reached a stable standard version [18], providing a

first order logic-style grammar for messages. Ontology is application-specific, making it impos-

sible for a general standards-body such as FIPA to define a standard ontology. Therefore, agent

system designers must design and build an ontology that suits the particular application their

agents operate on.

The IEEE PES Multi-Agent Systems Working Group has defined an ontology for power en-

gineering applications, largely based on CIM, which can be used as a basis for defining an

application-specific ontology [19]. It is anticipated that agents from different designers will

largely communicate about power systems concepts such as substations, voltages, and circuit

breakers, and so this ontology of common terms will ease the creation of open agent systems.

2.5 Agents and Related Technologies

It is worth discussing the distinction between a theoretical engineering agent, which conforms

to the given definitions and displays goal-directed behaviour and social ability, and a practical

engineering agent, which is designed and built using the tools and approaches available today.

While the above definitions indicate what an intelligent agent looks like, the reality is that such

a theoretical agent is not fully realisable using current resources. For practical applications the

intelligent agent will be implemented in such a way that it may not have the social ability that

we may desire, or its behaviour will not be as goal-directed as the ideal.

This is because the concept of an intelligent agent builds on other parts of computer science

which are not currently at the stage of delivering the task-decomposition and question-answering

technologies that a theoretical agent requires. This section considers these related technologies

in the context of agent systems, identifying the place within agent research for each of these

fields.

8

2.5.1 Agents and Intelligent Systems

The heart of an intelligent agent is its ability to reason about its goals and the state of the world,

and take actions to try to achieve its goals. The choice of reasoning technique employed is an

open question, with many different solutions being proposed. These range from general purpose

reasoning such as that offered by AI planners [20] or the belief-desire-intention framework [21],

to application-specific solutions such as neural networks or other pattern recognition techniques

trained to perform a specific operation [22].

In theory, an intelligent agent should display goal-directed behaviour. This strongly suggests

that an ‘ideal’ agent should embody a planner, allowing it to assemble sequences of actions to

achieve its goal. However, including a planner has disadvantages. One is purely practical: many

agents will only have one or two potential actions at their disposal, designed to achieve one

specific task. AI planning is pointless for organising such a simple set of actions, and would

not improve the ability of the agent. Implementing planners within each agent would require

significant developmental effort, for no gain in the general case.

However, even in the specific cases where an agent does have the potential to meet its goals in

multiple ways, including a planner is not always helpful. Consider a situation where an agent A

requires an agent B to perform a service in order to meet its goal. If agent B fails to complete

the service, agent A must find an alternative solution. It may be the case that two other agents,

C and D, can each perform subtasks that together meet the same objective as agent B’s service.

For agent A to be able to reason about this situation and replan to request services of agents C

and D, it must be able to perform task decomposition, breaking down the one service provided

by B into the two subtasks offered by C and D.

Task decomposition has been under extensive research in the field of semantic web services

[23–25]. To be able to perform task decomposition on the service offered by agent B, the designer

of agent A would need to describe the service to such a fine level of detail that it would be

9

equivalent to implementing the service itself.

Consider the service of performing a Discrete Fourier Transform (Yk =
∑N−1

n=0 Xne−
2πi
N nk) on

a dataset. Given the definition of the DFT, this service could be decomposed into sub-services

including sum, multiply, power, and so on. However, understanding the combination in which

these sub-services should be used requires as much information as implementing the DFT itself.

At this point, the only benefit to service decomposition is that it allows the spreading of compu-

tational load, which changes the topic of discussion to distributed computing for optimisation,

rather than software organisation and systems design.

This raises the question of whether the theory of an ideal agent is faulty. If we cannot reach the

state of goal-driven co-operating agents, then why use an agent approach for system design? In

practice, the benefits of this approach are actually coincidental to the theory of agents. The value

offered by multi-agent systems design is due to the decomposition of the system into reusable,

redeployable, communicating components, each capable of performing its task autonomously.

This allows a system to be reconfigured for use in multiple scenarios, and eases the merging of

multiple systems by enforcing the use of common agent communications technologies. Addition-

ally, because each autonomous agent performs a single clearly-defined task, it can be thoroughly

designed and tested before deployment in the system.

This is not to say that planning has no place in a multi-agent system. While a practical agent

cannot achieve goal-directed behaviour through co-operation, it can do so autonomously provided

that it has sufficient reasoning capability to allow pro-active behaviour. Examples of this may

range from using neural networks for parameter prediction, or rule based reasoning for operator

decision support, through to AI planning for network reconfiguration.

10

Agent A Agent B

((all ?x (and (IsA ?x Temperature)
 (GreaterThan ?x 30))))

…

sql = parseClause ("(IsA ?x Temperature)") +
 parseClause ("(GreaterThan ?x 30)")

results = database.select (sql)

msg = buildResponse (results)

msg.send ()

…

returns "SELECT * FROM temperature",
converting Temperature symbol into

temperature table name

returns "WHERE value > 30",
assuming Temperature GreaterThan 30

means temperature.value > 30

Figure 1: When an agent receives a message, it must translate content terms into method calls
and database queries according to its internal knowledge representation.

2.5.2 Agents and Service-Oriented Architectures

The social ability of an intelligent agent theoretically allows for an agent to receive any standards-

conforming query about information it knows and respond with an appropriate answer. In

practice, agents are largely hard-coded to recognise and respond to set messages on topics they

know, making the practice very different from the theory [26].

The problem is one of knowledge-representation, and is related to the choice of reasoning tech-

nique that gives an agent its intelligence. When a message is received, the agent must per-

form some conversion from terms within the content field into actions to take, methods to call,

databases to consult, etc., before performing a second conversion from action results, method re-

turn values, and database results into ontology and content language terms for sending a response

(see Fig. 1).

One way around the problem is to design the agent so that it uses the ontology for knowledge

representation, and all its knowledge and state is already stored in ontology terms. However,

in almost all situations a practical agent is going to hold more detailed knowledge than can be

represented using the ontology. Say an agent can respond to queries for temperature data, taken

11

from a particular sensor. The ontology will provide the ability to describe a temperature, giving

it a value, a unit, and the time it was measured. The agent must also know how to address

the sensor and how to take readings, which is low-level detail that should not be covered by the

ontology. The knowledge representation capabilities of the agent will necessarily be broader than

the ontology alone, meaning that at some point of the agent’s reasoning process there will be

translation between ontology terms and specific methods or actions the agent can take.

This problem of restricted social ability has been recognised, and the most advanced solution is

currently the JADE Semantics Add-On (JSA) [26]. Designed for the JADE agent platform, the

JSA simplifies the task of linking ontology terms with particular agent actions, separating out

the hard-coded elements to one particular place and thus simplifying maintainability issues.

However the general problem still stands, that the ontology lists a set of terms that an agent can

employ in messages, while the implementation of what those terms mean is dependent on each

agent’s designer making an explicit link between an ontology term and the agent’s actions.

Service oriented architectures (SOA) must also address this problem when exposing interfaces

for web services. Web services are similar to agent services, in that heterogeneous systems

operate together using a service model. The standards governing web services include the Web

Service Description Language (WSDL) [27] and Universal Description, Discovery, and Integration

(UDDI) protocol [28].

WSDL is an XML-format language used to give information about services. Contrary to its name,

WSDL describes how to access and use the service rather than describing the service itself, with

parameters such as the address, message template, and data types. It can be considered a

language for service syntax, without semantic information.

UDDI is a service registry, similar to the FIPA DF. Service providers can register their WSDL

service description with a UDDI node, advertising how to access that service. UDDI is a passive

matchmaker, storing information generally referred to as white pages, yellow pages, and green

12

pages information. White pages information involves general contact details for the service

provider; yellow pages information uses a taxonomy of business or industry categories to describe

a service; and green pages information includes interfaces and addresses for service access (in

WSDL). Searching can be performed on individual parameters.

The semantics of a web service are therefore described in the yellow pages information, based

on categories defined in published taxonomies. This is exactly analogous to an agent system’s

ontology: the meaning of terms must be inferred by the system designer, and explicit links made

between service terms and software actions. The main difference is that web service providers

tend to explicitly limit the interface of calls or messages a service will respond to, while creators

of agents may aim to reach the ideal of general social ability for their agents.

The reason that general social ability is considered desirable for agents is to future-proof the

system. Designers hope that by giving an agent the ability to respond to messages with content

not yet in use, future extensions to the system will be able to ask questions and request services

of the agent without needing to update the agent. A trivial example is for the temperature

sensor agent described above to respond to queries for the temperature at a given date to cover

the current use case, but also being given the ability to respond to requests for all temperatures

in a time range in case this is needed in the future.

There is a trade-off to be made between development time now versus development time in the

future given the likelihood of such functionality being needed. Much time could be invested in

allowing an agent to respond to many conceivable queries, but without much chance of recouping

the benefit through many system extensions. The “future-proof-ness” of a system cannot be

measured, and so there is little way of gauging the concrete benefits of extending agent social

abilities. The most practical course is to design the agents to be as flexible as possible in handling

the current use cases, such as by using the JSA, and trust that future extensions will be able to

manage with the agent interfaces this provides.

13

2.5.3 The Practical Agent

In summary, the theoretical idea of an intelligent agent would take much more development time

than is practical for an engineering system, and would not provide substantially improved capa-

bilities over the practical implementation suggested in this paper. The goal-directed behaviour

that seems a clear distinguisher between agent and non-agent systems is in practice difficult to

achieve, since most agents have a limited set of potential actions they can take, and the state-of-

the-art in task decomposition does not allow for detailed reasoning about the capabilities of other

agents in the system. Social ability is also considered to set agent systems apart from others,

but in practice is limited by the designer’s interpretation of the ontology for a given agent.

With these considerations in mind, the definition of a practical intelligent agent is one which

embodies some intelligent system technique, and displays autonomy through two features:

• It maintains a thread of execution that is distinct from other programs, i.e. no program or

external system makes calls to the agent’s functions or methods, where execution transfers

from the external system to the agent code and back;

• It interfaces with the external world through messaging and taking action in the envi-

ronment, i.e. other agents and external systems can affect the agent’s behaviour only by

submitting messages, or by altering the environment in a way intended to alter the agent’s

behaviour (e.g. leaving a pheromone marker in an ant colony simulation).

The degree to which the agent maintains autonomy from the agent platform is an implementation

detail, and does not affect the first point. The JADE platform, for example, does not instantiate

separate agents in separate operating system threads. However, it switches between agents as a

mini scheduler, meaning that the agents within the platform are kept distinct (as operating sys-

tem threads are kept distinct within a process). The agent can make calls to platform functions,

such as for sending and receiving messages from the transport layer, but the platform can only

14

affect the agent by suspending, migrating, destroying, etc. through requests from the engineer.

The platform supports the agent, rather than controlling the agent.

The capability of an agent to act autonomously has certain practical benefits for power engi-

neering applications. Separate applications and algorithms can be implemented and tested as

isolated systems, in order to ensure correct operation; and then deployed together in the field

to gain the benefits of information-sharing across systems. This also means that stand-alone

legacy systems (which, by their nature, run autonomously) can be integrated into new systems

and interfaced with new data sources.

The following section considers particular examples of practical agent systems in the literature,

and assesses the contributions they make to the field.

3 Review

A 2007 review of the field [3] identified four application areas where agent research was on-

going. One significant area of activity was in agent-based simulation of energy markets, for

example [29, 30]. In this paper, we focus on “operational” use of agents rather than simulation:

agent technology being used as an integration platform for in-field systems deployment. Taking

this definition, this section identifies the state-of-the-art in agent system design, by discussing

some of the key implementations of power engineering applications.

3.1 ARCHON

One of the earliest examples of an agent-based system in the power domain is ARCHON (AR-

chitecture for Co-operative Heterogeneous ON-line systems) [31]. The design intention was to

integrate a set of pre-existing expert systems for different aspects of distribution network fault

15

diagnosis. Each expert system originally operated in isolation, with an engineer drawing conclu-

sions about the state of the network from the output of each system.

The out-of-sequence SCADA alarms gathered from the network are first processed by the Alarm

Analysis Agent, which tries to identify the faulted component. At the same time, a Breakers

Supervisor agent analyses the correctly-sequenced SCADA data from individual substations. A

third agent identifies the extent of the network that was blacked-out, and a fourth agent acts as

an interface between the agent system and the control room computer system.

Integration of the systems allows automatic corroboration of diagnoses. If analysis of the network-

wide, out-of-order alarms identifies the same faulted component as analysis of the local, chrono-

logical alarms, confidence in the diagnosis is higher. The Black-out Area Identifier agent provides

extra information for Alarm Analysis, which can confirm or alter the fault diagnosis.

This system explicitly employed loose coupling of agent messaging interfaces in order to integrate

legacy systems in a flexible, alterable way. Each agent was designed to keep the intelligence layer

distinct from the social layer, with explicit mappings between them. The aim was to allow

changes to the social interactions among agents without having to alter the intelligence layer. In

effect, the legacy systems can remain the same regardless of the deployment scenario, while the

agents can come together in varying ways by altering the messaging layers.

This capability was exploited in subsequent implementations, where further agents were added

to the system for switching schedule production and weather monitoring for lightning strike

location [14].

ARCHON used bespoke message formats and protocols in addition to a blackboard-like dis-

tributed database for information-sharing between agents. The latter avoids the need for trans-

ferring large datasets between agents over the message transport channel, with point-to-point

and broadcast messaging allowing agents to alert others to updates in the datasets available.

While this approach met the needs of the system at the time, the use of standards for messaging

16

allows more openness of the architecture, which was one of the drivers for using the agents’ loose

coupling.

ARCHON was supported by Iberdrola, and has been deployed in a control room in Bilbao [32].

It was pioneering by showing the potential of multiple autonomous systems linked by loosely

coupled interfaces: benefiting the application by corroborating multiple diagnoses, and benefiting

the system by flexibly allowing deployment of different sets of agents. While it aimed to be an

open architecture that agents from any designer could join, in practice the lack of standardised

messaging and the use of a distributed database would hinder this.

3.2 PEDA

The Protection Engineering Diagnostic Agents (PEDA) system was created for post-fault analy-

sis, using not only SCADA data but also Digital Fault Recorder (DFR) data to diagnose network

faults and validate that the protection system operated correctly [33]. Like ARCHON, PEDA

integrates a number of legacy intelligent systems in order to improve the diagnostic conclusions

of the system, while additionally collecting data from and corroborating across multiple sources

of data via agents that use FIPA-conforming messaging.

SCADA data is analysed by an Incident and Event Identification agent, which uses an expert

system to classify the type of incident and identify relevant alarms. The information from

this agent is used to prioritise retrieval of fault records by the Fault Record Retrieval agent.

Fault records are passed to the Fault Record Interpretation agent, which uses an expert system

to identify key information such as fault type and clearance times. A Protection Validation

and Diagnosis agent wraps a model-based reasoning system to check whether the protection

system operated correctly for this fault. Information generated by all these agents is archived

by a Collation Agent, and an Engineering Assistant Agent presents system conclusions to the

engineer.

17

A number of the PEDA agents were deployed in the UK with SP PowerSystems [34], where certain

practical issues provided an instructive case study for the use of multi-agent systems in robust

industrial applications. Specifically, the stability of the agent platform used for development

was under question, which meant the agents deployed upon it were consequently unable to

run without crashes. Secondly, the FIPA standards themselves had undergone revision, and

some of the messaging did not conform to the new versions of the standards. Finally, the user

requirements for the system had changed over time, meaning the engineers wanted robust archival

of system output.

In short, the deployment of this system led to significant advances in understanding of the

software engineering challenges of a multi-agent system, by requiring techniques and approaches

to achieve the stability and maintainability required by an industrial system. The agent system

can only be as robust as the tools it employs, and the importance of platform selection and long

term data storage were highlighted. With the use of FIPA standards for messaging, this system

was more open to agents with different designers than ARCHON, but the lack of standards

versioning information in messages meant the agents had to be updated to conform to latest

releases of the standards.

3.3 COMMAS

In addition to network fault diagnosis, agents have been used for diagnosis of faults in items of

plant. The COndition Monitoring Multi-Agent System (COMMAS) was originally applied to gas

turbine start-up sequences, before being implemented for transformer condition monitoring [22].

Implementation and use of this system has continued over many years, and similarly to PEDA,

the requirements have changed over this period of time. This section considers the first practical

implementation and the shift to a second practical implementation deployed with National Grid.

The original implementation aimed to diagnose defects causing partial discharge (PD) behaviour

18

within a transformer. PD data was gathered from sensors, then a Feature Extraction agent

calculated feature vectors from the data. Three pattern recognition techniques were wrapped as

Diagnosis Agents, which used the feature vectors for defect classification. The three diagnoses

were collected by a Corroboration Agent, which made the final diagnosis. An Information Agent

presented an interface for the engineer.

An agent approach was used for extensible system development: since the agents located others

of the appropriate type through the DF, extra Diagnosis Agents could be added to the system

and their diagnoses were seamlessly collected by the Corroboration Agent. Development of

new Diagnosis Agents was also simplified, since all the messaging behaviours of locating feature

vectors and providing diagnoses were identical. In the terminology of ARCHON, the intelligence

layer differs between different Diagnosis Agents, while the messaging layer is identical.

This architecture suited PD monitoring in the laboratory, but had some disadvantages that were

revealed as requirements changed. The first issue was that the diagnosis workflow is set by each

type of agent looking for the previous type in the chain, making it difficult to insert steps into

the workflow. For example, later work inserted anomaly detection capabilities between data

gathering and feature extraction [35], so that diagnosis of a defect would only be performed if

the transformer’s behaviour changed. This required substantial alteration of the messaging layer

of the Feature Extraction agent, to stop it from seeking sensor data until it received a start signal

from the anomaly detector.

The second issue arose when new sources of data were available. In a project with the UK’s

National Grid, two transformers were instrumented with temperature, vibration, and current

sensors with the aim of monitoring for changes in behaviour. The intelligent system technique

chosen for this was Conditional Anomaly Detection [36], which operated on raw data instead of

feature vectors, and did not require a separate stage for corroboration. Since the workflow for

this data was so different from the PD data analysis, a whole new set of agents were required to

interpret this data.

19

Taking these changes in requirements into account, the agent architecture was radically re-

designed. Five different agent roles were defined: data provider, service provider, data director,

archive, and interface [37]. Data provider agents make data available to the system, by connecting

to sensors, databases, historical files, or web resources. Service providers perform data interpre-

tation, such as calculating feature vectors or classifying defects. The archive provides long term

storage of information generated by agents. Data directors contain task-specific knowledge al-

lowing them to make links between data providers and service providers, and ensure information

is archived. Interface agents provide ways of allowing information out of the system, such as to

a user interface or a second system.

This architecture allows the diagnosis workflow to alter based on a given data director’s knowl-

edge. For the situation of adding anomaly detection to PD monitoring, it would be the data

director that is altered from directing data straight to the feature extraction agent, to sending

it for anomaly detection prior to feature extraction. This is a significant difference: in the first

system design the feature extraction agent had to change even although the process of extracting

features remained the same, whereas with the second design the data director changes because

the flow of data (the sphere of this agent’s knowledge) has to change.

The change in architecture reflects a change in design intention. The new implementation focusses

on handling data from different sources using different techniques in a flexible and extensible way,

by imposing the five roles required for many condition monitoring applications. This architecture

was implemented for the transformer monitoring application described above, and monitored the

transformers on-site for 12 months before decommissioning [36]. It has also been implemented

for dissolved gas analysis of historical data and PD analysis of lab samples [37]; deployed on-site

for HVDC reactor monitoring [38]; and deployed on a wireless sensor network for transformer

monitoring [39].

While condition monitoring is traditionally treated as a distinct application from network mon-

itoring, diagnosis of any faults or disturbances on the network can give extra information about

diagnoses of plant health. The integration of the PEDA and COMMAS systems has been dis-

20

cussed [40], with the aim of using knowledge of network events such as high loading to inhibit

the raising of alarms for transformer high temperatures or increased PD. Both systems con-

form to the FIPA standards for agent platform and agent messaging, but since ontology is not

standardised, messages generated by one system are unintelligible to the other.

To date, this problem has not been fully overcome. The IEEE PES Multi-Agent Systems Working

Group recognises it as a barrier to interoperation of agent systems [4], and has developed an

upper ontology of common terms within the power engineering domain [19]. This can be used

as the basis for application-specific ontology development, which simplifies system integration to

some extent. Systems will likely communicate about high-level concepts such as transformers,

substations, and faults, and the upper ontology provides a data model for such terms.

3.4 SPID

Certain events within the power system can lead to cascade tripping, which can rapidly black-out

large portions of the network unnecessarily. The Strategic Power Infrastructure Defence (SPID)

System was created to identify and resolve the types of hidden failure of components that can

leave the system vulnerable to cascading events [41].

Agents are organised into three layers. The first set react quickly to events, by sending inhibiting

signals to protection devices. At the next level, co-ordination agents use heuristic knowledge to

decide if events at the reactive layer need further analysis. Finally the deliberative layer contains

agents which do longer-term analysis, such as identifying potential hidden failures of components,

reconfiguring the network, or generating a restoration plan after an incident.

The benefits of an agent approach are derived from the autonomy of agents in each layer [41].

Reactive agents can make local decisions and react quickly, compared to deliberative agents that

gather wide area data before drawing conclusions. At the same time, such a complex system

21

maintains a level of robustness from the independence of each agent: if one ceases to function,

it will affect others but not necessarily the whole system.

Later work identified the need for robust tools for implementing such a system, in order to

deploy a practical industrial solution [42]. The choice of such tools was presented as an open

question. Since rapid communication is vital for this application, it is unlikely agent messaging

is FIPA-compliant due to the size of FIPA messages, although the choice of technology is not

explicitly stated. This suggests that the architecture is not particularly open, but the application

of security threat analysis could be used as an argument against an open system.

3.5 IntelliTEAM II

S&C Electric Company produce the IntelliTEAM II Automatic Restoration System [43], which

decides and executes a restoration plan after isolation of a faulted line section. This is achieved by

communication between agents responsible for adjacent lines. Each agent can control components

such as switches and reclosers on its line, but action can only be taken after agreement with

neighbouring agents. Each agent checks that its constraints will still be met before agreeing to

neighbouring actions.

The system has been deployed with the ENMAX Power Corporation in Canada on key circuits.

This shows the robustness required of industrial applications has been met. However, little

information has been published on the workings of the agents themselves, other than the radio

system employed for communication. A second trial on the Isle of Wight sees monitoring and

restoration of an 11kV network, which is susceptible to interruptions due to weather conditions

[44].

22

3.6 PowerMatcher

A more recent commercial product is PowerMatcher, an agent-based solution to demand man-

agement in congested or constrained networks [45]. The design intention for this system is to

dynamically match supply and demand through an open market for trading in a local area.

Each device has a control agent with knowledge of how they produce or consume power. This

leads to three types of device agent: stochastic operation agents (such as solar or wind energy

converters), shiftable operation agents (such as ventilation or air conditioning systems), and user

action devices (such as lighting and computers) [45]. In addition, there are three other types of

agent for operating the market: an auctioneer agent, which finds the equilibrium price point; a

concentrator agent, which can represent a cluster of device agents in the auction; and an objective

agent, which can maintain objectives other than simply balancing supply and demand to, for

example, operate a virtual power plant [46]. Through the use of concentrator agents, small local

markets can trade with wider area markets, allowing the computational complexity of the market

to scale logarithmically [46].

Agent technology was chosen for this application for reasons of scalability and openness [46]. As

the number of devices using PowerMatcher grows, the appropriate agents can be instantiated from

the same six agent templates described above, with no additional developer overhead. Since all

agents are autonomous, the deployment of new devices does not affect the current device agents,

other than by altering prices fixed through auction. Scalability of computation has been designed

in to the architecture through the concentrator agents.

While the design and development of the system is considered scalable, in practice it may be

limited by implementation of the agent platform. One of the most widely used platforms is

JADE [26], a Java-based, FIPA-compliant platform that is generally held to produce reliable,

scalable systems. However, the scalability and robustness of a JADE-based agent system is

significantly impacted by deployment choices, such as whether to deploy agents on a single

23

platform or whether to federate multiple platforms containing subsets of agents [47].

PowerMatcher does not use the JADE platform, but instead agents run on a FIPA-compliant

platform created by the PowerMatcher developers [48]. Little detail of this platform is published,

but it is likely that deployment choices and platform implementation will have an effect on

scalability. The extent of this effect has not been reported.

Openness of the PowerMatcher system is a design goal, in order to allow devices with different

creators to integrate with the system. Messaging between agents does not currently comply with

FIPA standards, instead being a proprietary messaging format tailored to the current application

use cases [49]. However, it has been recognised that standards-compliant messaging would open

up the architecture [48], and FIPA-compliant messaging is a goal for future development.

PowerMatcher is in advanced stages of field testing, with three demonstrator sites of varying sizes

confirming that PowerMatcher can perform its required tasks [50]. One test deployed control

agents with five devices for some months in 2006, with the objective of reducing imbalances

between supply and demand. The second field test grouped five micro-CHP devices as a virtual

power plant for one month in 2007, with the aim of reducing the peak load of the local network.

The third and largest test is called PowerMatcher City, where agents are deployed with 100

controllable devices, split across 30 households and two laboratories. This third test is still

ongoing.

3.7 AuRA-NMS

Taking a very different approach to congestion management, the Autonomous Regional Active

Network Management System (AuRA-NMS) was designed to encompass multiple techniques for

operating distribution networks more efficiently. This involved automating the decision-making

required for power flow management, voltage control, and network optimisation, using agent

24

technology as an integration platform for some or all of these techniques.

While other network control research has suggested the use of agents, AuRA-NMS takes a sig-

nificantly different design approach [51]. Instead of allocating an agent to each device in the

network, AuRA-NMS splits agents along functional boundaries, giving each agent in the system

autonomous capabilities for tackling different tasks such as voltage control or power flow manage-

ment. The specific techniques tested are constraint programming, current tracing, and optimal

power flow for power flow management; and case-based reasoning and constraint programming

for voltage control [52,53].

As with ARCHON, the loose coupling of the messaging interface is the key agent feature that gives

tangible benefit to this application, rather than the scalable development offered by instantiating

multiple agents of the same type that is exploited by PowerMatcher. This has the interesting

effect of allowing flexible geographical deployment of agents where computing resources allow it

and where the utility desires.

For example, one proposed field trial would deploy power flow management functionality dis-

tributed across three substations, while a second field trial would retain all computation within

the utility’s control room [53]. The location of agents for these trials is simply a choice, not a

requirement, as the agents are not tied to specific items of plant. The first field trial is currently

ongoing.

Similarly to the condition monitoring application of COMMAS, openness and future integration

with other systems is highly desirable for AuRA-NMS. As such, the same issues of standards-

compliance and ontology choice will affect the level to which it is practically possible to create an

open architecture. Any progress which is made in one of these areas should be directly applicable

to the other.

25

3.8 INTEGRAL

INTEGRAL is an EU programme which aims to develop an ICT platform for distributed con-

trol of electrical networks based on commonly available ICT components, standards, and tech-

nologies [54]. A key element of the INTEGRAL programme is demonstration of the proposed

platform under a number of different network conditions: normal conditions (managing DER to

minimise cost); critical conditions (maintaining stability); and emergency conditions (restoration

of supply). The programme has three different pilot deployments, each deployment focusing on

a particular condition. Agent technology features in all three pilots.

The pilot for normal network conditions, in the Netherlands, uses PowerMatcher, which we have

already discussed in section 3.6.

For critical network conditions, a site trial in Spain uses MAS technology for the control of

a microgrid [54]. Based on earlier work [55], agents are used to match supply and demand

with the microgrid in response to grid events. The microgrid is connected to a UPS which is

used to simulate a grid connection. Loads and generators within the microgrids are managed

from a central PC which communicates via Zigbee with embedded controllers on each of the

loads/generators. The central PC hosts a multi-agent system, implemented using JADE, which

manages devices on the microgrid. The architecture of the MAS is such that each controllable

device is assigned a local control agent. The local control agent manages the control of that

individual device. A single microgrid central controller agent is responsible for the co-ordination

of the local control agents and thus the whole system.

Agent concepts also play a role, allbeit more limited, within the emergency conditions pilot of

INTEGRAL. The third pilot aims to demonstrate self-healing in response to faults, i.e. automatic

supply restoration [56]. In terms of MAS design and implementation, a single intelligent agent

is responsible for restoration within an area of network known as a cell. Performance of the

agent and the underlying ICT infrastructure on which it relies is being tested on a low voltage

26

laboratory-based test network, which has been sized to represent a real 20 kV area of distribution

network in France [57].

4 Interest in Agents and Smart Grids

As networks become “smarter”, more flexible and automated, utilities and researchers are looking

for platforms and technologies that can support a system of complex, interacting, sometimes

competing functionality. The requirement is to allow different objectives, such as power flow

management, voltage regulation, and automated restoration, to co-exist harmoniously within the

smart grid management system. Data and measurements should be available to all functionality

that requires it, while actions taken to meet one objective should not negatively impact another

unless a negotiated agreement has been reached.

Various bodies have recognised the need for standards and platforms to support this vision.

EPRI’s IntelliGrid architecture [58] and the US Department of Energy’s GridWise Architec-

ture [59] are two such industrially-backed efforts at standardisation. These architectures are

explicitly technology-agnostic, specifying the required functionality of a smart grid platform

without suggesting particular implementations. At a high level, both architectures require plat-

forms to allow interoperability of functionality, extensibility, and reliability.

Multi-agent systems aim to embody these features, making agent technology a strong contender

for delivery of smart grid capability. Interoperability through standards-conformance, extensi-

bility through deployment of newer agents, and reliability through distributed deployment of

agents offering redundant functionality are accepted strengths of agent-based system design [3].

Many researchers are investigating the design of agent systems to address smart grid questions,

as evidenced by a wealth of recent publications [51,53,60–86].

While it is early for physical demonstrators and field trials of these applications, it is anticipated

27

that agent technology will continue to grow in popularity, as it offers the means of creating the

flexible, extensible, and robust systems required for the smart grid.

5 Challenges

The progress of these systems towards industrial implementations and demonstrators shows that

agent technology can be used to build robust systems from autonomous components. However,

there still remain some practical challenges to wide-spread deployment of multi-agent systems

within power engineering. These can be summarised as ensuring a system design will deliver

the required functionality, whether that functionality is a technical capability or an industry

requirement.

The first aspect of this is how to design an agent system. Many methodologies exist (some

listed in [4]), but the choice of methodology will greatly influence the final structure of the

architecture. Most methodologies design from a top-down perspective, where an engineering

task such as condition monitoring or post fault analysis is broken down into successive subtasks

until they seem appropriate for agent behaviours. This will produce a system that meets the

required functional capability for the current use case, but may be limited in extensibility to

future expansions. Specifically, the social ability of the agents will be limited to creating and

understanding the messages required to perform the high level task.

An alternative is to design from a bottom-up perspective, considering what actions and messaging

capabilities an agent should have given its knowledge of the world. A fully bottom-up approach

would fall into the trap described earlier, of investing much development effort into aspects that

are not required for the current use case with the aim of future-proofing the system, but may

never be required in the future.

Therefore, a balance between top-down and bottom-up design seems appropriate, with the design

28

emphasis more on a top-down approach to meeting current use cases. However, the current use

cases can be quite complex, for example by allowing the autonomy of agents to flexibly change

at run-time. Research into degrees of autonomy has considered the circumstances in which it is

appropriate for robots within a team to act independently versus co-ordinating behaviour with

others [87, 88]. This work presented various use cases in which robots had to act autonomously

for timely response to environmental events, but in other situations take orders from others in

order to meet the team’s objectives. Choosing the appropriate degrees of autonomy for agents

within the power system is an important question not yet explored within the industry.

Finally, designers must have ways of verifying that once implemented, agents will behave in

the expected ways in order to robustly continue to meet its design objectives. Validation and

verification of agent code is in many ways like assessing the correctness of any software system,

with the possible interactions of various agents both simplifying and adding complexity to the

task.

Since agents operate as autonomous components they can be thoroughly tested as stand-alone

units, entirely analogously to unit testing of software classes. External systems such as other

agents can be simulated through mocking [89], where the intended responses are hard-coded into

a mock agent, thus decoupling the behaviour of agents within the system for test purposes. Since

many tools and frameworks exist for unit testing and mocking, agent testing is no more difficult

than standard unit testing, relying as it does on defining a test set with appropriate coverage to

ensure all behaviours are exercised.

However, by using FIPA standards for messaging, the number of legitimate messages that could

potentially be sent to an agent is practically infinite. This complicates the task of ensuring an

agent cannot be damaged by unexpected input, as the test set of messages may be much larger

and more complex than a test set of parameters for standard unit testing of a software function.

Further, the asynchronous interaction of agents means that they are potentially more sensitive

to the timing and order of messages received from multiple sources, which can require test sets

of the same messages sent at varying intervals to get full coverage.

29

Software verification is not a new area, and there is nothing inherent about agent design that

requires more or less effort expended on testing. However, the testing procedure for an agent

system is something rarely discussed in publications on the use of agents in industry, and if

agent-based systems are to be deployed for safety critical or safety related applications in the

power industry, it is an area that must be given consideration.

6 Conclusion

This paper has discussed the theoretical and practical benefits that multi-agent systems technol-

ogy can bring to power engineering applications. Through a review of some of the key agent-based

systems in the literature, the progress of this technology towards robust industrial installations

has been shown, culminating in ongoing field trials and commercial products currently avail-

able. Each of these demonstrators covers a different strand of the functionality envisioned for

the smart grid concept, showing through example that multi-agent systems can provide the

integrating technology for such a complex system.

However, there are still some aspects of agent design and implementation that could be im-

proved. Design methodology, degrees of autonomy, and verification and testing have not been

fully explored in the literature, and further research would benefit engineering agent systems.

With this in mind, further demonstration systems and industrial deployments are required, to

continue advancing the practice of multi-agent design.

References

[1] SmartGrids, “Vision and strategy for Europe’s electricity networks of the future,” 2006,

available http://www.smartgrids.eu/.

30

[2] V. M. Catterson, E. M. Davidson, and S. D. J. McArthur, “Agents for Active Network Man-

agement and Condition Monitoring in the Smart Grid,” in 9th Int. Conf. on Autonomous

Agents and Multiagent Systems, Toronto, Canada, May 2010.

[3] S. D. J. McArthur, E. M. Davidson, V. M. Catterson, A. L. Dimeas, N. D. Hatziargyriou,

F. Ponci, and T. Funabashi, “Multi-Agent Systems for Power Engineering Applications—

Part 1: Concepts, Approaches and Technical Challenges,” IEEE Trans. Power Systems,

vol. 22, no. 4, pp. 1743–1752, Nov. 2007.

[4] ——, “Multi-Agent Systems for Power Engineering Applications—Part 2: Technologies,

Standards and Tools for Building Multi-Agent Systems,” IEEE Trans. Power Systems,

vol. 22, no. 4, pp. 1753–1759, Nov. 2007.

[5] M. Wooldridge, “Intelligent Agents,” in Multi-agent Systems, G. Weiss, Ed. The MIT

Press, Apr. 1999, pp. 3–51.

[6] S. Franklin and A. Graesser, “Is it an agent or just a program?” in Proc. 3rd International

Workshop on Agent Theories, Architectures, and Languages. Springer-Verlag, 1996.

[7] S. Russell and P. Norvig, Artificial Intelligence: A Modern Approach. Prentice-Hall Inc.,

1995.

[8] P. Maes, “Artificial life meets entertainment: life-like autonomous agents,” Communications

of the ACM, vol. 38, no. 11, pp. 108–114, 1995.

[9] L. N. Foner, “Entertaining agents: a sociological case study,” in Proc. 1st International

Conference on Autonomous Agents, 1997.

[10] B. Hayes-Roth, “An architecture for adaptive intelligent systems,” Artificial Intelligence:

Special Issue on Agents and Interactivity, vol. 72, pp. 329–365, 1995.

[11] IEC, “Energy Management System Application Program Interface (EMS-API) - Part 301:

Common Information Model (CIM) base,” 2005, document IEC 61970-301.

[12] ——, “Communications Networks and Systems in Substations,” 2005, document IEC 61850.

31

[13] Foundation for Intelligent Physical Agents (FIPA), “Agent Management Specification,”

2002, http://www.fipa.org/specs/fipa00023/SC00023J.html.

[14] D. Cockburn and N. R. Jennings, “ARCHON: A Distributed Artificial Intelligence System

for Industrial Applications,” in Foundations of Distributed Artificial Intelligence, G. M. P.

O’Hare and N. R. Jennings, Eds. Wiley, Apr. 1996, pp. 319–344.

[15] S. Talukdar, “Asynchronous teams: Cooperation schemes for autonomous agents,” Journal

of Heuristics, vol. 4, no. 4, pp. 295–321, 1998.

[16] T. Finin, Y. Labrou, and J. Mayfield, “KQML as an agent communication language,” in

Software Agents, J. Bradshaw, Ed. The MIT Press, 1997.

[17] Foundation for Intelligent Physical Agents (FIPA), “FIPA ACL Message Structure Specifi-

cation,” 2002, http://www.fipa.org/specs/fipa00061/SC00061G.html.

[18] ——, “FIPA SL Content Language Specification,” 2002, http://fipa.org/specs/fipa00008.

[19] V. M. Catterson, P. C. Baker, E. M. Davidson, and S. D. J. McArthur, “An upper ontology

for power engineering applications,” 2010, available http://ewh.ieee.org/mu/pes-mas/.

[20] N. Muscettola, P. P. Nayak, B. Pell, and B. C. Williams, “Remote Agent: to boldly go

where no AI system has gone before,” Artificial Intelligence, vol. 103, no. 1-2, Aug. 1998.

[21] A. S. Rao and M. P. Georgeff, “BDI agents: From theory to practice,” in 1st International

Conference on Multi-Agent Systems (ICMAS-95), 1995.

[22] S. D. J. McArthur, S. M. Strachan, and G. Jahn, “The design of a multi-agent transformer

condition monitoring system,” IEEE Trans. Power Systems, vol. 19, no. 4, pp. 1845–1852,

Nov. 2004.

[23] S. A. McIlraith, T. C. Son, and H. Zeng, “Semantic Web Services,” IEEE Intelligent Sys-

tems, vol. 16, no. 2, pp. 46–53, Mar./Apr. 2001.

[24] A. Ankolekar, M. Burstein, J. R. Hobbs, O. Lassila, D. Martin, D. McDermott, S. A.

McIlraith, S. Narayanan, M. Paolucci, T. Payne, and K. Sycara, “DAML-S: Web Service

32

Description for the Semantic Web,” in Proc. 1st Int. Semantic Web Conf. (ISWC), Sardinia,

Italy, 2002.

[25] A. Gómez-Pérez, R. González-Cabero, and M. Lama, “ODE SWS: A Framework for De-

signing and Composing Semantic Web Services,” IEEE Intelligent Systems, vol. 19, no. 4,

pp. 24–31, Jul./Aug. 2004.

[26] F. Bellifemine, G. Caire, and D. Greenwood, Developing Multi-Agent Systems with JADE.

John Wiley and Sons Ltd, 2007.

[27] E. Christensen, F. Curbera, G. Meredith, and S. Weerawarana, “Web Services Description

Language (WSDL) 1.1,” 2001, http://www.w3.org/TR/wsdl.

[28] L. Clement, A. Hately, C. von Riegen, and T. Rogers, “Universal Description, Discov-

ery and Integration v3.0.2 (UDDI),” 2005, http://www.oasis-open.org/committees/uddi-

spec/doc/spec/v3/uddi-v3.0.2-20041019.htm.

[29] A. Somani and L. Tesfatsion, “An Agent-Based Test Bed Study of Wholesale Power Market

Performance Measures,” IEEE Computational Intelligence Magazine, vol. 3, no. 4, pp. 56–

72, 2008.

[30] H. Li and L. Tesfatsion, “The AMES wholesale power market test bed: A computational

laboratory for research, teaching, and training,” in IEEE Power Engineering Society General

Meeting, 2009, Jul. 2009.

[31] T. Wittig, N. R. Jennings, and E. M. Mandan, “ARCHON — A framework for intelligent co-

operations,” IEE-BCS Journal of Intelligent Systems Engineering, vol. 3, no. 3, pp. 168–179,

1994.

[32] N. R. Jennings, J. M. Corera, I. Laresgoiti, E. H. Mamdani, F. Perriollat, P. Skarek, and

L. Z. Varga, “Using ARCHON to develop real-world DAI applications for electricity trans-

portation management and particle accelerator control,” IEEE Expert, vol. 11, pp. 64–70,

1996.

33

[33] J. A. Hossack, J. Menal, S. D. J. McArthur, and J. R. McDonald, “A multiagent architecture

for protection engineering diagnostic assistance,” IEEE Trans. Power Systems, vol. 18, no. 2,

pp. 639–647, May 2003.

[34] E. M. Davidson, S. D. J. McArthur, J. R. McDonald, T. Cumming, and I. Watt, “Applying

multi-agent system technology in practice: automated management and analysis of SCADA

and digital fault recorder data,” IEEE Trans. Power Systems, vol. 21, no. 2, pp. 559–567,

May 2006.

[35] A. J. Brown, V. M. Catterson, M. Fox, D. Long, and S. D. J. McArthur, “Learning Models of

Plant Behavior for Anomaly Detection and Condition Monitoring,” Engineering Intelligent

Systems, vol. 15, Jun. 2007.

[36] V. M. Catterson, S. D. J. McArthur, and G. Moss, “On-Line Conditional Anomaly Detection

in Multivariate Data for Transformer Monitoring,” IEEE Trans. Power Delivery, vol. 25,

no. 4, pp. 2556–2564, Oct. 2010.

[37] V. M. Catterson, S. E. Rudd, S. D. J. McArthur, and G. Moss, “On-line Transformer

Condition Monitoring through Diagnostics and Anomaly Detection,” in 15th Int. Conf.

Intelligent Systems Application to Power Systems (ISAP), Nov. 2009.

[38] V. M. Catterson, S. D. J. McArthur, M. D. Judd, and A. S. Zaher, “Managing Remote

Online Partial Discharge Data,” IEEE Trans. Power Delivery, vol. 23, no. 4, pp. 1754–1762,

Oct. 2008.

[39] P. C. Baker, V. M. Catterson, and S. D. J. McArthur, “Integrating an Agent-based Wireless

Sensor Network within an Existing Multi-agent Condition Monitoring System,” in IEEE

International Conference on Intelligent Systems Application to Power Systems (ISAP), Cu-

ritiba, Brazil, Nov. 2009.

[40] V. M. Catterson, E. M. Davidson, and S. D. J. McArthur, “Issues in integrating exist-

ing multi-agent systems for power engineering applications,” in 13th Int. Conf. Intelligent

Systems Application to Power Systems (ISAP), Oct. 2005.

34

[41] C.-C. Liu, J. Jung, G. Heydt, V. Vittal, and A. G. Phadke, “The strategic power infras-

tructure defense (SPID) system: A conceptual design,” IEEE Control Systems Magazine,

vol. 20, no. 4, pp. 40–52, Aug. 2000.

[42] H. Li, G. W. Rosenwald, J. Jung, and C.-C. Liu, “Strategic Power Infrastructure Defense,”

Proc. IEEE, vol. 93, no. 5, pp. 918–933, May 2005.

[43] D. M. Staszesky, D. Craig, and C. Befus, “Advanced Feeder Automation is Here,” IEEE

Power and Energy Magazine, vol. 3, no. 5, pp. 56–63, Sep./Oct. 2005.

[44] D. MacLeman, W. Bik, and A. Jones, “Evaluation of a self healing distribution automation

scheme on the Isle of Wight,” in 20th International Conference and Exhibition on Electricity

Distribution (CIRED 2009), Jun. 2009.

[45] K. Kok, C. Warmer, and R. Kamphuis, “The PowerMatcher: Multiagent Control of Elec-

tricity Demand and Supply,” in Agents in Industry: the best from the AAMAS 2005 Industry

Track, IEEE Intelligent Systems, Mar./Apr. 2006, vol. 21(2).

[46] J. K. Kok, M. J. J. Scheepers, and I. G. Kamphuis, “Intelligence in Electricity Networks for

Embedding Renewables and Distributed Generation,” in Intelligent Infrastructures, R. R.

Negenborn, Z. Lukszo, and J. Hellendoorn, Eds. Springer, 2009.

[47] E. M. Davidson and S. D. J. McArthur, “Exploiting Multi-agent System Technology within

an Autonomous Regional Active Network Management System,” in 14th Int. Conf. Intelli-

gent Systems Application to Power Systems (ISAP), Nov. 2007.

[48] M. P. F. Hommelberg, B. J. van der Velde, C. J. Warmer, I. G. Kamphuis, and J. K. Kok,

“A novel architecture for real-time operation of multi-agent based coordination of demand

and supply,” in IEEE Power Engineering Society General Meeting, 2008, Jul. 2008.

[49] C. J. Warmer, I. G. Kamphuis, R. M. Hermans, J. Frunt, A. Jokić, and P. P. J. van

den Bosch, “Balancing Services in Smart Electricity Grids Enabled by Market-Driven Soft-

ware Agents,” in 9th Int. Conf. on Autonomous Agents and Multiagent Systems, Toronto,

Canada, May 2010.

35

[50] J. K. Kok, “Multi-Agent Coordination in the Electricity Grid, from Concept towards Market

Introduction,” in 9th Int. Conf. on Autonomous Agents and Multiagent Systems, Toronto,

Canada, May 2010.

[51] E. M. Davidson, S. D. J. McArthur, C. Yuen, and M. Larsson, “AuRA-NMS: Towards the

delivery of smarter distribution networks through the application of multi-agent systems

technology,” in IEEE Power Engineering Society General Meeting, 2008, Jul. 2008.

[52] E. M. Davidson, S. D. J. McArthur, M. J. Dolan, and J. R. McDonald, “Exploiting intelligent

systems techniques within an autonomous regional active network management system,” in

IEEE Power Engineering Society General Meeting, 2009, Jun. 2009.

[53] E. M. Davidson, M. J. Dolan, G. W. Ault, and S. D. J. McArthur, “AuRA-NMS: An

Autonomous Regional Active Network Management System for EDF Energy and SP Energy

Networks,” in IEEE Power Engineering Society General Meeting, 2010, Jul. 2010.

[54] G. Peppink, R. Kamphuis, K. Kok, A. Dimeas, E. Karfopoulos, N. Hatziargyriou, N. Hadj-

said, R. Caire, R. Gustavsson, J. M. Salas, H. Niesing, J. van der Velde, L. Tena, F. Bliek,

M. Eijgelaar, L. Hamilton, and H. Akkermans, “INTEGRAL: ICT-platform based Dis-

tributed Control in electricity grids with a large share of Distributed Energy Resources and

Renewable Energy Sources,” in 1st International ICST Conference on E-Energy, Athens,

Greece, Oct. 2010.

[55] A. L. Dimeas and N. D. Hatziargyriou, “Operation of a multi-agent system for microgrid

control,” IEEE Trans. Power Systems, vol. 20, no. 3, pp. 1447–1455, Aug. 2005.

[56] L. Le-Thanh, R. Caire, B. Raison, S. Bacha, F. Blache, and G. Valla, “Test bench for

self-healing functionalities applied on distribution network with distributed generators,” in

IEEE Bucharest PowerTech 2009, Jul. 2009.

[57] N. Hadjsaid, L. Le-Thanh, R. Caire, B. Raison, F. Blache, B. Stȧhl, and R. Gustavsson,

“Integrated ICT framework for distribution network with decentralized energy resources:

Prototype, design and development,” in IEEE Power Engineering Society General Meeting,

2010, Jul. 2010.

36

[58] EPRI, “Intelligrid Architecture Status Report: Technology Transfer Activities and Recom-

mendations,” Dec. 2006, available from http://intelligrid.epri.com/technical results.html.

[59] GridWise Architecture Council, “Interoperability Consitution Whitepaper,” Dec. 2006,

available from http://www.gridwiseac.org/about/publications.aspx.

[60] M. Pipattanasomporn, H. Feroze, and S. Rahman, “Multi-agent systems in a distributed

smart grid: Design and implementation,” in IEEE PES Power Systems Conference and

Exposition (PSCE 2009), Mar. 2009.

[61] J. Ko, I.-H. Shin, G.-L. Park, H.-Y. Kwak, and K.-J. Ahn, “Design of a Multi-agent System

for Personalized Service in the Smart Grid,” Security-Enriched Urban Computing and Smart

Grid: Communications in Computer and Information Science, vol. 78, pp. 267–273, 2010.

[62] M. P. F. Hommelberg, C. J. Warmer, I. G. Kamphuis, J. K. Kok, and G. J. Schaeffer,

“Distributed Control Concepts using Multi-Agent technology and Automatic Markets: An

indispensable feature of smart power grids,” in IEEE Power Engineering Society General

Meeting, 2007, Jun. 2007.

[63] R. Belkacemi and A. Feliachi, “Multi-agent design for power distribution system reconfig-

uration based on the artificial immune system algorithm,” in Proceedings of 2010 IEEE

International Symposium on Circuits and Systems (ISCAS), May 2010, pp. 3461–3464.

[64] S. Chouhan, W. Hui, H. J. Lai, A. Feliachi, and M. A. Choudhry, “Intelligent reconfiguration

of smart distribution network using multi-agent technology,” in IEEE Power Engineering

Society General Meeting, 2009, Jul. 2009.

[65] Q. Pang, H. Gao, and X. Minjiang, “Multi-agent based fault location algorithm for smart

distribution grid,” in 10th IET International Conference on Developments in Power System

Protection (DPSP 2010), Mar. 2010.

[66] D. A. Cohen, “GridAgents: Intelligent agent applications for integration of distributed

energy resources within distribution systems,” in IEEE Power Engineering Society General

Meeting, 2008, Jul. 2008.

37

[67] A. Saleem, K. Heussen, and M. Lind, “Agent services for situation aware control of power

systems with distributed generation,” in IEEE Power Engineering Society General Meeting,

2009, Jul. 2009.

[68] A. Saleem and M. Lind, “Requirement analysis for autonomous systems and intelligent

agents in future Danish electric power systems,” International Journal of Engineering, Sci-

ence, and Technology, vol. 2, no. 3, pp. 60–68, 2010.

[69] J. M. Solanki, S. K. Solanki, and N. Schulz, “Multi-agent-based reconfiguration for restora-

tion of distribution systems with distributed generators,” Integrated Computer-Aided Engi-

neering, vol. 17, no. 4, pp. 331–346, 2010.

[70] I. Zabet and M. Montazeri, “Implementing cooperative agent-based protection and outage

management system for power distribution network control,” in 4th International Power

Engineering and Optimization Conference (PEOCO), Jun. 2010, pp. 318–324.

[71] ——, “Decentralized control and management systems for power industry via multiagent

systems technology,” in 4th International Power Engineering and Optimization Conference

(PEOCO), Jun. 2010, pp. 549–556.

[72] Q. Ai, J.-H. Wu, and J. Zhang, “Strategies for optimal use of clean distributed energy in

smart grid,” High Voltage Engineering, vol. 35, no. 11, pp. 2813–2819, Nov. 2009.

[73] Z. Jiang, “Computational intelligence techniques for a smart electric grid of the future,”

Advances in Neural Networks: Lecture Notes in Computer Science, vol. 5551/2009, pp.

1191–1201, 2009.

[74] C. Xin, L. Feipeng, L. Yunkun, H. Yaping, and Z. Yunyong, “Protective relaying on-line

setting calculation system,” in 2010 Asia-Pacific Power and Energy Engineering Conference

(APPEEC), Mar. 2010.

[75] S. Karnouskos and T. N. de Holanda, “Simulation of a smart grid city with software agents,”

in 2009 Third UKSim European Symposium on Computer Modeling and Simulation, Nov.

2009.

38

[76] I.-H. Lim, M.-S. Choi, S.-J. Lee, and T. W. Kim, “Intelligent distributed restoration by

multi-agent system concept in DAS,” in 15th Int. Conf. Intelligent Systems Application to

Power Systems (ISAP), Nov. 2009.

[77] I. Chao, O. Ardaiz, R. Sanguesa, L. Joita, and O. F. Rana, “Optimizing decentralized grid

markets through group selection,” in International Conference on Complex, Intelligent and

Software Intensive Systems, Mar. 2008, pp. 951–956.

[78] A. Molderink, V. Bakker, M. G. C. Bosman, J. L. Hurink, and G. J. M. Smit, “Domestic en-

ergy management methodology for optimizing efficiency in smart grids,” in IEEE Bucharest

PowerTech 2009, Jul. 2009.

[79] N. Cai and J. Mitra, “A decentralized control architecture for a microgrid with power

electronic interfaces,” in North American Power Symposium (NAPS), Sep. 2010.

[80] R. Bhuvaneswari, S. K. Srivastava, C. S. Edrington, D. A. Cartes, and S. Subramanian,

“Intelligent agent based auction by economic generation scheduling for microgrid operation,”

in Innovative Smart Grid Technologies (ISGT), Jan. 2010.

[81] H. F. Wedde, S. Lehnhoff, C. Rehtanz, and O. Krause, “Intelligent agents under collaborative

control in emerging power systems,” International Journal of Engineering, Science, and

Technology, vol. 2, no. 3, pp. 45–59, 2010.

[82] Z. Vale, H. Morais, P. Faria, H. Khodr, J. Ferreira, and P. Kadar, “Distributed energy

resources management with cyber-physical SCADA in the context of future smart grids,”

in MELECON 2010: 15th IEEE Mediterranean Electrotechnical Conference, Apr. 2010, pp.

431–436.

[83] H. Morais, Z. A. Vale, C. Ramos, and I. Praça, “Virtual power producers simulation—

Negotiating renewable distributed generation in competitive electricity markets,” in IEEE

PES/IAS Conference on Sustainable Alternative Energy (SAE), Sep. 2009.

[84] A. A. Aquino-Lugo and T. J. Overbye, “Distributed intelligent agents for service restoration

and control applications,” in North American Power Symposium (NAPS), Sep. 2008.

39

[85] S. M. Amin, “For the Good of the Grid,” IEEE Power and Energy Magazine, vol. 6, no. 6,

pp. 48–59, Nov./Dec. 2008.

[86] S. Mullen and G. Onsongo, “Decentralized agent-based underfrequency load shedding,”

Integrated Computer-Aided Engineering, IOS Press, vol. 17, no. 4, pp. 321–329, 2010.

[87] J. Shah, P. Conrad, and B. C. Williams, “Fast Distributed Multi-agent Plan Execution

with Dynamic Task Assignment and Scheduling,” in International Conference on Automated

Planning and Scheduling (ICAPS 09), Thessaloniki, Greece, Sep. 2009.

[88] P. R. Conrad, J. Shah, and B. C. Williams, “Flexible Execution of Plans with Choice,” in

International Conference on Automated Planning and Scheduling (ICAPS 09), Thessaloniki,

Greece, Sep. 2009.

[89] K. Beck, Test Driven Development: By Example. Addison-Wesley Professional, 2002.

40

